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Abstract. Many real-world optimization problems are subject to noise,
and making correct comparisons between candidate solutions is not
straightforward. In the literature, various heuristics have been proposed
to deal with this problem. Most studies compare evolutionary strate-
gies with algorithms which propose candidate solutions deterministi-
cally. This paper compares the efficiency of different randomized heuristic
search strategies, and also extends randomized algorithms non based on
populations with a statistical analysis technique in order to deal with
the presence of noise. Results show that this extension can outperform
population-based algorithms, especially with higher levels of noise.
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1 Introduction

In many real-world optimization problems, the evaluation of candidate solu-
tions is affected by noise. Possible sources of noise include physical measurement
limitations, or the stochastic component employed in simulations. Similarly, in
machine learning, the diversity of data used to train and test models adds a
layer of uncertainty to the problem. Different models are usually compared using
cross-validation approaches, but comparisons are not guaranteed to be correct.
In noisy scenarios, since the true value of the objective function is distorted,
making correct comparisons between candidate solutions is not straightforward.
If the noise is too high with respect to the difference between the true values of
two candidates (signal), and so the signal-to-noise ratio is too low, comparisons
done using a single evaluation per solution might be wrong.

In order to deal with noise, various heuristics have been proposed and stud-
ied [2,4,5,17,27]. In particular, many studies employ variants of evolutionary
algorithms, which adopt a set of candidate solutions (population) subject to
local perturbative search and stronger diversification means, often described
with terms derived from genetics. Since these algorithms iteratively employ a
population to explore the search space and propose new solutions, they are con-
sidered to be robust to the presence of noise [2,21]. Multiple works compared
various heuristic algorithms with evolutionary strategies, and they have shown
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that population-based approaches are a good choice to optimize noisy functions
[2,4,27]. However, these studies mostly compare evolutionary strategies with
algorithms which propose candidate solutions deterministically. But, according
to the results of [4], when information about gradients is not available and the
objective function is noisy, randomized algorithms might be an effective choice.

Apart from the search policy, which defines how the search space is explored
and new solutions are proposed, also other building blocks are necessary to
build effective noisy optimization strategies. In fact, to be efficient in this con-
text, algorithms must deal with the presence of noise. In general, this can be
achieved in two ways: by increasing the strength of the signal, or by reducing
the effect of noise. In randomized algorithms, the signal can be improved by
adapting the search region according to the signal-to-noise ratio. Multiple vari-
ants of this strategy have been studied in the field of evolutionary algorithms
[2,5]. It has been shown that the way in which the search region is adapted dur-
ing the optimization has a relevant impact. On the other hand, the effect of noise
can be reduced by evaluating multiple times each solution [8,9,13,28,29]. Also,
if a heuristic is population-based, the impact of noise can be decreased by incre-
menting the number of candidates (size) of the population [3,5,15]. This effect,
called implicit averaging, has been studied using normally distributed noise with
zero mean and different values of constant standard deviations [16,17,22]. Also,
[17] shows that increasing indiscriminately the population size can be counter-
productive, but without providing an explanation for this behavior. As will be
shown empirically, the effect of implicit averaging depends on the type and the
amount of noise in the objective function. It is also worth noticing that, in order
to deal with noise, randomized algorithms can be extended with statistical anal-
ysis techniques. An example is given by simulated annealing [32], which has
been extended by adapting the number of samples per solution based on some
statistical analysis [1,7]. However, studies which compare diverse randomized
algorithms extended with statistical methods are missing in the literature, and
this work is a first step in this direction.

This study aims at comparing the efficiency of different heuristic search
strategies in the presence of noise, and to investigate the effects that differ-
ent components of these strategies have on the performance. Differently from
previous studies, all the heuristic search strategies employed in this study are
randomized, and algorithms not based on populations are extended using a reac-
tive sample size scheme proposed by [14]. The rest of the paper is structured as
follows. Section 2 states more formally the noisy optimization problem and gives
an overview of the reactive sample size scheme. Section 3 outlines the heuristic
search algorithms which have been used in the experiments, and comments the
components of the algorithms which are analyzed empirically. Section 4 defines
the experiments and analyzes the results.

