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Abstract. Exact and approximated mathematical optimization meth-
ods have already been used to solve hotel revenue management (RM)
problems. However, to obtain solutions which can be solved in accept-
able CPU times, these methods require simplified models. Approximated
solutions can be obtained by using simulation-based optimization, but
existing approaches create empirical demand curves which cannot be
easily modified if the current market situation deviates from the past
one. We introduce HotelSimu, a flexible simulation-based optimization
approach for hotel RM, whose parametric demand models can be used
to inject new information into the simulator and adapt pricing policies
to mutated market conditions. Also, cancellations and reservations are
interleaved, and seasonal averages can be set on a daily basis. Monte
Carlo simulations are employed with black-box optimization to maxi-
mize revenue, and the applicability of our models is evaluated in a case
study on a set of hotels in Trento, Italy.
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1 Introduction

Information technology drastically changed how people plan travels and accomo-
dations. In fact, tools such as online travel agencies or price comparison websites
are now extensively used [31], and hotels are no longer forced to sell their rooms
only through traditional intermediaries. Also, many hotels have already adopted
RM techniques to manage their availability of rooms, in order to maximize their
revenue.

Optimization problems related to hotel RM are usually expressed following
two approaches: capacity control [3,5,8,10,11,15,21,22], where the decision vari-
able is the amount of offered supply, and dynamic pricing [4,6,20,34,35], where
the price is the decision variable. In both cases, several mathematical optimiza-
tion methods have already been proposed to maximize revenue [12,19,28]. Many
of these formulations assume that demand is independent from the chosen pol-
icy. More complex scenarios, where demand is influenced by other factors (e.g.,
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price), are more difficult to handle and closed-form solutions are rarely avail-
able [9]. Demand is usually considered as a known deterministic function or as a
stochastic function following a known distribution family with unknown param-
eters. Also, if stochastic cancellations are considered, the CPU time for solving
the problem tends to grow exponentially and approaches like dynamic program-
ming are effective only in specific cases [23]. A possible solution to mitigate the
complexity of the model is approximated dynamic programming [3,8,35], where
the problem is partitioned into simpler subproblems. Nonetheless, approximated
models cannot provide exact solutions for realistic scenarios because of the large
number of possible states [27].

The approximate maximization of revenue can be achieved using simulation-
based optimization [7,13]. The analytical model is substituted with a simulator
of many inter-related processes like reservations, cancellations, no-shows, walk-
ins. Then, black-box optimization is used to find the policy which maximizes
the revenue. An effective technique to maximize revenue and simulate different
stochastic aspects of the hotel booking scenario is Monte Carlo simulation [26].
The generation of reservations and cancellations leads to a distribution of pos-
sible revenues, and the expected value of the distribution is considered as the
variable to be maximized. For example, in [6,34] a Monte Carlo approach is
employed to simulate demand as the result of many stochastic processes, and in
[6] the effect that price has on demand is also considered.

In this paper, we present a flexible simulation-based optimization approach
for hotel RM based on dynamic pricing. We simulate demand using a novel set
of parametric models based on the RIM quantifiers [32], whose parameters are
daily statistics which can be estimated from data. Our models allow to change
the curves parametrically, redistributing demand along the booking horizon,
without requiring any change of advance historical data. In fact, bookings and
cancellations associated to each day are distributed along the booking horizon
with a non-homogeneous Poisson process, where demand expectations of each
day are defined by our parametric models. The hotel manager can inject new
information in the system, adapting pricing policies to the mutated conditions
of the market. For the optimization, we use an efficient implementation of the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)[16]1. We position
after the work of [6,34], on which we build, to provide a simpler way for the
hotel manager to run what-if analyses. Furthermore, reservation requests and
cancellations are not grouped into disjoint sets of events like in [34], but occur
in an interleaved way. The structure of the remainder of this paper is as follows.
Section 2 describes HotelSimu, and defines more in detail the parametric models
used for the simulations. Section 3 provides some details about the optimization
algorithm, and Sect. 4 shows the applicability of our models to a set of hotels
in Trento, Italy. Results show that our approach leads to an average revenue
increase similar to that of other dynamic pricing strategies, even though only
aggregated data has been used. Finally, Sect. 5 provides the main implications
of our work for the hotel manager and briefly describes possible extensions.

