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Abstract. We consider two problems of clustering a finite sequence of
points in Euclidean space. In the first problem, we need to find a cluster
minimizing intracluster sum of squared distances from cluster elements
to its centroid. In the second problem, we need to partition a sequence
into two clusters minimizing cardinality-weighted intracluster sums of
squared distances from clusters elements to their centers; the center of
the first cluster is its centroid, while the center of the second one is the
origin. Moreover, in the first problem, the difference between any two
subsequent indices of cluster elements is bounded above and below by
some constants. In the second problem, the same constraint is imposed
on the cluster with unknown centroid. We present randomized algorithms
for both problems and find the conditions under which these algorithms
are polynomial and asymptotically exact.
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1 Introduction

The subject of this study are two strongly NP-hard problems of clustering a
finite sequence of points in Euclidean space. Our goal is to construct a random-
ized algorithm for the problems. The research is motivated by the fact that the
considered problems are related to mathematical time series analysis problems,
approximation and discrete optimization problems, and also by their importance
for applications such as signals analysis and recognition, remote object monitor-
ing, etc. (see the next section and the papers therein).

The paper has the following structure. In Sect. 2, formulation of the problems
is given. In the same Section, the known results are listed. The next Section
contains the auxiliary problem and the algorithm for solving it, which are needed
to construct our proposed algorithms. In Sect. 4, the randomized algorithms for
the considered problems are presented.
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2 Problems Formulation, Related Problems, and Known
Results

We consider the following two problems.

Problem 1. Given a sequence Y = (y1, . . . , yN ) of points in R
d and positive

integers Tmin, Tmax and M > 1. Find a subset M = {n1, . . . , nM} ⊆ N =
{1, . . . , N} of the index set of Y such that

F1(M) =
∑

j∈M
‖yj − y(M)‖2 −→ min ,

where y(M) = 1
|M|

∑
i∈M yi is the centroid of {yj | j ∈ M}, under the con-

straints
Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . ,M , (1)

on the elements of the set (n1, . . . , nM ).

Problem 2. Given a sequence Y = (y1, . . . , yN ) of points in R
d and positive

integers Tmin, Tmax, and M > 1. Find a subset M = {n1, . . . , nM} ⊆ N =
{1, . . . , N} of the index set of Y such that

F2(M) = |M|
∑

j∈M
‖yj − y(M)‖2 + |N \ M|

∑

i∈N\M
‖yi‖2 −→ min ,

where y(M) = 1
|M|

∑
i∈M yi is the centroid of {yj | j ∈ M}, under the con-

straints (1) on the elements of the set (n1, . . . , nM ).

Problem 1 is induced by the following applied problem. Given a sequence Y of
N time-ordered measurements of d numerical characteristics of some object. M
of these measurements correspond to a repeating (identical) state of the object.
There is an error in each given measurement result. The correspondence of the
measurement results to the states of the object is unknown. However, it is known
that the time interval between two consecutive identical states is bound from
above and below by the specified constants Tmin and Tmax. It is required to find
a subsequence of numbers corresponding to the measurements of the repeated
state of the object.

In the special case when Tmin = 1 and Tmax = N , Problem 1 is equivalent to
the well-known M -variance problem (see, e.g., [1]). A list of known results for
M -variance problem can be found in [2].

When Tmin and Tmax are parameters, Problem 1 is strongly NP-hard for any
Tmin < Tmax [3]. When Tmin = Tmax, it is solvable in polynomial time.

In [4], a 2-approximation algorithm with O(N2(MN + d)) running time is
proposed.

An exact algorithm for the case of integer inputs was substantiated in [5].
When the space dimension is fixed, the algorithm is pseudopolynomial and runs
in O(N3(MD)d) time.
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In [6], an FPTAS was presented for the case of Problem 1 when the space
dimension is fixed. Given relative error ε, this algorithm finds a (1 + ε)-
approximate solution to the problem in O(MN3(1/ε)q/2) time.

Problem 2 simulates the following applied problem. As in Problem 1, we
have a sequence Y of N time-ordered measurement results for d characteristics
of some object. This object can be in two different states (active and passive, for
example). Each measurement has an error and the correspondence between the
elements of the input sequence and the states is unknown. One know that the
object was in the active state exactly M times (or the probability of the active
state is M

N ) and the time interval between every two consecutive active states is
bounded from below and above by some constants Tmin and Tmax. It is required
to find 2-partition of the input sequence and evaluate the object characteristics.

If Tmin = 1 and Tmax = N , Problem 2 is equivalent to Cardinality-weighted
variance-based 2-clustering with given center problem. One can easily find a list
of known results for this special case in [8].

Cardinality-weighted variance-based 2-clustering with given center problem
is related but not equivalent to the well-known Min-sum all-pairs 2-clustering
problem (see, e.g., [9,10]). Many algorithmic results are known for this closely
related problem, but they are not directly applicable to Cardinality-weighted
variance-based 2-clustering with given center problem.

Problem 2 is strongly NP-hard [11]. Only two algorithmic results have been
proposed for this problem until now.

An exact pseudopolynomial algorithm was proposed in [11] for the case of
integer instances and the fixed space dimension d. The running time of this
algorithm is O(N(M(Tmax−Tmin+1)+d)(2MD+1)d), where D is the maximum
absolute value of coordinates of the input points.

In [12], a 2-approximation algorithm was presented. The running time of the
algorithm is O(N2(M(Tmax − Tmin + 1) + d)).

