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Abstract. The goal of automatic algorithm configuration is to recom-
mend good parameter settings for an algorithm or solver on a per-
instance basis, i.e., for the specific problem instance being solved. Real-
time algorithm configuration is a practically motivated variant of algo-
rithm configuration, in which the problem instances arrive in a sequential
manner and high-quality configurations must be chosen during runtime.
We model the realtime algorithm configuration problem as an extended
version of the recently introduced contextual preselection bandit prob-
lem. Our approach combines a method for selecting configurations from
a pool of candidates with a surrogate configuration generation procedure
based on a genetic crossover procedure. In contrast to existing methods
for realtime algorithm configuration, the approach based on contextual
preselection bandits allows for the incorporation of problem instance fea-
tures as well as parameterizations of algorithms. We test our algorithm
on different realtime algorithm configuration scenarios and find that it
outperforms the state of the art.

Keywords: Realtime algorithm configuration · Contextual
preselection bandit

1 Introduction

It is widely known that no single solver produces optimal performance for all
types of problem instances [11]. Due to the large space of parameterizations avail-
able for most solvers, algorithm designers are forced to tune the parameters of
their approaches to provide reasonable performance, a long and arduous process.
Recently, automatic algorithm configuration has simplified the search for good
parameters by automatically identifying and recommending high-quality param-
eters to algorithm designers and users. Furthermore, these approaches can work
in an instance specific fashion, providing high-quality parameters specific to the
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instances being solved [31] including for instances never before seen or envisioned
by the algorithm designer.

Traditionally, algorithm configuration research has focused on offline, train-
once approaches [2,23,24]. These are based on a static set of instances deemed
to be representative of a specific task for which good parameter settings are
found and after which the parameters are put into practice. Ignoring the fact
that a representative set of instances may not be available for a given problem
at the time of algorithm design, train-once methods suffer from changes or drift
of problem instances. Furthermore, there may be a lack of time for repeated
offline training. Online or realtime approaches, such as the ReACT and ReACTR
systems of [17] and [16], respectively, overcome these issues by choosing a high-
quality configuration of the solver during runtime as new instances arrive.

In this paper, we propose an algorithm called Contextual Preselection with
Plackett-Luce (CPPL) for realtime algorithm configuration. The latter is based
on the contextual preselection bandit problem, a variant of the preference-based
multi-armed bandit (MAB) problem [12] recently introduced in [6]. MAB meth-
ods have proven successful for the closely related problem of algorithm selection,
see e.g. [14,19,22,33,38], but have not yet been applied to algorithm configura-
tion.

The state-of-the-art realtime algorithm configurator ReACTR [16] utilizes
the racing principle in which, for a given instance, multiple parameter configu-
rations are run in parallel on multiple CPU cores to see which is best for a given
instance. ReACTR gathers information about the performance of parameteri-
zations and applies a ranking mechanism called TrueSkill [21] to decide which
choice of parameterizations to select from a pool of options for the next instance.
Furthermore, it uses TrueSkill to decide which parameterizations to replace with
new ones and how to generate new parameterizations, meaning which individuals
to choose as parents for the crossover mechanism included in the generation of
new parameterizations. Our goal in this paper is to replace the ranking, choice
and generation mechanisms of ReACTR by functions of the CPPL approach
while maintaining the framework of the racing principle and parallel execution
of ReACTR. Our contributions are as follows:

1. We connect the online contextual preselection bandit setting to the realtime
algorithm configuration problem.

2. We introduce the CPPL algorithm for solving realtime algorithm configura-
tion tasks.

3. We provide a novel technique for generating new parameterizations using the
surrogate of the CPPL algorithm inspired by the idea of genetic engineering
in [1].

4. We show experimentally that CPPL is competitive with the state-of-the-art
ReACTR algorithm on different algorithm configuration scenarios.