1 Code available at http://beniz.github.io/libcmaes.

http://beniz.github.io/libcmaes.
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Fig. 1. HotelSimu overview. Reservation requests and cancellations are interspersed.
The state of the hotel after one complete simulation is used by the optimizer to compute
the total revenue and adjust the pricing policy.

2 Simulation Methods

The main components of HotelSimu are shown in Fig. 1. An event generator
simulates the reservation requests and the cancellations. A registry stores the
information about the state of the hotel, in particular accepted reservations and
room availability. A dynamic pricing model proposes an offer for each reservation
request, and an acceptance probability model simulates the stochastic process
by which customers accept or discard reservation offers. An optimizer searches
for the optimal pricing policy to maximize revenue.

2.1 Definitions

Let us now define the main concepts and the notation used throughout the paper.

Definition 1. A reservation request (RR) is an event characterized by the fol-
lowing features. The reservation day (RRres), which is the day the request occurs.
The arrival day (RRarr), which is the day the customer arrives at the hotel. The
length of stay (RRlos), which is the number of nights reserved. The size (RRsize),
which is the number of rooms reserved.

Definition 2. A reservation offer (RO) is an admissible reservation request (for
which there is room availability) characterized by the price (ROprice) proposed by
the hotel, which depends on the features of RR.

Definition 3. An accepted reservation or simply reservation (R) is a reserva-
tion offer accepted by the customer. It is registered on the hotel registry and it
effectively changes room availability.

Definition 4. The acceptance probability of a reservation offer (Praccept(RO))
is the probability that a customer accepts RO and the proposed price, and there-
fore is equal to the probability that RO is registered on the book.
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Definition 5. The state of the hotel S(t) is defined as the state of the booking
registry at time t, which corresponds to the historical records up to t as well as
the set of reservations for future arrival days that are in the registry at time t.

Definition 6. Given two days identified by i, j ∈ {0, 1, 2, . . . }, the number of
days between i and j, or their distance, is d(i, j) = d(j, i) = |i − j| ≥ 0.

Definition 7. Given a reservation R, the time-to-arrival of R is RTTA =
d(Rres, Rarr). If RTTA = 0, a customer makes a reservation on the arrival day
or arrives at the hotel with no reservation and we refer to the customer as a
walk-in user.

Definition 8. The booking time window or booking horizon (BH) is the maxi-
mum time-to-arrival allowed by the hotel.

Definition 9. A cancellation (C) is characterized by the cancellation day
(Cday), which is the day the event occurs, and the reservation (Cres), which is
the reservation on the book that is canceled by the customer. When a reservation
is canceled, it is removed from the hotel registry and the associated rooms can be
booked by other customers.

Definition 10. The cancellation probability, t days before arrival of a reserva-
tion R (Prcancel(R, t)), is the probability that the customer associated with R
cancels it exactly t days before arrival, with t ∈ [0, RTTA]. According to this
definition, the probability that R is canceled within its lifetime is

Prcancel(R) =
∑

t∈[0,RTTA]

Prcancel(R, t). (1)

Definition 11. The reservation requests horizon (RH) is the set of all the reser-
vation days to be simulated. It corresponds to the values that each Rres can
assume during the simulation.

Definition 12. The arrivals horizon (AH) is the set of all possible arrival days.
It corresponds to the values that each Rarr can assume during the simulation.

Definition 13. The optimization horizon (OH) is the set of arrival days for
which there is the need of an optimal dynamic pricing policy to maximize revenue.

For each simulated reservation day r ∈ RH, a random sequence of Cr can-
cellations and Rr reservation requests is generated. Each reservation request is
associated with an arrival day a ∈ AH following or coinciding to r (a � r),
and each cancellation is associated with a registered reservation. The proposal
of a price depends on a reservation request and on the state of the hotel at the
moment the event occurs. Once a price has been proposed to the customer, a
reservation is accepted according to the acceptance probability model. It is then
registered into the hotel registry and, if a cancellation does not occur until the
end of the simulation, it is considered in the evaluation of the total revenue to
be passed to the optimizer. As concerns the optimization, one objective function
evaluation corresponds to the average total revenue of several simulation runs,
with respect to the reservations recorded in the registry within the OH.
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2.2 Simulation of Reservation Requests

