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Abstract. Though machine learning algorithms have achieved great
performance when adequate amounts of labeled data is available, there
has been growing interest in reducing the volume of data required. While
humans tend to be highly effective in this context, it remains a challenge
for machine learning approaches. The goal of our work is to develop a
visual learning based few-shot system that achieves good performance
on novel few shot classes (with less than 5 samples each for training)
and does not degrade the performance on the pre-trained large scale base
classes and has a fast inference with little or zero training for adding new
classes to the existing model. In this paper, we propose a novel, compu-
tationally efficient, yet effective framework called Param-Net, which is a
multi-layer transformation function to convert the activations of a partic-
ular class to its corresponding parameters. Param-Net is pre-trained on
large-scale base classes, and at inference time it adapts to novel few shot
classes with just a single forward pass and zero-training, as the network
is category-agnostic. Two publicly available datasets: MiniImageNet and
Pascal-VOC were used for evaluation and benchmarking. Extensive com-
parison with related works indicate that, Param-Net outperforms the
current state-of-the-art on 1-shot and 5-shot object recognition tasks in
terms of accuracy as well as faster convergence (zero training). We also
propose to fine-tune Param-Net with base classes as well as few-shot
classes to significantly improve the accuracy (by more than 10% over
zero-training approach), at the cost of slightly slower convergence (138 s
of training on a Tesla K80 GPU for addition of a set of novel classes).

Keywords: Param-Net · MiniImagenet · Pascal-VOC · Activations ·
Few-shot learning

1 Introduction

Current state of the art on semantic segmentation, object detection, image classi-
fication and most other learning based tasks rely on deep neural networks. Deep
neural networks are high-capacity powerful models which require large amounts
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of annotated data and millions of parameters. Large amounts of supervised train-
ing data per concept is required for deep learning algorithms to achieve great
performance, and the learning process could take multiple days to weeks using
specialized expensive hardware like GPUs. Adapting a deep learning model to
recognize a new class includes 2 major steps: 1) Collection of the large scale
dataset, 2) Fine-tune the existing model to recognize the new class. Both of
these steps are time, memory and resource intensive. If new classes are to be
recognized, then typically thousands of training examples are required for train-
ing and fine-tuning the model. Sometimes, unfortunately this fine-tuning might
result in the model forgetting the initial classes on which it was trained. One of
the most important objectives of few-shot learning based algorithms is to adapt
the existing models at real-time, to recognize novel classes which were unseen
during the initial training phase. The major challenge is that, these novel classes
have less than 5 visual examples each for training the model. The performance
of state-of-the-art classification models deteriorates when the number of images
per new class reduces to less than 10, whereas humans are capable of learning
new visual concepts reliably and effortlessly with very few examples. This has
inspired scientists to adapt deep learning algorithms to work on few-shot domain,
where the main goal is to learn novel concepts using limited number of examples.
The main advantage of solving the few-shot problem is that it relies only on very
few examples and eliminates or restricts the need to formulate large amount of
labeled training data, which is usually a cumbersome and costly process.

In this paper, we propose a novel, computationally efficient, yet effective
framework called Param-Net, which is a fusion of the best practices of param-
eter generation, gradient descent and data augmentation methods. Two pub-
licly available dataset: MiniImageNet and Pascal-VOC have been used in this
paper for evaluation and bench-marking. MiniImageNet dataset is the most pop-
ular dataset for benchmarking few-shot learning algorithms. Pascal-VOC is the
most popular dataset for object detection tasks. Using Pascal-VOC dataset, an
attempt can be made to scale the few-shot classification task to few-shot detec-
tion task. The dataset is split into: (1) classes that contain adequate number of
samples denoted as CBase, this is considered as large scale dataset and (2) classes
that contain 1–5 images each which are denoted as CFew, these are the few shot
classes. The goal of our work is to devise a visual learning based few-shot system
that achieves good performance on novel few shot classes, CFew (with less than
5 samples each) and does not degrade the performance on the large scale base
classes CBase and has a fast inference with little or zero training for adding new
classes to the existing model.

