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Abstract. We consider the dialectic search paradigm for box-
constrained, non-linear optimization with heterogeneous variable types.
In particular, we devise an implementation that can handle any
computable objective function, including non-linear, non-convex, non-
differentiable, non-continuous, non-separable and multi-modal functions.
The variable types we consider are bounded continuous and integer, as
well as categorical variables with explicitly enumerated domains. Exten-
sive experimental results show the effectiveness of the new local search
solver for these types of problems.

1 Introduction

Box-constrained optimization problems are ubiquitous. They appear when opti-
mizing designs where objective functions estimate key performance character-
istics of the design, when optimizing control parameters in simulated environ-
ments in simulation-based optimization, when optimizing function parameters
to fit training samples in machine learning, when searching for new sample
points over surrogate functions in Bayesian optimization, and when searching
for optimal strategies in decision aiding. In many cases, these target functions
are highly non-linear, non-convex, even non-differentiable, non-separable, or non-
continuous. Moreover, frequently decision variables are discrete integer variables
or even categorical variables that can only take specific values.

We tackle this problem using the dialectic search paradigm [8] in a hyper-
parameterized setting [4]. The objective of this work is to show that a tuned,
hyper-parameterized dialectic search program (that is implemented in C++ with
less than 1,500 lines of code) can effectively tackle these problems. All that a user
needs to provide is a short piece of code that computes the objective function
given a variable assignment, as well as an incremental objective evaluation when
changing two variable assignments from the last assignment. The latter can
obviously be performed easily simply by reducing to the first evaluation function,
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meaning our approach supports full black-box settings. However, in many cases,
objectives can be evaluated more quickly when exploiting incrementality, giving
the user the opportunity to gain efficiency in this way.

This paper makes the following contributions:

1. We extend the dialectic search paradigm to a general variable setting (con-
tinuous, integer and categorical).

2. We increase dialectic search’s performance through a convex search proce-
dure for its synthesis procedure, which can be seen as an alternative to path
relinking.

3. We apply the hyper-parameterization paradigm from [4] to give this general-
purpose tool the ability to be tuned for specific benchmarks and to adapt key
search parameters dynamically during search.

In the following, we first review the concepts of dialectic search and hyper
parameterization. Then, we apply these concepts to devise an algorithm imple-
mentation for solving box-constrained non-linear optimization problems with
heterogeneous variable types. Following this detailed description, we then eval-
uate our implementation on various benchmarks to establish the efficacy of our
new approach.

2 Dialectic Search

2.1 A Philosophical Framework as Metaheuristic

Dialectic search was first introduced in [8] as a metaheuristic for local search.
The approach exists as a means to overcome the difficulties when applying a
local search metaheuristic framework to a specific problem domain by enforcing a
strict separation of intensification via greedy search and search space exploration
via randomization. In [8], it is shown that dialectic search does not require any
sophisticated tailoring for the concrete application domain at hand. At the same
time, it significantly outperforms other metaheuristics, such as Tabu Search,
Simulated Annealing, and Genetic Algorithms, on multiple benchmarks from
constraint satisfaction and combinatorial and continuous optimization.

Dialectic search works as follows:

1. Initialization: We construct an assignment of variables to random values in
their respective domains.

2. Thesis: We call the current assignment the “thesis” and greedily improve
it until we find a local optimum. We can conduct a full (where we consider
all potential moves before choosing the best) or a first-improvement (where
we take the first possible move that improves the objective) greedy search. A
search parameter determines the percentage of variables we consider in each
greedy step.



104 M. Sellmann and K. Tierney

3. Antithesis: We randomly modify the thesis by changing select variables’
values, which can be seen as a type of perturbation like in Iterated Local
Search [9]. This new assignment is called the “antithesis.” A search parameter
determines the percentage of variables to modify. Another search parameter
determines the probability with which we greedily improve the antithesis.
Again, we can conduct a full or a first-improvement greedy search. A separate
search parameter determines how many variables to consider in each greedy
step.