Let Ra
r , r ∈ RH, a ∈ AH, be the number of reservation requests generated on day

r that are associated with arrival day a. The total number of requests generated
within RH and associated with one arrival day is therefore given by:

Ra =
∑

r∈RH
r�a

Ra
r , (2)

where � describes the relation precedes or coincides to. The expected total num-
ber of reservation requests associated with one arrival day can be seen as the
result of several independent processes, which occur on each simulated day within
the BH of an arrival day:

E[Ra] = Λ(a) =
BH∑

i=0

λ(i, a), (3)

where λ(i, a) is the expected number of reservation requests occurring i days
before the arrival day a. If historical data are available, one can estimate directly
λ(i, a) for each i and a. To avoid the computational load of a point-wise estima-
tion, and to facilitate what-if analyses, we define each λ(i, a) by the following
parametric model:

λα(i, a) = Λ(a) × Qα(i,BH)

= Λ(a) ×
((

BH + 1 − i

BH + 1

)α

−
(

BH − i

BH + 1

)α)
, (4)

with i = 0, 1, . . . ,BH, a ∈ AH, and for any parameter α > 0. The expression
of Qα(i,BH) is similar to that of the RIM quantifiers proposed in [32], after
reflection and translation. We use Qα(i,BH) because:

– they define a function with discrete domain and continuous values;
– they sum up to 1:

BH∑

i=0

Qα(i,BH) = 1,

for any α > 0 and therefore can represent a discrete probability distribution
or a normalized curve;

– they can model different reservation scenarios through α, from a constant
curve (α = 1) to increasing and decreasing curves (see Fig. 2);

– they provide a simple way of finding α from the ratio of walk-in users with
respect to the total number of reservations, that is, Qα(0,BH).

In the current implementation, we assume that the reservation requests fol-
low a non-homogeneous Poisson process with an expected value given by our
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Fig. 2. Qα(i, BH) for BH = 30 and for different values of α.

parametric model, so Ra ∼ Poisson(Λ(a)). Therefore, reservation requests are
generated for each simulated day according to the following model:

{
Ra

r ∼ Poisson(λα(i, a)) if i ≤ BH,

Ra
r = 0 otherwise.

(5)

Poisson processes are usually chosen to model arrival processes [14] and, in our
context, they can represent the arrival of reservation requests with a minimum
set of parameters. In [34], a binomial distribution is used, with additional con-
straints on the variance of samples in order to set the success probability and the
number of trials. However, a binomial distribution converges to a Poisson dis-
tribution when the number of trials (e.g., customers generating requests) grows.
Removing the limit on the pool of customers that can generate new reserva-
tions makes the model more realistic, since the number of possible customers
is usually unbounded and independent from the capacity of the hotel. For the
estimation of Λ(a), we assume that it is possible to estimate the expected num-
ber of reservation requests for a specific arrival day that are accepted by the
customers and not canceled (Ra

accept). Similarly, we assume that one has access
to the expected number of reservation requests for a specific arrival day that are
accepted by the customers and canceled (Ra

cancel). Ra
accept can be approximated

by the expected number of arrivals, while Ra
cancel can be seen as the expected

number of cancellations.
HotelSimu includes also a model of the acceptance probability Praccept(RO).

A model of probabilities (possibly one for each admissible input) can be esti-
mated from data retrieved by an online booking platform, where one can keep
track of users that search for a room and decide to finalize the reservation or
leave the website. One can also estimate the expected acceptance probability
E[Praccept(RO)] as the expected fraction of reservation requests that are finalized
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by the users after the search. Therefore, the expected total number of reservation
requests (accepted or rejected) associated with one arrival day can be estimated
as follows:

E[Ra] = Λ(a) ≈ Ra
accept + Ra

cancel

E[Praccept(RO)]
. (6)

2.3 Simulation of Nights and Rooms

Let nightsa be the expected number of nights for a reservation associated with an
arrival day a. Analogously, roomsa is the expected number of rooms. max-nightsa

and max-roomsa represent the limits imposed by the hotel manager. Since each
reservation request includes at least one night and one room, we model the
discrete probability distribution of the number of additional nights/rooms as
follows:

Pr(X − 1 = k) =
∫ k+1

max(X)

k
max(X)

(1 − x)
max(X)

avg(X)−0.5−2

B(1, max(X)
avg(X)−0.5 − 1)

dx, (7)

where X is the number of nights/rooms, X − 1 is the number of additional
nights/rooms, max(X) is either max-nightsa or max-roomsa, and avg(X) is either
nightsa or roomsa. k = 0, 1, . . . ,max(X) − 1, and B(α, β) is the Beta function
with parameters α and β.