2 Noisy Optimization

Let F be a stochastic function that models a real world problem. The output of
F depends on some decision variables x and on a random vector ξ that represents
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the stochasticity of the problem. The expectation of F is defined as

f(x) = E[F (x, ξ)] (1)

and it can be estimated by using a sample ξ1, ..., ξn of independent identically
distributed (i.i.d.) realizations of the random vector ξ, in order to compute the
Sample Average Approximation (SAA) of (1) as

f̂n(x) =
1
n

n∑

i=1

F (x, ξi). (2)

If the sample ξ1, ..., ξn is i.i.d., by the Law of Large Numbers, as n approaches
infinity f̂n(x) converges to f(x) and so f̂n(x) is an unbiased estimator of f(x).
Moreover, if the variance of F is finite, by the Central Limit Theorem f̂n(x)
asymptotically follows a normal distribution with mean f(x) and variance σ2/n
where σ2 is the variance of F . As a consequence, the accuracy of the estimation
increases with sample size n, but this also increments the computational burden
(see also [26,31]). The problem might be defined in the constraints-defined region
Θ in which x can assume values as

min
x∈Θ

f(x). (3)

The SAA defined in (2) can be used as objective function by heuristic opti-
mization techniques, in order to optimize f(x). The presence of noise might
require large samples in order to obtain sufficiently accurate estimates, so com-
paring the performance of different configurations is not straightforward. Given
any configuration x, f(x) − f̂n(x) defines an error εn(x) that goes to 0 only in
the limit of n going to infinity. As a consequence, when comparing two configu-
rations x1 and x2, the difference f̂n(x1)− f̂n(x2) is not sufficient to decide which
configuration has a better average. If the signal |f(x1)−f(x2)| is lower than the
noise |εn(x1) − εn(x2)|, the signal-to-noise ratio is too low and the comparison
might be not significant.

2.1 A Reactive Sample Size Algorithm

In this work, in order to deal with the presence of noise, heuristic techniques
which do not use a population are extended with a reactive sample size algorithm
[14] based on paired t-tests and indifference-zone (IZ) selection. IZ selection is
a concept commonly used in ranking and selection (R&S) algorithms. These
methods aim at selecting, in a statistically significant manner, the best solution
x∗ which performs better among a finite set of k possibilities. In R&S methods
based on IZ selection, the target is to select the best configuration x∗ among a
finite set of k configurations, where x∗ is better than all other configurations in
the set by at least δ and the probability of correct selection (PCS) is 1 − α >
0, where α is the probability of making an error of type I. δ is called the IZ
parameter, and it defines the minimum difference in means considered to be
worth detecting. More information about R&S can be found in [10,23,25].
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The algorithm works as follows. Given a pair of configurations {x1, x2} to
be compared, paired evaluations are obtained by evaluating x1 and x2 using the
same ξi. Then, these evaluations are used to compute the paired t-test statistic.
In fact, as observed by [24], using the same realizations helps to reduce the effect
of noise. The correlation among pairs of evaluations reduces the variance with
respect to an unpaired statistic. Also, the scheme assumes that F is normally
distributed and that its variance is finite.

The algorithm reactively decides, in an online manner, the sample size to
be used for each comparison done during the optimization. Also, all the evalu-
ations of solutions previously visited during the search are kept in memory, to
avoid the waste of computational budget if a configuration has to be compared
multiple times. Significant differences are detected by considering the relation-
ship between probabilities α and β of making an error of type I and type II.
To remind the reader, given a null hypothesis H0 and an alternative hypothesis
H1, α is the probability to reject H0 when H0 is true and β is the probability
to fail to reject H0 when H0 is false. To compute β, a significant difference in
means for which H0 is assumed to be false and H1 to be true has to be defined.
The value for which H1 is assumed to be true is δobserved, which corresponds
to f̂n(x1) − f̂n(x2). So, given a paired sample, the minimum sample size n that
should be used to test a one-tailed hypothesis with error probabilities α and β
can be computed. See [14] for more details.

Also, in real world problems, one might not be interested to correctly detect
very small differences between means. If x1 and x2 have a very similar perfor-
mance and δobserved is smaller than a certain user-defined δ, the comparison
is done heuristically by considering only the values of f̂n(x1) and f̂n(x2). The
value of δ is expressed as a percentage of the current best solution, because in
many cases the user does not know a priori the best possible result which can
be obtained by the optimization.