In neural networks, parameters of a particular class and its activations share
a strong relationship and this property is used by Param-Net to predict weights
for novel classes. For fair comparison with state-of-the-art approaches, we use
a Res-Net based model for extracting the most relevant features/activations of
the input images. The activations which are determined prior to the final fully
connected layer in the base model, is used as input to the Param-Net, which is
a multi-layer transformation function. Param-Net is used to convert activations
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of a particular class to its corresponding weights. Res-Net as well as Param-Net
model is pre-trained on CBase. Param-Net can adapt to novel few shot classes
with just a forward pass and zero training as the network is category agnostic.

In this paper, the models are initially tested on MiniImageNet dataset and
compared with state-of-the-art few shot algorithms. The proposed Param-Net
model outperforms the state-of-the-art methods on few-shot classes, while also
not compromising on the efficiency on base classes (CBase). On MiniImageNet
dataset, Param-Net achieves an accuracy of 62.69% for 5-way 1-shot learning
and 86.14% for 5 shot learning. The inference time of the model to add novel
few shot classes is also very low (because of zero-training time), it only takes
around 23 ms for adding a novel class on a Tesla K80 GPU. Inspite of this state-
of-the-art performance it has been observed that the accuracy of Param-Net on
closely similar classes is slightly compromised. To account for this, we suggest
fine-tuning the Param-Net with base classes as well as few-shot classes. This
significantly improves the accuracy at the cost of slightly slower convergence.
Fine-tuned Param-Net achieves an accuracy of: a) 94.23% for 5-way and 5 shot
learning on MiniImageNet dataset and b) 87.26% on Pascal-VOC dataset for
20 way 5-shot settings. The fine-tunable version of Param-Net takes around
138 s of training on Tesla K80 GPU for the addition of a set of novel classes
for MiniImageNet dataset. Hence with little fine-tuning, Param-Net can be used
to adapt a deep learning model to add novel classes with just a single training
image.

In “Sect. 2”, we describe the techniques widely used and documented in
literature to achieve current state-of-the-art results, most of the techniques
described in this section are used to benchmark the Param-Net framework. Then
in “Sect. 3” we elaborate the proposed Param-Net approach, in “Sect. 4”, we dis-
cuss the experimental setup, results and benchmarks and in “Sect. 5”, we discuss
the conclusion and future scope.

2 Related Work

The ideas behind Param-Net has broad prior support in literature, but mostly
appear in disjoint or in incompatible problem setting. Research literature on
few-shot learning techniques exhibits great diversity. We adapt these concepts
into a unified framework for recognition in real-world scenarios. In this section,
we focus on methods using the supervised meta-learning paradigm [12], [51], [9]
most relevant to ours and compared to in the experiments. We can divide these
methods into 5 categories:

Data Generation and Data Augmentation Methods: In [9], a sampling
method was proposed that extracts varying sequences of patches by decorrelating
an image based on maximum entropy reinforcement learning. This is a form of
“learned” data augmentation. In [19], GAN based approach was proposed to
address the few shot learning, where GAN allows the few shot classifiers to learn
sharper decision boundary, which could generalize better. In [30], a modified
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auto-encoder was proposed to synthesize new samples for an unseen category
just by seeing few examples from it.

Gradient Descent Based Methods: Meta-LSTM [12], treats the model
parameters as its hidden states and uses LSTM as a model updater, that not
only learns the initial model, but also the update rule. In contrast to Meta-
LSTM, MAML [14] only learns an initial update. In MAML, the updating rule
is fixed to a stochastic gradient descent (SGD). In [26], a variant of MAML was
proposed where only first order gradients were used. In [21], MetaSGD was pro-
posed as an extension of MAML, which learns weight initialization as well as
learner’s update step size. In [1,2], a modification to MAML was proposed to
prevent overfitting. In [2] entropy based and inequality minimization measures
were introduced and in [1], Meta-Transfer Learning approach was introduced
where it leverages transfer learning and benefits from referencing neuron knowl-
edge in pre-trained deep nets. A framework was proposed in [18] to unify meta
learning and gradient based hyperparameter optimization. In [20], Neuron-level
adaptation was suggested, to reduce the complexity of weight modification when
the connections are dense.