The previously defined distribution is a discrete analogue of a (continuous)
Beta distribution with α = 1 and β = max(X)

avg(X)−0.5 − 1. The value of α is chosen
so as to have a distribution with an exponential-decay profile, which is similar
to the distribution seen in [34]. β is chosen so as to have an expected value
approximately equal to avg(X) − 1. This is achieved by imposing the equal-
ity of the expected value of the (continuous) Beta distribution, which is α

α+β ,
to the expected number of additional nights/rooms rescaled to [0, 1], which is
avg(X)−0.5
max(X) . We consider a correction of 0.5 to account for the discretization error

and to position rescaled expected values in the middle of the discretization inter-
val. Experiments show that the maximum error between the expected values and
the empirical averages of the discrete analogue with max(X) = 5 is at most 0.33,
for expected values equal to 0, 0.1, 0.2, . . . ,max(X) − 1.

Even though modeling the length of stay or the number of rooms as Bernoulli
or Poisson processes provides a simple and exact way of imposing the expected
value, it is not applicable to our context, which cannot be reduced to a coin toss
or to an arrival process. In the literature, the Beta distribution is often used to
model unknown probability distributions, with shapes that can be controlled by
the parameters α and β. By building a discrete analogue of a Beta distribution,
we can exploit its macroscopic features and to obtain a realistic model of the
variable of interest. A similar model can be defined also for group reservations,
which usually follow a different distribution from that of the length of stay of
normal reservations. This can be easily achieved by considering a different value
for avg(X). By following (7), an instance of the random variable X, which is
either RRlos or RRsize, is generated as X = 1 + 	Y × max(X)
, where Y ∼
Beta(1, max(X)

avg(X)−0.5 − 1).
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2.4 Simulation of Cancellations

Under the same assumptions of Sect. 2.2, and by analogy to (1), the probability
that a reservation is canceled during its lifetime can be seen as the summation of
the probabilities that a reservation is canceled exactly on a specific day within
its lifetime:

Prcancel(R) = Ω(a) =
RTTA∑

i=0

ω(i, a), (8)

where ω(i, a) is the probability that R is canceled exactly i days before the
arrival day a, with i within its lifetime. We define each ω(i, a) by the following
parametric model:

ωα(i, a) = Ω(a) × Qα(i, RTTA)

= Ω(a) ×
((

RTTA + 1 − i

RTTA + 1

)α

−
(

RTTA − i

RTTA + 1

)α)
, (9)

with i = 0, 1, . . . , RTTA, a = Rarr, and for any parameter α > 0. In this context
one can also find α from the fraction of cancellations that occur on the last day
(Qα(0, RTTA)), which includes the so-called no-shows. Ω(a) can be estimated as
follows:

Ω(a) ≈ Ra
cancel

Ra
cancel + Ra

accept

, (10)

with an arrival day a = Rarr. In HotelSimu, different stochastic cancellation
scenarios can be simulated by changing ωα(i, a) through Ω(a) and α.

3 Optimizing the Noisy Simulator Function

Since Monte Carlo simulation employs stochastic processes, the performance of
each solution corresponds to a distribution of results. The expected value of
the distribution is used as an approximation of the objective function to be
optimized, so the optimization operates in the presence of noise.

In the literature, multiple works tested diverse heuristic algorithms on noisy
functions, and they have shown that population-based approaches like CMA-ES
are a good choice to optimize noisy functions [1,2,24,25]. In fact, instead of
relying only on a single solution, at each iteration CMA-ES combines a subset
of its candidate solutions in order to direct the search in the most promising
direction. By combining multiple solutions located in a restricted area of the
search space, the impact of noise is decreased due to an implicit averaging effect
[1,33]. Moreover, to further reduce the effect of noise on the optimization, we
compute the performance of each solution as the mean of the outcome of multiple
simulations. From probability theory, one knows that the effect of noise can be
reduced by evaluating multiple times each solution [33]. More precisely, CMA-
ES is an evolutionary optimization algorithm in which a multivariate normal
distribution N(μt,Mt) is used to sample solutions, where t defines the iteration
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of the algorithm. At each iteration, the mean μt defines the center of the distri-
bution, while the covariance matrix Mt determines shape and orientation of the
ellipsoid corresponding to N(μt,Mt). Also, a step size σt controls the spread of
the distribution as a percentage of the search space. Iteratively, CMA-ES follows
the following steps. First, a population of λ solutions is sampled from N(μt,Mt).
Second, candidates are evaluated and ranked according to the respective evalua-
tions. Third, the best 	λ