4. Synthesis: Next we search the space between thesis and antithesis by con-
ducting a limited local search in the space that thesis and antithesis span, i.e.,
variables to whom both the thesis and antithesis assign the same value cannot
be changed. The exact way how this nested local search is to be conducted
is left open by dialectic search. For example, we could conduct a greedy path
relinking [7] between the thesis and antithesis. Alternatively, we could start a
more elaborate nested local search to find a favorable recombination of thesis
and antithesis. In this paper, we will introduce yet another procedure, where
we search over the space of convex combinations of thesis and antithesis. No
matter how this step is implemented, we call the resulting assignment the
“synthesis.”

5. Iteration and Restarts: We next decide if we want to restart and return to
Step 1. A search parameter determines the probability with which we restart.
If we do not restart, we next test if the synthesis improves over the thesis.
If so, the synthesis becomes the new thesis, and we continue with Step 2. If
not, we continue with Step 3.

2.2 Hyper-parameterized Dialectic Search

While dialectic search was shown to give very good results even without sophis-
ticated tuning, in [4] dialectic search was hyper-parameterized to tackle the
MaxSAT problem. The core idea of hyper-parameterization is to enable a search
heuristic like dialectic search to self-adapt search parameters during runtime
based on runtime statistics. The parameters we adjust include the probability
to restart, the size of the antithesis, the number of variables to open for the
greedy heuristic, etc. Furthermore, the runtime statistics are, for example, the
estimated number of local search moves until time limit, time since last overall
improvement, time since last improvement in current restart, and the total time
in the current restart. Hyper-parameterization has also been successfully applied
to tabu search [3].

To hyper-parameterize dialectic search, [4] suggests to use a logistic regression
function to transform normalized runtime statistics into probabilities (e.g., for
restart probabilities) or percentages (e.g., for the antithesis size). These logistic
regression functions in turn introduce new “hyper-parameters.”

Pk =
1

1 + e
∑

i h
k
i si+hk

0
(1)
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In Eq. (1), the probability (for example for a restart in Step 5), or the per-
centage (for example to determine the percentage of variables to be modified
in Step 3) Pk for the kth search parameter is derived from runtime statistics
s. The key is that this transformation of current runtime statistics into search
parameter values takes place each time when the search parameter is needed. For
example, whenever we need to decide if we are going to restart the search in
Step 5, we gather the current runtime statistics s and enter them into the logis-
tic function using (static) hyper-parameters hk to compute the probability of a
restart. Then, we flip a coin, and with the computed probability we restart the
search. So, to compute this probability/percentage, the current runtime statistics
s are determined, the inner product with the search-parameter-specific hyper-
parameters hk is computed, the constant hk

0 added, and the result handed to the
exponential function. This produces a value between minus infinity and infinity,
which the logistic function transforms into a value between 0 and 1.

In contrast to regular parameterization, in which we would keep the restart
probability and the percentage of variables we modify in the antithesis constant,
hyper-parameters merely determine how the respective search parameters are
derived from current runtime statistics. In [4], it is further suggested to use an
instance-specific parameter tuner (e.g., [2] or [1]) to “learn” good settings for the
hyper-parameters. For the MaxSAT problem, this resulted in a dialectic search
portfolio that won four out of nine categories at the 2016 MaxSAT Evaluation [5].

3 Dialectic Search for Box-Constrained Non-Linear
Optimization Problems with Continuous, Integer,
and Categorical Variables

Having reviewed the general framework of hyper-parameterized dialectic search,
we now introduce our new program for box-constrained non-linear optimization.
In particular, our goal is to develop an implementation of dialectic search that
works with any computable objective function and for mixtures of bounded con-
tinuous, integer, and explicitly enumerated categorical variables. In the following,
we devise such a program that, in order to apply it to a new problem domain,
only requires the implementation of an evaluation function of the objective to be
minimized1 for a given assignment of variables. For reasons of efficiency, we also
require a second objective evaluation function that returns the objective value
for the same assignment as was given for the last evaluation when two variables
are changed to new values. This can be implemented easily by altering the last
assignment and evaluating the objective from scratch using the first evaluation
function. However, for many objectives it is possible to evaluate a new assign-
ment incrementally and much faster than by re-evaluating the new assignment
from scratch.

