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Guest Editorial

The 14th International Conference on Learning and Intelligent Optimization
(LION 2020) was scheduled to be held in Athens, Greece, May 24–28, 2020, but
regrettably it was canceled, due to travel restrictions imposed world-wide by the
COVID-19 pandemic. However, we felt it was important to publish the proceedings
of the conference, in order to minimize disruption to the participant’s careers and
especially the potentially devastating effects in the careers of PhD students,
post-doctoral fellows, and young scholars. An additional reason for us to undertake the
publication of these LNCS proceedings, was to ensure the continuity of the LION
conference series.

LION 2020 originally featured two invited talks and a tutorial talk:

– “UberAir: Optimization Problems in the Sky,” by Youssef Hamadi, Uber AI,
France

– “Combinatorial Methods and Optimization Algorithms for Testing and Explain-
able AI,” by Dimitris E. Simos, SBA Research, Austria (joint work with Rick Kuhn
(NIST, USA) and Raghu Kacker (NIST, USA))

– “A Tutorial in Robust Machine Learning and AI with Applications,” by
Theodore B. Trafalis, University of Oklahoma, USA

We wish to express our heartfelt thanks to the organizers of the eight LION 2020
special sessions:

– Automatic Solver Configuration
– Massively Parallel Methods for Search and Optimization
– DC Learning: Theory, Algorithms and Applications
– Intractable Problems of Combinatorial Optimization, Computational Geometry, and

Machine Learning: Algorithms and Theoretical Bounds
– Intelligent Optimization in Health, e-Health, Bioinformatics, Biomedicine and

Neurosciences
– Scientific Models, Machine Learning and Optimization Methods in Tourism and

Hospitality
– Nature Inspired Algorithms for Combinatorial Optimization Problems
– Intractable problems of combinatorial optimization, computational geometry, and

machine learning: algorithms and theoretical bounds

We would like to thank the authors for contributing their work and the reviewers
whose tireless efforts resulted in keeping the quality of the contributions at the highest
standards. A special thank you goes to the Technical Program Committee Chair,
Professor Roberto Battiti, Director of the LION Lab (machine Learning and Intelligent
OptimizatioN) for prescriptive analytics.



The editors express their gratitude to the organizers and sponsors of the LION 2020
international conference:

– Center for Applied Optimization at the University of Florida University of Florida,
USA

– CARGO Lab, Wilfrid Laurier University, Canada
– APM Institute for the Advancement of Physics and Mathematics

Even though organization of all physical conferences is currently on hiatus, we are
very pleased to be able to deliver this LNCS proceedings volume for LION 2020, in
keeping with the tradition of the two most recent LION conferences [1] and [2]. We
sincerely hope we will be able to reconnect with the members of the vibrant LION
community next year.
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Optimization for Urban Air Mobility

Youssef Hamadi(B)

Uber Elevate, Paris, France
youssefh@uber.com

Abstract. Urban Air Mobility (UAM) has the potential to revolution-
ize urban transportation. It will exploit the third dimension to help
smooth ground traffic in densely populated areas. To be successful, it will
require an organized and integrated approach able to balance efficiency
and safety while harnessing common airspace resources. We believe that
mathematical optimization will play an essential role to support the
development of Urban Air Mobility. In this paper, we describe two impor-
tant problems from this domain, operators 4D volume deconfliction, and
air taxi trajectory deconfliction.

1 Urban Air Mobility

Urban Air Mobility (UAM), designates urban air transport systems that will
move people and goods by air within and around dense city areas. Its purpose and
objective is to help smooth urban ground traffic despite the increasing population
density. The vast majority of urban air mobility aircraft designs, will share two
main characteristics. Vertical Take-Off and Landing (VTOL) to operate in rela-
tively small areas, e.g., rooftops, and distributed electric propulsion, which will
exploit multiple small rotors to minimize noise (due to rotational speed) while
providing high system redundancy. Two classes of vehicles are distinguished in
UAM. Small drones, typically 55 lbs and below, will be used to carry cargo,
e.g., parcel delivery. This category is generally referenced as Unmanned Aircraft
System (UAS). Larger aircraft able to carry important cargo and passengers,
e.g., air taxi.

Operating these new aircraft over large and densely populated areas will
require an organized approach able to balance efficiency, and safety. The Urban
air mobility Traffic Management (UTM) research initiative [9] has produced
a general architecture which leverages fundamental ideas from large-scale air-
traffic control, and adjust them to the key differences that provide for UAM
(maneuverability, method of control, function, range, and operational con-
straints).

Over time, this architecture has been refined and adopted by the US Federal
Aviation Agency (FAA) [3]. It is presented in Fig. 1 which exposes, at a high
level, the various actors and components, their contextual relationships, as well
as high-level functions and information flows. This architecture is grounded on
layers of information sharing and data exchange - from operator to operator,
vehicle to vehicle, and operator to the FAA - to achieve safe operations.
c© Springer Nature Switzerland AG 2020
I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 1–8, 2020.
https://doi.org/10.1007/978-3-030-53552-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-53552-0_1
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Fig. 1. Urban traffic management, notional architecture 2.0

Operators share their flight intent with each other and coordinate to de-
conflict and safely separate trajectories. Through this architecture, the FAA
makes real-time airspace constraints available to operators, who are responsible
for managing their own operations safely within these constraints. Operators
may choose to use third party UAS/UTM Service Suppliers (USSs) to support
their operations, or they may choose to provision their own set of services. USSs
provide services in the context of an UTM platform. Services providers can
be accessed to support operations e.g., weather forecast, terrain limitations. All
these interactions - between the regulator (FAA), operators and service providers
- represent the UTM ecosystem, made of services, capabilities, and information
flows between participants collaborating following the ’rules of the road’ defined
by the regulator.

Actors of this ecosystem need to efficiently cooperate, following high level
regulator constraints, to get a fair and efficient access to restricted airspace
resources. In the following, we propose to consider the previous from a resource
optimization perspective, and present two important optimization problems in
Urban Air Mobility.

2 Unmanned Aircraft System Service Providers
Deconfliction

UTM operations need to be strategically deconflicted, i.e., reserved 4D volumes
of airspace within which an operation is expected to occur should not intersect.
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The sharing of intent through these volumes allow operators to deconflict natu-
rally, avoiding operations traversing a pre-allocated volume. This implements a
first-come first-served resource allocation, traditional in general aviation. How-
ever, since demands could be addressed simultaneously or conflict with a more
recent but more important operation, negotiation between USSs is required for
deconfliction. In the following, we illustrate this through an example and give
guidance for the application of optimization to this problem.

Example. In this scenario, multiple operations performed by independent oper-
ators are scheduled in the morning, including construction and rail inspections,
package delivery, photography, agriculture spraying, and training. See Fig. 2.
Operators participate in UTM using the services of USSs to meet the require-
ments of their operation, including, but not limited to, sharing operation intent
for situational awareness, strategically deconflicting to avoid 4D overlap of oper-
ations, obtaining airspace access authorizations, and receiving airspace notifica-
tions [3].

Fig. 2. Multi-operators interaction scenario

We will focus on a medical emergency which necessitates patient transport to
a nearby medical facility; a MedEvac helicopter is dispatched. Flight operations
personnel from the MedEvac company subscribed to the services of a USS that
supports public safety operations. See Fig. 3.

This operator generates a 4D Volume Reservation that adheres to the con-
straints (defined spatial and temporal boundaries) of the request, and distributes
it to the USS Network.
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Fig. 3. MedEvac operational overview

Once informed, other USSs with subscribed operators in the vicinity of the
MedEvac operation provide automated notifications. For instance, in Fig. 3,
the delivery and rail inspection operators would receive notification from their
respective USS due to the overlap of their operations with the urgent patient
transport requirements.

Upon notification, operators who are impacted by the new 4D volume eval-
uate whether they can safely operate within its bounds. They adapt their oper-
ation as appropriate to maintain safety of flight by, for example, strategically
deconflicting from the overlapping volume, using detect-and-avoid technologies
to maintain separation from the helicopter while not changing their intent, or
landing their UAS during the period in which the MedEvac is active.

The previous could be executed in an automated fashion, for instance at the
USS level, using high level operators preferences and rules to adequately react.
For instance, the rail inspection could be shifted to late morning to deconflict its
4D volume from the MedEvac one. However, local reactions could easily cascade
into upstream conflicts which pairwise resolution are likely to result in globally
less efficient operations.

For instance, the rail operator deconfliction could now conflict with par-
cel delivery operations. See Fig. 4, red circles. Once informed these two opera-
tors could coordinate and deconflict locally, again through automated rules. For
instance, the delivery operations could be shifted earlier in time. In this sim-
ple example, a new UTM operation has successively created two more conflicts,
which were successively deconflicted through basic automation. Overall, this has
resulted in a less efficient use of airspace and time resources.
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Fig. 4. Upstream conflicts (Color figure online)

For this problem, we propose to consider a general optimization approach,
integrating, general rules of the road established by FAA, hard 4D volume con-
straints, and operator preferences. Solving this global problem should bring the
best use of common airspace resources. There are two ways to practically solve
it.

A centralized approach collecting global and individual input, to adjust vol-
umes, while minimizing overall disruption and resource usage. This would require
the full knowledge of inner operator preferences or cost functions, and therefore,
might be implemented by the regulator or some third party authority. This could
be supported by any mathematical programming formalism, e.g., MILP.

A distributed negotiation approach, for example, using the distributed con-
straint based optimization framework would allow direct USS to USS negotia-
tion without requiring any centralizing point. This paradigm preserves locality
of decision, and privacy. Several algorithms have been devised to solve problems
expressed in this formalism [5–8,10].

In our example, a global view on the problem, solved centrally or in a p2p
way, would have resulted in the railway operator shifting inspection to early
morning to deconflict with the MedEvac volume, without impacting package
delivery operations.

3 Deconfliction for Trajectory-Based Operations

In the previous section, we have seen how UTM 4D volumes could be decon-
flicted through time and space adjustments in order to safely reconcile diverse
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operations in a shared airspace. These volumes are essential to support the kind
of operations performed through light UAS vehicles which are not necessarily
using a straight trajectory. For instance, aerial photography, or bridge inspec-
tion, could require loitering over an area for a long period. Remark that, as we
have seen, this feature gives some flexibility in deconfliction, operations could
be paused and continued to deconflict. In this part, we would like to isolate
operations requiring deconfliction at the trajectory level. They will better sup-
port heavier operations like air taxi mobility. This time, the granularity is finer;
all operators use a common 4D volume reserved for a class of operations, and
operate according to straight trajectories eventually deconflicted over some key
areas.

Fig. 5. Air taxi network using 4 exclusive airspace junctions (j0 to j4), 3 vertiports
(associated to j0, j2, and j3), and 3 air taxi operations ready for departure (2 on j0,
and 1 on j3)

The Fig. 5, presents an air taxi mobility scenario. It corresponds to 4 exclu-
sive airspace junctions (j0 to j4), 3 vertiports for vehicle landing and take-off
(associated to j0, j2, and j3), and 3 air taxi operations ready for departure (2 on
j0, and 1 on j3). We will assume that the whole network uses a single 4D volume
deconflicted from any other UAM operation.

The problem here, is to organize the traffic. Three flights have to be synchro-
nized to travel from j0, and j3 to reach the same vertiport, figured at j2. They
share common critical airspace resources (junctions) that can only be traversed
by one vehicle at a time, along sufficient separation provision with other vehi-
cles. In strategic conflict management, a “conflict” occurs whenever there is a
competing demand for the airspace resource. This is the case here, since vehicles
at j0 might want to depart at the same time while jointly constrained by the
critical junction j0. The same problem happen during the flight with critical
junction j1 and j2.

This problem is equivalent to the more general job-shop scheduling problem,
known to be NP-hard [4]. In this problem jobs are made of successive tasks
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mutually competing for processing over a given set of common machines. The
usual optimization criterion corresponds to the overall makespan for the whole
set of jobs, which has to be minimized. The mapping is straightforward. Jobs
represent flights which have to travel through a predefined ordered set of crit-
ical junctions, similar to machines with exclusive processing capacities. The
makespan is equivalent to the arrival time of the latest flight, a criterion consis-
tent with a good use of airspace resources.

There are multiple optimization approaches to tackle job-shop problems, with
large instances successfully solved through complete or incomplete approaches.
Reusing and adapting these methods and algorithms would be highly beneficial
for efficient trajectory-based deconfliction in UTM.

4 Conclusion

Urban Air Mobility (UAM) has the potential to revolutionize urban transporta-
tion. It will exploit the third dimension to help smooth ground traffic in densely
populated areas. To be successful, it will require an organized and integrated
approach able to balance efficiency and safety while harnessing common airspace
resources. Inspired by traditional air traffic management, the research in UAM
has produced a general traffic management (UTM) architecture to organize
airspace access through information sharing around precisely defined rules and
regulations. See Fig. 1. We have described, at a high level, USSs 4D volume
deconfliction, and air taxi trajectory deconfliction. For each of them, we have
crafted resolution approaches, centralized and decentralized. In the following,
in order to conclude and give perspectives, we are going to characterize good
solutions to the above problems.

Equity. Within the cooperative rules and processes for the shared UTM plat-
form, there is no assumption of a priority scheme that would diminish equity of
access for users. The solutions to the above problems produced by mathematical
optimization modeling and algorithms should be fair and preserve an equitable
access to the resource. There are several ways to apply general fairness principles
while deciding for resource usage in optimization [1].

Robustness. Weather changes, upcoming no-fly zone, synchronization with
other transport modes make the above problems highly dynamic. This could
result into unfeasible operational solutions if the underlying models are too
rigid. Optimization under uncertainty explicitly takes into account uncertain-
ties involved in the data or the model. It computes robust solutions which can
tolerate approximation in the input data [2].

We believe that fair and robust optimization will play an essential role to
support the development of Urban Air Mobility, and we hope that this research
community will actively contribute to this important application domain.
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Abstract. This paper studies the integration of the vehicle routing
problem with cross-docking, namely VRPCD. The aim is to find a set
of routes to deliver single products from a set of suppliers to a set of
customers through a cross-dock facility, such that the operational and
transportation costs are minimized, without violating the vehicle capac-
ity and time horizon constraints. A two-phase matheuristic approach
that uses the routes of the local optima of an adaptive large neighbor-
hood search (ALNS) as columns in a set-partitioning formulation of the
VRPCD is designed. This matheuristic outperforms the state-of-the-art
algorithms in solving a subset of benchmark instances.

Keywords: Vehicle routing problem · Cross-docking · Scheduling ·
Matheuristic

1 Introduction

Cross-docking is an intermediate activity within a supply chain network for
enabling a transshipment process. The purpose is to consolidate different ship-
ments for a particular destination in a full truckload (FTL), such that direct
shipment with less than truckload (LTL) can be avoided, and thus the trans-
portation cost is minimized [1]. The VRPCD as the integration of the vehicle
routing problem (VRP) and cross-docking was first introduced by [5], which
aims to construct a set of routes to deliver a single type of products from a
set of suppliers to a set of customers through a cross-dock facility, such that
the operational and transportation costs are minimized, with respect to vehicle
capacity and time limitations.
c© Springer Nature Switzerland AG 2020
I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 9–15, 2020.
https://doi.org/10.1007/978-3-030-53552-0_2
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The idea of combining metaheuristics with elements of exact mathemati-
cal programming algorithms, known as matheuristics, for solving the VRP was
first introduced by [3]. [4] introduced matheuristic based on large neighborhood
search for solving the VRPCD with resource constraints. In this study, we design
a matheuristic which only requires a heuristic scheme to generate columns [2].
The column generation scheme is performed by an adaptive large neighborhood
search (ALNS) and the set partitioning formulation is used to solve a subset
of columns to find the final solution. The matheuristic is tested on one set of
benchmark VRPCD instances, and the results are compared against those of
the state-of-the-art algorithms. Preliminary experimental results show that our
proposed matheuristic is able to obtain 29 out of 30 optimal solutions and out-
perform the state-of-the-art algorithms: tabu search (TS) [5], improved tabu
search (imp-TS) [6], and simulated annealing (SA) [7].

2 Problem Description

The VRPCD network consists of a set of suppliers S = {1, 2, . . . , |S|} delivering
a single product to a set of customers C = {1, 2, . . . , |C|} through a single cross-
dock facility, denoted as node 0. Two major processes involved are: the pickup
process at the suppliers and the delivery process to the customers. Pi products
must be picked up from node i in S, and Di products must be delivered to
node i in C. Each pair of nodes (i, j) in S is connected by travel time t

′
ij and

transportation cost c
′
ij . Each pair of nodes (i, j) in C is connected by travel time

t
′′
ij and transportation cost c

′′
ij . The VRPCD network is illustrated in Fig. 1.

Fig. 1. VRPCD network

A fleet of homogeneous vehicles V = {1, 2, ..., |V |} with capacity Q is avail-
able at the cross-dock facility to be utilized for shipments. Each vehicle can
only perform either a pickup process or a delivery process, or neither. In the
pickup process, vehicles depart from the cross-dock, visit one (or more) sup-
plier(s) to pickup their products, and return to the cross-dock for consolidating
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products. After the products are consolidated according to customers’ demand,
vehicles depart from the cross-dock, visit one (or more) customer(s) to deliver
their demand, and return to the cross-dock. For each vehicle used, an operational
cost H will be charged. The VRPCD aims to determine the number of vehicles
used and its corresponding routes, such that the operational and transportation
costs are minimized. The constraints in the VRPCD are as follows:

– the total transportation time for the pickup and delivery processes together
does not exceed Tmax

– each supplier and customer can only be visited exactly once
– the number of vehicles utilized in both the pickup and delivery process

together does not exceed |V |
– the amount of loads on the pickup route and on the delivery route in each

vehicle does not exceed Q.

3 Proposed Algorithm

The matheuristic is decomposed into two phases: (i) adaptive large neighbor-
hood search (ALNS) and (ii) the set partitioning formulation. The first phase
aims to generate feasible candidate routes as many as possible, represented as
columns. Those routes are then accommodated in two different pools, Ωs and
Ωc, for pickup and delivery process respectively. In the second phase, a set parti-
tioning formulation is solved over the set of routes stored in Ωs and Ωc to find a
combination of routes that satisfies the VRPCD constraints. We define Sol0 and
Sol∗ as the current and the best found solutions so far. An initial solution is con-
structed based on a greedy approach, where the node with the least additional
transportation cost is inserted, such that each vehicle starts (ends) its route from
(in) the cross-dock without violating the vehicle capacity and time horizon con-
straints. First, the Sol0 and Sol∗ are set to be the same as the initial solution.
Then, the constructed routes (pickup routes and delivery routes) are added into
Ωs and Ωc respectively. Let R = {1, 2, . . . , |R|} be a set of destroy operators,
I = {1, 2, . . . , |I|} be a set of repair operators. The score sj and weight wj of each
operator j ∈ R∪I is set such that its probability of choosing each operator j, pj ,
in both R and I is equally likely in the beginning. At each iteration, a destroy
operator Ri is randomly selected to remove π nodes from Sol0. Consequently, a
repair operator Ii is selected to reinsert the π removed nodes back to the Sol0,
resulting in a new neighborhood solution. In our implementation, π = 5.

Several destroy and repair operators that we use are Random removal
(R1): remove a randomly selected node from Sol0, Worst removal (R2):
remove a node with a high removal cost (the difference in objective function val-
ues between including and excluding a particular node), Route removal (R3):
randomly select a vehicle and remove its visited nodes, Greedy insertion (I1):
insert a node to a position with the lowest insertion cost (the difference in objec-
tive function values between after and before inserting a node to a particular
position), k-regret insertion (I2, I3, I4): insert a node to a position with the
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largest regret value (the difference in objective function values when a node is
inserted in the best position and in the k-best position). We use k = 2, 3, and 4.

Each of the removed nodes is only considered as a candidate to be inserted in
a route of Sol0 if it satisfies both vehicle capacity and time horizon constraints.
Therefore, the feasibility of Sol0 is guaranteed, unless some of the removed nodes
cannot be inserted to any positions in Sol0. If that happens, a high penalty
value is added to the objective function value (total cost TC). Sol0 is accepted
if and only if it improves Sol∗. Otherwise, Sol0 is set to be Sol∗, such that a
new neighborhood solution is always explored from Sol∗. Each of the operators’
score sj is then updated by following Eq. (1), where δ1 > δ2. We implemented
0.5 and 0 for δ1 and δ2 respectively.

sj =

{
sj + δ1, if Sol0 < Sol∗

sj + δ2, if Sol0 ≥ Sol∗
∀j ∈ R ∪ I (1)

After ηALNS iterations, each of the operators’ weight wj is updated by fol-
lowing Eq. (2), where γ refers to the reaction factor (0 < γ < 1) to control
the influence of the recent success of an operator on its weight and χj is the
frequency of using operator j. Consequently, each of the operators’ probability
pj is updated by following Eq. (3). The ALNS is terminated when there is no
solution improvement after η×θ iterations. Upon this termination, the Sol∗ con-
structed by ALNS becomes an upper bound of the VRPCD solution. It means
that solving the following set partitioning formulation will only yield a lower (or
at least the same) objective function value as the Sol∗ constructed by ALNS.

wj =

{
(1 − γ)wj + γ

sj

χj
, if χj > 0

(1 − γ)wj , if χj = 0
∀j ∈ R ∪ I (2)

pj =

{ wj∑
k∈R wk

∀j ∈ R
wj∑

k∈I wk
∀j ∈ I

(3)

Each candidate route r in Ωs is associated to a transportation cost of c
′
r and

a transportation time of t
′
r, while each candidate route r in Ωc is associated

to a transportation cost of c
′′
r and a transportation time of t

′′
r . Let a

′
ir be a

binary parameter equal to 1 if route r visits node i; 0 otherwise (r ∈ Ωs, i ∈ S)
and a

′′
ir be a binary parameter equal to 1 if route r visits node i; 0 otherwise

(r ∈ Ωc, i ∈ C). Several decision variables in the set partitioning formulation:

– x
′
r = 1 if route r is selected; 0 otherwise (r ∈ Ωs)

– x
′′
r = 1 if route r is selected; 0 otherwise (r ∈ Ωc)

– Tpmax = the maximum transportation time for pickup process
– Tdmax = the maximum transportation time for delivery process

The objective is to minimize the total of transportation and operational costs, as
formulated in (4). All supplier and customer nodes must be visited, as required
in (5) and (6) respectively. (7) limits the number of selected routes (i.e. does
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not exceed the number of available vehicles). (8) and (9) records the maximum
transportation time in pickup and delivery process respectively. Finally, the two
processes must be done within the time horizon, as expressed in (10).

Min
∑

r∈Ωs

c
′
rx

′
r +

∑
r∈Ωc

c
′′
r x

′′
r + H

( ∑
r∈Ωs

x
′
r +

∑
r∈Ωc

x
′′
r

)
(4)

∑
r∈Ωs

a
′
irx

′
r = 1 ∀i ∈ S (5)

∑
r∈Ωc

a
′′
irx

′′
r = 1 ∀i ∈ C (6)

∑
r∈Ωs

x
′
r +

∑
r∈Ωc

x
′′
r ≤ |V | (7)

t
′
rx

′
r ≤ Tpmax ∀r ∈ Ωs (8)

t
′′
r x

′′
r ≤ Tdmax ∀r ∈ Ωc (9)

Tpmax + Tdmax ≤ Tmax (10)

4 Computational Results

The matheuristic is tested on benchmark VRPCD instances with 10-nodes [5].
We report the average values found for all instances out of ten runs. Since the
instances are small, we could use CPLEX and the mathematical model presented
in [5] to obtain the optimal solution for all these instances. It should be noted,
however, that these optimal solutions were not reported in the state of the art
yet. In Table 1, we evaluate the performance of our approach and those of the
state-of-the-art algorithms based on these optimal solutions. The matheuristic is
implemented in C++ with CPLEX 12.9.0.0 to solve the set partitioning formu-
lation. All experiments were performed on a computer with Intel Core i7-8700
CPU @ 3.20 GHz processor, 32.0 GB RAM. The parameter values are: γ: 0.7,
θ: 20, ηALNS : 200, η: (|S| + |C|) × 2.

Our proposed matheuristic is able to obtain either the same or further
improve the best known solutions (BKS) which are consolidated from the state-
of-the-art algorithms. On average, we outperform the BKS with 1.5%. Moreover,
we obtain the optimal solution for each instance. In terms of the average of CPU
time, our proposed matheuristic spends 0.16 s while [5–7] use 2.02, 0.12 and 2.06
s respectively. The average calculation time for generating the optimal solutions
with CPLEX takes 1.05 s.
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Table 1. Total cost comparison of the matheuristic and state-of-the-art algorithms

Instance [5] [6] [7] BKS Opt Matheuristic Gap BKS to Opt Gap Matheuristic to Opt

1 7571.4 6847.6 6953.0 6847.6 6823.0 6823.0 0.4% 0.0%

2 7103.7 6816.8 6741.0 6741.0 6741.0 6741.0 0.0% 0.0%

3 9993.5 9615.6 9269.0 9269.0 9269.0 9269.0 0.0% 0.0%

4 8338.0 7289.7 7255.0 7255.0 7229.0 7229.0 0.4% 0.0%

5 8709.9 6599.0 6524.0 6524.0 6475.0 6475.0 0.8% 0.0%

6 9143.5 9324.6 7613.0 7613.0 7434.0 7434.0 2.4% 0.0%

7 12721.2 12083.0 11990.0 11990.0 11713.0 11713.0 2.4% 0.0%

8 9275.7 8719.6 8158.0 8158.0 8158.0 8158.0 0.0% 0.0%

9 8096.5 7362.2 7120.0 7120.0 6989.0 6989.0 1.9% 0.0%

10 7044.8 6204.5 6056.0 6056.0 5960.0 5960.0 1.6% 0.0%

11 8051.8 7635.3 7434.0 7434.0 6916.0 6916.0 7.5% 0.0%

12 8661.0 7867.2 7800.0 7800.0 7656.0 7656.0 1.9% 0.0%

13 7370.2 7097.9 6934.0 6934.0 6783.0 6783.0 2.2% 0.0%

14 7132.3 5208.0 4704.0 4704.0 4417.0 4417.0 6.5% 0.0%

15 7563.4 7103.2 7088.0 7088.0 7072.0 7072.0 0.2% 0.0%

16 9983.6 8768.7 8616.0 8616.0 8440.0 8440.0 2.1% 0.0%

17 9538.1 9003.0 9003.0 9003.0 9003.0 9003.0 0.0% 0.0%

18 8057.4 6887.5 6911.0 6887.5 6760.0 6760.0 1.9% 0.0%

19 9042.6 7123.0 7051.0 7051.0 7051.0 7051.0 0.0% 0.0%

20 10478.0 10471.0 10004.0 10004.0 9786.0 9786.0 2.2% 0.0%

21 8380.5 5431.4 4753.0 4753.0 4644.0 4646.0 2.3% 0.0%

22 9016.9 6908.0 6442.0 6442.0 6442.0 6442.0 0.0% 0.0%

23 9489.2 9224.1 9156.0 9156.0 9156.0 9156.0 0.0% 0.0%

24 12513.6 11976.0 11976.0 11976.0 11976.0 11976.0 0.0% 0.0%

25 7114.3 6638.0 6346.0 6346.0 6346.0 6346.0 0.0% 0.0%

26 8421.3 7216.9 6880.0 6880.0 6817.0 6817.0 0.9% 0.0%

27 10666.8 9709.8 9541.0 9541.0 9541.0 9541.0 0.0% 0.0%

28 10123.3 7408.0 7107.0 7107.0 6782.0 6782.0 4.8% 0.0%

29 7503.2 6748.5 6762.0 6748.5 6591.0 6591.0 2.4% 0.0%

30 7642.6 7304.4 6942.0 6942.0 6919.0 6919.0 0.3% 0.0%

Avg 1.5% 0.0%

5 Conclusion

We study the integration of vehicle routing problem with cross-docking
(VRPCD). A matheuristic approach based on ALNS and set partitioning is
proposed. Preliminary results show that the matheuristic outperforms the state-
of-the-art algorithms in terms of both solution quality and computational time.
Solving larger benchmark instances will be included in future work.
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Abstract. Knee osteoarthritis (KOA) comes with a variety of symp-
toms’ intensity, frequency and pattern. Most of the current methods in
KOA diagnosis are very expensive commonly measuring changes in joint
morphology and function. So, it is very important to diagnose KOA early,
which can be achieved with early identification of significant risk factors
in clinical data. Our objective in this paper is to investigate the predictive
capacity of physical activity measures as risk factors in the progression of
KOA. In order to achieve this, a machine learning approach is proposed
here for KOA prediction using features extracted from an accelerometer
bracelet. Various ML models were explored for their suitability in imple-
menting the learning task on different combinations of feature subsets.
Results up to 74.5% were achieved indicating that physical activity mea-
sured by accelerometers may constitute an important risk factor for KOA
progression prediction especially if it is combined with complementary
data sources.

Keywords: Knee osteoarthritis prediction · Machine learning ·
Wearable activity data · Physical function · Knee joint

1 Introduction

Among the most chronic conditions of the joints is osteoarthritis (OA), while
Knee osteoarthritis (KOA) is the most famous one being highly correlated with
quality of life. KOA is called “wear-and-tear” type, because the cartilage in the
knee joint progressively wears away. KOA is most often observed in people, that
are over 55 years old, while the disease prevails in people over 65 years old. It
may be a common disease in old people, but it is often diagnosed also in young
c© Springer Nature Switzerland AG 2020
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athletes after suffering an injury. An important uniqueness of this disease is that
it has a variety of symptoms in intensity, frequency and pattern. Its complexity in
combination with lack of sufficient data limit our understanding of the processes
governing KOA progression.

KOA is not easy to define, predict or treat. Identification of risk factors for
developing arthritis has been limited by a lack of longitudinal data, as well as an
absence of reproducible, non-invasive methods to measure changes in joint mor-
phology and function. As a result, the disease processes governing osteoarthritis
progression are still poorly understood. Although most of the existing research
has focused on factors associated with the disease, the lack of longitudinal data
examining the factors associated with disease onset and progression has resulted
in a lack of prevention and treatment interventions. Hence, there is a need for
interventions that aim to treat the most appropriate modifiable risk factors and,
therefore, prevent or delay the onset and/or progression of the disease. Medical
risk factors known to influence development of KOA include advanced age, gen-
der, hormonal status, body weight or size, usually quantified using body mass
index (BMI), and a family history of disease. Additionally, there is now evidence
supporting a strong genetic association. Other known risk factors for the onset
and progression of OA include joint loading during occupational activity and
sports participation, muscle weakness, a past history of knee injury, depression
and reduced physical activity. Although many of the above factors are fixed,
other risk factors such as body weight, physical activity are modifiable. More-
over, the rapid increase of large observational studies and the availability of big
heterogeneous clinical databases bring new challenges as well as opportunities
for enhanced diagnosis of OA through advanced data-driven approaches.

Despite being relatively slow adopting advanced analytics, OA field has
recently made some progress on developing prediction models based on ML tech-
niques. This occurred due to the increasing availability of data from a variety of
sources that need to be included, so that the risk prediction model is based on
all the known risk factors and their interactions. Due to the complexity of the
data, there is a lack of bibliography in KOA prediction with accelerometers. By
using kinematic data for the prediction of the KOA, in [17], the authors achieved
an accuracy of 97.4% in knee OA detection and prediction of pain (83.3%) using
ML approaches (Support Vector Machines). The authors in [11] used PCA com-
bined with Support Vector Machines (SVM) in the task of KOA classification
achieving accuracies of 98–100%. In [16] an AUC performance of 85% consid-
ering 3D knee kinematic parameters as diagnostic disease biomarkers of medial
compartment KOA was achieved. KOA classification has been also attempted
in [3,9,10] utilizing various data sources (including ground reaction forces and
clinical data) and state-of-the-art machine and deep learning algorithms.

Moreover, the authors in [8] worked on gait biomechanical parameters and
outcome scores for KOA prediction, achieving a low error rate (0.02). Finally,
clinical data and independent predictors have been investigated as potential risk
factors for KOA prediction resulting to moderate performance (0.66–0.88 AUC
and AUC of 0.823 by using only 5 variables) in [17] and [7], respectively.



18 A. Alexos et al.

To the best of our knowledge, the level/intensity of physical activity has never
been explored as the sole contributor in the development of KOA predictive mod-
els. An accelerometer is a great addition to KOA studies and has some major
advantages (small weight, and convenience in observing physical activity of a
wearer/patient). Data from Osteoarthritis Initiative (OAI) (available at http://
www.oai.ucsf.edu/) were utilised in our study with special emphasis on vital fea-
tures extracted from accelerometers such as intensity, frequency and daily dura-
tion of physical activity. Decision trees, nearest neighbor classifiers, support vector
machines along with boosting techniques were trained on the extracted features to
predict whether a patient’s KOA KL grade will progress or not. This means that
KOA prediction was implemented here as a binary classification task grouping the
pool of patients’ data into two groups: (i) the patients whose KL grade will progress
in the future and (ii) those whose KL grade remains stable. Different subsets of fea-
tures were assessed and the best combination was used to produce the final results.

The rest of the paper is organised as follows. Section 2 provides a short
description of the data used in our study, whereas Sect. 3 presents the pro-
posed ML methodology for KOA prediction. Results are given in Sect. 4 and
conclusions are drawn in the final section of the paper.

We release all code used for this work1.

2 Data Description

Data was obtained from the OAI database. OAI was designed to (i) identify risk
factors that cause KOA, (ii) boost the research in the area of KOA, and therefore
contribute to a better quality of life for patients with KOA. It was launched in 2002,
and contains data from patients in the ages 45–79 years old, with symptomatic
KOA, or being on the verge of developing it, in at least one knee. The study has
taken place in four US medical centers, where a total of 4796 participants were
enrolled in a study that lasted for an 8-year period. It is very important to note that
it has a follow-up rate of more than 90% for the first 4 years. The data that we used
in this paper are features extracted from accelerometer bracelet data combined
with Kellgren and Lawrence (KL) grade data from each patient. Table 1 below cites
the features from OAI that were used in our experimentation.

3 Methodology

The proposed ML methodology comprises the following phases: (i) data pre-
processing, (ii) learning and (iii) validation. More details about the aforemen-
tioned processing phases are given below.

3.1 Data Preprocessing

Data Selection. The OAI database has a significant number of missing val-
ues due to the fact that many subjects, that were participating in the study,
1 https://github.com/antonyalexos/Accelerometer-Knee-Osteoarthritis-Prediction.

http://www.oai.ucsf.edu/
http://www.oai.ucsf.edu/
https://github.com/antonyalexos/Accelerometer-Knee-Osteoarthritis-Prediction
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Table 1. Features of physical activity used in our experimentation.

Feature
category

Number of 
features

Description

llislorical dala on 
KOA grade level

4 features

Mean KL grade over the 6 first visits

Variance of KL grade over the 6 first visits

Standard variation of KL grade over the 6 first visits

KL grade at visit 6

Swartz
features

6 features x 6 
visits = 36 features

V06DAYLtMinS: Daily minutes of light activity (counts 100-573)

V06DAYMVBoutMinS: Daily bout minutes of moderate/vigorous physical
activity (574+)

V06DAYMVMinS: Daily minutes of moderate/vigorous activity (counts 574+)

V06DAYModMinS: Daily minutes of moderate activity (counts 574-4944)

V06DAYVBoutMinS: Daily bout minutes of vigorous activity (counts 4945+)

V06DAYVigMinS: Daily minutes of vigorous activity (counts 4945+)

Troiano
features

6 features x 6 
visits = 36 features

VOôDAYLtMinT: Daily minutes of light activity (counts 100-2019)

V06DAYMVBoutMinT: Daily bout minutes of moderate/vigorous activity
(counts 2020+)

V06DAYMVMinT: Daily minutes of moderate/vigorous activity (counts
2020+)

V06DAYModMinT: Daily minutes of moderate activity (counts 2020-5998)

V06DAYVBoutMinT: Daily bout minutes of vigorous activity (counts 5999+)

V06DAYVigMinT: Daily minutes of vigorous activity (counts 5999+)

Freedson
features

6 features x 6 
visits = 36 features

V06DAYLtMinF: Daily minutes of light activity (counts 100-1951)

V06DAYMVBoutMinF: Daily bout minutes of moderate/ vigorous activity
(counts 1952+)

V06DAYMVMinF: Daily minutes of moderate/vigorous activity (counts
1952+)

V06DAYModMinF: Daily minutes of moderate activity (counts 1952-5724)

V06DAYVBoutMinF: Daily bout minutes of vigorous activity (counts 5725+)

V06DAYVigMinF: Day minutes of vigorous activity (counts 5725+)

stopped attending the visits that were scheduled every 6 months. In this paper,
we formulated a smaller in size dataset including data from those subjects that
had participated in all the visits until month 48 (visit 6) and had also partic-
ipated in the physical activity tests. Patients who did not follow up after the
6th visit were also dropped since they did not allow us to assess whether they
progressed or not. The reason that we chose the 6th visit to be the cutoff for
our study, is because of the fact that the availability of accelerometer data in
the OAI database is limited between the 6th and 8th visit. This resulted in the
dataset with a total number of 1120 samples.
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Data Sampling. Stratified sampling was adopted to address the class imbal-
ance problem in our generated dataset with the majority of the data being in
the class of patients whose KL grade was unchanged. Specifically, the small class
was oversampled to match the size of the big one. Before that, the dataset was
split 70%–30% for the training and testing sets, respectively. The aforemen-
tioned stratified sampling mechanism was applied only in the train set, whereas
the testing set was left unchanged. After this process, the training set had 719
observations and the testing set 224 observations.

Feature Selection. To identify the optimal set of features and extract valuable
information with respect to features’ discriminative capacity, data was organised
into five different (5) feature subsets. The accelerometer data provided by the
database has features from Swartz, Troiano and Freedson. These are cutting
points, proposed by these 3 researchers [6,14,15] respectively. The five different
(5) feature subsets as given below:

1. Past progress on KL grade, Swartz features, Troiano features and Freedson
features.

2. Past progress on KOA features and Swartz features.
3. Past progress on KOA features and Troiano features.
4. Past progress on KOA features and Freedson features.
5. Swartz features and Troiano features and Freedson features.

Data Normalisation. Feature scaling is one of the most important steps dur-
ing the preprocessing phase before creating the ML models. In our paper, each
feature was normalised with respect to its standard deviation.

Data Labeling. Patients, whose KL grade in any of his/her legs progressed
after visit 6, were grouped together forming the first class(Class 1). Class 2 was
generated by grouping together all these subjects whose KL grade remained
unchanged in both legs after visit 6.

3.2 Learning with Different ML Models

In this section we give some brief description of the ML algorithms that we used
in our experimental comparative analysis.

Decision Tree. Decision Tree [12] is a supervised learning method used mostly
for classification that learns from data with a set of if-then-else decision rule
statements. A decision tree is a tree structure that breaks down a data set into
smaller subsets producing decision nodes and leaf nodes. Each of these nodes
has two or more branches, while every leaf node is either a classification or a
decision.
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k Nearest Neighbors. k Nearest Neighbors (kNN) is a non-parametric, lazy
learning algorithm. Its purpose is to use a database, whose data points are
separated into classes, in order to predict the classification of a new sample
point. The kNN algorithm assumes that similar things exist in close distance,
which means that they are near to each other. In a more elaborate way, kNN,
for every data point in the dataset, calculates the distance between every query
and the chosen data point; it sorts in an ascending order, and picks the first k
entries. More information you can find here [5].

Support Vector Machines. Support Vector Machines (SVM) algorithm finds
a separating line (or hyperplane) between data points that belong to two classes.
It actually takes the data as input, and outputs a line that separates those classes.
SVM finds the data points that are the closest to the line from the classes (these
data points are called support vectors). Then, it computes the distance between
the line and these two points, with a final goal to maximize the between-class
distance. Kernels are applied to project data into higher dimensional spaces in
order to transform the linear separations into powerful non-linear ones. You can
find more information here [4].

Random Forest. Random Forest is simply a model made up of many decision
trees or of any other week learner [1]. Its name is given due to: (i) the randomness
in the sampling of training data points when building trees, and the (ii) random
subsets of features considered when splitting nodes. During training, every tree
in the forest is learning from a random sample of data. These random samples are
taken with replacement, which means that each tree uses every sample of data
multiple times. In this way, every decision tree in the forest has high variance,
but overall the random forest will have lower variance. The decisions during
testing are the average of predictions of every decision tree in the random forest.

Balanced Random Forest. A random forest induces every tree from a boot-
strap sample of the training data. When data is imbalanced, the algorithm may
perform very poorly in the prediction of the small class. The Balanced Ran-
dom forest (BRF) solves this problem by inducing ensemble trees on balanced
down-sampled data [2]. So at each iteration of the algorithm, it takes a boot-
strap sample from the small class and then draws in random the same number of
observations (with replacement), from the big class. It creates then a classifica-
tion tree from the data with maximum height and without pruning. The tree is
created with the CART algorithm and at every node a set of randomly selected
variables is used. The process is repeated for a preferred number of iterations.

RUSBoostClassifier. This method is a random under-sampling integrating
in the learning of an AdaBoost classifier [13]. AdaBoost actually improves the
performance of any weak classifier (with the boosting method), taking into con-
sideration the fact that the classifier results in better performance than random
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guessing. Unlike more complex algorithms for data sampling, RUSBoostClassifier
does not remove observations from the train set with an “intelligent” method.
It removes observations from the big class randomly until it achieves a given
distribution.

3.3 Validation

A 70%–30% random data split was applied to generate the training and testing
subsets, respectively. Learning of the ML was performed on the stratified version
of the training sets and the final performance was estimated on the testing sets.

4 Results and Discussion

This section presents the classification results of the aforementioned ML algo-
rithms on different feature subsets along with information for the selected hyper-
parameters per method.

4.1 Results on the Entire Feature Set

The discrimination capabilities of the proposed ML models on the full feature
space were initially investigated including features from the KL grade history
of the subjects as well as from all three feature categories that refer to physical
activity (Swarz, Troiano and Freedson). Decision Trees (DT) achieved the best
accuracy (74.1%) accomplishing moderate class accuracies (0.87% and 0.30% for
classes 1 and 2, respectively). Random Forest (RF) and Support Vector Machines
(SVM) accomplished accuracies at the same level (approximately 73%), whereas
a prediction accuracy of 71.4% was achieved by Balanced Random Forest (BRF).
RUSBoostClassifier (RBC) achieved a prediction accuracy of 67.4%. kNN was
the worst performing model with a much lower prediction score 65.1% (Table 2).

Table 2. Performance of different ML models on the full feature space

Method Selected hyperparameters Overall accuracy

DT max features:auto, min samples split:2 74.1%

kNN algorithm:auto, n jobs:-1, n neighbors:6, weights:distance 65.1%

RF criterion:gini, min samples split:3, n estimators:30,n jobs:-1 73%

SVM kernel=poly,degree=5,C=10000 73%

BRF n estimators= 100, criterion=gini 71.4%

RBC n estimators= 50, learning rate= 1 67.4%
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4.2 Results on Swartz Features

In this subsection, we present the results of the proposed ML models using
only the Swartz features combined with the previous KL grades (prior to visit
6). The highest overall accuracy of 74.5% was achieved for the DT, RF and
SVM models. The following remarks could be extracted from Table 3: (i) Swartz
features are the most informative ones for the prediction of KOA, (ii) there is
some redundancy in the information contained on the three feature sets (Swartz,
Troiano and Freedson) and (iii) kNN was again the worst performing classifier
achieving the same accuracy (67.4%) with BRF and RBC.

Table 3. Performance of different ML models using Swartz features combined with
the KL grade history

Method Selected hyperparameters Overall accuracy

DT max features:log2, min samples split:2 74.5%

kNN algorithm:auto, n jobs:-1, n neighbors:5, weights:distance 67.4%

RF criterion:gini,min samples split:3, n estimators:30, n jobs:-1 74.5%

SVM kernel= rbf,C=10000 74.5%

BRF n estimators= 100, criterion=gini 67.4%

RBC n estimators= 50, learning rate= 1 67.4%

4.3 Results on Troiano Features

Repeating the same analysis on the Troiano features combined with previous KL
grades from visits 1 to 6 gives similar performances with the maximum of 74.5%
to be achieved by RF and SVM. The second highest accuracy was received for
DT (73.6%), whereas lower accuracies were obtained by the rest of the models.
These results indicate the discrimination capacity of Troiano features similarly
to the performance obtained with the Swartz features (Table 4).

Table 4. Performance of different ML models using Troiano features combined with
the KL grade history

Method Selected hyperparameters Overall accuracy

DT max features:log2, min samples split:2 73.6%

kNN algorithm:auto, n jobs:-1, n neighbors:6, weights:distance 66%

RF criterion:gini, min samples split:3, n estimators:20, n jobs:-1 74.5%

SVM kernel= rbf, C=10000 74.5%

BRF n estimators= 100, criterion=gini 72.3%

RBC n estimators= 50, learning rate= 1 61.1%
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4.4 Results on Freedson Features

Slightly lower accuracies were achieved by the ML models trained on the Freed-
son features and the KL grade history. Again, DT, RF and SVM were the best
classifiers (73.6%) with BRF being relatively less effective with an accuracy of
72.3%. kNN achieved a 66.5% and the worst performance was obtained by RBC
(61.1%) (Table 5).

Table 5. Performance of different ML models using Freedson features combined with
the KL grade history

Method Selected hyperparameters Overall accuracy

DT max features:log2, min samples split:2 73.6%

kNN algorithm:auto, n jobs:-1, n neighbors:6, weights:distance 66.5%

RF criterion:gini, min samples split:3, n estimators:20,n jobs:-1 73.6%

SVM kernel= rbf, C=10000 73.6%

BRF n estimators= 100, criterion=gini 72.3%

RBC n estimators= 50, learning rate= 1 61.1%

4.5 Results on the Combination of Swartz, Freedson and Troiano
Features

The last part of our experimentation involved training of the six classifiers on a
combination of Swartz, Troiano and Freedson features without considering the
KL grade progression before the sixth visit. Much lower accuracies were achieved
for all the ML models highlighting the importance of the KL grade history as a
risk factor on the final prediction outcome. The maximum accuracy (67.8%) was
obtained by DT, RF and SVM had similar performances (67.4%), whereas RBC
was the worst performing model with a 62% classification accuracy (Table 6).

Table 6. Performance of different ML models on the full feature space except to the
KL grade history

Method Selected hyperparameters Overall accuracy

DT max features:auto, min samples split:2 67.8%

kNN algorithm:auto, n jobs:-1, n neighbors:5, weights:distance 62.5%

RF criterion:gini, min samples split:3, n estimators:20,n jobs:-1 67.4%

SVM kernel= rbf, C=1000 67.4%

BRF n estimators= 100, criterion=gini 65.6%

RBC n estimators= 50, learning rate= 1 62%
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5 Conclusions

The proposed methodology in this paper shows potential to predict, with rela-
tively high accuracy, the KOA progression based on physical activity data mea-
sured by an accelerometer bracelet along with historical patient data with respect
to KL grade. The best performances up to 74.5% were achieved with the second
(Swartz) and third (Troiano) feature combinations. Adding Freedson features
on the feature subsets led to small reductions in the prediction performance,
whereas the KL grade history was proved to be a useful risk factor that con-
tributed positively. The inclusion of more features from other heterogeneous
sources (clinical data, demographics, nutrition etc) is considered as our future
work towards the development of more robust predictive models.
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Abstract. The Capacitated Vehicle Routing Problem (CVRP) is the
well-known combinatorial optimization problem having a host of valuable
practical applications in operations research. The CVRP is strongly NP-
hard both in its general case and even in very specific settings (e.g., on the
Euclidean plane). The problem is APX-complete for an arbitrary metric
and admits Quasi-Polynomial Time Approximation Scheme (QPTAS)
in the Euclidean space of any fixed dimension (and even PTAS, under
additional constraints). In this paper, we significantly extend the class
of metric settings of the CVRP that can be approximated efficiently.
We show that the metric CVRP admits QPTAS any time, when it is
formulated in a metric space of a fixed doubling dimension d > 1 and is
restricted to have an optimal solution of at most polylog n routes.

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is the well-known combi-
natorial optimization problem having a lot of valuable practical applications in
operations research. The problem was introduced by Dantzig and Ramser in
their seminal paper [8] as a mathematical model for routing the fleet of gasoline
trucks servicing a network of gas stations from a bulk terminal.

Since then, the field of the algorithmic design for the CVRP is developed in a
number of research directions as follows. The first direction is based on a reduc-
tion of the problem in question to some appropriate mixed integer program and
finding an optimal solution of this program using some of the well-known branch-
and-price methods [25]. Recently, a significant success was achieved in develop-
ment such algorithms and computational hardware [11,21]. Unfortunately, due
to strongly NP-hardness of the CVRP, instances of this problem that are man-
aged to be solved efficiently within this approach still remain quit modest.

Another direction is closely related to involving a wide range of heuristic
algorithms and meta-heuristics including the local search [2], VNS [22], Tabu
search [23], evolutionary and bioinspired methods [19], and their combinations [7,
18].
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These algorithms often demonstrate an amazing performance finding close-
to-optimal or even exact solutions to really huge instances of the CVRP coming
from practice. Unfortunately, an absence of any theoretical guarantees implies
additional computational expenses related to numerical evaluation of their accu-
racy and possible tuning during the transition to any novel class of instances. In
addition, there are known cases when such a tuning is impossible at all, e.g. for
the security reasons.

The third research direction is related to the design of approximation algo-
rithms with theoretic performance guarantees and dates back to seminal papers
of Haimovich and Rinnooy Kan [10], and Arora [3]. It is known that the CVRP
is strongly NP-hard even on the Euclidean plane [20]. The problem is hardly
approximable in general case, APX-complete for an arbitrary metric [4] and
admits Quasi-Polynomial Time Approximation Schemes (QPTAS) in finite-
dimensional Euclidean spaces [9]. For the planar CVRP with restricted capac-
ity growth, there are known several Polynomial Time Approximation Schemes
(PTAS), among them the PTAS proposed in [1] is the most general. The app-
roach introduced in [10] is managed to extend to a number of modifications of
the planar CVRP including the CVRP formulated in the Euclidean space of
any fixed dimension [15,17], the case of multiple depots [12,16], the CVRP with
Time Windows [13], and non-unit customer demand [14].

Thus, until now, the class of instances of the metric problems approximable
by PTAS or QPTAS was exhausted by the Euclidean settings of the problem
except maybe some special cases investigated in [6] Meanwhile, in recent papers
by Talwar [24] and Bartal et al. [5] such a class for the closely related Traveling
Salesman Problem (TSP) was substantially extended to include the instances of
the problem in a metric space of an arbitrary fixed doubling dimension.

In this paper, we propose the first QPTAS for the CVRP formulated in such
a space. Our contribution is as follows.

Theorem 1. For the CVRP in a metric space of an arbitrary doubling dimen-
sion d > 1, an (1 + O(ε))-approximate solution can be found by a random-

ized approximation algorithm within time poly n · (
m2n

)m2·polylog n, where m =

O

((
d(log n−log ε)

ε

)d
)

. The algorithm can be derandomized efficiently.

The rest of the paper is structured as follows. In Sect. 2, we recall the state-
ment of the CVRP. Then, in Sect. 3 we propose a short overview of the pro-
posed approximation scheme. Finally, at Conclusion, we summarize the results
obtained and overview some possible directions for the future work.

2 Problem Statement

In the classic Capacitated Vehicle Routing Problem (CVRP), we are given by a
set of customers X = {x1, . . . , xn} having the same unit demand, which should
be serviced by a vehicle located at some dedicated point y that is called depot.
All vehicles have the same capacity q and visit the customers by cyclic routes,
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each of them departs from and arrives to the depot y. The goal is to provide a
collection of the capacitated routes visiting each customer once and minimizing
the total transportation costs.

Let V = X ∪ y. An instance of the CVRP is specified by a complete undi-
rected edge-weighted graph G = (V,E,w) and an integer q ≥ 3. The sym-
metric weighting function w : E → R+, to any edge {u, v} ∈ E, assigns the
direct transportation cost w(u, v). A simple cycle π = y, xi1 , xi2 , . . . , xis , y in
the graph G is referred to a feasible route, if it satisfies the capacity con-
straint, i.e. visits at most q customers. For the route π, its cost w(π) =
w(y, xi1) + w(xi1 , xi2) + · · · + w(xis−1 , xis) + w(xis , y). The goal is to find a
family of feasible routes Π = {π1, . . . , πk} of the least total transportation cost
that covers the total customer demand.

In this paper, we consider a restriction of the metric CVRP with the following
additional constraints:

(i) for some d > 1, the weighting function w is a metric of doubling dimension
d, i.e. for an arbitrary v ∈ V and R > 0, there exist nodes v1, . . . , vM ∈ V ,
such that the metric ball B(v,R) ⊆ ⋃M

j=1 B(vj , R/2) and M ≤ 2d.
(ii) the problem is supposed to have an optimal solution, whose number of routes

does not exceed polylog n.

3 Approximation Scheme: An Overview

The main idea of our approximation scheme extends the well-known Arora’s
PTAS for the Euclidean TSP and its generalization proposed in [5] to the TSP
in a metric space of any fixed doubling dimension. The scheme consists of the
following stages.

Accuracy-Driven Rounding. At this stage, given by ε > 0, to the initial instance,
we assign a rounded one, such that each s (1 + ε)-approximate solution of the
latter instance can be transformed in polynomial time to the appropriate (1 +
O(ε))-approximate solution of the former one.

Without loss of generality, we assume that the diameter Δ of the set V is
equal to n/ε (since otherwise we can rescale the initial metric by the factor n

Δε ).
Then, we round each customer x ∈ X to the nearest node ξ ∈ X ′, where X ′

is some metric 1-net of the set X. Finally, we consider an auxiliary instance
of the CVRP, specified by the set X ′ and inheriting all other parameters (y,
q, and w) from the initial one. As a result, in the obtained rounded instance,
each ‘customer’ ξ is counted with a multiplicity equal to the number of x ∈ X
assigned to it and, for any distinct ‘customers’ ξ1 and ξ2, w(ξ1, ξ2) > 1.

