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Abstract. The paper proposes an approach to solving multiclass pat-
tern recognition problem in a geometric formulation based on convex
hulls and convex separable sets (CS-sets). The advantage of the proposed
method is the uniqueness of the resulting solution and the uniqueness of
assigning each point of the source space to one of the classes. The app-
roach also allows you to uniqelly filter the sourse data for the outliers in
the data. Computational experiments using the developed approach were
carried out using academic examples and test data from public libraries.
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Introduction

The paper deals with multiclass pattern recognition problem in a geometric
formulation. Different approaches to solving such a problem could be found in
[1,2,5,8,12,15,18,19,21]. Mathematical models for solving applied pattern recog-
nition problems are considered in [1–4,12,13]. In this paper there is proposed
a method for solving this problem which is based on the idea of separability
of convex hulls of sets of training sample. The convex-hulls and other efficient
linear approaches for solving similar problems were also proposed in [2,6,7,17].
To implement this method, two auxiliary problems are considered: the problem
of selecting extreme points in a finite set of points in the space R

n, and the
problem of determining the distance from a given point to the convex hull of a
finite set of points in the space R

n using tools of known software packages for
solving mathematical programming problems. An efficiency and power of the
proposed approach are demonstrated on classical Irises Fischer problem [16,22]
as well as on several applied economical problems.

Let a set of n-dimensional vectors be given in the space R
n

A = {ai = (ai1, ai2, ..., ain)} : i = [1, N ] , (1)
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and let there also be given a separation of this set into m classes

A = A1 ∪̇ A2 ∪̇ . . . ∪̇ Am. (2)

You need to construct a decision rule for assigning an arbitrary vector ai to
one of the m classes.

There are a number of methods [14,23] for solving this multiclass pattern
recognition problem in a geometric formulation: linear classifiers, committee
constructions, multiclass logistic regression, methods of support vectors, nearest
neighbors, and potential functions. These methods are related to metric classi-
fication methods and are based on the ability to measure the distance between
classified objects, or the distance between objects and hypersurfaces that sep-
arate classes in the feature space. This paper develops an approach related to
convex hulls of subsets Ai, i = [1,m], of the family A.

1 Multiclass Pattern Recognition Algorithm Based
on Convex Hulls

The main idea of the proposed approach is as follows.
Let for the given family of points A, which is separated into m classes Ai

where i ∈ [1,m], corresponding convex hulls conv Ai contain only points from
classes Ai respectively. Then it is natural to assume that any point x ∈ conv Ai

represents a vector belonging to the class Ai. Below, we will extend this idea for
the general case.

Definition 1. The set Ai from (2), where i ∈ [1,m], is named a convex sepa-
rable set (CS-set, CSS), if the following holds

conv Ai ∩ Aj = ∅, ∀ j ∈ [1,m] \ {i} . (3)

If the family A = {A1, . . . , Am} contains a CSS Ai0 , then it is natural to
assume that each point x ∈ convAi0 belongs to the corresponding set Ai0 . In
such a case the set Ai0 can be excluded from the further process of constructing
the decision rule. In other words, the condition x ∈ convAi0 must be checked
first, and further process on the assigning point x to one of classes from training
sample, must continue if and only if x �∈ convAi0 .

An interesting case of families (1) is when you can specify a sequence
(i1, i2, . . . , im), which is a permutation for the sequence (1, 2, . . . ,m), and such
that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

conv Ai1 ∩
m⋃

k=2

Aik = ∅,

conv Ai2 ∩
m⋃

k=3

Aik = ∅,

. . . ,
conv Aim−1 ∩ Am = ∅.

(4)
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The problem of constructing a decision rule for the family (1) with proper-
ties (4) will be called as CSS-solvable.

We denote by class(x) the class number of [1,m], to which the point x
belongs. Thus, if x ∈ Ai, i ∈ [1,m], then class(x) = i. For the point x �∈ A,
the problem of pattern recognition in the geometric formulation is to construct
a decision rule for determining class(x) for x ∈ R

n\A.
Let’s consider the case of m = 2, i.e. A = A1 ∪̇ A2. Let’s construct convex

hulls conv A1 and conv A2. It is natural to assume that if x ∈ conv A1\conv A2,
then class(x) = 1.

Similarly, if x ∈ conv A2\conv A1, then we assume that class(x) = 2. If
x /∈ conv A1 ∪ conv A2, it is natural to assume that the point x belongs to such
a class whose convex hull is located closer to the point x.