3 Optimization Algorithms

The optimization algorithms employed in the experiments are Random Search
(RS), the Reactive Affine Shaker (RAS) [11] and the Covariance Matrix Adap-
tation Evolutionary Strategy (CMA-ES) [19,20]. RS is a simple stochastic local
search algorithm which is often used as baseline for comparisons, while RAS
and CMA-ES are more advanced stochastic schemes which adapt step size and
direction of the search during the optimization.

In RS, a new candidate solution xnew is sampled from an interval defined
in a neighborhood of the current best solution xcurrent, according to a uniform
distribution. A step size σ is used to define, as a percentage of the intervals
which define Θ along each dimension, the boundaries of the local search region
located around xcurrent. Consequently, diverse step sizes correspond to search
policies with different levels of locality. A step size of 1 would make the search
global, and the optimization would correspond to pure random search.

In RAS, a local search region is adapted by an affine transformation. The
aim is to scout for local minima in the attraction basin where the initial point
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falls. The step size σ and the direction of the search region are adapted in order
to maintain heuristically the largest possible movement per function evaluation.
The search occurs by generating points in a stochastic manner, with a uniform
probability in the search region, following a double shot strategy. A single dis-
placement Δ is generated, and two specular points xcurrent +Δ and xcurrent −Δ
are considered for evaluation. An evaluation is successful if the objective func-
tion value in at least one of the two candidates is better than f̂(xcurrent). The
search region is modified according to the outcome of the comparisons. It is com-
pressed if both comparisons are unsuccessful, and it is expanded otherwise. In
both cases, the search region is modified according to an expansion factor ρ > 1.

CMA-ES [19,20] is an evolutionary optimization paradigm in which configu-
rations are sampled from a multivariate normal distribution N(μt,Mt), where t
defines the iteration of the algorithm. At each iteration, the mean μt defines the
center of the distribution, the covariance matrix Mt determines shape and ori-
entation of the ellipsoid corresponding to N(μt,Mt), and a step size σt controls
the spread of the distribution as a percentage of the intervals which define each
dimension of Θ. The ellipsoid is the local search region used by the algorithm to
explore the search space and propose candidate solutions. Iteratively, CMA-ES
follows four steps. First, it samples a fixed number λ of new configurations from
N(μt,Mt), creating a population. Second, candidates are evaluated and ranked
according to the quality of the evaluations. Third, the best �λ

2 � results are used
to update N(μt,Mt), in order to move the search towards the most promising
search direction. Fourth, σt is increased or decreased according to the length of
the so-called evolution paths, in order to maximize the expected improvement
of the optimization. This last step is explained more in detail in the follow-
ing subsection. Also, CMA-ES has been extended with an uncertainty handling
(UH) method, to deal with possible noise in the objective function [18]. In this
version of CMA-ES, referred as UH-CMA-ES, the uncertainty is measured by
rank changes among members of the population. Once each solution of the pop-
ulation has been evaluated and ranked, a few additional evaluations are taken
and the population is ranked again. By doing so the algorithm tries to estimate
the amount of noise in the evaluations, in order to increase σt and prevent the
signal-to-noise ratio from becoming too low.

3.1 A Note on CMA-ES Step-Size Adaptation

The adaptation of σt, also called cumulative step-size adaptation, is based on the
evolution paths mentioned in Sect. 3. An evolution path is a weighted vector sum
of the last points successively visited by the algorithm. It provides information
about the correlations between points, and it can be used to detect the direction
of consecutive steps taken by the optimization. If consecutive steps are going in
the same direction (scalar product greater than zero), the same distance could
be covered by longer steps and the current path is too long. If consecutive steps
are not going in the same direction (scalar product lower than zero), single steps
tend to cancel each other out and so the current path is too short. Therefore,
to make successive steps more efficient, σt is changed accordingly. The step size
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determines the signal strength used by CMA-ES to estimate the direction of the
gradient. If the steps of the algorithm are very small, the signal is also likely low
and therefore the signal-to-noise ratio becomes small as well. Also, it has been
shown that in noisy optimization the cumulative step-size adaptation may result
in premature convergence [6].

4 Experiments

Before showing the results about the performance of different randomized algo-
rithms in various noisy scenarios and higher dimensions, a preliminary study on
CMA-ES is presented. In order to investigate the effects of implicit averaging,
the algorithm is tested using populations larger than the standard size proposed
by its authors.