Randomized Hierarchical Clustering. Following to [5], we fix a number s ≥ 6
and put L = �logs(n/ε)	. For any level l = 0, . . . , L + 1, we construct an sL−l-
net Nl of the set V ′ = X ′ ∪ {y}. Without loss of generality, we assume that
N0 is a singleton, NL = NL+1 = V ′ and Nl ⊂ Nl+1 for any l. We proceed with
hierarchical clustering of the set V ′ by induction on l. For l = 0, we construct the
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only cluster C0
1 = V ′. Further, let Cl−1

1 , . . . , Cl−1
K be the partition constructed

at level l − 1. To proceed at level l, we partition each cluster Cl−1
j separately.

To make such a partition, we take point by point from the net Nl in a random
order σ and, to each net point νσ(i), we assign a random radius η ∈ [sL−l, 2sL−l)
from the uniform distribution. Then, the i-th subcluster of the cluster Cl−1

j is

Cl
ji = B(νσ(i), η) ∩ Cl−1

j \
⋃

t<i

Cl
jt.

By construction, all clusters at level L + 1 are singletons.
Following to [5], our scheme deals with approximate solutions of some special

kind, which are referred to as net-respecting and light. To define this concept, we
choose the number M as some degree of s, such that M/s < d · L/ε ≤ M . For
any cluster Cl

j , each points from the sL−l/M -net is called portals. As it follows
from the well-known Packing Lemma (see, e.g. [24]), the number m of portals
located in each cluster at an arbitrary level l > 0 does not exceed (8 · M)d =

O

((
d(log n−log ε)

ε

)d
)

. A route is called net-respecting if, for any its edge {u, v}
of length λ, both points u and v belong to the net Nl, where sL−l ≤ ελ < sL−l+1.
Further, for some r > 0, a net-respecting route is called r-light, if it crosses the
border of any cluster Cl

j (of any level l > 0) at most r times.
As it follows from the Structure Theorem [24], with high probability, for

r = m, there exists an approximate solution of the CVRP, consisting of net-
respecting r-light routes, whose total transportation cost is at most (1+ε)·OPT.
Therefore, to approximate the initial instance within the given accuracy, we can
restrict ourselves on such solutions.

Dynamic Programming. For a given randomized clustering, we find the
minimum-cost approximate solution consisting of net-respecting r-light routes
using the dynamic program as follows. Entries of the DP table are defined by
configurations that are assigned to each cluster Cl

j . For any cluster Cl
j , an asso-

ciated configuration C is a list of at most polylog n tuples (p1, p2, qj , depj), each
of them specifies a route segment entering and leaving this cluster at the portals
p1 and p2 respectively, visiting qj customers exactly and passing through the
depot y or not depending on depj .

The table entries are computed bottom-up. Level L + 1 is the base case. Each
configuration at this level can be computed trivially. Then, let Cl be some cluster
at level l, l = 0, . . . , L. To compute any configuration C for the cluster Cl, we
enumerate all combinations of the feasible configurations C1, . . . ,CK associated
with subclusters Cl+1

1 , Cl+1
2 , . . . , Cl+1

K , K = 2O(d) to find such a combination that
is compatible with the configuration C and induces the set of route segments
crossing the cluster Cl (maybe augmented by some routes contained in this
cluster completely) of the minimum total cost. The required solution is obtained
by minimization on the set of feasible configurations for the unique cluster at
level 0.

Following to the approach proposed in [24], we can show that our algorithm
admits an efficient derandomization.
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4 Conclusion

In this paper we announce an approximation scheme for the CVRP in the metric
space of an arbitrary doubling dimension d > 1. Our algorithm is a QPTAS, if
the problem has an optimal solution, whose number of routes does not exceed
polylog n. It is easy to verify that this condition holds, for instance, when q =
Ω(n/polylog n). We postpone the proof of Theorem 1 to the forthcoming paper.

Although, to the best of our knowledge, the proposed algorithm appears
to be the first approximation scheme for the metric CVRP for the spaces of
fixed doubling dimension, the question: ‘Can the QPTAS proposed by A.Das
and C.Mathieu [9] for the Euclidean CVRP be extended to metric spaces of a
fixed doubling dimension without any restriction on the capacity growth?’ still
remains open. We’ll try to bridge this gap in the future work.
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Abstract. In this work we analyze the relationships between nutrition,
health status and well-being of the individual in evolutionary age, not
only in consideration of the high prevalence of excess weight and the
early appearance of metabolic pathologies, but also due to the significant
presence of Eating Disorders (EDs). EDs, in fact, continue to be under-
diagnosed by pediatric professionals and many adolescents go untreated,
do not recover or reach only partial recovery.

We have observed the situation of young people at an Italian High
School regarding EDs by carrying out a statistical survey on the stu-
dents in relation to dietary habits, attitudes towards food and physical
activity.

Finally, the collected data have been analyzed through statistical and
machine learning techniques.

Keywords: Eating disorders detection · Psychometric test ·
Information extraction · SVM

1 Introduction

According to American Psychiatric Association [1], Eating Disorders (EDs) are
“illnesses in which the people experience severe disturbances in their eating behav-
iors and related thoughts and emotions”. The relative medical complications are
widespread and really serious because can affect every organ system. Then EDs
are psychological problems, but if not properly treated they can lead to hospital
admissions and in extreme cases to death. These disorders affect several million
people at any given time and the most common EDs include anorexia nervosa,
bulimia nervosa and binge eating disorder.

Anorexia nervosa is an eating disorder characterized by food restriction, fear
of gaining weight and an anomaly in perceiving one’s weight. It represents the
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psychiatric illness with the highest mortality rate and, in female adolescents, it
is the second leading cause of death after road accidents.

Bulimia nervosa is a mental disorder characterized by excessive and constant
preoccupation with weight and shape, so the person starts to follow a strict diet,
but presenting binges and self-induced vomiting. By vomiting or thought other
compensation methods, bulimics believe they can reach their ideal form and at
the same time be able to satisfy their need for food with binges.

People with anorexia nervosa and bulimia nervosa tend to be perfectionists
with low self-esteem and are extremely critical of themselves and their bodies.
They usually feel fat and see themselves as overweight, sometimes even despite
malnutrition. An intense fear of gaining weight and of being fat may become
all-pervasive. In early stages of these disorders, patients often deny that they
have a problem [18].

People with binge eating disorder (BED) lose control over their eating. The
BED is similar to bulimia with regard to the compulsion to binge eating, but
differs from it because the periods of binge-eating are not followed by purging,
excessive exercise, or fasting. As a result, people with BED often are overweight
or obese, they live incredible feelings of intense guilt, shame and hate themselves
after the binges.

Eating disorders can affect people of all ages, racial backgrounds, body
weights and genders. They frequently appear during the teen years or young
adulthood but may also develop during childhood or later in life [4]. These dis-
orders affect both genders, although rates among women are higher than among
men. Like women who have eating disorders, men also have a distorted sense of
body image [12,17].

In many cases, eating disorders occur together with other psychiatric disor-
ders like anxiety, panic, obsessive compulsive disorder and alcohol and drug abuse
problems. There is no single cause of an eating disorder, although neurobiolog-
ical and genetic predispositions are emerging as important. Without treatment
of both the emotional and physical symptoms of these disorders, malnutrition,
heart problems and other potentially fatal conditions can result. However, with
proper medical care, people with EDs can resume suitable eating habits, and
return to better emotional and psychological health. Then the early detection
[11] of EDs together with an equally early intervention can be crucial for good
prognosis: primary care providers can be key players in treatment success. It is
therefore very important to identify good diagnostic criteria [16].

Tacking into account these considerations, in this work we analyze the rela-
tionships between nutrition, health status and well-being of the individual in
evolutionary age with the following objectives:

1. to evaluate the prevalence of the risk condition for EDs distinguishing between
male and female subjects;

2. to identify possible psychological elements most associated with the EDs con-
dition, including distortion of body image;

3. to evaluate the relationship between the risk condition for EDs and some
strategies for changing one’s body.
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In particular, we have observed the situation of young people at “I.I.S. –
Liceo Scientifico – San Giovanni in Fiore (CS), Italy” High School regarding
EDs, by carrying out a statistical survey on the students in relation to dietary
habits, attitudes towards food and physical activity. Finally, the collected data
have been analyzed through statistical and machine learning techniques [15].

The rest of the paper is organized as follows. In Sect. 2 we present our statisti-
cal survey, whereas in Sect. 3 we explain the numerical experiments by providing
and analyzing the related results. Some conclusions are drawn in Sect. 4.

2 Statistical Survey

2.1 Participants and Procedure

In the school year 2018/19, we promoted a statistical survey on the students
of “I.I.S. – Liceo Scientifico – San Giovanni in Fiore (CS), Italy” in relation to
dietary habits, attitudes towards food and physical activity.

They were asked to complete, during school hours, an anonymous web-
based questionnaire. More precisely, for the survey we have used tests of socio-
demographic type, on physical activity and of psychometric type.

Data management was carried out in compliance with the Italian privacy
law, in fact informed consent was signed by all participants and by at least one
of the parents.

2.2 Socio-Demographic Form

We have elaborated a socio-demographic test to obtain information on students
and their families of origin. It consists of 29 questions, which concern age, height,
weight, weight problems and previous diets of the students, and composition,
level of education, type of work, dietary habits of their families of origin. The
purpose of the questionnaire is to provide information on the socio-demographic
characteristics of the selected cohort.

2.3 Physical Activity Form

This form has been elaborated by using the questionnaire IPAQ (International
Physical Activity Questionnaire) [10]. The questions refer to the activity carried
out in the last seven days at school, to move from one place to another and
during free time. The purpose of the questionnaire is to provide information on
the amount and types of physical activities that people perform as part of daily
life.

2.4 Psychometric Forms

Psychometric tests represent a systematic procedure for bringing out particular
responses by subjects when a set of stimuli (questions, problems, tasks) is pre-
sented to them. These responses can be evaluated and quantitatively interpreted
based on specific criteria or performance standards.

In our survey on EDs we have considered the following questionnaires:
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– SCOFF (Sick, Control, One, Fat, Food) [13];
– BUTa (Body Uneasiness Test)[5,8];
– EAT6 (Eating Attitude Test 26) [14].

SCOFF (Sick, Control, One, Fat, Food)
The SCOFF questionnaire is a brief tool designed to early detect eating disorders
and aid their treatment. It consists of 5 items to which you can answer “yes”
or “no”; one point is given for every “yes”; a score greater or equal than 2
indicates a likely case of anorexia nervosa or bulimia. This test is designed to
raise suspicion of a likely case rather than to diagnose.

BUTa (Body Uneasiness Test)
It is a test built for the psychometric evaluation of abnormal body image atti-
tudes and eating disorders. It consists of 34 clinical items for measuring weight
phobia, body image concerns, avoidance, compulsive self-monitoring, detach-
ment and estrangement feelings towards one’s own body (depersonalization).
The average rating of all 34 items represents the GSI (Global Severity Index)
related to own body image: the gravity is expressed on a scale from 0 to 5, where
0 corresponds to the absence of problems in that sector and 5 to the maximum
gravity.

EAT6 (Eating Attitude Test 26)
It is a tool that measures pathological eating behaviors and the psychological
attitude towards food and weight, typical of anorexia nervosa. The test consists
of 26 items with multiple choice answers: Always; Very often; Often; Sometimes;
Rarely; Never.

For all items, except for 25-th (“Have the impulse to vomit after meals?”),
each of the answers receives the following value: Always = 3; Usually = 2;
Often = 1; Sometimes = 0; Rarely = 0; Never = 0.

For 25-th item, the responses receive these values: Always = 0; Usually = 0;
Often = 0; Sometimes = 1; Rarely = 2; Never = 3.

The scores of each item are added together. The subject obtaining a score
over to 20 is considered “at risk” for eating disorders.

3 Numerical Experiments

The statistical survey has involved all students, from classes I to classes V, of
the “I.I.S. – Liceo Scientifico – San Giovanni in Fiore (CS), Italy”, for a total
number, N , equal to 192, of which 97 males and 95 females. The average age of
the sample has been 17 years.

By psychometric forms, we have obtained the following results:

– 44% of the sample tested positive for SCOFF,
– 12% of the sample tested positive for EAT26,
– 17% of the sample tested positive for BUTa.
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As regards the first objective of the present study, i.e. to evaluate the preva-
lence of the risk condition for eating behavior disorders (EDs) distinguishing
between male and female subjects, in the sample under examination (N = 192)
16 people (8% of the sample) obtained a pathological score on the SCOFF,
EAT26 and BUTa scales: 8% of the sample is therefore at risk for EDs and, of
these 16 people, only one is a male subject.

As for the second objective, the results of our analysis show that the subjects
at risk for EDs come from families with a medium-high education level. In fact,
of the 16 people at risk for EDs, 15 ones have a mother with a diploma (56%)
or a university degree (38%) and 11 ones have a father with a diploma (33%), a
university degree (33%) or a master degree (7%).

Finally, from the analysis of the data, some psychological characteristics of
the subjects, such as perfectionism, have been also important for the risk of EDs:
indeed, of the 16 people at risk for eating disorders, 12 ones were “very active”
(75%), according to the IPAQ scale.

These considerations have been confirmed by the results obtained by address-
ing the problem of EDs detection through machine learning techniques. In par-
ticular, we have analyzed the problem of discriminating between the students
“at risk” for EDs (positive for all the three used psychometric tests) and those
“not at risk” (negative for at least one of the psychometric tests) by selecting
only those parameters concerning sex, age and physical activity carried out by
the subjects under observation, and educational level and type of employment of
their parents, for a total of 11 features, including the class label (1 for students
at risk and −1 for those not at risk). In this parameter space, we have used,
as supervised classification technique, the SVM approach [7], more precisely the
Libsvm code [6] under Weka [9], an open source Java based platform containing
various machine learning algorithms.

In our experiments, in order to work with a balanced dataset, we have con-
sidered three possible configurations for it. Each configuration consists of 36
samples: all the 16 students at risk for EDs and 20 random students not at risk
for EDs. Moreover, for each dataset configuration, we have performed a leave-
one-out cross-validation. The results are listed in Table 1, where we report the
average of the following standard quantities: Testing Correctness, True Positive
Rate, False Positive Rate, Precision and F-Score.

Table 1. Classifier: LibSVM – C 100.0/polynomial kernel of degree 2

Dataset configuration Testing correctness TP rate FP rate Precision F-Score Class

1 86.11% 0.81 0.10 0.87 0.84 1

0.90 0.19 0.86 0.88 −1

2 91.67% 1.00 0.15 0.84 0.91 1

0.85 0.00 1.00 0.92 −1

3 86.11% 0.93 0.20 0.79 0.86 1

0.80 0.06 0.94 0.87 −1
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These results appear interesting, in fact they show that it is possible with
good accuracy to classify subjects at risk for EDs, on which it is necessary to pay
more attention and a more in-depth study, only by analyzing a few parameters
of socio-demographic and psychological type.

4 Conclusions

In this paper we have presented an application of a supervised classification
approach by analyzing the relationships between nutrition, health status and
well-being of the individual in evolutionary age with the principal objective of
identifying possible psychological elements most associated with the EDs condi-
tion. We have obtained promising results, both in terms of classification accuracy
and sensitivity. After this first analysis, the next step of our research will be to
expand the sample and to use other classification methods [2,3] in addition to
SVM with the aim of the early detection of EDs signs on social media, so largely
used by young people.
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Abstract. In this paper, we consider the problem of finding a minimum
cardinality subset of vectors, given a constraint on the sum of squared
Euclidean distances between all vectors of the chosen subset. This prob-
lem is closely related to the well-known Maximum Diversity Problem.
The main difference consists in swapping the constraint with the opti-
mization criterion. We prove that the problem is NP-hard in the strong
sense. An exact algorithm for solving this problem is proposed. The algo-
rithm has a pseudo-polynomial time complexity in the special case of the
problem, where the dimension of the space is bounded from above by a
constant and the input data are integer.

Keywords: Euclidean space · Subset of points · NP-hardness · Integer
instance · Exact algorithm · Pseudo-polynomial time

1 Introduction

In this paper, we study a discrete extremal problem of searching a subset of
vectors with minimum cardinality, given a constraint on the sum of squared
Euclidean distances between all vectors of the chosen subset. We abbreviate this
problem as MCSED and formulate it as follows.

Given: a set Y = {y1, . . . , yN} of vectors from R
k and positive number a.

Find : a subset C∗ ⊆ Y of minimum cardinality such that
∑

y∈C∗

∑

z∈C∗
||z − y||2 ≥ a, (1)

where ‖ · ‖ is the Euclidean norm. In what follows, we denote h(C) :=∑
y∈C

∑
z∈C ||z − y||2 for any subset C ⊆ Y.

If one interprets the diversity of a finite set in R
k as the sum of squared

Euclidean distances between all points of the set, then the MCSED problem has
a clear interpretation in terms of computational geometry. This problem asks
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for a minimum cardinality subset in the given finite set, such that the diversity
of the chosen subset is at least a.

If the given vectors of the Euclidean space correspond to people so that the
coordinates of vectors are equal to some characteristics of these people, then the
MCSED problem may be treated as a problem of finding a sufficiently diverse
group of people of minimum size.

MCSED problem is closely related to the Maximum Diversity Problem (see
e.g. [2,3]). The main difference consists in swapping the constraint with the
optimization criterion.

Our goals in this paper are to develop an exact algorithm for the special
case of the MCSED problem where all vectors have integer coordinates, and to
analyse the complexity of this problem.

2 Problem Complexity

It is known [8] that the classic NP-complete Independent Set problem [4] remains
NP-complete for regular graphs:

Independent Set in a Regular Graph. Given a regular graph G of degree d and
a positive integer m, find whether this graph contains a vertex subset of car-
dinality m such that every two vertices of this subset are not connected by an
edge.

The following proof of intractability of the MCSED problem is based on
a polynomial-time reduction of the Independent Set problem to the decision
version of MCSED problem:

Given: A set Y = {y1, . . . , yN} of Euclidean points from R
k and two positive

integers M and K. Question: Is there a nonempty subset C ⊆ Y such that

|C| ≤ M, and h(C) ≥ K ?

Theorem 1. The MCSED problem is NP-hard in the strong sense.

Proof. Suppose that an instance of the Independent Set problem is given by
an integer m and a regular graph G of degree d with N vertices and q = dN/2
edges.

Construct the following instance of MCSED problem in the decision form.
Put k = q and assign to every vertex of the graph G a k-dimensional vector y
whose i-th coordinate is 1 if the edge i is incident with this vertex, and is 0
otherwise. Then, for a pair of vectors y and z from Y = {y1, . . . , yN}, clearly,
‖y − z‖2 = 2d − 2, if the vertices of G corresponding to y and z are adjacent,
and ‖y − z‖2 = 2d, otherwise. Let I(C) denote the set of vertices in G, that
correspond to a subset of vectors C. Note that I(C) is an independent set if
h(C) = 2d|C|(|C| − 1), and otherwise it holds that h(C) < 2d|C|(|C| − 1).
Besides that, obviously, |I(C)| = |C|. Therefore, the decision form of the MCSED
problem with M = m and K = 2dm(m− 1) has a positive answer iff G contains
an independent set of size exactly M . �
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The problem MCSED is NP-hard in the ordinary sense even for the three-
dimensional case, which follows from the proof of Theorem 8 in [1], provided that
this proof is modified by making all numbers integer or rational. The square root
function, which is used in this proof, would have to be replaced by an appropriate
approximation. The pseudo-polynomial algorithm in Sect. 4 below demonstrates
that this problem in any fixed dimension cannot be NP-hard in the strong sense,
if P �= NP.

A feasible solution x for a minimization problem is called an (1 + ε)-
approximate solution if for some given ε > 0 it satisfies the inequality f(x) ≤
(1 + ε)f∗, where f∗ is the objective function optimal value. An algorithm is
called an (1 + ε)-approximation algorithm if in polynomial time it outputs an
(1 + ε)-approximate solution for every solvable problem instance. A family of
(1 + ε)-approximation algorithms parameterized by ε > 0, such that the time
complexity of any of these algorithms is polynomially bounded by 1/ε and the
problem instance length in binary encoding is called a fully polynomial-time
approximation scheme (FPTAS).

The objective function of the MCSED problem is integer valued. The objec-
tive function optimal value is polynomially bounded in binary incoding length.
Therefore, see e.g. corollary of Theorem 6.8 in [4], the MCSED problem does
not admit an FPTAS, unless P = NP. Note that the proof of Theorem 6.8 in [4]
may be easily modified to show that any NP-hard (in the ordinary sense) opti-
mization problem with a polynomially-bounded integer-valued objective function
does not admit an FPTAS, unless P = NP. Therefore, the above-mentioned result
from [1] implies that the there is no FPTAS for the MCSED problem even for
any constant dimensionality k ≥ 3, if P �= NP.

3 Alternative Problem Formulation

Let z̄(C) := 1
|C|

∑
z∈C z denote the centroid of a set C ⊆ Y. The following

“folklore” result is well-known.

Lemma 1. For an arbitrary point x ∈ R
k and a finite set C ⊂ R

k, it holds that
∑

z∈C

||z − x||2 =
∑

z∈C

||z − z̄(C)||2 + |C| · ||x − z̄(C)||2. (2)

This observation turned to be useful in obtaining a number of results for
similar problems [5–7]. The following equality (3) related to the function h(C)
follows from Lemma 1 by summation over x ∈ C.

f(C) :=
∑

z∈C

||z − z̄(C)||2 =
1

2|C|
∑

z∈C

∑

y∈C

||z − y||2 =
1

2|C|h(C). (3)

The next lemma provides an equivalent formulation of the MCSED problem.
Here we use the integer programming formulation, with one integer variable μ
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and N binary variables x1, . . . , xN , which give a natural representation of a sub-
set C ⊆ Y, assuming xj = 1 if point yj ∈ C and xj = 0 otherwise, j = 1, . . . , N :

min μ, (4)

subject to
N∑

j=1

xj = μ, (5)

2μ

N∑

j=1

k∑

r=1

xj

(
arj −

∑N
i=1 arixi

μ

)2

≥ a, (6)

μ ∈ Z, xj ∈ {0, 1}, j = 1, . . . , N. (7)

Let x := (x1, . . . , xN ). In what follows, for any m ∈ {1, . . . , N} we denote

fN (m,x) := max
N∑

j=1

k∑

r=1

xj

(
arj −

∑N
i=1 arixi

m

)2

.

Lemma 2. [3] If
∑N

j=1 xj = m then

fN (m,x) =
N∑

j=1

xj

m

k∑

r=1

(
(m − 1)a2

rj − 2arj

j−1∑

i=1

arixi

)
. (8)

4 A Pseudo-Polynomial Time Algorithm for Bounded
Dimension of Space

In this section, we show that in the case of a fixed space dimension k and integer
coordinates of vectors from Y, the MCSED problem can be solved in a pseudo-
polynomial time using the same approach as proposed in [3].

Consider the integer programming formulation (4)–(7) and introduce the
following functions that evaluate partial sums in (8):

sj(m,x1, . . . , xj) =
xj

m

k∑

r=1

(
(m − 1)a2

rj − 2arj

j−1∑

i=1

arixi

)
, j = 1, . . . , N.

Then we have fN (m,x) =
∑N

j=1 sj(m,x1, . . . , xj).
Let Fj(m,A1, . . . , Ak) be the maximum diversity for partial solutions

(x1, . . . , xj) such that exactly m ≤ N components among x1, . . . , xj are equal
to 1 and

∑j−1
i=1 arixi = Ar for every r = 1, . . . , k. Formally,

Fj(m,A1, . . . , Ak) = max
j∑

i=1

si(x1, . . . , xi), (9)
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subject to
j∑

i=1

xj = m, (10)

j−1∑

i=1

arixi = Ar, r = 1, . . . , k, (11)

xi ∈ {0, 1}, i = 1, . . . , j. (12)
In the case of integer inputs yj ∈ Z

k, j = 1, . . . , N, the partial sums∑j−1
i=1 arixi take only integer values from [−B,B] (recall that B denotes the

maximum absolute coordinate value in the input set) and we have the Bellman
Equation:

Fj(m,A1, . . . , Ak) =

max
xj∈{0,1}

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fj−1(m,A1, . . . , Ak), if xj = 0,

Fj−1(m − 1, A1 − a1j , . . . , Ak − akj)

+ 1
m

∑k
r=1

(
(m − 1)a2

rj − 2arj(Ar − arj)
)
, otherwise.

Our exact algorithm for instances with integer coordinates of the input
points works as follows. Put A := max1≤r≤k

∑N
j=1 arj ≤ BN. First, com-

pute recursively the set of values Fj(m,A1, . . . , Ak) for all j = 1, . . . , N ,
m = 1, . . . , N, and A1 = −A, . . . , A, where they are defined (otherwise assume
Fj(m,A1, . . . , Ak) = −∞). Note that the set of binary vectors x1, . . . , xj corre-
sponding to each Fj(m,A1, . . . , Ak) can be easily back-tracked. Then, compute

min

⎧
⎨

⎩m :
N∑

j=1

xj = m,
N∑

j=1

sj(m,x1, . . . , xj) ≥ a

2m
, x ∈ {0, 1}N

⎫
⎬

⎭

= min
{

m : max
(A1,...,Ak)∈[−A,A]k

FN (m,A1, . . . , Ak) ≥ a

2m

}
, (13)

backtrack to find the vector x∗, corresponding to the minimum in (13) and
output a subset C = ∪j:x∗

j=1{yj} as a solution to the problem. This algorithm
is called Algorithm DP in what follows. Lemma 3 below establishes a relation
between optimal and algorithmic solutions.

Lemma 3. Suppose that components of all points in Y are integers from the
interval [−B,B]. Then the Algorithm DP finds an optimal solution to the
MCSED problem.

The following theorem establishes the time complexity of the Algorithm DP.

Theorem 2. If components of all points in Y have integer values in the interval
[−B,B], then the running time of Algorithm DP is O(N2(2BN + 1)k).

Algorithm DP is pseudo-polynomial for a fixed space dimension k since the
time complexity of this algorithm is O(N2(BN)k) that is polynomially bounded
in terms of problem dimension N and the value of B.
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5 Conclusions

The problem of finding a minimum cardinality subset of vectors, given a con-
straint on the sum of squared Euclidean distances between all vectors of the
chosen subset is considered for the first time. It is shown that this problem is
NP-hard in the strong sense and an exact dynamic programming algorithm for
solving this problem is proposed. We prove a pseudo-polynomial time complexity
bound for this algorithm in the special case, where the dimension of the space
is bounded from above by a constant and the input data are integer. The com-
putational complexity of the studied problem in one- and two-dimensional cases
remains an open question.
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Abstract. An NP-hard problem is considered of stabbing a given set
of n straight line segments on the plane with the least size subset of
disks of fixed radii r > 0, where the set of segments forms a straight line
drawing G = (V,E) of a planar graph without proper edge crossings. Two

O
(
n3/2 log2 n

)
-expected time algorithms are proposed for this stabbing

problem considered on sets of segments, forming edge sets of special
plane graphs, which are of interest in network applications. Namely, a
12-approximate algorithm is given for the problem, considered on edge
sets of relative neighborhood graphs and 14-approximate algorithm is
designed for edge sets of Gabriel graphs. The paper extends recent work
where O(n2)-time approximation algorithms are proposed with the same
constant approximation factors for the problem on those two classes of
sets of segments.

Keywords: Operations research · Computational geometry ·
Approximation algorithms · Straight line segment · Hippodrome

1 Introduction

Facility location represents an important class of practical problems from opera-
tions research, which can adequately be modeled by combinatorial optimization
problems. A geometric modelling approach turns out to be successful for a vari-
ety of facility location problems where objects of interest, say, customers, roads,
markets or inventories are geographically distributed. Under this approach an
optimal placement of facilities (e.g of inventories, markets, petrol or charging
stations) nearby objects of interest is to be found. Here objects of interest are
modelled by simple geometric structures, which can be e.g. points, straight line
segments or rectangles on the plane whereas locations of facilities are given by
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translates of simple objects like unit disks, axis-parallel squares or rectangles.
In its simplest form optimization is done over placement of facilities to achieve
the minimum total distance from the placed facilities to the objects of inter-
est. Alternatively, it might be aimed at minimizing total number of the placed
facilities while serving needs of all objects of interest.

This alternative type of problems is of the form of a simple to formulate
problem from computational geometry: given a set K of geometric objects on
the plane, the smallest cardinality set C of objects is to be found on the plane,
chosen from a class F of simply shaped objects, such that each object from
K is intersected by an object from C in some prescribed way. In this paper,
subquadratic time small constant factor approximation algorithms are designed
for the following problem in which F is a set of radius r disks and K coincides
with a finite set E of straight line segments on the plane.

Intersecting Plane Graph with Disks (IPGD): given a straight line
drawing (or a plane graph) G = (V,E) of an arbitrary simple planar graph
without proper edge crossings and a constant r > 0, find the smallest cardinality
set C of disks of radius r such that e ∩ ⋃

C∈C
C �= ∅ for each edge e ∈ E. Here

each isolated vertex v ∈ V is treated as a zero-length segment ev ∈ E. Moreover,
the vertex set V is assumed to be in general position, i.e. no triple of points of
V lies on any straight line.

Below the term “plane graph” is used to denote any straight line embedding
of a planar graph whose (straight line) edges intersect at most at their endpoints.

The IPGD problem finds its applications in sensor network deployment and
facility location. Suppose one needs to locate petrol or charging stations nearby
all roads of a given road network. Geometrically, the network roads can be mod-
eled by piecewise linear arcs on the plane. One can split these arcs into chains of
elementary straight line segments such that any two of the resulting elementary
segments intersect at most at their endpoints. To cover the road network with
facility stations to some extent, it might be reasonable to place the minimum
number of stations such that each piece of every road (represented by an ele-
mentary segment) is within a given distance from some of the placed stations.
This modeling approach leads to a geometric combinatorial optimization model,
which coincides with the IPGD problem.

The IPGD problem generalizes a classical NP-hard unit disk covering prob-
lem. In the unit disk covering problem one needs to cover a given finite point
set E on the plane with the least cardinality set C of unit disks. In the IPGD
problem setting E generally contains non-zero length segments instead of points.

The IPGD problem has close connections with the classical geometric Hit-
ting Set problem on the plane. To describe a Hitting Set formulation of
the IPGD problem, some notation is given below. Suppose Nr(e) = {x ∈ R

2 :
d(x, e) ≤ r}, Nr(E) = {Nr(e) : e ∈ E} and d(x, e) is Euclidean distance between
a point x ∈ R

2 and a segment e ∈ E; for a zero-length segment x ∈ R
2 Nr(x)

denotes a radius r disk centered at x. Each object from Nr(E) is a Euclidean
r-neighborhood of some segment of E also called r-hippodrome or r-offset in the
literature [2].
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The IPGD problem can equivalently be formulated as follows: given a set
Nr(E) of r-hippodromes on the plane whose underlying straight line segments
form an edge set of some plane graph G = (V,E), find the minimum cardinality
point set C such that C ∩ N �= ∅ for every N ∈ Nr(E). In fact, C represents a
set of centers of radius r disks, forming a solution to the IPGD problem. In the
sequel, a set C0 ⊂ R

2 is called a piercing set for Nr(E) when C0 ∩ N �= ∅ for all
N ∈ Nr(E).

1.1 Related Work and Our Results

As far as we know, settings close to the IPGD problem are originally considered
in [2]. Motivated by applications from sensor monitoring for urban road net-
works, they explore the case in which F contains equal disks and E consists of n
(generally properly overlapping) axis-parallel segments, giving 8-approximation
O(n log n)-time algorithm. Their algorithms can easily be extended to the case
of sets E of straight line segments with bounded number of distinct orientations.
A polynomial time approximation scheme (PTAS) is also proposed [10] for more
general version of the IPGD problem in which disks of C are chosen from some
prescribed finite set H of generally non-equal disks.

When pairs of segments of E are allowed to intersect properly and segments
of E are admitted to have arbitrarily large number of distinct orientations, it
is difficult to achieve a constant factor approximation at least by using known
approaches. It is due to the non-constant lower bound obtained in [1] on inte-
grality gap of a problem, which is close to the IPGD problem for r = 0.

In [6] constant factor approximation algorithms are first proposed for the
IPGD problem. Namely, a 100-approximate O(n4 log n)-time algorithm is given
for the problem in its general setting where E is formed by an edge set of an
arbitrary plane graph. Moreover, due to applications, 68- and 54-approximate
algorithms are given in [7] for special cases, where E is an edge set of a generalized
outerplane graph and a Delaunay triangulation respectively as well as a 23-
approximation algorithm is proposed under the assumption that all pairs of
non-overlapping segments from E are at the distance more than r from each
other.

Let us give some definitions. Let V be a finite point set in general position
on the plane. Assuming that no 4 points of V lie on any circle, a plane graph
G = (V,E) is called a Gabriel graph [9] when [u, v] ∈ E iff intersection of
V is empty with interior of the disk with diameter [u, v], where [u, v] denotes
a straight line segment with endpoints u and v. Under the same assumption a
plane graph G = (V,E) is called a relative neighborhood graph [3] when [u, v] ∈ E
iff max{d(u,w), d(v, w)} ≥ d(u, v) for any w ∈ V \{u, v}. Both types of plane
graphs defined above appear in a variety of network applications. They represent
convenient network topologies, simplifying routing and control in geographical
(e.g. wireless) networks. They can also be applied when approximating complex
networks.

In [8] faster O(n2)-time 10-, 12- and 14-approximate algorithms are designed
for the NP-hard ([5]) IPGD problem when E is being an edge set of a min-



Approximation Algorithms for Stabbing Line Segments with Equal Disks 49

imum Euclidean spanning tree, a relative neighborhood graph and a Gabriel
graph respectively. This short paper extends this latter work by presenting
much faster O

(
n3/2 log2 n

)
-expected time 12- and 14- approximation algorithms

for the IPGD problem for classes of relative neighborhood graphs and Gabriel
graphs respectively. Obtained gain in time performance of the resulting approxi-
mation algorithms can be useful for facility location problems on large networks.

2 Basic Algorithm

The following algorithm lies at the core of our O(1)-approximation algorithms.
It operates on two concepts whose definitions are given below.

Definition 1. A subset I ⊆ Nr(E) is called a maximal (with respect to inclu-
sion) independent set in Nr(E), if I ∩ I ′ = ∅ for any I, I ′ ∈ I, and for any
N ∈ Nr(E) there is some I ∈ I with N ∩ I �= ∅.

Definition 2. Let G = (V,E) be a plane graph and f > 0 be some (r-
independent) absolute constant. An edge e ∈ E is called f-coverable with respect
to E, if for any constant ρ > 0 one can construct at most f-point piercing set
U(ρ, e, E) ⊂ R

2 for Nρ,e(E) = {N ∈ Nρ(E) : N ∩ Nρ(e) �= ∅} in polynomial
time with respect to |Nρ,e(E)|.

Let G = (V,E) be either a Gabriel or a relative neighborhood graph and
r > 0 be a constant, forming an input of the IPGD problem. Work of our
algorithm below can be split into two phases. During its first phase it performs
a pass through E to iteratively grow its subset E′ by adding segments from E
into E′ such that Nr(E′) finally becomes a maximal independent set in Nr(E).
Within this phase it applies a special (randomized) geometric data structure
[4], implementing a Voronoi diagram for straight line segments of E′, assuming
Euclidean distance between segments. This data structure allows to

1. return a segment e′ ∈ E′ such that Nr(e) ∩ Nr(e′) �= ∅ for a given straight
line segment e ∈ E\E′, or report that Nr(e) ∩ Nr(e′) = ∅ for all e′ ∈ E′ in
O(log2 |E′|) expected time;

2. insert new segments of E\E′ into E′.

Then, during the second phase, another pass is performed over the built set E′ to
construct piercing sets for subsets of the form Nr,e(E); each subset is defined by
a segment e ∈ E′. Merging those piercing sets together into a point set C ⊂ R

2,
the algorithm yields a set C = {Nr(c) : c ∈ C} as an approximate solution to
the IPGD problem instance, defined by G and r.

The algorithm implementation is based on a pseudo-code below. It contains
a constant parameter f > 0, which is specific to the class of plane graphs from
which G is chosen. More precisely, f = 12 for the class of relative neighborhood
graphs and f = 14 for the class of Gabriel graphs.
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Modified covering of line segments with equal disks.

Input: a constant r > 0 and a plane graph G = (V,E);
Output: an f -approximate solution C of radius r disks for the IPGD problem
instance, defined by G and r.

1. E′ := ∅, E0 := randomly shuffledE and C := ∅;
2. while E0 �= ∅, repeat steps 3–5: // first phase: a single pass through E
3. choose e∗ ∈ E0 and compute an edge e′ ∈ E′ such that Nr(e∗) ∩ Nr(e′) �= ∅

(if it exists) and set flag := True; otherwise, if either Nr(e∗) ∩ Nr(e′) = ∅

for all e′ ∈ E′ or E′ = ∅, set flag := False;
4. if flag = True, set Ee′ := Ee′ ∪ {e∗}; otherwise, when flag = False, insert

e∗ into E′ and set Ee∗ := ∅;
5. set E0 := E0\{e∗};
6. for each e′ ∈ E′ repeat steps 7–8: // second phase: a single pass through E′

7. construct a piercing set U(e′) of at most f points for Nr(Ee′), applying some
auxiliary procedure;

8. set C := C ∪ U(e′);
9. return C := {Nr(c) : c ∈ C} as an f -approximate solution.

At the basic algorithm step 7 within its second phase, to implement an auxil-
iary procedure of seeking a piercing set U(e′) for Nr(Ee′), two special procedures
are used, which are designed in [8]. Their performance is reported in two lemmas
below (see lemmas 1 and 5 as well as implementations of those procedures in
[8]).

Lemma 1. Any edge e ∈ E is 12-coverable of an arbitrary subgraph G = (V,E)
of a relative neighborhood graph. More precisely, for any ρ > 0 the respective
piercing set U(ρ, e, E) for Nρ,e(E) can be found in O(1) time.

Lemma 2. Any edge e ∈ E is 14-coverable of an arbitrary subgraph G = (V,E)
of a Gabriel graph. Namely, for any ρ > 0 the respective piercing set U(ρ, e, E)
for Nρ,e(E) can be found in O(1) time.

In [8] an analogous algorithm (to the basic algorithm above) is described,
working in O(nOPT) time, where OPT is the problem optimum. Namely, it
does O(OPT) “heavy” steps such that each step performs a single pass through
a subset of E, which can be Ω(n)-sized, thus, taking O(n) time. In distinction
to this latter algorithm, work of our algorithm is organized in the different way.
It avoids doing those O(OPT) “heavy” steps and performs O(n) “lighter” steps
instead at its first phase, each of which mostly consists in querying and updating
a nearest neighbor data structure, built on the O(OPT)-sized subset of E. Its
expected query times are polylogarithmic with respect to OPT.
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3 Our Results

Applying our basic algorithm and O(1)-time auxiliary procedures from [8] at its
step 7, which are titled Partial r-disk cover search for 2r-hippodromes
on RNG edges and Partial r-disk cover search for 2r-hippodromes
on GG edges, the following results can be obtained.

Theorem 1. There is an O
(
n3/2 log2 OPT

)
-expected time f-approximate algo-

rithm for the IPGD problem in the graph class G, where

1. f = 12 and G is the class of subgraphs of relative neighborhood graphs;
2. f = 14 and G is the class of subgraphs of Gabriel graphs.
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Abstract. Coordinate-wise minimization is a simple popular method
for large-scale optimization. Unfortunately, for general (non-
differentiable and/or constrained) convex problems it may not find global
minima. We present a class of linear programs that coordinate-wise min-
imization solves exactly. We show that dual LP relaxations of several
well-known combinatorial optimization problems are in this class and
the method finds a global minimum with sufficient accuracy in reason-
able runtimes. Moreover, for extensions of these problems that no longer
are in this class the method yields reasonably good suboptima. Though
the presented LP relaxations can be solved by more efficient methods
(such as max-flow), our results are theoretically non-trivial and can lead
to new large-scale optimization algorithms in the future.

Keywords: Coordinate-wise minimization · Linear programming · LP
relaxation

1 Introduction

Coordinate-wise minimization, or coordinate descent , is an iterative optimization
method, which in every iteration optimizes only over a single chosen variable
while keeping the remaining variables fixed. Due its simplicity, this method is
popular among practitioners in large-scale optimization in areas such as machine
learning or computer vision, see e.g. [32]. A natural extension of the method is
block-coordinate minimization, where every iteration minimizes the objective
over a block of variables. In this paper, we focus on coordinate minimization
with exact updates, where in each iteration a global minimum over the chosen
variable is found, applied to convex optimization problems.

For general convex optimization problems, the method need not converge
and/or its fixed points need not be global minima. A simple example is the
unconstrained minimization of the function f(x, y) = max{x − 2y, y − 2x},
which is unbounded but any point with x = y is a coordinate-wise local mini-
mum. Despite this drawback, (block-)coordinate minimization can be very suc-
cessful for some large-scale convex non-differentiable problems. The prominent
example is the class of convergent message passing methods for solving dual
c© Springer Nature Switzerland AG 2020
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linear programming (LP) relaxation of maximum a posteriori (MAP) inference
in graphical models, which can be seen as various forms of (block-)coordinate
descent applied to various forms of the dual. In the typical case, the dual LP
relaxation boils down to the unconstrained minimization of a convex piece-wise
affine (hence non-differentiable) function. These methods include max-sum dif-
fusion [21,26,29], TRW-S [18], MPLP [12], and SRMP [19]. They do not guar-
antee global optimality but for large sparse instances from computer vision the
achieved coordinate-wise local optima are very good and TRW-S is significantly
faster than competing methods [16,27], including popular first-order primal-dual
methods such as ADMM [5] or [8].

This is a motivation to look for other classes of convex optimization problems
for which (block-)coordinate descent would work well or, alternatively, to extend
convergent message passing methods to a wider class of convex problems than the
dual LP relaxation of MAP inference. A step in this direction is the work [31],
where it was observed that if the minimizer of the problem over the current
variable block is not unique, one should choose a minimizer that lies in the
relative interior of the set of block-optimizers. It is shown that any update
satisfying this rule is, in a precise sense, not worse than any other exact update.
Message-passing methods such as max-sum diffusion and TRW-S satisfy this
rule. If max-sum diffusion is modified to violate the relative interior rule, it can
quickly get stuck in a very poor coordinate-wise local minimum.

To be precise, suppose we minimize a convex function f : X → R on a closed
convex set X ⊆ R

n. We assume that f is bounded from below on X. For brevity
of formulation, we rephrase this as the minimization of the extended-valued
function f̄ : Rn → R ∪ {∞} such that f̄(x) = f(x) for x ∈ X and f̄(x) = ∞
for x /∈ X. One iteration of coordinate minimization with the relative interior
rule [31] chooses a variable index i ∈ [n] = {1, . . . , n} and replaces an estimate
xk = (xk

1 , . . . , x
k
n) ∈ X with a new estimate xk+1 = (xk+1

1 , . . . , xk+1
n ) ∈ X such

that1

xk+1
i ∈ ri argmin

y∈R

f̄(xk
1 , . . . , x

k
i−1, y, xk

i+1, . . . , x
k
n),

xk+1
j = xk

j ∀j �= i,

where ri Y denotes the relative interior of a convex set Y . As this is a univariate
convex problem, the set Y = argminy∈R

f̄(xk
1 , . . . , x

k
i−1, y, xk

i+1, . . . , x
k
n) is either

a singleton or an interval. In the latter case, the relative interior rule requires that
we choose xk+1

i from the interior of this interval. A point x = (x1, . . . , xn) ∈ X
that satisfies

xi ∈ ri argmin
y∈R

f̄(x1, . . . , xi−1, y, xi+1, . . . , xn)

for all i ∈ [n] is called a (coordinate-wise) interior local minimum of function f
on set X.
1 In [31], the iteration is formulated in a more abstract (coordinate-free) notation.

Since we focus only on coordinate-wise minimization here, we use a more concrete
notation.
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Some classes of convex problems are solved by coordinate-wise minimization
exactly. E.g., for unconstrained minimization of a differentiable convex function,
it is easy to see that any fixed point of the method is a global minimum; moreover,
it has been proved that if the function has unique univariate minima, then any
limit point is a global minimum [4, §2.7]. The same properties hold for convex
functions whose non-differentiable part is separable [28]. Note that these classical
results need not assume the relative interior rule [31].

Therefore, it is natural to ask if the relative interior rule can widen the
class of convex optimization problems that are exactly solved by coordinate-wise
minimization. Leaving convergence aside2, more precisely we can ask for which
problems interior local minima are global minima. A succinct characterization
of this class is currently out of reach. Two subclasses of this class are known
[18,26,29]: the dual LP relaxation of MAP inference with pairwise potential
functions and two labels, or with submodular potential functions.

In this paper, we restrict ourselves to linear programs (where f is linear and
X is a convex polyhedron) and present a new class of linear programs with
this property. We show that dual LP relaxations of a number of combinatorial
optimization problems belong to this class and coordinate-wise minimization
converges in reasonable time on large practical instances. Unfortunately, the
practical impact of this result is limited because there exist more efficient algo-
rithms for solving these LP relaxations, such as reduction to max-flow. It is open
whether there exist some useful classes of convex problems that are exactly solv-
able by (block-)coordinate descent but not solvable by more efficient methods.
There is a possibility that our result and the proof technique will pave the way
to such results.

2 Reformulations of Problems

Before presenting our main result, we make an important remark: while a con-
vex optimization problem can be reformulated in many ways to an ‘equivalent’
problem which has the same global minima, not all of these transformations are
equivalent with respect to coordinate-wise minimization, in particular, not all
preserve interior local minima.

Example 1. One example is dualization. If coordinate-wise minimization
achieves good local (or even global) minima on a convex problem, it can get
stuck in very poor local minima if applied to its dual. Indeed, trying to apply
(block-) coordinate minimization to the primal LP relaxation of MAP inference
(linear optimization over the local marginal polytope) has been futile so far.

Example 2. Consider the linear program min{x1 + x2 | x1, x2 ≥ 0}, which has
one interior local minimum with respect to individual coordinates that also cor-
responds to the unique global optimum. But if one adds a redundant constraint,
2 We do not discuss convergence in this paper and assume that the method converges to

an interior local minimum. This is supported by experiments, e.g., max-sum diffusion
and TRW-S have this property. More on convergence can be found in [31].
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namely x1 = x2, then any feasible point will become an interior local minimum
w.r.t. individual coordinates, because the redundant constraint blocks changing
the variable xi without changing x3−i for both i ∈ {1, 2}.

Example 3. Consider the linear program

min
m∑

j=1

zj (1a)

zj ≥ aT
ijx + bij ∀i ∈ [n], j ∈ [m] (1b)

z ∈ R
m, x ∈ R

p (1c)

which can be also formulated as

min
m∑

j=1

n
max
i=1

(aT
ijx + bij) (2a)

x ∈ R
p. (2b)

Optimizing over the individual variables by coordinate-wise minimization in (1)
does not yield the same interior local optima as in (2). For instance, assume that
m = 3, n = p = 1 and the problem (2) is given as

min (max{x, 0} + max{−x,−1} + max{−x,−2}) , (3)

where x ∈ R. Then, when optimizing directly in form (3), one can see that all
the interior local optima are global optimizers.

However, when one introduces the variables z ∈ R
3 and applies coordinate-

wise minimization on the corresponding problem (1), then there are interior local
optima that are not global optimizers, for example x = z1 = z2 = z3 = 0, which
is an interior local optimum, but is not a global optimum.

On the other hand, optimizing over blocks of variables {z1, . . . , zm, xi} for
each i ∈ [p] in case (1) is equivalent to optimization over individual xi in formu-
lation (2).

3 Main Result

The optimization problem with which we are going to deal is in its most general
form defined as

min
( m∑

i=1

max{wi − ϕi, 0} + aT ϕ + bT λ +
p∑

j=1

max{vj + AT
:jϕ + BT

:jλ, 0}
)

(4a)

ϕ
i
≤ ϕi ≤ ϕi ∀i ∈ [m] (4b)

λi ≤ λi ≤ λi ∀i ∈ [n], (4c)
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where A ∈ R
m×p, B ∈ R

n×p, a ∈ R
m, b ∈ R

n, w ∈ R
m, v ∈ R

p, ϕ ∈ (R ∪
{−∞})m, ϕ ∈ (R∪{∞})m, λ ∈ (R∪{−∞})n, λ ∈ (R∪{∞})n (assuming ϕ < ϕ

and λ < λ). We optimize over variables ϕ ∈ R
m and λ ∈ R

n. A:j and Ai: denotes
the j-th column and i-th row of A, respectively.

Applying coordinate-wise minimization with relative-interior rule on the
problem (4) corresponds to cyclic updates of variables, where each update cor-
responds to finding the region of optima of a convex piecewise-affine function
of one variable on an interval. If the set of optimizers is a singleton, then the
update is straightforward. If the set of optimizers is a bounded interval [a, b], the
variable is assigned the middle value from this interval, i.e. (a + b)/2. If the set
of optima is unbounded, i.e. [a,∞), then we set the variable to the value a + Δ,
where Δ > 0 is a fixed constant. In case of (−∞, a], the variable is updated to
a − Δ. The details for the update in this setting are in Appendix A in [10].

Theorem 1. Any interior local optimum of (4) w.r.t. individual coordinates is
its global optimum if

– matrices A,B contain only values from the set {−1, 0, 1} and contain at most
two non-zero elements per row

– vector a contains only elements from the set (−∞,−2] ∪ {−1, 0, 1, 2} ∪ [3,∞)
– vector b contains only elements from the set (−∞,−2] ∪ {−1, 0, 1} ∪ [2,∞).

In order to prove Theorem 1, we formulate problem (4) as a linear program
by introducing additional variables α ∈ R

m and β ∈ R
p and construct its dual.

The proof of optimality is then obtained (see Theorem2) by constructing a dual
feasible solution that satisfies complementary slackness.

The primal linear program (with corresponding dual variables and constraints
on the same lines) reads

min
∑

i∈[m]

αi +
∑

i∈[p]

βi + aT ϕ + bT λ max f(z, y, s, r,q, x) (5a)

βj − AT
:jϕ − BT

:jλ ≥ vj xj ≥ 0 ∀j ∈ [p] (5b)

αi + ϕi ≥ wi si ≥ 0 ∀i ∈ [m] (5c)
ϕi ≥ ϕ

i
yi ≥ 0 ∀i ∈ [m] (5d)

ϕi ≤ ϕi zi ≤ 0 ∀i ∈ [m] (5e)
λi ≥ λi qi ≥ 0 ∀i ∈ [n] (5f)

λi ≤ λi ri ≤ 0 ∀i ∈ [n] (5g)

ϕi ∈ R si + zi + yi − AT
i:x = ai ∀i ∈ [m] (5h)

λi ∈ R ri + qi − BT
i: x = bi ∀i ∈ [n] (5i)

βj ≥ 0 xj ≤ 1 ∀j ∈ [p] (5j)
αi ≥ 0 si ≤ 1 ∀i ∈ [m], (5k)

where the dual criterion is

f(z, y, s, r, q, x) = ϕT z + ϕT y + wT s + λ
T
r + λT q + vT x (6)
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and clearly, at optimum of the primal, we have

αi = max{wi − ϕi, 0} ∀i ∈ [m] (7a)

βj = max{vj + AT
:jϕ + BT

:jλ, 0} ∀j ∈ [p]. (7b)

The variables α, β were eliminated from the primal formulation (5) to obtain (4)
due to similar reasoning as in Example 3. We also remark that setting ϕi = ∞
(resp. ϕ

i
= −∞, λi = ∞, λi = −∞) results in zi = 0 (resp. yi = 0, ri = 0,

qi = 0).
Even though the primal-dual pair (5) might seem overcomplicated, such

general description is in fact necessary because as described in Sect. 2, equiv-
alent reformulations may not preserve the structure of interior local minima and
we would like to describe as general class, where optimality is guaranteed, as
possible.

Example 4. To give the reader better insight into the problems (5), we present
a simplification based on omitting the matrix A (i.e. m = 0) and setting λ = 0,
λ = ∞, which results in ri = 0 and variables qi become slack variables in (5i).
The primal-dual pair in this case then simplifies to

min
∑

i∈[p]

βi + bT λ max vT x (8a)

βj − BT
:jλ ≥ vj xj ≥ 0 ∀j ∈ [p] (8b)

βj ≥ 0 xj ≤ 1 ∀j ∈ [p] (8c)

λi ≥ 0 −BT
i: x ≤ bi ∀i ∈ [n]. (8d)

Theorem 2. For a problem (4) satisfying conditions of Theorem1 and a given
interior local minimum (ϕ, λ), the values3

xj =

⎧
⎪⎨

⎪⎩

0 if AT
:jϕ + BT

:jλ + vj < 0
1
2 if AT

:jϕ + BT
:jλ + vj = 0

1 if AT
:jϕ + BT

:jλ + vj > 0
si =

⎧
⎪⎨

⎪⎩

1 if wi > ϕi

0 if wi < ϕi

h[0,1](ai + AT
i:x) if wi = ϕi

ri =

{
0 if λi < λi

h
R

−
0
(bi + BT

i: x) if λi = λc
zi =

{
0 if ϕi < ϕi

h
R

−
0
(ai + AT

i:x − si) if ϕi = ϕi

qi =

{
0 if λi > λi

h
R

+
0
(bi + BT

i: x) if λi = λi

yi =

{
0 if ϕi > ϕ

i

h
R

+
0
(ai + AT

i:x − si) if ϕi = ϕ
i

are feasible for the dual (5) and satisfy complementary slackness with primal (5),
where the remaining variables of the primal are given by (7).

3 We define h[x,y](z) = min{y,max{z, x}} to be the projection of z ∈ R onto the
interval [x, y] ⊆ R. The projection onto unbounded intervals (−∞, 0] and [0,∞) is
defined similarly and is denoted by h

R
−
0

and h
R
+
0

for brevity.
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It can be immediately seen that all the constraints of dual (5) are satisfied
except for (5h) and (5i), which require a more involved analysis. The complete
proof of Theorem2 is technical (based on verifying many different cases) and
given in Appendix B in [10].

4 Applications

Here we show that several LP relaxations of combinatorial problems correspond
to the form (4) or to the dual (5) and discuss which additional constraints
correspond to the assumptions of Theorem1.

4.1 Weighted Partial Max-SAT

In weighted partial Max-SAT, one is given two sets of clauses, soft and hard.
Each soft clause is assigned a positive weight. The task is to find values of binary
variables xi ∈ {0, 1}, i ∈ [p] such that all the hard clauses are satisfied and the
sum of weights of the satisfied soft clauses is maximized.