The main results of this paper are randomized algorithms for Problems 1
and 2. These algorithms find (1 + ε)-approximate solution with probability not
less than 1 − γ in O(dMN2) time, for the given ε > 0, γ ∈ (0, 1) and under
assumption M ≥ βN for β ∈ (0, 1). The conditions are found under which
these algorithms are asymptotically exact (i.e. the algorithms find a (1 + εN )-
approximate solutions with probability 1 − γN , where εN , γN → 0) and find the
solutions in O(dMN3) time.

3 Auxiliary Problem

To construct the algorithms for Problems 1 and 2, we need the following auxiliary
problem.

Problem 3. Given a sequence g(n), n = 1, . . . , N , of real values, positive integers
Tmin, Tmax and M > 1. Find a subset M = {n1, . . . , nM} ⊆ N of indices of
sequence elements such that

G(M) =
∑

i∈M
g(i) → min ,
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under constraints (1) on the elements of the tuple (n1, . . . , nM ).

The following algorithm finds the solution of Problem 3.
Algorithm A.
Input: a sequence g(n), n = 1, . . . , N , numbers Tmin, Tmax and M > 1.
Step 1. Compute

Gm(n) =

{
g(n), if n ∈ ω1, m = 1 ;
g(n) + max

j∈γ−
m−1(n)

Gm−1(j), if n ∈ ωm, m = 2, . . . ,M ,

where

ωm =
{
n | 1 + (m − 1)Tmin ≤ n ≤ N − (M − m)Tmin

}
,m = 1, . . . ,M ,

γ−
m−1(n) =

{
j | max{1 + (m − 2)Tmin, n − Tmax} ≤ j ≤ n − Tmin

}
,

n ∈ ωm, m = 2, . . . ,M .

Step 2. Compute
Gx

max = max
n∈ωM

Gx
M (n)

and find the tuple M = (n1, . . . , nM ) by the formulae

nx
M = arg max

n∈ωM

Gx
M (n) ,

nx
m−1 = arg max

n∈γ−
m(nx

m)
Gx

m(n), m = M,M − 1, . . . , 2 .

Output: the tuple M = (n1, . . . , nM ).

Remark 1. It follows from [4,7] that Algorithm A finds the optimal solution of
Problem 3 in O(NM(Tmax − Tmin + 1)) time.

4 Randomized Algorithms

Below is a randomized algorithm for Problem 1.
Algorithm A1.
Input: a sequence Y, positive integers Tmin, Tmax, M , a positive integer

parameter k.
Step 1. Generate a multiset T of points by randomly and independently

choosing k elements from Y with replacement.
Step 2. For every nonempty subset H ⊆ T compute the centroid y(H) and

find a solution M = M(H) of Problem 3 for g(n) = ‖yn −y(H)‖2, n = 1, . . . , N .
Step 3. From the family of solutions {M(H) | H ⊆ T } found at Step 2,

choose the set MA1 = M(H) for which the value of F1(M(H)) is minimal.
Output: the set MA1 .
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The next randomized algorithm allows one to find approximate solution of
Problem 2.

Algorithm A2.
Input: a sequence Y, positive integers Tmin, Tmax, M , a positive integer

parameter k.
Step 1. Generate a multiset T of points by randomly and independently

choosing k elements from Y with replacement.
Step 2. For every nonempty subset H ⊆ T compute the centroid y(H) and

find a solution M = M(H) of Problem 3 for g(n) = 2M〈yn, y(H)〉 − (2M −
N)‖yn‖2 − M‖y(H)‖2, n = 1, . . . , N .

Step 3. From the family of solutions {M(H) | H ⊆ T } found at Step 2,
choose the set MA2 = M(H) for which the value of F2(M(H)) is minimal.

Output: the set MA2 .
The following theorem describes the properties of algorithms A1 and A2.

Theorem 1. Assume that in Problems 1 and 2, M ≥ βN for β ∈ (0, 1). Then,
given ε > 0 and γ ∈ (0, 1), for a fixed parameter

k = max(
 2
β


 2
γε

��, 
 8
β

ln
2
γ

�)

algorithms A1 and A2 find (1 + ε)-approximate solutions of Problem 1 and 2
with probability 1 − γ in O(dMN2) time.

Finally, in the next theorem, conditions are established under which algo-
rithms A1 and A2 are polynomial and asymptotically exact.

Theorem 2. Assume that in Problems 1 and 2, M ≥ βN for β ∈ (0, 1). Then,
for fixed k = 
log2 N�, algorithms A1 and A2 find (1+εN )-approximate solutions
of Problem 1 and 2 with probability 1−γN in O(dMN3) time, where εN , γN → 0.

The idea of proving Theorems 1 and 2 is to estimate the probability of events
Fi(MAi

) ≥ (1 + 1
δt )Fi(M∗

i ) in the case when the multiset T contains at least t
elements of the optimal solution M∗

i , where δ ∈ R, t ∈ N, i = 1, 2. To do this,
we use the Markov inequality. Then, using Chernov’s inequality, we show that
it is sufficient to put δ = γ/2, t = 
2/(γε)� in Theorem 1 and δ = (log2 N)−1/2,
t = 
kM/(2N)� in Theorem 2.

5 Conclusion

In the present paper, we have proposed randomized algorithms for two sequence
clustering problems. The algorithms find (1 + ε)-approximate solutions with
probability not less than 1 − γ in O(dMN2) time. Conditions are found under
which the algorithms are polynomial and asymptotically exact.

In our opinion, the algorithms presented in this paper can be used to quickly
obtain solutions to large-scale applied problems of signal analysis and recogni-
tion.
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