To instantiate dialectic search, we need to define each of the five steps (Ini-
tialization, Thesis, Antithesis, Synthesis, and Restarting) of dialectic search, as
1 Note that the latter easily allows maximization as well, simply by having the function

return the negative of the actual objective value.
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well as determine how to hyper-parameterize the resulting algorithm. In the
following, we describe in detail how each of these aspects is implemented.

3.1 Initialization

The dialectic search receives three parameters: 1. The number of variables n. 2.
A vector of length n of a composite class that describes each variable’s type,
as well as its lower and upper bound or, in case of categorical variable, and
explicit enumeration of the values that the variable can take. 3. A pointer to
an evaluation class that has two evaluation functions, one that takes an entire
assignment vector of length n as input and returns a rational number as output,
the second taking two variable indices and two new values for the respective
variables as input and returning a rational number as output. To initialize the
local search we simply assign a random value within each variable’s domain to
the respective variable.

3.2 Thesis

The new assignment generated is labeled as the thesis. To greedily improve the
thesis, we proceed as follows:

1. In each greedy step, we first select a random subset of variables, How many
is determined by a search parameter.

2. Next we consider the variables in random order. For categorical variables,
we consider each possible value and evaluate the objective if we change the
respective variable to the new value. For ordinal and continuous variables, we
conduct a pseudo-convex optimization as follows. First, we choose a number
α ∈ [0, 1] uniformly at random. Next we construct the interval [x1, x4] where
x1 = max{v − α/2, L} and x4 = min{v + α/2, U}], where v is the current
value of the variable, and L,U are its lower and upper bound, respectively.
We evaluate the objective when setting the variable to each end point of
the interval, as well as at two intermediate points x2 and x3. The point x3

is at 200√
(5)+1

% � 61.8% inside the interval and x2 is at 100 − 200√
(5)+1

% �
38.2% inside the interval. Note that for ordinal variables, we round to the
nearest integer for evaluating the objective. However, the computation below
continues using the actual fractional values.
If the objective at x1 is strictly less than at the other three points, or if the
objective at x2 is lower than at x3, we reduce the interval to [x1, x3]. In this
case, the point x2 automatically finds itself at 61.8% of the new interval.
Therefore, to continue, we only need to evaluate one new point at 38.2% of
the new interval to iterate the search. On the other hand, if x4 is strictly less
than the other three points, or if x3 results in a better objective than x2, we
continue the search in [x2, x4]. In this case, x3 already finds itself at 38.2%
of the new interval, so we only need to evaluate one more point at 61.8% to
conduct the next iteration. The search stops when the interval length shrinks
below a certain minimum length, which is set by a search parameter.
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3. Having thus found an optimal or at least very favorable value for the respec-
tive variable in this way, we check if it improves the objective. We conduct
a first-improvement greedy search. In this case, we next commit the variable
to this value and continue with Step 1. If the best variable assignment found
does not lead to an improvement of the objective, we continue with the next
variable in the random selection, in random order.

4. The greedy search ends when no value can be found for any variable in the
random selection that improves on the objective value.

3.3 Antithesis

To select an antithesis, we first choose a random subset of variables. How many
variables is determined by a search parameter. Then, for each variable in the
selection we choose a new value uniformly at random. Depending on another
search parameter, we may conduct a greedy search to improve the antithesis (in
the same manner as we just improved the thesis) before we move to the next
step.

