
A Matheuristic Algorithm for Solving
the Vehicle Routing Problem

with Cross-Docking

Aldy Gunawan1(B), Audrey Tedja Widjaja1, Pieter Vansteenwegen2,
and Vincent F. Yu3

1 Singapore Management University, 80 Stamford Road, Singapore, Singapore
{aldygunawan,audreyw}@smu.edu.sg

2 Centre for Industrial Management/Traffic and Infrastructure, KU Leuven,
Celestijnenlaan 300, Box 2422, Leuven, Belgium

pieter.vansteenwegen@kuleuven.be
3 Department of Industrial Management,

National Taiwan University of Science and Technology,
43, Sec. 4, Keelung Road, Taipei 106, Taiwan

vincent@mail.ntust.edu.tw

Abstract. This paper studies the integration of the vehicle routing
problem with cross-docking, namely VRPCD. The aim is to find a set
of routes to deliver single products from a set of suppliers to a set of
customers through a cross-dock facility, such that the operational and
transportation costs are minimized, without violating the vehicle capac-
ity and time horizon constraints. A two-phase matheuristic approach
that uses the routes of the local optima of an adaptive large neighbor-
hood search (ALNS) as columns in a set-partitioning formulation of the
VRPCD is designed. This matheuristic outperforms the state-of-the-art
algorithms in solving a subset of benchmark instances.

Keywords: Vehicle routing problem · Cross-docking · Scheduling ·
Matheuristic

1 Introduction

Cross-docking is an intermediate activity within a supply chain network for
enabling a transshipment process. The purpose is to consolidate different ship-
ments for a particular destination in a full truckload (FTL), such that direct
shipment with less than truckload (LTL) can be avoided, and thus the trans-
portation cost is minimized [1]. The VRPCD as the integration of the vehicle
routing problem (VRP) and cross-docking was first introduced by [5], which
aims to construct a set of routes to deliver a single type of products from a
set of suppliers to a set of customers through a cross-dock facility, such that
the operational and transportation costs are minimized, with respect to vehicle
capacity and time limitations.
c© Springer Nature Switzerland AG 2020
I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 9–15, 2020.
https://doi.org/10.1007/978-3-030-53552-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-53552-0_2

10 A. Gunawan et al.

The idea of combining metaheuristics with elements of exact mathemati-
cal programming algorithms, known as matheuristics, for solving the VRP was
first introduced by [3]. [4] introduced matheuristic based on large neighborhood
search for solving the VRPCD with resource constraints. In this study, we design
a matheuristic which only requires a heuristic scheme to generate columns [2].
The column generation scheme is performed by an adaptive large neighborhood
search (ALNS) and the set partitioning formulation is used to solve a subset
of columns to find the final solution. The matheuristic is tested on one set of
benchmark VRPCD instances, and the results are compared against those of
the state-of-the-art algorithms. Preliminary experimental results show that our
proposed matheuristic is able to obtain 29 out of 30 optimal solutions and out-
perform the state-of-the-art algorithms: tabu search (TS) [5], improved tabu
search (imp-TS) [6], and simulated annealing (SA) [7].

2 Problem Description

The VRPCD network consists of a set of suppliers S = {1, 2, . . . , |S|} delivering
a single product to a set of customers C = {1, 2, . . . , |C|} through a single cross-
dock facility, denoted as node 0. Two major processes involved are: the pickup
process at the suppliers and the delivery process to the customers. Pi products
must be picked up from node i in S, and Di products must be delivered to
node i in C. Each pair of nodes (i, j) in S is connected by travel time t

′
ij and

transportation cost c
′
ij . Each pair of nodes (i, j) in C is connected by travel time

t
′′
ij and transportation cost c

′′
ij . The VRPCD network is illustrated in Fig. 1.

Fig. 1. VRPCD network

A fleet of homogeneous vehicles V = {1, 2, ..., |V |} with capacity Q is avail-
able at the cross-dock facility to be utilized for shipments. Each vehicle can
only perform either a pickup process or a delivery process, or neither. In the
pickup process, vehicles depart from the cross-dock, visit one (or more) sup-
plier(s) to pickup their products, and return to the cross-dock for consolidating

Matheuristic for Solving the Vehicle Routing Problem with Cross-Docking 11

products. After the products are consolidated according to customers’ demand,
vehicles depart from the cross-dock, visit one (or more) customer(s) to deliver
their demand, and return to the cross-dock. For each vehicle used, an operational
cost H will be charged. The VRPCD aims to determine the number of vehicles
used and its corresponding routes, such that the operational and transportation
costs are minimized. The constraints in the VRPCD are as follows:

– the total transportation time for the pickup and delivery processes together
does not exceed Tmax

– each supplier and customer can only be visited exactly once
– the number of vehicles utilized in both the pickup and delivery process

together does not exceed |V |
– the amount of loads on the pickup route and on the delivery route in each

vehicle does not exceed Q.