4.1 Benchmarking Functions and Noise Models

In order to test diverse heuristic strategies in the presence of noise, Sphere and
Rastrigin functions have been extended with multiple types and levels of noise.
As in other works in the literature, both functions are optimized in [−5.12, 5.12]d,
where d is the number of dimensions. To evaluate the impact of noise on the opti-
mization, a standard practice in the literature is to extend deterministic functions
by introducing multiplicative or additive noise. In the case of multiplicative noise,
a percentage ε of f(x) is added to f(x) according to a displacement generated
using a standard normal distribution:

f(x, ε) = f(x) + f(x) · ε · N(0, 1). (4)

This kind of noise is typical of devices which take physical measurements, like
speed cameras, where values are guaranteed to be accurate up to a certain
percentage of the measured quantity. However, as the optimization proceeds
towards lower values, the noise decreases. This means that, as the optimization
approaches the global optimum x∗, it is easier to move into the right direction
and, if f(x∗) = 0, there is almost no noise in proximity of the global optimum.

Although such a situation is true in many real-world scenarios, there exist
other problems where the noise does not always go to zero as the global optimum
(if any) is approached. As examples, consider the optimization of simulation
models, or the tuning of the hyperparameters of machine learning algorithms.
In this case, the noise can be simulated by adopting additive noise. However,
determining the amount of noise to add is up to the practitioner. In fact, additive
noise is usually normally distributed with zero mean and constant standard
deviation σε. Since this kind of perturbations does not depend on the signal, the
signal-to-noise ratio might cause problems only when approaching the minimum
and its effects are going to be very different from function to function.

To avoid these drawbacks, a possibility is to define additive noise as normally
distributed with zero mean and dynamic standard deviation. Since the step size
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used by randomized algorithms impacts the strength of the signal, in order to
test harder noise scenarios it makes sense to set the noise level according to the
step size. So, given a point x in Θ and a percentage ε, the dynamic standard
deviation σi along each dimension i is computed as follows. Compute lower
bound li = xi − ε · Θi and upper bound ui = xi + ε · Θi, where Θi is the interval
in which the function is defined along dimension i. Then, find the minimum m
and the maximum M among {f(li), f(xi), f(ui)}. Finally, σi = |m−M | and the
additive noise model is defined as

f(x, ε) = f(x) +
N∑

i=1

N(0,
σi

k
), (5)

where N is the dimensionality of the function and k is a constant used to control
the amount of noise. In the experiments, ε = 0.1 and k ∈ {1, 2, 3, 6}. Therefore,
while using this model of noise, the distortion of the signal is set according to
the maximum signal which can be detected by an algorithm which adopts a
fixed step size (like RS). With k = 6, 99.7% of the noise is generated within the
intervals which define the local search region. With k = 3, k = 2, k = 1 the same
is true respectively for 81.86%, 68, 27%, 34.14% of the noise.

4.2 Setup

Each experiment is based on 100 macroreplications, where each optimization
process has a budget (number of function evaluations) of 5000. Initial solutions
are generated according to a uniform distribution defined on the interval of
each dimension of Θ. In each experiment, algorithms start the optimization
from a randomly generated solution x0 and consider a local search region of
the same size defined around x0. Then, the local search region is iteratively
modified according to the algorithm. Apart from CMA-ES and UH-CMA-ES,
the algorithms are employed in two versions: with a naive scheme which uses
1 evaluation for each solution, and the reactive scheme proposed by [14]. The
acronym of each algorithm is preceded with N in the former case and with R in
the latter. As suggested in [14], the values of the parameters are set as αreq = 0.1,
βreq = 0.4 and δ = 0.01.

In the first set of experiments on CMA-ES, restarts are not considered. In
fact, the standard implementation of CMA-ES includes various stopping criterias
and restart policies [20], but they have been deactivated in order to improve
the analysis of the different components of the algorithm. When activated, all
algorithms use global restarts based on a single stopping criterion: if the current
best solution does not improve by at least 10% in k = 500 function evaluations,
a restart is done. An exception is given by RAS, which possibly needs to be
restarted because of its double-shot strategy. In fact, if x0 is generated nearby
the boundaries of the search space, the double shot strategy might be unable to
generate a valid configuration.