We organize the m soft clauses into a matrix S ∈ {−1, 0, 1}m×p defined as

Sci =

⎧
⎪⎨

⎪⎩

1 if literal xi is present in soft clause c

−1 if literal ¬xi is present in soft clause c

0 otherwise
,

In addition, we denote nS
c =

∑
i[[Sci < 0]] to be the number of negated variables

in clause c. These numbers are stacked in a vector nS ∈ Z
m. The h hard clauses

are organized in a matrix H ∈ {−1, 0, 1}h×p and a vector nH ∈ Z
h in the same

manner.
The LP relaxation of this problem reads

max
∑

c∈[m]

wcsc (10a)

sc ≤ ST
c:x + nS

c ∀c ∈ [m] (10b)

HT
c:x + nH

c ≥ 1 ∀c ∈ [h] (10c)
xi ∈ [0, 1] ∀i ∈ [p] (10d)
sc ∈ [0, 1] ∀c ∈ [m], (10e)

where wc ∈ R
+
0 are the weights of the soft clauses c ∈ [m]. This is a sub-class

of the dual (5), where A = S, B = −H, a = nS , b = 1 − nH , ϕ = 0 (y ≥ 0 are
therefore slack variables for the dual constraint (5h) that correspond to (10b)),
ϕ = ∞ (therefore z = 0), λ = −∞ (therefore q = 0), λ = 0 (r ≤ 0 are slack
variables for the dual constraint (5i) that correspond to (10c)), v = 0.

Formulation (10) satisfies the conditions of Theorem1 if each of the clauses
has length at most 2. In other words, optimality is guaranteed for weighted
partial Max-2SAT.
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Also notice that if we omitted the soft clauses (10b) and instead set v = −1,
we would obtain an instance of Min-Ones SAT, which could be generalized to
weighted Min-Ones SAT. This relaxation would still satisfy the requirements of
Theorem 1 if all the present hard clauses have length at most 2.

Results. We tested the method on 800 smallest4 instances that appeared in
Max-SAT Evaluations [2] in years 2017 [1] and 2018 [3]. The results on the
instances are divided into groups in Table 1 based on the minimal and maximal
length of present clauses. We have also tested this approach on 60 instances of
weighted Max-2SAT from Ke Xu [33]. The highest number of logical variables in
an instance was 19034 and the highest overall number of clauses in an instance
was 31450. It was important to separate the instances without unit clauses (i.e.
clauses of length 1), because in such cases the LP relaxation (10) has a trivial
optimal solution with xi = 1

2 for all i ∈ V .
Coordinate-wise minimization was stopped when the criterion did not

improve by at least ε = 10−7 after a whole cycle of updates for all variables.
We report the quality of the solution as the median and mean relative differ-
ence between the optimal criterion and the criterion reached by coordinate-wise
minimization before termination.

Table 1 reports not only instances of weighted partial Max-2SAT but also
instances with longer clauses, where optimality is no longer guaranteed. Never-
theless, the relative differences on instances with longer clauses still seem not
too large and could be usable as bounds in a branch-and-bound scheme.

Table 1. Experimental comparison of coordinate-wise minimization and exact solu-
tions for LP relaxation on instances from [2] (first 4 rows) and [33] (last row).

Instance Group Specification Results

Min CL Max CL #inst. Mean RD Median RD

≥ 2 any 91 0 0

1 2 123 1.44 · 10−9 1.09 · 10−11

1 3 99 6.98 · 10−3 1.90 · 10−7

1 ≥ 4 487 1.26 · 10−2 2.97 · 10−3

1 2 60 1.59 · 10−9 5.34 · 10−10

4 Smallest in the sense of the file size. All instances could not have been evaluated due
to their size and lengthy evaluation.
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4.2 Weighted Vertex Cover

Dual (8) also subsumes5 the LP relaxation of weighted vertex cover, which reads

min
{ ∑

i∈V

vixi

∣∣∣ xi + xj ≥ 1 ∀{i, j} ∈ E, xi ∈ [0, 1] ∀i ∈ V
}

(11)

where V is the set of nodes and E is the set of edges of an undirected graph.
This problem also satisfies the conditions of Theorem 1 and therefore the corre-
sponding primal (4) will have no non-optimal interior local minima.

On the other hand, notice that formulation (11), which corresponds to dual
(5) can have non-optimal interior local minima even with respect to all subsets
of variables of size |V | − 1, an example is given in Appendix C in [10].

We reported the experiments on weighted vertex cover in [30] where the
optimality was not proven yet. In addition, the update designed in [30] ad hoc
becomes just a special case of our general update here.

4.3 Minimum st-Cut, Maximum Flow

Recall from [11] the usual formulation of max-flow problem between nodes s ∈ V
and t ∈ V on a directed graph with vertex set V , edge set E and positive edge
weights wij ∈ R

+
0 for each (i, j) ∈ E, which reads

max
∑

(s,i)∈E

fsi (12a)

0 ≤ fij ≤ wij ∀(i, j) ∈ E (12b)
∑

(u,i)∈E

fui −
∑

(j,u)∈E

fju = 0 ∀u ∈ V − {s, t}. (12c)

Assume that there is no edge (s, t), there are no ingoing edges to s and no
outgoing edges from t, then any feasible value of f in (12) is an interior local
optimum w.r.t. individual coordinates by the same reasoning as in Example 2 due
to the flow conservation constraint (12c), which limits each individual variable to
a single value. We are going to propose a formulation which has no non-globally
optimal interior local optima.

5 It is only necessary to transform minimization to maximization of negated objective
in (11).
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The dual problem to (12) is the minimum st-cut problem, which can be
formulated as

max
∑

(i,j)∈E

wijyij (13a)

yij ≤ 1 − xi + xj ∀(i, j) ∈ E, i �= s, j �= t (13b)
ysj ≤ xj ∀(s, j) ∈ E (13c)
yit ≤ 1 − xi ∀(i, t) ∈ E (13d)
yij ∈ [0, 1] ∀(i, j) ∈ E, (13e)
xi ∈ [0, 1] ∀i ∈ V − {s, t}, (13f)

where yij = 0 if edge (i, j) is in the cut and yij = 1 if edge (i, j) is not in the cut.
The cut should separate s and t, so the set of nodes connected to s after the cut
will be denoted by S and T = V −S is the set of nodes connected to t. Using this
notation, xi = [[i ∈ S]]. Formulation (13) is different from the usual formulation
by replacing the variables yij by 1 − yij , therefore we also maximize the weight
of the not cut edges instead of minimizing the weight of the cut edges, therefore
if the optimal value of (13) is O, then the value of the minimum st-cut equals∑

(i,j)∈E wij − O.
Formulation (13) is subsumed by the dual (5) by setting ϕ = 0, ϕ = ∞ and

omitting the B matrix. Also notice that each yij variable occurs in at most one
constraint. The problem (13) therefore satisfies the conditions of Theorem 1 and
the corresponding primal (4) is a formulation of the maximum flow problem, in
which one can search for the maximum flow by coordinate-wise minimization.
The corresponding formulation (4) reads

min
( ∑

(i,j)∈E

max{wij − ϕij , 0} +
∑

(i,j)∈E,i�=s

ϕij+

+
∑

i∈V −{s,t}
max

{ ∑

(j,i)∈E

ϕji −
∑

(i,j)∈E

ϕij , 0
})

(14a)

ϕij ≥ 0 ∀(i, j) ∈ E. (14b)

Results. We have tested our formulation for coordinate-wise minimization on
max-flow instances6 from computer vision. We report the same statistics as with
Max-SAT in Table 2, the instances corresponded to stereo problems, multiview
reconstruction instances and shape fitting problems.

For multiview reconstruction and shape fitting, we were able to run our
algorithm only on small instances, which have approximately between 8 · 105

and 1.2 · 106 nodes and between 5 · 106 and 6 · 106 edges. On these instances, the
algorithm terminated with the reported precision in 13 to 34 min on a laptop.

6 Available at https://vision.cs.uwaterloo.ca/data/maxflow.

https://vision.cs.uwaterloo.ca/data/maxflow


62 T. Dlask and T. Werner

Table 2. Experimental comparison of coordinate-wise minimization on max-flow
instances, the references are the original sources of the data and/or to the authors
that reformulated these problems as maximum flow. The first 6 rows correspond to
stereo problems, the 2 following rows are multiview reconstruction instances, the last
row is a shape fitting problem.

Instance group or instance Results

Name #inst. Mean RD Median RD

BVZ-tsukuba [7] 16 6.03 · 10−10 1.17 · 10−11

BVZ-sawtooth [7,25] 20 9.83 · 10−11 6.11 · 10−12

BVZ-venus [7,25] 22 3.40 · 10−11 2.11 · 10−12

KZ2-tsukuba [20] 16 2.69 · 10−10 1.77 · 10−10

KZ2-sawtooth [20,25] 20 4.08 · 10−9 1.56 · 10−10

KZ2-venus [20,25] 22 5.21 · 10−9 1.74 · 10−10

BL06-camel-sml [23] 1 1.21 · 10−11

BL06-gargoyle-sml [6] 1 6.29 · 10−12

LB07-bunny-sml [22] 1 1.33 · 10−10

4.4 MAP Inference with Potts Potentials

Coordinate-wise minimization for the dual LP relaxation of MAP inference was
intensively studied, see e.g. the review [29]. One of the formulations is

min
∑

i∈V

max
k∈K

θδ
i (k) +

∑

{i,j}∈E

max
k,l∈K

θδ
ij(k, l) (15a)

δij(k) ∈ R ∀{i, j} ∈ E, k ∈ K, (15b)

where K is the set of labels, V is the set of nodes and E is the set of unoriented
edges and

θδ
i (k) = θi(k) −

∑

j∈Ni

δij(k) (16a)

θδ
ij(k, l) = θij(k, l) + δij(k) + δji(l) (16b)

are equivalent transformations of the potentials. Notice that there are 2 · |E| · |K|
variables, i.e. two for each direction of an edge. In [24], it is mentioned that in
case of Potts interactions, which are given as θij(k, l) = −[[k �= l]], one can add
constraints

δij(k) + δji(k) = 0 ∀{i, j} ∈ E, k ∈ K (17a)

− 1
2 ≤ δij(k) ≤ 1

2 ∀{i, j} ∈ E, k ∈ K (17b)

to (15) without changing the optimal objective. One can therefore use constraint
(17a) to reduce the overall amount of variables by defining

λij(k) = −δij(k) = δji(k) (18)
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subject to 1
2 ≤ λij(k) ≤ 1

2 . The decision of whether δij(k) or δji(k) should
have the inverted sign depends on the chosen orientation E′ of the originally
undirected edges E and is arbitrary. Also, given values δ satisfying (17), it holds
for any edge {i, j} ∈ E and pair of labels k, l ∈ K that max

k,l∈K
θδ

ij(k, l) = 0, which

can be seen from the properties of the Potts interactions.
Therefore, one can reformulate (15) into

min
∑

i∈V

max
k∈K

θλ
i (k) (19a)

− 1
2 ≤ λij(k) ≤ 1

2 ∀(i, j) ∈ E′, k ∈ K, (19b)

where the equivalent transformation in λ variables is given by

θλ
i (k) = θi(k) +

∑

(i,j)∈E′
λij(k) −

∑

(j,i)∈E′
λji(k) (20)

and we optimize over |E′| · |K| variables λ, the graph (V,E′) is the same as graph
(V,E) except that each edge becomes oriented (in arbitrary direction). The way
of obtaining an optimal solution to (15) from an optimal solution of (19) is given
by (18) and depends on the chosen orientation of the edges in E′. Also observe
that θδ

i (k) = θλ
i (k) for any node i ∈ V and label k ∈ K and therefore the optimal

values will be equal. This reformulation therefore maps global optima of (19) to
global optima of (15). However, it does not map interior local minima of (19) to
interior local minima of (15) when |K| ≥ 3, an example of such case is shown in
Appendix D in [10].

In problems with two labels (K = {1, 2}), problem (19) is subsumed by (4)
and satisfies the conditions imposed by Theorem 1 because one can rewrite the
criterion by observing that

max
k∈{1,2}

θλ
i (k) = max{θλ

i (1) − θλ
i (2), 0} + θλ

i (2) (21)

and each λij(k) is present only in θλ
i (k) and θλ

j (k). Thus, λij(k) will have non-
zero coefficient in the matrix B only on columns i and j. The coefficients of
the variables in the criterion are only {−1, 0, 1} and the other conditions are
straightforward.

We reported the experiments on the Potts problem in [30] where the optimal-
ity was not proven yet. In addition, the update designed in [30] ad hoc becomes
just a special case of our general update here.

4.5 Binarized Monotone Linear Programs

In [13], integer linear programs with at most two variables per constraint were
discussed. It was also allowed to have 3 variables in some constraints if one of the
variables occurred only in this constraint and in the objective function. Although
the objective function in [13] was allowed to be more general, we will restrict
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ourselves to linear criterion function. It was also shown that such problems can
be transformed into binarized monotone constraints over binary variables by
introducing additional variables whose amount is defined by the bounds of the
original variables, such optimization problem reads

min wT x + eT z (22a)
Ax − Iz ≤ 0 (22b)

Cx ≤ 0 (22c)
x ∈ {0, 1}n1 (22d)
z ∈ {0, 1}n2 , (22e)

where A,C contain exactly one −1 per row and exactly one 1 per row and all
other entries are zero, I is the identity matrix. We refer the reader to [13] for
details, where it is also explained that the LP relaxation of (22) can be solved
by min-st-cut on an associated graph. We can notice that the LP relaxation of
(22) is subsumed by the dual (5), because one can change the minimization into
maximization by changing the signs in w, e. Also, the relaxation satisfies the
conditions given by Theorem1.

In the paper [13], there are listed many problems which are transformable
to (22) and are also directly (without any complicated transformation) sub-
sumed by the dual (5) and satisfy Theorem1, for example, minimizing the sum
of weighted completion times of precedence-constrained jobs (ISLO formulation
in [9]), generalized independent set (forest harvesting problem in [14]), gener-
alized vertex cover [15], clique problem [15], Min-SAT (introduced in [17], LP
formulation in [13]).

For each of these problems, it is easy to verify the conditions of Theorem1,
because they contain at most two variables per constraint and if a constraint
contains a third variable, then it is the only occurrence of this variable and the
coefficients of the variables in the constraints are from the set {−1, 0, 1}.

The transformation presented in [13] can be applied to partial Max-SAT and
vertex cover to obtain a problem in the form (22) and solve its LP relaxation.
But this step is unnecessary when applying the presented coordinate-wise mini-
mization approach.

5 Concluding Remarks

We have presented a new class of linear programs that are exactly solved by
coordinate-wise minimization. We have shown that dual LP relaxations of sev-
eral well-known combinatorial optimization problems (partial Max-2SAT, vertex
cover, minimum st-cut, MAP inference with Potts potentials and two labels, and
other problems) belong, possibly after a reformulation, to this class. We have
shown experimentally (in this paper and in [30]) that the resulting methods are
reasonably efficient for large-scale instances of these problems. When the assump-
tions of Theorem 1 are relaxed (e.g., general Max-SAT instead of Max-2SAT, or
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the Potts problem with any number of labels), the method experimentally still
provides good local (though not global in general) minima.

We must admit, though, that the practical impact of Theorem1 is limited
because the presented dual LP relaxations satisfying its assumptions can be
efficiently solved also by other approaches. Thus, max-flow/min-st-cut can be
solved (besides well-known combinatorial algorithms such as Ford-Fulkerson) by
message-passing methods such as TRW-S. Similarly, the Potts problem with two
labels is tractable and can be reduced to max-flow. In general, all considered LP
relaxations can be reduced to max-flow, as noted in Sect. 4.5. Note, however, that
this does not make our result trivial because (as noted in Sect. 2) equivalent
reformulations of problems may not preserve interior local minima and thus
message-passing methods are not equivalent in any obvious way to our method.

It is open whether there are practically interesting classes of linear programs
that are solved exactly (or at least with constant approximation ratio) by (block-)
coordinate minimization and are not solvable by known combinatorial algorithms
such as max-flow. Another interesting question is which reformulations in general
preserve interior local minima and which do not.

Our approach can pave the way to new efficient large-scale optimization
methods in the future. Certain features of our results give us hope here. For
instance, our approach has an important novel feature over message-passing
methods: it applies to a constrained convex problem (the box constraints (4b)
and (4c)). This can open the way to a new class of applications. Furthermore,
updates along large variable blocks (which we have not explored) can speed
algorithms considerably, e.g., TRW-S uses updates along subtrees of a graphical
model, while max-sum diffusion uses updates along single variables.
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Abstract. The present paper is devoted to travel time equilibration
procedure for solving traffic assignment problem with respect to route
flows. We prove that equilibrium route-flow assignment can be easily
obtained by implementing equilibration procedure together with simple
rules for sequential extension and/or by reducing the set of active routes.
Accurate route-flow solution for the small Sioux Falls network is found
via the developed algorithm and demonstrates some important points
related with visualization issues, decision making support and scenario
analysis in the sphere of transportation planning.
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1 Introduction

The traffic assignment problem (TAP) is an optimization problem with non-
linear objective function and linear constraints, which allows one to find traffic
assignment in a road network by given travel demand values. The solution of
TAP is proved to satisfy so called user equilibrium (UE) behavioural principle,
formulated by J. G. Wardrop as follows: “The journey times in all routes actually
used are equal and less than those that would be experienced by a single vehicle
on any unused route” [15]. Actually, the first mathematical formulation of TAP
was given by Beckmann et al. [2]. In this paper we consider an important case of
a link-route TAP formulation, available under arc-additive travel time functions.
The link-route formulation, first and foremost, allows to establish clear relation-
ships between the link-flow and route-flow assignment patterns. In Sect. 3 we
assume that the travel time functions are both separable and non-decreasing and
prove that equilibrium route-flow assignment can be easily obtained by imple-
menting simple rules for sequential extension and/or by reducing the set of active
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routes. Pseudocode for an algorithm based on travel times equilibration proce-
dure is given in Sect. 4. Section 5 demonstrates certain decision making aspects
which appear when TAP is solved with respect to route flows under link-route
formulation. Conclusion is given in Sect. 6.

2 Traffic Assignment Problem

Let us consider an urban road network presented by a directed graph G = (E, V ),
where V represents a set of intersections, while E ⊆ V × V represents a set of
available roads between the adjacent intersections. Define W ⊆ V × V as the
ordered set of pairs of nodes with non-zero travel demand Fw > 0, w ∈ W .
W is usually called as the set of origin-destination pairs (OD-pairs), |W | = m.
Any set of sequentially linked edges initiating in the origin node of OD-pair w
and terminating in the destination node of the OD-pair w we call route between
the OD-pair w, w ∈ W . The ordered set of all possible routes between nodes of
the OD-pair w we denote as Rw, w ∈ W , and ordered set of all possible routes
between all OD-pairs we denote as R, R = ∪w∈WRw. Demand Fw > 0 seeks
to be assigned between the available routes Rw :

∑
r∈Rw fw

r = Fw, where fw
r is

a variable corresponding to a traffic flow through route r ∈ Rw between nodes
of OD-pair w ∈ W . Introduce the vector of demand F = (F 1, . . . , Fm)T and
the vector f associated with the route-flow traffic assignment pattern, such that
f = fR = (. . . , fw

r , . . .)T is actually a vector of {fw
r }w∈W

r∈Rw .
Let us introduce differentiable strictly increasing functions on the set of real

numbers te(·), e ∈ E. We suppose that te(·), e ∈ E, are non-negative and
their first derivatives are strictly positive on the set of real numbers. By xe

we denote traffic flow on the edge e, while x is an appropriate vector of link-
flows, x = (. . . , xe, . . .)T, e ∈ E. Defined functions te(xe) are used to describe
travel time on edges e, e ∈ E, and they are commonly called link delay, cost or
performance functions. In this section we assume that the travel time function
of the route r ∈ Rw between OD-pair w ∈ W is the sum of travel delays on
all edges belonging to this route. Thus, we define travel time through the route
r ∈ Rw between OD-pair w ∈ W as the following separable function

twr (f) =
∑

e∈E

te(xe)δwe,r ∀r ∈ Rw, w ∈ W, (1)

where, by definition,

δwe,r =
{

1, if edge e belongs to the route r ∈ Rw,
0, otherwise. ∀e ∈ E,w ∈ W,

while, naturally,
xe =

∑

w∈W

∑

r∈Rw

fw
r δwe,r ∀e ∈ E, (2)

i.e. traffic flow on the edge is the sum of traffic flows through all routes which
include this edge or in a matrix form

x = ΔRfR, (3)
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with a link-route incidence matrix ΔR (generally, non-square) defined for the
set of routes R, whereas ΔT

R is a route-link incidence matrix defined for the set
of routes R.

The equilibrium traffic assignment problem under separable travel time func-
tions has the following form of optimization program:

min
f

∑

e∈E

∫ xe

0

te(u)du, (4)

subject to ∑

r∈Rw

fw
r = Fw, ∀w ∈ W, (5)

fw
r ≥ 0 ∀r ∈ Rw, w ∈ W, (6)

where, by definition,

xe =
∑

w∈W

∑

r∈Rw

fw
r δwe,r ∀e ∈ E. (7)

A link-flow assignment pattern x and corresponding route-flow assignment pat-
tern f , satisfying (4)–(7), are proved to reflect user equilibrium traffic assignment
or such an assignment that

twr (f) =
∑

e∈E

te(xe)δwe,r

{
= tw, if fw

r > 0,
≥ tw, if fw

r = 0,
∀r ∈ Rw, w ∈ W, (8)

where tw is called an equilibrium travel time or travel time on actually used
routes between OD-pair w, w ∈ W . Herewith, in case x is searched as a result of
solving (4)–(7), then one deals with link-flow equilibrium traffic assignment prob-
lem. Otherwise, if f is searched, then route-flow equilibrium traffic assignment
problem is under consideration.

Such formulation is highly fruitful: despite UE principle was formulated in
terms of routes, the efficient approach for coping with TAP was firstly obtained
in terms of links (arcs) independently by [10] and [12]. Although they just
implemented a quadratic programming algorithm ([5]) to estimate UE arc flows,
LeBlanc and Nguyen contributed significantly in the research area: when solving
TAP, they offered to deal with arcs composing the most appropriate (shortest)
paths only without storing all of the decision variables. Currently, storing data
on the variables concerning the restricted set of routes and links, has become
the most common (and even central) practice among algorithm developers in
the field of equilibrium traffic flow assignment.

3 Descent Direction for Equilibrium Route-Flow Traffic
Assignment Problem

Equilibration of travel times on any given set of routes decreases the goal function
(4). This fact is proved by virtue of the following statements.
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Theorem 1 ([3]). If, for a flow pattern satisfying (5), there exist for some
w ∈ W , paths p, q ∈ Rw such that fp > 0, fq > 0 and

twp (f) > twq (f),

then
∑

e∈E

∫ xe

0
te(u)du is lowered by transferring flow from p to q.

In its turn, this theorem allows us to prove easily the following corollary.

Corollary 1. Let us consider a feasible route-flow pattern f̄ . If we reassign flows
on routes from a set R̂ ⊂ R only in such a way that equilibrates travel times
on these routes in order to obtain the route-flow pattern f̂ , then the following
inequality holds

∑

e∈E

∫ x̂e

0

te(u)du <
∑

e∈E

∫ x̄e

0

te(u)du,

where x̄ and x̂ are corresponding link-flow patterns x̄ = ΔRf̄ and x̂ = ΔRf̂ .

Proof. It follows directly from the Theorem of [3].

Therefore, the iterative extension of the set of active routes (routes with
non-zero flows) and equilibration of travel times on these routes can be treated
as the descent direction for global optimization of the problem (4)–(7), since,
according to Corollary 1, it decreases the goal function value. However, a route-
flow assignment pattern obtained at a certain step of such iterative process can
possess negative components.

Theorem 2. Let us assume that the route-flow pattern f̂ ∈ FR̂ equilibrates
travel times on the given set R̂ ⊆ R, and there exists p̃ ∈ R̂v for some v ∈ W such
that f̂v

p̃ < 0. If the travel time functions {twr (f)}w∈W

r∈R̂
are non-decreasing, then

equilibration of travel times on routes of the set R̂\p̃ will decrease equilibrium
travel time.

Proof. Let us consider a route-flow assignment pattern f̂ ∈ FR̂. We believe that
f̂ equilibrates travel times on routes of some given set R̂ ⊆ R:

twr (f̂) = twp (f̂) ∀r, p ∈ R̂w, w ∈ W

f̂w
p = 0 ∀p ∈ Rw\R̂w, w ∈ W,

and there exists p̃ ∈ R̂v for some v ∈ W such that f̂v
p̃ < 0. Hence it means that

for this v ∈ W

tvr(f̂) = tvp̃(f̂) ∀r ∈ R̂v,

f̂v
p̃ < 0.

At the same time ∑

r∈R̂v

f̂v
r =

∑

r∈R̂v\p̃
f̂v
r + f̂v

p̃ = F v
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or ∑

r∈R̂v\p̃
f̂v
r = F v − f̂v

p̃ ,

thus, since f̂v
p̃ < 0, then

∑

r∈R̂v\p̃
f̂v
r > F v.

Since functions {te(x)}e∈E are non-decreasing, then there exists a unique equi-
librium link-flow assignment pattern x̄ for the set of active routes R̂\p̃ and,
consequently there exists at least one corresponding route-flow pattern f̄ which
equilibrates travel times on routes of set R̂\p̃. Herewith

∑

r∈R̂v\p̃
f̄v
r = F v,

then ∑

r∈R̂v\p̃
f̄v
r <

∑

r∈R̂v\p̃
f̂v
r

and ∑

w∈W

∑

r∈R̂w\p̃
f̄w
r <

∑

w∈W

∑

r∈R̂w\p̃
f̂w
r .

Therefore, since functions twr (f), r ∈ R̂, w ∈ W , are non-decreasing then

twr (f̄) ≤ twr (f̂), ∀r ∈ R̂w\p̃, w ∈ W.

Theorem is proved.

Fig. 1. Single-commodity network

Therefore, a negative component in route-flow assignment pattern, equilibrat-
ing travel times, actually indicates that the corresponding route is too “long”.
Indeed, consider an example network presented by a digraph with two nodes
(Fig. 1). Let us assume that two short routes and one long route are avail-
able for travelling of 40 vehicles from node 1 to node 2. Travel time func-
tions are presented by t1(f1) = 12 + (f1/10)4, t1(f1) = 10 + (f2/15)4 and
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t3(f3) = 30 + (f3/12)4. If we equilibrate travel times on the set of all three
routes then t1(f1) = t2(f2) = t3(f3) = 31.5 while f1 = 21, f2 = 32.3 and
f3 = −13.3. However, if we exclude the long route and equilibrate travel times
on the set of two short routes, then t1(f1) = t2(f2) = 17.4, while f1 = 15.3 and
f2 = 24.7. Hence, equilibrium travel time on two short routes is less then free
travel time on the long one. Thus, negative component in a route-flow pattern
which equilibrates travel times on available set of routes indicates that for a given
travel demand the corresponding route with negative flow is actually excessive.

Corollary 2. Minimal equilibrium travel times are reached on the set of actually
used routes.

Proof. Let us consider an arbitrary set of routes R̄ and some route p /∈ R̄. If f̄
and f̃ are route-flow patterns, equilibrating travel times on routes R̄ and R̄ ∪ p
correspondingly, which do not include negative components, then twr (f̃) ≤ twr (f̄)
for any r ∈ R̄w, w ∈ W , since functions {twr (f)}w∈W

r∈Rw are increasing. Therefore,
extension of the set of routes decreases equilibrium travel time if route-flow
pattern, equilibrating travel times on routes from extended set, has no negative
components.

From the other hand, according to Theorem 2, if f̄ and f̃ are route-flow
patterns, equilibrating travel times of routes R̄ and R̄ ∪ p correspondingly, in
such way that f̄ has no negative components while f̃ has a negative component,
then twr (f̃) ≥ twr (f̄) for any r ∈ R̄w, w ∈ W .

Therefore, minimal travel times will be reached on such set of routes R̂, whose
corresponding route-flow pattern f̂ has no negative components and equilibrium
travel time on any route from R̂ is less or equal to zero-route-flow travel time
on any route p /∈ R̂. Consequently, by definition, R̂ is the set of actually used
routes.

Corollary is proved.

Thus, according to Theorem 2, the exclusion routes with negative flows from
the set of active routes and equilibration of travel times on remaining routes can
be also treated as descent direction for global optimization of the problem (4)–
(7) since it minimizes equilibrium travel time and this, according to Corollary
2, leads to the equilibrium route-flow traffic assignment pattern.

Therefore, two following actions are proved to reflect the descent direction
for solving the equilibrium route-flow traffic assignment problem with respect to
the set of actually used routes:

– iterative extension of the set of active routes and equilibration of travel times
on these routes;

– exclusion routes with negative flows from the set of active routes.

4 Algorithm

The statements that have been proved above allow us to give the general descrip-
tion of an algorithm (Algorithm 1) employing successive travel times equilibra-
tion for solving the route-flow traffic assignment problem (under E we understand
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the travel times equilibration procedure, e.g. [7–9]). Since the set of all feasi-
ble routes between any OD-pair in an actual urban road network is certainly
redundant, it is absolutely typical for the up-to-date algorithms to operate with
restricted sets of feasible routes when solving the route-flow equilibrium traffic
assignment problem.

Algorithm 1. Solving RF-TAP with respect to the set of actually used routes
1: f ← O & R̂ ← ∅
2: for w = 1, . . . , |W | do
3: p ← shortest path between OD-pair w
4: R̂ ← R̂ ∪ p
5: end for
6: f ← E(f, R̂)
7: while ∃ p ∈ Rw\R̂w, w ∈ W : twp (f) < twr (f) ∀ r ∈ R̂w do
8: for w = 1, . . . , |W | do
9: p ← shortest path between OD-pair w on G congested by f

10: R̂ ← R̂ ∪ p
11: end for
12: f ← E(f, R̂)
13: for w = 1, . . . , |W | do
14: if ∃ r ∈ R̂w : fw

r < 0 then
15: R̂ ← R̂\r
16: end if
17: end for
18: f ← E(f, R̂)
19: end while
20: return f & R̂

Theorem 3. Algorithm 1 converges to an equilibrium route-flow traffic assign-
ment pattern f̂ with the set of actually used routes R̂.

Proof. According to Corollary 1, the iterative extension of the set of active routes
and equilibration of travel times on these routes can be treated as the descent
direction for global optimization of the problem (4)–(7). Thus, steps 8–12 of
Algorithm 1 decrease the goal function value of the problem (4)–(7). On the other
hand, according to Theorem 2, the exclusion routes with negative flows from the
set of active routes minimizes the equilibrium travel time. Thus, according to
Corollary 2, steps 13–18 leads to the equilibrium route-flow traffic assignment
pattern as well.

Theorem is proved.

5 Numerical Result

Let us consider the Sioux Falls road network the complete input data and the
best link-flow solution of which are available at:
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https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls.
We apply Algorithm 1 to solve TAP on the Sioux Falls network in order to obtain
a route-flow solution. Link delays are “traditionally” modeled by the following
BPR function:

te(xe) = t0e

[

1 + 0.15
(

xe

ce

)4
]

∀e ∈ E.

Notice, lines 7–19 in Algorithm 1 represent so-called main iteration of the
method. At this stage the algorithm checks if there are feasible routes to be
supplemented into the set of routes with non-zero flows. Zero main iteration
constructs the initial feasible route-flow pattern. Within coping with the present
case we constructed the initial pattern by disaggregating the master problem into
individual OD-pairs and solving TAP sequentially for each OD-pair. Herewith,
when solving TAP for any individual OD-pair we believed that the network is
congested by route flows obtained as solutions for already considered OD-pairs.
Eventually, Algorithm 1 with operator K took seven main iterations to get highly
accurate solution as given in Table 1.

Table 1. Main iterations

Main iteration 0 1 2 3 4 5

Goal function value 47.738 43.558 42.753 42.427 42.325 42.317

Main iteration 6 7

Goal function value 42.31335287107793 42.31335287107442

Let us mention that the set of routes with non-zero flows stopped changing at
the sixth main iteration and the seventh main iteration was devoted to achieving
the higher accuracy level of the route-flow solution under already obtained set of
actually used routes. Moreover, it was 88% of computing time that was spent on
revealing the set of actually used routes, while improving the precision level of
the equilibrium route-flow assignment took the remaining 12%. Herewith, when
equilibrating travel times by the operator K we used 10−12 level of precision
which means that we believed that travel times were equal, if they were equal
up to twelfth digit after the decimal separator. All the output data concerning
the obtained route-flow solution such as the set of actually used routes, route
flows etc. one can find at:
http://www.apmath.spbu.ru/ru/staff/krylatov/files/RFsolutionSiouxFalls.csv.
Let us emphasize that for any OD-pair obtained the actually used routes are inde-
pendent and, consequently, the obtained equilibrium route-flow traffic assign-
ment pattern is unique for this set of routes. Let us pay attention to visualization
ability of the route-flow TAP solution and its assistance for decision-making in
transportation planning.

First of all, the route-flow TAP solution allows one to make a matrix which
gives amount of actually used routes between each OD-pair. In fact, such a

https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls
http://www.apmath.spbu.ru/ru/staff/krylatov/files/RFsolutionSiouxFalls.csv
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Table 2. Amounts of actually used routes between OD-pairs in the Sioux Falls network

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 – 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

2 1 – 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – 1 1 – 1 – –

3 1 1 – 1 1 1 1 2 1 1 1 1 1 1 1 1 1 – – – – 1 1 –

4 1 1 1 – 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 – 1 1 1 1 1 1 1 1 1 1 1 1 – 1 1 1 1 1 –

6 1 1 1 1 1 – 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 – 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 – 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1

9 1 2 1 1 1 1 1 1 – 1 1 1 1 1 1 3 1 1 1 1 1 1 2 1

10 1 1 1 1 1 1 1 1 1 – 1 2 1 1 1 1 1 1 1 2 1 1 2 2

11 1 1 1 1 1 1 1 1 1 1 – 1 1 1 2 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 2 1 1 1 – 1 1 1 2 2 1 1 1 1 1 1 1

13 1 1 1 1 1 1 2 1 1 1 1 1 – 1 2 1 1 1 3 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 2 – 1 1 1 1 1 1 1 2 1 1

15 1 1 1 1 1 1 1 1 1 1 2 1 3 1 – 1 1 1 1 1 1 1 1 1

16 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 – 1 1 2 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – 1 1 1 2 1 1 2

18 1 – – 1 – 1 1 1 1 1 1 1 1 1 1 1 1 – 1 1 1 1 1 –

19 1 1 – 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 – 1 2 1 1 1

20 1 1 – 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 – 1 1 1 1

21 1 – – 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 – 1 1 1

22 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 – 1 1

23 1 – 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 – 1

24 1 – – 1 – 1 1 1 1 2 1 1 1 1 1 1 1 – 1 1 1 1 1 –

matrix reflects how the road network is used by drivers, i.e. which OD-pairs
are the most or the least loaded within available road infrastructure capability
and overall travel demand. Moreover, changing of elements values in the matrix
with amounts of actually used routes during successive periods of time indirectly
demonstrates dynamics of road network operation. Thus, in case of the Sioux
Falls road network we obtained the following amounts of actually used routes
between OD-pairs (Table 2). Vast majority of travel demand values between
given OD-pairs are satisfied by the single route. Indeed, among 528 OD-pairs
there are only 36 OD-pairs with more than one route. Herewith, only five OD-
pairs require three routes each, while the rest 31 OD-pairs need two routes each.
A single actually used route between an OD-pair means that corresponding travel
demand is met by the shortest path in the congested urban area, i.e. no driver
deviates from this path. On the contrary, several actually used routes between
an OD-pair mean that corresponding travel demand is met by the shortest path
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OD-pair (8, 13) OD-pair (9, 16) OD-pair (13, 19)

OD-pair (15, 13) OD-pair (16, 9)

Fig. 2. Sioux Falls road network

in the congested urban area together with some other paths, i.e. drivers get to
choose between certain alternatives.

Secondly, only the route-flow solution is actually able to show how the net-
work users behave. Moreover, a decision maker or a traffic engineer can observe
users behavior for each OD-pair separately when route-flow solution is obtained,
that is undoubtedly very convenient. Meanwhile, user equilibrium is primarily
a behavioral principle and so the behavioral strategies of users are expected to
be obtained. Thus, a route-flow solution represents the average individual user
strategies which is also very convenient from perspectives of decision making in
network management. Indeed, consider, for instance, OD-pairs (8, 13), (9, 16),
(13, 19), (15, 13) and (16, 9) with 3 actually used routes between every of them.
In other words, due to clear visualization of actually used routes, a decision
maker is able to see how the drivers behave under given traffic conditions and
which routes appeared to be the most appropriate between an OD-pair in the
congested road network.

Thirdly, topology of actually used routes can prompt feasible ways for
improving road network operation. Thus, the actual routes from node 8 to node
13 have allocation that forms the bottleneck within traffic assignment of just
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a single OD-pair. Hence, the road interchange in the node 3 or roadbed exten-
sion on arcs (3, 12) and (12, 13) are quite feasible improving decisions which
follow directly from given visualization. In turn, the actual routes from node 13
to node 19 allocate well without creating problem points in the road network.
Meanwhile, the average travel time from node 15 to node 13 could be decreased
by extension of roadbed on arcs (10, 11) and (11, 12). Finally, no improvements
seem to be available for OD-pairs (9, 16) and (16, 9), since trips between nodes
9 and 16 are made in “dense” transit topology which follows from too close
proximity of these nodes and high travel demand values. Nevertheless, let us
accentuate that described decisions certainly cannot be considered as a solution
of any kind in a mathematical sense (for example, solution of a corresponding
network design problem). However, the decision maker can simulate changes in
network operation based on obtained insights and evaluate which ones lead to
better results.

Therefore, software on decision making support in traffic management or
network design can be easily supplemented by two compact and clear tools. The
first one is a matrix of amounts of actually used routes between OD-pairs (like in
Table 2), while the second one is visualization of routes between any chosen OD-
pair (like on Fig. 2). Hence, once usage of a network has been assessed by virtue
of the matrix of amounts of actually used routes, a decision maker can visualize
in details the most significant OD-pairs from perspectives of used routes.

6 Conclusion

An important case of a link-route TAP formulation, available under arc-additive
travel time functions, is considered in this paper. We proved that equilibrium
route-flow assignment can be easily obtained by implementing equilibration pro-
cedure together with simple rules for sequential extension and/or by reducing
the set of active routes. Accurate route-flow solution for the small Sioux Falls
network was given. The solution was found via the developed algorithm in order
to demonstrate some important points related with visualization issues, decision
making support and scenario analysis in the sphere of transportation planning.

A comprehensive empirical study on comparing the traffic assignment algo-
rithms from these above mentioned groups has been recently made by [14]. They
concluded that when choosing a suitable algorithm for solving TAP, the level of
accuracy shall be one of the most important factors to be taken into account.
Thus, the highest level of precision was demonstrated by bush-based approaches
like the algorithm of [4] and the algorithm of [1]. Path-based methods as well as
various advanced link-based algorithms were categorized as ones which achieve
medium precision level in a reasonable amount of time. Low precision level
was demonstrated by simple link-based algorithms employing the basic com-
putational technique of Frank-Wolfe. However, while drawbacks and limits of
link-based approaches applying the Frank-Wolfe algorithm for solving TAP had
already been widely investigated by the end of the 20th century (see, for instance,
[11], [13]) and no any other breakthroughs in this regard have been obtained in
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recent decades, the newest results on path-based approaches seem to be encour-
aging. Indeed, according to the computational study of [6], the algorithms based
on path equilibration techniques are able to demonstrate state-of-the-art level
of accuracy in a reasonable amount of time.
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d’Informatique et de Recherche Opérationelle, Université de Montréal, Montréal
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Abstract. Machine learning has become one of the most important
tools in data analysis. However, selecting the most appropriate machine
learning algorithm and tuning its hyperparameters to their optimal val-
ues remains a difficult task. This is even more difficult for streaming
applications where automated approaches are often not available to help
during algorithm selection and configuration. This paper proposes the
first approach for automated algorithm selection and configuration of
stream clustering algorithms. We train an ensemble of different stream
clustering algorithms and configurations in parallel and use the best per-
forming configuration to obtain a clustering solution. By drawing new
configurations from better performing ones, we are able to improve the
ensemble performance over time. In large experiments on real and artifi-
cial data we show how our ensemble approach can improve upon default
configurations and can also compete with a-posteriori algorithm configu-
ration. Our approach is considerably faster than a-posteriori approaches
and applicable in real-time. In addition, it is not limited to stream clus-
tering and can be generalised to all streaming applications, including
stream classification and regression.

Keywords: Stream clustering · Data streams · Automated Machine
Learning · Algorithm configuration · Algorithm selection

1 Introduction

Over the past decades, machine learning has revolutionised many of its appli-
cation areas. However, due to the abundance of machine learning algorithms
and application scenarios, it is often necessary to select an algorithm which is
most suited for a given problem. In addition, machine learning algorithms tend
to be very sensitive to their configuration and it is important to tune hyper-
parameters to their optimal values, which can be difficult even for experienced
users. A first approach that tries to alleviate the user from this is Automated
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Machine Learning [18]. It attempts to make design decisions such as the selection
and configuration of machine learning algorithms automatically. Unfortunately,
many of these automated approaches require multiple passes over the data and
cannot adapt to changes over time. This makes them infeasible for any online or
streaming application. However, many of today’s data sources are data streams
due to the widespread usage of sensors, the internet-of-things and social media.
In this paper, we address the problem of automated algorithm selection and con-
figuration of stream clustering algorithms which aim to maintain clusters over
time in a stream of observations.

By using an ensemble of different algorithms and configurations, we are able
to adapt the optimal algorithm and its hyperparameter settings over time. Our
approach is not limited to stream clustering but can be applied to all streaming
scenarios, including stream classification and regression. In our experiments, we
use several state-of-the-art stream clustering algorithms. On multiple real and
artificial data streams, we show that our ensemble-approach always performs
better than the default configuration. Even compared to offline and a-posteriori
configuration approaches it produces competitive results, while being much faster
and applicable in real-time.

2 Background

2.1 Stream Clustering

Clustering is a popular tool for pattern recognition and is often used in marketing
or network analysis. However, a major drawback of traditional clustering is that
it requires a fixed data set. Whenever new data becomes available, the entire
analysis needs to be repeated. This is time consuming, undesirable and often
infeasible when working with data streams. An approach to solve this is stream
clustering which is able to cluster a continuous and possibly infinite stream of
observations. In stream clustering, relevant information is usually extracted into
so called micro-clusters before discarding an observation. The micro-clusters are
then “reclustered” into the final macro-clusters upon the user’s request. A survey
of stream clustering algorithms is available in [10].

Unfortunately, (stream) clustering algorithms usually require many hyper-
parameters to be set a-priori [10]. For example, typical implementations of
DenStream [6] have 8 hyperparameters [5] ranging from distance and weight
thresholds to window sizes. In practice, these settings are often difficult and
unintuitive to choose. With streaming data, the hyperparameters also need to
be adapted over time as the data changes. In this paper, we aim to automatically
select the best algorithm and its optimal configuration over time.

2.2 Automated Machine Learning

Automated Machine Learning (AutoML) attempts to make the design decision
in machine learning automatically [18]. For example, it tries tune the hyperpa-
rameters of algorithms automatically or select the most appropriate algorithms.
Popular approaches in AutoML are irace [20], SMAC [16] or ParamILS [17].
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irace for example can be used for automated algorithm configuration. It
uses a racing procedure where configurations that perform statistically worse are
removed after every race. New parameter configurations are drawn according to
probability distributions and the sampling is biased towards better performing
configurations. Unfortunately, the racing procedure makes it difficult to apply
irace for streaming applications. However, we can draw some inspiration from
the parameter sampling for our streaming case.

First ideas for Automated Algorithm Selection in the streaming scenario can
be found in the stream classification [21–24], stream regression [25] and online
learning [13,14] literature. First attempts used an ensemble approach where a
meta-classifier periodically predicts the most suitable algorithm based on the
stream’s characteristics [23]. Similarly, the BLAST algorithm [22,24] also uses an
ensemble of algorithms, but simply selects the best algorithm of the last window
as the active classifier. In the following, we use the same idea as an inspiration
to select and configure stream clustering algorithms.

In a first proof-of-concept [11], we already propose an ensemble approach
for automated algorithm configuration of stream clustering algorithms, called
confStream. For this, we use an ensemble of different configurations. Periodi-
cally, the clustering quality for every configuration is evaluated. Based on the
observed performance, a regression model is trained to predict the performance
of unknown configurations. Subsequently, a well performing configuration is sam-
pled from the ensemble and used to create a new configuration from it. If its
predicted performance is good enough, it replaces one of the configurations in
the ensemble.

Algorithm Config. Prob.

DenStream 0.01
DenStream 0.02
CluStream Euclid.
ClusTree true

Algorithm Config. Prob. silh.

DenStream 0.01 0.8
DenStream 0.02 0.9
CluStream Euclid. 0.3
ClusTree true 0.4

Algorithm Config. Prob.

DenStream 0.018

Algorithm Config. Prob. silh

DenStream 0.018 0.95

Algorithm Config. Prob. silh

DenStream 0.02 0.9

1) Evaluate
last window

2) Sample
parent

3) Create
offspring

4) Test on
next window

5)
R

ep
la

ce

Fig. 1. First, the performance of all algorithms and configurations in the ensemble
is evaluated. Afterwards, one algorithm is sampled to create an offspring and tested
on the next window. If its performance is high enough, it is used to replace one of
the algorithms in the ensemble. For brevity, only one hyperparameter per algorithm is
shown.
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3 Automated Algorithm Selection and Configuration for
Stream Clustering

In this section, we extend our ensemble idea for the confStream algorithm. In our
initial proposal, we only optimised one numeric parameter for a given algorithm.
Here, we extend upon this and also include the algorithm selection problem. In
particular, we treat the algorithm selection and algorithm configuration problem
as one large optimisation task. In addition, we show how to optimise multiple
parameters per algorithm which can be of different types such as numerical,
categorical, integer, binary or ordinal. Finally, we also improve the selection
process of new configurations and extensively test and compare the algorithm.

Our main idea is summarised in Fig. 1. Our algorithm uses a given starting
configuration, i.e. a list of algorithms, their initial configurations and the corre-
sponding parameter ranges. For example, this can be the default configuration
of all available algorithms.

To apply our ensemble strategy, we process the stream in windows of size
h. We use the observations in a window in order to train the algorithms in the
current ensemble. After every window, we evaluate the clustering quality for
every configuration (Step 1). In our experiments, we used the Silhouette Width
as a measure of cluster quality due to its popularity but other quality metrics are
equally applicable. For every observation i in the window, the Silhouette Width
uses the average similarity to its own cluster a(i) and compares it to the average
similarity to its closest cluster b(i):

s(i) =
b(i) − a(i)

max{a(i), b(i)} . (1)

The Silhouette Width is usually averaged over all observations to obtain a single
index. The algorithm with the highest cluster quality becomes the active clusterer
or incumbent and provides the current solution of confStream.

To obtain new configurations, a configuration is sampled from the ensemble
and serves as a parent (Step 2). The sampling is performed proportionally to the
performance of the algorithms such that better performing configurations have
a higher probability to be selected. In general, this can be implemented using a
simple Roulette Wheel Selection. Note, however, that the Silhouette Width has
a range of [−1, 1]. Since negative values cannot be used in Roulette Wheel Selec-
tion, we shift the values by |minx| −minx, where x are the Silhouette Widths
of all configurations. This would turn a sequence {−0.5, 0.8, 1} into {0.5, 1.8, 2}.
Also note that we do not necessarily choose the best performing algorithm in
order to increase the diversity in the ensemble.

The selected algorithm and configuration is then used as a parent in order
to derive a new configuration from it (Step 3). For this, we use some of the
ideas of irace [20]. Specifically, every parameter of every configuration has an
associated probability distribution. For numerical parameters, every parameter
maintains a truncated normal distribution N (μ, σ) with expectation μ and stan-
dard deviation σ. The expectation of the truncated normal distribution is placed
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Fig. 2. For numerical parameters, a truncated normal distribution is placed at the
parent to sample a new configuration. For categorical parameters, a new configuration
is drawn according to a list of probabilities. Both approaches increase the probability
for the offspring to favour promising solutions over time.

at the position of the parent to sample a new configuration. Subsequently, the
standard deviation of the child is reduced to increase exploitation of this area
(Fig. 2a). In our case, we use an exponential decay of the standard deviation
according to a fading factor λ:

σt+1 = σt · 2−λ (2)

The idea is to reduce the standard deviation in exponentially smaller steps in
order to narrow down a promising parameter region. Initially, the standard devia-
tion is set to half the parameter range. For integer parameters, the same sampling
strategy can be used, where the result is rounded to the nearest integer. Simi-
larly, for ordinal parameters (e.g. strong, medium, weak) we can use the integer
sampling strategy, where the resulting integer is used as the index in the list of
possible outcomes.

For categorical parameters, a list of probabilities for every outcome is main-
tained. Starting with equal probabilities, the new configuration is sampled
according to the list. Subsequently, the probability of the winning category is
increased to facilitate exploitation (Fig. 2b). In our case, we increase the probabil-
ity by the same amount that we reduce the standard deviation in the numerical
case:

pt+1 = pt ·
(
2 − 2−λ

)
. (3)

Note that in both cases we use a factor of one as the baseline and either increase
or decrease the factor by 1− 2−λ to decrease the standard deviation or increase
the probability. To obtain probabilities, all values are then scaled to sum to one
again.

Since the streams’ distribution can change over time, it is not necessarily
beneficial to exploit promising regions further. Instead, it is also necessary to
explore new regions of the search space. For this, for a fraction of the ensemble,
we reset the standard deviation or the probability vector to its initial value with
probability p to explore new regions.

Note that adapting parameter values to create the child is not always easy.
While some parameters, such as distance thresholds, can be easily changed “on-
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the-fly”, i.e. while the algorithm is running, some parameters are much harder to
change. For example, if the parameter influences a tree-height as in ClusTree [19],
changing the parameter is often not possible due to the implications for the under-
lying data structure. For all cases where we cannot change the parameter, we
instead initialise a new algorithm instance based on the new configuration. How-
ever, to keep as much information as possible, we then train the new algorithm
with the micro-clusters of the parent configuration. For this, the centres of the
micro-clusters are used as virtual points to train the child algorithm. While this
will not reproduce the exact same micro-clusters, it passes on some information
about the current clusters.

In our initial proposal [11], we trained a regression model [15] to predict
the performance of the new configurations. However, we noticed that the regres-
sion model often favoured algorithms with many valid configurations (such as
BICO [12]) whereas it disfavoured algorithms where some configurations perform
exceptionally well but many fail. To prevent this, we eliminated the predictor and
introduce a “test ensemble” instead where new configurations are evaluated on
the actual stream before deciding whether to incorporate them into the ensemble
(Step 4). After every window, we fill the test ensemble with a number of new
configurations. The algorithms of the test ensemble are compared to algorithms
in the active ensemble when clustering the next window. If a configuration in the
test-ensemble outperforms a configuration in the active ensemble (on data both
have never seen before), it is considered promising and replaces a configuration
in the active ensemble. The decision to use or discard a new configuration is
therefore lagged by one window.

Again, we sample the configuration that is replaced proportionally to its
fitness, removing less fit solutions with higher probability. However, we never
remove the best configuration of an algorithm and always keep at least one
configuration per algorithm. This prevents that an algorithm is removed entirely
and cannot be used for the generation of new configurations. For larger ensembles,
it can also be beneficial to keep the default configurations in the ensemble as a
fall-back. Note that we use an ensemble of fixed size here and initially fill the
ensemble with new configurations to its maximum capacity.

4 Experiments

4.1 Experimental Setup

To evaluate our algorithm, we implemented it in Java1 as a clustering algo-
rithm for the MOA framework [4,5]. For our experiments, we aim to select the
optimal algorithm and its configuration among the available stream clustering
algorithms in MOA for a specific stream. For a fair comparison, we restrict our-
selves to all clustering algorithms which expose the micro-clusters. Specifically,
we optimise DenStream [6], CluStree [19], CluStream [2] and BICO [12] which
are all state-of-the-art stream clustering algorithms [10]. For every algorithm,

1 Implementation available at: https://www.matthias-carnein.de/confStream.

https://www.matthias-carnein.de/confStream
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we optimise all parameters that influence the clustering result in their full value
range (Table 1). Unbounded value ranges are artificially capped using appropri-
ate maximum values.

Table 1. Overview of optimised algorithms and parameters. Parameter names as used
in MOA [5].

Algorithm Configuration Type Range default

DenStream e Numeric [0, 1] 0.02

b Numeric [0, 1] 0.2

m Integer {0 . . . 10000} 1

o Integer {2 . . . 20} 2

l Numeric [0, 1] 0.25

ClusTree H Integer {1 . . . 20} 8

B Boolean {1, 0} 0

CluStream k Integer {2 . . . 20} 5

m Integer {1 . . . 10000} 100

t Integer {1 . . . 10} 2

BICO k Integer {2 . . . 20} 5

n Integer {1 . . . 2000} 1000

p Integer {1 . . . 20} 10

To determine whether confStream is able to improve configurations over
time, we first compare its performance to MOA’s [4,5] default configurations. For
this, we initialise our ensemble with the same default configurations and com-
pare the results. Afterwards, we use irace [20] and optimise the parameter’s
a-posteriori to find the best overall configuration. We then compare whether
confStream’s adaptive approach is able to compete with the optimal result. For
confStream, we set the ensemble size esize = 20, fading factor λ = 0.05, reset
probability p = 0.01 and evaluate the solutions every h = 1000 observations
using the Silhouette Width. After each window, we create etest = 10 new config-
urations.

We evaluate our algorithm on four data sets. Specifically, we use a Random
Radial Basis Function (RBF) stream [4], the sensor stream2, the power-
supply stream3 and the covertype data set4. All data sets are popular choices
within the stream clustering and classification literature and for our analysis we
use all numeric parameters of the streams. Note that the covertype data set is
a static data set, which we turn into a data stream by processing observations
one by one. This is a common strategy in stream clustering due to the limited
2 http://db.csail.mit.edu/labdata/labdata.html.
3 http://www.cse.fau.edu/∼xqzhu/stream.html.
4 http://archive.ics.uci.edu/ml/datasets/Covertype.

http://db.csail.mit.edu/labdata/labdata.html
http://www.cse.fau.edu/~xqzhu/stream.html
http://archive.ics.uci.edu/ml/datasets/Covertype
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number of openly available data streams [1,7,8,12]. An overview of all data sets
is given in Table 2. To avoid differences in scale, we standardise the data sets
by subtracting the mean and dividing by the standard deviation per feature. In
real world scenarios, the values for normalisation can often be updated incremen-
tally [3,9]. Our goal was to include data streams with diverse characteristics. For
this, we included both real and artificial data streams which all include different
forms of concept drift, i.e. a shift of the underlying distribution. We also included
a static data set which does not include any temporal changes. In addition, our
data streams have between 2 and 10 dimensions and some have more than 2
million observations.