3.4 Synthesis

The purpose of this step is to opportunistically search the space between the
thesis and antithesis. All variables to which the antithesis and thesis assign the
same value are not changed. In a first step, we aim to recombine the variable
settings between thesis and antithesis via path-relinking. We start at the thesis
and consider all variables in turn to assess which variable, when set to the value
given by the antithesis, would give the best objective value. This variable is
then set to the antithesis value, regardless whether this leads to a worsening
of the objective or not. We proceed in this way until all variables are set to
the respective antithesis values. We next consider the assignment with the best
objective value on this chain of assignments that “connect” thesis and antithesis.
If the best assignment on this chain improves over the thesis, then this synthesis
becomes the new thesis and we continue by jumping back to Step 2.

If the best recombination found does not improve over the current thesis, we
next consider convex-combinations between thesis and anti-thesis. That is, we
interpolate ordinal and continuous parameters between the respective values in
the thesis and antithesis, and “round” categorical variables to the “nearest” the-
sis or antithesis value. For example, assume we have three parameters, the first is
categorical (say it can take values red, blue and green), the second parameter is
ordinal, and the third is continuous. Assume the thesis assignment is [green, −2,
0.2] and the antithesis is [red, 5, 0.7]. For the categorical parameter, we associate
value 0 with the thesis value, and 1 with the antithesis value. Any interpolation
value below 0.5 is then “rounded down” to the thesis value, all values greater
or equal 0.5 get “rounded up” to the antithesis value. Similarly, for the ordinal
parameters we round to the nearest integer. Then, the 0.6 interpolation between
thesis and antithesis is, for example, [red, 2, 0.5]. Having thus defined how points
on the “line” between thesis and antithesis map to assignments, we can conduct
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a pseudo-convex optimization, exactly as we did earlier in the greedy improve-
ment of ordinal and continuous variables in Step 2. If this procedure results in an
assignment that improves over the thesis, this synthesis becomes the new thesis.
If not, then we keep the old thesis and consider a new randomized antithesis in
Step 3.

3.5 Restarting

At the end of each synthesis step, we flip a coin to determine if we restart
the search instead of attempting to further improve the current thesis assign-
ment. The probability of a restart is again given by a search parameter. When
a restart is triggered, we apply a randomized modification of the current thesis
before we jump back to Step 2. This modification works exactly like the way
how an antithesis is constructed, whereby we use a different search parameter
to determine how much the new starting point will differ from the current the-
sis. Finally, when the time-limit of the search is exceeded, we return the best
assignment ever encountered during the search.

3.6 Hyper-parameterization

The outline of our dialectic search instantiation shows that there are numerous
search parameters influencing how the search progresses. For example, if we use
a very high restart probability, we will primarily perform randomly restarted
greedy searches. Alternatively, if we consider a very high percentage of variables
to construct the antithesis, the bulk of the search effort will consist in synthesis
steps (Fig. 1).

We list the search parameters within our implementation below:

g: The size of the greedy candidate set as percentage of all variables in the
problem.

al, au: A lower and upper bound on the percentage of variables to be changed to
construct an antithesis. The exact size of the change is then chosen uniformly
at random in the interval given whenever a new antithesis is generated.

pa: The probability of greedily improving the antithesis.
pr: The probability of restarting the search.
rl, ru: A lower and upper bound on the percentage of variables to be changed to

construct a new starting point when a restart is triggered. The exact size of
the change is then chosen uniformly at random in the interval [rl, ru].

As reviewed earlier, [4] proposes not to assign static values to these search
parameters, but to allow them to dynamically adapt to the way in which the
search progresses. Equation (1) governs how we derive probabilities and per-
centages from runtime statistics. Therefore, the only information needed at this
point is which runtime statistics s we will track. In the following, we list the
statistics we track during the search:
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(a) Ackley (b) Alpine (c) Periodic (d) Rastrigin (e) Salomon

Fig. 1. Optimization functions over two continuous variables. Images from http://
benchmarkfcns.xyz/.

