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Abstract. Volatile organic compounds (VOCs) are continuous medical
data regularly studied to perform non-invasive diagnosis of diseases using
machine learning tasks for example. The project PATHACOV aims to
use VOCs in order to predict invasive diseases such as lung cancer. In
this context, we propose to use a multi-objective modeling for the partial
supervised classification problem and the MOCA-I algorithm specifically
designed to solve these problems for discrete data, to perform the predic-
tion. In this paper, we apply various discretization techniques on VOCs
data, and we analyze their impact on the performance results of MOCA-
I. The experiments show that the discretization of the VOCs strongly
impacts the classification task and has to be carefully chosen according
to the evaluation criterion.

Keywords: Supervised classification · Medical data · Multi-objective
optimization

1 Introduction

Human bodies emit a wide range of volatile organic compounds (VOCs), some
of which are odorous. The composition of VOCs produced by a given individual
corresponds to a unique signature odor. Age, sex, diet are among many factors
that can influence this unique fingerprint, as well as diseases. These modifica-
tions often result in smell changes and explain what allowed Hippocrates to
report changes related to the presence of certain diseases in the smell of urine
and sputum. Nowadays, the composition of VOCs produced by individuals is reg-
ularly studied as a non-invasive way to detect pathologies [5,7,8]. The project
PATHACOV1 aim at designing a classifier based on VOCs data in order to pre-
dict invasive diseases, with a major focus on lung cancer. Thus, we propose to
1 This project is funded by the Interreg France-Wallonie-Vlaanderen program, with
the support of the European Regional Development Fund see www.pathacov-project.
com for more information.

c© Springer Nature Switzerland AG 2020
I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 151–157, 2020.
https://doi.org/10.1007/978-3-030-53552-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_16&domain=pdf
www.pathacov-project.com
www.pathacov-project.com
https://doi.org/10.1007/978-3-030-53552-0_16


152 S. Tari et al.

use an approach based on the Pittsburgh representation and where the classifi-
cation task is modeled as a multi-objective optimization problem. The medical
datasets have specific characteristics; in particular, the number of attributes is
significantly higher than the number of individuals, and the classes are regu-
larly imbalanced. Most frequent disease like diabetes only occurs on less than
6% of the population. These characteristics strongly impact on the performance
of classification techniques. Therefore, the algorithm MOCA-I (Multi-Objective
Classification Algorithm for Imbalanced data) [3], designed for a multi-objective
modeling and these types of characteristics, has been chosen to identify the rel-
evant VOCs. However, MOCA-I requires discrete attributes, while VOCs are
continuous data.

This paper presents our resolution approach for the detection of diseases
using VOCs and an experimental study where various discretization techniques
and their impact on the performance of MOCA-I to produce good models are
analyzed. The experiments are conducted on three different medical datasets
with VOCs.

The outline of the paper is as follows. Section 2 presents the proposed app-
roach and various data discretization techniques. Section 3 describes the datasets
and the experimental protocol before giving and analyzing the results. Finally,
Sect. 4 provides a discussion about this study and points out future work.

2 Proposed Resolution Approach

Bronchopulmonary cancer is often discovered late. The objective of the PATHA-
COV project is to detect it earlier by non-invasive means with a low-cost breath
test, by measuring exhaled VOCs. For each individual, we can measure the VOCs
produced and their quantities. They may vary significantly from an individual
to another. Moreover, none of the individuals emit all the VOCs present in the
dataset. This task can be seen as a supervised partial classification problem,
where we want to identify which VOCs can predict Bronchopulmonary cancer.

2.1 Description

This problem can be modelized as a multi-objective optimization problem. Since
the VOCs profile may vary from an individual to another, we opted for a Pitts-
burgh modelization, where each solution is a ruleset. Hence, several profiles can
fit into several rules. Moreover, Pittsburgh is a white box modelization, which
means it is compatible with November 2018 CCNE2 (French National Consul-
tative Ethics Committee)’ recommendations about AI and health, suggesting to
use AI approaches that the care team can criticize or challenge.

For this problem, three objectives are considered. The sensitivity – to max-
imize – will measure the ability of the model to detect a high proportion of

2 https://www.ccne-ethique.fr/en/.
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patients with the disease. The confidence – to maximize – will measure if the
predicted patients are correctly identified. Moreover, sensitivity and confidence
are two classical machine learning complementary metrics that are adapted to
deal with imbalanced and medical data [6]. We also want to minimize the number
of VOCs used in each model: this will generate models easier to understand.