RS uses σ ∈ {0.1, 0.2}, while RAS employs σ ∈ {0.1, 0.2} and ρ = 2. CMA-ES
and UH-CMA-ES adopt σ ∈ {1.0, 2.0}, because the library used to implement
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the algorithm defines σ ∈ (0, 10]1. Also, λ = 4 + �3 log d�, where d is the dimen-
sionality of the objective function. The values of ρ and λ are the ones suggested
respectively by the authors of [11,20].

4.3 Average Loss Signal per Iteration

In a noisy scenario, in order to understand how the algorithm behaves with pop-
ulations of different sizes, a possible way to proceed is to measure the magnitude
of the error made when estimating the gradient. To do so, at each iteration, the
population of candidate solutions p = {x1, ..., xm} is ranked in two ways. Firstly,
according to the noisy ranking r̂ based on f̂1(x1), ..., f̂1(xm). Secondly, following
the noiseless ranking r defined by f(x1), ..., f(xm). Then, the signal loss L is
defined as the difference between the signal of these two rankings, where the sig-
nal of a ranking is the sum of the absolute differences among the ordered values
used for ranking. More formally, in the case of r̂ and r,

ŝ(r̂, p) =
m−1∑

i=1

|f̂1(xi) − f̂1(xi+1)| (6)

and

s(r, p) =
m−1∑

i=1

|f(xi) − f(xi+1)|, (7)

where the set {1, ...,m−1} is ordered respectively according to r̂ and r. Therefore,

L(r̂, r, p) = ŝ(r̂, p) − s(r, p) (8)

and the average signal loss per iteration is defined as

E(L) =
1
N

N∑

i=1

L(r̂i, ri, pi), (9)

where N is the number of iterations of the algorithm. By following this proce-
dure, the optimization estimates the gradient according to r̂ and it is possible
to measure by how much the optimization goes in the wrong direction. Also, by
comparing r̂ and r, the number of misrankings among each population’s candi-
dates can be computed, as well as the average misrankings’ percentage E(M) of
the whole optimization.

4.4 Results When Using Larger Populations in CMA-ES

This set of experiments is based on the bidimensional Sphere function. As it is
possible to see in Table 1, E(L) keeps increasing as the population grows. Larger
populations can potentially detect more signal, but are unable to do so. In fact,

1 https://github.com/beniz/libcmaes.

https://github.com/beniz/libcmaes.
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Table 1. Performance of CMA-ES with σ = 1.0 and λ ∈ {6, 36, 60} on the Sphere
function in 2 dimensions. Macrocolumns show respectively the results obtained when
using multiple levels of constant additive noise, multiplicative noise and dynamic addi-
tive noise. In each macrocolumn, the average best results f(x∗) are in bold and all
values based on f(x) are normalized by the number of dimensions.

Constant additive Multiplicative Dynamic additive

λ N σε E(M) E(L) f(x∗) ε E(M) E(L) f(x∗) k E(M) E(L) 1f(x∗)
6 833 0.1 81.92 0.0048 0.02 0.1 13.37 0.0032 0.00 6 82.28 0.0392 0.15

6 833 1.0 82.55 0.0512 0.22 0.2 24.34 0.0099 0.00 3 82.39 0.1219 1.45

6 833 2.0 82.74 0.0986 0.42 0.3 33.82 0.0264 0.28 2 82.61 0.2362 3.26

6 833 3.0 82.85 0.1476 0.75 0.4 43.78 0.0526 2.29 1 82.50 1.1282 9.10

36 138 0.1 93.26 0.0138 0.01 0.1 53.48 0.0400 0.00 6 95.72 0.1639 0.35

36 138 1.0 95.72 0.1506 0.05 0.2 70.86 0.0662 0.00 3 95.85 0.5872 2.26

36 138 2.0 95.98 0.3336 0.11 0.3 79.03 0.1368 0.38 2 95.87 1.3667 4.22

36 138 3.0 96.20 0.4303 0.14 0.4 84.30 0.2789 4.63 1 96.22 4.1927 9.07

60 83 0.1 93.75 0.0188 0.00 0.1 66.15 0.0508 0.00 6 97.10 0.2641 0.40

60 83 1.0 97.05 0.2078 0.04 0.2 80.16 0.1322 0.00 3 97.25 0.8849 2.49

60 83 2.0 97.50 0.3776 0.08 0.3 86.12 0.2235 0.58 2 97.33 2.1270 5.24

60 83 3.0 97.59 0.6161 0.12 0.4 90.09 0.4825 6.56 1 97.64 5.7731 10.04

as Figs. 1a, 1b, 1c show, larger populations contribute to mantain a larger step
size and so to make wider steps. However, as the amount of noise increases,
misrankings are going to happen first among similarly ranked candidates and
then also between solutions ranked farther away from each other. Also, the mag-
nitude of the errors increases with the noise. Consequently, larger populations
tend to lose more signal and to guide the optimization farther away from the
true direction of the gradient.