1. Time elapsed as percentage of total time before timeout.
2. Number of restarts conducted as a percentage of total restarts expected to

be completed within the time limit.
3. Number of moves as a percentage of the total moves expected to be com-

pleted within the time limit.
4. Number of steps as a percentage of the total steps expected to be completed

within the time limit.
5. Total number of improving syntheses found over the total number of dialectic

moves expected to be completed within the time limit.
6. Number of moves in the current restart over the total number of dialectic

moves expected to be completed within the time limit.
7. Number of moves since the current best known solution was found over the

total number of dialectic moves expected to be completed within the time
limit.

8. Number of moves since the last thesis update in the current restart over the
total number of dialectic moves expected to be completed within the time
limit.

9. Number of steps in the current restart over the total number of steps
expected to be completed within the time limit.

10. Number of steps since the current best known solution was found over the
total number of steps expected to be completed within the time limit.

11. Number of steps since the last thesis update in the current restart over the
total number of steps expected to be completed within the time limit.

The resulting dialectic search with seven search parameters is now hyper-
configurable with 84 (7 times 12) hyper-parameters. To tune these parameters
for specific instance distributions, we employ the parameter tuner GGA++ [1].

4 Experimental Results

We now evaluate our approach on various benchmarks to assess its effectiveness.
We consider the following function classes:

– Ackley Instances: This class has n continuous decision variables Xi ∈
[−500, 500], m integer decision variables Yj ∈ [−500, 500], n dependent
modeling variables Ai = Xi − ti for n given values ti ∈ [−500, 500]
and m dependent modeling variables Bj = Yj − sj for m given val-
ues sj ∈ [−500, 500]. The objective is to minimize b + f(n + m) −

http://benchmarkfcns.xyz/
http://benchmarkfcns.xyz/
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f(n + m)b− ∑
i

A2
i

10n −∑
j

B2
j

10m − b
∑

i

cos(2πA2
i )

2n +
∑

j

cos(2πB2
i )

2m for given parameters
f, b ∈ N. An instance to this problem is therefore fully described by the
vector (n, t1, . . . , tn,m, s1, . . . , sm, f, b).

– Alpine Instances: This class has n continuous decision variables Xi ∈
[−10, 10] and n dependent modeling variables Ai = Xi − ti for n given values
in [−10, 10]. The objective is to minimize

∑
i |Ai sinAi + 0.1Ai|. An instance

to this problem is therefore fully described by the vector (n, t1, . . . , tn).
– Griewank Instances: This class has n continuous decision variables Xi ∈

[−600, 600] and n dependent modeling variables Ai = Xi − ti for n given val-
ues in [−600, 600]. The objective is to minimize 1 +

∑
i

A2
i

4000 − ∏
i cos(Ai√

i
).

An instance to this problem is therefore fully described by the vector
(n, t1, . . . , tn).

– Periodic Instances: This class has n continuous decision variables Xi ∈
[−10, 10] and n dependent modeling variables Ai = Xi − ti for n given val-
ues in [−10, 10]. The objective is to minimize 1 + 10

∑
i sin

2(Ai) − e− ∑
i A

2
i .

An instance to this problem is therefore fully described by the vector
(n, t1, . . . , tn).

– Rastrigin Instances: This class has n continuous decision variables Xi ∈
[−5.12, 5.12] and n dependent modeling variables Ai = Xi−ti for n given val-
ues in [−5.12, 5.12]. The objective is to minimize 10n+

∑
i A

2
i −10 cos(2πAi).

An instance to this problem is therefore fully described by the vector
(n, t1, . . . , tn).

– Salomon Instances: This class has n continuous decision variables Xi ∈
[−100, 100] and n + 1 dependent modeling variables Ai = Xi − ti for n given
values in [−100, 100] and Z =

√∑
i A

2
i ). The objective is to minimize 1 −

cos(2πZ) + 0.1Z. An instance to this problem is therefore fully described by
the vector (n, t1, . . . , tn).