2 
 results are used to update μt and Mt, in order to move
the search towards the most promising search direction. Fourth, σt is increased
or decreased according to the length of the so-called evolution paths. Evolution
paths are weighted vector sums of the last points visited by the algorithm. They
provide information about the correlations among points, and they are used to
find the direction recently followed by the optimization. If consecutive steps are
going in the same direction, the same distance could be covered by longer steps
and the current path is too long. If consecutive steps are not going in the same
direction, single steps tend to cancel each other out and so the current path is
too short.

CMA-ES is executed with λ = 4 + 	3 log d
 and σ = 0.5, where d is the
dimensionality of the objective function and σ ∈ (0, 20]. The size of the pop-
ulation is the one suggested by the authors of [16], who have also tested that
CMA-ES with this population size is a robust and fast local search method [18].
We experimented even other parameter settings of the algorithm, but because
of space limitations of this publication we present only the preliminary results
obtained with the mentioned settings. Also, all the standard stopping criterias of
CMA-ES are active [17]. Each time a stopping criteria is triggered, the algorithm
is restarted from another randomly generated point in the search space, with a
new population of the same size.

4 Results

In the following experiments, we show how our models can be used to search for
the optimal pricing policies that maximize the total revenue of a set of hotels of
different sizes. We assume there is only one category of rooms, and that at least
historical data about final demand is available. However, if advance historical
data is also available and empirical demand curves can be estimated, our models
can be calibrated using optimization algorithms [29].

4.1 Setup of the Experiments

We consider a monotonically decreasing reservation curve with 40% of the cus-
tomers treated as walk-in users, calibrating our models according to the reserva-
tion models estimated from historical data in [34]. The goodness of this choice
is also confirmed by data collected by the Italian Institute of Statistics (Istat)
on the features of trips2, which show that approximately 40% of the interviewed
2 http://dati.istat.it/?lang=en;section:Communication,culture,trips/Trips/Tripsand

theircharacteristics.

http://dati.istat.it/?lang=en; section: Communication,culture,trips/Trips/Trips and their characteristics.
http://dati.istat.it/?lang=en; section: Communication,culture,trips/Trips/Trips and their characteristics.
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people travel without booking. As a consequence, it is reasonable to assume that
the remaining 60% of the reservations is monotonically distributed in the BH in
a decreasing fashion as moving away from the walk-in day. We also assume that
the maximum number of cancellations occurs on the last day, and we fix this
number to 40% of the total number of cancellations. BH is fixed to 180 days, the
maximum number of nights for one reservation to 10, and the maximum number
of rooms to 4. As concerns the pricing policy, we use the model proposed in [6],
which is based on a set of multipliers that leads to an increase or decrease in the
average price according to the features of a reservation request. The multipliers
vary around 1, and each multiplier changes the reference price according to the
value it assumes: a value lower than 1 corresponds to a discount and a value
larger than 1 is a price increase. We assume that ROprice corresponds to the
unit price for 1 room and 1 night, where the unit price proposed to the customer
is computed as follows:

ROprice = pricea · ξ(RRTTA, RRlos, RRsize, S,Δ, η), (11)

where pricea is the expected unit price for customers arriving on day a, and ξ(·)
is a function of the reservation request features and of the hotel registry, with
average value equal to 1. This function smoothly adjusts the price within the
interval [(1 − Δ)pricea, (1 + Δ)pricea], with a slope proportional to η:

ξ(RRTTA, RRlos, RRsize, S,Δ, η) = ξ(t, l, s, S,Δ, η) = (12)
= (1 − Δ) + 2Δ · Φ(η · (MT (t)ML(l)MS(s)MC(S) − 1)).