The paper is organized as follows. In the next section, we give an overview of
related work. The online contextual preselection setting and its application to
realtime algorithm configuration are presented in Sect. 3. An experimental study
is then presented in Sect. 4, prior to concluding the paper in Sect. 5.
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2 Related Work

We now provide an overview of the related work in several fields: algorithm con-
figuration, algorithm selection using MABs, and hyperparameter optimization
for machine learning algorithms.

2.1 Algorithm Configuration

Approaches for offline algorithm configuration can be broadly categorized into
non-model-based, model-based and hybrid approaches. Non-model-based tech-
niques including racing algorithms such as F-Race [9] and its successor Iterated
F-Race [10]. In these approaches, parameterizations are run against each other on
subsets of instances and those that are performing poorly are eliminated through
statistical testing. In the gender-based genetic algorithm (GGA) of [2] and its
extension [1] a racing mechanism is also used to run instances in parallel and cut
off poor performing parameterizations before they use too much CPU time (in
a runtime minimization setting). The ParamILS method [24] employs a focused
iterated local search. Sequential Model-based Algorithm Configuration (SMAC)
approach by [23] is a model-based method that generates a response surface
over parameters of the solver to predict the performance if those parameters
were to be used. Finally, [1] can be considered a hybrid approach for config-
uration, utilizing both a genetic algorithm and a learned forest to select new
parameterizations.

Realtime methods include two approaches. The previously mentioned ReACT
algorithm [17] stores a set of parameterizations and runs them in parallel on the
instances to be solved. Parameterizations are removed if they do not “win”
enough of the races with the other parameterizations and are replaced with ran-
dom parameterizations. ReACT’s extension ReACTR [16] enhances ReACT by
incorporating the ranking technique of the ranking system TrueSkill and uses a
crossover mechanism (as in genetic algorithms) to generate new parameteriza-
tions. Both [17] and [16] show that tackling the realtime configuration problem
head-on instead of periodically performing a new offline configuration results in
better performance.

A recent contribution from [7] introduces the concept of dynamic algorithm
configuration, in which the goal is to dynamically configure the parameters of an
algorithm while it is running. The problem is modeled as a contextual Markov
decision process and reinforcement learning is applied. Algorithm configuration
has been examined from a theoretical perspective in several recent works, e.g. [5,
28] resulting in bounds on the quality of configuration procedures.

2.2 Algorithm Selection and Hyperparameter Optimization
with Bandits

The K-armed bandit problem is a sequential decision problem where in each
trial a learner needs to choose/pull one of the arms of a K-armed slot machine
(bandit), with each arm having its own reward distribution. After pulling an
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arm the learner observes its associated reward. The goal of the learner is to
maximize the sum of rewards or, equivalently, minimize the total loss defined as
the expected difference between the sum of rewards associated with the optimal
selection strategy with the best possible reward and the sum of the collected
rewards. The main issue affecting the long-term success of a learner in such
problems is to find a good trade-off between choosing arms that have turned out
to be appealing in the past (exploitation) and trying other, possibly even better
arms, but whose appeal is not precisely known so far (exploration).

The problem of algorithm selection can be represented as a bandit problem
in a straightforward fashion. The arms are the algorithms, and pulling an arm
corresponds to running the associated algorithm on the current problem instance
and observing its runtime. The objective is to minimize the total solution time
over all problem instances.

Bandit approaches have a long history of success for algorithm selection. In
the following, we list some of the works following this approach for different
applications. In [40] the authors model the adaptive time warp control problem
in the single-agent setting as a MAB problem. A MAB framework for managing
and adapting a portfolio of acquisition functions in the context of Bayesian
optimization with Gaussian processes is introduced in [22]. In [33] the authors
model the problem of scheduling of searches with different heuristics as a MAB
problem and use dynamic Thompson sampling (DTS) to solve it. Finally, in [4]
a MAB-based learning technique is used to automatically select among several
levels of propagation during search for adaptive constraint propagation.