Table 2. Overview of the four data streams used in our experiments. All data streams
are popular in the stream clustering literature [7].

Data set n d Type Drift

Random RBF 2, 000, 000 2 Artificial �
sensor 2, 219, 803 4 Real �
powersupply 29, 928 2 Real �
covertype 581, 012 10 Real −

4.2 Results

Comparison to Default Configuration. For a start, we compare our conf-
Stream algorithm with MOA’s default algorithm configurations. For this, conf-
Stream is initialised with the same default configurations (Table 1) but optimises
the parameters. Figure 3 shows the Silhouette Width for every window of our test
data streams. The boxplots on the right summarise the distribution of the Sil-
houette Width values along the stream. It is obvious that our ensemble approach
produces a considerably better result throughout the entirety of the stream. For
example, for the Random RBF stream, confStream yields a median Silhouette
Width of 0.86 while the other algorithms perform much worse with median Sil-
houette Widths between 0.54 and 0.65. Similar results can also be observed for
the remaining data streams. This is particularly visible for the covertype and
powersupply data streams where most algorithms produce much worse results
by default.

To evaluate how confStream optimises the algorithms in the ensemble over
time, we analyse the best configuration for every clustering algorithm within the
ensemble (Fig. 4a). We can see that throughout most segments of the stream, a
configuration of ClusTree is the incumbent, i.e. the best configuration. BICO on
the other hand tends to have the worst performance within the ensemble. This
also shows in the ensemble composition (Fig. 4b). The ensemble is quickly filled
with more configurations of ClusTree as it shows the best performance. Even



88 M. Carnein et al.

0 750,000 1,500,000
0

0.5

1

Time

S
il
h
o
u
et

te

0

0.5

1

S
il
h
o
u
et

te

0

0.5

1

S
il
h
o
u
et

te
0

0.5

1

S
il
h
o
u
et

te

(a) Random RBF

(b) sensor (c) powersupply (d) covertype

confStream DenStream ClusTree CluStream BICO

Fig. 3. Development of Silhouette Width for all data streams.

though the other algorithms have less relevance, we can see that their share in
the ensemble increases whenever their performance improves. This is particularly
visible for the periodic peaks of DenStream and also shows for CluStream as it
improves after around 1.5 million observations.
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Fig. 4. Ensemble performance and composition for the Random RBF stream.

We can also see how confStream quickly adapts the parameter values depend-
ing on their performance. Figure 5 shows the current best algorithm and its
parameter values for the first 100, 000 observations of the Random RBF stream on
a logarithmic scale. We can see that the algorithm initially switches between con-
figurations of DenStream and CluStream, before eventually settling on ClusTree
as the incumbent. After about 30.000 observations CluStream briefly becomes
the incumbent and its parameters are improved before the algorithm goes back
to ClusTree.
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Fig. 5. Best algorithm and configuration over time for the first 100, 000 observations
of the Random RBF stream. The currently best algorithm with its best configuration is
shown on a logarithmic scale. The parameters are color coded based on the algorithm
and the parameter names of MOA [4,5] are used.

Evaluation of Combined Algorithm Selection and Hyperparameter
Configuration. In our experiments, we treated both algorithm selection and
configuration as one large optimisation problem. This is also known as the Com-
bined Algorithm Selection and Hyperparameter Configuration (CASH) [18] prob-
lem. In order to evaluate how this affects confStream’s performance, we also
compare it to individually configured stream clustering algorithms. For this, we
use the default configuration per algorithm as separate starting configurations
for confStream and optimise the algorithms separately using the same ensemble
size and settings. Figure 6 compares the combined optimisation and individual
optimisation. The results show that confStream’s solution to the CASH prob-
lem is similar to the individual optimisation. This is a surprising result, given
the tremendously increased search space of the combined optimisation problem.
Generally, we would expect the individual optimisation to perform better. The
fact that the CASH problem yields similar results shows that the algorithm
can handle the increased search space. This shows that it is possible to per-
form algorithm selection and configuration simultaneously without sacrificing
the clustering quality.

It is also interesting to compare the individual optimisation (Fig. 6) to the
algorithms’ performance of the combined optimisation problem (Fig. 4a). We can
see, that ClusTree and BICO are almost as well configured in the combined opti-
misation as in the individual optimisation. DenStream on the other hand yields
better results when optimised individually. This is likely due to the fact that
the algorithm has many parameters and large parameter ranges which causes a
large search space. Its weak performance, however, leads the ensemble to remove
most instances of DenStream which yields too few instances to explore the large
search space.

Comparison to Offline Optimisation. The above results show that conf-
Stream can considerably improve upon the default configurations with little
additional knowledge. However, we should also compare our algorithm to opti-
mised configurations using an a-posteriori scenario, i.e. given the knowledge of
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Fig. 6. Combined algorithm selection and hyperparameter optimisation (CASH) com-
pared to only hyperparameter optimisation for all data streams.

Table 3. Overview of optimal configurations as identified by irace (rounded).

Algorithm Configuration RBF sensor power cover

DenStream e 0.08 0.80 0.35 0.55

b 0.32 0.26 0.02 0.61

m 2913.1 9085.1 4027.1 282.4

o 16.49 7.08 7.54 3.37

l 0.10 0.07 0.88 0.11

ClusTree H 8 3 1 1

B false true true false

CluStream k 5 8 5 3

m 100 98 200 4

t 2 2 2 2

BICO k 2 6 14 16

n 36 1880 53 637

p 7 9 3 2

the total stream. In [7], we already used irace [20] to find configurations for
some of the algorithms and data streams by optimising for the optimal adjusted
Rand index and in [8] when optimising for the Sum of Squares (SSQ). In addi-
tion, we now also use irace and optimise for the Silhouette Width directly. This
gives us three configurations for most algorithms, which have been optimised a-
posteriori. We initialise irace with the default algorithm configuration and allow
up to 150 evaluations for every data stream. Note that this would be equivalent
to running confStream with an ensemble size of 150. In contrast, we only use
20 in our experiments, which gives irace a clear advantage. The configurations
which produced the highest median Silhouette Width across the entire stream
are listed in Table 3.
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Fig. 7. Comparing performance of confStream, the optimal configuration found by
irace optimised for the adjusted Rand Index (cRand) [7], the SSQ [8] and Silhouette
Width as well as the default configuration for the covertype data stream.

Figure 7 compares the performance of confStream (without algorithm selec-
tion) with its default and the three optimised configurations for the covertype
data set. For example, for the ClusTree algorithm (Fig. 7b), the default con-
figuration yields the worst quality with a median Silhouette Widh of 0.63. As
expected, all irace configurations perform better and the one optimised for the
Silhouette Width also yields a higher Silhouette of 0.85. However, throughout
the vast majority of the stream, confStream yields even higher quality than the
a-posteriori solutions with a median Silhouette Width of 0.87. This is because
confStream can adapt the configuration over time which allows it to adapt to
changes in the stream. The results for CluStream are overall similar (Fig. 7c) and
for DenStream, the default configuration and one of the optimised configurations
did not produce a valid solution at all (Fig. 7a). confstream on the other hand
produced good solutions throughout most of the stream.

Note that we highlight the results for the covertype data set here because we
have the most complete set of configurations for this scenario. The same analysis
for the other data streams is summarised in Fig. 8. For brevity, we only report
the boxplots of the performance. Note that configurations of irace optimised
for the adjusted Rand Index and SSQ are only available for some combinations.
For all cases where they are available, confStream yields considerably better Sil-
houette Width. In comparison to irace optimised for the Silhouette Width, the
quality of confStream is often similar. For example, for the powersupply data
stream, the results of confStream is very slightly better than the a-posteriori
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approach. Overall this shows, that confStream produces similar results in qual-
ity than a-posteriori optimisation with vastly less computational resources.

Throughout our experiments, we observed that the (online) confStream algo-
rithm only requires a fraction of the number of evaluations compared to the
(offline) irace approach. This also shows in the runtime of the algorithms as
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highlighted in Fig. 9. In our experiments, we parallelised the racing procedure of
irace on ten cores. confStream, on the other hand, was run on a single core.
Despite this considerable disadvantage, confStream is much faster for every sin-
gle algorithm and data stream. This particularly shows for the ClusTree algo-
rithm. For example, on the Random RBF data stream, irace required more than
23 days to optimise the parameters while confStream finished within less than
one and a half hours. These results would further improve when parallelising the
training of the ensemble for confStream. In addition, confStream is also able
to solve the CASH problem. The runtime of the CASH problem mostly depends
on the ensemble composition. As such, the runtime usually lies between the run-
time of the fastest and slowest approach. In our experiments, the runtime of the
CASH problem was often similar to the fastest algorithm in irace.

5 Conclusion

In this paper we proposed the first approach for automated algorithm selec-
tion and hyperparameter configuration of stream clustering algorithms. Our
approach allows to apply stream clustering without expert knowledge and sig-
nificantly facilitates the application of stream clustering in practice. In our app-
roach, we train an ensemble of different algorithms and configurations in parallel
to identify superior solutions. By drawing new configurations from the ensem-
ble, we are able to improve solutions along the stream. Over time, sampling is
biased towards more promising solutions. Our experiments on multiple state-of-
the art algorithms, their hyperparameters as well as popular and diverse data
streams have shown consistently good performances. The algorithm was able to
quickly improve upon its initial configuration and to find valid configurations
where the default configurations failed. We also compared the performance to
irace, where we optimised the configurations a-posteriori. Even in this com-
parison, confStream found competitive solutions, despite working online and
with far fewer iterations. While training multiple algorithms in parallel is slower,
confStream was fast enough to work in real-time since the algorithms can be
trained in parallel. In particular, it is much faster than a-posteriori approaches
which are usually infeasible for data streams.

In future work we will evaluate our approach on a larger number of data
streams and algorithms. In addition, we plan to apply our approach to other
streaming applications such as stream classification or stream regression. Fur-
thermore, we would like to revisit the idea of predicting the performance of
new configurations. In a-posteriori approaches this has shown to produce good
results [16] and we believe that this is also possible in the streaming scenario.
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Abstract. We consider two problems of clustering a finite sequence of
points in Euclidean space. In the first problem, we need to find a cluster
minimizing intracluster sum of squared distances from cluster elements
to its centroid. In the second problem, we need to partition a sequence
into two clusters minimizing cardinality-weighted intracluster sums of
squared distances from clusters elements to their centers; the center of
the first cluster is its centroid, while the center of the second one is the
origin. Moreover, in the first problem, the difference between any two
subsequent indices of cluster elements is bounded above and below by
some constants. In the second problem, the same constraint is imposed
on the cluster with unknown centroid. We present randomized algorithms
for both problems and find the conditions under which these algorithms
are polynomial and asymptotically exact.

Keywords: Clustering · Euclidean space · Minimum sum-of-squares ·
NP-hard problem · Randomized algorithm · Asymptotic accuracy

1 Introduction

The subject of this study are two strongly NP-hard problems of clustering a
finite sequence of points in Euclidean space. Our goal is to construct a random-
ized algorithm for the problems. The research is motivated by the fact that the
considered problems are related to mathematical time series analysis problems,
approximation and discrete optimization problems, and also by their importance
for applications such as signals analysis and recognition, remote object monitor-
ing, etc. (see the next section and the papers therein).

The paper has the following structure. In Sect. 2, formulation of the problems
is given. In the same Section, the known results are listed. The next Section
contains the auxiliary problem and the algorithm for solving it, which are needed
to construct our proposed algorithms. In Sect. 4, the randomized algorithms for
the considered problems are presented.
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2 Problems Formulation, Related Problems, and Known
Results

We consider the following two problems.

Problem 1. Given a sequence Y = (y1, . . . , yN ) of points in R
d and positive

integers Tmin, Tmax and M > 1. Find a subset M = {n1, . . . , nM} ⊆ N =
{1, . . . , N} of the index set of Y such that

F1(M) =
∑

j∈M
‖yj − y(M)‖2 −→ min ,

where y(M) = 1
|M|

∑
i∈M yi is the centroid of {yj | j ∈ M}, under the con-

straints
Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . ,M , (1)

on the elements of the set (n1, . . . , nM ).

Problem 2. Given a sequence Y = (y1, . . . , yN ) of points in R
d and positive

integers Tmin, Tmax, and M > 1. Find a subset M = {n1, . . . , nM} ⊆ N =
{1, . . . , N} of the index set of Y such that

F2(M) = |M|
∑

j∈M
‖yj − y(M)‖2 + |N \ M|

∑

i∈N\M
‖yi‖2 −→ min ,

where y(M) = 1
|M|

∑
i∈M yi is the centroid of {yj | j ∈ M}, under the con-

straints (1) on the elements of the set (n1, . . . , nM ).

Problem 1 is induced by the following applied problem. Given a sequence Y of
N time-ordered measurements of d numerical characteristics of some object. M
of these measurements correspond to a repeating (identical) state of the object.
There is an error in each given measurement result. The correspondence of the
measurement results to the states of the object is unknown. However, it is known
that the time interval between two consecutive identical states is bound from
above and below by the specified constants Tmin and Tmax. It is required to find
a subsequence of numbers corresponding to the measurements of the repeated
state of the object.

In the special case when Tmin = 1 and Tmax = N , Problem 1 is equivalent to
the well-known M -variance problem (see, e.g., [1]). A list of known results for
M -variance problem can be found in [2].

When Tmin and Tmax are parameters, Problem 1 is strongly NP-hard for any
Tmin < Tmax [3]. When Tmin = Tmax, it is solvable in polynomial time.

In [4], a 2-approximation algorithm with O(N2(MN + d)) running time is
proposed.

An exact algorithm for the case of integer inputs was substantiated in [5].
When the space dimension is fixed, the algorithm is pseudopolynomial and runs
in O(N3(MD)d) time.
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In [6], an FPTAS was presented for the case of Problem 1 when the space
dimension is fixed. Given relative error ε, this algorithm finds a (1 + ε)-
approximate solution to the problem in O(MN3(1/ε)q/2) time.

Problem 2 simulates the following applied problem. As in Problem 1, we
have a sequence Y of N time-ordered measurement results for d characteristics
of some object. This object can be in two different states (active and passive, for
example). Each measurement has an error and the correspondence between the
elements of the input sequence and the states is unknown. One know that the
object was in the active state exactly M times (or the probability of the active
state is M

N ) and the time interval between every two consecutive active states is
bounded from below and above by some constants Tmin and Tmax. It is required
to find 2-partition of the input sequence and evaluate the object characteristics.

If Tmin = 1 and Tmax = N , Problem 2 is equivalent to Cardinality-weighted
variance-based 2-clustering with given center problem. One can easily find a list
of known results for this special case in [8].

Cardinality-weighted variance-based 2-clustering with given center problem
is related but not equivalent to the well-known Min-sum all-pairs 2-clustering
problem (see, e.g., [9,10]). Many algorithmic results are known for this closely
related problem, but they are not directly applicable to Cardinality-weighted
variance-based 2-clustering with given center problem.

Problem 2 is strongly NP-hard [11]. Only two algorithmic results have been
proposed for this problem until now.

An exact pseudopolynomial algorithm was proposed in [11] for the case of
integer instances and the fixed space dimension d. The running time of this
algorithm is O(N(M(Tmax−Tmin+1)+d)(2MD+1)d), where D is the maximum
absolute value of coordinates of the input points.

In [12], a 2-approximation algorithm was presented. The running time of the
algorithm is O(N2(M(Tmax − Tmin + 1) + d)).

The main results of this paper are randomized algorithms for Problems 1
and 2. These algorithms find (1 + ε)-approximate solution with probability not
less than 1 − γ in O(dMN2) time, for the given ε > 0, γ ∈ (0, 1) and under
assumption M ≥ βN for β ∈ (0, 1). The conditions are found under which
these algorithms are asymptotically exact (i.e. the algorithms find a (1 + εN )-
approximate solutions with probability 1 − γN , where εN , γN → 0) and find the
solutions in O(dMN3) time.

3 Auxiliary Problem

To construct the algorithms for Problems 1 and 2, we need the following auxiliary
problem.

Problem 3. Given a sequence g(n), n = 1, . . . , N , of real values, positive integers
Tmin, Tmax and M > 1. Find a subset M = {n1, . . . , nM} ⊆ N of indices of
sequence elements such that

G(M) =
∑

i∈M
g(i) → min ,
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under constraints (1) on the elements of the tuple (n1, . . . , nM ).

The following algorithm finds the solution of Problem 3.
Algorithm A.
Input: a sequence g(n), n = 1, . . . , N , numbers Tmin, Tmax and M > 1.
Step 1. Compute

Gm(n) =

{
g(n), if n ∈ ω1, m = 1 ;
g(n) + max

j∈γ−
m−1(n)

Gm−1(j), if n ∈ ωm, m = 2, . . . ,M ,

where

ωm =
{
n | 1 + (m − 1)Tmin ≤ n ≤ N − (M − m)Tmin

}
,m = 1, . . . ,M ,

γ−
m−1(n) =

{
j | max{1 + (m − 2)Tmin, n − Tmax} ≤ j ≤ n − Tmin

}
,

n ∈ ωm, m = 2, . . . ,M .

Step 2. Compute
Gx

max = max
n∈ωM

Gx
M (n)

and find the tuple M = (n1, . . . , nM ) by the formulae

nx
M = arg max

n∈ωM

Gx
M (n) ,

nx
m−1 = arg max

n∈γ−
m(nx

m)
Gx

m(n), m = M,M − 1, . . . , 2 .

Output: the tuple M = (n1, . . . , nM ).

Remark 1. It follows from [4,7] that Algorithm A finds the optimal solution of
Problem 3 in O(NM(Tmax − Tmin + 1)) time.

4 Randomized Algorithms

Below is a randomized algorithm for Problem 1.
Algorithm A1.
Input: a sequence Y, positive integers Tmin, Tmax, M , a positive integer

parameter k.
Step 1. Generate a multiset T of points by randomly and independently

choosing k elements from Y with replacement.
Step 2. For every nonempty subset H ⊆ T compute the centroid y(H) and

find a solution M = M(H) of Problem 3 for g(n) = ‖yn −y(H)‖2, n = 1, . . . , N .
Step 3. From the family of solutions {M(H) | H ⊆ T } found at Step 2,

choose the set MA1 = M(H) for which the value of F1(M(H)) is minimal.
Output: the set MA1 .
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The next randomized algorithm allows one to find approximate solution of
Problem 2.

Algorithm A2.
Input: a sequence Y, positive integers Tmin, Tmax, M , a positive integer

parameter k.
Step 1. Generate a multiset T of points by randomly and independently

choosing k elements from Y with replacement.
Step 2. For every nonempty subset H ⊆ T compute the centroid y(H) and

find a solution M = M(H) of Problem 3 for g(n) = 2M〈yn, y(H)〉 − (2M −
N)‖yn‖2 − M‖y(H)‖2, n = 1, . . . , N .

Step 3. From the family of solutions {M(H) | H ⊆ T } found at Step 2,
choose the set MA2 = M(H) for which the value of F2(M(H)) is minimal.

Output: the set MA2 .
The following theorem describes the properties of algorithms A1 and A2.

Theorem 1. Assume that in Problems 1 and 2, M ≥ βN for β ∈ (0, 1). Then,
given ε > 0 and γ ∈ (0, 1), for a fixed parameter

k = max(
 2
β


 2
γε

��, 
 8
β

ln
2
γ

�)

algorithms A1 and A2 find (1 + ε)-approximate solutions of Problem 1 and 2
with probability 1 − γ in O(dMN2) time.

Finally, in the next theorem, conditions are established under which algo-
rithms A1 and A2 are polynomial and asymptotically exact.

Theorem 2. Assume that in Problems 1 and 2, M ≥ βN for β ∈ (0, 1). Then,
for fixed k = 
log2 N�, algorithms A1 and A2 find (1+εN )-approximate solutions
of Problem 1 and 2 with probability 1−γN in O(dMN3) time, where εN , γN → 0.

The idea of proving Theorems 1 and 2 is to estimate the probability of events
Fi(MAi

) ≥ (1 + 1
δt )Fi(M∗

i ) in the case when the multiset T contains at least t
elements of the optimal solution M∗

i , where δ ∈ R, t ∈ N, i = 1, 2. To do this,
we use the Markov inequality. Then, using Chernov’s inequality, we show that
it is sufficient to put δ = γ/2, t = 
2/(γε)� in Theorem 1 and δ = (log2 N)−1/2,
t = 
kM/(2N)� in Theorem 2.

5 Conclusion

In the present paper, we have proposed randomized algorithms for two sequence
clustering problems. The algorithms find (1 + ε)-approximate solutions with
probability not less than 1 − γ in O(dMN2) time. Conditions are found under
which the algorithms are polynomial and asymptotically exact.

In our opinion, the algorithms presented in this paper can be used to quickly
obtain solutions to large-scale applied problems of signal analysis and recogni-
tion.
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Abstract. We consider the dialectic search paradigm for box-
constrained, non-linear optimization with heterogeneous variable types.
In particular, we devise an implementation that can handle any
computable objective function, including non-linear, non-convex, non-
differentiable, non-continuous, non-separable and multi-modal functions.
The variable types we consider are bounded continuous and integer, as
well as categorical variables with explicitly enumerated domains. Exten-
sive experimental results show the effectiveness of the new local search
solver for these types of problems.

1 Introduction

Box-constrained optimization problems are ubiquitous. They appear when opti-
mizing designs where objective functions estimate key performance character-
istics of the design, when optimizing control parameters in simulated environ-
ments in simulation-based optimization, when optimizing function parameters
to fit training samples in machine learning, when searching for new sample
points over surrogate functions in Bayesian optimization, and when searching
for optimal strategies in decision aiding. In many cases, these target functions
are highly non-linear, non-convex, even non-differentiable, non-separable, or non-
continuous. Moreover, frequently decision variables are discrete integer variables
or even categorical variables that can only take specific values.

We tackle this problem using the dialectic search paradigm [8] in a hyper-
parameterized setting [4]. The objective of this work is to show that a tuned,
hyper-parameterized dialectic search program (that is implemented in C++ with
less than 1,500 lines of code) can effectively tackle these problems. All that a user
needs to provide is a short piece of code that computes the objective function
given a variable assignment, as well as an incremental objective evaluation when
changing two variable assignments from the last assignment. The latter can
obviously be performed easily simply by reducing to the first evaluation function,
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meaning our approach supports full black-box settings. However, in many cases,
objectives can be evaluated more quickly when exploiting incrementality, giving
the user the opportunity to gain efficiency in this way.

This paper makes the following contributions:

1. We extend the dialectic search paradigm to a general variable setting (con-
tinuous, integer and categorical).

2. We increase dialectic search’s performance through a convex search proce-
dure for its synthesis procedure, which can be seen as an alternative to path
relinking.

3. We apply the hyper-parameterization paradigm from [4] to give this general-
purpose tool the ability to be tuned for specific benchmarks and to adapt key
search parameters dynamically during search.

In the following, we first review the concepts of dialectic search and hyper
parameterization. Then, we apply these concepts to devise an algorithm imple-
mentation for solving box-constrained non-linear optimization problems with
heterogeneous variable types. Following this detailed description, we then eval-
uate our implementation on various benchmarks to establish the efficacy of our
new approach.

2 Dialectic Search

2.1 A Philosophical Framework as Metaheuristic

Dialectic search was first introduced in [8] as a metaheuristic for local search.
The approach exists as a means to overcome the difficulties when applying a
local search metaheuristic framework to a specific problem domain by enforcing a
strict separation of intensification via greedy search and search space exploration
via randomization. In [8], it is shown that dialectic search does not require any
sophisticated tailoring for the concrete application domain at hand. At the same
time, it significantly outperforms other metaheuristics, such as Tabu Search,
Simulated Annealing, and Genetic Algorithms, on multiple benchmarks from
constraint satisfaction and combinatorial and continuous optimization.

Dialectic search works as follows:

1. Initialization: We construct an assignment of variables to random values in
their respective domains.

2. Thesis: We call the current assignment the “thesis” and greedily improve
it until we find a local optimum. We can conduct a full (where we consider
all potential moves before choosing the best) or a first-improvement (where
we take the first possible move that improves the objective) greedy search. A
search parameter determines the percentage of variables we consider in each
greedy step.
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3. Antithesis: We randomly modify the thesis by changing select variables’
values, which can be seen as a type of perturbation like in Iterated Local
Search [9]. This new assignment is called the “antithesis.” A search parameter
determines the percentage of variables to modify. Another search parameter
determines the probability with which we greedily improve the antithesis.
Again, we can conduct a full or a first-improvement greedy search. A separate
search parameter determines how many variables to consider in each greedy
step.

4. Synthesis: Next we search the space between thesis and antithesis by con-
ducting a limited local search in the space that thesis and antithesis span, i.e.,
variables to whom both the thesis and antithesis assign the same value cannot
be changed. The exact way how this nested local search is to be conducted
is left open by dialectic search. For example, we could conduct a greedy path
relinking [7] between the thesis and antithesis. Alternatively, we could start a
more elaborate nested local search to find a favorable recombination of thesis
and antithesis. In this paper, we will introduce yet another procedure, where
we search over the space of convex combinations of thesis and antithesis. No
matter how this step is implemented, we call the resulting assignment the
“synthesis.”

5. Iteration and Restarts: We next decide if we want to restart and return to
Step 1. A search parameter determines the probability with which we restart.
If we do not restart, we next test if the synthesis improves over the thesis.
If so, the synthesis becomes the new thesis, and we continue with Step 2. If
not, we continue with Step 3.

2.2 Hyper-parameterized Dialectic Search

While dialectic search was shown to give very good results even without sophis-
ticated tuning, in [4] dialectic search was hyper-parameterized to tackle the
MaxSAT problem. The core idea of hyper-parameterization is to enable a search
heuristic like dialectic search to self-adapt search parameters during runtime
based on runtime statistics. The parameters we adjust include the probability
to restart, the size of the antithesis, the number of variables to open for the
greedy heuristic, etc. Furthermore, the runtime statistics are, for example, the
estimated number of local search moves until time limit, time since last overall
improvement, time since last improvement in current restart, and the total time
in the current restart. Hyper-parameterization has also been successfully applied
to tabu search [3].

To hyper-parameterize dialectic search, [4] suggests to use a logistic regression
function to transform normalized runtime statistics into probabilities (e.g., for
restart probabilities) or percentages (e.g., for the antithesis size). These logistic
regression functions in turn introduce new “hyper-parameters.”

Pk =
1

1 + e
∑

i h
k
i si+hk

0
(1)



Hyper-parameterized Dialectic Search 105

In Eq. (1), the probability (for example for a restart in Step 5), or the per-
centage (for example to determine the percentage of variables to be modified
in Step 3) Pk for the kth search parameter is derived from runtime statistics
s. The key is that this transformation of current runtime statistics into search
parameter values takes place each time when the search parameter is needed. For
example, whenever we need to decide if we are going to restart the search in
Step 5, we gather the current runtime statistics s and enter them into the logis-
tic function using (static) hyper-parameters hk to compute the probability of a
restart. Then, we flip a coin, and with the computed probability we restart the
search. So, to compute this probability/percentage, the current runtime statistics
s are determined, the inner product with the search-parameter-specific hyper-
parameters hk is computed, the constant hk

0 added, and the result handed to the
exponential function. This produces a value between minus infinity and infinity,
which the logistic function transforms into a value between 0 and 1.

In contrast to regular parameterization, in which we would keep the restart
probability and the percentage of variables we modify in the antithesis constant,
hyper-parameters merely determine how the respective search parameters are
derived from current runtime statistics. In [4], it is further suggested to use an
instance-specific parameter tuner (e.g., [2] or [1]) to “learn” good settings for the
hyper-parameters. For the MaxSAT problem, this resulted in a dialectic search
portfolio that won four out of nine categories at the 2016 MaxSAT Evaluation [5].

3 Dialectic Search for Box-Constrained Non-Linear
Optimization Problems with Continuous, Integer,
and Categorical Variables

Having reviewed the general framework of hyper-parameterized dialectic search,
we now introduce our new program for box-constrained non-linear optimization.
In particular, our goal is to develop an implementation of dialectic search that
works with any computable objective function and for mixtures of bounded con-
tinuous, integer, and explicitly enumerated categorical variables. In the following,
we devise such a program that, in order to apply it to a new problem domain,
only requires the implementation of an evaluation function of the objective to be
minimized1 for a given assignment of variables. For reasons of efficiency, we also
require a second objective evaluation function that returns the objective value
for the same assignment as was given for the last evaluation when two variables
are changed to new values. This can be implemented easily by altering the last
assignment and evaluating the objective from scratch using the first evaluation
function. However, for many objectives it is possible to evaluate a new assign-
ment incrementally and much faster than by re-evaluating the new assignment
from scratch.

To instantiate dialectic search, we need to define each of the five steps (Ini-
tialization, Thesis, Antithesis, Synthesis, and Restarting) of dialectic search, as
1 Note that the latter easily allows maximization as well, simply by having the function

return the negative of the actual objective value.
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well as determine how to hyper-parameterize the resulting algorithm. In the
following, we describe in detail how each of these aspects is implemented.

3.1 Initialization

The dialectic search receives three parameters: 1. The number of variables n. 2.
A vector of length n of a composite class that describes each variable’s type,
as well as its lower and upper bound or, in case of categorical variable, and
explicit enumeration of the values that the variable can take. 3. A pointer to
an evaluation class that has two evaluation functions, one that takes an entire
assignment vector of length n as input and returns a rational number as output,
the second taking two variable indices and two new values for the respective
variables as input and returning a rational number as output. To initialize the
local search we simply assign a random value within each variable’s domain to
the respective variable.

3.2 Thesis

The new assignment generated is labeled as the thesis. To greedily improve the
thesis, we proceed as follows:

1. In each greedy step, we first select a random subset of variables, How many
is determined by a search parameter.

2. Next we consider the variables in random order. For categorical variables,
we consider each possible value and evaluate the objective if we change the
respective variable to the new value. For ordinal and continuous variables, we
conduct a pseudo-convex optimization as follows. First, we choose a number
α ∈ [0, 1] uniformly at random. Next we construct the interval [x1, x4] where
x1 = max{v − α/2, L} and x4 = min{v + α/2, U}], where v is the current
value of the variable, and L,U are its lower and upper bound, respectively.
We evaluate the objective when setting the variable to each end point of
the interval, as well as at two intermediate points x2 and x3. The point x3

is at 200√
(5)+1

% � 61.8% inside the interval and x2 is at 100 − 200√
(5)+1

% �
38.2% inside the interval. Note that for ordinal variables, we round to the
nearest integer for evaluating the objective. However, the computation below
continues using the actual fractional values.
If the objective at x1 is strictly less than at the other three points, or if the
objective at x2 is lower than at x3, we reduce the interval to [x1, x3]. In this
case, the point x2 automatically finds itself at 61.8% of the new interval.
Therefore, to continue, we only need to evaluate one new point at 38.2% of
the new interval to iterate the search. On the other hand, if x4 is strictly less
than the other three points, or if x3 results in a better objective than x2, we
continue the search in [x2, x4]. In this case, x3 already finds itself at 38.2%
of the new interval, so we only need to evaluate one more point at 61.8% to
conduct the next iteration. The search stops when the interval length shrinks
below a certain minimum length, which is set by a search parameter.
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3. Having thus found an optimal or at least very favorable value for the respec-
tive variable in this way, we check if it improves the objective. We conduct
a first-improvement greedy search. In this case, we next commit the variable
to this value and continue with Step 1. If the best variable assignment found
does not lead to an improvement of the objective, we continue with the next
variable in the random selection, in random order.

4. The greedy search ends when no value can be found for any variable in the
random selection that improves on the objective value.

3.3 Antithesis

To select an antithesis, we first choose a random subset of variables. How many
variables is determined by a search parameter. Then, for each variable in the
selection we choose a new value uniformly at random. Depending on another
search parameter, we may conduct a greedy search to improve the antithesis (in
the same manner as we just improved the thesis) before we move to the next
step.

3.4 Synthesis

The purpose of this step is to opportunistically search the space between the
thesis and antithesis. All variables to which the antithesis and thesis assign the
same value are not changed. In a first step, we aim to recombine the variable
settings between thesis and antithesis via path-relinking. We start at the thesis
and consider all variables in turn to assess which variable, when set to the value
given by the antithesis, would give the best objective value. This variable is
then set to the antithesis value, regardless whether this leads to a worsening
of the objective or not. We proceed in this way until all variables are set to
the respective antithesis values. We next consider the assignment with the best
objective value on this chain of assignments that “connect” thesis and antithesis.
If the best assignment on this chain improves over the thesis, then this synthesis
becomes the new thesis and we continue by jumping back to Step 2.

If the best recombination found does not improve over the current thesis, we
next consider convex-combinations between thesis and anti-thesis. That is, we
interpolate ordinal and continuous parameters between the respective values in
the thesis and antithesis, and “round” categorical variables to the “nearest” the-
sis or antithesis value. For example, assume we have three parameters, the first is
categorical (say it can take values red, blue and green), the second parameter is
ordinal, and the third is continuous. Assume the thesis assignment is [green, −2,
0.2] and the antithesis is [red, 5, 0.7]. For the categorical parameter, we associate
value 0 with the thesis value, and 1 with the antithesis value. Any interpolation
value below 0.5 is then “rounded down” to the thesis value, all values greater
or equal 0.5 get “rounded up” to the antithesis value. Similarly, for the ordinal
parameters we round to the nearest integer. Then, the 0.6 interpolation between
thesis and antithesis is, for example, [red, 2, 0.5]. Having thus defined how points
on the “line” between thesis and antithesis map to assignments, we can conduct
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a pseudo-convex optimization, exactly as we did earlier in the greedy improve-
ment of ordinal and continuous variables in Step 2. If this procedure results in an
assignment that improves over the thesis, this synthesis becomes the new thesis.
If not, then we keep the old thesis and consider a new randomized antithesis in
Step 3.

3.5 Restarting

At the end of each synthesis step, we flip a coin to determine if we restart
the search instead of attempting to further improve the current thesis assign-
ment. The probability of a restart is again given by a search parameter. When
a restart is triggered, we apply a randomized modification of the current thesis
before we jump back to Step 2. This modification works exactly like the way
how an antithesis is constructed, whereby we use a different search parameter
to determine how much the new starting point will differ from the current the-
sis. Finally, when the time-limit of the search is exceeded, we return the best
assignment ever encountered during the search.

3.6 Hyper-parameterization

The outline of our dialectic search instantiation shows that there are numerous
search parameters influencing how the search progresses. For example, if we use
a very high restart probability, we will primarily perform randomly restarted
greedy searches. Alternatively, if we consider a very high percentage of variables
to construct the antithesis, the bulk of the search effort will consist in synthesis
steps (Fig. 1).

We list the search parameters within our implementation below:

g: The size of the greedy candidate set as percentage of all variables in the
problem.

al, au: A lower and upper bound on the percentage of variables to be changed to
construct an antithesis. The exact size of the change is then chosen uniformly
at random in the interval given whenever a new antithesis is generated.

pa: The probability of greedily improving the antithesis.
pr: The probability of restarting the search.
rl, ru: A lower and upper bound on the percentage of variables to be changed to

construct a new starting point when a restart is triggered. The exact size of
the change is then chosen uniformly at random in the interval [rl, ru].

As reviewed earlier, [4] proposes not to assign static values to these search
parameters, but to allow them to dynamically adapt to the way in which the
search progresses. Equation (1) governs how we derive probabilities and per-
centages from runtime statistics. Therefore, the only information needed at this
point is which runtime statistics s we will track. In the following, we list the
statistics we track during the search:
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(a) Ackley (b) Alpine (c) Periodic (d) Rastrigin (e) Salomon

Fig. 1. Optimization functions over two continuous variables. Images from http://
benchmarkfcns.xyz/.

1. Time elapsed as percentage of total time before timeout.
2. Number of restarts conducted as a percentage of total restarts expected to

be completed within the time limit.
3. Number of moves as a percentage of the total moves expected to be com-

pleted within the time limit.
4. Number of steps as a percentage of the total steps expected to be completed

within the time limit.
5. Total number of improving syntheses found over the total number of dialectic

moves expected to be completed within the time limit.
6. Number of moves in the current restart over the total number of dialectic

moves expected to be completed within the time limit.
7. Number of moves since the current best known solution was found over the

total number of dialectic moves expected to be completed within the time
limit.

8. Number of moves since the last thesis update in the current restart over the
total number of dialectic moves expected to be completed within the time
limit.

9. Number of steps in the current restart over the total number of steps
expected to be completed within the time limit.

10. Number of steps since the current best known solution was found over the
total number of steps expected to be completed within the time limit.

11. Number of steps since the last thesis update in the current restart over the
total number of steps expected to be completed within the time limit.

The resulting dialectic search with seven search parameters is now hyper-
configurable with 84 (7 times 12) hyper-parameters. To tune these parameters
for specific instance distributions, we employ the parameter tuner GGA++ [1].

4 Experimental Results

We now evaluate our approach on various benchmarks to assess its effectiveness.
We consider the following function classes:

– Ackley Instances: This class has n continuous decision variables Xi ∈
[−500, 500], m integer decision variables Yj ∈ [−500, 500], n dependent
modeling variables Ai = Xi − ti for n given values ti ∈ [−500, 500]
and m dependent modeling variables Bj = Yj − sj for m given val-
ues sj ∈ [−500, 500]. The objective is to minimize b + f(n + m) −

http://benchmarkfcns.xyz/
http://benchmarkfcns.xyz/
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f(n + m)b− ∑
i

A2
i

10n −∑
j

B2
j

10m − b
∑

i

cos(2πA2
i )

2n +
∑

j

cos(2πB2
i )

2m for given parameters
f, b ∈ N. An instance to this problem is therefore fully described by the
vector (n, t1, . . . , tn,m, s1, . . . , sm, f, b).

– Alpine Instances: This class has n continuous decision variables Xi ∈
[−10, 10] and n dependent modeling variables Ai = Xi − ti for n given values
in [−10, 10]. The objective is to minimize

∑
i |Ai sinAi + 0.1Ai|. An instance

to this problem is therefore fully described by the vector (n, t1, . . . , tn).
– Griewank Instances: This class has n continuous decision variables Xi ∈

[−600, 600] and n dependent modeling variables Ai = Xi − ti for n given val-
ues in [−600, 600]. The objective is to minimize 1 +

∑
i

A2
i

4000 − ∏
i cos(Ai√

i
).

An instance to this problem is therefore fully described by the vector
(n, t1, . . . , tn).

– Periodic Instances: This class has n continuous decision variables Xi ∈
[−10, 10] and n dependent modeling variables Ai = Xi − ti for n given val-
ues in [−10, 10]. The objective is to minimize 1 + 10

∑
i sin

2(Ai) − e− ∑
i A

2
i .

An instance to this problem is therefore fully described by the vector
(n, t1, . . . , tn).

– Rastrigin Instances: This class has n continuous decision variables Xi ∈
[−5.12, 5.12] and n dependent modeling variables Ai = Xi−ti for n given val-
ues in [−5.12, 5.12]. The objective is to minimize 10n+

∑
i A

2
i −10 cos(2πAi).

An instance to this problem is therefore fully described by the vector
(n, t1, . . . , tn).

– Salomon Instances: This class has n continuous decision variables Xi ∈
[−100, 100] and n + 1 dependent modeling variables Ai = Xi − ti for n given
values in [−100, 100] and Z =

√∑
i A

2
i ). The objective is to minimize 1 −

cos(2πZ) + 0.1Z. An instance to this problem is therefore fully described by
the vector (n, t1, . . . , tn).

– Mixed Instances: This class has n continuous decision variables Xi ∈ [−1, 1]
for i ∈ {0, . . . , n − 1}, m integer decision variables Yj ∈ [−25, 5] for
j ∈ {0, . . . , m − 1}, and o categorical decision variables Zk ∈ {2, 3, 4} for
k ∈ {0, . . . , o − 1}. For each instance, we are given n continuous target
values ti ∈ [0, 1], m integer target values sj ∈ [−25, 5], and o categorical
targets rk ∈ {2, 3, 4}. We use n + m + o continuous modeling constants
al = tl%nt(l+1)%n+s(l−1)%m−s(l+1)%m

rl%o
, whereby % symbolizes the modulo opera-

tion. The objective is to

Minimize
n+m+o−1∑

l=0

(
Xl%nX(l+1)%n + Y(l−1)%m − Y(l+1)%m

Zl%o
− al)2.

An instance to this problem is therefore fully described by the vector

(n, t0, . . . , tn−1,m, s0, . . . , sm−1, o, r0, . . . , ro−1).

Note that, in the above, we use modeling variables A,B to simplify the defini-
tion of these problems. In the actual implementation, we immediately substitute
these variables with the respective expression over the decision variables in the
objective function.
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Table 1. Comparison of the new dialectic search approach (DS) with the dialectic
search from [8] (DS-old) and simulated annealing approaches from [10] (SA-0.98 and
SA-0.99)

Function Dims DS DS-old SA-0.98 SA-0.99

Value Evals Value Evals Value Evals Value Evals

Alpine 20 10−3 21K 10−3 86K 10−3 1M 10−3 2M

50 10−3 364K 10−3 458K 10−3 2.9M 10−3 5.8M

Rastrigin 20 10−3 18K 10−3 208K 24.4 3.4M 22.4 6.8M

50 10−3 138K 10−3 818K 87.3 8.3M 86.8 9.9M

4.1 Minimizing the Number of Function Evaluations

As our approach works with any computable objective function, it is ideally
suited for black-box optimization. The main objective is to minimize the num-
ber of black-box function evaluations that are needed to reach a certain approx-
imation level of the global optimum. We use randomly generated Rastrigin and
Alpine instances for this purpose.

In Table 1, we compare against the results published in [8]. There, a dialectic
search (DS-old) algorithm was introduced for continuous optimization problems,
and compared with a simulated annealing approach using two different cooling
factors (SA-0.98 and SA-0.99) [10]. While the old dialectic search already gave
very competitive results, we clearly see the benefits of the new approach, that
has three main improvements over the old dialectic search approach: 1. The
line search used as greedy step in DS-old is replaced with the pseudo-convex
search approach we outlined in Step 2 in the Section “Thesis.” 2. The new
DS approach conducts interpolation searches on top of recombination searches
to produce an improving synthesis, as outlined in Section “Synthesis.” And 3.
The new approach is hyper-parameterized, which not only allows the approach
to adjust otherwise static parameters during the search, but also to tailor the
search behavior for the respective benchmark – fully automatically, thanks to
parameter tuners like GGA++ [1].

Overall, on average the new approach lowers the number of function evalua-
tions by a factor 3. On 20-dimensional Rastrigin functions, the improvement is a
whole order of magnitude, while for 50-dimensional Alpine instances we “only”
save 20% of function evaluations, compared to the old DS approach. When com-
pared to the better of the SA approaches, the hyper-reactive dialectic search
approach only requires 3.5% of the function evaluations required by SA-0.98.

4.2 Optimizing Functions Within a Given Time Limit

We now change the setting to the more realistic scenario where we have been
given a timelimit and have to find the best solution possible in the given time.
We first examine the performance of DS versus a well-known continuous black-
box optimizer, LSHADE [11], which we use thanks to its performance and its
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Table 2. Comparison of DS to LSHADE on the Alpine and Rastrigin functions with
50 instances for each function/dimension pair.

Function Dims # ≤ 1e-3 Mean Geo. Mean

LSHADE DS LSHADE DS LSHADE DS

Alpine 20 49 50 0.021 0.001 0.001 0.001

50 49 50 0.021 0.001 0.001 0.001

200 4 50 3.500 0.001 1.652 0.001

500 0 50 57.140 0.001 56.369 0.001

Rastrigin 20 33 50 0.836 0.001 0.013 0.001

50 30 50 1.228 0.001 0.021 0.001

200 0 50 416.282 0.001 410.934 0.001

500 0 50 3010.779 0.001 2457.697 0.001

freely available source code. For this comparison, we again consider the Alpine
and Rastrigin benchmarks. Later in this section, we will expand our analysis
to the other benchmarks, including ones with discrete parameters, and include
the optimizer LocalSolver [6] for comparison. In all experiments, we impose a 60
second CPU timelimit.

Comparison with LSHADE. Table 2 provides a comparison of dialectic
search (DS) and LSHADE. We note that LSHADE is generally used on lower
dimensional problems. For 20 and 50 dimensional instances, it performs reason-
ably well, even though it does not manage to find a solution below 1e-3 for all
instances. However, many real-world optimization problems contain thousands
of variables, thus we also examine LSHADE on larger instances with 200 and
500 decision variables. Here, LSHADE requires all 60 seconds of CPU time to
find solutions far from the optimal. In contrast, DS requires on average 3.6 sec-
onds for even the hardest benchmark in the table, the Rastrigin function with
500 dimensions. Given these encouraging results, we move on from conventional
continuous, black-box approaches to compete on harder problems.

Comparison with LocalSolver. LocalSolver is a general purpose heuristic
solver that supports essentially any white-box optimization problem. It offers an
interface for problem modelling similar to those of mixed-integer programming
solvers. We compare to LocalSolver2 on randomly generated Ackley, Alpine,
Griewank, Mixed, Periodic, Rastrigin, and Salomon functions.

In Tables 3 and 4 we present our results on the set of instances used to train
the hyper-parameters of DS trained on each target problem individually, and

2 We note that we are unable to tune LocalSolver’s parameters with GGA due to
LocalSolver’s license restrictions, meaning our results should only be seen as a lower
bound on performance.
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Table 3. LocalSolver (LS) versus Dialectic Search (DS) on continuous and mixed
continuous functions evaluated on our training set. DS’s hyperparameters are trained
specifically on the function it is being tested on, whereas DS-A is tuned on all functions.

# ≤ 1e−3 Mean Geo. Mean Stdev.

LS DS DS-A LS DS DS-A LS DS DS-A LS DS DS-A

Ackley 97 1 1 0.001 0.066 0.080 0.001 0.032 0.039 0.000 0.072 0.079

Alpine 41 68 68 0.002 0.003 0.001 0.002 0.001 0.001 0.001 0.009 0.001

Griewank 23 45 85 0.002 0.055 0.002 0.001 0.007 0.001 0.003 0.004 0.004

Mixed 7 7 7 6.823 1.605 1.611 2.108 0.649 0.650 6.167 1.176 1.185

Periodic 4 0 0 0.934 1.000 1.000 0.699 1.000 1.000 0.244 0.000 0.000

Rastrigin 45 46 41 73.712 0.002 0.002 0.160 0.001 0.002 143.144 0.001 0.001

Salomon 84 0 0 0.215 0.100 0.507 0.003 0.100 0.390 0.748 0.000 0.319

∅ Total 43 23.86 28.86 11.67 0.40 0.46 0.0203 0.0283 0.0296 59.829 0.744 0.747

Table 4. LocalSolver (LS) versus Dialectic Search (DS) on continuous and mixed con-
tinuous functions evaluated on our test set. DS’s hyperparameters are trained specif-
ically on the function it is being tested on, whereas DS-A is tuned on all functions.

# ≤ 1e−3 Mean Geo. Mean Stdev.

LS DS DS-A LS DS DS-A LS DS DS-A LS DS DS-A

Ackley 99 3 0 0.001 0.070 0.085 0.001 0.036 0.044 0.000 0.084 0.089

Alpine 39 62 61 0.002 0.004 0.003 0.002 0.002 0.001 0.001 0.009 0.008

Griewank 20 37 21 0.003 0.063 0.255 0.002 0.011 0.030 0.008 0.003 0.402

Mixed 12 10 10 7.177 1.680 1.679 1.340 0.591 0.475 6.696 1.300 1.300

Periodic 1 0 0 0.964 1.000 1.000 0.875 1.000 1.000 0.178 0.000 0.000

Rastrigin 48 51 49 92.320 0.002 0.002 0.167 0.002 0.002 155.001 0.001 0.001

Salomon 92 0 0 0.055 0.100 0.462 0.001 0.100 0.368 0.408 0.00 0.276

∅ Total 44.43 23.29 20.04 14.36 0.26 0.50 0.0186 0.0369 0.0464 66.764 0.790 0.784

DS-A, which is DS trained on a subset of training instances from all functions
but Ackley. We also provide results on a test set of instances that were not used
for the development or training of the new approach. For each benchmark func-
tion, we generate 200 instances, 100 for training and another 100 for testing.
The dimensionality for each instance is chosen uniformly at random from the
following ranges: [250, 1000] (for both continuous and ordinal variables) for Ack-
ley, [1500, 5000] for Alpine, [500, 5000] for Griewank, [10, 50] for each variable
type for Mixed, [125, 1000] for Periodic, [500, 5000] for Rastrigin and [25, 200]
for Salomon.

The tables give us multiple insights. First, we see that both DS (trained
on each individual benchmark) and DS-A (trained on a mix of instances from
all benchmarks, with the exception of Ackley instances) generalize well to the
formerly unseen test instances. Second, we can see here that DS-A also does
a reasonable job on the Ackley benchmark it was not trained for. In fact, it
achieves almost the same performance as DS. Finally, we observe that there is
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Fig. 2. Number of instances solved to 1e-3 in a given time limit (left) and the number
of instances with an objective function better than the given value (right). LS is shown
as a blue, dashed line and DS as a black, solid line.
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a reasonable benefit of tuning DS for each individual benchmark. However, this
is clearly not the main determining factor for DS’ performance.

With respect to LocalSolver, we see that it solves more instances close to
optimality than DS and DS-A. However, when looking at the mean gap over all
instances, LS performs massively worse. We conclude that DS performs with less
variance.

Figure 2 gives a detailed overview of how long it takes to solve instances on
each function, and the quality of the solutions on those instances that aren’t
solved. Clearly, arguments can be made for both DS and LS depending on the
function being solved and the amount of time available for solving. On Griewank
and Alpine, DS is able to quickly get to 1e-3 on many instances, but has trouble
on others, whereas the performance of LS remains mostly constant throughout
all instances. In contrast, on the Rastrigin function, DS and LS solve roughly the
same amount of instances, but the unsolved instances from DS are of significantly
higher quality than those of LS.

5 Conclusion

We presented a novel dialectic search procedure for box-constrained, non-linear
optimization problems with heterogeneous variable types. Our approach intro-
duces a convex search procedure for synthesizing the thesis and antithesis of
the search procedure, allowing it to highly effectively move through the search
space. Moreover, we hyper-parameterized the resulting approach, allowing the
meta-heuristics to adapt key search parameters during search based on runtime
statistics characterizing the progress of the search. We compared our approach
to three state-of-the-art procedures, the previous version of dialectic search,
LSHADE and LocalSolver, and showed that the new dialectic search is able
to compete, or even outperform these approaches, on occasion by very large
margins.
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Abstract. The support vector classification-regression machine for K-
class classification (K-SVCR) is a novel multi-class classification method
based on “1-versus-1-versus-rest” structure. In this paper, we propose a
least squares version of K-SVCR named as LSK-SVCR. Similarly as the
K-SVCR algorithm, this method assess all the training data into a “1-
versus-1-versus-rest” structure, so that the algorithm generates ternary
output {−1, 0,+1}. In LSK-SVCR, the solution of the primal problem is
computed by solving only one system of linear equations instead of solv-
ing the dual problem, which is a convex quadratic programming problem
in K-SVCR. Experimental results on several benchmark data set show
that the LSK-SVCR has better performance in the aspects of predictive
accuracy and learning speed.

Keywords: SVM · K-SVCR · Multi-class classification · Least squares

1 Introduction

Support vector machines (SVM) were proposed for binary classification problems
by Vapnik and his colleagues [3,4]. The idea of this method is based on finding the
maximum margin between two hyperplanes, which leads to solving a constraint
convex quadratic programming problem (QPP).

Whereas there are many methods for binary classification [2,7–9,12], multi-
class classification is often accrued in practical problems and real life [11]. Due
to its wide range of applications, Angulo et al. [1] introduced a new method for
multi-class classification based on “1-versus-1-versus-rest” structure with ternary
output {−1, 0,+1} for K-class classification. This method constructs k(k−1)

2 K-
SVCR classifiers. It should be noted that, since all samples are given for construc-
tion of classifiers, the K-SVCR provides better performance than SVM methods
for multi-class problems.
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In this study, we propose a least squares version of K-SVCR, named as
the least squares K-class support vector classification-regression machine (LSK-
SVCR). In LSK-SVCR, we need to solve only one system of linear equations
rather than solving a QPP in K-SVCR.

Numerical experiments on several benchmark data set indicate that the sug-
gested LSK-SVCR has higher accuracy with lower computational time than K-
SVCR.

Notations. Let a = [ai] be a vector in Rn. If f is a real valued function defined
on the n-dimensional real space Rn, the gradient of f respect to x is denoted by
∂f
∂x , which is a column vector in Rn. By AT we mean the transpose of matrix A.
For two vectors x and y in the n-dimensional real space, xT y denotes the scalar
product. For x ∈ Rn, ‖x‖ denotes 2-norm. A column vector of ones of arbitrary
dimension is indicated by e. For A ∈ Rm×n and B ∈ Rn×l, the kernel k(A,B)
is an arbitrary function which maps Rm×n × Rn×l into Rm×l. In particular, if x
and y are column vectors in Rn and A ∈ Rm×n, then k(xT , y) is a real number,
k(xT , AT ) is a row vector in Rm, and k(A,AT ) is an m×m matrix. The identity
n × n matrix is denoted by In, and [A;B] stands for the matrix operation

[A; B] =
[
A
B

]
.

The rest of this paper is organized as follows: Sect. 2 briefly describes SVM,
and K-SVCR is then introduced in Sect. 3. Section 4 presents our LSK-SVCR in
linear and non-linear cases as well as a classification decision rule. We analyse the
computational complexity of the methods in Sect. 5. Section 6 presents experi-
mental results on benchmark data set to show the efficiency of the proposed
algorithm, and concluding remarks are given in Sect. 7.

