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Abstract. The support vector classification-regression machine for K-
class classification (K-SVCR) is a novel multi-class classification method
based on “l-versus-1-versus-rest” structure. In this paper, we propose a
least squares version of K-SVCR named as LSK-SVCR. Similarly as the
K-SVCR algorithm, this method assess all the training data into a “I1-
versus-1-versus-rest” structure, so that the algorithm generates ternary
output {—1,0,+1}. In LSK-SVCR, the solution of the primal problem is
computed by solving only one system of linear equations instead of solv-
ing the dual problem, which is a convex quadratic programming problem
in K-SVCR. Experimental results on several benchmark data set show
that the LSK-SVCR has better performance in the aspects of predictive
accuracy and learning speed.
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1 Introduction

Support vector machines (SVM) were proposed for binary classification problems
by Vapnik and his colleagues [3,4]. The idea of this method is based on finding the
maximum margin between two hyperplanes, which leads to solving a constraint
convex quadratic programming problem (QPP).

Whereas there are many methods for binary classification [2,7-9,12], multi-
class classification is often accrued in practical problems and real life [11]. Due
to its wide range of applications, Angulo et al. [1] introduced a new method for
multi-class classification based on “l1-versus-1-versus-rest” structure with ternary
output {—1,0,+1} for K-class classification. This method constructs @ K-
SVCR classifiers. It should be noted that, since all samples are given for construc-
tion of classifiers, the K-SVCR provides better performance than SVM methods
for multi-class problems.
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In this study, we propose a least squares version of K-SVCR, named as
the least squares K-class support vector classification-regression machine (LSK-
SVCR). In LSK-SVCR, we need to solve only one system of linear equations
rather than solving a QPP in K-SVCR.

Numerical experiments on several benchmark data set indicate that the sug-
gested LSK-SVCR has higher accuracy with lower computational time than K-
SVCR.

Notations. Let a = [a;] be a vector in R™. If f is a real valued function defined
on the n-dimensional real space R", the gradient of f respect to x is denoted by
%, which is a column vector in R™. By AT we mean the transpose of matrix A.
For two vectors = and ¥ in the n-dimensional real space, 27y denotes the scalar
product. For € R™, ||z|| denotes 2-norm. A column vector of ones of arbitrary
dimension is indicated by e. For A € R™*™ and B € R™ !, the kernel k(A, B)
is an arbitrary function which maps R™*"™ x R™*! into R™*!. In particular, if =
and y are column vectors in R™ and A € R™*" then k(xT,y) is a real number,
k(z™, AT) is a row vector in R™, and k(A, AT) is an m x m matrix. The identity
n X n matrix is denoted by I,,, and [A; B| stands for the matrix operation

4; B = [g} .

The rest of this paper is organized as follows: Sect. 2 briefly describes SVM,
and K-SVCR is then introduced in Sect. 3. Section 4 presents our LSK-SVCR in
linear and non-linear cases as well as a classification decision rule. We analyse the
computational complexity of the methods in Sect. 5. Section 6 presents experi-
mental results on benchmark data set to show the efficiency of the proposed
algorithm, and concluding remarks are given in Sect. 7.

2 Support Vector Machine for Classification

For a classification problem, a data set (z;,y;) is given for training with the
input x; € R™ and the corresponding target value or label y; = 1 or —1, i.e.,

(@1,91)s -+, (T, ym) € R™ x {£1}. (1)
The two parallel supporting hyperplanes are defined as follow:
wlz —b=+41 and wlz—b=-1.
In canonical form, the optimal hyperplanes are found by solving the following

primal optimization problem [13]:

1
min §wTw +ceTe

w,b,
subject to D(Aw — eb) > e — &, (2)
£20,
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where the matrix A € R™*" records the whole data, the diagonal matrix D €
R™*™ (with ones or minus ones along its diagonal) is according to membership
of each point in the classes +1 or —1 | ¢ > 0 is the regularization parameter,
and ¢ is a slack variable. As for the primal problem, SVM solves its Lagrangian
dual problem as follows:

m m m
moin E E aiajyiyjmixj—g o
i=1

i=1 j=1

m
subject to Zyiai =0, (3)
i=1
0<a;<¢c, 2=1,...,m,

where ;s are the Lagrange multipliers.

