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Abstract. Robust linear regression is one of the well known areas in
data analysis, and various methods to solve the robust regression prob-
lems are available in the literature. However, one of the key issues in these
methods is the adaptability of the scale/tuning parameter to the data
demographics. In this work, a correntropic loss based linear regression
model is proposed. An approximation and simplification of the model
reduces the model to the well known class of weighted linear regres-
sion models. Iterative solution methodology is proposed to solve the pro-
posed formulation. Performance of the proposed approach is evaluated
on simulated data. Results of the experiments highlight the usability and
importance of the proposed approach.

Keywords: Robust linear regression · Correntropic loss · Weighted
least square errors

1. Introduction

Least square error minimization is one of the earliest and commonly known form
of linear regression. The method was coined in early 1800’s by the individual
seminal works of Legendre and Gauss. The survival of linear regression over the
past 2 centuries can be attributed to its simplicity and applicability in multitude
of pragmatic applications. The literal meaning of word ‘regression’ is ‘return to
a formal state’. The linear regression problem can be described as follows. Given
Δ independent and identical (iid) records (xr, yr), for r = 1, . . . ,Δ collected
from a system, where xr ∈ R

1×D corresponds to the system’s input parameters
or regressors, and yr ∈ R corresponds to the system’s output or response for
r = 1, . . . ,Δ; find β such that the following relation holds:

yr = xT
r β• + β0 + εr ∀o = 1, . . . ,Δ, (1)

where β = [β0,β•] is unknown (D + 1) × 1 vector, and εr’s are iid errors that
are independent of xr with E(εr|xr) = 0. Equation (1) can be written in the
compact form as:

y = Xβ + ε, (2)
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where X ∈ R
Δ×(D+1) and the rth row of X is defined as [1,xr], and y, ε ∈

R
Δ are vectors containing responses and errors respectively. The mathematical

formulation of least square linear regression, a.k.a, Ordinary Least Square (OLS)
regression can be modeled as follows:

minimize :
|| y − Xβ ||2, (3)

where || ||2 is the second norm or the quadratic norm. Although Formulation (3)
is nonlinear, it is a convex optimization problem. Furthermore, for a reasonable
size of data and computing power, the formulation has a closed form solution. By
reasonable size and computation power, we mean that the computer system is
capable to inverse or handle XTX. The closed form solution for Formulation (3)
is an immediate result of the optimality conditions for unconstrained non-linear
programs [1]. Since Formulation (3) is convex, the necessary and sufficient con-
ditions for ̂β to be optimal is, ∇f(̂β) = 0, where f(̂β) =|| y − X̂β ||2. Upon
further simplification, the optimality conditions can be stated as:

y − X̂β = 0 or X̂β = y (4)

If XTX is non-singular, then the solution of Eq. (4) can be written as:

̂β = (XTX)−1XTy (5)

With the development of numerical methods and computing power, XTX of
10, 000 × 10, 000 can be easily inverted in a single go (See [14]). Furthermore,
there are many iterative methods to solve Eq. (4), which can extend the usage
of OLS to big data. For example, in [5], OLS estimates of 1011 regressors are
estimated.

2. Relevant Work

One of the critical drawbacks of OLS is its sensitivity to outliers (data points
that do not fit in with the majority of the data points). Even a single outlier
can have huge impact on the OLS estimate, ̂β. For example, see Figs. 1 & 2. In
Fig. 1, the data is free from outliers. Whereas, in Fig. 2 10% of the observations
are replaced with outliers.

To overcome the above limitation for OLS, many approaches have been devel-
oped by data scientists (see [7,10,13,20,22,24,29] and the reference there in).
Indeed robust regression approaches have been well studied in many research
areas originating from various disciplines over the past five decades. The robust
approaches typically vary in degree of robustness, type of robustness, and compu-
tational complexity. It is out of scope of this work to review or list all the robust
regression approaches. Interested readers are directed to see [16,31] in addition
to the above references. From the literature, two major ideas for robust linear
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Fig. 1. OLS estimates without outliers

Fig. 2. OLS estimates with 10% outliers

regression can be grouped as: robust approach methods, and robust statistic
methods.