Let’s denote by ρ
(
x, conv A

′
)

the distance from the point x to the convex

hull of a finite set A
′ ⊂ R

n. Then we have class(x) = arg min
i∈{1,2}

{ρ (x, conv Ai)} .

Finally, let’s consider the case of x ∈ conv A1 ∩ conv A2.
Let’s consider the following two sets.

A
′
1 = A1 ∩ conv A1 ∩ conv A2,

A
′
2 = A2 ∩ conv A1 ∩ conv A2.

(5)

Logically there are possible cases:

1. A
′
1 = ∅, A

′
2 = ∅

2. A
′
1 �= ∅, A

′
2 = ∅

3. A
′
1 = ∅, A

′
2 �= ∅

4. A
′
1 �= ∅, A

′
2 �= ∅

⎫
⎪⎪⎬

⎪⎪⎭

(∗)

Following the assumption mentioned above, i.e. x ∈ conv A1 ∩ conv A2, we
have:

class(x) is not defined for the case 1,
class(x) = 1 for the case 2,
class(x) = 2 for the case 3.

Case 4 leads us to the following situation.
We have a family of two subsets A

′
=

{
A

′
1, A

′
2

}
, which locate inside the set

conv A1∩conv A2. You need to construct a decision rule for assigning the vector
x ∈ conv A1 ∩conv A2 to one of the two classes A

′
1, A

′
2 and, respectively, A1, A2.

This problem corresponds to the original one, and therefore the proposed
algorithm can be re-applied. Repeating the process we become to situation when
for regular sets of the form (5) there holds conv A

′′
1 ∩ conv A

′′
2 = ∅, and thus

the process will be completed.

Proposition 1. If for the sets A1, A2 we have A1 ∩ A2 = ∅, then algorithm
described above converges, i.e. for any point x from A1 ∪ A2 it will lead to the
case 1, 2 or 3 (*).
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Proof. Let’s consider the following chain of pairs of sets
A = A1 ∪ A2, C1 = conv A1, C2 = conv A2:
A

(1)
1 = A1 ∩ C1 ∩ C2

A
(1)
2 = A2 ∩ C1 ∩ C2

A(1) = A
(1)
1 ∪ A

(1)
2 , C

(1)
1 = conv A

(1)
1 , C

(1)
2 = conv A

(1)
2

A
(2)
1 = A

(1)
1 ∩ C

(1)
1 ∩ C

(1)
2

A
(2)
2 = A

(1)
2 ∩ C

(1)
1 ∩ C

(1)
2

. . .
A(k−1) = A

(k−1)
1 ∪ A

(k−1)
2 , C

(k−1)
1 = conv A

(k−1)
1 , C

(k−1)
2 = conv A

(k−1)
2

A
(k)
1 = A

(k−1)
1 ∩ C

(k−1)
1 ∩ C

(k−1)
2

A
(k)
2 = A

(k−1)
2 ∩ C

(k−1)
1 ∩ C

(k−1)
2

A(k) = A
(k)
1 ∪ A

(k)
2 , C

(k)
1 = conv A

(k)
1 , C

(k)
2 = conv A

(k)
2

. . .
Let’s show that at some step one of the conditions A

(k)
1 = ∅ or A

(k)
2 = ∅

will be hold, which means that the proposed algorithm converges.
Let’s show that at any step we will have

∣
∣
∣A

(k+1
1 ∪ A

(k+1)
2

∣
∣
∣ <

∣
∣
∣A

(k)
1 ∪ A

(k)
2

∣
∣
∣.

Since A1 ∩ A2 = ∅, then A
(k)
1 ∩ A

(k)
2 = ∅.

On the other hand,

A
(k+1)
1 , A

(k+1)
2 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 . (6)

Let’s show that there is a point x ∈ A
(k)
1 ∪ A

(k)
2 such that x ∈ conv A

(k)
1 ∩

conv A
(k)
2 . Let’s assume the opposite:

{
A

(k)
1 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 ,

A
(k)
2 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 .

(7)

Therefore, we have
{

conv A
(k)
1 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 ,

conv A
(k)
2 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 .

(8)

On the other hand, by the definition of a convex hull, we get
{

conv A
(k)
1 ⊇ conv A

(k)
1 ∩ conv A

(k)
2 ,

conv A
(k)
2 ⊇ conv A

(k)
1 ∩ conv A

(k)
2 .