Algorithm configuration is also related to hyperparameter optimization, in
which the goal is to find a configuration of hyperparameters that optimize some
evaluation criterion based on a given set of hyperparameters associated with
some supervised learning task and a search space over them [27]. In hyperparam-
eter optimization, the algorithm is generally a machine learning method rather
than an optimization technique. The key difference to algorithm configuration
is that hyperparameter optimization generally ignores algorithm runtimes and
focuses on improving the quality (i.e., the output) of an approach. Nevertheless,
a problem of hyperparameter optimization can be modeled as a bandit problem
in the same way.

A number of MAB approaches have also been applied for hyperparameter
optimization by casting it into a pure exploration nonstochastic infinite-armed
bandit problem. In this way, several well-known bandit algorithms can be lever-
aged to the hyperparameter optimization problem such as successive halving
[27,29], upper confidence bound [39] or Thompson sampling [37].

All the MAB approaches mentioned above use quantitative feedback in the
form of absolute numerical rewards (e.g., runtime of a solver or accuracy of a
learning method). In contrast, we use a preference-based variant of the MAB
problem, in which the feedback is purely qualitative. We merely observe which
algorithm performed best among a subset of algorithms on a given problem
instance. This setting is a generalization of the dueling bandits problem intro-
duced in [41].
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3 Contextual Preselection for Realtime Algorithm
Configuration

In this section, we present details of our approach to realtime algorithm con-
figuration. After a brief introduction to this problem in Sect. 3.1, we recall the
(contextual) preselection problem with winner feedback in Sect. 3.2. In Sect. 3.3,
we then explain how realtime algorithm configuration can be cast as a problem
of that kind.

3.1 Realtime Algorithm Configuration

Formally, offline algorithm configuration can be defined as follows [24]. We are
given a set of problem instances Π ⊆ Π̂ for which we want to find a good
parameter setting λ from a parameter space Λ for an algorithm A. We can
evaluate the runtime or quality of some set of parameters using a performance
metric m : Π × Λ → R. Without loss of generality, the goal is to find some λ using
the instances Π such that

∑
π∈Π̂ m(π, λ) is minimal, i.e., a parameterization λ

that performs well on average (across a set of problem instances).
Notice that in offline algorithm configuration we are provided a large set of

instances up front and only test the quality of the parameter configuration we
find in an offline setting. In contrast, realtime algorithm configuration considers
Π to be a sequence of instances that are solved one after the other. Furthermore,
we assume that the underlying distribution of instances Π̂ is not fixed and may
change over time, meaning that the parameters tuned offline may no longer
be effective. This setting is a realistic one, for example for logistics companies
that must solve routing problems on a daily basis for changing customers or
manufacturing companies that have new sets of orders each day. Furthermore,
as companies grow, shrink or adjust their business model, Π̂ could drastically
change and require updating.

Figure 1 shows the realtime algorithm configuration process for our approach,
and those in the literature. Given a pool of parameterizations λ1 through λn, we
must select a limited number according to our parallel computing resources. We
run the first instance on the parameterizations and, in the runtime setting, see
which one finishes first. The other parameterizations are immediately stopped.
We note that in ReACT and ReACTR no information is gained from these runs,
i.e., the data we receive is censored. The parameterization pool and a model of
how to select the parameterizations is updated and the process is repeated for
the next instances.

In this paper, we make use of a recently introduced variant of the multi-
armed bandit problem, called the preselection bandit problem [6], which is able
to exploit (censored) “winner feedback” as described above, i.e., information
about which parameterization among a finite set of parameterizations solved a
problem first. Moreover, making use of a contextualized extension of preselection
bandits [15], we are able to recommend parameterizations of a solver on a per-
instance basis, i.e., parameterizations that do not only perform well on average
but are specifically tailored to the concrete problem instance at hand.
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Fig. 1. Realtime algorithm configuration using the racing principle.