The effect of the misrankings depends on the amount of noise. Even if E(M)
increases with the population size, it is not implied that the performance of the
optimization deteriorates. For example, Table 1 shows that in the case of constant
additive noise, larger populations obtain better results. This happens because
the signal-to-noise ratio is sufficiently high to avoid misrankings which would
guide the optimization towards a significantly wrong direction. The amount of
noise starts creating problems only when approaching the minimum, as shown
in Fig. 2. With this amount of noise, even N-RS is able to perform comparably
well. In contrast, in the case of dynamic additive noise, the signal-to-noise ratio is
approximately the same throughout the search space and results are expected to
deteriorate much more, as confirmed by the results in Table 1. Even in the case of
multiplicative noise, larger populations possibly worsen the performance of the
optimization. Therefore, when the signal-to-noise ratio is low and misrankings
happen among further positions, increasing the population size or the number of
parents is not going to significantly improve the robustness of the optimization.
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Fig. 1. Each row shows respectively average variation of CMA-ES step size (1a) and
CMA-ES covariance matrix volume (1a), with σ = 1.0 and λ ∈ {6, 36, 60}. Each column
refers respectively to a particular case of the diverse types of noise used in Table 1. More
precisely, they show the cases with constant additive noise with σ = 1.0 (first column),
multiplicative noise with ε = 0.2 (second column) and dynamic additive noise with
k = 3 (third column).

In this case, it is preferable to increase the sample size used to estimate each
candidate solution.

It is also worth noticing the premature convergence of the covariance matrix.
Figures 1d, 1e, 1f show that the volume of the covariance matrix goes to zero
in the first part of the optimization. After that, CMA-ES is no longer able to
propose significantly different solutions.

4.5 Results When Using Larger Sample Size

These experiments are based on both Sphere and Rastrigin functions, with
d ∈ {2, 10}. Results in Tables 2 and 3 show that, with high levels of noise, a
simple optimization algorithm such as R-RS performs better than more complex
algorithms like RAS, CMA-ES or UH-CMA-ES. Without increasing the sam-
ple size of estimators, using a population of solutions is not able to compete
with single-point algorithms which adapt the sample size of estimators accord-
ing to empirical evidence. Furthermore, in this context, UH-CMA-ES might even
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Fig. 2. Average convergence of CMA-ES with σ = 1.0 and λ = 60, and N-RS with
σ = 0.1 on the bidimensional Sphere function, with multiple levels of constant additive
noise. Lines represent the mean noiseless value of the best configuration found during
the optimization (which is not known by the optimizers). Also, all evaluations are
normalized by the number of dimensions.

worsen the performance. As shown in Fig. 3d, increasing the step size according
to observed misrankings provides better results when the initial step size is very
low with respect to the distortion caused by the noise.

Figure 3a shows that a larger step size can improve the efficiency of the opti-
mization. On average, compared solutions correspond to more different estima-
tors and a lower sample size is required to make statistically significant compar-
isons. However, since a larger step size also implies reducing the sampling gran-
ularity, the optimization enhances the global search phase and the convergence
speed tends to decrease. For the same reason, as shown in Fig. 3b, the effective-
ness of the double-shot strategy in a noisy environment is questionable. Although
such an approach can be a good strategy for deterministic optimization, on each
iteration very similar configurations are compared, the signal-to-noise ratio tends
to be low and the sample size required to make statistically significant compar-
isons increases. Furthermore, as the search region is compressed, this effect is
further enhanced.

In noisy scenarios, step-size adaptation mechanisms and adaptations of the
search space are potentially counterproductive. In deterministic functions, com-
pressions of the search region usually lead to a better exploitation of the local
structure of the objective function. However, because of the presence of noise,
decisions to compress the search region might be wrong and therefore the opti-
mization might prematurely converge to false local optima.