(9)

From (8) and (9) there follows that

conv A
(k)
1 = conv A

(k)
2 . (10)

From (10) there follows that
⎧
⎨

⎩

ext
(
conv A

(k)
1

)
= ext

(
conv A

(k)
2

)
⊆ A

(k)
1 ,

ext
(
conv A

(k)
2

)
= ext

(
conv A

(k)
2

)
⊆ A

(k)
2 .

(11)
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Hence, A
(k)
1 ∩ A

(k)
2 �= ∅, which contradicts the assumption above. Thus, the

proposition is proved.

Let’s consider the case m > 2.
Just as in the case of m = 2, the solution of the multiclass pattern recognition

problem is reduced to solving a series of similar problems characterized by a
sequential decreasing their dimensions. To characterize such a problem, we need
to specify the following.

X
′ ⊂ R

n — subset of points for which the problem is solving,

A
′
=

{
A

′
i ⊆ A: i ∈ J ⊆ [1,m]

}
— the family of finite sets,

for which the problem is solving,

C
(
A

′)
=

{
C

′
i = convA

′
i : i ∈ J ⊆ [1,m]

}
— the family of convex hulls

of the sets of the family A
′
i,

J
′ ⊆ J — the set of classes, which take part in the problem.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

Let’s denote by
〈
x

′
,X

′
, J

′
,A

′
, C

(
A

′
)〉

the problem of determining whether

a point x
′ ∈ X

′
belongs to one of the classes J

′ ⊂ J , provided by training sample
A

′
with a set of convex hulls C

(
A

′
)
.

Further classification of the point x
′ ∈ X

′
will be determined by the value

M
′
=

∣
∣
∣

{
i ∈ J

′
: x

′ ∈ C
′
i

}∣
∣
∣

and will break up into 3 cases: M
′

= 0, M
′

= 1 and M
′

> 1. Let rules of
obtaining the problem

〈
x

′′
,X

′′
, J

′′
,A

′′
, C

(
A

′′
)

,M
′′
〉

in case
∣
∣
∣M

′
∣
∣
∣ > 1 are as

following:
x

′′
= x

′
,

J
′′

=
{

i ∈ J
′
: x

′′ ∈ C
′
i

}
,

M
′
=

∣
∣
∣J

′′
∣
∣
∣ ,

X
′′

= ∩
{

C
′
i : i ∈ J

′′}
,

A
′′

=
{

A
′′
i = A

′
i ∩ X

′′
: i ∈ J

′′}
,

C
(
A

′′)
=

{
C

′′
i = convA

′′
i : i ∈ J

′′}
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Thus, the decision rule for a multiclass pattern recognition problem based
on convex hulls can be represented as a hierarchical tree of basic problems
of the form (12). And the root of this tree is the problem of the form Z =
〈x, R

n, J = [1,m],A, C (A)〉.
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Let’s denote by Z
(
J

′
)

a problem of the form (13), which is obtained from

the problem Z for the set J
′ ⊆ J such that
⋂ {

Ci : i ∈ J
′} � =∅. (14)

Let
{

J
′
1, . . . , J

′
k1

}
be the family of all subsets of J

′ ⊆ J satisfying (14). Then

for the problem Z of the first level, we get k1 problems of the form Z
(
J

′
i

)
,

i ∈ [1, k1], of the second level. For each second-level problem of the form Z
(
J

′
i

)
, a

series of next-level problems of the form Z
(
J

′
i

) (
J

′′
i

)
will be obtained, and so on.

A vertex in such a hierarchical tree becomes terminal if the subsample A involved
in its formulation is included in no more than in one convex hulls involved in
its formulation. Thus, to construct a decision rule, you need to construct a
hierarchical graph of problems of the form (12) by constructing convex hulls
for obtaining subsamples located in at least two convex hulls of the generating
problem. To implement such an algorithm for constructing a decision rule, it is
necessary to have effective algorithms for solving the following problems.

(1) Let a finite set A ⊆ R
n be given. You need to find all extreme points of its

convex hull ext (conv A).
To detect either a point x is an extreme one for a finite set A, you could to
solve a following problem LP1 from [20] (see also [24]).
Let aj denote an element of A.

min xj :
∑

i∈I

xiai = aj ,
∑

i∈I

xi = 1, xi � 0 ∀ i ∈ I,

where I denotes the set {1, 2, . . . , n}.
It also should be mentioned that [20] provide an efficient algorithm to solving
a problem on the detecting all extreme points of a finite set A by solving a
sequence of problems of the form LP1.