3.2 The Contextual Preselection Problem with Winner Feedback

The online contextual preselection problem with winner feedback, as introduced
in [15], is a sequential online decision problem, in which, in each time step t ∈
{1, 2, . . .}, a learner is presented a context Xt = (xt,1 . . . xt,n). Each xt,i ∈ R

d

is associated with one of n different arms, which we shall identify by {1, . . . , n} ,
and contains properties of the arm itself as well as the context in which the arm
needs to be chosen. After the context is revealed, the learner selects a subset
St ⊆ [n] = {1, . . . , n} of k < n distinct arms. Then, it obtains as feedback the
top-ranked arm/winner among these arms. In each time step t, the goal of the
learner is to select a subset St of arms that contains the best possible arm for
the current context Xt.

We consider the contextual preselection problem under the (contextualized)
Plackett-Luce (PL) model [30,34], a parametrized probability distribution on
the set of all rankings over a finite set of n choice alternatives. The PL model
is defined by a parameter v = (v1, . . . , vn)� ∈ R

n
+, where each vi represents the

weight or “strength” of the i-th alternative. The probability of a ranking r of
the choice alternatives under the PL model is given by

P(r |v) =
n∏

i=1

vr−1(i)
∑n

j=i vr−1(j)

.

Here, a ranking r is a bijective mapping r : [n] → [n], with r(k) the rank of the
kth alternative and r−1(i) the index of the alternative on position i.

The probability that alternative k gets top-ranked among the alternatives in
a subset S ⊂ [n] under the PL model is

P(rS(k) = 1 |v) =
vk∑
i∈S vi

. (1)

In order to integrate context information xi ∈ R
d about the ith choice alterna-

tive, the constant latent utility vi can be replaced by a log-linear function of the
arm’s context, in a similar way as has been done in [13,36]:

vi = vi(X) = exp
(
θ�xi

)
, i ∈ {1, . . . , n}, (2)
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where we summarize the corresponding feature vectors x1, . . . ,xn in a matrix
X ∈ R

d×n. The PL model with context information is then defined as

P(r | θ,X) =
n∏

i=1

vr−1(i)(X)
vr−1(i)(X) + · · · + vr−1(n)(X)

=
n∏

i=1

exp
(
θ�xr−1(j)

)

∑n
j=i exp

(
θ�xr−1(j)

) .

The probability for an alternative k ∈ S to get the top rank among the alterna-
tives in S is analogous to (1) and in particular, the corresponding log-likelihood
function for an observation (k, S,X) is

L (θ | k, S,X) = θ�xk − log

⎛

⎝
∑

j∈S

exp
(
θ�xj

)
⎞

⎠ . (3)

The gradient and Hessian matrix of the log-likelihood function can be computed
easily and are used for deriving confidence bounds ct,i on the contextualized
utility parameters vi as specified in (2). The confidence bounds can be written
as ct,i = ω ·I(t, d,xt,i), where ω > 0 is some suitable constant and I is a function
depending on the gradient as well as the Hessian of the log-likelihood function
with respect to the observation at time step t. For technical details, we refer to
[15].

Tackling the online contextual preselection problem requires estimating the
unknown parameter vector θ and solving the well-known exploration-exploitation
trade-off. In [15], the former issue is dealt with using the averaged stochastic
gradient descent (SGD) method, and the latter is handled by a variant of the
upper confidence bounds (UCB) algorithm. Again, we refer to [15] for a detailed
description of the CPPL algorithm for the online contextual preselection prob-
lem with winner feedback and explain its adaptation to the realtime algorithm
configuration problem in the next section.

3.3 Realtime Algorithm Configuration as Contextual Preselection

We model the realtime algorithm configuration problem as an online contextual
preselection problem, where each algorithm parameterization is viewed as an
arm, and adapt the CPPL algorithm to solve it. We note here that, because
of the parametric form of the model in (2), the number of arms (parameteriza-
tions) does not need to be finite, as is normally the case in realtime algorithm
configuration.