Metric Learning Methods: Siamese Neural Network which uses a two stream
convolutional neural network was originally utilized by Koch et al. [30], to learn
powerful discriminative representations and then generalized them to unseen
classes. Vinyals et al. [13] proposed Matching-Nets and introduced the episodic
training mechanism into few-shot learning. Prototypical Network was proposed
in [15], which is built upon the matching network [13], uses cosine similarity and
4-layer network. Here, query image is compared with support images using class
centroids to eliminate outliers in support set. In [16], a variant of Matching net-
work [13] was proposed and named the Relation-Net. It uses additional network
to learn similarity between image through a deep non-linear metric. Relationship
of every query-support pair is evaluated using a neural network. As an extension
to prototypical network in [15], three light weight and parameter free improve-
ments were proposed in [5]. In [10,25] modifications to Relation-Net was pro-
posed. In [10], images were encoded into feature vectors by an encoding network.
In [25], second order descriptors were proposed instead of first order descriptors.
Given a new task with its few-shot support set, Garcia et al. [23] proposed to
construct a graph where all examples of the support set and a query set are
densely connected. There have been modifications proposed to [23], by [27] and
[7]. In [27], transductive propagation network was proposed to propagate labels
from known labeled instances to unlabeled test instances. In [7], Edge Labeling
Graph Neural Network (EGNN) was proposed to predict edge-labels rather than
node-labels, this is ideal for performing classification on various tasks without
retraining. In [4], local descriptor based image-to-class measure was proposed
which was obtained using deep local descriptors of convolutional feature maps.
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Parameter Generation Methods: Using attention based mechanism to pre-
dict the classification weights of each novel class as a mixture of base classifica-
tion weights of each novel class, Gidaris et al. in [22] proposed Dynamic-Net to
capture class dependencies in the context of few-shot learning. But in Dynamic-
Net [22], dependencies were considered between base classes and novel classes.
In contrast, the dependencies were considered to exist between all the classes
in [6], and these dependencies were proposed to be captured using GNN archi-
tectures. But this is computationally more expensive than the simple attention
based mechanism proposed in [22]. The episodic formulation proposed in [13],
was used by [6], to apply the Denoising Autoencoder framework in the context of
few-shot learning, thereby improving the performance of parameter generation,
by forcing it to reconstruct more discriminative classification weights. In GNN,
input is the labeled training examples and unlabeled test examples of few shot
problem and the model is trained to predict the label of test examples. But here,
input to GNN is some initial estimate of classification weights of the classes that
needs to be learnt and it is trained to reconstruct more discriminative classifi-
cation weights.

Model Fine-Tuning Methods: Most of the ADAS based models, usually opt
for fine-tuning the pre-trained model to add novel classes, but this method works
well, only when there is sufficient number of novel class examples for training.
The method that has been proposed in this paper is a fusion of the most effective
features of Parameter generation, Model fine-tuning, data generation and gradi-
ent based methods. In the following section, we shall discuss the architecture of
the model followed by the experimental results.

3 Methodology

The datasets are split into large-scale dataset (DBase) and few-shot dataset
(DFew), where DBase contains classes which have sufficient number of images
for training, whereas DFew contains classes with less than 5 images. CBase refers
to the classes present in DBase and CFew refers to the classes present in DFew.
There is no overlap between CBase and CFew. The distribution of the dataset
into DBase and DFew is illustrated in Table 1.

Table 1. Random distribution of classes from public datasets into large scale and
few-shot classes.

Datasets Number of classes in DBase Number of classes in DFew

MiniImageNet 80 20

Pascal-VOC 13 7

The goal of our work is to devise a visual learning based few-shot system that
achieves good classification performance on novel few shot classes, CFew (with
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less than 5 samples each) and does not degrade the performance on the large
scale base classes CBase and has a fast inference with little or zero training for
adding new classes to the existing model.

In a neural network, for a particular class: weights and activations are closely
related. In this paper, we propose a novel, computationally efficient, yet effective
framework called Param-Net, which is a multi-layer dense regression transforma-
tion function to convert the activations of a particular class to its corresponding
weights.