Φ(·) is the cumulative distribution function of the standard normal distribution,
and MT (·), ML(·), MS(·) and MC(·) are functions (or multipliers) of the time-to-
arrival, the length of stay, the number of rooms and the remaining hotel capacity
at the moment the reservation request is generated, respectively. As concerns the
parameters of the multipliers, we set T0 = 30 and C0 = L0 = G0 = 1.6. Also,
η = 3 and Δ = 0.6 in order to propose prices with a maximum increase/decrease
of 60% with respect to pricea.

The effect on the room demand of changing the unit price is modeled by the
acceptance probability, which we define similarly to [34]. When the proposed
price is equal to the average price of reservations with the same arrival day, the
acceptance probability is set to 0.5, to model the absence of any preference about
accepting or rejecting the reservation. With prices fixed to the average values, the
expected number of accepted reservations is equal to half of the total number of
reservation requests. The expected percentage of accepted reservations increases
when the price decreases and decreases otherwise. This phenomenon, called price
elasticity, is modeled by the following function:

Praccept(RO) = 1 − Φ(ρ · (ROprice − pricea)), (13)
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where Φ(·) is the cumulative distribution function of the standard normal distri-
bution, and ρ is a parameter that controls the slope of the function and allows
us to consider different price elasticity scenarios. In the experiments, ρ is cho-
sen so that Praccept(RO) ≈ 1 when there is a discount of at least 50% and
Praccept(RO) ≈ 0 when the price increases of at least 50%.

Table 1. Characteristics of hotels used for the tests, and results. Arrivals, occupancy
(as room-nights) and revenue after optimization are expressed as percentage increase,
where maximum and minimum values are in bold. Optimization total CPU time and
single-run simulation CPU time are defined in seconds.

Hotel Rooms Price (e) Arrivals Occupancy Revenue Optimization Simulation

01 52 120.00 48.2± 0.5 47.6± 0.6 18.4± 0.6 11000± 109.0 2.0 ± 0.012

02 34 69.50 50.6± 0.6 50.6± 0.7 20.4± 0.7 10800± 82.33 1.91± 0.006

03 136 290.00 51.6± 0.3 52.6± 0.3 21.6± 0.3 18400± 258.5 3.54± 0.030

04 46 153.33 44.0± 0.5 44.2± 0.6 17.8± 0.6 9910± 97.61 1.78± 0.008

05 113 136.675 55.5 ± 0.3 55.2 ± 0.4 23.1 ± 0.4 16700± 241.2 3.19± 0.031

06 37 74.00 46.9± 0.6 45.8± 0.6 17.8± 0.6 9570± 87.87 1.69± 0.012

07 9 39.00 38.2 ± 1.1 37.7 ± 1.3 12.8 ± 1.2 7370± 17.70 1.25± 0.010

08 22 216.50 43.2± 0.7 42.0± 0.8 18.0± 0.8 7870± 35.67 1.35± 0.004

09 14 66.50 42.0± 0.9 41.8± 1.0 17.7± 1.0 7740± 32.26 1.3 ± 0.010

10 19 82.67 41.8± 0.8 40.5± 0.9 17.3± 0.9 8650± 46.21 1.49± 0.008

We empirically show the applicability of HotelSimu to 10 hotels in Trento,
Italy. We selected representative hotels from the official open data of the Province
of Trento3, as reported in Table 1. The information on the average arrivals and
the average number of nights per reservation is taken from the Statistics Insti-
tute of the Province of Trento (Ispat)4. No information is available about the
average number of rooms per reservation, so we assumed it to be equal to 1.
We disaggregated data on arrivals and mapped them onto each hotel accord-
ing to their capacity, under the assumption that bigger hotels usually register
more arrivals than smaller hotels. We use real aggregated data on tourists and
different hotels to simulate time series of reservations and cancellations, and we
consider these time series as a baseline to be compared to the outcome of the
optimization.

In the experiments RH starts on July 1st, 2017, and ends on December 31st,
2018. AH starts on July 1st, 2017, and ends on January 31st, 2019. OH starts
on January 1st, 2018, and ends on December 31st, 2018.