3 Support Vector Classification-Regression Machine
for K-Class Classification

K-SVCR, which is a new method of multi-class classification with ternary output
{—1,0,+1}, has been proposed in [1]. This method introduces the support vector
classification-regression machine for K-class classification. This new machine
evaluates all the training data into a “l-versus-1-versus-rest” structure during
the decomposing phase using a mixed classification and regression support vector
machine (SVM). Figure 1 illustrates the K-SVCR method graphically.

Throughout this paper, we suppose without loss of generality that there are
three classes Ay, xn; Bmaoxn and Ch,xp, marked by class labels +1, —1, and
0, respectively. K-SVCR can be formulated as a convex quadratic programming
problem as follows:

. 1
wb G Cddt 2
subject to Aw +e1b > eq — (1,
— (Bw + egb) > es — (o,
—deg — ¢" < Cw + e3b < des + ¢,
C1,62,9,9" = 0.

[wl® + e1(ef G + €3 Ca) + cae5 (6 + ¢) (4)

Where ¢; > 0 and cs are the regularization parameters, (i, (2, ¢ and ¢* are posi-
tive slack variables, and ey, es, and e3 are vectors of ones with proper dimensions.
To avoid overlapping, positive parameter § must be lower than 1.

The dual formulation of (4) can be expressed as

1
max ¢"y— 57" H7, (5)
Y 2
subject to 0 <y < F|
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where Q) = [AT -BT CT —CT] L H=07Q, q= [e{ ed —sel —56:{], and F' =
[clel; c1€2; Co€3; 0263]. By solving this quadratic box constraint optimization
problem, we can obtain the separating hyperplane f(r) = w”z + b and the
decision function can be written as:

1 wlz; +b >4,
f(w,) =4 -1 wai +b < =4,
0 otherwise.

Fig. 1. Geometric representation of K-SVCR method

4 Least Square K-SVCR

In this section, we propose a least squares type of K-SVCR method called LSK-
SVCR in both linear and nonlinear cases.

4.1 Linear Case

We modify the primal problem (4) of K-SVCR as (6), which uses the square of
2-norm of slack variables (1, (5, ¢ and ¢* instead of 1-norm slack variables in the
objective function and uses equality constraint instead of inequality constraint
in K-SVCR. Then, the following minimization problem can be considered:
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. 1 2 2 2 2 (12
min —llw||*+ ¢ + +c +c 6
pnin Sl + e (G + G l?) + eallgl? + eallg?2 (6)

subject to e; — (Aw + e1b) = (1,
es + (Bw + egb) = (o,
Cw + egb — dez = ¢*,
— Cw — e3b — dez = ¢.
Where (3, (3, ¢ and ¢* are positive slack variables, and c;, ¢y and c3 are penalty
parameters and positive parameter ¢§ is a lower than 1.

Now by substituting the constraint into the objective function, we have the
following unconstrained QPP

1
HlilI} §||w||2 + c1|ler — Aw — erd|| + ¢1]|es + Bw + eqb]
+ ca|| — Cw — e3b — ez ||> + c3]|Cw + ezb — e (7)

The objective function of problem (7) is convex, so for obtaining the optimal
solution, we set the gradient of this function with respect to w and b to zero.
Then we have

STJ; =w+ 201(—AT)(61 — Aw — e1b) + 2¢, BT (e3 + Bw + eab)
+ 2¢5(—CT)(=Cw — e3b — de3) 4 2¢3CT (Cw + e3b — des) = 0,
% =2¢ci(—eT)(er — Aw — e1b) + 2c1el (ea + Bw + ezb)

+ 2co(—eX)(—Cw — e3b — deg) + 2czed (Cw + e3b — des) = 0.

The above equation can be displayed in the matrix form as
AT A ATeq] [w BTB BTey] [w CTC CTes] [w
2c1 [e?A efer | | b +2a ef'B eley| | b +2(e2+ ) eFC eles| | b

2c1(—AT)ey +2c1 BT ey + 2¢2C0T des + 2¢3CT (—des)
2c1(—ef'er) + 2ciedeq + 2ca0ed e3 + 2czel (—des)

Therefore w and b can be computed as follows:

b ci(ef A+ el B)+ (ca+3)elC ci(eTer +eler) + (ca+ c3)eles

Cl(—AT)Gl + ClBT62 + czCTéeg + CgCT(—(Seg)
ci(—efer) + creles + cadel e + czel (—de3) |-