(2) Let a point x and a set ext (M) of extreme points of the polyhedron M be
given. You need to determine whether the point x belongs to the polyhedron
M , i.e. is it true that x ∈ conv exe (M)?
The LP 2 problem can be used to solve this problem.
Let x ∈ R

n and A = {a1, a2, . . . , am} ⊆ R
n, and let you need to determine

either a point x will belongs to convA.
Let’s consider the following system.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

i=1

αiai = x,

m∑

i=1

αi = 1,

αi � 0, i ∈ [1,m].

(15)
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It’s obvious that x ∈ convA if and only if a system above is feasible. From
the other hand, such a system could be transformed into linear program LP2
of the form: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v + w −→ min,
m∑

i=1

αiai = x,

m∑

i=1

αi + v − w = 1,

αi � 0, i ∈ [1,m],
v � 0, w � 0.

(16)

where v and w are correcting variables in case a system (15) is infeasible.
So, a point x will belongs to convA if and only if g = 0.

(3) Let a point b and a set ext (M) of extreme points of the polyhedron M be
given.
You need to find the shortest distance from the point x to M , i.e. ρ (x,M) =
min {ρ (x, y) : y ∈ M}.
The following quadratic programming problem can be used to solve this
problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

(xi − bi)
2 → min,

m∑

j=1

αj · aj = x,

m∑

j=1

αi = 1,

αj 0, j ∈ [1,m].

(17)

Then we get that the required shortest distance from the point b to the
convex hull of a finite set A in the space R

n is equal to the following:

ρ (b, conv A) =

√
√
√
√

n∑

i=1

(xi − bi)
2
.

2 Application of the CSS Machine Learning Algorithm

Let’s consider several applied problems, for which proposed CSS machine learn-
ing algorithm could be used. Such problems are the problem on the bank scor-
ing [9], analysis of financial markets [10,11], medical diagnostics, non-destructive
control, and search for reference clients for marketing activities in social net-
works.

Problem 1. A Classical Problem of Irises Fisher [16]
There is a training sample of 150 objects in the space R

n, which is divided into
3 classes: class A1—Setosa, class A2—Versicolor and class A3—Virginica, and
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each class contains 50 objects. It turns out that this well-known classical problem
is CSS-solvable: {

conv A1 ∩ (A2 ∪ A3) = ∅,

conv A2 ∩ A3 = ∅.

In this case, the class(x) decision rule looks as following:

class(x) =

⎧
⎪⎨

⎪⎩

1, x ∈ conv A1,

2, x ∈ conv A2, x �∈ conv A1

3, x ∈ conv A3, x �∈ conv A1.

arg min
i∈{1,2,3}

ρ (x, conv Ai) , x �∈ conv A1 ∪ conv A2 ∪ conv A3.

Problem 2
The proposed approach was used to develop a strategy for trading shares of the
Bank of the Russian Federation1,2. 5 stock market indicators were selected as
input parameters. Table 1 below provides a description of these parameters.

Table 1. Description of features

No. Indicator Values range

1 How many days with no break a moving average convergence
divergence (MACD) becomes > than 0 or < than 0

Integer

2 Slow stochastic oscillator signal (SSO) From 0 to +1

3 How many days with no break SSO gives a strong signal Integer

4 Relative strength index signal (RSI), From 0 to +1

5 How many days with no break RSI gives a signal Integer

The following object classes were required to be recognized:

1. Class Yes—the set of positions on the trading strategy that were closed with
a profit and the profit was greater than the maximum loss for the period of
holding the position.

1 When opening a position on the exchange, the position is constantly re-evaluated
at current prices. Accordingly, the maximum loss on the position is the maximum
amount of reduction in the value of the position relative to the value of the position
when opening.

2 Position hold period is the time from the moment of initial purchase or sale of a
certain amount of financial instrument to the moment of reverse in relation to the
first trading operation. For more information about the concept of opening and clos-
ing positions, see https://www.metatrader5.com/ru/mobile-trading/android/help/
trade/positions manage/open positions (accessed 01.09.2019).

https://www.metatrader5.com/ru/mobile-trading/android/help/trade/positions_manage/open_positions
https://www.metatrader5.com/ru/mobile-trading/android/help/trade/positions_manage/open_positions
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2. Class No—the set of positions on the trading strategy that were closed with
a loss or the profit was less than the maximum loss for the period of holding
the position.