– Mixed Instances: This class has n continuous decision variables Xi ∈ [−1, 1]
for i ∈ {0, . . . , n − 1}, m integer decision variables Yj ∈ [−25, 5] for
j ∈ {0, . . . , m − 1}, and o categorical decision variables Zk ∈ {2, 3, 4} for
k ∈ {0, . . . , o − 1}. For each instance, we are given n continuous target
values ti ∈ [0, 1], m integer target values sj ∈ [−25, 5], and o categorical
targets rk ∈ {2, 3, 4}. We use n + m + o continuous modeling constants
al = tl%nt(l+1)%n+s(l−1)%m−s(l+1)%m

rl%o
, whereby % symbolizes the modulo opera-

tion. The objective is to

Minimize
n+m+o−1∑

l=0

(
Xl%nX(l+1)%n + Y(l−1)%m − Y(l+1)%m

Zl%o
− al)2.

An instance to this problem is therefore fully described by the vector

(n, t0, . . . , tn−1,m, s0, . . . , sm−1, o, r0, . . . , ro−1).

Note that, in the above, we use modeling variables A,B to simplify the defini-
tion of these problems. In the actual implementation, we immediately substitute
these variables with the respective expression over the decision variables in the
objective function.



Hyper-parameterized Dialectic Search 111

Table 1. Comparison of the new dialectic search approach (DS) with the dialectic
search from [8] (DS-old) and simulated annealing approaches from [10] (SA-0.98 and
SA-0.99)

Function Dims DS DS-old SA-0.98 SA-0.99

Value Evals Value Evals Value Evals Value Evals

Alpine 20 10−3 21K 10−3 86K 10−3 1M 10−3 2M

50 10−3 364K 10−3 458K 10−3 2.9M 10−3 5.8M

Rastrigin 20 10−3 18K 10−3 208K 24.4 3.4M 22.4 6.8M

50 10−3 138K 10−3 818K 87.3 8.3M 86.8 9.9M

4.1 Minimizing the Number of Function Evaluations

As our approach works with any computable objective function, it is ideally
suited for black-box optimization. The main objective is to minimize the num-
ber of black-box function evaluations that are needed to reach a certain approx-
imation level of the global optimum. We use randomly generated Rastrigin and
Alpine instances for this purpose.

In Table 1, we compare against the results published in [8]. There, a dialectic
search (DS-old) algorithm was introduced for continuous optimization problems,
and compared with a simulated annealing approach using two different cooling
factors (SA-0.98 and SA-0.99) [10]. While the old dialectic search already gave
very competitive results, we clearly see the benefits of the new approach, that
has three main improvements over the old dialectic search approach: 1. The
line search used as greedy step in DS-old is replaced with the pseudo-convex
search approach we outlined in Step 2 in the Section “Thesis.” 2. The new
DS approach conducts interpolation searches on top of recombination searches
to produce an improving synthesis, as outlined in Section “Synthesis.” And 3.
The new approach is hyper-parameterized, which not only allows the approach
to adjust otherwise static parameters during the search, but also to tailor the
search behavior for the respective benchmark – fully automatically, thanks to
parameter tuners like GGA++ [1].

Overall, on average the new approach lowers the number of function evalua-
tions by a factor 3. On 20-dimensional Rastrigin functions, the improvement is a
whole order of magnitude, while for 50-dimensional Alpine instances we “only”
save 20% of function evaluations, compared to the old DS approach. When com-
pared to the better of the SA approaches, the hyper-reactive dialectic search
approach only requires 3.5% of the function evaluations required by SA-0.98.

4.2 Optimizing Functions Within a Given Time Limit

We now change the setting to the more realistic scenario where we have been
given a timelimit and have to find the best solution possible in the given time.
We first examine the performance of DS versus a well-known continuous black-
box optimizer, LSHADE [11], which we use thanks to its performance and its
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Table 2. Comparison of DS to LSHADE on the Alpine and Rastrigin functions with
50 instances for each function/dimension pair.