{w] _ |:C1(ATA + BTB) + (CQ + Cg)CTC cl(ATel + BT62) + (02 + C3)CT63] -

We rewrite it as

m - [cl [AT] (4 €] + e [Bﬂ [B &3] + 2 [C; } C es] +ca [Cﬁ ] (@ eg]} h

T
el 3

T T T T
(o[t e ] e [t =0 502])
mq mo ms ms
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Denote E = [A e1], F = [B es], and G = [C e3], then we can obtain the
separating hyperplane by solving a system of linear equations as follows:

m — — [ E"E+ &, FF 4+ ,G"G + ¢;G7G]
(761ET61 + ClFT62 + 025GT63 — 035GT63).

4.2 Nonlinear Case

In the real world problems, a linear kernel cannot always separate most of the
classification tasks. To make the nonlinear types of problems separable, the sam-
ples are mapped to a higher dimensional feature space. Thus, in this subsection,
we extend the linear case of LSK-SVCR to the nonlinear case, and we would like
to find the following kernel surface:

k(™ DTYw + eb =0,

where k(-, -) is an appropriate kernel function and D = [4; B; C]. After a careful
selection of the kernel function, the primal problem of (4) becomes:

wp i %llw\\”m(l\@ll? +11G2l1?) + c2llol|? + esllo* |12,
subject to e; — (k(A, DT)w + e1b) = (1,
es + (k(B, DT)w + ezb) = (o,
k(C,DT)w + esb — des = ¢*,
— k(C,DT)w — e3b — ez = ¢.

By substituting the constraint into the objective function, the problem takes the
form

1
min §||w|\2 +ci1ller — k(A, DT)w — e1b|| + ¢1|lex + k(B, D )w + esb)|
+ ca|| = k(C, DT )w — e3b — des||* + c3]|k(C, DT )w + ezb — des]|.
Similarly to linear case, the solution of this convex optimization problem can be

derived as follows:

m = — [6eMTM + &;N"N 4 ¢;PTP + 3PP

(—clMTel + ClNT62 + 025PT63 — Cg(SPT@g),

where M = [k(A,DT) e;] € R™*m+) N = [k(B,D7) ey] € Rm2*(m+1),
P = [k(C,DT) e3] € R™s*(m+1) D = [A; B; C] and m = my + mg + ms.

The solution to the nonlinear case requires the inversion of a matrix of size
(m+1)x(m+1). In general, a matrix has a special form if the number of features
(nF) is much less than the number of samples (nS), i.e., nS > nF, and in this
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case the inverse matrix can be inverted by inverting a smaller nF x nF matrix
by using the Sherman-Morrison-Woodbury (SMW) [5] formula. Therefore, in
this paper, to reduce the computational cost, the SMW formula is applied. More
concretely, the SMW formula gives a convenient expression for the inverse matrix
A+UVT where A € R"*" and U,V € R"* K as follows:

(A+UuvhH=t=A"1 A lu+vTa-lu)~lvTa-L,

Herein, A and I + VT A~'U are nonsingular matrices.
By using this formula, we can reduce the computational cost and rewrite the
above formula for the hyperplane as follows:

-1
)= (2o (L v vzart) aaz) (- anrte
1

+ ClNTez + (CQ — Cg)(SPT€3),

-1
where Z = <01NTN + (co + Cg)PTP) . When we apply SMW formula on Z

again, then we have

1 -1
7= (Y —_YNT <02 LGy NYNT> NY) :
co +C3 (&1
where Y = (PTP)~!. Due to possible ill-conditioning of PT P, we use a regular-
ization term af, (o > 0 and small enough). Then we have Y = L(I,,, — PT (ol +
PPTY-1p).