Robust Approach: In robust approach methods, the key idea is to use the
current OLS method with sampling mechanisms. For example, RANdom SAmple
Consensus (RANSAC) is one of the robust approaches that withstood the test of
time. In 1981, Fischler and Bolles proposed a generic framework called RANSAC
that handles outliers in parameter estimation [4]. Usage of OLS with RANSAC
strategy has since then became a popular approach to handle outliers in linear
regression. The wide applicability of RANSAC can be attributed to its simple
and generic characteristics. Many extensions of RANSAC are also available in
the literature [17].

Robust Statistic: In robust statistic methods, the key idea is to use replace the
squared error measure with a measures that is insensitive to the outliers. Among
myriad of robust methods, some of the well known robust statistic methods
used in robust linear regression are: Huber’s M-estimates [9,10], MM-estimates
[13,30], Generalized M-estimates [2,8], R-estimates [11,15], S-estimates [19], GS-
estimates [3,18], LMS-estimate [24], LTS estimates [21], REWLSE estimates [6],
and regularized estimates [12,23].

In this work, an adaptive weighted linear regression method that is robust
to outliers is proposed. The proposed method uses a robust measure called cor-
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rentropic loss. Although, weighted methods are available in the literature, the
adaptive nature of the weights proposed in this paper improves the quality of the
estimates. The rest of the paper is organized as follows: Sect. 3 presents the pro-
posed model, followed by the proposed solution methodology. A numerical study
involving simulated data is illustrated in Sect. 4. Some discussion and concluding
remarks are depicted in Sect. 5.

3. Methodology

In this section, a mathematical model that is robust and/or insensitive to outliers
is presented. An iterative solution methodology for the proposed formulation is
developed in the latter part of this section.

3.1 Proposed Model

The following model is proposed for linear regression:

minimize :
Δ

∑

r=1

(1 − e− (yr−xrβ )2

2σ2 ), (6)

where σ > 0 is a scale parameter. The exponential objective function (also
defined as correntropic loss) in Formulation (6) appears in many data analysis
works including [25–28]. From the theory of optimality conditions for uncon-
strained non-linear programs [1], a local optimal solution to the above formula-
tion should satisfy the following necessary condition:

Δ
∑

r=1

e− (yr−xrβ )2

2σ2

(

(yr − xrβ)(xrf )
σ2

)

= 0 ∀ f ∈ D (7)

Let w(β) : RD �→ R
Δ be defined as wr(β) = e− (yr−xrβ )2

2σ2 for r = 1, . . . ,Δ.
The above conditions can be recast as:

XTW(β)(y − Xβ) = 0 (8)

where W(β) is a diagonal matrix containing w(β) as its diagonal.

3.2 Proposed Solution Approach

In order to find β that satisfies the above necessary conditions, an iterative
procedure is proposed. The update rule for the procedure is described as follows:

XTW(βold)(y − Xβnew) = 0 (9)
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Since W(β) is a diagonal matrix with positive elements, and if XTX is non-
singular, then we have the following closed form solution:

βnew = (XTW(βold)X)−1XTW(βold)y. (10)

Notice that the above update rule is similar to the update rule obtained when
solving the following weighted linear regression problem:

minimize :
Δ

∑

r=1

ωr(yr − xrβ)2 (11)

where ωr is the non-negative weights assigned to the rth record. The simplifica-
tion depicted in Eq. (10) drastically reduces the complexity involved in obtaining
the solution to Formulation (6). However, the key issue lies in obtaining βold for
any value of σ, such that the Hessian of the objective function in Formulation (6)
is Positive Semi Definite (PSD) at βold. Obtaining such βold ensures that the
necessary conditions stated in Eq. (8) are also sufficient for local optimality.
When σ is very large, the Hessian is PSD everywhere. Thus, the main difficulty
is to obtain such βold for smaller values of σ. The iterative procedure depicted
in Algorithm-1 obtains such βold at each iteration.