2 Support Vector Machine for Classification

For a classification problem, a data set (xi, yi) is given for training with the
input xi ∈ Rn and the corresponding target value or label yi = 1 or −1, i.e.,

(x1, y1), . . . , (xm, ym) ∈ Rn × {±1}. (1)

The two parallel supporting hyperplanes are defined as follow:

wT x − b = +1 and wT x − b = −1.

In canonical form, the optimal hyperplanes are found by solving the following
primal optimization problem [13]:

min
w,b,ξ

1
2
wT w + ceT ξ

subject to D̃(Aw − eb) ≥ e − ξ, (2)
ξ ≥ 0,
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where the matrix A ∈ Rm×n records the whole data, the diagonal matrix D̃ ∈
Rm×m (with ones or minus ones along its diagonal) is according to membership
of each point in the classes +1 or −1 , c > 0 is the regularization parameter,
and ξ is a slack variable. As for the primal problem, SVM solves its Lagrangian
dual problem as follows:

min
α

m∑
i=1

m∑
j=1

αiαjyiyjxixj −
m∑

i=1

αi

subject to
m∑

i=1

yiαi = 0, (3)

0 ≤ αi ≤ c, i = 1, . . . ,m,

where αis are the Lagrange multipliers.

3 Support Vector Classification-Regression Machine
for K-Class Classification

K-SVCR, which is a new method of multi-class classification with ternary output
{−1, 0,+1}, has been proposed in [1]. This method introduces the support vector
classification-regression machine for K-class classification. This new machine
evaluates all the training data into a “1-versus-1-versus-rest” structure during
the decomposing phase using a mixed classification and regression support vector
machine (SVM). Figure 1 illustrates the K-SVCR method graphically.

Throughout this paper, we suppose without loss of generality that there are
three classes Am1×n, Bm2×n and Cm3×n marked by class labels +1, −1, and
0, respectively. K-SVCR can be formulated as a convex quadratic programming
problem as follows:

min
w,b,ζ1,ζ2,φ,φ∗

1
2
‖w‖2 + c1(eT

1 ζ1 + eT
2 ζ2) + c2e

T
3 (φ + φ∗) (4)

subject to Aw + e1b ≥ e1 − ζ1,

− (Bw + e2b) ≥ e2 − ζ2,

− δe3 − φ∗ ≤ Cw + e3b ≤ δe3 + φ,

ζ1, ζ2, φ, φ∗ ≥ 0.

Where c1 > 0 and c2 are the regularization parameters, ζ1, ζ2, φ and φ∗ are posi-
tive slack variables, and e1, e2, and e3 are vectors of ones with proper dimensions.
To avoid overlapping, positive parameter δ must be lower than 1.

The dual formulation of (4) can be expressed as

max
γ

qT γ − 1
2
γT Hγ, (5)

subject to 0 ≤ γ ≤ F,
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where Q =
[
AT −BT CT −CT

]
, H = QT Q, q =

[
eT
1 eT

2 −δeT
3 −δeT

3

]
, and F =[

c1e1; c1e2; c2e3; c2e3
]
. By solving this quadratic box constraint optimization

problem, we can obtain the separating hyperplane f(x) = wT x + b and the
decision function can be written as:

f(xi) =

⎧⎪⎨
⎪⎩

1 wT xi + b ≥ δ,

−1 wT xi + b ≤ −δ,

0 otherwise.

Fig. 1. Geometric representation of K-SVCR method

4 Least Square K-SVCR

In this section, we propose a least squares type of K-SVCR method called LSK-
SVCR in both linear and nonlinear cases.

4.1 Linear Case

We modify the primal problem (4) of K-SVCR as (6), which uses the square of
2-norm of slack variables ζ1, ζ2, φ and φ∗ instead of 1-norm slack variables in the
objective function and uses equality constraint instead of inequality constraint
in K-SVCR. Then, the following minimization problem can be considered:
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min
w,b,ζ1,ζ2,φ,φ∗

1
2
‖w‖2 + c1

(‖ζ1‖2 + ‖ζ2‖2
)

+ c2‖φ‖2 + c3‖φ∗‖2 (6)

subject to e1 − (Aw + e1b) = ζ1,

e2 + (Bw + e2b) = ζ2,

Cw + e3b − δe3 = φ∗,
− Cw − e3b − δe3 = φ.

Where ζ1, ζ2, φ and φ∗ are positive slack variables, and c1, c2 and c3 are penalty
parameters and positive parameter δ is a lower than 1.

Now by substituting the constraint into the objective function, we have the
following unconstrained QPP

min
w,b

1
2
‖w‖2 + c1‖e1 − Aw − e1b‖ + c1‖e2 + Bw + e2b‖

+ c2‖ − Cw − e3b − δe3‖2 + c3‖Cw + e3b − δe3‖. (7)

The objective function of problem (7) is convex, so for obtaining the optimal
solution, we set the gradient of this function with respect to w and b to zero.
Then we have

∂f

∂w
= w + 2c1(−AT )(e1 − Aw − e1b) + 2c1BT (e2 + Bw + e2b)

+ 2c2(−CT )(−Cw − e3b − δe3) + 2c3CT (Cw + e3b − δe3) = 0,
∂f

∂b
= 2c1(−eT

1 )(e1 − Aw − e1b) + 2c1eT
2 (e2 + Bw + e2b)

+ 2c2(−eT
3 )(−Cw − e3b − δe3) + 2c3eT

3 (Cw + e3b − δe3) = 0.

The above equation can be displayed in the matrix form as

2c1

[
AT A AT e1
eT
1 A eT

1 e1

] [
w
b

]
+ 2c1

[
BT B BT e2
eT
2 B eT

2 e2

] [
w
b

]
+ 2(c2 + c3)

[
CT C CT e3
eT
3 C eT

3 e3

] [
w
b

]

+
[
2c1(−AT )e1 + 2c1B

T e2 + 2c2C
T δe3 + 2c3C

T (−δe3)
2c1(−eT

1 e1) + 2c1eT
2 e2 + 2c2δe

T
3 e3 + 2c3e

T
3 (−δe3)

]
= 0.

Therefore w and b can be computed as follows:
[
w
b

]
=

[
c1(AT A + BT B) + (c2 + c3)CT C c1(AT e1 + BT e2) + (c2 + c3)CT e3
c1(eT

1 A + eT
2 B) + (c2 + c3)eT

3 C c1(eT
1 e1 + eT

2 e2) + (c2 + c3)eT
3 e3

]−1

[
c1(−AT )e1 + c1B

T e2 + c2C
T δe3 + c3C

T (−δe3)
c1(−eT

1 e1) + c1e
T
2 e2 + c2δe

T
3 e3 + c3e

T
3 (−δe3)

]
.

We rewrite it as[
w
b

]
= −

[
c1

[
AT

eT
1

]
[A e1] + c1

[
BT

eT
2

]
[B e2] + c2

[
CT

eT
3

]
[C e3] + c3

[
CT

eT
3

]
[C e3]

]−1

(
−c1

[
AT e1
m1

]
+ c1

[
BT e2
m2

]
+ c2δ

[
CT e3
m3

]
− c3δ

[
CT e3
m3

])
.
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Denote E = [A e1], F = [B e2], and G = [C e3], then we can obtain the
separating hyperplane by solving a system of linear equations as follows:

[
w
b

]
= − [

c1E
T E + c1F

T F + c2G
T G + c3G

T G
]−1

(−c1E
T e1 + c1F

T e2 + c2δG
T e3 − c3δG

T e3).

4.2 Nonlinear Case

In the real world problems, a linear kernel cannot always separate most of the
classification tasks. To make the nonlinear types of problems separable, the sam-
ples are mapped to a higher dimensional feature space. Thus, in this subsection,
we extend the linear case of LSK-SVCR to the nonlinear case, and we would like
to find the following kernel surface:

k(xT ,DT )w + eb = 0,

where k(·, ·) is an appropriate kernel function and D = [A; B; C]. After a careful
selection of the kernel function, the primal problem of (4) becomes:

min
w,b,ζ1,ζ2,φ,φ∗

1
2
‖w‖2 + c1(‖ζ1‖2 + ‖ζ2‖2) + c2‖φ‖2 + c3‖φ∗‖2,

subject to e1 − (k(A,DT )w + e1b) = ζ1,

e2 + (k(B,DT )w + e2b) = ζ2,

k(C,DT )w + e3b − δe3 = φ∗,

− k(C,DT )w − e3b − δe3 = φ.

By substituting the constraint into the objective function, the problem takes the
form

min
w,b

1
2
‖w‖2 + c1‖e1 − k(A,DT )w − e1b‖ + c1‖e2 + k(B,DT )w + e2b‖

+ c2‖ − k(C,DT )w − e3b − δe3‖2 + c3‖k(C,DT )w + e3b − δe3‖.

Similarly to linear case, the solution of this convex optimization problem can be
derived as follows:[

w
b

]
= − [

c1M
T M + c1N

T N + c2P
T P + c3P

T P
]−1

(−c1M
T e1 + c1N

T e2 + c2δP
T e3 − c3δP

T e3),

where M = [k(A,DT ) e1] ∈ Rm1×(m+1), N = [k(B,DT ) e2] ∈ Rm2×(m+1),
P = [k(C,DT ) e3] ∈ Rm3×(m+1), D = [A; B; C] and m = m1 + m2 + m3.

The solution to the nonlinear case requires the inversion of a matrix of size
(m+1)×(m+1). In general, a matrix has a special form if the number of features
(nF ) is much less than the number of samples (nS), i.e., nS � nF , and in this
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case the inverse matrix can be inverted by inverting a smaller nF × nF matrix
by using the Sherman–Morrison–Woodbury (SMW) [5] formula. Therefore, in
this paper, to reduce the computational cost, the SMW formula is applied. More
concretely, the SMW formula gives a convenient expression for the inverse matrix
A + UV T , where A ∈ Rn×n and U, V ∈ Rn×K , as follows:

(A + UV T )−1 = A−1 − A−1U(I + V T A−1U)−1V T A−1.

Herein, A and I + V T A−1U are nonsingular matrices.
By using this formula, we can reduce the computational cost and rewrite the

above formula for the hyperplane as follows:
[
w
b

]
= −

(
Z − ZMT

(
1
c1

Im1 + MZMT

)−1

MZ

)(
− c1M

T e1

+ c1N
T e2 + (c2 − c3)δPT e3

)
,

where Z =
(

c1N
T N + (c2 + c3)PT P

)−1

. When we apply SMW formula on Z

again, then we have

Z =
1

c2 + c3

(
Y − Y NT

(
c2 + c3

c1
Im2 + NY NT

)−1

NY

)
,

where Y = (PT P )−1. Due to possible ill-conditioning of PT P , we use a regular-
ization term αI, (α > 0 and small enough). Then we have Y = 1

α (Im3 −PT (αI +
PPT )−1P ) .

4.3 Decision Rule

The multi-class classification techniques evaluate all training points into the “1-
versus-1-versus-rest” structure with ternary output {−1, 0, 1}. For a new testing
point xi, we predict its class label by the following decision functions:

For linear K-SVCR and LSK-SVCR :

f(xi) =

⎧⎪⎨
⎪⎩

+1, xT
i w + b ≥ δ,

−1, xT
i w + b ≤ −δ,

0, otherwise.

For nonlinear K-SVCR and LSK-SVCR :

f(xi) =

⎧⎪⎨
⎪⎩

+1, k(xT
i ,DT )w + eb ≥ δ,

−1, k(xT
i ,DT )w + eb ≤ −δ,

0, otherwise.

For k-class classification problem, the “1-versus-1-versus-rest” constructs K(K−
1)/2 classifiers in total, and for decision about final class label of testing sample
xi we get a total votes of each class. So the given testing sample will be assigned
to the class label that gets the most votes (i.e. max-voting rule).
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5 Computational Complexity

In this subsection, we discuss computational complexity of K-SVCR, and LSK-
SVCR. In three-class classification problems, suppose the total size of each class
is equal to m/3 (where m = m1 + m2 + m3). Since samples in the third class
are used twice in the constraints of K-SVCR problem, there are 4m/3 inequality
constraints in total. Therefore the computational complexity of K-SVCR is the
complexity of solving one convex quadratic problem in dimension n+1 and with
4m/3 constraints, where n is the dimension of the input space.

In our proposed methods for linear LSK-SVCR, we need to compute only
one square system of linear equation of size n + 1.

In nonlinear LSK-SVCR, the inverse of a matrix of size (m + 1) × (m + 1)
must be computed. The Sherman–Morrison–Woodbury (SMW) formula reduces
the computational cost by finding the inverses of three matrices of smaller sizes
m1 × m1, m2 × m2 and m3 × m3.

6 Numerical Experiments

To assess performance of the proposed method, we apply LSK-SVCR on several
UCI benchmark data sets [10] and compare our method with the K-SVCR. All
experiments were carried out in Matlab 2019b on a PC with Intel core 2 Quad
CPU (2.50 GHZ) and 8 GB RAM. For solving the dual problem of K-SVCR,
we used “quadprog.m” function in Matlab. Also, we used 5-fold cross-validation
to assess the performance of the algorithms in aspect of accuracy and training
time. Note that in 5-fold cross-validation, the dataset is split randomly into five
almost equal-size subsets, and one of them is reserved as a test set and the
others play the role of a training set. This process is repeated five times, and the
average accuracy of five testing results was used as the classification performance
measure. Notice that the accuracy is defined as the number of correct predictions
divided by the total number of predictions; to display it into a percentage we
multiplied it by 100.

6.1 Parameter Selection

It must be noted that the performance of the algorithms depends on the choice
of parameters. In the experiments, we opt for the Gaussian kernel function
k(xi, xj) = exp(−‖xi−xj‖2

γ2 ). The best parameters are then obtained by the grid
search method [6,7].

In this paper, the optimal value for c1, c2, c3, were selected from the set
{2i|i = −8,−7, . . . , 7, 8}, the parameters of the Gaussian kernel γ were selected
from the set {2i|i = −6,−5, · · · , 5, 6}, and parameter δ in K-SVCR and LSK-
SVCR was chosen from set {0.1, 0.3, . . . , 0.9}.
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Table 1. The characterization of data sets.

Data set Number of instances Number of attributes Number of classes

Iris 150 4 3

Balance 625 4 3

Soybean 47 35 4

Wine 178 13 3

Breast tissue 106 10 4

Hayes-Roth 132 5 3

Ecoli 327 7 5

Teaching 150 5 3

Thyroid 215 6 3

Table 2. Performance of K-SVCR and LSK-SVCR with Gaussian kernel.

Data set K-SVCR K-SVCR LSK-SVCR LSK-SVCR

Acc ± std Time (s) Acc ± std Time (s)

Iris 96.54 ± 2.04 5.27 98.67 ± 1.82 1.54

Balance 94.21 ± 2.04 89.56 94.89 ± 2.01 4.48

Soybean 100.00 ± 0.00 1.65 100.00 ± 0.00 1.59

Wine 98.81 ± 2.51 7.06 99.45 ± 1.24 0.79

Breast tissue 47.06 ± 9.73 2.91 46.59 ± 15.39 1.12

Hayes-Roth 46.33 ± 12.86 12.70 75.72 ± 8.81 0.58

Ecoli 77.36 ± 4.28 21.23 89.01 ± 5.89 5.57

Teaching 63.68± 5.58 10.63 70.19 ± 7.46 0.96

Thyroid 83.25 ± 6.02 21.26 93.49 ± 2.55 1.38

6.2 UCI Data Sets

In this subsection, to compare the performance of K-SVCR with LSK-SVCR, we
ran these algorithms on several benchmark data sets from UCI machine learning
repository [10], which are described in Table 1.

To analyse the performance of the K-SVCR and LSK-SVCR algorithms,
Table 2 shows a comparison of classification accuracy and computational time
for K-SVCR and LSK-SVCR on nine benchmark datasets available at the UCI
machine learning repository. This table indicates that for Iris dataset, the accu-
racy of LSK-SVCR (accuracy: 98.67, time: 0.03 s) was higher than K-SVCR
(accuracy: 96.54, time: 3.51 s), so our proposed method was more accurate and
faster than original K-SVCR. A similar discussion can be made for Balance, Soy-
abean, Wine, Brest Tissue, Hayes-Roth, Ecoli, Teaching, and Thyroid datasets.
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The analysis of experimental results on nine UCI datasets revealed that the per-
formance of LSK-SVCR was slightly better than the original K-SVCR. We should
note that for Brest Tissue, although the K-SVCR is a little more accurate than
LSK-SVCR, the LSK-SVCR is faster. Therefore, according to the experimental
results in Table 2, LSK-SVCR not only yielded higher prediction accuracy but
also had lower computational times.

7 Conclusion

The support vector classification-regression machine for K-class classification
(K-SVCR) is a novel multi-class method. In this paper, we proposed a least
squares version of K-SVCR named as LSK-SVCR for multi-class classification.
Our proposed method leads to solving a simple system of linear equations instead
of solving a hard QPP in K-SVCRKindly provide the page range for Ref. [2].. The
K-SVCR and LSK-SVCR evaluates all training data into“1-versus-a-versus-rest”
structure with ternary output {−1, 0,+1}.

The computational results performed on several UCI data set demonstrate
that, compared to K-SVCR, the proposed LSK-SVCR has better efficiency in
terms of accuracy and training time.
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Abstract. Image captioning aims at analyzing the content of an image
in order to subsequently generate a textual description through verbally
expressing the important aspects of it. In spite of the fact that the task
of automatic image description is not bound to the English language,
yet, the recent advances mostly focus on English descriptions. Collect-
ing captions for images is an expensive process that requires time and
labor cost. In this paper, we introduce a novel active learning framework
with human in the loop for image captioning corpus creation, using a
translated version of existing datasets. We implemented this framework
to create a new dataset called ArabicFlickr1K. This dataset has 1095
images, each is associated with three to five descriptions. We also propose
a neural network architecture to automatically generate Arabic captions
for images. This architecture relies on an encoder-decoder framework.
Our model scored 47% on BLUE-1.

Keywords: Image captioning · Computer vision · Natural language
processing

1 Introduction

Overs the last few years has been renewed interest in tasks that require a combi-
nation of linguistic and visual information [1]. This interest is largely motivated
by the amount of available data on the internet and the recent advances in
computer vision.

Image captioning [10] has become a key task with the interest of both natural
language processing (NLP) and computer vision communities. This task consists
of analyzing the content of an image in order to subsequently generate a textual
description of it by verbally expressing the important aspects of that image.

Image captioning may play an important role in many applications. For
instance the generated captions can be used in text based information retrieval
[12], video indexing [44] and several other NLP applications.
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-53552-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-53552-0_14


Active Learning Based Framework for Image Captioning Corpus Creation 129

The description could be difficult because it could in principle, taking into
consideration any visual aspect of the image, include the description of the
objects and their properties, as well as the way in which people and objects
of the image are interacting. Nevertheless, image captioning is a complex task
since it requires not only a complete understanding of the image, but also a
sophisticated generation of natural language.

A brief look at an image is enough for a human being to point out and describe
an important amount of details about the visual scene. Our visual system can’t
recognize a lot of gray shares compared to hundreds of thousands of different
color shades and intensities. The images considered in this work are color images,
and this is due to the immense deal of information that can be found in color
images.

In an image captioning system, we have as an input an RGB image I and
we are required to generate a sequence of words = (s1, s2, ..., sN ). The possible
words si ∈ V at time-step i are subsumed in a discrete set V of options. The
number of possible options |V | easily reaches several thousands. There are special
tokens in the set of option V that mark any word that is not in the set, the start
of a sequence and its end. In practice, those tokens are used to identify whether
a word exists in the set of options V or it is either the start or the end of a
sequence.

Given a training set D = {(I, S∗)}, which contains pairs (I, S∗) of image
input I and corresponding ground-truth caption S∗ = (s∗

1, s
∗
2, ..., s

∗
N ), consisting

of words s∗
i ∈ V, I ∈ {1, 2, .., N}, we maximize, with respect to parameters W, a

probability model PW (s1, s2, ..., sN |I).
Collecting captions for images or videos [26] is an expensive process. This

is not unique to image caption, however, it’s much easier to create a corpus,
compared to other tasks in NLP, that suffers from lack of resources [25].

The main contribution of this paper is the focus on solving the lack of resource
for Arabic image captioning. Our contributions are as follows:

– We proposed a novel active learning framework with human in the loop
for image captioning corpus creation, using a translated version of existing
datasets.
Human annotators help refine the translation of the automatic translation
model and identify the correct one. As annotators label quality of the trans-
lations, our system ranks the rest of the translated sentences and propose
new instances that have the highest probability of being correct for human
verification. The idea behind this is to reduce the time that would be spent
to find the correct translation in the translated version.

– We proposed a new dataset of Arabic image captions named ArabicFlickr1k.
This dataset contains 1095 images, every image is associated with at least
three captions.

– We introduced a deep learning model based on Encoder-Decoder architecture
for Arabic image captioning.

The remainder of the paper is organized in sections as follows: Sect. 2 aims at
presenting a detailed review of existing datasets and approaches for automatic
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image captioning in the literature. Section 3 is about providing a description of
each component of the proposed active learning framework for image captioning
corpus creation. In Sect. 4, we are describing end to end architecture for Arabic
image captioning. Last but not least, the experimental evaluation and the results
are provided. Finally, in Sect. 6 conclusion and future research directions are
presented.

2 Literature Review

The availability of datasets, containing images mapped to their descriptions,
has contributed to the advance of image captioning research. Image captioning
model benefits from the quality and the size of this datasets. Serious progress
has been made in the English language. However, other languages are behind,
given the scarcity of image captions corpora [2]. The following datasets are the
most commonly used of the literature.

2.1 Datsets

Flickr8k [15] is a collection of 8092 images taken from the Flickr website and
made public by the University of Illinois. The images contain no person or famous
place, so that the entire image can be described according to all the different
objects of the image. Each image contains five different captions for reference
with an average length of 11.8 words written by humans. They used Amazon
Mechanical Turk crowdsourcing service to collect this descriptions. They asked
people on the platform to describe the objects, scenes and activities in the images
without providing them any information about the images. Only With the infor-
mation that can be found in the image they were able to collect conceptual
descriptions that describe the images.

Flickr30k [42] is an extension of Flickr8k. It contains 31,783 images of peo-
ple involved in everyday activities and events from the Flickr website. Each
image is associated with five descriptions in English, which were collected from
Amazon Mechanical Turk. These descriptions are required to accurately describe
the objects, scenes, and activities displayed in the image. The dataset contains
158,915 descriptions. Usually, 1000 images are selected as validation data, 1000
images as test data, and the remaining images are used as train data.

Microsoft COCO [23] is a large scale dataset, containing 123,287 images.
Most images contain multiple objects and meaningful contextual information we
encounter in everyday scenes, and each image is accompanied by five English
descriptions annotated by humans. Microsoft COCO is widely used for various
computer vision tasks.

STAIR Captions [40] is a Japanese version of Microsoft COCO, it consists
of 820,310 Japanese captions for 164,062 images. The authors proposed a model
combining the English and Japanese captions. The resulting bilingual model has
better performance when compared with the monolingual model that uses only
the Japanese caption corpus.
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Multi30K [9] is the German version of Flickr30K. The authors extended the
Flick30k dataset by collecting five descriptions in German for the 31014 images.
They used the Crowdflower platform to hire 185 people for 31 days to describe
each image. They collected five independent descriptions for each image. They
also translated 31,000 descriptions (about 6200 images) of the English version,
translated by professional translators without seeing the images.

Recently, a growing number of research focused on the task of associating
images and sentences from both the computer vision and the NLP researchers.
In The literature, there are two traditional well-studied directions. The first
approaches are known as the language model-based approaches or generation
based approaches. They start by converting images into words describing a fixed
number of scenes, objects, their attributes and their spatial relations. After that,
they formulate new coherent sentences from those words. The second approaches
are known as retrieving based approaches. They produce the description by
transferring existing description from other images. In the remaining of this
section, we will see works done on those approaches and other approaches based
on neural networks.

2.2 Generation Based Approaches

Generation based approaches differ in the way they represent images and the
technique they use to generate the descriptions.

We mention in this category [22]. Their approach comprises a first step that
uses Image Recognition models to extract visual information from the image
[11]. They extract a fixed number of objects, including things like birds and
cars, they also extract stuff like grass and water. For each object extracted from
the image, they also extract their attributes like color. Finally, they extract the
special relationships between those objects (near, under). This information is
next used for composing sentences to describe the image. The generation step
relies on Web-scale N-grams [5]. They did not take actions into consideration in
the extraction step.

Another work that considers actions, by relying on an external corpus to
predict the relationships between objects, is [39]. In which they fill in a sentence
template by predicting the likely objects, verbs, scenes and prepositions that
make up the core sentence structure. This is based on a Hidden Markov Model
(HHM). They started by detecting objects and scenes from the image using
the state of art image recognition models at that time. After this step, they
used a language model trained on the English Gigaword corpus to predict the
verbs given the objects detected in the image. Using the predicted actions, they
estimated the probability that a preposition co-locates with a scene using an
existing data. They used a HMM model to find the likely sentence structure
given the predicted objects, verbs, scenes and propositions. The last step is the
generation, using the results from the previous steps they fill in a fixed sentence
template. They limited the number of objects, Verbs, Scenes and Prepositions to
cover only what is commonly encountered in images. In addition, the sentence
generated for each image is limited to at most two objects occurring in a unique
scene.
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In this context too, [20] generate descriptions from using pre-trained object
detectors and a fixed template based method for description generation. Their
system use object recognition models to detect objects (bird, car person, grass,
trees). For each detected object they pass it to an attribute classifier and store
the detected attributes. Same for every object and region, they predict preposi-
tional relationships. They combine the output of the above in a CRF to produce
input for language generation methods and generate the description using a fixed
template.

[28] used computer vision models to predict the bounding boxes of objects in
the image. For each detected object in the image, they extract attributes such
as shape and texture. They also associate detected actions from the image to
objects. Finally, they use preposition functions to predict a set of spatial relations
that is held between each pair of objects based on their bounding box. A step
before the description generation filters detected attributes that are unlikely and
place objects into an ordered syntactic structure. Finally, they generate a large
set of syntactically well-formed sentence fragments and then recombine these
using a tree-substitution grammar.

2.3 Retrieval Based Approaches

Retrieval based approaches in the literature can be branded into two main cat-
egories. The first one uses a visual space to extract similar image for a given
query image. The other category combines textual and visual information in one
space.

[21] work falls into this category. For a given test image, their system retrieves
visually similar images from the training data. From those images, they extract
segments of their corresponding descriptions that are potentially useful. Then
they selectively use those text segments to produce a new description. In order to
compose the description, they proposed a new stochastic composing algorithm.
A downside of their system is that the produced sentences rely on how correctly
the retrieved text segments can describe the given image.

A collection of one million images associated with visually relevant descrip-
tions was introduced in [30]. These descriptions are written by people on the
Flicker website. The authors also proposed two methods for automatic descrip-
tions generation. The first method uses two global image descriptors to retrieve
similar images. The second method integrates global descriptors and specific con-
tent estimators. The specific content estimators extract objects, actions, staff,
attributes and scenes from the image. Relaying on the large parallel corpus
that they collected, they used both methods to produce relevant image descrip-
tions. Since the descriptions associated with images were written by humans,
this corpus enabled the proposed methods to yield descriptions that have a high
linguistic quality.

The second category of retrieval-based approaches produces a co-embedding
of images and descriptions in the same space. Among the works that have opted
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for this approach, we find [13]. Where they proposed Stacked Auxiliary Embed-
ding (SAE); an approach based on weakly annotated images data. They were
able to improve the performance of description retrieval using SAE, to transfer
knowledge from a large-scale data of weakly annotated images. Even with large
amount of dataset, retrieval-based approaches do not have the ability to generate
new description for unseen image with new combination of objects.

2.4 Retrieval Based Approaches

Recently research in image automatic description has been limited by the existing
techniques in image recognition systems and their efficacy. However, this systems
begins to improve with the advances of neural network approaches [19].

[18] is the first to use only neural networks for automatic image description in
the same period as [35] where they proposed a representation that map images
and sentences into the same space using recursive neural networks. After that,
they can map a given image into this space, rank all the sentences and chose the
first one as description. However, unlike Socher, Kiros proposed a multi-layer
perceptron (MLP) that uses a group of word representation vectors biased by
features from the image. This means the image features condition the language
model output. The image features are extracted from a convolutional neural
network.

Advances in machine translation and computer vision enabled [37] to produce
a new model based on deep neural network for image description. Their model
consists of a convolutional neural network that represents the image in a context
vector which then is passed to a language model based on LSTM. The joined
model takes an image as input and is trained to maximize the probability of
a description associated with a the given image. The model is fully trainable
using Stochastic gradient descent and has the state of the art performance at
that time on MS COCO. Similar work at the same period has been done by [17]
where they used VGGNet [34] to represent the images and obtained the state of
the art performance on Flickr8K, Flickr30K and MSCOCO.

Karpathy and Vinyals models provide the image features vector as an input
only at the first step of the generation. In [8], the proposed model uses the image
features vector at each time step. They represent the images using a pretrained
CNN model (VGGNet [34] and CaffeNet [16]) on ImageNet. They explored three
variants of their image description architecture, and evaluated the effect of depth
in the LSTM language model. Their work also covered video description and
Activity Recognition.

Work cited above that uses neural networks do not pay attention to a partic-
ular area or objects in the image when generating the description. The concept
of attention was first introduced by [38] for image description. They proposed
two variations of spatial attention and demonstrate that their models are able
to focus on specific region in the image while generating the description. This
can be used to gain insight on how their models work.

The success of spatial attention proposed by [38] was followed by the semantic
attention in [41]. Spatial attention enables the generation component to focus
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on relevant places and regions in the image to compose more accurate image
description. While, the semantic attention helps the generation step to incor-
porate semantically relevant concepts like actions and objects detected from
the image. First, they map visual concepts (regions, objects, attributes, etc.)
detected in the image to words. After that, they use a pretrained convolutional
neural network to extract visual features. Then, the model learns through the
semantic attention to selectively fuse this words with the visual features into the
hidden states and outputs of recurrent neural networks that generates the image
description. This words are represented with word embeddings, witch means that
they can use external resource, not only for the image representation, but also
for text representation.

While [41] extracted visual concepts and used them to help the visual atten-
tion, another text based type of attention was proposed by [29], in which they
used the description associated with an image to guide the visual attention.
During the training; they guide the visual attention with the description to help
the model focus only on relevant visual objects in the image. This description is
retrieved from visually similar images in the training dataset. They showed that
this approach yield better performance on MS-coco at that time.

Neural networks based approaches before that [24] typically provide the lan-
guage model with the image features at every step of the description generation.
The authors argue that the language model does not need visual features to
generate every word in the description. They introduced an adaptive attention
encoder-decoder model. This model can automatically choose to ignore visual
features when generating the next word of the description and to only use the
language model. The adaptive attention decides when the language model should
look at the image and also where it should look. This is done by a new exten-
sion of LSTM that relies on a new spacial attention that they introduced. They
reported a significant performance over previous methods on MS COCO and
Flickr30.

3 Corpus Creation Framework

There is a wide variety of resources on the internet like Facebook, Flickr and
other websites from which we can collect images with captions. The only problem
with those captions is that they do not describe the image specifically, but rather
they give information about what cannot be seen in the image. In [15], the
authors suggested that the description should focus on conceptual information
that refer to objects, attributes, events and other literal content of the image.

While the task of automatic image description is not bound to the English
language, yet, the recent advances have been mostly focusing on English descrip-
tions. It is clear that the creation of resources like [9] costs tens of thousands of
dollars and is a time-consuming task. However, The creation of new resources
for Arabic image captioning will have a great impact on future research.

In the following subsections we explain in details the different components
of our active learning based framework for image captioning corpus creation.
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Fig. 1. Active learning based framework for image captioning corpus creation.

The first component is a manual annotation tool created with Django and Vue
js to speed the process for annotators. This tool is used by Arabic native speakers
to classify the quality of the translation presented for them. We use a translation
quality classification model to rank and decide what images be passed to the
manual verification.

3.1 Manual Annotation

This step consists of an interface that present an image with the associated
descriptions to the annotators. Every description comes with an Arabic transla-
tion. The human annotators are instructed to verify the quality of the translation
on a scale of incorrect, almost correct and incorrect. Almost correct is for caption
that needs one or two word refinements. The next component is responsible for
choosing which image to be present for annotation to minimize the human effort
of finding good translations.

Initially, we picked a random set of descriptions and presented them to human
annotators. We used their annotations as initial training data for the next com-
ponent of the active learning framework.

3.2 Translation Quality Classification Model

The translation quality classification model is an essential component. We use
a text classification [43] model. After training, we use this model to classify a
small set of the unlabeled data and rank them by the model confidence. We then
choose the first batch and pass it to human annotators. The idea is to get more
correct translations in a batch compared with random selection. The model is a
combination of different layers. The details of each layer are presented next.
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Embedding Layer. Word embedding is a technique for representing words
by fixed-size vectors, so that words that have a similar meaning also have close
vectors (that is to say, vectors whose Euclidean distance is small). In other words,
the representation implies the semantic meaning of words [3]. In the Embedding
layer, each word is mapped to a dense vector of dimension d.

These vectors are initialized based on the word embeddings model that was
proposed in [27]. With a simple and efficient neural network structure, their
model made it possible to train on a huge amounts of textual data in a short
period of time. The authors introduced two models called Continuous Bag of
Words (CBOW) and Skip-Gram. The Skip-Gram architecture tries to predict
the context of a given word. Both of these models have become very popular in
recent years, showing several improvements in the field of NLP.

Bidirectional Gated Recurrent Units Layer. The units of this layer are
composed of the GRU architecture proposed in [6]. GRUs are a more recent
variation of LSTM networks. GRU first calculates an update gate based on the
current input vector and the hidden state.

z(t) = σ(Wzx
(t) + Rzh

(t−1) + bz) (1)

Then, it calculate the reset gate in a similar way but with different weights
using a new memory content. If the reset gate is 0, then it skips the previous
memory and stores only the new information. The final memory at the time step
combines the current and previous time steps.

h̄(t) = σ(Whx(t) + rt � Rhh(t−1) + bh) (2)

h(t) = z(t) � h(t−1) + (1 − z(t)) � h̄(t) (3)

Bidirectional GRUs process data in both directions with forward and backward
hidden layers. Compared with the unidirectional, the number of parameters dou-
bles. Bidirectional GRU returns a vector for each direction. The average of the
outputs is taken, giving a vector with the dimension equals to the number of
GRU units in the layer. It has been shown that GRUs work better than regular
LSTMs and are faster thanks to a simpler architecture [7].

Attention Layer. Taking the representation sequence h, outputted by the
BiGRU layer as input, the attention layer produces a new representation vector
c with the dimension equal to time steps. This attention is proposed in [32].

c =
T∑

t=1

αtht (4)

Where

et = a (ht) , αt =
exp (et)∑T

k=1 exp (ek)
, (5)
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a (ht) = tanh (Wht + b) (6)

W, b are learned with the model.

Output Layer. This layer takes as an input the output of the attention layer.
The input is fed to a feed forward neural network, with output going through
the Softmax function to give the predictions.

3.3 Ranking Sentence for Human Annotation

Initially, we choose random batch of descriptions for annotation, this is done
in the first few batches. We use those descriptions as a training data for the
translation quality classification model.

After the model is trained, we predict the classes of a random set of descrip-
tions. The model outputs the probability of every class (Correct, Incorrect, and
mostly correct) for a given translation instance. We then sort the images based
on the number of correct translations and the degree of confidence given by
the model. After that, we chose set from the top and send them to human for
annotation. After this step, we retrain the model again and repeat.

4 Arabic Image Captioning Model

The encoder-decoder architecture was introduced for the first time in [36], Since
then, it has become the standard Neural Machine Translation (NMT) approach.
This architecture especially if given large amount of data, outperforms classical
Machine translation (MT) methods [4].

Our model was inspired from this architecture. In image captioning, the core
idea is to utilize a Convolutional Neural Network (CNN) as an encoder to extract
visual features and a Recurrent Neural Networks (RNN) as a decoder to generate
the caption.

Fig. 2. Arabic image captioning system based on encoder-decoder architecture.
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4.1 Encoder

For many years, training deep Neural network was difficult because of a problem
known as vanishing gradient. The gradient of the loss function shrinks to zero
when the chain rule is applied several times. This prevented the network weights
from getting updated so the learning is not performed. ResNets [14] solve this
problem where the gradient flow backwards using the skip connections.

To extract hierarchical visual information from the image, we used a pre-
trained Resnet101 on Imagenet. In our model Fig. 2, the encoder is first applied to
extract both global and regional visual information from the input image. Then
we pass those features to the encoder to generate a description. The encoder can
be fine-tuned during the training phase.

4.2 Decoder

The main idea behind the decoder is that of the conditional language model. A
language model calculates the probability of a sentence by the following equation,
where xi is the next word and x1, x2, ..., xi−1 represent the context.

P (X) =
n∏

i=1

P (xi|x1, x2, ..., xi−1) (7)

To model the image caption generation problem, we use a conditional lan-
guage model with the image I. sj is the next word in the image description and
I, x1, x2, ..., xi−1 represent the context used to generate sj .

P (S|I) =
n∏

j=1

P (sj |I, s1, s2, ..., sj−1) (8)

We used an embedding layer, followed by an LSTM layer and a feed forward
network layer. The model is trained end to end using cross-entropy loss. At each
step, the decoder produces a probability distribution over possible next works.
The embedding layer is initialized with pre-trained word2vec model on Arabic
Wikipedia.

5 Experimental Evaluation

The proposed framework for Arabic images captioning corpus creation is based
on the translation of existing dataset. We translated the Flick30K [42] dataset
using Google Translation API. To evaluate this framework, we used Flick30K
but the same steps are valid for a much bigger dataset like MS coco.

First, the annotators were given a set of 3430 descriptions. They were asked
to classify them into three classes. Correct if the translation corresponding to
the original English version is correct, almost correct if the translation needs one
or two word editing and incorrect otherwise. On average, we found about 6%
incorrect translation, 29% almost correct and the rest 65% is correct.
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Then we used the result from the above step to train the translation quality
classification model to classify the quality based on two classes (correct and
incorrect). We could use the three classes, but we focused only on the correct
translations. The embedding layer is initialized with word2vec weights trained
on Arabic Wikipedia articles using Gensim [33].

We chose a random batch of 2000 images and classified their translated
descriptions using the translation quality classification model and passed the
top 885 images with the correct translations ranked by the model confidence
to the annotators. We found 73% correct descriptions, that is an improvement
on the random selection strategy. Finally, we ended up with 1095 images, each
image has at least three correct descriptions validated by humans.

The caption model was implemented in Pytorch with the help of Scikit-
learn and Tensorflow. All the experiments were done on an Ubuntu system.
We used one NVIDIA 1080Ti and 32 GB RAM. We split our data set to 895
images for training, 100 for validation and 100 for the test. We applied some
transformation to the images before feeding them to the encoder. All images are
scaled to 3 * 224 * 224 and normalized. We prepossessed all captions. We started
by tokenizing and then removing words that occur less than two times and then
added tokens to mark the start and the end of each caption. In the encoder layer
we used an LSTM layer with 512 units. We used 300 for the embedding layer
size.

All metrics use for language evaluation output a score indicating a similarity
between the candidate sentence and the reference sentences. A popular metric
used for automatic image captioning evaluation is BLEU.

Fig. 3. Arabic image descriptions generated using the proposed model with their trans-
lation in English.

BLEU (Bilingual evaluation understudy) [31] computes the geometric mean
of n-gram precision scores multiplied by a brevity penalty in order to avoid
overly short sentences. It is a metric that can be used to measure the quality
of machine generated text in tasks like text summarization, Speech recognition
and automatic image captioning. This metric was first introduced for machine
translation as a reasonable correlation with human judgments of quality.
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The caption model is trained end to end with the cross entropy loss. The
performance of the proposed model on the test set gave a promising result of 47
for the BLEU-1, 24 for the BLEU-2, 20 for the BLEU-3 and 11 for the BLEU-4.

6 Conclusions

In this paper, we proposed a novel active learning based framework for Arabic
image captioning corpus creation. This framework relies on the translations of
existing datasets. We also proposed a new corpus for Arabic image captioning
(ArabicFlickr1K). We did a detailed review of the literature and the existing
resources. We introduced a deep learning model based on the Encoder-Decoder
architecture for Arabic image captioning. Our model scored 47% on BLUE-1.
Future research directions will go towards leveraging unsupervised data, using
more complex language models in the Decoder and more supervised fine-tuning
in the training phase.
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Abstract. A new metaheuristic, called Feature-Guided MNS (FG-
MNS) is proposed, combining well-known local search with simple
machine learning techniques. In this metaheuristic, a solution is rep-
resented by features (mean depth of each route, standard deviation of
the length of each route, etc.). The solver uses decision trees to define
promising areas in the features space. The search is mainly focused on
the promising areas, in order to minimize the exploration time, and to
improve the quality of the found solutions. Additional neighborhoods,
guided by the features are proposed.

Keywords: Metaheuristic · Machine learning · Data mining · Vehicle
routing

1 Introduction

The VRP is one of the most studied problems in the optimization field. Even
with thousands of papers, solving to optimality still takes too long, in particular
for large problems with multiple constraints. As a consequence, metaheuristics
are still largely used to solve instances of the VRP. In our work, we will mainly
focus on local search based heuristics, like MNS (Multiple Neighborhood Search)
and ALNS (Adaptive Large Neighborhood Search) [2].

With the fast improvement of machine learning tools a few years ago, more
and more scientists develop ideas to improve optimization methods with machine
learning techniques [1]. The method in this paper uses decision trees to guide
the local search.

After introducing the core data and heuristic used, we will present the new
meta-heuristic developed, its first results, and suggests ways to improve the
method.
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2 Which Features Define VRP Solutions?

In the literature, solutions are considered as sets of permutations, and the data
used are patterns from the permutations [3,4]. The patterns are very easy to
create and use. In [5], F. Arnold and K Sörensen create features specific to the
VRP: average number of crosses, width and depth per route, etc. The features
are then mainly used to evaluate, with a good accuracy, the quality of the solu-
tions. The experiments show the high correlation between number of inter-route
crosses, and the cost of the solution. As a consequence, the general knowledge
provided by data inspired the authors to create a new heuristic, reducing first
the number of inter-route crosses.

Due to the good accuracy of prediction in Arnold and Sörensen’s work, we
use most of the features described in their paper. To increase the prediction
accuracy, we add some new features, presented in Table 1.

Table 1. List of features used

• Average width of each route • Length of the longest interior edge
of each route divided by the length of
each route. (∗)

• Standard deviation of the width of each
route. (∗)

• Mean length of the first and last
edges of each route

• Average span of each route • Demand of the first and last
customer of each route. (∗)

• Standard deviation of the span of each
route. (∗)

• Demand of the farthest customer of
each route. (∗)

• Average depth of each route • Standard deviation of the demand of
the farthest customer of each route.
(∗)

• Standard deviation of the depth of each
route. (∗)

• Standard deviation of the length of
each route. (∗)

• Distance of the first and last edges of
each route, divided by the length of each
route. (∗)

• Mean distance between each route

• Mean length of the longest edge of each
route. (∗)

• Standard deviation of the number of
customers

• Length of the longest edge of each route
divided by the length of each route. (∗)

• Degree of neighborhood. (∗)

(∗) New or modified features

3 Metaheuristic Framework

The main contribution of this paper is the addition of machine learning tech-
niques within a metaheuristic creating good solutions in very short time.
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The solver is a two-phase metaheuristic. First, a set of solutions is generated,
then, the solutions are improved by local search.

Phase 1: Generation of Solutions A GRASP, based on the Clarke and
Wright constructive algorithm generated a set of k1 solutions. Only the k2 best
solutions are chosen, the other are deleted.

Numbers k1 and k2 are parameters of the solver.

Phase 2: Local Search The core of the second phase is a Multiple Neigh-
borhood Search: a set of neighborhoods is used. The neighborhoods are the
following:

– Intra-route reallocation
– Intra-route Swap
– 2-opt
– Inter-route reallocation
– Inter-route path move

A sequence of 2 consecutive customers are removed from one route and place
in another route

– Inter-route swap
– Inter-route Path-exchange

2 sequences of 2 consecutive customers in two different routes are exchanged.
– Split algorithm [6]

All route are merged, and split by Bellman-Ford algorithm. This neighbor-
hood is executed only for heterogeneous instances.

GRASP

EliteSelection

MNS

TS

Fig. 1. MNS-TS

The sequence of execution of neighborhood is
randomly chosen. Each solution is improved by dif-
ferent sequences of neighborhoods. For each neigh-
borhood, the local search is based on Tabu-search,
stop after 5 consecutive non-improving steps. The
MNS stops when, for a solution found, no neighbor-
hood is able to improve the solution Fig. 1.

Performances
The metaheuristics can be executed on different
types of instances. In this section, we will focus
on 2 difficult types of instances: very large scale instances, and heterogeneous
instances.

The first set of instances (available in [7]), created by F. Arnold and K.
Sörensen [8] is a set of classical Capacitated VRP instances, with euclidean
and symmetric distances. The specificity of theses instances, is the number of
customers: from 3,000 to 30,000.

The authors used a new algorithm, called A-G-S, combining different local
searches in reduced space. The paper described two versions of the A-G-S: a long
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version (resp. a short version), with a time limit equal to 5 min (resp. 3 min) per
thousands of customers. Table 2 describes the performance of the MNS-TS and
the A-G-S (short version). The best known solutions BKS are the best solutions
found with the A-G-S (long version).

Table 2. Comparison of A-G-S and MNS-TS on XXL instances

Instances Number of customers
A-G-S (short version) MNS-TS

Gap to

BKS (%)

CPU time (s) Gap to BKS(%) CPU time (s)

L1 3.000 1.36 180 1.67 1.91

L2 4.000 2.62 240 5.15 2.47

A1 6.000 0.22 360 1.67 7.20

A2 7.000 1.68 420 3.69 5.59

G1 10.000 0.35 600 1.44 12.46

G2 11.000 1.27 660 2.99 17.94

B1 15.000 0.77 900 2.05 24.75

B2 16.000 1.89 960 2.79 16.86

F1 20.000 0.42 1200 1.6 57.90

F2 30.000 2.04 1800 2.88 108.46

Mean 1.14 732 2.59 25.55

The MNS-TS has an higher GAP to the best known solution (+ 1.45% in
average) than the faster A-G-S algorithm. However, the MNS-TS is, on average,
28 times faster than the A-G-S.

The second set is the Duhamel-Lacomme-Prodhon (DLP) set of 96 instances
(available in [10]). Each instance contains 2 to 8 categories of vehicles, with their
own capacity, fixed cost and consumption cost. Each category contains a limited
number of vehicles. Table 3 summarizes the performance of the solver. Set A
corresponds to instances solved by optimality in the literature (see [11]) and set
B corresponds to the others instances.

Table 3. Performances on DLP instances

Set of instances Number of customers Number of vehicles Mean GAP to BKS (%) Mean CPU time (s)

Set A 20 to 186 3 to 8 6.56 2.61

Set B 77 to 256 2 to 8 7.78 5.45

As a conclusion, the metaheuristic presented above is able to found quite
good solutions in very short time. The time save by the metaheuristic is used in
a second phase, using the knowledge learned with the previous phase, to improve
the quality of the solution founds.

4 Feature-Guided MNS: A New Metaheuristic

The Feature-Guided MNS (FG-MNS) is based on MNS-TS and divided in two
steps. Firstly, the solver will collect data and learn the link between features and
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quality. Secondly, the solver will use the knowledge to guide the solver, to the
optimal, using a score (describes in Sect. 4).

The main idea is represented on Fig. 2.
Let X the solution space and f the objective function to minimize (curve

dashed in blue in Fig. 2). Let xopt the optimal solution, and x∗ the solution pre-
dicted as optimal, by the machine learning method. Let s the score function (red
full curve in Fig. 2), representing the distance between the current solution and
x∗. The main idea of the FG-MNS is to alternate between minimizing function
f and function s.

x

•f0

•s0

•
x0

•
x∗

•f
∗

•s
∗

•fopt

•
xopt

Fig. 2. Two scores for one instance
(Color figure online)

Example. Solution x0 is in a local min-
imum, meaning a local search focus on
f(x) can’t improve x. However, a local
search focus on s(x) can reduce the dis-
tance, in the solution space, between the
current solution and xopt.

After a local search, the solution x∗

is found. x∗ is worth than x0 (f(x∗) >
f(x0)), but near xopt.

A local search centered in x∗ focus on
f(x) is sufficient to find xopt.

Learning Phase
This part is initialize by the framework
described in Sect. 3, in order to collect
data. After collecting enough various solutions, the learning phase really began.
The main goal, as seen in example above, is to localise the supposed optimum
solution. One of the most appropriate machine learning methods for this pur-
pose is the Decision Tree. This method cut the feature space in two subspaces,
such that, each subspace is more homogeneous than the initial space. We repeat
the cut for each subspace, until cutting will not increase the homogeneity of the
subspace. Finally, the initial space is partition in subspaces, as homogeneous as
possible.

Example. Let’s define a solution as good when the GAP to BKS is < 1% and
bad otherwise. Let F1 and F2 the 2 features used in this example. Let’s use a
decision to determined the feature spaces containing good solutions. This deci-
sion is showed in Fig. 3. The tree split initially the feature space in 2 subspaces:

– One subspace with solutions such that Feature 1 ≥ 0.37. This subspace con-
tains 5032 good solutions and 300 bad solutions.

– One subspace with solutions such that Feature 1 < 0.37 This subspace con-
tains 1661 good solutions and 6442 bad solutions.
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Each subspace is split in 2 areas. Splitting each area don’t increase the homo-
geneity of each leaf, the decision tree stop. At last, we can define 4 areas (see
Fig. 4) corresponding to the 4 final leaves.

– Leave 1: F1 ≥ 0.37 and F2 < 786. The associate area contains mostly good
solutions.

– Leave 2: F1 ≥ 0.37 and F2 ≥ 786. The associate area contains mostly bad
solutions.

– Leave 3: F1 < 0.31. The associate area contains mostly good solutions.
– Leave 4: 0.31 ≤ F1 ≤ 0.37. The associate area contains mostly bad solutions.

Areas associated with leaves containing mostly good solutions (leaves 1 and
3 in this example) are called promising areas. Oppositely, areas associate to
leaves containing mostly bad solutions (leaves 2 and 4 in this example) are called
non promising areas. We can now understand the rule between the feature of a
solution, and it’s quality. The next part of the solver with exploit this knowledge.

6693
6742

5032
300

1661
6442

5018
134

14
166

1586
29

75
6413

Feature 1 ≥ 0.37

Feature 2 < 786 Feature 1 < 0.31

Yes No

Yes No Yes No

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Fig. 3. Example of decision tree (Color
figure online)

1586
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6413

5018
134

14
166

Feature 1

Feature 2

•x0 x1•

x2•

0.31 0.37

786

Fig. 4. Areas corresponding to the
rules (Color figure online)

Numbers boxed in blue represents the number of good solutions, and the number
in black without box represents the number of bad solutions.

Exploitation Phase
In this phase, the solver will use the rules generated by the decision tree, to
be guided. The solver work differently, depending on the area of the current
solution.

– Case 1: The current solution is in promising area.
Most neighbors solutions are good, the cost can be reduced with local search,
as described in Sect. 3.
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– Case 2: The current solution is in non promising area.
Most neighbors solutions have a high objective value. The solver will avoid
this area bu guided this solution to a promising area. The solution will be
modified by a feature-guided local search. More precisely, the FG-MNS tries
to identify which feature need to be modified in priority. Once the solution is
in a promising area, a local search is executed, as described in case 1.

Example. The initial solution x0 (see Fig. 4) is in non promising area. The
nearest promising area, is defined by F1 ≥ 0.37 and F2 < 786. The features
values of x0 are respectively 0.36 and 788.

Learning
phase

Exploitation
phase

Collecting solutions

Decision tree

Neighborhood Selection

Apply Neighborhood

Update Learning

Output

Fig. 5. Diagram of FG-MNS

Thus, the two features
need to be changed. In the
decision tree (Fig. 3), the leaf
associated to this promising
area is first defined by F1
(higher in the tree) and then
by F2 (lower in the tree). The
solver will first try to cor-
rect the value of F1. A local
search minimizing the dis-
tance between the new value
of F1, and the interval of
authorized value for F1 is
applied. After a few moves, a
new solution x1 with a value
of F1 higher than 0.37 is
found. However, the value of F2 associated with x1 is higher than 786. A second
local search, minimizing now F2 is called.

When the solution is a local minimum, features of all solutions that have led
to the local minimum are added to the data, and a new decision tree is built,
using the old and new data. A new generated solution can be improved, using
the updated decision rules.

The metaheuristic FG-MNS is summarized by Fig. 5.

5 Experiments

The quality of the decision tree is tested on a set of 3000 randomly generated
instances. For each instance, thousands of solutions are created. In this section
we will consider a solution good when the gap to the best known solution is
lower than 1%. In a similar way, we will consider a solution bad when the gap
to the best known solution is higher than 2%. The solutions with gap between
1% and 2% are not considered. The SMOTE algorithm [9] is used to balanced
the number of good and bad solutions. Then, the solutions are split in 2 sets:
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66% of the solutions are put in the training set. The 33% others formed the test
set. Rules are created by a decision tree, with the solutions on the training set
(Fig. 3).

The test set solutions are used to determine the performance of the decision
tree. On average, 95% of good solutions are in promising areas. Furthermore,
60% of the solutions in promising areas are good solutions.

Using local search algorithms exploring only promising areas seems a good
methodology. Indeed, it will reduce the search space, and therefore, the com-
putation time. The highest proportion of good solutions appears to reduce the
probability to be blocked in a bad local minimum.

6 Conclusion

The FG-MNS is a new type of metaheuristic, combining our knowledge in oper-
ation research and machine learning. This metaheuristic is a modification of the
MNS-TS, a metaheuristic able to find good solutions in very short time, for
different variations of difficult VRP instances. Adding decision tree allows the
method to focus only on promising solutions, reducing the computation time,
and increasing the probability to find a good solution. The learning part needs
at least hundreds of solutions to be efficient. A preliminary decision tree, using
solutions from similar instances would be a good way to improve the FG-MNS,
as a pre-processing method.
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2. Grangier, P., Gendreau, M., Leuédé, F., Rousseau, L.M.: An adaptive large neigh-
borhood search for the two-echelon multiple-trip vehicle routing problem with
satellite synchronization. Eur. J. Oper. Res. 254(1), 80–91 (2016)
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Abstract. Volatile organic compounds (VOCs) are continuous medical
data regularly studied to perform non-invasive diagnosis of diseases using
machine learning tasks for example. The project PATHACOV aims to
use VOCs in order to predict invasive diseases such as lung cancer. In
this context, we propose to use a multi-objective modeling for the partial
supervised classification problem and the MOCA-I algorithm specifically
designed to solve these problems for discrete data, to perform the predic-
tion. In this paper, we apply various discretization techniques on VOCs
data, and we analyze their impact on the performance results of MOCA-
I. The experiments show that the discretization of the VOCs strongly
impacts the classification task and has to be carefully chosen according
to the evaluation criterion.