Our algorithm, called CPPL, is described in Algorithm 1. In the following,
we denote the features of a parameterization λ ∈ Λ resp. a problem instance
π ∈ Π by f(λ) resp. f(π). Note that for the considered problem scenario both
the features of the solvers as well as the problem instances are of high dimension
and reveal high correlations, so that a principal component analysis (PCA) pro-
cedure is conducted to reduce the dimensionality of the features as well as their
correlation. Also note that we perform the PCA only on a small portion of the
instances (20%) and the initial pool of parameterizations, under the assumption
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that in a real-world setting, at least some data will be available in advance of
starting the system. The obtained PCA transformations are then used to trans-
form every new instance and parameterization features during the run of the
algorithm. In the experimental study we analyze different parameter settings for
the PCA to determine whether this reduces the performance of our approach or
not.

The algorithm is initialized with a random parameter vector θ̂0 and a random
set P of n different parameterizations (line 1), which corresponds to the pool of
candidates. The algorithm proceeds in discrete time steps t = 1, 2, . . .. In each
step, first a new problem instance π ∈ Π is observed (line 5) and then a joint
feature map of the instance features f(π) and each of the parameterizations
f(λi), i ∈ {1, . . . , n} is built.

The joint feature map we use is a polynomial of the second degree, which
consists of all polynomial combinations of the features with degree less than or
equal to 2, i.e., it is defined for two vectors x ∈ R

r and y ∈ R
c as:

Φ(x,y) =
(
1, x1, · · · , xr, y1, · · · , yc, x

2
1, · · · , x2

r, y
2
1 , · · · , y2

c , x1y1, x1y2, · · · , xryc

)
.

With this, the estimated skill parameters (see (2)) are computed by using the
current estimate of θ and the joint feature map of the parameterization and
problem features (line 7). Following the optimism in the face of uncertainty
principle, the k most optimistic parameterizations within the pool of candidates
are determined by computing the upper confidence bounds on their estimated
skill parameter for the given problem instance (line 9). Generally, k corresponds
to the number of the available CPU cores in the machine. These k parameteri-
zations are then used (in parallel) to solve the given problem instance resulting
in a winner feedback, i.e., the parameterization among the k used which solved
the problem instance first (line 10). This winner feedback information is then
used in the subsequent step to update the estimate of θ, following a stochastic
gradient descent scheme (line 11). After that, poorly performing parameteriza-
tions are discarded from the pool of candidates (lines 12–13). To this end, a
racing strategy is adopted [32], in which a parameterization is pruned as soon
its upper bound on the estimated skill parameter is below the respective lower
bound of another parameterization. Note that this differs from the preference
model approach based on TrueSkill used in [16]. Finally, the parameterizations
discarded in the last step are replaced by generating new ones according to a
genetic approach as described in the following (line 14).

Due to the nature of the CPPL model, it is not possible to directly gen-
erate parameterizations from the learned model. Nonetheless, we wish to use
the learned model to augment our candidate pool with parameterizations that
will be effective on future instances. Thus, we implement a crossover-based
approach based on the idea of genetic engineering [1]. We generate individ-
uals/parameterizations using a uniform crossover operator on two individuals
ranked as the best by the model. To ensure enough diversification of the search
for good parameterizations, we introduce mutation of single genes as well as
random generation of individuals with a lower probability. All the newly gen-
erated parameterizations are then ranked by the learned model and the best
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Table 1. Comparison of CPPL and ReACTR regarding the three most important
components of the realtime algorithm configuration.

Discarding
parameterizations

Generating
parameterizations

Selecting for Runs

CPPL Racing strategy Crossover based on
model and
randomness,
evaluation by model

Evaluation by the
model

ReACTR Based on TrueSkill Crossover based on
TrueSkill and
randomness

Based on TrueSkill
and random choices

individuals are selected. The parameterizations chosen to be terminated by the
model are then replaced by the best parameterizations generated. Differences in
approaches of solving the three main components of realtime algorithm configu-
ration between CPPL and ReACTR are summarized in Table 1.