Initially, Resnet-101 deep neural network was considered as the base model
and was pre-trained on the large scale dataset (DBase). In the base-model, the
entire network prior to the final fully connected layer was considered as feature
extractor. The final fully connected layer was considered as the classifier network.
For an input image ‘Xi’, the feature extractor will output a “d”-dimensional
feature vector ZXi = F(Xi). The weights “w” of the classifier network consists of
“N” classification weights, where “N” is the number of classes in DBase:

w = [wi]Ni=1 (1)

where wi is the d-dimensional classification weight vector for the ith class. For
input image ‘Xi and for ‘N’ classes, the classifier will compute the classification
scores as: For input image ‘Xi’,

[s1i, s2i, ..., sNi] = [Zxiw1, Zxiw2, .., ZxiwN ], (2)

For an image “Xe”, belonging to class “k”, the objective of the feature extrac-
tor and classifier is to maximize ske, where ske = Zxewk, and minimize [s1e,
s2e, ..., s(k-1)e] and [s(k+1)e, s(k+2)e, ..., sNe]. The weights “w” are learnt through
back-propagation using the loss function:

M∑

i=0

Li

M
(3)

where,

Li = −log
eZXiWyi

N∑

j=1

eZXiWj

(4)

where “M” is the number of images per epoch, for image “Xi”: “Li” is the
loss and “yi” is the annotation label. To adapt the base model to include novel
few-shot classes, a transformation layer named Param-Net has been proposed
in this paper. The objective of the Param-Net is to predict parameters of a
particular class based on its corresponding activations. The activations which
are used as input to the Param-Net are determined using the feature extractor
network. Parameters of the original base-model classifier network is replaced by
the Parameters estimated from the Param-Net which can be denoted as:
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T (ZXi) = wei (5)

where T() is the transformation function or the Param-Net, ZXi is the acti-
vation of the image “Xi” and wei is the estimated parameters for the image
“Xi”.

During the training phase of the Param-Net, initially a mini-batch of input
images is formed from the CBase classes, containing M

′
images of each class.

Hence the size of the mini-batch was N * M
′
, where N is the number of

classes. Using the feature extractor network, d-dimensional activation vectors
are extracted for the entire mini-batch, containing N classes and M

′
images for

each class. Mean activations are extracted for each class using:

Mzj =

M
′

∑

k=0

ZXjk

M ′ (6)

where Mzj is the mean activation of the batch of images belonging to jth class,
M

′
is the number of images per class in the batch and ZXjk is the activation of

the kth image of the jth class.
The d-dimensional mean activations of each of the class is input to the

Param-Net to estimate the parameters of the corresponding classes, as illus-
trated in Fig. 1(a). The Param-Net is a regression network whose input and
output dimensions are of the same size, but to reduce overfit, we have posed it
as a classification task. After estimating parameters of all the classes individually,
they are concatenated into a “d * N” vector.

A mini-batch of training images X′
1,X

′
2, ...,X

′
N, containing an equal sample

of all the classes is considered and features are extracted, where X′
1, contains a

subset of images belonging to class 1. These features are then convolved with
the estimated parameters from the transformation layer and softmax activations
are applied. The output is compared with the input annotated labels and the
loss function is computed and the gradients are propagated. The loss function
from Eq. 4 is modified to:

Li = −log
e
Z
x

′
i
[T(Mz)]yi

N∑

j=1

e
Z
x

′
i
[T(Mz)]j

(7)

where, Li is the loss for the image ‘Xi’, ‘N’ is the number of classes, Zx
′
i

is the activations estimated or features extracted for the image ‘Xi’ using the
feature extraction network, ‘[Mz]yi

’ is the mean activation of the actual class that
the image ‘Xi’ belongs to, ‘[Mz]j’ is the mean activation of all the other classes
ranging from 1 to N and T[] is the estimated weights from the Param-Net. The
entire flow of the network has been illustrated in Fig. 1 (b).

There are three distinct phases in this approach: Training, Parameter predic-
tor and inference. During the training phase, only images from DBase are used



256 N. S. Kumar et al.

to train the transformation layer/Param-Net. None of the images from the DFew

are used. In the parameter predictor phase, the images 1–5 of a given class CFew

from DFew are considered and passed through the feature extractor and mean
activations of the extracted features are determined.