Corresponding classes were formed based on real data obtained in the period
from 26.02.10 until 03.10.19.

Description of cardinality of obtained sets, as well as the number of extreme
points and belonging to convex hulls, are shown in the following Table 2.

Table 2. Description of obtained results

Level 1 Level 2 Level 3

The set Yes 125 82 51

An extremal Yes 47 38 40

% An extremal 37.60 % 46.34% 78.43%

Yes in the convex hull of the Yes only 43 31 4

% Yes in the convex hull of the Yes 34.40% 37.80% 7.84%

Yes in the convex hull of the No 82 51 47

% Yes in the convex hull of the No 65.60% 62.20% 92.16%

The set No 416 290 179

An extremal No 83 84 68

% An extremal 19.95% 28.97% 37.99%

No in the convex hull of the No only 126 111 167

% No in the convex hull of the No 30.29% 38.28% 93.30%

No in the convex hull of the Yes 290 179 12

% No in the convex hull of the Yes 69.71% 61.72% 6.70%

From the table above you can conclude that a position needs to be open if
and only if current status corresponds to the convex hull of the class Yes of the
Level 1 or 2. And in other cases the risk is very high.

Problem 3
Convex hulls method was used for solving the problems on the bank scoring.
Let’s describe the most representative examples of favorable and unfavorable
cases we had meet.

Favorable Case. There are 6 input parameters, and all of them are related with
financial well-being of the borrower. Data from the first stage of calculations are
shown in Table 3.

Further the procedure needs to be repeating for the next 9858 non-default
and 242 default items. We will not explain all stages, but it should be mentioned
that an acceptable solution was obtained with 7 iterations.
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Table 3. Favorable case. First stage

Non-default 15000 Default 300

Including an extreme one 320 Including an extreme one 112

Outside of the Default convex hull 5142 Outside of the Non-default convex hull 58

% Definable in the unique way 34.28 % Definable in the unique way 19.33

Unfavorable Case. There are 5 input parameters (loan amount, loan term, bor-
rower age, loan amount-to-age ratio, loan amount-to-loan term ratio). Data from
the first stage of calculations are shown in Table 4.

Table 4. Unfavorable case. First stage

Non-default 62635 Default 1347

Including an extreme ones 612 Including an extreme ones 69

Outside of the Default convex hull 1148 Outside of the Non-default convex hull 29

% Definable in the unique way 1.83 % Definable in the unique way 2.15

In this case, the convex hulls of default and non-default sets are significantly
intersected, which is due to the specifics of the problem (the share of default
loans is 2.1%), as well as to small number of explanatory features. Further we
plan to develop a method for solving similar problems (if one set is fully belongs
to the another one and strongly blurred in it). In particular, we plan to consider
a problem on the determining the balance between the percentage of points
included in the convex hull and the size of this convex hull.

It is naturall that practical situations are much more complicated, but the
sequence of actions described above allows you to get an efficient desicion rule.

Conclusion

The paper proposes an approach to solving multiclass pattern recognition prob-
lems in geometric formulation based on convex hulls and convex separable sets
(CS-sets). Such problems often arise in the field of financial mathematics, for
example, in problems of bank scoring and market analysis, as well as in various
areas of diagnostics and forecasting. The main idea of the proposed approach is
as follows. If for the given family of points A, which is separated into m classes
Ai where i ∈ [1,m], each convex hull conv Ai contains only points from class
Ai, then we suppose that any point x ∈ conv Ai represents a vector belonging
to the class Ai. In the paper is introduced key definition of convex separable
set (CSS) for the family of A = {A1, . . . , Am} subsets of R

n. Based on this
definition another important for this approach definition of CSS-solvable fam-
ily A = {A1, . . . , Am} is introduced. The advantage of the proposed method is
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the uniqueness of the resulting solution and the uniqueness of assigning each
point of the source space to one of the classes. The approach also allows you to
uniqelly filter the sourse data for the outliers in the data. Computational exper-
iments using the developed approach were carried out using academic examples
and test data from public libraries. An efficiency and power of the proposed
approach are demonstrated on classical Irises Fischer problem [16] as well as
on several applied ecomonical problems. It is shown that classical Irises Fischer
problem [16] is CSS-solvable. Such a fact allows you to expect a high efficiency
of the proposed method from the applied point of view.
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