Keywords: Supervised classification · Medical data · Multi-objective
optimization

1 Introduction

Human bodies emit a wide range of volatile organic compounds (VOCs), some
of which are odorous. The composition of VOCs produced by a given individual
corresponds to a unique signature odor. Age, sex, diet are among many factors
that can influence this unique fingerprint, as well as diseases. These modifica-
tions often result in smell changes and explain what allowed Hippocrates to
report changes related to the presence of certain diseases in the smell of urine
and sputum. Nowadays, the composition of VOCs produced by individuals is reg-
ularly studied as a non-invasive way to detect pathologies [5,7,8]. The project
PATHACOV1 aim at designing a classifier based on VOCs data in order to pre-
dict invasive diseases, with a major focus on lung cancer. Thus, we propose to
1 This project is funded by the Interreg France-Wallonie-Vlaanderen program, with
the support of the European Regional Development Fund see www.pathacov-project.
com for more information.
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use an approach based on the Pittsburgh representation and where the classifi-
cation task is modeled as a multi-objective optimization problem. The medical
datasets have specific characteristics; in particular, the number of attributes is
significantly higher than the number of individuals, and the classes are regu-
larly imbalanced. Most frequent disease like diabetes only occurs on less than
6% of the population. These characteristics strongly impact on the performance
of classification techniques. Therefore, the algorithm MOCA-I (Multi-Objective
Classification Algorithm for Imbalanced data) [3], designed for a multi-objective
modeling and these types of characteristics, has been chosen to identify the rel-
evant VOCs. However, MOCA-I requires discrete attributes, while VOCs are
continuous data.

This paper presents our resolution approach for the detection of diseases
using VOCs and an experimental study where various discretization techniques
and their impact on the performance of MOCA-I to produce good models are
analyzed. The experiments are conducted on three different medical datasets
with VOCs.

The outline of the paper is as follows. Section 2 presents the proposed app-
roach and various data discretization techniques. Section 3 describes the datasets
and the experimental protocol before giving and analyzing the results. Finally,
Sect. 4 provides a discussion about this study and points out future work.

2 Proposed Resolution Approach

Bronchopulmonary cancer is often discovered late. The objective of the PATHA-
COV project is to detect it earlier by non-invasive means with a low-cost breath
test, by measuring exhaled VOCs. For each individual, we can measure the VOCs
produced and their quantities. They may vary significantly from an individual
to another. Moreover, none of the individuals emit all the VOCs present in the
dataset. This task can be seen as a supervised partial classification problem,
where we want to identify which VOCs can predict Bronchopulmonary cancer.

2.1 Description

This problem can be modelized as a multi-objective optimization problem. Since
the VOCs profile may vary from an individual to another, we opted for a Pitts-
burgh modelization, where each solution is a ruleset. Hence, several profiles can
fit into several rules. Moreover, Pittsburgh is a white box modelization, which
means it is compatible with November 2018 CCNE2 (French National Consul-
tative Ethics Committee)’ recommendations about AI and health, suggesting to
use AI approaches that the care team can criticize or challenge.

For this problem, three objectives are considered. The sensitivity – to max-
imize – will measure the ability of the model to detect a high proportion of

2 https://www.ccne-ethique.fr/en/.

https://www.ccne-ethique.fr/en/
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patients with the disease. The confidence – to maximize – will measure if the
predicted patients are correctly identified. Moreover, sensitivity and confidence
are two classical machine learning complementary metrics that are adapted to
deal with imbalanced and medical data [6]. We also want to minimize the number
of VOCs used in each model: this will generate models easier to understand.

We will use the MOCA-I (multi-objective classification algorithm for imbal-
anced data) algorithm, which implements the preceding modelization. It uses a
multi-objective local search (MOLS) to tackle the resulting problem. MOCA-
I was initially developed for handling discrete medical data. Thus, each VOC
amount will be discretized, and the objective of this paper is to determine which
is the impact of discretization on the cancer prediction. Since a classification
task generates only one model and MOCA-I produces a Pareto set of equivalent
solutions, the solution of best G-mean is selected among this set.

2.2 Data Discretization Techniques

In this work, we consider nine discretization techniques, that are briefly described
in Table 1, following the taxonomy of [2].

Table 1. Description of discretization techniques.

Method Static Supervised Separation Global Direct Measure

10-bin Yes No Yes Yes Yes Bin.

1R Yes Yes Yes Yes Yes Bin.

CAIM Yes Yes Yes Yes No Stat.

Chi2 Yes Yes No Yes No Stat.

ChiMerge Yes Yes No Yes No Stat.

Fayyad Yes Yes Yes No No Info.

FUSINTER Yes Yes No Yes No Info.

ID3 No Yes Yes No No Info.

Zeta Yes Yes Yes Yes Yes Stat.

Following this taxonomy, a discretization technique can be static or dynamic,
depending on when it is applied respectively before or during the learning algo-
rithm. A supervised method takes into account the class to construct the inter-
vals. For the separation approach, a single initial interval is produced and is
then progressively split into several intervals. The opposite approach is fusion,
where many intervals are produced and then merged. A global method may use
the entirety of the available data for the discretization process, whereas a local
one only uses a subset of the data. Direct approaches define a single interval
at each iteration, while incremental approaches create many intervals at each
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step. The evaluation measure is used to select the best solution produced by the
discretization technique.

In the following, we will test these techniques to discretize VOCs data in our
resolution approach.

3 Experiments

This section presents the datasets and the experimental protocol of our approach.
Then the results of these experiments are given and an analysis is drawn.

3.1 Datasets

In this study, we use three medical datasets with VOCs (see Table 2). The
datasets T3 and T4 have been provided by our partners of the PATHACOV
project and come from dialysis patients while P1 has been taken from the lit-
erature [4]. Note that T3 and T4 contain the VOCs of respectively 36 and 37
patients before and after dialysis, meaning that a given individual provides two
samples (a positive one and a negative one) and that the extraction of biomarkers
is probably easier to perform on these datasets.

Table 2. Description of real datasets resulting from patients samples.

Name Diagnosis #individuals #positive #attributes

T3 Dialysis 72 36 346

T4 Dialysis 74 37 341

P1 Prostate cancer 103 59 137

3.2 Experimental Protocol

The purpose of this work is to predict a class. Since we have only three datasets,
we use a 5-fold cross-validation protocol to limit overfitting as follows. Each
dataset is separated in five same-size folds, then four folds are combined into a
training set, while the remaining one corresponds to the test set. This process
is repeated for each fold’s combinations and creates five training sets associated
with 5 test sets. For each discretization method, we conduct 6 independent runs
of MOCA-I on each training set, leading to 30 runs per dataset.

We used the software KEEL [1] to discretize the datasets. Note that in order
to reduce the bias when assessing the efficiency of the discretization methods, we
limit the risk to overfit the data by discretizing each training set independently.

MOCA-I parameters correspond to the default parameters proposed by [3]:
initial population of 100 solutions, 10 rules maximum per ruleset, a maximal
archive size of 500. At each iteration, the multi-objective local search under
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consideration selects one solution in the archive and explores the whole neigh-
borhood of this solution. Note that, the non-dominated neighbors are considered,
which explains the use of a bounded archive.

We compare the effect of the discretization methods according to four
machine learning metrics: sensitivity, specificity, geometric mean (G-mean), and
Matthew’s correlation coefficient (MCC). MCC is comprised between -1 and 1,
where 1 corresponds to the best performance and 0 to the theoretical perfor-
mance of a random classifier. The other metrics’ values are comprised between 0
and 1, where 1 corresponds to the highest performance and 0.5 to a performance
that is not better than a random classifier.

3.3 Results

Table 3 presents the ranks of the nine discretization techniques according to the
four considered measures (Sensitivity, Specificity, G-Mean and MCC) for each
dataset. Bold types means that the discretization techniques are statistically
equivalent according to the statistical test of Friedman.

Table 3. Ranking of the discretization methods in function of the average sensitivity
(top-left), specificity (top-right), G-mean (bottom-left) and MCC (bottom-right).

Sensitivity Specificity

T3 T4 P1 T3 T4 P1

#1 Chi2 #1 ID3 #1 Fayyad #1 Chi2 #1 ID3 #1 ID3

#2 10bin #2 CAIM #2 Fusinter #2 ID3 #2 10bin #2 Fusinter

#3 Zeta #3 1R #3 Chi2 #3 1R #2 Fayyad #3 1R

#3 Fusinter #4 10bin #4 CAIM #3 Fusinter #3 1R #4 CAIM

#4 ID3 #4 Fayyad #5 1R #4 10bin #4 Chi2 #4 Zeta

#4 ChiMerge #5 ChiMerge #6 ChiMerge #5 CAIM #5 CAIM #5 10bin

#5 CAIM #5 Zeta #7 ID3 #6 ChiMerge #6 Fusinter #6 Chi2

#6 Fayyad #6 Fusinter #8 Zeta #7 Zeta #7 Zeta #7 ChiMerge

#7 1R #7 Chi2 #9 10bin #8Fayyad #8 ChiMerge #8 Fayyad

G-mean Matthew’s Correlation Coefficient (MCC)

T3 T4 P1 T3 T4 P1

#1 Chi2 #1 ID3 #1 Fusinter #1 Chi2 #1 ID3 #1 Fusinter

#2 Fusinter #2 1R #2 ID3 #2 ID3 #2 1R #2 1D3

#2 ID3 #3 Fayyad #3 CAIM #3 10bin #3 10bin #3 1R

#2 10bin #4 CAIM #4 1R #4 Fusinter #4 Fayyad #3 CAIM

#3 CAIM #5 10bin #5 Chi2 #5 ChiMerge #5 CAIM #4 Chi2

#4 1R #6 Zeta #6 Zeta #6 1R #6 1R #5 Zeta

#5 ChiMerge #7 ChiMerge #7 10bin #6 CAIM #7 ChiMerge #7 10bin

#8 Zeta #8 Fusinter #8 ChiMerge #7 Zeta #8 Chi2 #7 ChiMerge

#9 Fayyad #7 Chi2 #9 Fayyad #8 Fayyad #9 Fusinter #8 Fayyad
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The results are heterogeneous between the datasets, the discretization tech-
niques, and the quality measures. For example, for the sensitivity, the best-
ranked techniques Chi2 and Fayyad for the datasets T3 and P1 respectively
are statistically different from the other techniques. In contrast, for dataset T4,
seven of the nine techniques give equivalent results. For the specificity, numer-
ous discretization techniques are equivalent for datasets T3 and T4, while only
three techniques are equivalent for dataset P1. Besides, for dataset T3, Chi2
leads to the best average score for each metric, while ID3 leads to the most
efficient rulesets for dataset T4. For dataset P1, Fusinter and ID3 lead to the
best specificity, G-mean, and MCC while Fayyad gives the best sensitivity, and
it is last ranked for the three other measures. This behavior is probably due to
the presence of several zeros in the samples for each attribute that leads most
VOCs to have a single interval ((−inf ; +inf)) after the application of Fayyad.
ID3 is among the best techniques for seven of the twelve experiments.

4 Discussion

In this work, we observed the impact of different discretization methods on the
models produced by MOCA-I. In particular, we focused on real health data,
where a sample corresponds to quantities of VOCs emitted by individuals. The
aim was to determine which discretization method is the most suited for this
type of data. The results on our datasets highlight that the ID3 discretization
method seems to be suited to the case of VOCs.

In the future, we will perform these experiments on other datasets containing
VOCs, in particular, datasets with more individuals provided by the PATHA-
COV project and imbalanced datasets. We also plan to study the impact of
discretization methods with different parameters for MOCA-I, since their values
may influence the quality of the resulting ruleset. In order to compare our app-
roach to classical machine learning algorithms, we will study the impact of the
discretization methods on their efficiency.
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2. Garcia, S., Luengo, J., Sáez, J.A., Lopez, V., Herrera, F.: A survey of discretization
techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans.
Knowl. Data Eng. 25(4), 734–750 (2012)

3. Jacques, J., Taillard, J., Delerue, D., Jourdan, L., Dhaenens, C.: The benefits
of using multi-objectivization for mining Pittsburgh partial classification rules in
imbalanced and discrete data. In: Proceedings of the 15th Annual Conference on
Genetic and Evolutionary Computation, pp. 543–550. ACM (2013)

4. Khalid, T., et al.: Urinary volatile organic compounds for the detection of prostate
cancer. PLoS ONE 10(11), e0143283 (2015)

https://doi.org/10.1007/s00500-008-0323-y
https://doi.org/10.1007/s00500-008-0323-y


Impact of the Discretization of VOCs 157

5. Leunis, N., et al.: Application of an electronic nose in the diagnosis of head and
neck cancer. Laryngoscope 124(6), 1377–1381 (2014)

6. Ohsaki, M., Abe, H., Tsumoto, S., Yokoi, H., Yamaguchi, T.: Evaluation of rule
interestingness measures in medical knowledge discovery in databases. Artif. Intell.
Med. 41(3), 177–196 (2007)

7. Phillips, M., et al.: Volatile biomarkers of pulmonary tuberculosis in the breath.
Tuberculosis 87(1), 44–52 (2007)

8. Sakumura, Y., et al.: Diagnosis by volatile organic compounds in exhaled breath
from lung cancer patients using support vector machine algorithm. Sensors 17(2),
287 (2017)



AUGMECON2 Method for a Bi-objective
U-Shaped Assembly Line Balancing Problem

Ömer Faruk Yılmaz(&)

Department of Industrial Engineering, Karadeniz Technical University,
Trabzon, Turkey

omerfarukyilmaz@ktu.edu.tr

Abstract. This study explores the bi-objective U-shaped assembly line bal-
ancing problem (UALBP) by considering several scenarios constructed based on
worker skill levels. Because the investigated problem has two objectives,
namely the minimizing the number of stations and maximum workload imbal-
ance, an improved e-constrained based method is employed to find the Pareto-
optimal solutions to the problem. This method is called to be the second version
of the augmented e-constrained (AUGMECON2) and it is highly effective to
find the Pareto-optimal solutions within reasonable CPU time. In order to
investigate the impact of workers’ inherent on both of the objectives, a set of
scenarios is considered. Each scenario is determined based on the nature of the
worker pool in which workers are assigned to the stations. An optimization
model is presented for the problem and it is solved with a real case study from
the industry. The computational results indicate that the scenarios have a great
impact on the workload imbalance objective. In particular, it is revealed that
while the skill levels of workers increases, the workload imbalance decreases.
However, the same impact is not observed for the number of stations.

Keywords: U-shaped assembly line balancing � Bi-objective optimization �
AUGMECON2 method � Optimization model

1 Introduction

Today’s competitive market environment pushes the manufacturing companies to take
some necessary actions to become more robust. In this manner, the companies have
converted their traditional systems into a more reliable system so as to satisfy cus-
tomers’ expectations within a shorter manufacturing lead time. Assembly lines are
effective in a way that large units can be produced shorter lead time by applying one-
piece flow principle. On one hand, utilizing traditional assembly lines provides many
benefits, such as economy of scale and competitiveness. On the other hand, it leads to
some disadvantages that can be eliminated, such as great shop-floor requirement,
preventing group working and skill enhancement [1]. Besides, it cannot fully provide
some other benefits, such as visibility, motivation, and communication. In order to
utilize the advantages of assembly lines, traditional assembly lines have been converted
to U-shaped lines following the lean manufacturing principles [2, 3]. After the U-
shaped assembly line is designed, it needs to be balanced accordingly [4]. Assembly
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line balancing requires assigning the tasks to the stations in such a way that all tasks are
assigned under necessary constraints, such as the precedence relations and pre-
determined cycle time. Besides, some assumptions can be considered while balancing
the assembly line. Because U-shaped assembly lines are designed in a compact manner
and the precedence constraints allow assigning a task with its predecessors and suc-
cessors to the same station, it has several advantages compared to the traditional
assembly lines [5]. The manual operations are carried out inside a U-shaped assembly
line and workers’ skills play a major role to enhance the system performance. That is
why, it is plausible to determine some scenarios representing a real manufacturing
environment properly.

In this study, a bi-objective U-shaped assembly line balancing problem (UALBP) is
investigated with the heterogeneity inherent of workers. An optimization model is
presented for the addressed problem. A set of scenarios is determined to investigate
how skill sharing in the worker pool affects the system performance from two per-
spectives: (i) the number of stations and (ii) the workload imbalance. According to the
computational results, when the number of high skill level workers increase in the
worker pool, the system performance increase with respect to the workload imbalance.
However, the same effect is not valid for the number of stations objective.

The rest of the paper is organized as follows. The studies regarding the multi-
objective UALBP are reviewed in Sect. 2. The optimization model and the imple-
mented method are presented in Sect. 3. The computational results with the real case
study are given in Sect. 4. Concluding remarks are provided in Sect. 5.

2 Literature Review

In this section, the studies are reviewed regarding multi-objective U-shaped assembly
line balancing problem (UALBP).

Hwang et al. [6] proposed a multi-objective genetic algorithm (moGA) for
UALBP. A comparison was made between traditional and U-shaped lines. Sirovet-
nukul and Chutima [7] considered three different objective functions, number of
workers, deviation of operation times, and walking times. Non-dominated sorting
genetic algorithm-II (NSGA-II) and COINcidence algorithms were employed to the
problem. Sirovetnukul and Chutima [8] applied the Particle Swarm Optimization with
Negative Knowledge (PSONK) algorithm to UALBP. The NSGA-II algorithm is used
for comparison. Farkhondeh et al. [9] first used goal programming to solve the model,
and then the efficiencies of the optimal solution were evaluated employing data
envelopment analysis (DEA). Dong et al. [10] provided a multi-objective genetic
algorithm for solving UALBP. Two different performance criteria were considered:
(i) number of workstations and (ii) workload variation. Alavidoost et al. [11] consid-
ered four different objectives for multi-objective UALBP with fuzzy processing time.
A fuzzy adaptive genetic algorithm was employed for the problem. Besides, Taguchi
design was used for parameter analysis. Manavizadeh et al. [12] focused on both the
scheduling and sequencing problems simultaneously. The objectives were the mini-
mizing cycle time, wastages, and work overload. A novel heuristic algorithm was
employed for the problems. Alavidoost et al. [13] proposed a two-stage interactive
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fuzzy programming approach for bi-objective ALBP in which triangular fuzzy numbers
were employed. They stated that the proposed approach can be implemented in other
multi-objective problems. Rabbani et al. [14] employed multi-objective evolutionary
algorithms (MOEA) and particle swarm optimization (PSO) for the type II robotic
mixed-model UALBP. Babazadeh et al. [15] developed an efficient multi-objective
genetic algorithm for both fuzzy straight and U-shaped ALBP. The algorithm was
compared to exact methods with small-sized instances. Zhang et al. [16] constructed an
optimization model for U-shaped robotic ALBP. Pareto artificial bee colony algorithm
was used for this NP-hard problem. Chutima and Suchanun [17] investigated parallel
adjacent U-shaped ALBP. A hybrid algorithm combining MOEA and PSO was
implemented to the problem. Babazadeh and Javadian [18] developed a novel meta-
heuristic approach for bi-objective UALBP. A modified NSGA-II algorithm was
implemented to the problem and it was compared to well-known algorithms in the
existing literature.

The survey of previous studies reveals some interesting insights as follows. Several
algorithms are applied to the UALBP problem. NSGA-II algorithm is used for com-
parison purposes. The fuzzy optimization technique is used to model uncertainty in
ALBP. Several performance criteria are considered. From this review, it is observed
that there is still a need to explore some interesting insights regarding UALBP with
heterogeneity inherent of workers.

3 Optimization Model and AUGMECON2 Method

3.1 Optimization Model

In this section, an optimization model is constructed for the bi-objective U-shaped
assembly line balancing problem by considering workers’ skill levels. The model
introduced by [19] is modified accordingly and presented. First, indices, parameters,
variables are described. Afterwards, the optimization model is presented. The detailed
explanations regarding the model are given after the equations.

Assumptions
– The operation times of tasks are known in advance.
– The workers can have different skill levels for the tasks.
– The tasks are available to be assigned to the stations.
– The precedence relations of tasks are known in advance.
– The demand is known in advance.
– There are enough workers in the worker pool.

Indices
i: Indices defined for tasks
j, k: Indices defined for stations
w: Indices defined for workers

160 Ö. F. Yılmaz



Parameters
n: number of tasks
ti: time to operate task i
mmax: number of stations allowed to be utilized
C: pre-determined cycle time according to customer demand
Wj: determined tasks for station j
Wj

�� ��: number of tasks in Wj

L(r, s): set defined for tasks preceding task s
pwi: proficiency of worker w for task i

Variables
Ajw: if worker w is employed in station j, 1; otherwise, 0
xij: if task i is allocated to forward of station j, 1; otherwise, 0
yij: if task i is allocated to backward of station j, 1; otherwise, 0
kij: if task i is allocated to station k, 1; otherwise, 0
zj: if station j is utilized, 1; otherwise 0

Objective function

min f1 ¼ objective1 ð1Þ

min f2 ¼ objective2 ð2Þ
XJ

j¼1
kij ¼ 1 8i ð3Þ

xij þ yij ¼ kij 8i; j ð4Þ

Ajwkij ¼ sijw 8i; j;w ð5Þ
XJ

j¼1
ðmmax � jþ 1Þðxrj � xsjÞ� 0 8ðr; sÞ 2 L ð6Þ

XJ

j¼1
ðmmax � jþ 1Þðyrj � ysjÞ� 0 8ðs; rÞ 2 L ð7Þ

X
i2Wj

kij � Wj

�� �� zj � 0 8j ð8Þ
XJ

j¼1
Ajw � 1 8w ð9Þ

XW

w¼1
Ajw � 1 8j ð10Þ

zj �
XW

w¼1
Ajw ¼ 0 8j ð11Þ

Ajw þ kij � 2sijw 8i; j;w ð12Þ
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Ajw þ kij � 1þ sijw 8i; j;w ð13Þ
XI

i

XW

w
ti � sijw �C 8j ð14Þ

XI

i

XW

w
ti � sijw ¼ C1k 8j ð15Þ

wdj;k ¼ C1j � C1k 8j; k; j[ k ð16Þ

objective2�wdj;k 8j; k ð17Þ

objective1 ¼
XJ

j¼1
zj ð18Þ

xij; yij; Zj;Ajw; sijw; yrijw; kij 2 0; 1f g ð19Þ

As indicated earlier, there are two different objectives for the addressed ALBP
problem. The first objective is minimizing the number of stations utilized in the U-
shaped assembly line. With this objective, the operational cost is trying to be reduced
as much as possible since each opened station leads to an operational cost. Equation (1)
represents the first objective function. The second objective is related to the maximum
workload imbalance between workers. Each station is considered to be occupied by
only one worker and that is why computing the workload difference between stations is
enough to compute those between stations. Equation (2) represents the second objec-
tive function. In U-shaped ALBP problem, two different precedence relationship dia-
grams are employed to consider forward and backward assignments of tasks to the
stations simultaneously. Equations (3) states that a task can be assigned to only one
station. Equation (4) is constructed to allow the assignment of task to both forward and
backward of a station. Equation (5) implies that if a worker is assigned to a station and
a task assigned to the same station, then a new auxiliary variable is defined for worker-
task-station assignment. Equations (6) and (7) are employed to satisfy the precedence
constraints for both precedence and phantom networks. Equation (8) obligates that
even if one task is assigned to a station, then this station must be opened and other tasks
can also be assigned to that station by satisfying other constraints. Equation (9) implies
that a worker can be assigned only one station. Equation (10) states that a station is
operated only one worker. It also means that multi-manned stations are not allowed.
Equation (11) is used to compute the value of variable that represents whether the
station is opened or not. Equations (12) and (13) are used to ensure the linearity of the
proposed model. Equation (14) guarantees that the sum of task times, which are
assigned to the same station, cannot exceed the pre-determined cycle time according to
the demand of customers. Equation (15) is employed to compute the sum of task times
assigned to a station. Equation (16) is used to compute the workload difference
between stations. As indicated earlier, computing the workload difference between
stations is the same to compute difference between stations since each station is
operated by one worker. Equation (17) implies that maximum workload difference,
which is the second objective function, is greater than or equal to all workload
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differences. Equation (18) is used to compute the total number of opened stations for
the first objective. Equation (19) represents binary restrictions of the variables.

3.2 AUGMECON2 Method

In the existing academic literature, there are different types of e-constrained based
methods and these methods are widely employed to the multi-objective problems [20–
22]. In this study, an improved e-constrained method, namely second version of the
augmented e-constrained (AUGMECON2), is applied to the problem to find Pareto-
optimal solutions to the problem. This method uses the procedure behind the lexico-
graphic optimization. Because it is an effective method to find all solutions by applying
payoff tables [23], the same procedure is also implemented to the problem.

In the following, the details of the method are presented with equations.
Minimize

minf1ðxÞþ eps� s2
f max2 �f min2

� �
ð20Þ

Subject to:

f2ðxÞþ s2 ¼ f min2 þ t � f max2 �f min2ð Þ=q2 ð21Þ

x 2 S and si 2 Rþ ð22Þ

In these equations, f1 and f2 correspond to the number of opened stations and
maximum workload imbalance between workers objectives, respectively. The slack
variable s2 is used to find Pareto-optimal solutions within acceptable CPU time by
eliminating unnecessary search steps [22].

In Eq. (21), whilst t is used to count the interval, qi represents the length of
intervals. On the other hand, the eps in Eq. (20) represents a small number between
10−6 and 10−3. In order to obtain the solutions, GAMS® 23.5/CPLEX 12.2 opti-
mization solver is employed by changing the right-hand side value of Eq. (21) each
time.

4 Computational Results

In this section, an industrial case study is presented with real data taken from a water-
meter producer. In order to analyze the impact of worker inherent in detail, four
different scenarios are considered. Each scenario is constructed based on the workers’
skill levels.

Figure 1 gives the precedence diagram in which the numbers inside the circles
represent tasks, while the others represent the processing times.

AUGMECON2 Method for a Bi-objective UALBP 163



In the following, the scenarios constructed for the problem are presented.

– Scenario 1: Each worker has medium skill levels in the worker pool.
– Scenario 2: The worker pool consists of workers who have high, medium, and low

skill levels with the ratio by 33%, 33%, and 33%, respectively.
– Scenario 3: The worker pool consists of workers who have high and low skill levels

with the ratio by 66% and 33%, respectively.
– Scenario 4: The worker pool consists of workers who have high and low skill levels

with the ratio by 33% and 66%, respectively.

Table 1 presents the Pareto-optimal solutions for each scenario. These values also
include payoff values. For instance, for scenario 1 and C = 80, the payoff values are
(2–4; 79.2-15). Three different cycle time value is determined to analyze the results
from a different perspective. From this table, it is observed that the number of stations
objective does not change along with scenarios or cycle times. So as to further analyze
the results Fig. 2 is constructed. When Fig. 2 is analyzed, it is observed that scenarios
do not affect the first objective. In other words, workers’ skill levels do not have a
strong impact on the number of stations. On the other hand, the cycle time has an
impact on the number of stations, which is observed when the cycle time increases to
80.

It is also interesting to state that while the cycle time increase, the second objective
(maximum workload imbalance among workers) also increase. It means that the
increase in cycle time negatively affects workload imbalance. Besides, scenario 2 does
not affect the workload imbalance. That is to say, when there is equal number of
workers from each skill set in the system, the performance does not change in terms of
the workload imbalance. Furthermore, the workload imbalance is at the lowest level for
scenario 3 in which 66% of the workers have a high skill level. The workload
imbalance is at the highest level for scenario 4 in which 66% of the workers have a low
skill level. Overall, it can be easily concluded that the workload imbalance is positively
affected when the skill levels of workers increase in the system.

Fig. 1. Precedence diagram of tasks
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Table 1. Computational results (Pareto-optimal solutions including payoff values)

C=60 C=70 C=80
1 scenario o1 o2

o1 o2 o1 o2 Min obj 1 2.0 79.2
Min obj 1 3.0 53.6 Min obj 1 3.0 67.5 3.0 63.8 
Min obj 2 4.0 13.8 Min obj 2 4.0 15.0 Min obj 2 4.0 15.0

2 scenario Min obj 1 2.0 79.2 
Min obj 1 3.0 53.6 Min obj 1 3.0 67.5 3.0 63.8
Min obj 2 4.0 13.8 Min obj 2 4.0 15.0 Min obj 2 4.0 15.0 

3 scenario Min obj 1 2.0 71.4 
Min obj 1 3.0 48.5 Min obj 1 3.0 55.7 3.0 59.6
Min obj 2 4.0 10.0 Min obj 2 4.0 12.5 Min obj 2 4.0 13.0

4 scenario Min obj 1 2.0 84.6
Min obj 1 3.0 58.5 Min obj 1 3.0 74.0 3.0 66.5 
Min obj 2 4.0 18.0 Min obj 2 4.0 19.5 Min obj 2 4.0 20.3

o1: objective1 (number of stations); o2: objective2 (workload imbalance)

Fig. 2. Computational results with respect to scenarios
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5 Concluding Remarks

This study deals with a bi-objective U-shaped assembly line balancing problem with
heterogeneity inherent of workers. An optimization model is proposed for the problem
by modifying a model from existing academic literature. A real case study is presented
with real data from the water-meter producer for the problem. In order to analyze the
impact of skill levels on the objectives, which are the number of opened stations and
the maximum workload imbalance between workers, four different scenarios are
constructed. AUGMECON2 method is employed to obtain Pareto-optimal solutions for
the problem with respect to scenarios and three different cycle times.

According to the computational results, while the skill levels of workers increase
the system performance also increases in terms of the workload imbalance. On the
other hand, the skill levels do not have any impact on the number of opened stations in
the system. It means that the operational cost of the system does not change with the
skill of workers. However, the cycle time increase affects the number of opened sta-
tions, which is an expected conclusion.

For the future research directions, (i) uncertainties can be considered for the bi-
objective problem with robust formulation, (ii) stochastic or fuzzy modeling techniques
can be applied to the problem, last but not least (iii) other scenarios can be included to
extend the sensitivity analysis.
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Abstract. The conflict-free data aggregation problem in an arbitrary
wireless network is NP-hard, both in the case of a limited number of fre-
quencies (channels) and with an unlimited number of channels. However,
on graphs with a particular structure, this problem sometimes becomes
polynomially solvable. For example, when the network is a square grid
(lattice), at each node of which there is a sensor, and the transmis-
sion range does not exceed 2, the problem is polynomially solvable. In
this paper, we consider the problem of conflict-free data aggregation
in a square grid, when network elements use two frequencies, and the
transmission range is at least 2. It consists in finding an energy-efficient
conflict-free (we will give later the definition of a conflict) schedule of
minimum length for the transfer of aggregated data from all vertices of
the lattice to the center node (base station).

We find polynomially solvable cases, and also develop an efficient algo-
rithm that builds a schedule with a guaranteed accuracy estimate. For
example, when the transmission range is 2, the algorithm constructs
either an optimal schedule or a schedule whose length exceeds the opti-
mal latency by no more than 1. For a transmission range more than 2,
an estimate of the reduction in the length of the schedule is obtained
compared to the case when only one frequency is used.

Keywords: Multichannel aggregation · Square grid · Conflict-free
scheduling

1 Introduction

Data transmission in wireless networks, such as sensor networks, is carried
out using radio communications. During convergecasting, each network element
transmits a packet of aggregated data received from its children, as well as its data
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to the parent vertex once during the entire aggregation session. This requirement
is dictated by the extreme power consumption of the transmission process and
entails the need to build a spanning aggregation tree (AT) with arcs directed to
the sink, which is called the base station (BS). The faster the aggregated data
reaches the BS, the better the schedule. In a TDMA scheduling, time is divided
in equal-length slots under assumptions that each slot is long enough to send or
receive one packet [4]. Minimizing time for the aggregated convergecast in this
case is equivalent to minimizing the number of time slots required for all packets
to reach the sink [17].

The solution of the problem includes two components: an AT, and a schedule,
which assigns a transmitting time slot for each node so that every node transmits
after all its children in the tree have, and potentially interfered links scheduled to
send in different time slots. The last condition means that the TDMA schedule
should be interference-free, i.e., no receiving node is within the interference range
of the other transmitting node. There are two types of interferences or collisions
in wireless networks: primary and secondary. A primary collision occurs when
more than one node transmits to the same destination. In tree-based aggregation,
it corresponds to the case when two or more children of the same parent node
send their packets in the same time slot. A secondary collision occurs when a
node overhears transmissions intended for another node. Links in the underlying
communication graph cause such kind of collision, but not in the aggregation
tree. If the links employ different frequencies (communication channels), then
this type of conflict does not occur.

The conflict-free data aggregation problem was proven to be NP-hard [3] even
if AT is known [5]. Therefore, almost all existing results in literature are poly-
nomial algorithms for finding approximate solutions when the network elements
use one channel [1,3,10–14,16–18] or several channels [2,9,15]. In [1] presented
a novel cross-layer approach for reducing the latency in disseminating aggre-
gated data to the BS over multi-frequency radio links. Their approach forms
the aggregation tree to increase the simultaneity of transmissions and reduce
buffering delay. Aggregation nodes picked, and time slots are allocated to the
individual sensors so that the most number of ready nodes can transmit their
data without delay. The use of different radio channels allows to avoid colliding
transmissions. Their approach is validated through simulation and outperforms
previously published schemes. [3] considered a min-length scheduling problem to
aggregate data in the BS. The authors study the problem with an equal trans-
mission range of all sensors. They assume that, in each time slot, data sent by
a sensor reaches exactly all sensors within its transmission range, and a sen-
sor receives data if it is the only data that reaches the sensor during this time
slot. They first prove that the problem is NP-hard even when all sensors have
deployed a grid, and data from all sensors are required to be aggregated in the
BS. A (Δ − 1)-approximation algorithm is designed, where Δ + 1 equals the
maximum number of sensors within the transmission range of any sensor. The
authors also simulate the proposed algorithm and compare it with the exist-
ing algorithm. The obtained results show that their algorithm has much better
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performance in practice than the theoretically proved guarantee and outperforms
other algorithms.

In [12], the authors investigate the question: “How fast can information be
collected from a wireless sensor network organized as a tree?” To address this,
they explore and evaluate several different techniques using realistic simulation
models under the many-to-one communication paradigm known as a converge-
casting. First, min-time scheduling on a single frequency channel considered.
Next, they combine scheduling with transmission power control to mitigate the
effects of interference and show that while power control helps in reducing the
schedule length under a single frequency, scheduling transmissions using multi-
ple frequencies is more efficient. The authors gave lower bounds on the schedule
length without interference conflicts, and proposed algorithms that achieve these
bounds. They also evaluate the performance of various channel assignment meth-
ods and find empirically that for moderate size networks of about 100 nodes, the
use of multifrequency scheduling can suffice to eliminate most of the interfer-
ence. Then, the data collection rate no longer remains limited by interference
but by the topology of the routing tree. To this end, they construct degree-
constrained spanning trees and capacitated minimal spanning trees and show
significant improvement in scheduling performance over different deployment
densities. Lastly, they evaluate the impact of different interference and channel
models on the schedule length.

In [16], the authors consider the problem of aggregation convergecast schedul-
ing. The solution to aggregation convergecast satisfies the aggregation process,
expressed as precedence constraints, combined with the impact of the shared
wireless medium, expressed as resource constraints. Both sets of constraints influ-
ence the routing and scheduling. They propose an aggregation tree construction
suitable for aggregation convergecast that is a synthesis of a tree tailored to
precedence constraints and another tree tailored to resource constraints. Addi-
tionally, they show that the scheduling component modeled as a mixed graph col-
oring problem. Specifically, the extended conflict graph introduced, and through
it, a mapping from aggregation convergecast to mixed graphs described. Bounds
for the graph coloring provided and a branch-and-bound strategy developed
from which the authors derive numerical results that allow comparison against
the current state-of-the-art heuristic.

[18] focuses on the latency of data aggregation. Since the problem is NP-hard,
many approximate algorithms have proposed to address this issue. Using max-
imum independent set and first-fit algorithms, in this study a scheduling algo-
rithm, Peony-tree-based Data Aggregation (PDA), designed which has a latency
bound of 15R + Δ − 15, where R is the network radius (measured in hops) and
Δ is the maximum node degree. They theoretically analyze the performance of
PDA based on different network models and further evaluate it through exten-
sive simulations. Both the analytical and simulation results demonstrate the
advantages of PDA over the state-of-art algorithm, which has a latency bound
of 23R + Δ − 18.
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In [9], the authors focus on designing a multi-channel minimum latency aggre-
gation scheduling protocol, named MC-MLAS, using a new joint approach for
tree construction, channel assignment, and transmission scheduling. To the best
knowledge of the authors, this is the first work in the literature that combines
orthogonal channels and partially overlapping channels to consider the total
latency involved in data aggregation. Extensive simulations verify the superior-
ity of MC-MLAS in WSNs.

In [15], the authors consider a problem of minimum length scheduling for the
conflict-free aggregation convergecast in wireless networks in a case when each
element of a network uses its frequency channel. This problem is equivalent to
the well-known NP-hard problem of telephone broadcasting since only the con-
flicts between the children of the same parent taken into account. They propose
a new integer programming formulation and compare it with the known one
by running the CPLEX software package. Based on the results of a numerical
experiment, they concluded that their formulation is preferable in practice to
solve the considered problem by CPLEX than the known one. The authors also
propose a novel heuristic algorithm, which based on a genetic algorithm and a
local search metaheuristic. The simulation results demonstrate the high quality
of the proposed algorithm compared to the best-known approaches.

However, if the network has a regular structure, for example, it is a lattice,
the problem is solved in polynomial time. Known that in a square lattice, in each
node of which information is located, the process of single-channel data aggrega-
tion is simple [8]. Moreover, in some cases, for example, when the transmission
range equals 1 [8] or 2 [6], one can build an optimal schedule. If the transmission
range is greater than 2, then one can find a solution close to the optimal [5,7].

1.1 Our Contribution

In this paper, for the first time, the problem of two-channel conflict-free aggrega-
tion in a square lattice is considered, when the transmission distance is not less
than 2. If the transmission distance is 1, then the problem does not differ from
single-channel aggregation and is solved completely [8]. We have developed and
analyzed an efficient algorithm that builds either an optimal or near-optimal
solution. We estimated the reduction in the length of the schedule compared
with the case when one channel is used.

The rest of the paper is organized as follows. Section 2 contains the state-
ment of the problem. The main results with the description and analysis of the
algorithm make up the contents of Sect. 3. Section 4 concludes the paper.

2 Problem Formulation

We suppose that the network elements are positioned at the nodes of a square
grid of size (n+1)× (m+1). For convenience, we will call the network elements
sensors, vertices, or nodes equivalently. A sink node (or BS) is located at the
point (0, 0). At each time slot, any sensor except the sink node can either be
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idle, send the data to another sensor within its transmission range, or receive the
data from another sensor within its transmission range. We assume that each
sensor has the same transmission distance d ≥ 2 in L1 metric. A sink node can
only receive the data at any time slot. Each data transmission is performed using
one of the available frequency channels (for short, further, they are referred to
as channels) and each sensor can use any channel for data transmission and
receiving. Besides, we suppose that the following conditions met:

– each vertex sends a message only once during the aggregation session (except
the sink which always can only receive messages);

– once a vertex sends a message, it can no longer be a destination of any trans-
mission;

– if some vertex sends a data packet by the channel c, then during the same
time slot none of the other vertices within a receiver’s interference range can
post a message by the channel c;

– a vertex cannot receive and transmit at the same time slot.

For simplicity, we assume that the interference range equals the transmission
range. We have precisely two available channels for data transmission: 0 and 1.
The problem consists in constructing the conflict-free min-length schedule of the
data aggregation from all the vertices to the BS.

3 Building a Conflict-Free Schedule with Different
Transmission Ranges

As mentioned before, the considered problem is NP-hard in the general case.
Therefore, our goal is to find some individual cases and propose polynomial
algorithms that construct either optimal solutions or solutions with guaranteed
estimations on the schedule length. In this section, we offer such algorithms and
estimates for the different values of the transmission range.

Let us introduce some notations that are used further.

Definition 1. Let the distance from the vertex i to the sink be the minimum
number of time slots that are necessary to transmit the data from i to the sink.

Definition 2. The most remote vertex (MRV) is such vertex, that the distance
from it to the sink is maximum among all vertices.

In square grid (n+1)× (m+1), the distance from the node (x, y) to the sink
equals �(x + y)/d�, where d is transmission range and �a� is a smallest integer
not less than a. Obviously, the vertex (n,m) is MRV. There can be more than
one MRV, and the distance depends of the remainder of division of n and m by
d.

We will also refer to the distance from a vertex to the sink as its remoteness.
Let D be the remoteness of MRV. The following two propositions are obvious:

Proposition 1. The aggregation time cannot be less than D.
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Proposition 2. If remoteness of at least two different vertices is R, then the
aggregation time cannot be less than R + 1.

The validity of the last statement follows from the property that any vertex
during one time round can receive no more than one message.

For convenience, we call the row a set of sensors that are positioned at the
points with the same ordinates. All the presented below algorithms consist of two
stages: vertical and horizontal aggregation. During the vertical transmissions, all
sensors except ones in the row 0 transmit the data downwards or upwards. At the
end of the vertical stage, all data are aggregated in row 0. At the second stage,
the sensors in the row 0 transmit the data horizontally until the sink receives all
the data.

Further, we will consider separately two cases: when d = 2 and when d > 2.

3.1 The Transmission Range is 2

Suppose that d = 2. Let us prove the following

Lemma 1. In the square grid (n + 1) × (m + 1), if the transmission range is
2 and the number of channels is 2, then the length of any feasible aggregation
schedule is not less than �n/2�+ �m/2� + 1, where �a� is the largest integer not
exceeding a.

Proof. If at least one of two values, n and m, is odd, then the remoteness of
(n,m) is �n/2�+�m/2� + 1, and, according to the Proposition 1, the aggregation
time cannot be less than �n/2� + �m/2� + 1 in this case. If n and m are even
then there are three MRV whose remoteness is �n/2� + �m/2�. Therefore, in
this case, according to the Proposition 2, aggregation time cannot be less than
�n/2� + �m/2� + 1.

Lemma 2. In the square grid (n+1)×(m+1), if n and m are odd, the transmis-
sion range is 2 and the number of channels is 2, then the length of any feasible
aggregation schedule is not less than �n/2� + �m/2� + 2.

Proof. In this case, three MRV, (n− 1,m), (n,m− 1), and (n,m) are at the dis-
tance �n/2�+�m/2� + 1 from the sink. Therefore, according to the Proposition 2,
aggregation time cannot be less than �n/2� + �m/2� + 2.

Let us describe the Algorithm 1 of aggregation scheduling in the square grid
(n+1)×(m+1) when the transmission range is 2, and the number of channels is
2. The pseudo-code of the vertical aggregation stage is given in the Algorithm1.
The examples of the proposed vertical aggregation algorithm are illustrated in
Fig. 1. As it follows from lines 3–8, during the first �m/2�− 1 time slots, at each
time slot, the highest two rows that did not transmit yet simultaneously transmit
the data downwards at a distance 2. Subroutine TransmitRow(j, k, ch, t) which
is called in lines 5–6 assigns transmission of each sensor in j-th row vertically
to the corresponding sensors in k-th row at the time slot t using the channel
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ch. Here one row uses channel 0, another one - channel 1, and therefore there
are no conflicts in such data transmission. After that, only one or two rows left
that did not transmit (except the row 0, which does not transmit at this stage):
one in a case when m is odd and two – if it is even. Then, according to lines
9–19, at each time slot, the highest row, that did not transmit yet, transmits
the data downwards at a distance 1 using two channels. It is performed without
conflicts because vertices with different parity of abscissa use different channels.
If m is odd, then the data transmission that is described in lines 9–19 requires
one time slot. Subroutine TransmitSensor((i, j), (l, k), ch, t) which is called in
line 19 assigns transmission of sensor (i, j) to sensor (l, k) at the time slot t using
the channel ch. If m is even, it requires two time slots. Overall, the described
vertical aggregation takes �m/2� + 1 time slots.

Algorithm 1. Transmission range equals 2. Vertical aggregation
1: t ← 0;
2: j ← m;
3: while j > 2 do
4: t ← t + 1;
5: TransmitRow(j, j − 2, 0, t);
6: TransmitRow(j − 1, j − 3, 1, t);
7: j ← j − 2;
8: end while
9: while j > 0 do

10: t ← t + 1;
11: for all i ∈ {0, ..., n} do
12: ch ← 0;
13: if i is odd then
14: ch ← 1;
15: end if
16: TransmitSensor((i, j), (i, j − 1), ch, t);
17: i ← i − 1;
18: end for
19: end while

Remark 1. The time complexity of vertical aggregation is O(m). During one time
round, all the vertices of the two highest layers send. After they have transferred,
it is enough to remember only the number of the highest layer, whose vertex has
not transmitted yet. Therefore, space (additional memory) needed to implement
vertical aggregation is O(1).

The pseudo-code for the horizontal aggregation stage is presented in Algo-
rithm2. The examples that show how horizontal aggregation is performed are
presented in Fig. 2. According to lines 3–8, during the first �n/2� − 1 time slots,
at each time slot, the most remote two vertices that did not transmit yet simul-
taneously transmit the data to the left at a distance 2 using different channels.
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Algorithm 2. Transmission range equals 2. Horizontal aggregation
1: t ← 0;
2: i ← n;
3: while i > 2 do
4: t ← t + 1;
5: TransmitSensor((i, 0), (i − 2, 0), 0, t);
6: TransmitSensor((i − 1, 0), (i − 3, 0), 1, t);
7: i ← i − 2;
8: end while
9: while i > 0 do

10: t ← t + 1;
11: TransmitSensor((i, 0), (i − 1, 0), 0, t);
12: i ← i − 1;
13: end while

After that, as it follows from lines 9–13, at each time slot, the most remote ver-
tex that did not transmit yet transmits the data to the left at a distance 1 until
such vertex exists. The last subroutine requires one time slot if n is odd, and two
time slots if it is even. Eventually, the horizontal aggregation takes �n/2� + 1
time slots.

Remark 2. The time complexity of horizontal aggregation is O(n), and the addi-
tional space required to implement the procedure is limited to O(1). Conse-
quently, the complexity of constructing a two-channel conflict-free aggregation
schedule in the (n + 1) × (m + 1) grid with a transmission distance of 2 is
O(m + n), with additional memory space O(1). Although each vertex of the
grid must store its state, the total memory for storing incoming and current
information is O(mn).

t=1 t=2 t=3 t=4-5 t=4 t=5 

m = 8 (even)  m = 9 (odd)  

Fig. 1. Example of vertical data aggregation when transmission distance equals 2.
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t=1 

t=2 

t=3 

t=4 

t=1 

t=2 

t=3 

t=4 

t=5 t=5 

n = 8 (even)  n = 9 (odd)  

Fig. 2. Example of horizontal data aggregation when transmission distance equals 2.

As a result, the entire aggregation process takes �m/2�+�n/2�+2 time slots.
Due to the Lemma 2, a solution that is constructed by the proposed algorithm
is optimal if n and m are odd. According to the Lemma 1, in all other cases, the
length of a constructed schedule does not exceed the minimum schedule length
by more than 1. As it is proved in [6], in a case when the only channel is used
the minimum length of an aggregation schedule is �n/2�+ �m/2�+3. Therefore,
the usage of two channels allows decreasing the length of a schedule by one.

3.2 The Transmission Range is at Least 3

In this section we propose the algorithm that constructs a schedule of two-
channels aggregation on a square grid (n + 1) × (m + 1) when d is arbitrary
not less than 3. Assume that m = Md + rv, rv < d and n = Nd + rh, rh < d.
As well as the algorithm described in previous section, this algorithm consists
of two stages: vertical and horizontal aggregation. We will describe each stage
separately.

Vertical Aggregation. For convenience purposes, let us colorize all the ver-
tices. Initially, let each vertex (i, j), i, j ≤ m be colored in red if m−j ≡ 0 (mod d)
and let it be colored in blue otherwise. After the moment when a vertex trans-
mits the data, it becomes grey. When all the vertices of the same row colored in
the same color, we will also assign the corresponding color to the row. Initially
there are �m/d� + 1 red rows and m − �m/d� blue rows.

The pseudo-code has given in Algorithm 3. At first, as it stated in lines 2–14,
a pair of top blue rows iteratively transmit the data downstairs at a distance
d by different channels during one time slot. These transmissions are repeated
until all of (M −1)(d−1) top blue rows send their data. Meanwhile, the top red
row transmits downwards at a distance d as soon as the number of blue rows
within 2d rows below becomes not more than one, otherwise, the two top blue
rows would transmit at the same time slot, and this would generate a conflict.
After every (M −1)(d−1) top blue rows transmitted, in lines 15–19, the top red
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rows sequentially transmit downwards at a distance d until the moment when
only two red rows remain. Note that after that exactly d + rv + 1 non-grey rows
left. Then, in lines 20–29, the top rv rows transmit downstairs during the next
�rv/2� time slots. After that, in lines 30–41, the rows between row 0 and row d
transmit the data. Here the data is transmitted at less distance than d. It is easy
to see that to transmit all the data of some row to another row at distance d−k
without conflicts by two channels �(k + 1)/2� time slots are required. Note that
for this, we slightly changed a signature of the method TransmitRow to denote
such data transmission. Finally, only two non-grey rows remain: row 0 and row
d. At the last time slot, row d transmits at distance d downwards. Overall, the
described vertical aggregation uses

�(M − 1)(d − 1)/2� + �rv/2� + 2
�(d−1)/2�+1∑

i=2

�i/2� + xd�(d/2 + 1)/2� + 2

time slots, where xd = 1 if d is even and 0 otherwise. An example of vertical
aggregation is presented in Fig. 3.

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10-11 t=12 

Fig. 3. Example of two-channel vertical data aggregation when d = 4. (Color figure
online)

Horizontal Aggregation. The horizontal aggregation performed on row 0
of the grid when all the data aggregated to this row. At first, we assume that
n = Nd and propose the algorithm for this case. For simplicity, in this subsection
we refer to sensor (i, 0) as sensor i, i = 0, . . . , n. Suppose that each sensor is
colored in blue or red color: sensor i is colored in red if i ≡ 0 (mod d), and it
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is colored in blue otherwise. As well as it was previously, the sensor becomes
grey as soon as it transmits the data. With such colorizing, the blue sensors are
divided by the red sensors into groups of d − 1 sensors. We classify these groups
into 3 types: A, B, and C. The group {i, . . . , i + d − 2} has type A (B or C) if
�(n− i)/d� ≡0 (1 or 2) (mod 3). For example, the group {n−d+1, . . . , n−1} has
type A. The idea of the algorithm is that in each time slot, sensors of groups of
the same type perform the same transmissions. For this reason, we enumerate
the sensors of each group from 1 to d − 1.

The pseudo-code of the proposed procedure is given in Algorithm 4. Here
we use the method TransmitSensor whose signature differs from the similar
method used above. For instance, TransmitSensor(1, 0, A, 0, t) means that by
channel 0 at time slot t sensor n − d + 1 transmits the data to sensor n − d,
sensor n − 4d + 1 transmits to sensor n − 4d, and so on. As noted in lines 6–
16, during first �(d − 2)/2� time slots, only sensors in groups of types A and
B transmit the data, while sensors in groups of type C remain in the idle state
because transmission from any of them would lead to a conflict. After that, in
each group of types A and B, only two blue sensors remain if d is odd and one –
if it is even. The last blue sensors of groups A and B transmit the data in lines
18–30. And, when it is possible, some sensors of groups of type C transmit the
data at the same time. In lines 33–39, the last blue sensors of groups C transmit
the data during the next �(d−2)/2� time slots. In total, all blue sensors transmit
the data during the first d−1 time slots of the aggregation session. In lines 40–44,
red sensors sequentially transmit the data from right to left. Note that the first
red sensor transmits simultaneously with the last data transmission in groups C.
After that, during the next N −1 time slots, other red sensors transmit the data.
Overall, the horizontal aggregation takes N +d−2 time slots. As an illustration,
two examples are presented in Fig. 4 and Fig. 5. In first one d is odd (5) and in
second it is even (6).

t=1 

t=2 

t=3 

t=4 

t=5 

t=6 

t=7 
t=8 

A B C A B 

Fig. 4. Example of two-channel horizontal data aggregation when d = 5. (Color figure
online)

It is easy to observe that if n is not a multiple of d, then the horizontal
aggregation time increases by 1. Indeed, the sensors 1, . . . , n − d�n/d� − 1 can
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t=1 

t=2 

t=3 

t=4 

t=5 

t=6 

t=7 

t=8 

A B C A 

Fig. 5. Example of two-channel horizontal data aggregation when d = 6.

transmit the data during the first d−1 time slots in any case, and it is required a
time slot more to aggregate the data from the red sensors. Eventually, horizontal
aggregation takes �n/d� + d − 2 time slots.

In total the proposed procedure constructs a schedule of length

�(�m/d�−1)(d−1)/2�+�n/d�+�rv/2�+2
�(d−1)/2�+1∑

i=2

�i/2�+xd�(d/2+1)/2�+d.

Remark 3. Note that the time complexity of the described algorithm has the
same order as the length of the schedule O(n + m), and the additional mem-
ory space required for its implementation is O(1). However, the length of the
input data determined by the size of the grid; therefore, when implementing the
algorithm, O(nm) memory space is used.

We compared the schedule length obtained by this algorithm with the best-
known approach for the one-channel aggregation, which proposed in [7]. The
results presented in Table 1. In most cases, the two-channel aggregation schedule
constructed by the proposed algorithm has less length than the length of the one-
channel aggregation schedule.