3 Proposed Algorithm

The matheuristic is decomposed into two phases: (i) adaptive large neighbor-
hood search (ALNS) and (ii) the set partitioning formulation. The first phase
aims to generate feasible candidate routes as many as possible, represented as
columns. Those routes are then accommodated in two different pools, Ωs and
Ωc, for pickup and delivery process respectively. In the second phase, a set parti-
tioning formulation is solved over the set of routes stored in Ωs and Ωc to find a
combination of routes that satisfies the VRPCD constraints. We define Sol0 and
Sol∗ as the current and the best found solutions so far. An initial solution is con-
structed based on a greedy approach, where the node with the least additional
transportation cost is inserted, such that each vehicle starts (ends) its route from
(in) the cross-dock without violating the vehicle capacity and time horizon con-
straints. First, the Sol0 and Sol∗ are set to be the same as the initial solution.
Then, the constructed routes (pickup routes and delivery routes) are added into
Ωs and Ωc respectively. Let R = {1, 2, . . . , |R|} be a set of destroy operators,
I = {1, 2, . . . , |I|} be a set of repair operators. The score sj and weight wj of each
operator j ∈ R∪I is set such that its probability of choosing each operator j, pj ,
in both R and I is equally likely in the beginning. At each iteration, a destroy
operator Ri is randomly selected to remove π nodes from Sol0. Consequently, a
repair operator Ii is selected to reinsert the π removed nodes back to the Sol0,
resulting in a new neighborhood solution. In our implementation, π = 5.

Several destroy and repair operators that we use are Random removal
(R1): remove a randomly selected node from Sol0, Worst removal (R2):
remove a node with a high removal cost (the difference in objective function val-
ues between including and excluding a particular node), Route removal (R3):
randomly select a vehicle and remove its visited nodes, Greedy insertion (I1):
insert a node to a position with the lowest insertion cost (the difference in objec-
tive function values between after and before inserting a node to a particular
position), k-regret insertion (I2, I3, I4): insert a node to a position with the

12 A. Gunawan et al.

largest regret value (the difference in objective function values when a node is
inserted in the best position and in the k-best position). We use k = 2, 3, and 4.

Each of the removed nodes is only considered as a candidate to be inserted in
a route of Sol0 if it satisfies both vehicle capacity and time horizon constraints.
Therefore, the feasibility of Sol0 is guaranteed, unless some of the removed nodes
cannot be inserted to any positions in Sol0. If that happens, a high penalty
value is added to the objective function value (total cost TC). Sol0 is accepted
if and only if it improves Sol∗. Otherwise, Sol0 is set to be Sol∗, such that a
new neighborhood solution is always explored from Sol∗. Each of the operators’
score sj is then updated by following Eq. (1), where δ1 > δ2. We implemented
0.5 and 0 for δ1 and δ2 respectively.

sj =

{
sj + δ1, if Sol0 < Sol∗

sj + δ2, if Sol0 ≥ Sol∗
∀j ∈ R ∪ I (1)

After ηALNS iterations, each of the operators’ weight wj is updated by fol-
lowing Eq. (2), where γ refers to the reaction factor (0 < γ < 1) to control
the influence of the recent success of an operator on its weight and χj is the
frequency of using operator j. Consequently, each of the operators’ probability
pj is updated by following Eq. (3). The ALNS is terminated when there is no
solution improvement after η×θ iterations. Upon this termination, the Sol∗ con-
structed by ALNS becomes an upper bound of the VRPCD solution. It means
that solving the following set partitioning formulation will only yield a lower (or
at least the same) objective function value as the Sol∗ constructed by ALNS.

wj =

{
(1 − γ)wj + γ

sj

χj
, if χj > 0

(1 − γ)wj , if χj = 0
∀j ∈ R ∪ I (2)

pj =

{ wj∑
k∈R wk

∀j ∈ R
wj∑

k∈I wk
∀j ∈ I

(3)