Fig. 1. Illustration of few-shot learning pipeline proposed in this paper using Param-
Net based approach with zero-training. (a): Parameter Generator network (b): Training
and inference pipeline for the proposed model.

These mean activations are input to the transformation layer to estimate the
parameters for the few shot class CFew. These estimated parameters for few-
shot classes are concatenated with the estimated parameters of the other base
classes. This way, a new class is added to the existing model with zero training.
At inference time, for any input image, features are extracted and convolved
with the estimated parameters to determine the class of the input image.

We also propose to fine-tune the Param-Net with base classes as well as few-
shot classes to significantly improve the accuracy. For addition of a novel class to
the existing model, Param-Net is fine-tuned with mean-activations from CBase

as well as from CFew.
But the convergence of the fine-tuned model does not require too many

epochs nor too many computation cycles because: (1) Param-Net is just a 2-
layer dense network, (2) Input to the Param-Net is only mean activations which
are of lower dimension, compared to the high-dimension raw input. Hence, with
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little training, the efficiency of Param-Net can be considerably increased. The
modified flow for the proposed Param-Net is illustrated in Fig. 2.

Fig. 2. Illustration of few-shot learning pipeline proposed in this paper using fine-
tuning based Param-Net approach with little-training. Training and inference pipeline
for the proposed model has been shown with the Param-Net being fine-tuned, every
time a novel few-shot class is added to the model.

4 Results

We evaluate the proposed Param-Net extensively in terms of few-shot recogni-
tion accuracy and model convergence speed on MiniImageNet and Pascal-VOC
datasets. In the following sections, we describe the datasets, detailed experimen-
tal setup, comparison to the state-of-the-art methods and an ablation study with
respect to different model architectures.

4.1 Dataset

MiniImageNet was proposed by Vinyals et al. in [13], for evaluating few-shot
learning based algorithms. Its complexity is high due to the use of images from
ImageNet dataset, but requires less resources and cheaper infrastructure than
running on the full ImageNet dataset. It is the most popular dataset for bench-
marking few-shot learning algorithms. We used the same split proposed by [1]
for fair comparison. We consider 5-way classification for both 1-shot and 5-shot.
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Pascal-VOC dataset is one of the most popular datasets for object detection task.
The logical extension of few-shot learning based algorithms is object detection
based few-shot learning. Hence the use of Pascal-VOC helps us to make the
model robust to scale to object detection tasks. Param-Net was evaluated on
the Pascal VOC for 20-way 1-shot performance.

4.2 Model

For a fair comparison with the state-of-the-art we use pre-trained Resnet-101
as our base model for feature extraction, for MiniImageNet and Pascal-VOC
datasets. Resnet-101 was pre-trained on ImageNet and the model was later fine-
tuned on DBase dataset. Model fine-tuning was performed by freezing the initial
layers and only updating the weights of the final few layers. The layer prior to
the final fully connected layer serves as a feature extractor for Param-Net. The
dimension of the extracted features is 2048. The learning rate for fine-tuning
Resnet-101 was 0.0001 using an Adam optimizer.

For MiniImageNet dataset, the DBase dataset had 80 classes with 600 images
each and these images were used for fine-tuning Resnet-101. Of the 600 images,
500 images were used for training and 50 images each for validation and testing.
The same distribution of DBase is used for training the Param-Net as well. One
of the most important characteristics of Param-Net is that it is class-agnostic,
which indicates that the network need not be trained on images from DFew.
Adam optimizer was used with a learning rate of 0.001 and it took around 187 s
for the Param-Net to be trained on a Tesla K80 GPU. Once the Param-Net
is trained, it has the capability to add novel classes with zero-training and the
addition of novel classes can be done at real time. It takes only 18 ms to add
novel classes to the existing base-classes because Param-Net is just a two layer
dense regression network with a low-dimensional input.

In the following sections, we shall discuss the key role that a robust feature
extractor plays, in improving the performance of few-shot learning algorithms.
We shall also discuss the effect of the number of dense layers in the Param-Net
on the quality of the weights generated, in the following sections.