Algorithm 1: Proposed Algorithm
Input : X ∈ R

Δ×(D+1),y ∈ R
Δ, βOLS ∈ R

D+1 and α
Output: β ∈ R

D+1

1 Set σ ← √
max

1≤r≤Δ
{(yr − xrβOLS)2} ;

2 Set βnew ← βOLS ;

3 while termination criteria is False do
4 Set βold ← βnew;
5 Construct W(βold);

6 Get βnew ← (XTW(βold)X)−1XTW(βold)y;
7 Update σ ← ασ;

8 end
9 Set β ← βnew

In Algorithm-1, βOLS are the OLS estimates for the given data, 0 < α < 1
is a tuning parameter. The termination criterion used in the current work is
σ < ε for some prespecified threshold ε. Upon termination at a low value of σ,
the algorithm gives a local minimum of Formulation (6). In addition to that, the
proposed approach to solve Formulation (6) involves solving Formulation (11) at
each iteration (Line-6 in Algorithm-1). Thus, the proposed algorithm may give
global minimum of Formulation (6) when α −→ 1.
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4. Experimentation

In order to compare the performance of the proposed method, following existing
weighted linear regression methods from the literature of robust linear regression
are considered (see Table 1). The first column in Table 1 indicates the commonly
known name of the method. The second column describes the mechanism to
generate wr’s for each of the methods based on the value of error/residual er.
Some of these methods are require a tuning parameter, and the third column
displays the suggested parameter value.

Table 1. Some robust linear regression methods

Method Description Constant

‘andrews’ ωr =

{
sin(er)/er |er| < pi,

0 o/w
1.339

‘bisquare’ ωr =

{
(1 − e2r)

2 |er| < 1,

0 o/w
4.685

‘cauchy’ ωr = 1/(1 + e20) 2.385

‘huber’ ωr = 1/ max(1, |er|) 1.345

‘logistic’ ωr = tanh(er)/rr 1.205

‘talwar’ ωr =

{
1 |er| < 1,

0 o/w
2.795

‘welsch’ ωr = exp(−(e2r)) 2.985

Following sequence of experiments are conducted in this section. At first, sim-
ulated data containing no outliers is used for checking the validity of the proposed
methodology. Next, simulated data containing outliers is used for demonstrating
the capability of the proposed methodology to handle outliers. Finally, simulated
data that contains outliers in a linear structure is considered.

4.1 Experiment-1

Setup: In this experiment, the data is simulated using the following equation:

y = β1x + β0 + 0.1ε, (12)

where the values of x are uniformly selected from 0 to 1, and ε is a Gaussian
noise with zero mean and unit variance. This experiment consists of 30 scenarios,
where each scenario contains 100 trials. At the beginning of each scenario, β0 and
β1 are uniformly randomly selected from the following interval [1, 10]. The values
for β0 and β1 will not be changed during the trials for a given scenario. However,
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these values will be updated at the start of every scenario. Validation: For each
scenario, following measure is used for reporting the quality of the estimates:

μ =
1

|T |
∑

t∈T

||βact − βt||2, (13)

where T represents the set of all trials, βact are the actual coefficients used for
data generation in the scenario, and βt represents the estimated coefficients. A
two sided hypothesis sign test is utilized for concluding any differences between
existing and the proposed method estimates. The null hypothesis (H0) is that
the mean of μ values of the existing method and proposed method are same.
The alternate hypothesis (Ha) is that the proposed method’s mean μ value is
lower than the existing method’s mean μ value. Results: The results of this
experiment are displayed in Table 2. Column labeled Avg μ(Std μ) represents
the average(standard deviation) μ value for the method over the 30 scenarios.
Column labeled Avg Time(Std Time) represents the average(standard devia-
tion) time in seconds used by the method per trial per scenario. Column labeled
Ha contains either 0 or 1. A value of 1 in Ha implies that the sign test sup-
ports/favors the alternate hypothesis at 5% significance level. Similarly, a value
of 0 in Ha indicates that, at 5% significance level, the test fails to reject the null
hypothesis. For Logistic method, based on the sign test, at the 5% significance
level, the test favors the alternate hypothesis.