Table 1. Comparison of schedule length for aggregation by 1 and 2 channels

d 11 × 11 26 × 26 51 × 51 101 × 101

2 ch 1 ch 2 ch 1 ch 2 ch 1 ch 2 ch 1 ch

3 12 15 22 25 38 43 72 75

4 14 19 24 25 39 39 61 61

5 15 20 24 26 36 36 56 56

7 21 35 29 41 43 43 59 59

10 30 49 40 61 52 57 67 67
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Algorithm 3. Arbitrary transmission range. Vertical aggregation
1: t ← 0;
2: while The number of blue rows exceeds d − 1 + rv do
3: t ← t + 1;
4: j0 ← the maximum number of red row;
5: if There are not more than one blue row between j0-th and (j0 − 2d)-th rows

then
6: TransmitRow(j0, j0 − d, 1, t);
7: end if
8: j1 ← the maximum number of blue row;
9: TransmitRow(j1, j1 − d, 0, t);

10: j2 ← the maximum number of blue row less than j1;
11: if j2 > d + rv then
12: TransmitRow(j2, j2 − d, 1, t);
13: else
14: j ← the maximum number of red row;
15: TransmitRow(j, j − d, 1, t);
16: end if
17: end while
18: while The number of red rows exceeds 2 do
19: t ← t + 1;
20: j ← the maximum number of red row;
21: TransmitRow(j, j − d, 0, t);
22: end while
23: j ← d + rv

24: while j > d do
25: t ← t + 1;
26: TransmitRow(j, j − d, 0, t);
27: j ← j − 1
28: if j > d then
29: TransmitRow(j, j − d, 1, t);
30: j ← j − 1
31: end if
32: end while
33: for all k = 1, . . . �(d − 1)/2� do
34: tδ ← �(k + 1)/2�;
35: TransmitRow(k, d, {0, 1}, [t + 1, t + tδ]);
36: t ← t + tδ;
37: TransmitRow(d − k, 0, {0, 1}, [t + 1, t + tδ]);
38: t ← t + tδ;
39: end for
40: if d is even then
41: tδ ← �(d/2 + 1)/2�;
42: TransmitRow(d/2, 0, {0, 1}, [t + 1, t + tδ]);
43: t ← t + tδ;
44: end if
45: TransmitRow(d, 0, 0, [t + 1, t + tδ]);
46: t ← t + tδ;
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Algorithm 4. Arbitrary transmission range. Horizontal aggregation
1: t ← 0;
2: sA0 ← d − 2;
3: sA1 ← d − 3;
4: sB0 ← 2;
5: sB1 ← 3;
6: for all i = 1, . . . , �(d − 2)/2� do
7: t ← t + 1;
8: TransmitSensor(sA0, d, A, 0, t);
9: sA0 ← sA0 − 2;

10: TransmitSensor(sA1, d − 1, A, 1, t);
11: sA1 ← sA1 − 2;
12: TransmitSensor(sB0, 0, B, 0, t);
13: sB0 ← sB0 + 2;
14: TransmitSensor(sB1, 1, B, 1, t);
15: sB1 ← sB1 + 2;
16: end for
17: t ← t + 1;
18: if d is odd then
19: TransmitSensor(1, d, A, 0, t);
20: TransmitSensor(d − 1, 0, A, 1, t);
21: TransmitSensor(d − 1, 0, B, 0, t);
22: t ← t + 1;
23: TransmitSensor(1, d, B, 1, t);
24: TransmitSensor(d − 2, d, C, 0, t);
25: TransmitSensor(d − 1, 0, C, 1, t);
26: else
27: TransmitSensor(d−1, d+1, A, 0, t) except sensor n−1 that transmits to sensor

n;
28: TransmitSensor(1, 0, B, 0, t);
29: TransmitSensor(d − 1, 0, C, 1, t);
30: end if
31: sC0 ← 1;
32: sC1 ← 2;
33: for all i = 1, . . . , �(d − 2)/2� do
34: t ← t + 1;
35: TransmitSensor(sCO, 0, C, 0, t);
36: sCO ← sCO + 2;
37: TransmitSensor(sC1, d, C, 1, t);
38: sC1 ← sC1 + 2;
39: end for
40: TransmitMostRemoteRedSensor(t);
41: for all i = 1, . . . , N − 1 do
42: t ← t + 1;
43: TransmitMostRemoteRedSensor(t);
44: end for
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4 Conclusion

In this paper, we considered the problem of two-channel conflict-free dater aggre-
gation in a square lattice and proposed an efficient algorithm that yields a better
solution than the convergecasting using one frequency. However, with increas-
ing transmission distance, the advantages of two-channel aggregation disappear.
This drawback is associated with insufficient consideration of the specifics of
two-channel aggregation. We plan to fix this shortcoming in the future.
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Abstract. We study the scenario where some items are stored tem-
porarily in stacks and where it is not allowed to put an item on top
of another item leaving earlier. An arriving item is assigned to a stack
based only on information on the arrival and departure times for the
new item and items currently stored. The objective is to minimize the
maximum number of stacks used over time. This problem is referred to
as online stacking. We use Reinforcement Learning (RL) techniques to
improve heuristics earlier presented in the literature. Using an analogy
to chess, we look at positional and tactical features where the former
give high priority to stacking configurations that are well suited to meet
the challenges on a long-term basis and the latter focus on using few
stacks on a short-term basis. We show how the RL approach finds the
optimal mix of positional and tactical features to be used at different
stages of the stacking process. We document quantitatively that posi-
tional features play a bigger role at stages of the stacking process with
few items stored. We believe that the RL approach combining positional
and tactical features can be used in many other online settings within
operations research.

Keywords: Online algorithms · Reinforcement learning · Stacking

1 Introduction

The challenge of stacking items temporarily in a storage area in an optimal
manner is a problem that has many applications within logistics. Some notable
examples of items to consider are containers in a container terminal or on a
container ship [2], trains at a train station [3,5], or steel bars [12].

In this paper, we focus on the online version of the problem where an arriving
item is assigned to a stack with no information on future items to arrive. The
objective is to minimize the maximum number of stacks in use over time with
the constraint that we cannot put an arriving item on top of an item that has to
leave the storage area before the arriving item. In other words, we do not allow
overstowage using terminology from the shipping industry.

We consider stacking heuristics that are controlled by so-called features. A
feature is a function assigning a value to every possible action at every state
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of the stacking process. For a given state of the stacking process, the heuristics
that we develop greedily pick an action that maximizes a feature – or a linear
combination of features – for that state. We combine/mix heuristics controlled
by different features by constructing hybrid heuristics that are controlled by
linear combinations of the features of the component heuristics and we allow
the weights (coefficients) of the linear combinations to depend on the number of
stacks that are in use at the different stages of the stacking process. This makes
it possible to let some features be active when only a few stacks are in use and
let other features be active at busy periods for the storage area.

In chess, a common strategy is to try to establish a strong position of your
pieces – for example a position where your pieces dominate the center of the
chess board. At some point this might lead to a situation where you can take
advantage of the strong position and switch to a more tactical type of play – for
example going for a specific pawn of the opponent. This is clearly expressed by
a famous quote of a former world chess champion:

“Tactics flow from a superior position”. (Bobby Fischer)

Using an analogy from chess, we develop stacking heuristics that are guided
by an optimal mix of positional and tactical features. Positional features steer the
heuristics towards stacking configurations with a long-term positional advantage
as opposed to tactical features that focus on using few stacks on a short-term
basis. The intuition is that the positional features are active at the quiet stages
of the process in such a way that the stacking configurations are well-formed at
the entry points of busy stages where the tactical features take over.

1.1 Contribution

The contribution of the paper can be split into three parts. The first part is
directly related to stacking and the two other parts are on a more generic and
methodological level. We believe that the methodological parts of the contribu-
tion are interesting for a broader audience working with online algorithms.

We use simple Reinforcement Learning (RL) tools to improve natural heuris-
tics earlier presented in the literature [2,6,7,15]. The heuristics are trained using
Markov Decision Processes as models for the stacking environment.

On the methodological level, we quantitatively justify the intuition expressed
above. The numerical data from our experiments directly show that the posi-
tional features are more active for the improved heuristics when few stacks are
used and that the tactical features to a certain extent take over when the number
of stacks increase.

A second part of the contribution at the methodological level is that we
demonstrate how RL can be used to find an optimal combination of heuristics for
a given problem where the optimal combination might be different at the various
stages when instances are processed. In other words, we present a technique for
constructing a hybrid heuristic by forming an optimal dynamic combination of
component heuristics. It is very important to note that the RL approach – by the
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nature of RL – adapts to the stochastic environment that generates the instances
and that the approach is a generic approach not restricted to stacking.

1.2 Related Work

Demange et al. [5] develop lower and upper bounds for the competitive ratio
for online stacking algorithms in the context of assigning trains to tracks at a
train station and Demange and Olsen [4] present some improvements both for
the offline and online case. Simple heuristics for online stacking are presented by
Borgman et al. [2], Duinkerken et al. [6], Hamdi et al. [7], and Wang et al. [15].
More details on these heuristics will be treated later in a separate section in this
paper. Olsen and Gross [10] have constructed a polynomial time algorithm for
online stacking and shown that the competitive ratio for the algorithm converges
to 1 in probability assuming that the arrival times and departure times for the
items are picked uniformly at random.

The stacking problem is a hard problem to solve. The offline version where
all information on future items is available is NP-hard for stack capacity h ≥
6 [3] and it is also NP-hard for unbounded stack capacity [1]. To the best of
our knowledge, the computational complexity for the case 2 ≤ h ≤ 5 is an
open problem for the offline case. Tierney et al. [14] show that it is possible to
decide in polynomial time whether the items can be stacked using a fixed number
of bounded capacity stacks but the running time of their offline algorithm is
very high even if the fixed number of stacks is small. For the online case, the
competitive ratio is unbounded for any online algorithm for unbounded stack
capacity as shown by Demange et al. [5].

The stacking problem also has applications within the steel industry as
demonstrated by the work of Rei and Pedroso [12] and König et al. [9] and
the shipping industry as shown in the PhD-thesis of Pacino [11] on container
ship stowage. Finally, we mention that Hirashima et al. [8] use Q-learning for
container transfer scheduling in a container terminal.

The preliminaries are presented in Sect. 2 and our RL approach is covered in
Sect. 3 followed by Sect. 4 where we document our experiments and discuss the
results.

2 Preliminaries

An item to be stored is represented by an interval [x, y] where x is the arrival
time and y is the departure time for the item. Two intervals [x1, y1] and [x2, y2]
are said to overlap if we are not allowed to put the corresponding items in the
same stack: x1 < x2 < y1 < y2 or x2 < x1 < y2 < y1.

In order to provide a clear and unambiguous definition, the stacking prob-
lem is formulated as a coloring problem where we add an additional natural
constraint for the stacking height represented by the number h:

Definition 1. The h-STACKING problem:
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– Instance: A set of n intervals {I1, I2, . . . , In}.
– Solution: A coloring of the intervals using a minimum number of colors such

that the following two conditions are satisfied:
1. Two overlapping intervals receive different colors.
2. For any real number z and any color c there will be no more than h

intervals with color c containing z as an interior point.

A stacking instance consisting of 8 items/intervals with stacking height con-
straint h = 2 is shown in Fig. 11. An optimal solution using 3 colors is shown as
well.

Fig. 1. A stacking instance with n = 8 and h = 2. An optimal solution uses 3 colors.
There is more than one optimal solution.

For the online version of the problem, the intervals are colored in increasing
order with respect to the arrival times using no information on future intervals.

2.1 Reinforcement Learning

We will put our problem into a Reinforcement Learning (RL) context in order to
use simple RL tools to improve heuristics previously presented in the literature.
The RL introduction and notation in this paper is based on the work by Sutton
and Barto [13] and the reader is referred to this book for more details.

The online case is considered so the intervals are – as mentioned earlier –
presented to a stacking agent in chronological order defined by the arrival times.
If two items arrive at the same time, then the item with the latest departure
will be presented first to allow the agent to put the items in the same stack if
the agent decides to do so. The stacking environment is modelled by an episodic
Markov Decision Process (MDP) as follows:

– A state s consists of an arriving item and a coloring of all items that have
arrived earlier. The arriving item is not colored in the state s. There is also an
initial state modelling the beginning of time when the storage area is empty
and a terminal state that is reached when the last item has been processed.

1 Figure from [10].
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– An action a represents the color/stack that is assigned to the arriving item.
– The reward r for an action is 0 for all actions except for the final action where

r is the number of colors used multiplied by −1 (we want to use a low number
of colors). We do not use discounting (γ = 1).

The transition probabilities depend on the way the stacking instances are gen-
erated and we use a model-free approach that does not require information on
these probabilities.

The agent uses a policy πΘ defined by a parameter vector Θ ∈ R
d to take

decisions. As mentioned earlier, we consider policies that are based on features
where we for every state s and action a has a feature vector x(s, a) ∈ R

d contain-
ing d features extracting information for taking the action a given state s. Every
time we mention a feature, the feature is containing information on the coloring
or stacking configuration appearing after taking an action a in a state s and the
argument (s, a) to a feature is occasionally omitted to improve the readability.
The objective is to find a value for Θ maximizing the expected reward for πΘ.

We consider two types of policies, stochastic and deterministic, that are
guided by linear combinations of features Θx(s, a)T . The stochastic policies have
probability πΘ(a|s) of taking action a at state s where πΘ is computed applying
the softmax function on the vector with values Θx(s, a)T , a ∈ A, where A is
the set of actions. The deterministic policies simply pick the action a with the
highest value of Θx(s, a)T for any state s.

The overall strategy of our paper is to use RL tools to develop good stochas-
tic policies that converge to deterministic policies improving heuristics earlier
presented in the literature.

2.2 Stacking Heuristics

If we decide to put an arriving item on top of another item, it is intuitively
appealing to try to improve the chance to do the same for the items to follow.
It seems natural to improve this chance by placing the arriving item on an item
leaving as early as possible (after the arriving item). Heuristics guided by this
fundamental idea are presented several places in the literature [2,7,15] where the
top priority is to assign an arriving item to a non-empty stack and the secondary
priority is to place the new item on an item leaving early.

In terms of RL, these heuristics can be viewed as partly controlled by a
feature, TIL (Top Interval Length), defined as the sum of the remaining time
for the items that are situated at the top of a stack,

TIL =
∑

stacks
(ytop − xnew),

where ytop is the departure time for the item on top after taking action a in state
s and xnew is the arrival time for the new item. The other feature that controls
these heuristics is the number of stacks, st, currently in use after taking action
a in state s. It is very important to stress that the features are computed for the
stacking configuration appearing if action a was taken for every possible action
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a ∈ A. To use the terminology and notation from above, these heuristics can
be seen as deterministic policies using the feature vector x = (TIL, (−st)) and
parameter vector Θ = (1,M) where M is a sufficiently big number.

Duinkerken et al. [6] propose heuristics controlled by a feature, RSC
(Remaining Stack Capacity), that is similar to the TIL-feature with the excep-
tion that the heights of the stacks are taken into account. In our implementation,
the remaining time for the top item is multiplied with the difference between
the stack capacity h and the current height of a stack - before the sum is taken:

RSC =
∑

stacks
(h − hstack)(ytop − xnew).

The RSC-heuristic can be viewed as a deterministic policy using x =
(RSC, (−st)) and the same Θ as above. It should be noted that the TIL-
heuristics and RSC-heuristics presented here seem to perform quite well.

3 The RL Approach

The underlying policies for the heuristics presented so far are defined by a linear
combination of features:

π ∼ wTIL · TIL + wRSC · RSC + wst · (−st), (1)

where the w-weights are fixed constants. As the author of this papers sees it, the
(−st)-feature is a tactical feature and the TIL- and RSC-features are positional
features implying that the heuristics presented above assign a very high weight
to the tactical feature at all stages of the stacking process.

Now imagine an item arriving to a storage area at a time with only a few
stacks in use and imagine that the arriving item will only stay for a short time
while all other items have to stay for a long time. What would be the most
sensible action to take in this case? The best thing to do seems to be to ignore
the new item and assign it to an empty stack. This would allow us to build up
a positional advantage for other items arriving in the near future. To be more
specific, we would increase the chance of assigning incoming items to stacks with
items with similar departure times.

These considerations suggest that wst should be smaller at quiet stages for
the storage area and lead us to the following key question: Will our heuristics
improve if the w-weights are allowed to vary as a function of the number of
stacks in use?

To answer this question, we seek an optimal stochastic policy πΘ defined by
Θx(s, a)T , Θ ∈ R

9, where the feature vector x consists of 9 component features
as follows where the number of intervals, n, is used for rescaling:

x =
(
TIL,

(
st
n

)
TIL,

(
st
n

)2
TIL,RSC,

(
st
n

)
RSC,

(
st
n

)2
RSC,−st,

(
st
n

)
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st
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)2 (−st)
)

.
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Let Θ = (θ1, θ2, . . . , θ9). The right hand side of (1) now matches Θx(s, a)T with
wTIL, wRSC , and wst as quadratic polynomials in st for fixed n:

wTIL = θ1 + θ2

(
st

n

)
+ θ3

(
st

n

)2

wRSC = θ4 + θ5

(
st

n

)
+ θ6

(
st

n

)2

wst = θ7 + θ8

(
st

n

)
+ θ9

(
st

n

)2

.

In this way, we can directly see how the optimal mix between tactical and posi-
tional features vary at the different stages of the stacking process as the number
of stacks in use, st, changes.

We use the REINFORCE algorithm that is a simple and well-known episodic
Monte-Carlo Policy-Gradient algorithm to develop a stochastic policy πΘ with a
high expected reward. The TIL-heuristic is used as a baseline. We simulate the
MDP by repeatedly generating random instances. When an instance is generated,
it is processed using the current policy πΘ (starting in the initial state) until the
final item has been colored (ending at the terminal state). Every time we end up
at the terminal state, we update Θ taking the observed reward and the values
of the observed features into account. When we update a component θi of Θ,
we change θi by Δθi where Δθi is proportional to the reward obtained and a
number measuring how active the corresponding feature was when processing
the instance – this number, which might be negative, measures the difference
between the feature values observed and the expected values for that feature.
After the update, we generate a new instance and process it by running the MDP
from the initial state again. When many instances have been processed, θi will
end up having a high value if the corresponding feature leads the heuristic in the
right direction. The reader is referred to [13] for the details of the REINFORCE
algorithm that are beyond the scope of this paper.

4 Experiments

We have carried out two experiments where the arrival times and departure
times have been picked uniformly at random from the interval [0, 1]. For an
interval representing an item, we simply pick two numbers and let the arrival
time and departure time be the smallest and largest number, respectively. In
order to allow the possibility to have two intervals with the same arrival time
or departure time we have rounded the numbers to two decimal places. For the
first experiment, we have been fixing the number of items to 30 and the height
capacity of a stack to 4: n = 30 and h = 4. For the second experiment, we have
been using n = 100 and h = 5.

The REINFORCE algorithm is converging slowly and the experiments were
carried out on a simple MacBook Pro using Jupyter Notebooks/Python so the
training took several days. We believe that the time for training could be signif-
icantly reduced using stronger hardware and more advanced RL algorithms.
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4.1 Positional vs. Tactical Features

The stochastic policies developed by the REINFORCE algorithm for both of the
experiments tell an interesting story about the optimal mix of positional and
tactical features for the different stages at the stacking process. As explained
earlier, our RL approach allows us to express the weights of the features in (1),
wTIL, wRSC , and wst, as quadratic polynomials of the number of stacks in use.
Figure 2 displays a graph with the weights obtained for the experiment with
n = 100 and h = 5.

st

w
wTIL

wRSC

wst

10 20

10

20

30

Fig. 2. The relationship between the numbers of stacks, st, in use at the storage area
and the weights appearing in (1) for the policy developed for the experiment with
n = 100 and h = 5. The positional features are displayed using solid curves and the
tactical feature is using a dashed curve.

The coefficients for the quadratic terms are relatively small producing almost
linear relationships. It is very clear that the positional features play a bigger role
when only a few stacks are used in the storage area and that the tactical feature
comes more into play when the storage area is busy. The RSC-feature is the
positional feature with the most drastic weight change and this can maybe be
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explained by observing that the RSC-feature is a bit more strategic than the
TIL-feature – at least as the authors sees it. The TIL-feature appears to be a
good all-round feature to use at all stages. Similar results are obtained for the
experiment with n = 30 and h = 4.

4.2 Performance of the New Heuristics

For both of the experiments, we have turned the stochastic policies produced
by the RL approach into deterministic policies and compared the corresponding
heuristics to a TIL-heuristic and RSC-heuristic implemented as described in
Sect. 2.2. We have generated 1 million random instances for each of the exper-
iments and computed the average number of colors/stacks used for the three
types of heuristics for each experiment. It is very important to note that these
instances have not been used for training when simulating the MDP. The results
of the experiments are shown in Table 1.

Table 1. The average number of colors/stacks used for the heuristics for 1 million
instances.

n = 30, h = 4 n = 100, h = 5

TIL-heuristic 7.336 16.215

RSC-heuristic 7.351 16.228

Our heuristic 7.254 15.651

The TIL-heuristic performs marginally better than the RSC-heuristic while
our new heuristic uses an average number of stacks that is 1.1% and 3.5% better
than the TIL-heuristic for the experiments with n = 30 and n = 100, respec-
tively. It should be noted that such improvements could imply significant savings
in real world applications within logistics and that our new heuristic is very sim-
ple to implement.

5 Conclusion

By using RL techniques, we have developed simple and efficient heuristics for
online stacking that perform better than heuristics earlier presented in the lit-
erature for the specific stochastic environment considered. The heuristics are
trained by simulating the stacking environment to obtain an optimal mix of
tactical and positional features.

The numbers from our experiments directly demonstrate that online algo-
rithms can benefit from letting the balance between positional and tactical fea-
tures vary as instances are processed. Our RL approach produces a hybrid heuris-
tic combining the component heuristics in an optimal and dynamical way. By
the nature of RL, our RL approach is adaptive to the stochastic environment
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generating instances and it is not restricted to stacking so it seems very interest-
ing to investigate whether it can improve heuristics for other problems in other
environments.

The performance of the online stacking heuristics can probably be improved
using more advanced RL techniques like for example actor-critic methods involv-
ing neural networks. Our results also suggest that it maybe is possible to develop
a powerful and simple universal online stacking heuristic based on linear func-
tions for the weights for the features.
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Abstract. Large data centers consume large amounts of electricity.
Estimating the energy consumption in a data center can be of great
importance to data centers administrators in order to know the energy-
consuming tasks and take actions for reducing the total energy consump-
tion. Smart workflow mechanisms can be built to reduce the energy con-
sumption of data centers significantly. In this paper, we are investigating
the factors that affect the energy consumption of scientific applications in
data centers. We also use eight machine learning methods to estimate the
energy consumption of multi-threaded scientific applications. Extensive
computational results on a computer with 20 cores show that the CPU
usage is the most important parameter in the power consumed by an
application. However, better results can be obtained when the CPU uti-
lization is combined with other parameters. We generate various regres-
sion models that predict the energy consumption of an application with
an average accuracy of 99%. Simpler models with one and two param-
eters can achieve comparable accuracy with more complex models. We
also compare various machine learning methods for their ability to obtain
accurate predictions using as few parameters as possible.

Keywords: Data centers · Energy consumption · Machine learning ·
Cloud computing

1 Introduction

Cloud computing has evolved in the last decade to become the technological
backbone for most modern enterprises. With the increase of the data hosted in
data centers and the applications ported in them, new larger data centers are
needed to meet the demands of the users. However, data centers consume large
amounts of electricity. For example, Google’s data center used about 2.26 million
MW hours of electricity to run its operations in 2010 [10]. Energy consumption
increased by 90% from 2000 to 2005, but only by 4% from 2010 to 2014, and
this is due to the optimization of energy consumption that most data centers
apply [6]. In addition, the total carbon dioxide emissions of the Information and
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I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 195–200, 2020.
https://doi.org/10.1007/978-3-030-53552-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_20&domain=pdf
http://orcid.org/0000-0003-4929-9886
http://orcid.org/0000-0001-5876-9945
https://doi.org/10.1007/978-3-030-53552-0_20


196 E. Karantoumanis and N. Ploskas

Communication Technology (ICT) sector keep increasing. The carbon dioxide
emissions of the ICT sector are equal to those of the aviation sector [1]. An
average data center consumes energy equivalent to 25, 000 households and the
environmental impact of data centers was estimated at 116.2 million tons of
carbon dioxide in 2006 [13,15]. Therefore, new solutions to minimize the energy
consumption of data centers are of great importance.

Various works have studied the energy consumption problem in data centers.
Some researchers focused on the workload and consumption prediction [9,11,14],
while others use methods to estimate the energy consumption in virtual machines
or servers [2,12,16]. Various input parameters have been used to model the
energy consumption: (i) CPU, (ii) cache, (iii) disk, (iv) DRAM, (v) network,
and (vi) maximum number of open sockets. In addition, linear regression models,
neural networks, and Gaussian mixture models have been utilized to model power
consumption.

In this paper, we are interested on estimating the energy consumed by a
scientific application running in a data center. Various works [2,3] have shown
that the CPU usage is the most important parameter that affecting the power
consumption of a computer. In this paper, we aim to improve the prediction
accuracy by investigating whether or not other input parameters (e.g., memory
usage, memory size, disk size, etc.) can be used to predict the power consump-
tion. Being able to estimate the energy consumption of an application, task
scheduling mechanisms can be built to reduce the total energy consumption of
a data centers. We are investigating the factors that affect the power consump-
tion of scientific applications. Various machine learning methods are compared
in terms of their ability to obtain accurate predictions of the power consumed
by an application. Simpler regression models with one and two parameters are
proposed.

2 Computational Results

The experiments were performed on a computer with an Intel Xeon CPU E5-
2660 v3 (2 CPUs - 10 cores each) and 128 GB of main memory, a clock of 2.6
GHz, an L1 code cache of 32 KB per core, an L1 data cache of 32 KB per core,
an L2 cache of 256 KB per core, and an L3 cache of 24 MB, running under
Centos 7 64-bit.

In this work, we aim to investigate the parameters that affect the power con-
sumed by an application. The parameters that we considered are the following:

– number of cores (nc)
– CPU usage (cu)
– memory size (ms)
– memory usage (mu)
– disk size (ds)
– total number of transfers per second (dt)
– total amount of data written to devices in blocks per second (dw)
– total number of network requests (nn)



Power Consumption Estimation Using ML Techniques 197

– total number of kilobytes received per second (nr)
– total number of kilobytes transmitted per second (nt)

In order to estimate the energy consumption of an application, we used the
stress-ng [8] tool to stress CPU, RAM and disk, and the ab [4] tool to stress
network. We utilized sar [5] to collect the values of the aforementioned ten input
parameters in each second and powerstat [7] to collect the power consumed
(Watts). A total of 1,000 runs were performed with different combinations for the
number of threads, the memory usage, the disk usage and the network consumed
by the application (in this simulation, the application is the stress-ng and the
ab tools that stress the CPU, RAM, disk and network). Each experiment was
run for 80 s and the instantaneous value of each input and output parameters
was stored in each second. Afterwards, we eliminated the first ten and the last
ten values and we calculated the average of the remaining 60 values.

We used eight regression methods from scikit-learn to estimate the power
consumption:

1. Ordinary least squares linear regression (LinearRegression)
2. Lasso regression (Lasso)
3. Ridge regression (Ridge)
4. Epsilon-support vector regression (SVR)
5. Decision tree regression (DecisionTreeRegressor)
6. Random forest regression (RandomForestRegressor)
7. Regression based on k-nearest neighbors (KNeighborsRegressor)
8. Multi-layer Perceptron regression (MLPRegressor)

We use 70% (700 samples) of data to train each model, and the rest 30% (300
samples) for testing the model. We use 10-fold cross validation to test the accu-
racy of each model. To evaluate the performance of our model, we use R-squared
(R2, coefficient of determination) that provides an estimate of the strength of
the relationship between a regression model and the dependent variable (out-
put). Table 1 presents the results of all regressors using (i) all input parameters
(ten parameters), (ii) only the CPU usage (cu) as input (one parameter), and
(iii) all combinations of the CPU usage parameter with all other parameters
(two parameters). The second column shows the R

2
scores that each regressor

achieved with all ten parameters. The third column shows the R
2

scores that
each regressor achieves with the cu parameter as single input, while the fourth
column shows the best R

2
score with two parameters, one of which is always

the CPU usage parameter. All regressors, except from SVR and MLPRegressor,
achieve high accuracy when using all parameters as input. The best performing
regressor is the RandomForestRegressor with a score of 99.44%. Equation 1 is
the best model that was obtained from the three linear regression methods using
ten input parameters. As it is obvious, the CPU usage is the most important
parameter.

Watts = (cu× 1.14) + (ms×−1.04e−01) + (ds× 4.30e−01)

+(dw × 9.68e−06 + (nn× 2.20e−05) + (nr ×−5.17e−05) + 65.04
(1)
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Therefore, we investigate the accuracy that can be obtained when using only
the CPU usage as input parameter. The accuracy obtained by all regressors,
except from SVR and MLPRegressor, is lower than their performance when
using all input parameters. However, an accuracy of 97.33% can be obtained.
Equation 2 is the best model that was obtained from the three linear regression
methods using only the CPU usage as input parameter.

Watts = cu× 1.17 + 64.3 (2)

Finally, we used as input the CPU usage with all other input parameters
(nine combinations). The last column in Table 1 shows that very accurate esti-
mations can be made using only two parameters. The disk size (ds) and the total
number of transfers per second (dt) are the second most important parameters
in predicting the power consumption of an application. Equation 3 is the best
model that was obtained from the three linear regression methods using two
input parameters.

Watts = (cu× 1.11) + (ds× 0.49) + 66 (3)

When using only the CPU usage as input parameter, the results for SVR and
MLPRegressor are better than when using ten parameters as input. In addition,
the rest of the scores is reduced to a very small degree, so CPU usage is the
most important input parameter. In most regressors, the error when using one
parameter increases by only 2% relative to the error when using ten parameters.
When using two parameters, the error increases only by less than 1%. This
means that simpler models with one or two parameters can be built to predict
the power consumed by an application.

Table 1. R
2

scores for regressors using all (ten), one, and two input parameters.

Regressor All parameters One parameter (cu) Two parameters

LinearRegression 0.9932 0.9725 0.9899

Lasso 0.9939 0.9724 0.9897

Ridge 0.9934 0.9725 0.9899

SVR −0.1508 0.6479 0.5514

DecisionTreeRegressor 0.9900 0.9689 0.9922

RandomForestRegressor 0.9944 0.9726 0.9938

KNeighborsRegressor 0.9102 0.9733 0.9922

MLPRegressor −0.4871 0.6281 0.9142

In Fig. 1, we present the scores that each regressor can achieve with different
input parameters. The y axis shows the R

2
scores of the regressors and the x axis

shows the number of parameters used. Most regressors have similar patterns and
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their lines overlap because their scores are very close. The KNeighborsRegressor
method has a lower accuracy than other regressors when using ten input param-
eters, but it has a good performance when using one and two input parameters.
The SVR and MLPRegressor methods are the worst performers. However, their
accuracy scores are significantly improved when using one and two parameters.

Fig. 1. Accuracy achieved by each regressor using one, two, and ten input parameters.

3 Conclusions

In this paper, we use eight regression methods to predict the power consumption
of an application on a computer with 20 cores. Extensive computational results
show that the CPU usage is the most important parameter for the energy con-
sumption prediction. We also investigated the accuracy that can be achieved
using simpler models. Most regressors are able to achieve a high accuracy score
when using one and two parameters. Therefore, simpler models can be utilized to
predict the power consumed by an application. In future work, we plan to collect
data from different computers and confirm whether or not the models generated
on a specific machine can be also used to predict the energy consumption on
other machines. We also aim to stress servers with various applications that will
be executed concurrently and validate the application of the proposed models.
Finally, we will also experiment with tuning the parameters of each regressor in
order to further improve their accuracy.
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Abstract. This study concerns the use of automatic classification tech-
niques for the purpose of self-tuning an exact optimization algorithm: in
particular, the purpose is to automatically select the critical resource in
a dynamic programming pricing algorithm within a branch-and-cut-and-
price algorithm for the Electric Vehicle Routing Problem.

Keywords: Column generation · Dynamic programming · Machine
learning

1 Introduction

Automated tuning of heuristic algorithms is a well-known research area, whose
importance stems from the presence of critical parameters in heuristics and meta-
heuristics; classical examples are the cooling schedule in simulated annealing, the
population size in genetic algorithms and the tabu tenure in tabu search.

However, also exact optimization algorithms, such as branch-and-cut-and-
price, are governed by some critical parameters whose value can heavily affect
the computational performances, although not the optimality guarantee. In fact,
machine learning methods have been successfully applied both in a general con-
text of mathematical programming [20], and specifically in column generation;
for instance, in [21] and [22] classification and regression models are used to
broaden the application of Dantzig-Wolfe decomposition methods. This study
concerns the use of automatic classification techniques for the purpose of self-
tuning an exact optimization algorithm: in particular, the purpose is to automat-
ically select the critical resource that must be used in a dynamic programming
algorithm to solve the pricing sub-problem within a branch-and-cut-and-price
algorithm for an NP -hard routing problem. In fact, preliminary results indi-
cated that performing the right selection makes the difference between converg-
ing in seconds, or not reaching optimality in several minutes of computation.
We propose two approaches, devising both heuristics, which proceed to par-
tial evaluations of pricing runs, and data driven methods, which instead exploit
supervised learning.

Partially funded by Regione Lombardia, grant agreement n. E97F17000000009, Project
AD-COM.
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The paper is organized as follows. In Sect. 2 we give a formal description
of our routing problem; in Sect. 3 we describe the column generation algorithm
and the formulation of the pricing sub-problem; in Sect. 4 we give a synthetic
description of the bi-directional dynamic programming algorithm which is used
to solve it and we discuss the impact of the critical resource selection on the
computing time; in Sect. 5 we describe our algorithmic and data driven methods
to automatically perform the best critical resource selection; in Sect. 6 we present
computational results; conclusions are drawn in Sect. 7.

2 The Problem

The Electric Vehicle Routing Problem (EVRP in the remainder) is a variation
of the well-known Vehicle Routing Problem (VRP) in which the fleet is made of
electric vehicles (EVs). For a survey on the use of EVs in distribution logistics
see Pelletier et al. [14]. The EVRP is by far harder than the classical VRP,
both because recharge decisions must be taken in addition to routing decisions
and because distance minimization is no longer the only optimization criterion
but more complex objective functions must be considered. An up-to-date and
comprehensive survey on the EVRP can be found in Keskin, Laporte and Catay
[13].

In this paper we consider the EVRP with multiple recharge technologies, first
introduced by Felipe et al. [12], where each recharge station may be equipped
with one or more recharge technologies and each technology is characterized by a
different recharge rate and energy price. Let G = (N ∪R, E) be a given weighted
undirected graph whose vertex set is the union of a set N of N customers
and a set R of R recharge stations. A distinguished station in R is the depot,
where vehicle routes start and terminate. All customer vertices in N must be
visited by a single vehicle; split delivery is not allowed. Each customer i ∈ N
is characterized by a demand qi. Multiple visits to stations are allowed as well
as partial recharges. A fleet of K identical vehicles with given capacity Q is
available; vehicles are equipped with batteries storing up to B energy units.
Energy consumption is assumed to be proportional to the distance traveled.
The duration of each route is required to be within a given limit T . As opposed
to classical vehicle routing problems, where one wants to minimize the overall
distance traveled, the objective to be optimized is the overall recharge cost. As
the sum of customer demands is a trivial bound to capacity consumption for
each route, we set Q =

∑
i∈N qi if the original value of Q is higher. For more

details on the formulation the reader is referred to [7].

3 Branch-and-price

We have developed a branch-and-cut-and-price (BCP) algorithm for the exact
optimization of the EVRP with multiple technologies. The BCP algorithm relies
upon an extended formulation in which each column in the master problem
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represents a route that can visit customers as well as recharge stations. The
master problem reads as follows.

minimize z =
∑

r∈Ω

crθr (1)

s.t.
∑

r∈Ω

xirθr ≥ 1 ∀i ∈ N (2)

∑

r∈Ω

θr ≤ K (3)

θr binary ∀r ∈ Ω (4)

A binary variable θr corresponds to each feasible route of cost cr, where Ω
indicates the set of feasible routes. The objective function (1) asks for the mini-
mization of the total cost of the selected routes. Covering constraints (2) impose
that all customers are visited by at least one route: for this purpose a binary
coefficient xir indicates whether customer i is visited along route r or not. An
additional constraint (3) limits the number of routes that can be selected, being
K the number of available vehicles.

Such a formulation implies an exponential number of variables θ, one for each
feasible route. Therefore its linear relaxation is solved with column generation at
every node of a branch-and-bound tree. The pricing sub-problem that must be
solved to generate new columns is a Resource Constrained Elementary Shortest
Path Problem, where a prize βi is associated with each customer vertex, being
βi the non-negative dual variable corresponding to constraint i ∈ N in the
constraint set (2).

The constraints in the pricing sub-problem define feasible routes. In partic-
ular, any feasible route respects the following properties: it must correspond to
a path in the graph, it must start from the depot and return to it, it must not
visit any customer more than once, it must not consume more than Q units of
capacity, it must have a duration no longer than T , it must comply with energy
constraints and battery capacity limits. The objective of the pricing sub-problem
is to compute a route of minimum reduced cost, if any. The reduced cost of a
route is equal to its cost decreased by the prizes βi accumulated when visiting
customers.

4 The Dynamic Programming Algorithm

The pricing sub-problem is NP -hard and it is common practice in the VRP
literature to address it with dynamic programming. Starting from the depot,
nodes are iteratively labelled and suitable dominance rules allow to discard sub-
optimal labels, thus limiting the combinatorial explosion in the number of labels.

Details of the algorithm are omitted here. The interested reader can refer to
the VRP literature (see for instance [6,9–11]) and in particular to [7] and [8] for
the EVRP with multiple technologies.
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A remarkable speed-up in dynamic programming algorithms to compute con-
strained shortest paths can be achieved by bi-directional extension of labels
[15–17]. This allows to generate shorter paths with respect to mono-directional
extension. The reduction in path length usually pays off, because the number
of labels grows much faster than linearly with the path length. In bi-directional
dynamic programming, path extension proceeds in two opposite directions, for-
ward and backward, and it is fundamental to stop the extension of forward and
backward paths as soon as there is the guarantee that the remaining part of
any feasible route can be generated in the opposite direction, so that no feasible
solution can be lost.

This test is done on the consumption of a critical resource: when half of the
available amount of the critical resource has been consumed along a path, then
its extension is stopped.

In the EVRP, the pricing sub-problem takes into account three main
resources: the amount of demand served, because of the constraint on vehicles
capacity; the time needed to travel along the path, because of the constraint
on the maximum duration of routes; the energy consumption along the path,
because of the constraints on battery capacity. The energy cannot be used as a
critical resource, because it can be recharged along a route and therefore routes
are not guaranteed to be decomposable in two paths along which no more than
half of the battery capacity is consumed. This guarantee holds for time and
capacity: so, these are the two resources that can be selected as critical.

It may happen that neither time nor capacity are really binding; in these
cases bi-directional propagation becomes inefficient. In order to overcome this
problem, the number of customers visited in a route is also considered as an
additional resource, that becomes critical when the others are not. This prevents
the extension of paths when �N/2� customers have already been visited.

The importance of guessing the right critical resource can be seen from
Table 1, where we have reported the number of labels examined and the comput-
ing time required by the bi-directional dynamic programming algorithm accord-
ing to the selection of the critical resource (T stands for time, Q stands for
capacity, N stands for number of customers). A wrong guess may lead to an
increase in computing time of orders of magnitude. It must be remarked that
this guess must be repeated as many times as the number of calls to the pric-
ing sub-routine, which typically occurs some dozen times for each node in the
branch-and-cut-and-price tree that in turn may contain up to some hundreds
thousands nodes.

From these preliminary results one can appreciate the importance of a reliable
and fast technique to automatically select the critical resource in order to keep
the overall computing time under control.

5 Automatic Selection of the Critical Resource

The task of choosing the right critical resource requires at first a modeling step.
In fact, we may define as the best critical resource that yielding convergence of the
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Table 1. Computing time (sec.) for each resource in single pricing iterations

Dataset Instance Iteration N Q T

A C101 – 5 2 0.0037 0.0021 0.0033

A C101 – 10 5 4.43 3.76 0.91

A C103 – 15 1 1.07 1.11 0.61

A C103 – 15 17 42.8 16.2 1.72

A C208 – 15 14 5.41 5.98 7.70

B 10 – N 10 1 225 11.5 0.004

pricing algorithm to an optimal solution in the minimum amount of CPU time.
Such a definition, however, can hardly be used in the design of a computational
method for finding it.

We therefore propose two options. The first one is to consider the number
of labels which are produced by extension operations as a proxy for the overall
CPU time required to the pricing algorithm to converge. Indeed, the problem
of computing the number of labels produced by different choices of the criti-
cal resource is as hard as the application of the initial definition; therefore we
designed heuristics to provide a reliable estimate of it. Such heuristics still rely
on dynamic programming to algorithmically solve a strongly restricted problem
at each pricing iteration. We refer to this approach as partial inspection, and we
detail it in Subsect. 5.1.

The second approach is to assume that features on instance and pricing
data exist, which are predictive of the best critical resource. Under this assump-
tion we experimented on data-driven methods, modeling the choice of the best
critical resource as a supervised learning one. We considered several pricing
problem instances arising during EVRP column generation. For each such an
instance we created a data object, measuring and recording several features. We
also ran three versions of the pricing algorithm, each using a different critical
resource, recording the CPU time they took to reach proven optimality. Finally,
we assigned the data object a label corresponding to either T , Q or N , whichever
resource was corresponding to the fastest pricing algorithm version. The set of
data objects is then used to train classification models, mapping pricing instance
features to critical resource labels. The classification model can then be invoked
during the optimization of new EVRP instances to predict at each column gener-
ation iteration the best critical resource. We detail this approach in Subsect. 5.2.

5.1 Selection by Partial Inspection Algorithms

Intuitively, when the best choice is made for the critical resource, a huge num-
ber of label extensions are stopped during each run of the dynamic programming
algorithm. We also expect such a phenomenon to become evident already in the
early stages of dynamic programming. We experimented with heuristics which
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Algorithm 1. Partial Inspection Heuristics.
N,Q, T , t ← 0
Queue ← {empty label}
while t < L do

L ← Queue[t]
if L is an open label then

for Each node i reachable from L do
Try to extend L to i creating M
if M is blocked then

if M blocked by N constraint (more than N/2 customers) then
N ← N + 1

if M blocked by Q constraint (demand exceeds Q/2) then
Q ← Q+ 1

if M blocked by T constraint (time exceeds T/2) then
T ← T + 1

else
Add M to Queue
Perform dominance

t ← t+ 1

if N = Q = T then
return Q

else
return argmax(N,Q, T )

perform dynamic programming without necessarily performing a complete exten-
sion phase. In fact (a) we forbid the extension of each label consuming more than
half of any resource (b) we stop once a certain number L of labels have been
generated. Once this limited dynamic programming is over, we guess the best
critical resource to be that stopping the highest number of extension operations.
A complete pseudo-code of our heuristics is given as Algorithm 1.

Note that, given our choice of RCESPP dynamic programming algorithm, a
single extension step could fail even if it does not violate any resource constraint;
when it happens, no counter is incremented.

The partial inspection algorithm uses Q as a tiebreaker when all of the crit-
ical resources block the same number of extensions, which experimentally only
happens when N = Q = T = 0. This choice is motivated by the fact that the
maximum capacity consumption along a route has a trivial bound (we cannot
consume more than the sum of customer demands), while the time constraint
has not, and therefore we expect in extreme cases Q/2 to be more reliable than
T/2 as a stopping condition.

5.2 Selection by Data Driven Models

The use of heuristics has both appealing and negative features. On one side, they
do not require any training, and are ready to be applied to datasets of unknown
structure. On the other side, running them consumes time and might therefore
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increase the overall computing effort; furthermore, they assume the number of
labels which are generated in a limited setting to be a reliable proxy for the
computing time of a whole pricing iteration, which may or may not be true. In
fact, in preliminary experiments we observed that a few instances exist in which
not even the overall number of labels is directly correlated with pricing time.

Therefore, we designed the following data driven approach. We assume a
dataset of base instances to be given. We also assume to perform simulated runs
on them, performing the full column generation process with three versions of
the pricing algorithms, one for each possible choice of the critical resource.

For each base instance, and each pricing iteration in its column generation
process, we create a data object, which is composed by the following features.

Base Instance Features. We include the number of customers (N), vehicles (K)
and recharge stations (R).

Mix of Base Instance Features. We include also the following:

N-normalized Number of customers divided by number of vehicles: Ñ = N/K
Q-normalized Q̃ =

∑
i∈N qi/Q

T-normalized T̃ =
∑

i∈N (si + di0)/T (using depot tech for estimating time)

Iteration Features. We include the pricing iteration counter as a feature as
well, which trivially changes over different pricing iterations of the same base
instance.

Iteration and Dual Features. The following values may change over different
pricing iterations in non-trivial ways. They are related to the dual solution values.
In fact, we argue that the structure of a dual solution might provide insights into
the computational behaviour of a pricing algorithm. To give an example, each
dual variable having very low value strongly suggests that visiting the associated
customer would not pay off; therefore, a high percentage of dual variables having
low values suggests optimal routes to be short (thereby making N a bad choice for
the critical resource). Let βi be the dual variables corresponding to constraints
(2). In order to obtain promising features, we measure the following:

Beta-mean mean value of βi

Beta-variance variance of βi

Low-N Percentage of customers having βi > 0.1
∑

βi

Mid-N Percentage of customers having βi > 0.2
∑

βi

High-N Percentage of customers having βi > 0.3
∑

βi

Low-Q Percentage of customers having qiβi > 0.1
∑

(qiβi)
Mid-Q Percentage of customers having qiβi > 0.2

∑
(qiβi)

High-Q Percentage of customers having qiβi > 0.3
∑

(qiβi)
Low-T Percentage of customers having (si + di0)βi > 0.1

∑
(si + di0)βi

Mid-T Percentage of customers having (si + di0)βi > 0.2
∑

(si + di0)βi

High-T Percentage of customers having (si + di0)βi > 0.3
∑

(si + di0)βi
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Class Label. Additionally, after all the three pricers are over, we set the following:

Class either N, Q or T, depending on which pricer is fastest

5.3 Machine Learning Methods

Then, we exploit the dataset obtained in this way to build classification models
with a supervised learning mechanism. That is, we aim to predict class labels
(and therefore the best critical resource) by measuring the set of base instance,
mix, iteration and iteration dual features. We experimented with many classi-
fication models. Indeed, the accuracy is not the only important factor in the
choice of the best model, as we may be interested in trading accuracy for ease
of embedding in a final branch-and-cut-and-price solver and query efficiency.
The following classes were part of our experimental campaign: Bayesian clas-
sifier, simple decision tree built by information gain induction heuristics and
support vector machines with RBF kernel [2]. These models are indeed all easy
to directly implement in custom code. As a comparison term, we experimented
with a state-of-the-art random forest model trained by gradient boost, although
the embedding of the resulting model in custom code (without calling external
libraries) is more involved.

6 Computational Results

Base Instance Datasets. We did our experiments on two datasets.
Dataset A was derived in [18] from the Solomon dataset, by relaxing the time

windows constraints: instances have up to 15 customers (the last part of the name
indicates the size of each instance) and 5 stations with a single technology. For
some instances in this dataset we also modified the number of vehicles with
respect to the original value used in [18]. In one case this was done to make the
instance feasible, because the original one was not [19]. In some other cases we
decreased the number of vehicles to the minimum value for which the instance
was known to be feasible [12].

In dataset B, instances have 10 customers, up to 5 vehicles, up to 9 stations
and 3 technologies. As a preliminary result of our investigation, we found all
instances in B to have T (time) as critical resource, for each pricing iteration, so
we report detailed results for this dataset only in Sect. 6.1.

In our experiments we employ a state-of-the-art column generation imple-
mentation: the pricing algorithms, as well as the partial inspection heuristics
have been implemented in C++; the full column generation algorithm uses SCIP
6.0.2 [1] as a general framework. We set the following time limits: 7200 s for the
full column generation process of each base instance, 600 s for each single run
of a pricing algorithm 300 s for the label extension phase of every pricing run
(that is, we always reserve at least 300s for joining). At each column generation
iteration, each pricer might return a set of columns of negative reduced cost
(those not hitting the timeout contain an optimal one). In order to keep a rea-
sonable master effort, we keep only at most 100 columns for each pricer (those
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having minimum reduced cost). That is, at most 300 columns are added to the
master problem at each column generation iteration, at least one of which being
optimal. We remark that in our experimental setting, each simulation runs three
pricing algorithms at each column generation iteration, two of which using a
wrong choice of the critical resource, so the overall column generation time in
these experiments is not representative of the time required by our procedure in
a final implementation (while the time for each pricer does).

The supervised learning models were implemented in R. In particular:

– R Package e1071 [4] was used to build the Bayesian classifier. Function naive-
Bayes() was called with default parameters;

– R Package rpart [3] is used to build the decision tree. Function rpart() is
called to construct the tree, and the tree with the minimum prediction error
is selected;

– R Package 1071 [4] is used to build the support vector machines classifier,
calling function svm() with default parameters;

– R Package xgboost [5] is used to build the random forest classifier, calling
function xgboost() with parameters max.depth = 3, nrounds = 50 (leaving
others as default).

The results were obtained using a PC equipped with an i7-6700K 4.0GHz
processor and 32 GB of RAM, running Linux Ubuntu 18.

6.1 Profiling Partial Inspection Heuristics

Setup. The heuristic method described in 5 is called twice for every pricing
iteration, one with a small limit for the number of labels (“fast” heuristic) and
one with a significantly larger limit (“slow” heuristic). “Fast” heuristic sets L =
500(N + R). “Slow” heuristic sets L = 10000(N + R), 20 times more than
the “fast” method. The algorithm remains unchanged: labels are tentatively
extended until half of one of the resources is consumed, and stopped labels are
counted.

In Table 2 we report our results. The table is composed by two blocks, for the
slow and fast heuristic respectively. In each block we report the mean (± vari-
ance) computing time, in seconds (variance values smaller to 10−4 are rounded
to 10−4), and the accuracy of the heuristic.

One row is included for each of the following sets of base instances:

A-5 Set of instances having 5 customers belonging to dataset A.
A-10 Set of instances having 10 customers belonging to dataset A.
A-15 Set of instances having 15 customers belonging to dataset A.
B Set of all instances belonging to dataset B (having 10 customers).

Each entry represents average values of the instances in the corresponding set.
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Table 2. Comparing fast heuristic to slow one

Set Slow Fast

Time (s) Accuracy Time (s) Accuracy

A-5 0.0008 ± 0.0001 0.96 0.0008 ± 0.0001 0.96

A-10 0.45 ± 3.50 0.66 0.080 ± 0.0037 0.80

A-15 24.11 ± 5339 0.74 0.165 ± 0.010 0.89

B 0.0009 ± 0.0001 0.80 0.0009 ± 0.0001 0.80

Results. For very small instances (like those in set A-5), there are no differences
between the two heuristics. When the instance is so small, the label limit L is
almost never reached even by fast heuristic, so both of them can extend the
whole set of labels (and predict the critical resource with high accuracy). A
similar behaviour can be observed for dataset B, where time constraint are so
strict that halving them leads to drastically reduce feasible extensions, and both
heuristics can proceed until no open label is available. By converse, the accuracy
is not as high as A-5 rows: it’s possible to predict the wrong label even with a
fully extended queue.

For A-10 and A-15 rows, the most surprising result is that the fast heuristic
seems more accurate than the slow one. This particular behaviour suggests again
that simply counting the stopped labels is not always an accurate proxy. In
details, we found that when T is the critical resource, its effect appears clearly
already in early extension operations. At the same time, when this is not the
case, the partial inspection heuristics often reach termination before hitting any
critical consumption of either Q or T . Subsequently, the slow heuristic resorts
in predicting N , often being wrong. The fast heuristic, instead, according to the
tiebreaking condition, correctly predicts Q.

6.2 Classification in Synthetic Settings

The first experiment is synthetic. It investigates the results obtained by the four
classifiers described in Sect. 6 in a basic training-and-testing configuration, and
compares them to the partial inspection algorithm described in Sect. 5.

We randomly split the dataset (325 rows), using 2/3 data objects for training
and 1/3 for testing. That is, representative pricing iterations of each base EVRP
instance are expected to be in both training and testing datasets. Each of the
four classifiers described in Sect. 6 split the dataset the same way. Each classifier
is permitted to classify according to the features described in Subsect. 5.2. In
the original dataset, 133 rows are labeled T, 188 are labeled Q and only 4 are
labeled N. The results on the test set are shown in Table 4. Results on the
training set are given as a reference in Table 3. Both tables have 6 rows, one
for each classification method. Last two rows are included for comparison with
partial inspection heuristics. Accuracy (Acc.), Precision (Pr.) and Recall (Rec.)
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metrics are reported in each table for each classifier, lying in range [0−1]. A “-”
symbol means that the classifier never predicted class N.

Table 3. Classification in synthetic settings - training set

Method Accuracy Precision Recall

N Q T N Q T

Bayesian 0.78 0.10 0.87 0.92 1.00 0.75 0.82

DTree 0.93 0.00 0.95 0.93 – 0.93 0.93

SVM 0.94 0.00 0.95 0.95 – 0.95 0.92

Xgboost 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Slow H. 0.74 1.00 0.57 0.99 0.06 0.99 0.92

Fast H. 0.88 0.67 0.84 0.94 0.13 0.95 0.92

Table 4. Classification in synthetic settings - test set

Method Accuracy Precision Recall

N Q T N Q T

Bayesian 0.81 0.06 0.90 1.00 1.00 0.76 0.88

DTree 0.97 0.00 1.00 0.96 – 0.95 1.00

SVM 0.95 0.00 0.98 0.94 – 0.94 0.98

Xgboost 0.95 0.00 0.97 0.96 – 0.95 0.98

Slow H. 0.77 0.00 0.61 0.98 – 0.97 0.92

Fast H. 0.85 0.00 0.86 0.85 – 0.86 0.98

Results. A first unexpected result is that classifiers perform in general better
than partial inspection heuristics. The Bayesian classifier, despite having the
worst accuracy, is the only one who correctly predicts N (in testing). We remark
that data objects actually classified N are quite rare (in this random split, only
3 for training and 1 for testing). The other three classifiers give similar perfor-
mances: none of them predicts N, but other data objects are classified with really
high accuracy. It is worth noting that Decision Tree and SVM fully discard N:
they have Precision 0 for N even during training.