Table 2 shows the comparison between: a) Accuracy of conventional fine-
tuning based approach, where Resnet-101 model was fine-tuned and test only
using the DBase dataset b) Accuracy of the Param-Net based approach on the
DBase dataset, where similarly, the Param-Net was trained and tested only using
the DBase dataset and the weights of the classification layer of the Res-Net
model was replaced by the weights estimated using the Param-Net. It is evident
from the results in Table 2, that the Param-Net is able to achieve comparable
performance on the DBase dataset, while achieving state-of-the-art results on
DFew dataset as depicted in later sections.
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Table 2. Comparative study between: a) ResNet-101 based feature extractor and clas-
sifier and b) ResNet-101 based feature extractor with Param-Net based classifier. Both
are trained and tested only on DBase dataset.

Dataset ResNet (Feature
extractor + classifier)
(%)

Resnet feature extractor
+ Param-Net classifier
(%)

Training Data 94.91 92.36

Validation Data 92.63 91.93

Testing Data 93.14 91.06

4.3 Evaluation Results and Comparisons

In Table 3, we compare Param-Net with state-of-the-art methods of different
few-shot techniques. The accuracies of all the techniques have been reported on
the test dataset.

Data generation techniques [9,11,19,30]: Different techniques like decorrela-
tion [9], GAN [19], auto-encoder [30] and image deformation network [11] have
been used. But these models need to be trained on more than just 5 examples for
the generators to generate useful data, otherwise the generators under-perform
on few-shot data. Hence the accuracy of the data augmentation based methods
is lower than the most of the other approaches.

Metric learning techniques [4,5,7,10,13,15,16,23,25]: In [13], few-shot learn-
ing problem was addressed using cosine similarities between the features pro-
duced by CNN, which is a very simplistic metric to differentiate between the
images. In [15] and [16], instead of cosine similarities, a non-linear similarity
score was introduced using neural networks, but the descriptors were of first
order. As an extension to [15], different approaches [5,10,25] were proposed like
second order descriptors, encoding feature vectors using encoder network, batch
folding, few shot localization (fsl) and covariance pooling (cp). But still they
under-performed because of the inability of the feature extractors to extract
meaningful features. GNN based approach, proposed by [22] under-performed
because it uses node-labeling to model intra-cluster similarity and inter-cluster
dissimilarity. This was addressed in [7] to achieve better performance. In [4], k-
nearest neighbors metric was used, but one drawback of this approach was that it
used Conv4 as a feature extractor, which is a weak feature extractor. Most of the
mentioned metric learning techniques, learn a feature similarity metric between
few-shot training examples and a test (query) example. But, these methods treat
each training class independently from one another. Hence, the performance of
metric learning frameworks is weakened.

Gradient descent techniques: In [12] and [14], element-wise fine tuning was
used, hence inducing overfitting on the designed models, and in [12], LSTM was
used to update the initial model as well as the update rule, hence it was time
consuming as well, this was addressed in [14], by learning only the initial model.
As an update to [14], different solutions were proposed like: using first order
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gradients [26], joint learning of weight initialization as well as learner’s step size
[21], entropy based inequality minimization measures [2] and transfer learning
and fine-tuning [1]. But the problem with gradient based approaches is that,
they require many iterative steps over many examples to perform well.

Parameter generation: In [22], dependencies were considered between novel
classes and base classes using simple attention based mechanism. In [6], GNN
based techniques were used to differentiate between all the classes, novel and
base.

The Param-Net that has been proposed here, is a combination of data
augmentation, gradient descent and parameter generation methods. This has
resulted in state-of-the-art performance on 1-shot and 5-shot settings for Mini-
ImageNet, which is the most popular public dataset for benchmarking few-shot
learning algorithms. The existing state-of-the-art methods mainly focus on mak-
ing relation measure, concept representation and knowledge transfer, but do not
pay enough attention to final classification. This issue has been addressed in
this paper by posing a regression problem of the Param-Net into a classification
task, thereby also reducing the overfit of the model onto the training dataset
considerably.

Table 3. 5-way accuracy on MiniImageNet. Blue: Best accuracy.