4.3 Decision Rule

The multi-class classification techniques evaluate all training points into the “1-
versus-1-versus-rest” structure with ternary output {—1,0,1}. For a new testing
point z;, we predict its class label by the following decision functions:
For linear K-SVCR and LSK-SVCR :
+1, 2fw+b>4,
0, otherwise.
For nonlinear K-SVCR and LSK-SVCR :
+1, k(zF,DT)w +eb >4,
flz) =< -1, k(zF',DT)w+eb < -4,
0, otherwise.
For k-class classification problem, the “1-versus-1-versus-rest” constructs K (K —
1)/2 classifiers in total, and for decision about final class label of testing sample

x; we get a total votes of each class. So the given testing sample will be assigned
to the class label that gets the most votes (i.e. max-voting rule).
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5 Computational Complexity

In this subsection, we discuss computational complexity of K-SVCR, and LSK-
SVCR. In three-class classification problems, suppose the total size of each class
is equal to m/3 (where m = mj + ms + m3). Since samples in the third class
are used twice in the constraints of K-SVCR problem, there are 4m/3 inequality
constraints in total. Therefore the computational complexity of K-SVCR is the
complexity of solving one convex quadratic problem in dimension n+ 1 and with
4m/3 constraints, where n is the dimension of the input space.

In our proposed methods for linear LSK-SVCR, we need to compute only
one square system of linear equation of size n + 1.

In nonlinear LSK-SVCR, the inverse of a matrix of size (m + 1) x (m + 1)
must be computed. The Sherman—Morrison-Woodbury (SMW) formula reduces
the computational cost by finding the inverses of three matrices of smaller sizes
mi X mq, Mo X mo and msz X ms.

6 Numerical Experiments

To assess performance of the proposed method, we apply LSK-SVCR, on several
UCI benchmark data sets [10] and compare our method with the K-SVCR. All
experiments were carried out in Matlab 2019b on a PC with Intel core 2 Quad
CPU (2.50 GHZ) and 8 GB RAM. For solving the dual problem of K-SVCR,
we used “quadprog.m” function in Matlab. Also, we used 5-fold cross-validation
to assess the performance of the algorithms in aspect of accuracy and training
time. Note that in 5-fold cross-validation, the dataset is split randomly into five
almost equal-size subsets, and one of them is reserved as a test set and the
others play the role of a training set. This process is repeated five times, and the
average accuracy of five testing results was used as the classification performance
measure. Notice that the accuracy is defined as the number of correct predictions
divided by the total number of predictions; to display it into a percentage we
multiplied it by 100.

6.1 Parameter Selection

It must be noted that the performance of the algorithms depends on the choice
of parameters. In the experiments, we opt for the Gaussian kernel function
k(xi,z;) = eXp(M). The best parameters are then obtained by the grid
search method [6,7].

In this paper, the optimal value for ¢y, cs,c3, were selected from the set
{2%|i = =8, —7,...,7,8}, the parameters of the Gaussian kernel v were selected
from the set {2¢|i = —6,—5,--- ,5,6}, and parameter § in K-SVCR and LSK-

SVCR was chosen from set {0.1,0.3,...,0.9}.
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Table 1. The characterization of data sets.

Data set Number of instances | Number of attributes | Number of classes
Iris 150 4 3
Balance 625 4 3
Soybean 47 35 4
Wine 178 13 3
Breast tissue | 106 10 4
Hayes-Roth | 132 5 3
Ecoli 327 7 5
Teaching 150 5 3
Thyroid 215 6 3

Table 2. Performance of K-SVCR and LSK-SVCR with Gaussian kernel.

Data set K-SVCR K-SVCR | LSK-SVCR LSK-SVCR
Acc + std Time (s) | Acc £ std Time (s)

Iris 96.54 + 2.04 5.27 98.67 £ 1.82 |1.54

Balance 94.21 + 2.04 | 89.56 94.89 £ 2.01 |4.48

Soybean 100.00 £ 0.00 | 1.65 100.00 + 0.00 | 1.59

Wine 98.81 £+ 2.51 7.06 99.45 £1.24 |0.79

Breast tissue | 47.06 + 9.73 2.91 46.59 £+ 15.39 |1.12
Hayes-Roth |46.33 + 12.86 | 12.70 75.72 + 8.81 | 0.58

Ecoli 77.36 £ 4.28 | 21.23 89.01 £ 5.89 |5.57
Teaching 63.68+ 5.58 10.63 70.19 £ 7.46 | 0.96
Thyroid 83.25 £ 6.02 | 21.26 93.49 £ 2.55 |1.38

6.2 TUCI Data Sets

In this subsection, to compare the performance of K-SVCR with LSK-SVCR, we
ran these algorithms on several benchmark data sets from UCI machine learning
repository [10], which are described in Table 1.