Each candidate route r in Ωs is associated to a transportation cost of c
′
r and

a transportation time of t
′
r, while each candidate route r in Ωc is associated

to a transportation cost of c
′′
r and a transportation time of t

′′
r . Let a

′
ir be a

binary parameter equal to 1 if route r visits node i; 0 otherwise (r ∈ Ωs, i ∈ S)
and a

′′
ir be a binary parameter equal to 1 if route r visits node i; 0 otherwise

(r ∈ Ωc, i ∈ C). Several decision variables in the set partitioning formulation:

– x
′
r = 1 if route r is selected; 0 otherwise (r ∈ Ωs)

– x
′′
r = 1 if route r is selected; 0 otherwise (r ∈ Ωc)

– Tpmax = the maximum transportation time for pickup process
– Tdmax = the maximum transportation time for delivery process

The objective is to minimize the total of transportation and operational costs, as
formulated in (4). All supplier and customer nodes must be visited, as required
in (5) and (6) respectively. (7) limits the number of selected routes (i.e. does

Matheuristic for Solving the Vehicle Routing Problem with Cross-Docking 13

not exceed the number of available vehicles). (8) and (9) records the maximum
transportation time in pickup and delivery process respectively. Finally, the two
processes must be done within the time horizon, as expressed in (10).

Min
∑

r∈Ωs

c
′
rx

′
r +

∑
r∈Ωc

c
′′
r x

′′
r + H

(∑
r∈Ωs

x
′
r +

∑
r∈Ωc

x
′′
r

)
(4)

∑
r∈Ωs

a
′
irx

′
r = 1 ∀i ∈ S (5)

∑
r∈Ωc

a
′′
irx

′′
r = 1 ∀i ∈ C (6)

∑
r∈Ωs

x
′
r +

∑
r∈Ωc

x
′′
r ≤ |V | (7)

t
′
rx

′
r ≤ Tpmax ∀r ∈ Ωs (8)

t
′′
r x

′′
r ≤ Tdmax ∀r ∈ Ωc (9)

Tpmax + Tdmax ≤ Tmax (10)

4 Computational Results

The matheuristic is tested on benchmark VRPCD instances with 10-nodes [5].
We report the average values found for all instances out of ten runs. Since the
instances are small, we could use CPLEX and the mathematical model presented
in [5] to obtain the optimal solution for all these instances. It should be noted,
however, that these optimal solutions were not reported in the state of the art
yet. In Table 1, we evaluate the performance of our approach and those of the
state-of-the-art algorithms based on these optimal solutions. The matheuristic is
implemented in C++ with CPLEX 12.9.0.0 to solve the set partitioning formu-
lation. All experiments were performed on a computer with Intel Core i7-8700
CPU @ 3.20 GHz processor, 32.0 GB RAM. The parameter values are: γ: 0.7,
θ: 20, ηALNS : 200, η: (|S| + |C|) × 2.

Our proposed matheuristic is able to obtain either the same or further
improve the best known solutions (BKS) which are consolidated from the state-
of-the-art algorithms. On average, we outperform the BKS with 1.5%. Moreover,
we obtain the optimal solution for each instance. In terms of the average of CPU
time, our proposed matheuristic spends 0.16 s while [5–7] use 2.02, 0.12 and 2.06
s respectively. The average calculation time for generating the optimal solutions
with CPLEX takes 1.05 s.

14 A. Gunawan et al.

Table 1. Total cost comparison of the matheuristic and state-of-the-art algorithms