We will use the MOCA-I (multi-objective classification algorithm for imbal-
anced data) algorithm, which implements the preceding modelization. It uses a
multi-objective local search (MOLS) to tackle the resulting problem. MOCA-
I was initially developed for handling discrete medical data. Thus, each VOC
amount will be discretized, and the objective of this paper is to determine which
is the impact of discretization on the cancer prediction. Since a classification
task generates only one model and MOCA-I produces a Pareto set of equivalent
solutions, the solution of best G-mean is selected among this set.

2.2 Data Discretization Techniques

In this work, we consider nine discretization techniques, that are briefly described
in Table 1, following the taxonomy of [2].

Table 1. Description of discretization techniques.

Method Static Supervised Separation Global Direct Measure

10-bin Yes No Yes Yes Yes Bin.

1R Yes Yes Yes Yes Yes Bin.

CAIM Yes Yes Yes Yes No Stat.

Chi2 Yes Yes No Yes No Stat.

ChiMerge Yes Yes No Yes No Stat.

Fayyad Yes Yes Yes No No Info.

FUSINTER Yes Yes No Yes No Info.

ID3 No Yes Yes No No Info.

Zeta Yes Yes Yes Yes Yes Stat.

Following this taxonomy, a discretization technique can be static or dynamic,
depending on when it is applied respectively before or during the learning algo-
rithm. A supervised method takes into account the class to construct the inter-
vals. For the separation approach, a single initial interval is produced and is
then progressively split into several intervals. The opposite approach is fusion,
where many intervals are produced and then merged. A global method may use
the entirety of the available data for the discretization process, whereas a local
one only uses a subset of the data. Direct approaches define a single interval
at each iteration, while incremental approaches create many intervals at each
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step. The evaluation measure is used to select the best solution produced by the
discretization technique.

In the following, we will test these techniques to discretize VOCs data in our
resolution approach.

3 Experiments

This section presents the datasets and the experimental protocol of our approach.
Then the results of these experiments are given and an analysis is drawn.

3.1 Datasets

In this study, we use three medical datasets with VOCs (see Table 2). The
datasets T3 and T4 have been provided by our partners of the PATHACOV
project and come from dialysis patients while P1 has been taken from the lit-
erature [4]. Note that T3 and T4 contain the VOCs of respectively 36 and 37
patients before and after dialysis, meaning that a given individual provides two
samples (a positive one and a negative one) and that the extraction of biomarkers
is probably easier to perform on these datasets.

Table 2. Description of real datasets resulting from patients samples.

Name Diagnosis #individuals #positive #attributes

T3 Dialysis 72 36 346

T4 Dialysis 74 37 341

P1 Prostate cancer 103 59 137

3.2 Experimental Protocol

The purpose of this work is to predict a class. Since we have only three datasets,
we use a 5-fold cross-validation protocol to limit overfitting as follows. Each
dataset is separated in five same-size folds, then four folds are combined into a
training set, while the remaining one corresponds to the test set. This process
is repeated for each fold’s combinations and creates five training sets associated
with 5 test sets. For each discretization method, we conduct 6 independent runs
of MOCA-I on each training set, leading to 30 runs per dataset.

We used the software KEEL [1] to discretize the datasets. Note that in order
to reduce the bias when assessing the efficiency of the discretization methods, we
limit the risk to overfit the data by discretizing each training set independently.

MOCA-I parameters correspond to the default parameters proposed by [3]:
initial population of 100 solutions, 10 rules maximum per ruleset, a maximal
archive size of 500. At each iteration, the multi-objective local search under
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consideration selects one solution in the archive and explores the whole neigh-
borhood of this solution. Note that, the non-dominated neighbors are considered,
which explains the use of a bounded archive.

We compare the effect of the discretization methods according to four
machine learning metrics: sensitivity, specificity, geometric mean (G-mean), and
Matthew’s correlation coefficient (MCC). MCC is comprised between -1 and 1,
where 1 corresponds to the best performance and 0 to the theoretical perfor-
mance of a random classifier. The other metrics’ values are comprised between 0
and 1, where 1 corresponds to the highest performance and 0.5 to a performance
that is not better than a random classifier.