To analyse the performance of the K-SVCR and LSK-SVCR algorithms,
Table 2 shows a comparison of classification accuracy and computational time
for K-SVCR and LSK-SVCR on nine benchmark datasets available at the UCI
machine learning repository. This table indicates that for Iris dataset, the accu-
racy of LSK-SVCR, (accuracy: 98.67, time: 0.03s) was higher than K-SVCR
(accuracy: 96.54, time: 3.51 s), so our proposed method was more accurate and
faster than original K-SVCR. A similar discussion can be made for Balance, Soy-
abean, Wine, Brest Tissue, Hayes-Roth, Ecoli, Teaching, and Thyroid datasets.
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The analysis of experimental results on nine UCI datasets revealed that the per-
formance of LSK-SVCR was slightly better than the original K-SVCR. We should
note that for Brest Tissue, although the K-SVCR is a little more accurate than
LSK-SVCR, the LSK-SVCR is faster. Therefore, according to the experimental
results in Table2, LSK-SVCR not only yielded higher prediction accuracy but
also had lower computational times.

7 Conclusion

The support vector classification-regression machine for K-class classification
(K-SVCR) is a novel multi-class method. In this paper, we proposed a least
squares version of K-SVCR named as LSK-SVCR for multi-class classification.
Our proposed method leads to solving a simple system of linear equations instead
of solving a hard QPP in K-SVCRKindly provide the page range for Ref. [2].. The
K-SVCR and LSK-SVCR evaluates all training data into “1-versus-a-versus-rest”
structure with ternary output {—1,0,+1}.

The computational results performed on several UCI data set demonstrate
that, compared to K-SVCR, the proposed LSK-SVCR, has better efficiency in
terms of accuracy and training time.

References

1. Angulo, C., Catala, A.: K-SVCR. a multi-class support vector machine. In: Lépez
de Méntaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 31-38.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45164-1_4

2. Bazikar, F., Ketabchi, S., Moosaei, H.: DC programming and DCA for parametric-
margin v-support vector machine. Appl. Intell. 1-12 (2020)

3. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual workshop on Computational learning
theory. COLT 1992, pp. 144-152, Association for Computing Machinery, New York
(1992). https://doi.org/10.1145/130385.130401

4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273-297
(1995). https://doi.org/10.1007/BF00994018

5. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University
Press, Baltimore (2012)

6. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification (2003)

7. Ketabchi, S., Moosaei, H., Razzaghi, M., Pardalos, P.M.: An improvement on para-
metric v -support vector algorithm for classification. Ann. Oper. Res. 276(1-2),
155-168 (2019)

8. Kumar, M.A., Gopal, M.: Least squares twin support vector machines for pat-
tern classification. Expert Syst. Appl. 36(4), 7535-7543 (2009). https://doi.org/
10.1016/j.eswa.2008.09.066

9. Lee, Y.J., Mangasarian, O.: SSVM: a smooth support vector machine for clas-
sification. Comput. Optim. Appl. 20(1), 5-22 (2001). https://doi.org/10.1023/A:
1011215321374


https://doi.org/10.1007/3-540-45164-1_4
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.eswa.2008.09.066
https://doi.org/10.1016/j.eswa.2008.09.066
https://doi.org/10.1023/A:1011215321374
https://doi.org/10.1023/A:1011215321374

10.

11.

12.

13.

Least Squares K-SVCR Multi-class Classification 127

Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

Tang, L., Tian, Y., Pardalos, P.M.: A novel perspective on multiclass classification:
regular simplex support vector machine. Inf. Sci. 480, 324-338 (2019)

Tang, L., Tian, Y., Yang, C., Pardalos, P.M.: Ramp-loss nonparallel support vector
regression: robust, sparse and scalable approximation. Knowl.-Based Syst. 147,
55-67 (2018)

Vapnik, V.N., Chervonenkis, A.J.: Theory of Pattern Recognition. Nauka (1974)


http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Least Squares K-SVCR Multi-class Classification
	1 Introduction
	2 Support Vector Machine for Classification
	3 Support Vector Classification-Regression Machine for K-Class Classification
	4 Least Square K-SVCR
	4.1 Linear Case
	4.2 Nonlinear Case
	4.3 Decision Rule

	5 Computational Complexity
	6 Numerical Experiments
	6.1 Parameter Selection
	6.2 UCI Data Sets

	7 Conclusion
	References