Instance [5] [6] [7] BKS Opt Matheuristic Gap BKS to Opt Gap Matheuristic to Opt

1 7571.4 6847.6 6953.0 6847.6 6823.0 6823.0 0.4% 0.0%

2 7103.7 6816.8 6741.0 6741.0 6741.0 6741.0 0.0% 0.0%

3 9993.5 9615.6 9269.0 9269.0 9269.0 9269.0 0.0% 0.0%

4 8338.0 7289.7 7255.0 7255.0 7229.0 7229.0 0.4% 0.0%

5 8709.9 6599.0 6524.0 6524.0 6475.0 6475.0 0.8% 0.0%

6 9143.5 9324.6 7613.0 7613.0 7434.0 7434.0 2.4% 0.0%

7 12721.2 12083.0 11990.0 11990.0 11713.0 11713.0 2.4% 0.0%

8 9275.7 8719.6 8158.0 8158.0 8158.0 8158.0 0.0% 0.0%

9 8096.5 7362.2 7120.0 7120.0 6989.0 6989.0 1.9% 0.0%

10 7044.8 6204.5 6056.0 6056.0 5960.0 5960.0 1.6% 0.0%

11 8051.8 7635.3 7434.0 7434.0 6916.0 6916.0 7.5% 0.0%

12 8661.0 7867.2 7800.0 7800.0 7656.0 7656.0 1.9% 0.0%

13 7370.2 7097.9 6934.0 6934.0 6783.0 6783.0 2.2% 0.0%

14 7132.3 5208.0 4704.0 4704.0 4417.0 4417.0 6.5% 0.0%

15 7563.4 7103.2 7088.0 7088.0 7072.0 7072.0 0.2% 0.0%

16 9983.6 8768.7 8616.0 8616.0 8440.0 8440.0 2.1% 0.0%

17 9538.1 9003.0 9003.0 9003.0 9003.0 9003.0 0.0% 0.0%

18 8057.4 6887.5 6911.0 6887.5 6760.0 6760.0 1.9% 0.0%

19 9042.6 7123.0 7051.0 7051.0 7051.0 7051.0 0.0% 0.0%

20 10478.0 10471.0 10004.0 10004.0 9786.0 9786.0 2.2% 0.0%

21 8380.5 5431.4 4753.0 4753.0 4644.0 4646.0 2.3% 0.0%

22 9016.9 6908.0 6442.0 6442.0 6442.0 6442.0 0.0% 0.0%

23 9489.2 9224.1 9156.0 9156.0 9156.0 9156.0 0.0% 0.0%

24 12513.6 11976.0 11976.0 11976.0 11976.0 11976.0 0.0% 0.0%

25 7114.3 6638.0 6346.0 6346.0 6346.0 6346.0 0.0% 0.0%

26 8421.3 7216.9 6880.0 6880.0 6817.0 6817.0 0.9% 0.0%

27 10666.8 9709.8 9541.0 9541.0 9541.0 9541.0 0.0% 0.0%

28 10123.3 7408.0 7107.0 7107.0 6782.0 6782.0 4.8% 0.0%

29 7503.2 6748.5 6762.0 6748.5 6591.0 6591.0 2.4% 0.0%

30 7642.6 7304.4 6942.0 6942.0 6919.0 6919.0 0.3% 0.0%

Avg 1.5% 0.0%

5 Conclusion

We study the integration of vehicle routing problem with cross-docking
(VRPCD). A matheuristic approach based on ALNS and set partitioning is
proposed. Preliminary results show that the matheuristic outperforms the state-
of-the-art algorithms in terms of both solution quality and computational time.
Solving larger benchmark instances will be included in future work.

Acknowledgment. This research is supported by the Singapore Ministry of Educa-
tion (MOE) Academic Research Fund (AcRF) Tier 1 grant.

References

1. Apte, U.M., Viswanathan, S.: Effective cross docking for improving distribution
efficiencies. Int. J. Logist. 3(3), 291–302 (2000)

Matheuristic for Solving the Vehicle Routing Problem with Cross-Docking 15

2. Archetti, C., Speranza, M.G.: A survey on matheuristics for routing problems.
EURO J. Comput. Optim. 2(4), 223–246 (2014). https://doi.org/10.1007/s13675-
014-0030-7

3. Foster, B.A., Ryan, D.M.: An integer programming approach to the vehicle schedul-
ing problem. J. Oper. Res. Soc. 27(2), 367–384 (1976)

4. Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.M.: The vehicle routing prob-
lem with cross-docking and resource constraints. J. Heuristics (2019). https://doi.
org/10.1007/s10732-019-09423-y

5. Lee, Y.H., Jung, J.W., Lee, K.M.: Vehicle routing scheduling for cross-docking in
the supply chain. Comput. Ind. Eng. 51(2), 247–256 (2006)

6. Liao, C.J., Lin, Y., Shih, S.C.: Vehicle routing with cross-docking in the supply
chain. Expert Syst. Appl. 37(10), 6868–6873 (2010)

7. Yu, V.F., Jewpanya, P., Redi, A.A.N.P.: Open vehicle routing problem with cross-
docking. Comput. Ind. Eng. 94, 6–17 (2016)

https://doi.org/10.1007/s13675-014-0030-7
https://doi.org/10.1007/s13675-014-0030-7
https://doi.org/10.1007/s10732-019-09423-y
https://doi.org/10.1007/s10732-019-09423-y

	A Matheuristic Algorithm for Solving the Vehicle Routing Problem with Cross-Docking
	1 Introduction
	2 Problem Description
	3 Proposed Algorithm
	4 Computational Results
	5 Conclusion
	References