Algorithm 1. CPPL(n, k,Π, α, γ, ω, f)

1: Initialize n random parameterizations P = {λ1, . . . , λn} ⊂ Λ
2: Initialize θ̂0 randomly
3: θ̄0 = θ̂0
4: for t = 1, 2, . . . do
5: Observe problem instance π ∈ Π
6: for j = 1, . . . , n do
7: v̂t,j = exp

(
x�

t,j θ̄t

)
, where xt,j = Φ(f(λj), f(π))

8: end for
9: Choose St as:

argmax
St⊆[n], |St|=k

∑

i∈St

(
v̂t,i + ct,i

)

10: Run the parameterizations of St to solve π and observe the parameterization
wt ∈ St terminating first

11: Update θ̄t by θ̄t = (t − 1)
θ̄t−1

t
+ θ̂t

t
with θ̂t = θ̂t−1 + γt−α∇L

(
θ̂t−1|wt, St,Xt

)

12: Let: K ← {λi ∈ P | ∃λj �= λi s.t. v̂t,j − ct,j ≥ v̂t,i + ct,i}
13: Λ ← Λ \ K
14: Generate |Λ| − |K| new parameterizations using the genetic approach as

described.
15: end for

4 Computational Results

In this section, we study the following research questions:
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– RQ1: What effect does the PCA dimension have on the performance of
CPPL?

– RQ2: What effect does the parameter ω have on the performance of CPPL?
– RQ3: How good is the choice provided by CPPL?
– RQ4: How does CPPL compare to ReACTR?

4.1 Datasets and Solvers

We first define the datasets and solvers used in our experiments. We consider
three solvers: CPLEX [26], CaDiCaL [8] and Glucose [3]. CPLEX is a mixed-
integer programming solver, and CaDiCaL and Glucose are satisfiability (SAT)
solvers. The type of parameters of each solver are given in Table 2. We excluded
categorical parameters from the configuration by CPPL, since a PCA is employed
as part of this method, which is not designed for handling non-numerical vari-
ables. For ReACTR, which is not restricted in this regard, we do include all
parameters in the configuration.

We choose problem instances to emulate industrial problems with drift. For
CPLEX, we use the frequency assignment problem generated by a slightly altered
approach from [35]. This dataset contains 1,000 problem instances which are gen-
erated by setting the number of cells to 5 and the variance of channel require-
ments per cell to 1.5. The necessary distance between channels is drawn from a
normal distribution, and the mean requirement of channels per cell goes from 8
to 18 in 10 stages. To introduce drift into the data, we change the generation
parameters after every 10 instances.

For the SAT solvers, we use two datasets. The first dataset contains 1,000
instances generated with the modularity-based random SAT instance genera-
tor [20] by setting it to make instances with 10,000 variables, 60,000 clauses,
4 literals per clause, 600 communities and we vary the modularity factor from
0.4 to 0.35 in 10 stages. The second set of 1,000 instances is generated with the
power-law random SAT generator [18]. We make instances with 10,000 variables,
93,000 clauses, 4 literals per clause, 18 as the power-law exponent of variables
and the power-law exponent of clauses changing as described before from 12.5
to 2.5. The instance features used are based on [25] for MIP and SAT instances.
We choose 32 features for MIP and 54 features for SAT instances.

Table 2. Types of parameters being configured in each solver.

Solver Real Categorical Binary

CPLEX 35 54 6

CaDiCaL 64 29 63

Glucose 15 10 92
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4.2 RQ1: Choosing the PCA Dimensions

The goal of this experiment is to determine whether PCA is suitable for reducing
the dimensionality of the instance and parameter feature input and determine
which dimension to use for our problem settings. To this end, we run different
experiments with different values for both parameters on 200 modularity-based
SAT instances using the glucose solver. The results are given in Table 3, where
it can be seen that a value of 3 for the PCA dimension of instance features and
5 for the PCA dimension of algorithm features lead to the best result. The key
takeaway from this experiment is that changing the dimensionality of the PCA
does not significantly harm CPPL’s performance. We thus use these values in
further experiments.