4.2 Experiment-2

Setup: In this experiment, the data is simulated similar to Experiment-1. How-
ever, 10% of the response values are modified by updating the response values
to max{y} + 10. Validation: The measure, null and alternate hypotheses are
similar to Experiment-1. Results: The results of this experiment are displayed
in Table 3. The columns have similar meaning as described in Experiment-1. For
OLS, Logistic and Huber methods, based on the sign test, at the 5% significance
level, the test favors the alternate hypothesis.

4.3 Experiment-3

Setup: In this experiment, the data is simulated similar to Experiment-2. How-
ever, the number of regressors in this experiment are 10, i.e., β ∈ R

11. In addition
to that, three cases are considered in this experiment. In Case-1 10% of the data
are outliers, in Case-2 20% of the data are outliers, and in Case-3, 30% of the
data are outliers. Validation: The measure, null and alternate hypotheses are
similar to Experiment-1. Results: The results of this experiment are displayed
in Table 4. The columns have similar meaning as described in Experiment-1.
From the results, it can be concluded that as the percentage of outliers increase,
the number of existing methods favoring the alternate hypothesis increase (at
5% significance level).
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Table 2. Experiment-1 results

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 0.051 0.0015 0 0 0

‘proposed’ 0.0511 0.0018 0.0001 0.0002

‘andrews’ 0.0512 0.0017 0.0008 0.0029 0

‘bisquare’ 0.0512 0.0017 0.0006 0.0005 0

‘cauchy’ 0.0512 0.0017 0.0007 0.0002 0

‘huber’ 0.0511 0.0016 0.0005 0.0002 0

‘logistic’ 0.0513 0.0018 0.0008 0.0008 1

‘talwar’ 0.051 0.0015 0.0003 0.0001 0

‘welsch’ 0.0512 0.0017 0.0006 0.0001 0

Table 3. Experiment-2 results

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 1.9897 0.3105 0 0 1

‘proposed’ 0.0515 0.0007 0.0069 0.0005

‘andrews’ 0.0512 0.0006 0.0006 0.0011 0

‘bisquare’ 0.0512 0.0006 0.0006 0.0002 0

‘cauchy’ 0.0513 0.0006 0.0007 0.0001 0

‘huber’ 0.0575 0.0007 0.0008 0.0001 1

‘logistic’ 0.0588 0.0008 0.001 0.0003 1

‘talwar’ 0.051 0.0006 0.0003 0 0

‘welsch’ 0.0512 0.0006 0.0007 0.0001 0

4.4 Experiment-4

Setup: In this experiment, the data is simulated similar to Experiment-3. How-
ever, the outliers form a linear structure. Thus, the methods has to decide the
right linear structure based on the majority of the points. Validation: The
measure, null and alternate hypotheses are similar to Experiment-1. Results:
The results of this experiment are displayed in Table 5. The columns have similar
meaning as described in Experiment-1. From the results, it can be concluded that
as the percentage of outliers increase, the number of existing methods favoring
the alternate hypothesis increase (at 5% significance level).
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Table 4. Experiment-3 results

Case-1: 10% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 10.055 0.9696 0 0.0002 1