Function Dims # ≤ 1e-3 Mean Geo. Mean

LSHADE DS LSHADE DS LSHADE DS

Alpine 20 49 50 0.021 0.001 0.001 0.001

50 49 50 0.021 0.001 0.001 0.001

200 4 50 3.500 0.001 1.652 0.001

500 0 50 57.140 0.001 56.369 0.001

Rastrigin 20 33 50 0.836 0.001 0.013 0.001

50 30 50 1.228 0.001 0.021 0.001

200 0 50 416.282 0.001 410.934 0.001

500 0 50 3010.779 0.001 2457.697 0.001

freely available source code. For this comparison, we again consider the Alpine
and Rastrigin benchmarks. Later in this section, we will expand our analysis
to the other benchmarks, including ones with discrete parameters, and include
the optimizer LocalSolver [6] for comparison. In all experiments, we impose a 60
second CPU timelimit.

Comparison with LSHADE. Table 2 provides a comparison of dialectic
search (DS) and LSHADE. We note that LSHADE is generally used on lower
dimensional problems. For 20 and 50 dimensional instances, it performs reason-
ably well, even though it does not manage to find a solution below 1e-3 for all
instances. However, many real-world optimization problems contain thousands
of variables, thus we also examine LSHADE on larger instances with 200 and
500 decision variables. Here, LSHADE requires all 60 seconds of CPU time to
find solutions far from the optimal. In contrast, DS requires on average 3.6 sec-
onds for even the hardest benchmark in the table, the Rastrigin function with
500 dimensions. Given these encouraging results, we move on from conventional
continuous, black-box approaches to compete on harder problems.

Comparison with LocalSolver. LocalSolver is a general purpose heuristic
solver that supports essentially any white-box optimization problem. It offers an
interface for problem modelling similar to those of mixed-integer programming
solvers. We compare to LocalSolver2 on randomly generated Ackley, Alpine,
Griewank, Mixed, Periodic, Rastrigin, and Salomon functions.

In Tables 3 and 4 we present our results on the set of instances used to train
the hyper-parameters of DS trained on each target problem individually, and

2 We note that we are unable to tune LocalSolver’s parameters with GGA due to
LocalSolver’s license restrictions, meaning our results should only be seen as a lower
bound on performance.
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Table 3. LocalSolver (LS) versus Dialectic Search (DS) on continuous and mixed
continuous functions evaluated on our training set. DS’s hyperparameters are trained
specifically on the function it is being tested on, whereas DS-A is tuned on all functions.

# ≤ 1e−3 Mean Geo. Mean Stdev.

LS DS DS-A LS DS DS-A LS DS DS-A LS DS DS-A

Ackley 97 1 1 0.001 0.066 0.080 0.001 0.032 0.039 0.000 0.072 0.079

Alpine 41 68 68 0.002 0.003 0.001 0.002 0.001 0.001 0.001 0.009 0.001

Griewank 23 45 85 0.002 0.055 0.002 0.001 0.007 0.001 0.003 0.004 0.004

Mixed 7 7 7 6.823 1.605 1.611 2.108 0.649 0.650 6.167 1.176 1.185

Periodic 4 0 0 0.934 1.000 1.000 0.699 1.000 1.000 0.244 0.000 0.000

Rastrigin 45 46 41 73.712 0.002 0.002 0.160 0.001 0.002 143.144 0.001 0.001

Salomon 84 0 0 0.215 0.100 0.507 0.003 0.100 0.390 0.748 0.000 0.319

∅ Total 43 23.86 28.86 11.67 0.40 0.46 0.0203 0.0283 0.0296 59.829 0.744 0.747

Table 4. LocalSolver (LS) versus Dialectic Search (DS) on continuous and mixed con-
tinuous functions evaluated on our test set. DS’s hyperparameters are trained specif-
ically on the function it is being tested on, whereas DS-A is tuned on all functions.