Table 3. Overall runtime of glucose in seconds for solving 200 modularity-based SAT
instances using different values for the number of PCA dimension of instance features
and algorithm features. The results are averaged over 3 repetitions.

# dim. of parameters # dim. of features

3 5 8 10 12

3 1863.17 1861.63 1860.85 1862.08 1865.77

5 1852.27 1864.28 1866.78 1866.87 1865.32

8 1869.94 1870.34 1866.96 1865.35 1865.19

10 1869.14 1865.32 1862.67 1867.56 1866.22

12 1858.52 1863.92 1861.75 1866.75 1866.13

4.3 RQ2: Choosing ω

We again run similar experiments for glucose to determine good values of the
parameter ω, which helps determine the confidence intervals ct,i. We note here
that a smaller value of ω tightens the confidence bounds of contextualized skill
parameters, which in turn leads to more parameterizations being discarded, and
vice versa for larger values of ω (see line 12 in Algorithm 1). Figure 2 shows the
results of several values of ω. Notice that low and high values of ω only have a
very slight effect on the performance. However, with ω = 0.001, we get the best
cumulative runtime.

Note, that we conducted similar experiments as in Sect. 4.2 for the parameters
α and γ where we found the best performance for the values of 0.2 for α and 1
for γ.

4.4 RQ3: Evaluation of the CPPL Choice

We now compare the performance of the CPPL choice with the choice of
ReACTR. For this we use the glucose solver on 1000 modular-based SAT
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Fig. 2. Average runtime on an instance with CPPL using glucose on 200 modularity-
based SAT instances for different values of ω with time in seconds on the y- and ω
value on the x-axis.

instances. To have a meaningful comparison, the initial pool of parameteriza-
tions and the choice of parameterizations to run on the first instance is fixed
to be the same for both approaches. The results given in Fig. 3 show that the
CPPL ranking mechanism outperforms the ranking mechanism of ReACTR. We
note that even though this result looks somewhat small, without generating new
parameters we are dealing with only a randomly generated parameterization
pool over the entire run of the algorithm.

4.5 RQ4: Direct Comparison of Performance of CPPL and
ReACTR

We now compare the implementations of ReACTR with Glucose, CaDiCaL and
CPLEX1 For each experiment we use 16 Intel Xeon E5-2670 cores running at
2.6 GHz. In all results figures, we display a moving average of the runtimes of the
parameterized solvers on the instances. Our results on three different benchmarks
are shown in Fig. 4. The experiments with CaDiCaL and Glucose were executed
three times and the runtime on each instance was averaged before plotting the
comparison. The experiment with CPLEX could only be conducted once due to
constrained time.

The computational time needed for ranking the parameterizations, choos-
ing parameterizations that are to be run on the next instance and replacing
parameterizations deemed to have bad performance is not included. Although
we assume a realtime scenario, the practical applications we have in mind con-
cede enough time between the arrival of instances for adjusting the pool and
performing bookkeeping. Although CPPL is significantly more computationally
1 A direct comparison of CPPL and ReACTR is not provided on the Glucose solver

with the power-law SAT instance set. Even the first problem instance of this set
could not be solved by Glucose within 24 h.
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Fig. 3. Rolling average time of CPPL (orange) and ReACTR (blue) both without gen-
erating new parameterizations with time in seconds on the y- and number of instances
on the x-axis. (Color figure online)

intensive than ReACTR, the time consumed by CPPL for the mentioned oper-
ations between instances, for example with CaDiCaL on the power-law SAT
instance set, is on average only 0.4 s.