‘proposed’ 0.0655 0.0016 0.0139 0.0036

‘andrews’ 0.0634 0.0016 0.0014 0.0014 0

‘bisquare’ 0.0634 0.0016 0.0012 0.0004 0

‘cauchy’ 0.064 0.0016 0.0015 0.0003 0

‘huber’ 0.074 0.0015 0.0018 0.0004 1

‘logistic’ 0.077 0.0015 0.0022 0.0006 1

‘talwar’ 0.0623 0.0015 0.0006 0.0001 0

‘welsch’ 0.0636 0.0016 0.0013 0.0002 0

Case-2: 20% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

’OLS’ 15.253 1.5065 0.0001 0.0006 1

‘proposed’ 0.0671 0.0022 0.0139 0.0033

‘andrews’ 0.0645 0.002 0.0015 0.0013 0

‘bisquare’ 0.0645 0.002 0.0013 0.0004 0

‘cauchy’ 0.0651 0.0021 0.0017 0.0003 0

‘huber’ 0.1072 0.0192 0.0032 0.0011 1

‘logistic’ 0.1235 0.0294 0.004 0.0014 1

‘talwar’ 3.1556 0.8304 0.0008 0.0002 1

‘welsch’ 0.0647 0.002 0.0014 0.0002 0

Case-3: 30% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 29.669 20.613 0 0 1

‘proposed’ 0.0688 0.0017 0.0147 0.0033

‘andrews’ 0.9489 0.7712 0.002 0.0014 1

‘bisquare’ 0.9488 0.7711 0.0017 0.0008 1

‘cauchy’ 1.5867 1.0927 0.0025 0.0011 1

‘huber’ 7.4753 5.3805 0.0055 0.0017 1

‘logistic’ 8.3627 6.1255 0.0086 0.005 1

‘talwar’ 16.225 12.591 0.0009 0.0004 1

‘welsch’ 0.9102 0.7206 0.0019 0.001 1
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Table 5. Experiment-4 results

Case-1: 10% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 14.699 8.5397 0 0 1

‘proposed’ 0.0652 0.0015 0.0154 0.004

‘andrews’ 0.0631 0.0015 0.0015 0.0016 0

‘bisquare’ 0.0631 0.0015 0.0013 0.0003 0

‘cauchy’ 0.0636 0.0015 0.0016 0.0003 0

‘huber’ 0.0658 0.002 0.0018 0.0004 0

‘logistic’ 0.0681 0.0021 0.0022 0.0005 1

‘talwar’ 0.062 0.0015 0.0007 0.0001 0

‘welsch’ 0.0632 0.0015 0.0014 0.0002 0

Case-2: 20% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 22.265 16.762 0 0 1

‘proposed’ 0.067 0.0022 0.0154 0.004

‘andrews’ 0.0645 0.0021 0.0016 0.0013 0

‘bisquare’ 0.0645 0.0021 0.0014 0.0004 0

‘cauchy’ 0.0649 0.0021 0.0017 0.0003 0

‘huber’ 0.0887 0.017 0.003 0.001 1

‘logistic’ 0.1028 0.0306 0.0037 0.0013 1

‘talwar’ 0.4209 0.4141 0.0008 0.0002 1

‘welsch’ 0.0647 0.0021 0.0015 0.0003 0

Case-3: 30% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 30.865 18.579 0 0.0001 1

‘proposed’ 0.0682 0.0018 0.0153 0.0037

‘andrews’ 1.0296 0.9179 0.002 0.0014 1

‘bisquare’ 1.0326 0.9182 0.0018 0.001 1

‘cauchy’ 1.8393 1.4973 0.0025 0.0011 1

‘huber’ 7.7281 5.1359 0.0055 0.0018 1

‘logistic’ 8.5068 5.6306 0.0096 0.0042 1

‘talwar’ 16.947 11.303 0.0009 0.0004 1

‘welsch’ 0.9615 0.7986 0.0019 0.0009 1

5. Conclusion

In this work, a formulation for robust linear regression related to the correntropic
loss minimization is presented. The proposed formulation can be approximated
as weighted OLS minimization problem. An iterative solution method for the
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weighted OLS problem, where the weights are adaptive, has been proposed and
implemented. Numerical experiments on the simulated data are presented, that
compares the proposed method head-to-head with some of the existing methods
from the literature. Based on the numerical study, it can be highlighted that
the adaptive nature of weights (or the scale parameter) is the key element in
handling outliers.
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