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Abstract. Sequential Model-based Bayesian Optimization has been success-
fully applied to several application domains, characterized by complex search
spaces, such as Automated Machine Learning and Neural Architecture Search.
This paper focuses on optimal control problems, proposing a Sequential Model-
based Bayesian Optimization framework to learn optimal control strategies. The
strategies are synthetized by pressure-based rules, whose parameters are the
design variables of the optimization problem whose black-box objective is the
energy cost. A Bayesian optimization framework is presented which handles a
quite general formalization of the control problem including multiple con-
straints, also black box. Relevant results on a real-life Water Distribution Net-
work are reported, comparing different possible choices for the proposed
framework.

Keywords: Sequential Model-based Bayesian optimization � Optimal control �
Water distribution networks

1 Introduction

Sequential Model-based Bayesian Optimization (SMBO) is a sample-efficient strategy
for global optimization (GO) of black-box, expensive and multi-extremal functions [1–
4], where the solution of the problem is traditionally constrained to over a box-bounded
search space X:

min
x2X�R

d
f xð Þ ð1Þ

SMBO has been successfully applied in several domains, ranging from design
problems (new materials, drugs, software, structural design) to robotics, control and
finance (a brief overview about application domains is provided in Chap. 7 of [5]).

In the Machine Learning (ML) community, it recently became the standard strategy
for Automated Machine Learning (AutoML) [6] and Neural Architecture Search
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(NAS) [7], which are usually characterized by a search space being more complex than
a box-bounded domain. More precisely, x can consists of mixed (continuous, integer,
categorical) components as well as “conditional”, where conditional means that the
value of a component xi depends on the value of another component xj, with i 6¼ j. An
example of complex search space in AutoML is related to the optimization of ML
pipelines, such as the one presented in [8].

Starting from the SMBO advances in the ML domain, we consider in this paper an
optimal control problem sharing many characteristics with AutoML. More precisely,
we addressed the optimal definition of control rules regulating the ON/OFF switching
of pumps in a Water Distribution Network (WDN). The objective is the minimization
of the energy-related costs while guaranteeing the supply of the water demand.

We remark that the problem is black-box because the evaluation of both the
objective function and the constraints is based on a hydraulic simulator: moreover the
constraints on decision variables make the search-space complex (i.e., analogously to
AutoML, decision variables are both mixed – numeric and discrete – and possibly
conditional).

The rest of the paper is organized as follows: in Sect. 2, the methodological
background about SMBO and optimization of operations in WDNs is presented.
Section 3 provides the mathematical formulation of the optimal control problems,
along with the proposed solution. Section 4 defines the experimental setting and
Sect. 5 summarizes the results obtained. Finally, conclusions and discussion on
advantages and limitations of the proposed approach are provided.

2 Background

2.1 Sequential Model-Based Bayesian Optimization

To solve problem (1), SMBO uses two key components: a probabilistic surrogate
model of f xð Þ, sequentially updated with respect to new function evaluations, and an
acquisition function (aka infill criterion or utility function), driving the choice of the
next promising point x where to evaluate f xð Þ while dealing with the exploitation-
exploration dilemma. A typical choice for the probabilistic surrogate model is a
Gaussian Process (GP) [9] (in this case, SMBO is also known as GP-based opti-
mization or Bayesian Optimization [5, 10]). An alternative probabilistic surrogate
model is a Random Forest (RF) [11], an ensemble learning approach which, by con-
struction, can deal with mixed and conditional components of x, making RFs more
well-suited than GPs to solve problems with these characteristics.

The probabilistic surrogate model – whichever it is – should provide an estimate of
f xð Þ along with a measure of uncertainty about such an estimate, with x 2 X. These two
elements are usually the mean and standard deviation of the prediction provided by the
probabilistic surrogate model, denoted by l xð Þ and r xð Þ, respectively.