With CaDiCaL (Fig. 4a), CPPL shows considerably better performance than
ReACTR on the modular-based SAT instance set. CaDiCaL shows advantageous
properties for configuration purposes. The increase in complexity of the prob-
lem instances can be overcome by both approaches and the average solution
time decreases with both. However, CPPL exploits CaDiCaL’s properties fur-
ther than ReACTR, which amounts in an advantage of approximately 10% of
the total solution time compared with ReACTR. Regarding the comparison of
the approaches in Fig. 4b, the results show that on the more difficult problem
instance set, CPPL achieves better configuration of the solver. The solution
time per instance of ReACTR varies in terms of the periodical changes in com-
plexity of the instances. CPPL on the other hand seems to reliably find appro-
priate parameter configurations and the solution stays on a relatively stable
level. The advantage regarding the total solution time of the instance set again
amounts to approximately 10%. Figure 4c shows that the increase in difficulty of
the instances influences the solution time for both approaches. However, CPPL
solves the instances of the dataset about 160 s faster than ReACTR. Considering
the average solution time of approximately 10 s per instance for ReACTR, this
is an advantage of nearly two percent of the total solution time of the instance
set. In Fig. 4d the CPPL approach with CPLEX does not outperform ReACTR.
Despite an initial advantage on the instances the performance of the CPPL app-
roach deteriorates. ReACTR outperforms CPPL by around one percent of the
total runtime. We note that even if the experiments searching for good parameter
values for CPPL showed only very small difference in performance, still choosing
all values with best cumulative runtime resulted in a mostly good performance
of CPPL.



Pool-Based Realtime Algorithm Configuration 229

(a) Solver: CaDiCaL; Instances: SAT mod-
ular dataset.

(b) Solver: CaDiCaL; Instances: SAT
power-law instance SAT set.

(c) Solver: Glucose; Instances: SAT modu-
lar dataset.

(d) Solver: CPLEX; Instances: MIP Fre-
quency Assignment Problem.

Fig. 4. Comparison of CPPL (orange) and ReACTR (dashed blue) using several dif-
ferent solvers and instance sets with time in seconds on the y- and number of instances
on the x-axis. (Color figure online)

5 Conclusion and Future Work

In this work, we considered the problem of realtime algorithm configuration and
adapted the contextual preselection bandit method with the assumption of a
Plackett-Luce ranking probability distribution to solve it, resulting in the CPPL
realtime algorithm configurator. The approach allows for incorporating features
of problem instances and parameterizations of algorithms and is competitive
with the state of the art. Our first experimental results are promising.

In future work, we plan to further elaborate on different components of CPPL
in order to fully exploit its potential. The feature engineering part, that is, the
joint feature map Φ(x,y) together with an embedding in a lower-dimensional
space, appears to be especially critical in this regard. So far, we used a stan-
dard quadratic kernel for Φ and a simple PCA for dimensionality reduction, but
there is certainly scope for improvement. Another direction concerns the idea of
detecting and reacting to drift in a more active way. So far, an adaptation to
changes in the data distribution is only accomplished implicitly through learning
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in an incremental manner. In the case of abrupt changes, this adaptation is cer-
tainly not fast enough. Last but not least, we intend to have a deeper look at
the different computational steps of the CPPL algorithm in order to reduce the
algorithm’s runtime.
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2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: International Conference on Principles
and Practice of Constraint Programming (CP), pp. 142–157 (2009)

3. Audemard, G.: Glucose and syrup in the SAT race 2015. In: SAT Competition
2015 (2015)

4. Balafrej, A., Bessiere, C., Paparrizou, A.: Multi-armed bandits for adaptive con-
straint propagation. In: IJCAI (2015)

5. Balcan, M.F., Sandholm, T., Vitercik, E.: Learning to Optimize Computa-
tional Resources: Frugal Training with Generalization Guarantees. arXiv preprint
arXiv:1905.10819 (2019)
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