In larger dimensions, the situation changes in the case of Rastrigin function
with lower levels of noise. However, it is expected that a population-based algo-
rithm performs better than single-point algorithms in the case of a multimodal
function like Rastrigin. Combining a set of candidate solutions at each iteration
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(a) R-RS
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(b) R-RAS
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(c) CMA-ES
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(d) UH-CMA-ES

Fig. 3. Average convergence of the optimizers on the Sphere function, with d = 10
k = 3. The results obtained by using a very small step size are also shown.

gives the algorithm the ability to adapt to the local topology of the objective
function, reducing the risk to get stuck in local optima.

5 Conclusions

This paper investigated different components of diverse heuristic strategies in
the context of noisy optimization. A preliminary study on the bidimensional
Sphere function showed how the implicit averaging effect of population-based
algorithms does not always improve the optimization as the size of the population
is increased, and analyzed how different amounts of noise change the impact of
this effect on the optimization. Randomized algorithms not based on populations
have been extended with a statistical analysis technique [14] to deal with the
presence of noise, and they have been compared with CMA-ES and UH-CMA-
ES.
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Table 2. Average best objective function value found by different optimizers, with
different levels of dynamic additive noise added to the Sphere function. In each column,
the best results are in bold and all values are normalized by the number of dimensions.

d = 2 d = 10

Optimizer σ k = 1 k = 2 k = 3 k = 6 k = 1 k = 2 k = 3 k = 6

R-RS 0.1 1.14 0.29 0.15 0.05 4.29 1.75 0.81 0.29

R-RS 0.2 1.25 0.45 0.26 0.05 3.77 1.74 1.16 0.51

R-RAS 0.1 4.12 1.37 0.78 0.12 6.85 4.27 2.59 0.83

R-RAS 0.2 3.41 1.35 0.55 0.05 7.63 4.63 3.34 0.70

CMA-ES 1.0 13.95 5.72 2.45 0.44 11.98 7.22 3.13 0.69

CMA-ES 2.0 14.76 5.00 2.14 0.41 12.17 7.47 3.17 0.71

UH-CMA-ES 1.0 14.71 5.09 2.15 0.45 12.96 9.86 5.26 1.02

UH-CMA-ES 2.0 15.46 5.66 2.03 0.38 12.79 10.33 6.09 0.98

Table 3. Average best objective function value found by different optimizers, with
different levels of dynamic additive noise added to the Rastrigin function. In each
column, the best results are in bold and all values are normalized by the number of
dimensions.

d = 2 d = 10

Optimizer σ k = 1 k = 2 k = 3 k = 6 k = 1 k = 2 k = 3 k = 6

R-RS 0.1 1.87 0.58 0.30 0.13 10.94 8.07 7.29 6.60

R-RS 0.2 2.19 0.77 0.48 0.25 10.30 7.24 6.40 5.93

R-RAS 0.1 7.68 5.65 5.10 3.68 13.20 9.55 8.47 6.97

R-RAS 0.2 6.61 4.77 4.61 2.86 13.98 10.16 8.35 6.88

CMA-ES 1.0 16.85 6.62 3.58 1.03 18.83 12.37 6.21 2.24

CMA-ES 2.0 17.48 6.16 2.85 0.98 19.59 13.31 6.46 2.13

UH-CMA-ES 1.0 16.79 4.73 2.98 1.11 19.89 15.94 11.02 3.95

UH-CMA-ES 2.0 17.67 5.21 2.11 0.95 19.71 16.57 12.64 3.91

Results in Sect. 4.4 confirm the findings of [17]. The analysis provides an
explanation about the reason for which larger populations do not always improve
the optimization, and a higher sample size should be preferred when the signal-
to-noise ratio is too low. Furthermore, these results also agree with [2]: in the
presence of noise, step length control mechanisms are crucial to the performance
of the optimization. If optimization methods are extended with statistical anal-
ysis techniques such as [14], the resolution at which the search space is explored
matters significantly. With lower step sizes, solutions correspond to more similar
function evaluations, and the sample size required to statistically determine a
difference increases.

Future work aims at extending current results in order to consider other
derivative-free optimization strategies and more benchmarks. Also, it would



Heuristic Search Strategies for Noisy Optimization 369

be worth investigating the performance of more global search policies, which
iteratively compare configurations located farther away in Θ and search more
locally in different parts of Θ only if sufficient empirical evidence to do so is
observed. Approaches like CoRSO [12] or Bayesian Optimization [30] could be
good choices.
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