With respect to the acquisition function, several alternatives have been proposed,
implementing different mechanisms to balance exploitation and exploration (i.e., l xð Þ
and r xð Þ, respectively) [5, 10]. In this paper we focused on a subset of acquisition
functions, reported in the experimental setting section.
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Due to the sequential nature of SMBO, at a generic iteration n we can denote the set
of function evaluations performed so far by D1:n ¼ x ið Þ; y ið Þ� �� �

i¼1;::;n, where

y ið Þ ¼ f x ið Þ� �þ e, and e�N le; reð Þ in the case of a noisy objective function.
The probabilistic surrogate model is learned at every iteration, providing the

updated l nð Þ xð Þ and r nð Þ xð Þ. Then, x nþ 1ð Þ, is chosen by solving the auxiliary problem:

x nþ 1ð Þ ¼ argmax
x2X�R

d

a nð Þ xð Þ ð2Þ

where a nð Þ xð Þ is the acquisition function, typically a nð Þ x; l nð Þ xð Þ; r nð Þ xð Þ� �
. This aux-

iliary problem is usually less expensive than the original one, and can be solved by
gradient-based methods (e.g., L-BFGS) – in the case that the analytical form of l nð Þ xð Þ
and r nð Þ xð Þ is given (i.e., when a GP is used as probabilistic surrogate model) – or GO
approaches (e.g., DIRECT, Random Search and its recent variants, evolutionary meta-
heuristics, etc.) – in the case that l nð Þ xð Þ and r nð Þ xð Þ are also black-box (i.e., when a RF
is used as a probabilistic surrogate model).

Then, the objective function is evaluated at x nþ 1ð Þ, leading to the observation of
y nþ 1ð Þ and the update D1:nþ 1 ¼ D1:nþ 1 [ x nþ 1ð Þ; y nþ 1ð Þ� �� �

. The process is iterated
until some termination criterion is achieved, such as a maximum number of function
evaluations has been performed.

2.2 Constrained SMBO

Real life optimization problems have most often constraints making the search space
more complex than simply box-bounded [10] and the “vanilla” SMBO not well suited
for solving them. In constrained SMBO, the problem (1) can be rewritten as:

min
x2X�R

d
f xð Þ

gi xð Þ� 0i ¼ 1; . . .; ng
ð3Þ

Solving approaches can be categorized depending on the nature of the constraints:
they can be known a-priori and given in analytical form or, on the contrary, they are
unknown (aka hidden, black-box). With respect to the first case, several approaches
have been proposed in the GO community [12–14], while the second case is more
related to simulation-optimization and AutoML [15–19].

A further consideration, with respect to unknown constraints, is that the objective
function could be not computable in association with the violation of one or more
constraint, leading to the global optimization of partially defined functions [20–22].
Recently, a two-stage approach has been proposed in [23], using Support Vector
Machine (SVM) to estimate the portion of the box-bounded search space where the
objective function is defined (aka computable), depending on a set of unknown con-
straints. In the second stage a constrained Bayesian Optimization task is performed on
the estimated feasible region. This paper makes use of this approach.
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3 Problem Definition and Solution Approach

3.1 Optimization of Operations in Water Distribution Networks

Optimization of WDNs’ operations has been an active research field in the last decades.
Optimal pump operation, aimed to minimize energy related costs due to pumping
water, has been one of the most relevant topics. A systematic review on WDNs’
operations optimization has been recently provided in [24], where approaches for
optimal pumps management are categorized into: (i) explicit control of pumps by times
to operate and (ii) implicit control by pumps’ pressures, flows or speeds, or tanks
levels. Although explicit control solutions were the most frequently adopted, the
optimization problem (also known as Pump Scheduling Optimization, PSO) could be
characterized by a huge number of decision variables in the case that the WDN has
many pumps and/or times to operate (e.g., decisions about pump activation every hour
on a daily horizon).

Most of the explicit control solutions proposed use meta-heuristics, mainly evo-
lutionary strategies, such as in [25–27]. However, contrary to SMBO, these strategies
are not sample efficient, requiring a huge number of hydraulic simulation runs to
identify an optimal pump schedule. More recently, an SMBO approach to PSO has
been initially proposed in [28] and then extended in [18] to include unknown con-
straints on the hydraulic feasibility of the pump schedules proposed by SMBO.

On the other hand, implicit control strategies allow reduction of the number of
decision variables, but make more complex the search space, due to the introduction of
further constraints on and conditions among decision variables. Another important
advantage offered by implicit control solutions is that they do not require specification
of times to operate; they usually work by applying simple (control) rules depending on
the values of collected measurements. Thus, time to operate is given by the data
acquisition rate instead of prefixed timestamps as in explicit control solutions.