3.3 Results

Table 3 presents the ranks of the nine discretization techniques according to the
four considered measures (Sensitivity, Specificity, G-Mean and MCC) for each
dataset. Bold types means that the discretization techniques are statistically
equivalent according to the statistical test of Friedman.

Table 3. Ranking of the discretization methods in function of the average sensitivity
(top-left), specificity (top-right), G-mean (bottom-left) and MCC (bottom-right).

Sensitivity Specificity

T3 T4 P1 T3 T4 P1

#1 Chi2 #1 ID3 #1 Fayyad #1 Chi2 #1 ID3 #1 ID3

#2 10bin #2 CAIM #2 Fusinter #2 ID3 #2 10bin #2 Fusinter

#3 Zeta #3 1R #3 Chi2 #3 1R #2 Fayyad #3 1R

#3 Fusinter #4 10bin #4 CAIM #3 Fusinter #3 1R #4 CAIM

#4 ID3 #4 Fayyad #5 1R #4 10bin #4 Chi2 #4 Zeta

#4 ChiMerge #5 ChiMerge #6 ChiMerge #5 CAIM #5 CAIM #5 10bin

#5 CAIM #5 Zeta #7 ID3 #6 ChiMerge #6 Fusinter #6 Chi2

#6 Fayyad #6 Fusinter #8 Zeta #7 Zeta #7 Zeta #7 ChiMerge

#7 1R #7 Chi2 #9 10bin #8Fayyad #8 ChiMerge #8 Fayyad

G-mean Matthew’s Correlation Coefficient (MCC)

T3 T4 P1 T3 T4 P1

#1 Chi2 #1 ID3 #1 Fusinter #1 Chi2 #1 ID3 #1 Fusinter

#2 Fusinter #2 1R #2 ID3 #2 ID3 #2 1R #2 1D3

#2 ID3 #3 Fayyad #3 CAIM #3 10bin #3 10bin #3 1R

#2 10bin #4 CAIM #4 1R #4 Fusinter #4 Fayyad #3 CAIM

#3 CAIM #5 10bin #5 Chi2 #5 ChiMerge #5 CAIM #4 Chi2

#4 1R #6 Zeta #6 Zeta #6 1R #6 1R #5 Zeta

#5 ChiMerge #7 ChiMerge #7 10bin #6 CAIM #7 ChiMerge #7 10bin

#8 Zeta #8 Fusinter #8 ChiMerge #7 Zeta #8 Chi2 #7 ChiMerge

#9 Fayyad #7 Chi2 #9 Fayyad #8 Fayyad #9 Fusinter #8 Fayyad



156 S. Tari et al.

The results are heterogeneous between the datasets, the discretization tech-
niques, and the quality measures. For example, for the sensitivity, the best-
ranked techniques Chi2 and Fayyad for the datasets T3 and P1 respectively
are statistically different from the other techniques. In contrast, for dataset T4,
seven of the nine techniques give equivalent results. For the specificity, numer-
ous discretization techniques are equivalent for datasets T3 and T4, while only
three techniques are equivalent for dataset P1. Besides, for dataset T3, Chi2
leads to the best average score for each metric, while ID3 leads to the most
efficient rulesets for dataset T4. For dataset P1, Fusinter and ID3 lead to the
best specificity, G-mean, and MCC while Fayyad gives the best sensitivity, and
it is last ranked for the three other measures. This behavior is probably due to
the presence of several zeros in the samples for each attribute that leads most
VOCs to have a single interval ((−inf ; +inf)) after the application of Fayyad.
ID3 is among the best techniques for seven of the twelve experiments.

4 Discussion

In this work, we observed the impact of different discretization methods on the
models produced by MOCA-I. In particular, we focused on real health data,
where a sample corresponds to quantities of VOCs emitted by individuals. The
aim was to determine which discretization method is the most suited for this
type of data. The results on our datasets highlight that the ID3 discretization
method seems to be suited to the case of VOCs.

In the future, we will perform these experiments on other datasets containing
VOCs, in particular, datasets with more individuals provided by the PATHA-
COV project and imbalanced datasets. We also plan to study the impact of
discretization methods with different parameters for MOCA-I, since their values
may influence the quality of the resulting ruleset. In order to compare our app-
roach to classical machine learning algorithms, we will study the impact of the
discretization methods on their efficiency.
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