The optimization has a budget of 300 iterations (for a maximum running
time of 5/6 h). Each iteration retrieves the total revenue as the average on 20
simulation runs, all with the same parameter configuration, for a total of 6000
simulations within one optimization run. The optimization is repeated 10 times.
Each experiment is started from an initial solution which has been generated
by a uniform distribution defined over the search space. Tests have been run on
3 http://dati.trentino.it/dataset/esercizi-alberghieri.
4 http://www.statistica.provincia.tn.it, section “Annuari del Turismo”.

http://dati.trentino.it/dataset/esercizi-alberghieri.
http://www.statistica.provincia.tn.it
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Fig. 3. Average daily revenue for Hotel 05 and Hotel 07 (one value per week).

virtual machines using a KVM hypervisor (1 per hotel), each one with 512 MB
of RAM and 1 CPU (1 core) at 2.1 GHz.

4.2 Results on Arrivals, Occupancy and Revenue

In Table 1 we report the results on customer arrivals, occupancy and total rev-
enue as the percentage increase led by the optimized pricing model with respect
to the configuration with the multipliers equal to 1. Results are expressed in
terms of averages and standard errors, and they are statistically significant
according to the two-tailed unequal variances t-test [30], with a significance level
α = 0.01. A unit of occupancy corresponds to the so-called room-night, which is
a room occupied for one night.

Results are promising for all the hotels, with a minimum of 12.8% increase
in revenue, 37.7% in occupancy and 38.2% in arrivals. The maximum increase
in revenue is reached for Hotel 05, with a value of 23.1%. The minimum values
are reached for small hotels, where the limited number of rooms leads to fewer
arrivals and then relatively low revenues. In this context, there is also more
variability, since the hotel can become full with few reservations, thus leading to
the rejection of more requests. Experiments suggest that higher revenues can be
obtained for medium and big hotels, where the system exploits the capacity of
the hotel to increase the number of arrivals. The time series of the average daily
revenue during the year of interest for the best and worst scenarios are reported
in Fig. 3. For Hotel 05, it is evident that the time series produced by the optimized
model is significantly higher than that produced without optimization. In this
case, there is less chance of having a loss in revenue because of an optimistic
configuration found during the optimization process. For Hotel 07, the two time
series are not significantly different because of the higher uncertainty caused by
the small dimension of the hotel. This leads to higher risk and to the possibility
of having a loss (with probability ≈ 0.03), as it is evident from the distribution
of the increase in revenue in Fig. 4. These results are in accordance with the
expected behavior of non-homogeneous Poisson distributions, whose coefficient
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Fig. 4. Estimated distributions of increase in revenue after optimization for Hotel 05
and Hotel 07.

of variation decreases as the expected value increases. In the context of hotel
demand, this property implies that for smaller hotels, which can accommodate
a limited number of guests and therefore are characterized by less arrivals, the
coefficient of variation is higher than that of large hotels. As a consequence, the
increased variability for small hotels leads to higher risk of losses, as empirically
shown by our results.

5 Conclusions

In this work we proposed HotelSimu, a flexible simulation-based optimization
approach which can be used for maximizing the revenue of hotels. Since the
output of the simulations is noisy, we optimized the noisy simulator function by
using CMA-ES, a population-based algorithm which has already been studied
in the literature and proved to be effective in noisy scenarios. Furthermore, we
aggregated the outcome of multiple simulations in order to use the expected
value to further reduce the effects of the noise on the optimization.

HotelSimu models stochastic arrivals and cancellations in an interleaved fash-
ion, considering several characteristics of reservation requests in order to pro-
pose dynamic prices. Furthermore, it models the effect that price variations have
on demand (price elasticity). Our models, based on the RIM quantifiers, allow
the hotel manager to adapt pricing policies to dynamic market conditions, and
to analyze different booking scenarios by changing a compact set of meaning-
ful parameters. Seasonal averages can be set even on a day-by-day basis, thus
allowing the hotel manager to adapt the pricing policy to special events and to
consider monthly as well as weekly seasonal effects.

The case study shows that our parametric models lead to results similar to
other dynamic pricing models in the literature, while relying only on aggregated
data. The average revenue increase is ≈ 19% with respect to the original pricing
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policies, and the risk of losses is absent for medium-big hotels and limited for
small hotels, with a maximum loss probability of ≈ 0.03. Moreover, experiments
show that HotelSimu can simulate one year and a half in ≈ 2 s on average on a
low-end machine. Also, a complete optimization can be run within one night.

Acknowledgements. A. Mariello would like to thank H. T. Nguyen for the useful
advice on the RIM quantifiers.
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