3.2 Learning Optimal Control Rules as a Black-Box Optimization
Problem

We consider the case of an implicit control solution, where pumps are controlled
depending on the associated pressure values. In the simplest case, control for a given
pump is defined by two different thresholds, x1 and x2; and the following rule:

IF (pump’s pressure \x1 AND pump is OFF) THEN pump is switched ON
ELSE
IF (pump’s pressure [ x2 AND pump is ON) THEN pump is switched OFF

This means that the pump is activated if its pressure is lower than a minimum
threshold, x1, it is deactivated if its pressure exceeds a maximum threshold, x2, and
remains in the current status (ON/OFF) otherwise. Clearly, x1 and x2 are the decision
variables to optimize with respect to the minimization of energy cost, constrained to
water demand satisfaction. A graphical representation of this kind of simple control for
a single pump is reported in Fig. 1.
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It is important to highlight that both energy costs and water demand satisfaction (as
well as any other relevant constraints related to the hydraulic behavior of the WDN,
such as min/max tanks levels) are black-box, because they can be only evaluated after
having fixed the values of the decision variables. Moreover, an analytical constraint
must be added, modelling that the minimum threshold x1 cannot be greater or equal
than the maximum one x2. As follows, we define the optimization problem in the more
general case consisting of more than a pair of thresholds. This situation is quite
common in real-life WDNs, having more than one pump and/or requiring different
control thresholds over the day (e.g., during morning and evening) for a given pump:

min
x2X�R

d
f xð Þ

xi 2 Si i ¼ 1; . . .; 2s c1ð Þ
xj � xjþ s � 0 j ¼ 1; . . .; s c2ð Þ
g xð Þ ¼ 0 c3ð Þ

ð4Þ

where f xð Þ is the energy cost associated to the control rule defined by the xi value, Si is
the set of possible values for the thresholds, Si ¼ s1; . . .; sNj

� �
, s is the number of

thresholds pairs to be set up (leading to d ¼ 2s) and g xð Þ is related to the hydraulic
feasibility: it is unknown/black-box and makes f xð Þ partially defined. Thus, both f xð Þ
and g xð Þ are black-box and are computed via hydraulic software simulation, typically
over a simulation horizon of a day. The open-source EPANET 2.0 is the most widely
adopted tool for simulating the hydraulic behavior of a pressurized WDN, so that the
search for the optimal values of the control thresholds is sequentially performed on the
software model of the WDN. A single simulation run, referred to a specific set up of the
thresholds, involve computational costs; SMBO is a sample-efficient strategy to
identify an optimal set up within few simulation runs (i.e., function evaluations).

Fig. 1. A schematic representation of implicit pump control based on thresholds (red dotted
lines) on pressure (in blue). If pressure goes below/over the lower/upper threshold the pump is
switched ON/OFF, respectively. Pressure value could not change immediately after the pump
switch because it also depends on the status of the other pumps in the WDN (Color figure online)
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Thresholds are modelled as discrete variables to consider the resolution of the
monitoring sensors (i.e., in the case study analyzed in this paper, measurements are
acquired with a resolution of 0.5[m]). In the case of continuous variables, constraint c1

turns into xi 2 min Si;max Si
h i

. According to (4), the optimal definition of an implicit

control strategy, based on pressure values, shares common characteristics with
AutoML: decision variables are discrete c1ð Þ and conditional c2ð Þ – such as many
Machine and Deep Learning algorithms’ hyperparameters – and g xð Þ is black-box –

such as a constraint on resources (i.e., memory usage) for a trained Machine/Deep
Learning algorithm.

4 Experimental Setting

4.1 Case Study Description

The case study considered in this paper refers to a WDN in Milan, Italy, supplying
water to three different municipalities: Bresso (around 20’000 inhabitants), Cormano
(around 26’000 inhabitants) and Cusano-Milanino (around 19’000 inhabitants). The
overall WDN consists of 7418 pipes, 8493 junctions, 14 reservoirs, 1381 valves, 9
pumping stations with 14 pumps overall. Piezometric level of the WDN ranges in 136
to 174 m (average: 148 m). Moreover, this WDN is also interconnected with the
WDNs of other three municipalities (namely, Paterno Dugnano, Sesto San Giovanni
and Cinisello Balsamo). The hydraulic software models of these further municipalities
were not available, the hydraulic behavior at the interconnections was modelled
through three reservoirs with levels varying over time according to historical data about
the flow from the WDN to the other three municipalities and vice versa (Fig. 2).

4.2 SMBO Setting

In this section we provide all the details about the setting of our experiments, organized
in two different sub-sections. The first one provides all the details about the SMBO

Fig. 2. The three municipalities considered in the study (on the left) and the hydraulic software
model, developed in EPANET, of the associated WDN (on the right)
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process applied to problem (4). In the second, we decided to relax the constraint related
to the discreteness of the decision variables. The aim is to evaluate which could be the
difference between the optimal solution identified for the problem (4) and a more
optimistic one, in the hypothetical case that the numerical precision of the actual
control could be finer. In both cases, RF have been used as probabilistic surrogate
model due to the presence of conditional decision variables.