# ≤ 1e−3 Mean Geo. Mean Stdev.

LS DS DS-A LS DS DS-A LS DS DS-A LS DS DS-A

Ackley 99 3 0 0.001 0.070 0.085 0.001 0.036 0.044 0.000 0.084 0.089

Alpine 39 62 61 0.002 0.004 0.003 0.002 0.002 0.001 0.001 0.009 0.008

Griewank 20 37 21 0.003 0.063 0.255 0.002 0.011 0.030 0.008 0.003 0.402

Mixed 12 10 10 7.177 1.680 1.679 1.340 0.591 0.475 6.696 1.300 1.300

Periodic 1 0 0 0.964 1.000 1.000 0.875 1.000 1.000 0.178 0.000 0.000

Rastrigin 48 51 49 92.320 0.002 0.002 0.167 0.002 0.002 155.001 0.001 0.001

Salomon 92 0 0 0.055 0.100 0.462 0.001 0.100 0.368 0.408 0.00 0.276

∅ Total 44.43 23.29 20.04 14.36 0.26 0.50 0.0186 0.0369 0.0464 66.764 0.790 0.784

DS-A, which is DS trained on a subset of training instances from all functions
but Ackley. We also provide results on a test set of instances that were not used
for the development or training of the new approach. For each benchmark func-
tion, we generate 200 instances, 100 for training and another 100 for testing.
The dimensionality for each instance is chosen uniformly at random from the
following ranges: [250, 1000] (for both continuous and ordinal variables) for Ack-
ley, [1500, 5000] for Alpine, [500, 5000] for Griewank, [10, 50] for each variable
type for Mixed, [125, 1000] for Periodic, [500, 5000] for Rastrigin and [25, 200]
for Salomon.

The tables give us multiple insights. First, we see that both DS (trained
on each individual benchmark) and DS-A (trained on a mix of instances from
all benchmarks, with the exception of Ackley instances) generalize well to the
formerly unseen test instances. Second, we can see here that DS-A also does
a reasonable job on the Ackley benchmark it was not trained for. In fact, it
achieves almost the same performance as DS. Finally, we observe that there is
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Fig. 2. Number of instances solved to 1e-3 in a given time limit (left) and the number
of instances with an objective function better than the given value (right). LS is shown
as a blue, dashed line and DS as a black, solid line.
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a reasonable benefit of tuning DS for each individual benchmark. However, this
is clearly not the main determining factor for DS’ performance.

With respect to LocalSolver, we see that it solves more instances close to
optimality than DS and DS-A. However, when looking at the mean gap over all
instances, LS performs massively worse. We conclude that DS performs with less
variance.

Figure 2 gives a detailed overview of how long it takes to solve instances on
each function, and the quality of the solutions on those instances that aren’t
solved. Clearly, arguments can be made for both DS and LS depending on the
function being solved and the amount of time available for solving. On Griewank
and Alpine, DS is able to quickly get to 1e-3 on many instances, but has trouble
on others, whereas the performance of LS remains mostly constant throughout
all instances. In contrast, on the Rastrigin function, DS and LS solve roughly the
same amount of instances, but the unsolved instances from DS are of significantly
higher quality than those of LS.

5 Conclusion

We presented a novel dialectic search procedure for box-constrained, non-linear
optimization problems with heterogeneous variable types. Our approach intro-
duces a convex search procedure for synthesizing the thesis and antithesis of
the search procedure, allowing it to highly effectively move through the search
space. Moreover, we hyper-parameterized the resulting approach, allowing the
meta-heuristics to adapt key search parameters during search based on runtime
statistics characterizing the progress of the search. We compared our approach
to three state-of-the-art procedures, the previous version of dialectic search,
LSHADE and LocalSolver, and showed that the new dialectic search is able
to compete, or even outperform these approaches, on occasion by very large
margins.
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4. Ansótegui, C., Pon, J., Sellmann, M., Tierney, K.: Reactive dialectic search port-
folios for MaxSAT. In: AAAI Conference on Artificial Intelligence (2017)

https://doi.org/10.1007/978-3-030-05348-2_27


116 M. Sellmann and K. Tierney
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