Method Algorithm Models 1-shot (%) 5-shot (%)

Data
augmentation

Decorrelation [9] Conv4 51.03 67.96

Meta-Gan [19] Resnet-12 52.71 68.63

Delta-encoder [30] VGG-16 (pre) 58.7 73.6

Image deformation Meta
Network [11]

ResNet-18 57.71 74.34

Metric
learning

Matching networks [13] Conv4 43.44 55

Protonets (PN) [15] Conv4 49.42 68.2

RelationNet [16] Conv4 50.44 65.32

2nd order similarity network
[25]

52.96 68.63

GNN [23] Conv-256F 50.33 66.41

Deep Nearest Neighbor
neural network [4]

Conv4 51.24 71.02

PN+ fsl + CP [5] Res-Net50 69.45

Salient-Network [10] Conv4 57.45 72.01

Edge-Labeling GNN [7] Resnet 76.37

Gradient
descent

Meta-learning LSTM [12] Conv-32F 43.56 60

MAML [14] Conv-32F 48.7 63

Reptile [26] Conv-32F 49.97 65.99

TAML [2] Conv-32F 49.4 66.0

Matasgd [21] Conv-32F 50.47 64.03

MTL [1] Resnet-12 61.2 75.5

Parameter
generation

DynamicNet [22] Conv-4-64 55.45 70.13

WDAE-ML [6] WRN-28-10 60.61 76.56

Our-Param-Net: 2-layer
(Resnet)

ResNet-101 63.31 82.29
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Table 4. Results of ablation study

Algorithm 1-shot (%) 5-shot (%)

Resnet-101 + 1 layer Param-Net 61.95 78.95

Resnet-101 + 2 layer Param-Net 63.31 82.29

Nasnet + 2 layer Param-Net 64.69 86.14

Resnet-101 + fine-tune(2 layer Param-Net) 71.18 94.23

Table 3 and Table 4, indicates the importance of a robust feature extrac-
tor. In Table 3, the techniques which used Resnet based architecture for feature
extraction performed better than the approaches that used Conv-4 or Conv-32
based feature extractors. Similarly, we also experimented using Nas-Net (network
based on neural-architecture search) instead of Resnet-101 as feature extractor
as shown in Table 4. Nas-Net improved the performance of the algorithm on both
1-shot as well as 5-shot settings. We also conducted experiments to ascertain the
contribution of the number of layers in the Param-Net, to the eventual perfor-
mance of the algorithm on MiniImageNet dataset. It has been observed that a
2-layer dense network performs better than a 1-layer dense network, as has been
indicated in Table 4.

In this paper, we also propose an approach where, Param-Net is finetuned
with DBase as well as DFew. For every new class that needs to be added, the
Param-Net needs to be finetuned. It significantly leads to an increase in the
accuracy but with a little extra training time of 138 s for addition of a set of
novel classes to the existing model, on a NVIDIA K80 GPU.

5 Conclusion

In this work, we contribute to few-shot learning by developing a novel, compu-
tationally efficient framework called Param-Net which achieves top performance
in tackling few-shot learning problems.

The main objective of few-shot applications is to add novel classes at real
time to the existing model in the presence of less than 5 visual examples. Hence
Param-Net has been proposed in this paper. It is a dense transformation layer
which converts the activations of a particular class to its corresponding weights.
It is pre-trained on large-scale base classes and at inference time it adapts to
novel few-shot classes with just a single forward pass and zero or little training
as the network is class agnostic.

Extensive comparison with related works indicate that the Param-Net out-
performs state-of-the-art algorithms in terms of accuracy (1-shot and 5-shot)
and in terms of faster convergence (zero or very-little training). We evaluate the
performance of Param-Net on two publicly available datasets: MiniImageNet
and Pascal-VOC. MiniImageNet is the most popular dataset for benchmarking
few-shot algorithms. Pascal-VOC dataset was used to verify the scalability of
Param-Net from few-shot classification task to few-shot detection task.
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The future scope of improvement for the proposed Param-Net would be to
scale the algorithm to address few-shot detection rather than just few-shot clas-
sification problems. The first step to address this challenge has been successfully
accomplished by testing the Param-Net on the Pascal-VOC dataset, which is
the premier dataset for object detection tasks.
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