Since the actual global optimizer x� is unknown, we cannot use performance
measures such as regret [29] or Gap metrics [30], but just looking at the best value
observed over SMBO iterations, the so called “best seen”:

yþ nð Þ ¼ min
i¼1;...;n

f x 1ð Þ
� �

; . . .; f x nð Þ
� �n o

Finally, it is important to highlight that, in this study, we have evaluated all the
control strategies identified through SMBO by simulating them over the same “test
day”. This means that we have considered an unnoisy setting, so yn ¼ f x nð Þ� �

, for every
n ¼ 1; . . .;N and with N the maximum number of function evaluations.

4.2.1 RF-Based SMBO
As mentioned in Sect. 4.1, the WDN has 14 pumps, overall. However, 4 are only used
to support supply during peak-hours. They are controlled by time and will not be part
of the optimization. With respect to the other 10 pumps, 8 of them requires the
identification of optimal control thresholds which can be different during the day (i.e.,
06:00–23:00) and the night (i.e., 23:00–06:00). This means that we have optimized 2
thresholds for 2 pumps and 4 thresholds for 8 pumps, leading to 36 decision variables
overall (i.e., thresholds xi) for the problem (4) – that is s ¼ 18. It is important to
highlight that the number of decision variables is significantly higher in the case of
explicit control: the optimization of hourly-based schedules on the same case study
would require 240 decision variables (that is 10 pumps time 24 h).

The possible discrete values for all the lower thresholds, that are the sets Si¼1;...;s,
range from 21[m] to 32[m], with a step of 0.5[m] (i.e., 23 possible values). The
possible discrete values for all the upper thresholds, that are the sets Si¼sþ 1;...;2s, range
from 26[m] to 44[m], with a step of 0.5[m] (i.e., 23 possible values). These two sets
instantiate the constraint c1ð Þ of the problem (4). Due to the nature of the problem,
involving discrete and conditional decision variables, the most suitable probabilistic
surrogate model is a RF. Initialization of the probabilistic surrogate model was per-
formed by randomly sampling 10 initial vectors of control thresholds (“initial design”).
More precisely, a Latin Hypercube Sampling (LHS) procedure has been applied.
Remaining budget (i.e., function evaluations) has been set to 200.

We decided to compare three different acquisition functions, namely Lower Con-
fidence Bound (LCB), Expected Improvement (EI) [5, 10] and Augmented Expected
Improvement (AEI) [31] – the last usually replaces EI in the noisy setting. Although in
this paper we solve the case study deterministically (i.e., in the noise-free setting), we
have decided to include AEI just to evaluate how much the assumption of working in a
noisy setting – while the problem is noise-free – could affect the final solution. We plan
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to use AEI to extend our approach to the noisy setting by considering the water demand
as a random variable, instead of known (or predicted) a priori.

LCB xð Þ ¼ l xð Þ nð Þ�b nð Þr xð Þ nð Þ

EI xð Þ ¼ yþ � l xð Þ nð Þ
� �

U Zð Þþ r xð Þ nð Þ/ Zð Þ if r xð Þ nð Þ [ 0
0 otherwise

(

AEI xð Þ ¼ yþ � l xð Þ nð Þ
� �

U Zð Þþ r xð Þ nð Þ/ Zð Þ 1� reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ r xð Þ nð Þð Þ2

q
0
@

1
A if r xð Þ nð Þ [ 0

0 otherwise

8>><
>>:

where b nð Þ manages the exploitation-exploration trade-off, Z ¼ yþ�l xð Þ nð Þ

r xð Þ nð Þ and yþ is the

best seen up to n. Then, x nþ 1ð Þ is selected by minimizing LCB and maximizing EI and
AEI.

Since we are using a RF as probabilistic surrogate model, the acquisition functions
are also black-box. A global-local method has been used to solve the auxiliary problem
(2) and identify the next promising x nþ 1ð Þ. More precisely, the global-local method
used is known as “focus-search” [32]: it can handle with numeric, discrete and mixed
search spaces, also involving conditional variables. Other approaches, also recent
evolutionary methods such as Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [33] are suitable for dense spaces, but the conditionality of the search
spaces makes their usage still problematic. Focus-search is an adaptive Random Search
strategy: it starts from a large set of random points where the acquisition function is
evaluated. Then, it shrinks the search space around the current best point and perform a
new random sampling of points within the “focused space”. The shrinkage operation is
iteratively performed until a maximum number of iterations and the entire procedure
can be restarted multiple times to mitigate the risk to converge to a local optimum.
Finally, the best point over all restarts and iterations is returned as the solution of the
auxiliary problem (2). The R package mlrMBO [32] provides an implementation of
focus-search.

Although different acquisition functions have been used, all the associated SMBO
processes started from the same initial design. Furthermore, to mitigate the effect of
randomness, we have performed 20 experiments with 20 different initial designs.

4.2.2 RF Based SMBO with Relaxation of the Discreteness Constraint
In this experiment we have relaxed the problem (4) by removing the constraint about
the discreteness of the decision variable c1ð Þ. This makes the initial box-bounded
search space continuous, even if it remains complex due both to the presence of
conditional decision variables c2ð Þ and the black-box hydraulic feasibility constraint
c3ð Þ. The rest of the experimental setup is identical to what reported in the previous
sub-section.
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5 Results

This section summarizes the most relevant results. Figure 3 shows how the “best seen”
changes over function evaluations: solid lines are the averages over 20 different runs,
while the shaded areas represent the standard deviations (almost 0). The first value, at
iteration 0, is the best seen observed within the initial design.

With respect to the second experiment – related to the relaxation of the discreteness
constraint c1ð Þ – Fig. 4 shows how the “best seen” changes over function evaluations.
Visualization is limited to the first 20 evaluations – out of the overall 200 – because,
already after two function evaluations, no further improvements have been obtained.

Fig. 3. Best seen over function evaluations of RF-based SMBO using three acquisition
functions: EI (red), AEI (green) and LCB (blue). Solid lines and shaded areas represent,
respectively, mean and standard deviation (that is almost 0) of the best seen over 20 different runs
(Color figure online)

Fig. 4. Best seen over function evaluations of RF-based SMBO with relaxation of the
discreteness constraint. Comparison between three acquisition functions: EI (red), AEI (green)
and LCB (blue). Solid lines and shaded areas represent, respectively, mean and standard
deviation (that is almost 0) of the best seen over 20 different runs (Color figure online)
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Finally, we have evaluated the improvement, in terms of energy costs reduction,
provided by SMBO with respect to the energy cost implied by the current pressure-
based control operated by the water utility, that is 332,30€/day. In Table 1, the best cost
over 20 runs has been selected for every acquisition function and separately for the two
types of experiments described in Sect. 4.2.1 and 4.2.2.

The relaxation of discreteness constraint does not provide any improvement. This
could be due to the use of RF, which can result less effective on continuous variables
than discrete ones, also depending on the smoothness of the objective function.
Probably, in the second experiment, the approach was not able to escape from some
plateau, within the maximum number of function evaluations allowed.

As an example, we report in Fig. 5 the activation pattern of two pumps, A and B,
according to the control currently operated by the WDN (“curr” suffix) versus the new
activation implied by the new control optimized through SMBO (“opt” suffix).

Table 1. Optimal energy costs obtained via SMBO and associated costs reduction with respect
to the current cost implied by the current pressure-based control operated by the water utility

Original Problem (4) Relaxation of c1ð Þ
EI AEI LCB EI AEI LCB

Energy cost [€] 150.29 150.32 150.31 158.12 154.91 150.42
Cost reduction w.r.t. the
control strategy currently
operated [€]

182.01 181.98 181.99 174.18 177.39 181.88

Fig. 5. Activation of two pumps according to current and optimized implicit control
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6 Conclusions and Discussion

We have presented a SMBO approach for solving optimal control problems charac-
terized by black-box objective functions and complex, partially unknown, search
spaces. A general formalization of the problem was provided along with an instanti-
ation on a specific real-life application, that is the optimal control of pumps in water
distribution networks. The use of a hydraulic simulation software, EPANET, makes
both objective function and constraints – related to hydraulic feasibility of the identified
control rules – black-box. Using SMBO to search for an optimal implicit control
allowed us to work with a dimensionality which is significantly lower than the one
required by the (more widely adopted) explicit controls. A more realistic experimen-
tation should consider different “simulation days”, characterized by random water
demands whose empirical distribution is generated from historical data. This requires
evaluating the robustness of the implicit control rules proposed by SMBO and to move
towards a “distributionally robust” SMBO.
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