Features Importance. The Decision Tree structure built by R during this exper-
iment is indeed a simple if instruction, which classifies according to the T-
normalized feature only. Under a certain threshold it predicts Q, otherwise it
predicts T (data objects with N critical do exist, but they are discarded as out-
liers). Still, finding a suitable threshold value requires the statistical evaluation
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of the training set. From the point of view of branch-and-cut-and-price design,
this is an appealing phenomenon: it means that base instances could be classified
in preprocessing, without any overhead at runtime.

In order to have a more clear picture, in Table 5 we report the relative impor-
tance of each feature in the XGBoost model.

Table 5. Features importance in XGBoost.

Feature Gain Cover Frequence

T-normalized 0.8066 0.163 0.132

Beta-variance 0.0518 0.282 0.236

Beta-mean 0.0396 0.145 0.162

K 0.0267 0.014 0.014

N-normalized 0.0200 0.076 0.078

Mid-N 0.0111 0.015 0.017

Iteration 0.0107 0.067 0.064

N 0.0096 0.022 0.030

R 0.0084 0.020 0.067

Mid-Q 0.0045 0.029 0.040

Low-N 0.0028 0.015 0.030

Low-Q 0.0025 0.023 0.027

High-T 0.0021 0.028 0.023

High-N 0.0017 0.052 0.030

Mid-T 0.0009 0.024 0.017

High-Q 0.0004 0.022 0.017

Low-T 0.0002 0.001 0.003

Q-normalized 0.0002 0.002 0.010

The T-normalized feature remains the most important one by far, especially
in terms of relative gain it produces when used in a node of a tree. At the same
time, the mean and variance of dual variables contribute to the efficacy of the
method: such a contribution reflects in the values of cover and frequency. No
other feature seems relevant.

6.3 Classification in Realistic Settings

The second experiment compares classifier performances in a realistic operation
mode. That is, we split the dataset in blocks, each containing all and only the
rows corresponding to a single base EVRP instance. Experiments are always
performed without mixing different blocks during training and testing, thereby
simulating a setting in which training is performed on a certain dataset, and
then the models are used to perform predictions on new, previously unknown
base EVRP instances.
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Experimental Setup. We employ a leave-one-out approach, iteratively removing
one of the blocks described above from the dataset, performing training on the
remaining blocks, and testing on the removed one. Since dataset A contains
rows corresponding to 36 base EVRP instances, 36 iterations are needed for
each classifier, and average results are measured. As before, each classifier is
permitted to classify according to the features described in Subsect. 5.2.

Our average results on the testing blocks are reported in Table 7. For refer-
ence, in Table 6 we report also the average results during training. Both tables
have the same structures of those in the previous experiment.

Table 6. Classification in realistic settings - training

Method Accuracy Precision Recall

N Q T N Q T

Bayesian 0.86 0.67 0.66 0.66 0.89 0.90 0.90

DTree 0.94 0.64 0.64 0.64 0.95 0.95 0.95

SVM 0.95 0.64 0.64 0.64 0.95 0.95 0.95

Xgboost 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Slow H. 0.75 0.77 0.77 0.78 0.65 0.65 0.65

Fast H. 0.87 0.75 0.75 0.77 0.65 0.65 0.65

Table 7. Classification in realistic settings - testing

Method Accuracy Precision Recall

N Q T N Q T

Bayesian 0.79 0.70 0.68 0.65 0.70 0.66 0.72

DTree 0.88 0.71 0.75 0.77 0.95 0.86 0.83

SVM 0.85 0.64 0.70 0.78 0.81 0.78 0.74

Xgboost 0.92 0.67 0.73 0.86 0.81 0.87 0.92

Slow H. 0.81 0.64 0.69 0.84 0.74 0.72 0.76

Fast H. 0.89 0.68 0.78 0.85 0.77 0.83 0.84

Results. This experiment further clarifies the behaviour of the methods. Here,
all classifiers are able to predict N (at least for some of the 36 runs). As expected,
their mean precision over Q and T decreases. However, it does not drop signifi-
cantly, especially for Bayesian and XGBoost classifiers. Partial inspection heuris-
tics are competitive in this setting. Indeed, this confirms the intuition that such
dedicated heuristics could perform better than general purpose classifiers on a
real setting.
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As an overall final computational insight, we envisage a cascading approach:
at first approximation, a choice of critical resource performed during prepro-
cessing according to base instance features only can be enough. If timeouts are
observed during the pricing iterations, very fast queries to an external classifier
provide accurate predictions in a large share of cases. Finally, if timeouts are
still observed, running partial inspection heuristics can be of further help.

7 Conclusions

Our investigation produced interesting insights. First, partial inspection heuris-
tics provide good accuracy in detecting the best critical resource; in particular,
their results are accurate even if very tight bounds are imposed to their com-
puting time and number of labels which are allowed to be processed. In fact, we
argue that their biasing towards the best critical resource is more crisp in their
earlier phases, tending to a more balanced effect as their computation proceeds.

For what concerns the data driven methods, we have designed a few repre-
sentative features, and analyzed several classification models from the literature,
exploiting their values to predict the best critical resource. Some of these features
are related only to the base EVRP instance data; others measure properties of
the dual values during a single pricing iteration.

In general, data driven models appear superior to partial inspection heuristics
in our experiments.

One feature in particular turns out to be always more significant than the
others: it is a (rough) estimate of expected time spent in visiting each customer,
expressed in relative terms w.r.t. the time limit T . In fact, an unexpected result
is the following: very good accuracies can even be reached by correctly estimating
a split point over that single feature, and performing classifications using such
a single check. Indeed that feature is the only one in which we encoded graph
structure, and therefore we expect even better results by a careful design of
further similar graph-dependent features.

Including features which depend on dual values, and therefore change at
each pricing iteration, proves beneficial when training and testing is performed
on different base EVRP instances, thereby indicating that better generalization
can be achieved by including them.

Overall, our experiments indicate that integrating simple preprocessing, data
driven models and partial inspection heuristics is possible and fruitful.

References

1. Gleixner, A., et al.: The SCIP optimization suite 6.0, July 2018. Available at
Optimization Online and as ZIB-Report 18–26. http://nbn-resolving.de/urn:nbn:
de:0297-zib-69361. Accessed 28 Jan 2019

2. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
Morgan Kaufmann Publishers, Waltam (2012)

http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361


Automated Tuning of a Column Generation Algorithm 215

3. Therneau, T., Atkinson, B.: rpart: recursive partitioning and regression trees.
R package version 4.1-15 (2019). https://CRAN.R-project.org/package=rpart.
Accessed 22 Jan 2019

4. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: Misc
Functions of the Department of Statistics, Probability Theory Group (For-
merly: E1071), TU Wien. R package version 1.7-2. https://CRAN.R-project.org/
package=e1071. Accessed 22 Jan 2019

5. Chen, T., He, T., Benesty, M.: xgboost: extreme gradient boosting. R package ver-
sion 0.4-2. https://CRAN.R-project.org/package=xgboost. Accessed 22 Jan 2019

6. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies
for the vehicle routing problem. Oper. Res. 59, 1269–1283 (2011)

7. Bezzi, D.: Algoritmo di ottimizzazione per l’Electric Vehicle Orienteering Problem.
Master degree thesis, University of Milan (2017)

8. Bezzi, D., Ceselli, A., Righini, G.: Dynamic programming for the electric vehicle
orienteering problem with multiple technologies. In: Odysseus 2018, Cagliari, Italy
(2018)

9. Christofides, N., Mingozzi, A., Toth, P.: Exact algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxations. Math. Program.
20, 255–282 (1981). https://doi.org/10.1007/BF01589353

10. Desaulniers, G., Errico, F., Irnich, S., Schneider, M.: Exact algorithms for electric
vehicle-routing problems with time windows. Oper. Res. 64(6), 1388–1405 (2016)

11. Feillet, D., Dejax, P., Gendreau, M., Gueguen, C.: An exact algorithm for the
elementary shortest path problem with resource constraints: application to some
vehicle routing problems. Networks 44, 216–229 (2004)

12. Felipe Ortega, A., Ortuño Sánchez, M.T., Righini, G., Tirado Domı́nguez, G.: A
heuristic approach for the green vehicle routing problem with multiple technologies
and partial recharges. Transp. Res. Part E 71, 111–128 (2014)
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Abstract. The goal of automatic algorithm configuration is to recom-
mend good parameter settings for an algorithm or solver on a per-
instance basis, i.e., for the specific problem instance being solved. Real-
time algorithm configuration is a practically motivated variant of algo-
rithm configuration, in which the problem instances arrive in a sequential
manner and high-quality configurations must be chosen during runtime.
We model the realtime algorithm configuration problem as an extended
version of the recently introduced contextual preselection bandit prob-
lem. Our approach combines a method for selecting configurations from
a pool of candidates with a surrogate configuration generation procedure
based on a genetic crossover procedure. In contrast to existing methods
for realtime algorithm configuration, the approach based on contextual
preselection bandits allows for the incorporation of problem instance fea-
tures as well as parameterizations of algorithms. We test our algorithm
on different realtime algorithm configuration scenarios and find that it
outperforms the state of the art.

Keywords: Realtime algorithm configuration · Contextual
preselection bandit

1 Introduction

It is widely known that no single solver produces optimal performance for all
types of problem instances [11]. Due to the large space of parameterizations avail-
able for most solvers, algorithm designers are forced to tune the parameters of
their approaches to provide reasonable performance, a long and arduous process.
Recently, automatic algorithm configuration has simplified the search for good
parameters by automatically identifying and recommending high-quality param-
eters to algorithm designers and users. Furthermore, these approaches can work
in an instance specific fashion, providing high-quality parameters specific to the
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instances being solved [31] including for instances never before seen or envisioned
by the algorithm designer.

Traditionally, algorithm configuration research has focused on offline, train-
once approaches [2,23,24]. These are based on a static set of instances deemed
to be representative of a specific task for which good parameter settings are
found and after which the parameters are put into practice. Ignoring the fact
that a representative set of instances may not be available for a given problem
at the time of algorithm design, train-once methods suffer from changes or drift
of problem instances. Furthermore, there may be a lack of time for repeated
offline training. Online or realtime approaches, such as the ReACT and ReACTR
systems of [17] and [16], respectively, overcome these issues by choosing a high-
quality configuration of the solver during runtime as new instances arrive.

In this paper, we propose an algorithm called Contextual Preselection with
Plackett-Luce (CPPL) for realtime algorithm configuration. The latter is based
on the contextual preselection bandit problem, a variant of the preference-based
multi-armed bandit (MAB) problem [12] recently introduced in [6]. MAB meth-
ods have proven successful for the closely related problem of algorithm selection,
see e.g. [14,19,22,33,38], but have not yet been applied to algorithm configura-
tion.

The state-of-the-art realtime algorithm configurator ReACTR [16] utilizes
the racing principle in which, for a given instance, multiple parameter configu-
rations are run in parallel on multiple CPU cores to see which is best for a given
instance. ReACTR gathers information about the performance of parameteri-
zations and applies a ranking mechanism called TrueSkill [21] to decide which
choice of parameterizations to select from a pool of options for the next instance.
Furthermore, it uses TrueSkill to decide which parameterizations to replace with
new ones and how to generate new parameterizations, meaning which individuals
to choose as parents for the crossover mechanism included in the generation of
new parameterizations. Our goal in this paper is to replace the ranking, choice
and generation mechanisms of ReACTR by functions of the CPPL approach
while maintaining the framework of the racing principle and parallel execution
of ReACTR. Our contributions are as follows:

1. We connect the online contextual preselection bandit setting to the realtime
algorithm configuration problem.

2. We introduce the CPPL algorithm for solving realtime algorithm configura-
tion tasks.

3. We provide a novel technique for generating new parameterizations using the
surrogate of the CPPL algorithm inspired by the idea of genetic engineering
in [1].

4. We show experimentally that CPPL is competitive with the state-of-the-art
ReACTR algorithm on different algorithm configuration scenarios.

The paper is organized as follows. In the next section, we give an overview of
related work. The online contextual preselection setting and its application to
realtime algorithm configuration are presented in Sect. 3. An experimental study
is then presented in Sect. 4, prior to concluding the paper in Sect. 5.
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2 Related Work

We now provide an overview of the related work in several fields: algorithm con-
figuration, algorithm selection using MABs, and hyperparameter optimization
for machine learning algorithms.

2.1 Algorithm Configuration

Approaches for offline algorithm configuration can be broadly categorized into
non-model-based, model-based and hybrid approaches. Non-model-based tech-
niques including racing algorithms such as F-Race [9] and its successor Iterated
F-Race [10]. In these approaches, parameterizations are run against each other on
subsets of instances and those that are performing poorly are eliminated through
statistical testing. In the gender-based genetic algorithm (GGA) of [2] and its
extension [1] a racing mechanism is also used to run instances in parallel and cut
off poor performing parameterizations before they use too much CPU time (in
a runtime minimization setting). The ParamILS method [24] employs a focused
iterated local search. Sequential Model-based Algorithm Configuration (SMAC)
approach by [23] is a model-based method that generates a response surface
over parameters of the solver to predict the performance if those parameters
were to be used. Finally, [1] can be considered a hybrid approach for config-
uration, utilizing both a genetic algorithm and a learned forest to select new
parameterizations.

Realtime methods include two approaches. The previously mentioned ReACT
algorithm [17] stores a set of parameterizations and runs them in parallel on the
instances to be solved. Parameterizations are removed if they do not “win”
enough of the races with the other parameterizations and are replaced with ran-
dom parameterizations. ReACT’s extension ReACTR [16] enhances ReACT by
incorporating the ranking technique of the ranking system TrueSkill and uses a
crossover mechanism (as in genetic algorithms) to generate new parameteriza-
tions. Both [17] and [16] show that tackling the realtime configuration problem
head-on instead of periodically performing a new offline configuration results in
better performance.

A recent contribution from [7] introduces the concept of dynamic algorithm
configuration, in which the goal is to dynamically configure the parameters of an
algorithm while it is running. The problem is modeled as a contextual Markov
decision process and reinforcement learning is applied. Algorithm configuration
has been examined from a theoretical perspective in several recent works, e.g. [5,
28] resulting in bounds on the quality of configuration procedures.

2.2 Algorithm Selection and Hyperparameter Optimization
with Bandits

The K-armed bandit problem is a sequential decision problem where in each
trial a learner needs to choose/pull one of the arms of a K-armed slot machine
(bandit), with each arm having its own reward distribution. After pulling an
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arm the learner observes its associated reward. The goal of the learner is to
maximize the sum of rewards or, equivalently, minimize the total loss defined as
the expected difference between the sum of rewards associated with the optimal
selection strategy with the best possible reward and the sum of the collected
rewards. The main issue affecting the long-term success of a learner in such
problems is to find a good trade-off between choosing arms that have turned out
to be appealing in the past (exploitation) and trying other, possibly even better
arms, but whose appeal is not precisely known so far (exploration).

The problem of algorithm selection can be represented as a bandit problem
in a straightforward fashion. The arms are the algorithms, and pulling an arm
corresponds to running the associated algorithm on the current problem instance
and observing its runtime. The objective is to minimize the total solution time
over all problem instances.

Bandit approaches have a long history of success for algorithm selection. In
the following, we list some of the works following this approach for different
applications. In [40] the authors model the adaptive time warp control problem
in the single-agent setting as a MAB problem. A MAB framework for managing
and adapting a portfolio of acquisition functions in the context of Bayesian
optimization with Gaussian processes is introduced in [22]. In [33] the authors
model the problem of scheduling of searches with different heuristics as a MAB
problem and use dynamic Thompson sampling (DTS) to solve it. Finally, in [4]
a MAB-based learning technique is used to automatically select among several
levels of propagation during search for adaptive constraint propagation.

Algorithm configuration is also related to hyperparameter optimization, in
which the goal is to find a configuration of hyperparameters that optimize some
evaluation criterion based on a given set of hyperparameters associated with
some supervised learning task and a search space over them [27]. In hyperparam-
eter optimization, the algorithm is generally a machine learning method rather
than an optimization technique. The key difference to algorithm configuration
is that hyperparameter optimization generally ignores algorithm runtimes and
focuses on improving the quality (i.e., the output) of an approach. Nevertheless,
a problem of hyperparameter optimization can be modeled as a bandit problem
in the same way.

A number of MAB approaches have also been applied for hyperparameter
optimization by casting it into a pure exploration nonstochastic infinite-armed
bandit problem. In this way, several well-known bandit algorithms can be lever-
aged to the hyperparameter optimization problem such as successive halving
[27,29], upper confidence bound [39] or Thompson sampling [37].

All the MAB approaches mentioned above use quantitative feedback in the
form of absolute numerical rewards (e.g., runtime of a solver or accuracy of a
learning method). In contrast, we use a preference-based variant of the MAB
problem, in which the feedback is purely qualitative. We merely observe which
algorithm performed best among a subset of algorithms on a given problem
instance. This setting is a generalization of the dueling bandits problem intro-
duced in [41].
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3 Contextual Preselection for Realtime Algorithm
Configuration

In this section, we present details of our approach to realtime algorithm con-
figuration. After a brief introduction to this problem in Sect. 3.1, we recall the
(contextual) preselection problem with winner feedback in Sect. 3.2. In Sect. 3.3,
we then explain how realtime algorithm configuration can be cast as a problem
of that kind.

3.1 Realtime Algorithm Configuration

Formally, offline algorithm configuration can be defined as follows [24]. We are
given a set of problem instances Π ⊆ Π̂ for which we want to find a good
parameter setting λ from a parameter space Λ for an algorithm A. We can
evaluate the runtime or quality of some set of parameters using a performance
metric m : Π × Λ → R. Without loss of generality, the goal is to find some λ using
the instances Π such that

∑
π∈Π̂ m(π, λ) is minimal, i.e., a parameterization λ

that performs well on average (across a set of problem instances).
Notice that in offline algorithm configuration we are provided a large set of

instances up front and only test the quality of the parameter configuration we
find in an offline setting. In contrast, realtime algorithm configuration considers
Π to be a sequence of instances that are solved one after the other. Furthermore,
we assume that the underlying distribution of instances Π̂ is not fixed and may
change over time, meaning that the parameters tuned offline may no longer
be effective. This setting is a realistic one, for example for logistics companies
that must solve routing problems on a daily basis for changing customers or
manufacturing companies that have new sets of orders each day. Furthermore,
as companies grow, shrink or adjust their business model, Π̂ could drastically
change and require updating.

Figure 1 shows the realtime algorithm configuration process for our approach,
and those in the literature. Given a pool of parameterizations λ1 through λn, we
must select a limited number according to our parallel computing resources. We
run the first instance on the parameterizations and, in the runtime setting, see
which one finishes first. The other parameterizations are immediately stopped.
We note that in ReACT and ReACTR no information is gained from these runs,
i.e., the data we receive is censored. The parameterization pool and a model of
how to select the parameterizations is updated and the process is repeated for
the next instances.

In this paper, we make use of a recently introduced variant of the multi-
armed bandit problem, called the preselection bandit problem [6], which is able
to exploit (censored) “winner feedback” as described above, i.e., information
about which parameterization among a finite set of parameterizations solved a
problem first. Moreover, making use of a contextualized extension of preselection
bandits [15], we are able to recommend parameterizations of a solver on a per-
instance basis, i.e., parameterizations that do not only perform well on average
but are specifically tailored to the concrete problem instance at hand.
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Fig. 1. Realtime algorithm configuration using the racing principle.

3.2 The Contextual Preselection Problem with Winner Feedback

The online contextual preselection problem with winner feedback, as introduced
in [15], is a sequential online decision problem, in which, in each time step t ∈
{1, 2, . . .}, a learner is presented a context Xt = (xt,1 . . . xt,n). Each xt,i ∈ R

d

is associated with one of n different arms, which we shall identify by {1, . . . , n} ,
and contains properties of the arm itself as well as the context in which the arm
needs to be chosen. After the context is revealed, the learner selects a subset
St ⊆ [n] = {1, . . . , n} of k < n distinct arms. Then, it obtains as feedback the
top-ranked arm/winner among these arms. In each time step t, the goal of the
learner is to select a subset St of arms that contains the best possible arm for
the current context Xt.

We consider the contextual preselection problem under the (contextualized)
Plackett-Luce (PL) model [30,34], a parametrized probability distribution on
the set of all rankings over a finite set of n choice alternatives. The PL model
is defined by a parameter v = (v1, . . . , vn)� ∈ R

n
+, where each vi represents the

weight or “strength” of the i-th alternative. The probability of a ranking r of
the choice alternatives under the PL model is given by

P(r |v) =
n∏

i=1

vr−1(i)
∑n

j=i vr−1(j)

.

Here, a ranking r is a bijective mapping r : [n] → [n], with r(k) the rank of the
kth alternative and r−1(i) the index of the alternative on position i.

The probability that alternative k gets top-ranked among the alternatives in
a subset S ⊂ [n] under the PL model is

P(rS(k) = 1 |v) =
vk∑
i∈S vi

. (1)

In order to integrate context information xi ∈ R
d about the ith choice alterna-

tive, the constant latent utility vi can be replaced by a log-linear function of the
arm’s context, in a similar way as has been done in [13,36]:

vi = vi(X) = exp
(
θ�xi

)
, i ∈ {1, . . . , n}, (2)
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where we summarize the corresponding feature vectors x1, . . . ,xn in a matrix
X ∈ R

d×n. The PL model with context information is then defined as

P(r | θ,X) =
n∏

i=1

vr−1(i)(X)
vr−1(i)(X) + · · · + vr−1(n)(X)

=
n∏

i=1

exp
(
θ�xr−1(j)

)

∑n
j=i exp

(
θ�xr−1(j)

) .

The probability for an alternative k ∈ S to get the top rank among the alterna-
tives in S is analogous to (1) and in particular, the corresponding log-likelihood
function for an observation (k, S,X) is

L (θ | k, S,X) = θ�xk − log

⎛

⎝
∑

j∈S

exp
(
θ�xj

)
⎞

⎠ . (3)

The gradient and Hessian matrix of the log-likelihood function can be computed
easily and are used for deriving confidence bounds ct,i on the contextualized
utility parameters vi as specified in (2). The confidence bounds can be written
as ct,i = ω ·I(t, d,xt,i), where ω > 0 is some suitable constant and I is a function
depending on the gradient as well as the Hessian of the log-likelihood function
with respect to the observation at time step t. For technical details, we refer to
[15].

Tackling the online contextual preselection problem requires estimating the
unknown parameter vector θ and solving the well-known exploration-exploitation
trade-off. In [15], the former issue is dealt with using the averaged stochastic
gradient descent (SGD) method, and the latter is handled by a variant of the
upper confidence bounds (UCB) algorithm. Again, we refer to [15] for a detailed
description of the CPPL algorithm for the online contextual preselection prob-
lem with winner feedback and explain its adaptation to the realtime algorithm
configuration problem in the next section.

3.3 Realtime Algorithm Configuration as Contextual Preselection

We model the realtime algorithm configuration problem as an online contextual
preselection problem, where each algorithm parameterization is viewed as an
arm, and adapt the CPPL algorithm to solve it. We note here that, because
of the parametric form of the model in (2), the number of arms (parameteriza-
tions) does not need to be finite, as is normally the case in realtime algorithm
configuration.

Our algorithm, called CPPL, is described in Algorithm 1. In the following,
we denote the features of a parameterization λ ∈ Λ resp. a problem instance
π ∈ Π by f(λ) resp. f(π). Note that for the considered problem scenario both
the features of the solvers as well as the problem instances are of high dimension
and reveal high correlations, so that a principal component analysis (PCA) pro-
cedure is conducted to reduce the dimensionality of the features as well as their
correlation. Also note that we perform the PCA only on a small portion of the
instances (20%) and the initial pool of parameterizations, under the assumption
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that in a real-world setting, at least some data will be available in advance of
starting the system. The obtained PCA transformations are then used to trans-
form every new instance and parameterization features during the run of the
algorithm. In the experimental study we analyze different parameter settings for
the PCA to determine whether this reduces the performance of our approach or
not.

The algorithm is initialized with a random parameter vector θ̂0 and a random
set P of n different parameterizations (line 1), which corresponds to the pool of
candidates. The algorithm proceeds in discrete time steps t = 1, 2, . . .. In each
step, first a new problem instance π ∈ Π is observed (line 5) and then a joint
feature map of the instance features f(π) and each of the parameterizations
f(λi), i ∈ {1, . . . , n} is built.

The joint feature map we use is a polynomial of the second degree, which
consists of all polynomial combinations of the features with degree less than or
equal to 2, i.e., it is defined for two vectors x ∈ R

r and y ∈ R
c as:

Φ(x,y) =
(
1, x1, · · · , xr, y1, · · · , yc, x

2
1, · · · , x2

r, y
2
1 , · · · , y2

c , x1y1, x1y2, · · · , xryc

)
.

With this, the estimated skill parameters (see (2)) are computed by using the
current estimate of θ and the joint feature map of the parameterization and
problem features (line 7). Following the optimism in the face of uncertainty
principle, the k most optimistic parameterizations within the pool of candidates
are determined by computing the upper confidence bounds on their estimated
skill parameter for the given problem instance (line 9). Generally, k corresponds
to the number of the available CPU cores in the machine. These k parameteri-
zations are then used (in parallel) to solve the given problem instance resulting
in a winner feedback, i.e., the parameterization among the k used which solved
the problem instance first (line 10). This winner feedback information is then
used in the subsequent step to update the estimate of θ, following a stochastic
gradient descent scheme (line 11). After that, poorly performing parameteriza-
tions are discarded from the pool of candidates (lines 12–13). To this end, a
racing strategy is adopted [32], in which a parameterization is pruned as soon
its upper bound on the estimated skill parameter is below the respective lower
bound of another parameterization. Note that this differs from the preference
model approach based on TrueSkill used in [16]. Finally, the parameterizations
discarded in the last step are replaced by generating new ones according to a
genetic approach as described in the following (line 14).

Due to the nature of the CPPL model, it is not possible to directly gen-
erate parameterizations from the learned model. Nonetheless, we wish to use
the learned model to augment our candidate pool with parameterizations that
will be effective on future instances. Thus, we implement a crossover-based
approach based on the idea of genetic engineering [1]. We generate individ-
uals/parameterizations using a uniform crossover operator on two individuals
ranked as the best by the model. To ensure enough diversification of the search
for good parameterizations, we introduce mutation of single genes as well as
random generation of individuals with a lower probability. All the newly gen-
erated parameterizations are then ranked by the learned model and the best
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Table 1. Comparison of CPPL and ReACTR regarding the three most important
components of the realtime algorithm configuration.

Discarding
parameterizations

Generating
parameterizations

Selecting for Runs

CPPL Racing strategy Crossover based on
model and
randomness,
evaluation by model

Evaluation by the
model

ReACTR Based on TrueSkill Crossover based on
TrueSkill and
randomness

Based on TrueSkill
and random choices

individuals are selected. The parameterizations chosen to be terminated by the
model are then replaced by the best parameterizations generated. Differences in
approaches of solving the three main components of realtime algorithm configu-
ration between CPPL and ReACTR are summarized in Table 1.

Algorithm 1. CPPL(n, k,Π, α, γ, ω, f)

1: Initialize n random parameterizations P = {λ1, . . . , λn} ⊂ Λ
2: Initialize θ̂0 randomly
3: θ̄0 = θ̂0
4: for t = 1, 2, . . . do
5: Observe problem instance π ∈ Π
6: for j = 1, . . . , n do
7: v̂t,j = exp

(
x�

t,j θ̄t

)
, where xt,j = Φ(f(λj), f(π))

8: end for
9: Choose St as:

argmax
St⊆[n], |St|=k

∑

i∈St

(
v̂t,i + ct,i

)

10: Run the parameterizations of St to solve π and observe the parameterization
wt ∈ St terminating first

11: Update θ̄t by θ̄t = (t − 1)
θ̄t−1

t
+ θ̂t

t
with θ̂t = θ̂t−1 + γt−α∇L

(
θ̂t−1|wt, St,Xt

)

12: Let: K ← {λi ∈ P | ∃λj �= λi s.t. v̂t,j − ct,j ≥ v̂t,i + ct,i}
13: Λ ← Λ \ K
14: Generate |Λ| − |K| new parameterizations using the genetic approach as

described.
15: end for

4 Computational Results

In this section, we study the following research questions:



Pool-Based Realtime Algorithm Configuration 225

– RQ1: What effect does the PCA dimension have on the performance of
CPPL?

– RQ2: What effect does the parameter ω have on the performance of CPPL?
– RQ3: How good is the choice provided by CPPL?
– RQ4: How does CPPL compare to ReACTR?

4.1 Datasets and Solvers

We first define the datasets and solvers used in our experiments. We consider
three solvers: CPLEX [26], CaDiCaL [8] and Glucose [3]. CPLEX is a mixed-
integer programming solver, and CaDiCaL and Glucose are satisfiability (SAT)
solvers. The type of parameters of each solver are given in Table 2. We excluded
categorical parameters from the configuration by CPPL, since a PCA is employed
as part of this method, which is not designed for handling non-numerical vari-
ables. For ReACTR, which is not restricted in this regard, we do include all
parameters in the configuration.

We choose problem instances to emulate industrial problems with drift. For
CPLEX, we use the frequency assignment problem generated by a slightly altered
approach from [35]. This dataset contains 1,000 problem instances which are gen-
erated by setting the number of cells to 5 and the variance of channel require-
ments per cell to 1.5. The necessary distance between channels is drawn from a
normal distribution, and the mean requirement of channels per cell goes from 8
to 18 in 10 stages. To introduce drift into the data, we change the generation
parameters after every 10 instances.

For the SAT solvers, we use two datasets. The first dataset contains 1,000
instances generated with the modularity-based random SAT instance genera-
tor [20] by setting it to make instances with 10,000 variables, 60,000 clauses,
4 literals per clause, 600 communities and we vary the modularity factor from
0.4 to 0.35 in 10 stages. The second set of 1,000 instances is generated with the
power-law random SAT generator [18]. We make instances with 10,000 variables,
93,000 clauses, 4 literals per clause, 18 as the power-law exponent of variables
and the power-law exponent of clauses changing as described before from 12.5
to 2.5. The instance features used are based on [25] for MIP and SAT instances.
We choose 32 features for MIP and 54 features for SAT instances.

Table 2. Types of parameters being configured in each solver.

Solver Real Categorical Binary

CPLEX 35 54 6

CaDiCaL 64 29 63

Glucose 15 10 92
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4.2 RQ1: Choosing the PCA Dimensions

The goal of this experiment is to determine whether PCA is suitable for reducing
the dimensionality of the instance and parameter feature input and determine
which dimension to use for our problem settings. To this end, we run different
experiments with different values for both parameters on 200 modularity-based
SAT instances using the glucose solver. The results are given in Table 3, where
it can be seen that a value of 3 for the PCA dimension of instance features and
5 for the PCA dimension of algorithm features lead to the best result. The key
takeaway from this experiment is that changing the dimensionality of the PCA
does not significantly harm CPPL’s performance. We thus use these values in
further experiments.

Table 3. Overall runtime of glucose in seconds for solving 200 modularity-based SAT
instances using different values for the number of PCA dimension of instance features
and algorithm features. The results are averaged over 3 repetitions.

# dim. of parameters # dim. of features

3 5 8 10 12

3 1863.17 1861.63 1860.85 1862.08 1865.77

5 1852.27 1864.28 1866.78 1866.87 1865.32

8 1869.94 1870.34 1866.96 1865.35 1865.19

10 1869.14 1865.32 1862.67 1867.56 1866.22

12 1858.52 1863.92 1861.75 1866.75 1866.13

4.3 RQ2: Choosing ω

We again run similar experiments for glucose to determine good values of the
parameter ω, which helps determine the confidence intervals ct,i. We note here
that a smaller value of ω tightens the confidence bounds of contextualized skill
parameters, which in turn leads to more parameterizations being discarded, and
vice versa for larger values of ω (see line 12 in Algorithm 1). Figure 2 shows the
results of several values of ω. Notice that low and high values of ω only have a
very slight effect on the performance. However, with ω = 0.001, we get the best
cumulative runtime.

Note, that we conducted similar experiments as in Sect. 4.2 for the parameters
α and γ where we found the best performance for the values of 0.2 for α and 1
for γ.

4.4 RQ3: Evaluation of the CPPL Choice

We now compare the performance of the CPPL choice with the choice of
ReACTR. For this we use the glucose solver on 1000 modular-based SAT
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Fig. 2. Average runtime on an instance with CPPL using glucose on 200 modularity-
based SAT instances for different values of ω with time in seconds on the y- and ω
value on the x-axis.

instances. To have a meaningful comparison, the initial pool of parameteriza-
tions and the choice of parameterizations to run on the first instance is fixed
to be the same for both approaches. The results given in Fig. 3 show that the
CPPL ranking mechanism outperforms the ranking mechanism of ReACTR. We
note that even though this result looks somewhat small, without generating new
parameters we are dealing with only a randomly generated parameterization
pool over the entire run of the algorithm.

4.5 RQ4: Direct Comparison of Performance of CPPL and
ReACTR

We now compare the implementations of ReACTR with Glucose, CaDiCaL and
CPLEX1 For each experiment we use 16 Intel Xeon E5-2670 cores running at
2.6 GHz. In all results figures, we display a moving average of the runtimes of the
parameterized solvers on the instances. Our results on three different benchmarks
are shown in Fig. 4. The experiments with CaDiCaL and Glucose were executed
three times and the runtime on each instance was averaged before plotting the
comparison. The experiment with CPLEX could only be conducted once due to
constrained time.

The computational time needed for ranking the parameterizations, choos-
ing parameterizations that are to be run on the next instance and replacing
parameterizations deemed to have bad performance is not included. Although
we assume a realtime scenario, the practical applications we have in mind con-
cede enough time between the arrival of instances for adjusting the pool and
performing bookkeeping. Although CPPL is significantly more computationally
1 A direct comparison of CPPL and ReACTR is not provided on the Glucose solver

with the power-law SAT instance set. Even the first problem instance of this set
could not be solved by Glucose within 24 h.
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Fig. 3. Rolling average time of CPPL (orange) and ReACTR (blue) both without gen-
erating new parameterizations with time in seconds on the y- and number of instances
on the x-axis. (Color figure online)

intensive than ReACTR, the time consumed by CPPL for the mentioned oper-
ations between instances, for example with CaDiCaL on the power-law SAT
instance set, is on average only 0.4 s.

With CaDiCaL (Fig. 4a), CPPL shows considerably better performance than
ReACTR on the modular-based SAT instance set. CaDiCaL shows advantageous
properties for configuration purposes. The increase in complexity of the prob-
lem instances can be overcome by both approaches and the average solution
time decreases with both. However, CPPL exploits CaDiCaL’s properties fur-
ther than ReACTR, which amounts in an advantage of approximately 10% of
the total solution time compared with ReACTR. Regarding the comparison of
the approaches in Fig. 4b, the results show that on the more difficult problem
instance set, CPPL achieves better configuration of the solver. The solution
time per instance of ReACTR varies in terms of the periodical changes in com-
plexity of the instances. CPPL on the other hand seems to reliably find appro-
priate parameter configurations and the solution stays on a relatively stable
level. The advantage regarding the total solution time of the instance set again
amounts to approximately 10%. Figure 4c shows that the increase in difficulty of
the instances influences the solution time for both approaches. However, CPPL
solves the instances of the dataset about 160 s faster than ReACTR. Considering
the average solution time of approximately 10 s per instance for ReACTR, this
is an advantage of nearly two percent of the total solution time of the instance
set. In Fig. 4d the CPPL approach with CPLEX does not outperform ReACTR.
Despite an initial advantage on the instances the performance of the CPPL app-
roach deteriorates. ReACTR outperforms CPPL by around one percent of the
total runtime. We note that even if the experiments searching for good parameter
values for CPPL showed only very small difference in performance, still choosing
all values with best cumulative runtime resulted in a mostly good performance
of CPPL.
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(a) Solver: CaDiCaL; Instances: SAT mod-
ular dataset.

(b) Solver: CaDiCaL; Instances: SAT
power-law instance SAT set.

(c) Solver: Glucose; Instances: SAT modu-
lar dataset.

(d) Solver: CPLEX; Instances: MIP Fre-
quency Assignment Problem.

Fig. 4. Comparison of CPPL (orange) and ReACTR (dashed blue) using several dif-
ferent solvers and instance sets with time in seconds on the y- and number of instances
on the x-axis. (Color figure online)

5 Conclusion and Future Work

In this work, we considered the problem of realtime algorithm configuration and
adapted the contextual preselection bandit method with the assumption of a
Plackett-Luce ranking probability distribution to solve it, resulting in the CPPL
realtime algorithm configurator. The approach allows for incorporating features
of problem instances and parameterizations of algorithms and is competitive
with the state of the art. Our first experimental results are promising.

In future work, we plan to further elaborate on different components of CPPL
in order to fully exploit its potential. The feature engineering part, that is, the
joint feature map Φ(x,y) together with an embedding in a lower-dimensional
space, appears to be especially critical in this regard. So far, we used a stan-
dard quadratic kernel for Φ and a simple PCA for dimensionality reduction, but
there is certainly scope for improvement. Another direction concerns the idea of
detecting and reacting to drift in a more active way. So far, an adaptation to
changes in the data distribution is only accomplished implicitly through learning
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in an incremental manner. In the case of abrupt changes, this adaptation is cer-
tainly not fast enough. Last but not least, we intend to have a deeper look at
the different computational steps of the CPPL algorithm in order to reduce the
algorithm’s runtime.
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13. Cheng, W., Hüllermeier, E., Dembczynski, K.: Label ranking methods based on
the Plackett-Luce model. In: ICML, pp. 215–222 (2010)

14. Cicirello, V.A., Smith, S.F.: The max k-armed bandit: a new model of exploration
applied to search heuristic selection. In: AAAI (2005)
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Abstract. The Unicost Set Covering Problem (USCP) is a well-known
NP-hard combinatorial optimization problem. This paper presents a
memetic algorithm that combines and adapts the Hybrid Evolution-
ary Algorithm in Duet (HEAD) and the Row Weighting Local Search
(RWLS) to solve the USCP. The former is a memetic approach with
a population of only two individuals which was originally developed to
tackle the graph coloring problem. The latter is a heuristic algorithm
designed to solve the USCP by using a smart weighting scheme that pre-
vents early convergence and guides the algorithm toward interesting sets.
RWLS has been shown to be one of the most effective algorithm for the
USCP. In the proposed approach, RWLS is modified to be efficiently used
as the local search of HEAD (for exploitation purpose) on the one hand,
and also to be used as the crossover (for exploration purpose) on the other
hand. The HEAD framework is also adapted to take advantage of the
information provided by the weighting scheme of RWLS. The proposed
memetic algorithm is compared to RWLS on 98 widely-used benchmark
instances (87 from the OR-Library and 11 derived from Steiner triple
systems). The experimental study reports competitive results and the
proposed algorithm improves the best known solutions for 8 instances.

Keywords: Metaheuristics · Memetic algorithms · Unicost set
covering problem

1 Introduction

The Set Covering Problem (SCP) is a fundamental and well-known combinatorial
optimization problem related to a wide range of real-world applications such as
crew scheduling, facility location, city logistic problems, and optimal camera
placement [1,6,9,11,19]. It is one of Karp’s well-known NP-complete problems
[18] and have been proved NP-hard in the strong sense, as well as the unicost
version of the problem [15]. The SCP can be defined as follows: given a universe
set U = {u1, . . . , um} and a collection S = {s1, . . . , sn} of sets whose union
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equals the universe U , and where each set in S is associated with a cost, the goal
is to find a subset of S that covers all elements in U with minimal total cost.

This paper focuses on the Unicost Set Covering Problem (USCP), which is
a special case of the SCP where all sets in S have identical cost, and which
is generally considered to be harder to solve [22]. A USCP instance is usually
defined as a matrix A = (ai,j) of size m × n such that:

∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}, ai,j =
{

1 if ui ∈ sj
0 otherwise (1)

A solution is defined by a vector x = (xj) of size n such that:

∀j ∈ {1, . . . , n}, xj =
{

1 if sj is part of the solution
0 otherwise (2)

A solution is valid if and only if:

∀i ∈ {1, . . . ,m} ,
∑

j∈{1,...,n}
aijxj ≥ 1 (3)

And the objective function to minimize is:

f(x) =
∑

j∈{1,...,n}
xj (4)

The memetic approach proposed in this article is inspired, on the one hand,
by the Hybrid Evolutionary Algorithm in Duet (HEAD) [21] and, on the other
hand, by the Row Weighting Local Search (RWLS) algorithm [14].

HEAD is a memetic algorithm that combines the TabuCol algorithm [17]
with the Greedy Partition Crossover (GPX, see [13]) to solve the graph coloring
problem. As a main feature, HEAD has a population of only two individuals,
and experimental results have shown that HEAD is competitive, robust, and fast
in comparison with up-to-date state-of-the-art algorithms.

HEAD has also successfully inspired other two-individual evolutionary algo-
rithms, such as in [20] for the sum coloring problem, or to solve the flexible job
shop scheduling problem [10], resulting in the improvement of the best known
solution for 47 out of 313 benchmark instances.

RWLS is a local search designed to solve the USCP. It explores the search
space by using a smart weighting scheme that allows to determine and update the
usefulness of the sets of S, i.e. which sets of the solution are the most useless and
which available sets would be the most useful. This approach has been assessed
on 87 instances from the OR-Library [4] and 4 instances derived from Steiner
triple systems, and it has successfully improved 14 best known solutions. To the
best of our knowledge, and according to Kritter et al. [19], RWLS is one of the
most effective algorithm for solving the USCP.

The main contribution of this paper is the combination and the clever adap-
tation of HEAD and RWLS in order to solve the USCP. For being used as HEAD
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local search (for exploitation), RWLS has been modified so that its input can
be any solution and any set of weights coming from the last generation in the
evolutionary loop (instead of a greedy solution with weights initialized to 1). An
adaptation strategy has also been introduced to dynamically adjust the num-
ber of search iterations of RWLS for each generation of the memetic approach.
Regarding the design of HEAD, the concept of population has been adapted:
it still handles two individuals, but it also handles the two corresponding sets
of weights resulting from RWLS local search. Two specific crossover operators
have thus been designed to generate new starting individuals for the next gen-
eration, and to take advantage of the additional information provided by the
weighting scheme of RWLS. It is worth noting that RWLS is also used in the
crossover (for exploration) to quickly provide new poor solutions by solving a
subproblem generated from both current solutions of the population. All these
components contribute to the effectiveness of the proposed memetic algorithm,
which is assessed on 98 USCP benchmark instances widely-used in the literature.

Sections 2 and 3 briefly explain the HEAD and RWLS algorithms respectively,
highlighting the key points needed for a proper understanding of the memetic
approach proposed in Sect. 4. Section 5 presents the benchmark testbed and the
experimental setting, and it reports the results of the proposed algorithm in com-
parison with RWLS. Section 6 concludes the paper and gives some perspectives
for future work.

2 Hybrid Evolutionary Algorithm in Duet (HEAD)

HEAD is a memetic approach originally designed to address the graph vertex
coloring problem (GCP). The main idea of HEAD is that simplicity is probably
the key to efficiency. To achieve such a goal of simplicity, the population is
reduced to only two individuals. With such a simple population, there is no more
selection operator: at each generation, both parents are the two individuals in the
population. Nor is there any replacement strategy: at each generation, the two
individuals are replaced by the two new children. It can be noticed that with such
a small population, there is a risk of premature convergence. Actually, with only
two individuals, crossover brings less and less diversity when the two individuals
become similar. When the individuals become identical, the algorithm is trapped
in a local optimum.

In order to limit the risk of such premature convergence, HEAD introduces
the concept of elitist individual. It is the best solution found within a cycle of
n generations. This solution is reintroduced in place of one of the 2 individuals
at the end of each cycle. This mechanism makes it possible to obtain a very
favorable behavior. It is of course interesting in terms of intensity, because it
allows to keep a solution with a good fitness value. But it is also interesting
in terms of diversity, because the population evolves without the elite solution
which is then different from the population.

Algorithm 1 describes the main steps of HEAD, which was originally devel-
oped for the GCP. Since then, it has been adapted to work on the scheduling
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problem [10] with very interesting results: it can thus be expected that HEAD
is also well suited to tackle other problems.

Algorithm 1: Pseudo-code of HEAD for the GCP
Input: k, the number of colors; IterLS , the number of Local Search iterations;

Itercycle = 10, the number of generations into one cycle.
Output: the best k-coloring found: best

1 p1, p2, elite1, elite2, best ← init() /* initialize with random k-colorings */

2 generation, cycle ← 0
3 while nbConflicts(best) > 0 and p1 �= p2 do
4 c1 ← Crossover(p1, p2)
5 c2 ← Crossover(p2, p1)
6 p1 ← LocalSearch(c1,IterLS)
7 p2 ← LocalSearch(c2,IterLS)
8 elite1 ← saveBest(p1, p2, elite1) /* best k-coloring of the current

cycle */

9 best ← saveBest(elite1, best)
10 if generation%Itercycle = 0 then
11 p1 ← elite2 /* best k-coloring of the previous cycle */

12 elite2 ← elite1
13 elite1 ← init() /* reset elite1 with a random solution */

14 cycle + +

15 generation + +

One can notice that the crossover is applied twice on the same parents at the
lines 4 and 5. This implies that the crossover must be stochastic.

3 Row Weighting Local Search (RWLS)

RWLS is a heuristic algorithm designed by Gao et al. [14] to solve the USCP. It
gathers the three following components together in a local search framework: a
weighting scheme which updates the weights of uncovered elements to prevent
convergence to local optima, a tabu strategy to avoid possible cycles during the
search, and a timestamp method to break ties when prioritizing sets is needed.
RWLS main feature is the weighting scheme, which allows to identify hard-to-
cover elements of U and helps to rank the sets of S according to their usefulness
for covering U . It is implemented by using 2 concepts: the weight for elements of
U and the score for sets of S. The weight of an element represents the difficulty
to cover this element. It is initialized to 1 and increased by 1 for each iteration
of the algorithm with the element left uncovered. The score of a set represents
its utility for covering hard-to-cover points in the solution. If the set is part of
the solution, its score is the opposite of the sum of the weights of the elements
it is the only one to cover in the solution. If it is not part of the solution, its
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score is the sum of the weights of the elements it would be the only one to cover
if added to the solution. This way, at any time of the algorithm, the most useful
sets among those available have the highest scores, and the most useful sets
among those already selected have the lowest scores. As shown in Algorithm 2,
RWLS starts from a greedy solution and then uses these information to improve
the current solution by alternately removing and adding sets with the highest
scores (i.e. the most useless ones when removing sets of the solution, and the
most useful ones when adding new sets in the solution).

Algorithm 2: Pseudo-code of RWLS
input : step limit
output: The best solution encountered

1 solution ← Greedy()

2 weights ← [1, ..., 1]
3 current step ← 0

4 while current step ≤ step limit do
5 while IsValid(solution) do
6 Update best solution
7 s ← set with the greatest score
8 Remove(solution, s)

9 s ← set in the solution, with the greatest score, not tabu and the oldest if
there is a tie

10 Remove(solution, s)
11 e ← random uncovered element
12 s ← set covering e, with the greatest score, that can be added to the

solution and the oldest if there is a tie
13 Add(solution, s)
14 Make s tabu
15 Increase weights of uncovered elements
16 current step ← current step + 1

4 Memetic Algorithm for Set Covering (MASC)

4.1 Algorithm Overview

As in HEAD, the population of the memetic algorithm is composed of two indi-
viduals: during a generation, both individuals are processed by parallel RWLS
local searches, and a crossover is then applied to get two new individuals (see
Fig. 1). However, the proposed algorithm takes into account the resulting RWLS
weights to prepare the next generation. It means that the two weight vectors
can be considered as a second population handled by HEAD: they are updated
during RWLS local searches, and a specific crossover is then applied to get new
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weight vectors as input for the next generation (see Fig. 1). Obviously, before
starting the generation loop, the solution population is greedily initialized and
all weights are set to 1 (see Algorithm 3).

Fig. 1. MASC algorithm main scheme

4.2 Local Search

MASC uses a slightly modified version of RWLS. In the original RWLS algo-
rithm, the input data are the problem instance and the stopping criterion (which
is either a fixed maximum number of steps, or a fixed run time). Then an initial
solution is greedily constructed and the element weights are initialized to 1. At
the end of the optimization loop, the output is the best found solution. In the
proposed modified version, the initial solution and the element weights are now
also input parameters. Moreover, output data consist here of the best found solu-
tion, the element weights when this solution was encountered, and the number
of steps needed to reach this solution. These slight modifications allow RWLS to
be used as the local search of HEAD: this way, it can start the next generation
with information coming from the previous one (i.e. solution and weights).

4.3 Parameter Self-adaptation Strategy

As mentioned above, the number of steps needed to get the best found solution
is now part of the output information of RWLS. This allows to define a self-
adaptation strategy for RWLS stopping criterion (i.e. the step limit). As observed
in Fig. 1, this limit becomes dynamic and it evolves to better fit RWLS need for
the current instance, trying to be enough to improve the solution but without
loosing time stagnating. The initial limit is the sum of the number of sets and
the number of elements of the instance. Then this limit is updated depending
on the number of steps at which RWLS found the best solution in the last 10
generations. The exact way the maximum number of steps changes is detailed
in Algorithm 3.
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Algorithm 3: Pseudo-code of the proposed MASC
input : cumulative step limit
output: The best solution encountered

1 base steps ← number of sets + number of rows of the instance
2 step limit ← base steps
3 dynamic steps ← [base steps, ..., base steps]
4 (solution1, solution2) ← GreedySolve()

5 (weights1, weights2) ← [1, ..., 1]
6 cumulative steps ← 0

7 while cumulative steps ≤ cumulative step limit do
8 (solution1, weights1, steps1) ← RWLS(solution1, weights1, step limit)
9 (solution2, weights2, steps2) ← RWLS(solution2, weights2, step limit)

10 cumulative steps ← cumulative steps + 2 × step limit

11 if steps1 = 0 or steps2 = 0 then
12 (solution1, solution2) ← RandomSolve()

13 step limit ← 2 × step limit

14 else
15 if solution1 = solution2 then
16 (solution1, solution2) ← RandomSolve()

17 PushBack(dynamic steps, steps1 + steps2)
18 PopFront(dynamic steps)
19 step limit ← base steps + Average(dynamic steps)

20 solutiontmp ← solution1
21 solution1 ← SolutionCrossover(solution1, solution2)
22 solution2 ← SolutionCrossover(solution2, solutiontmp)

23 weightstmp ← weights1
24 weights1 ← WeightCrossover(weights1, weights2)
25 weights2 ← WeightCrossover(weights2, weightstmp)

4.4 Crossover Operators

Solution Crossover. The crossover applied to the solutions consists of solving a
subproblem of the original instance: this approach is motivated by its successful
application to solve the optimal camera placement problem when stated as a
USCP [7]. More precisely, not all the sets of S are considered, but only the sets
selected by the local search in the two current solutions. This subproblem is
then solved by RWLS, which starts with a greedily generated solution and with
weights set to 1, and whose step limit is set to the sum of the number of sets
and the number of elements in the original instance. The greedy algorithm used
here to generate the initial solution iteratively takes the most interesting set and
adds it to the solution until it is valid.

Since the crossover is applied twice, exploration would be favoured if RWLS
could start with two different initial solutions. For this reason, when ties occurs
for selecting the next set during the greedy algorithm, they are solved differently
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during the first and the second crossover. For the first one, any tie is solved by
selecting the first set encountered in the data structure, while in the second one,
any tie is solved by selecting the last set encountered.

Weight Crossover. The crossover applied to the weight vectors is based on
the following principle: each resulting weight is the maximum weight among the
two corresponding weights in the two parent vectors. Given that the weight of
an element represents the difficulty to cover this element, this operator gathers
together the elements identified as difficult to cover by the two previous RWLS
runs. It is also worth noting that this crossover results in the same input weight
vector for both RWLS runs of the next generation.

4.5 Premature Convergence Detection

The exploitation part of the algorithm is done by the two parallel local searches
while the exploration part is done by the two crossover operators that worsen the
solutions and merge the weight information. However, if the solution crossover
does not provides a new child solution, then RWLS could fail to improve the
solution during the next generation. If it happens, both the best found solution
and the weight vector will be left unchanged, inducing a stagnation. A similar
problem also arises if the crossover operators do not succeed in escaping an area
of the search space that always leads RWLS to the same solution. In addition
to that, RWLS can also fail to improve a solution because it would need more
iterations (in spite of the self-adaptation strategy described above).

To prevent these problems, as detailed in Algorithm 3, MASC contains stag-
nation avoiding conditions that replace the solutions with new random ones if
RWLS failed to improve a solution or if both solutions are identical. Moreover,
RWLS step limit is doubled as soon as a solution is not improved by RWLS.

This strategy replaces elitism of the original HEAD algorithm to avoid pre-
mature convergence.

5 Experimental Study

To show the effectiveness of MASC, it has been evaluated on widely-used bench-
mark testbeds from the literature, and then compared to RWLS.

5.1 Problem Instances

A total of 98 problem instances were used (87 from the OR-Library [4] and 11
derived from Steiner Triple Systems [12]), including the 91 instances used in
[14] to assess RWLS. The main characteristics of these problems can be found
in Tables 2, 3 and 4: instance name, number of rows (i.e. elements), number of
columns (i.e. sets) and the best known solutions (BKS).
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OR-Library Instances. Firstly, 70 of them are randomly generated problems:
instance sets 4 to 6 are from [2], A to E from [5] and NRE to NRH from [3]. For
some of these instances, the optima are known in a non-unicost context but not
when converted to USCP instances (by simply ignoring the cost information).
Instances from set E are unicost but quite trivial to solve.

Secondly, 10 of them are combinatorial problem instances from [16]: 6 CYC
instances (where the number of edges required to hit every 4-cycle in a hypercube
has to be minimized) and 4 CLR instances (which require to minimize the number
of 4-tuples such that at least one of them is monochromatic whatever the 2-
coloring of a given set).

Thirdly, 7 of them are very large-scale instances arising from crew-scheduling
for the Italian railway company [8]. These instances are almost-unicost, each
column covers at most 12 rows and has a cost of either 1 or 2. These are the
only reducible instances of the benchmark testbed: Table 1 details the number
of rows and columns removed by the reduction procedures from Sect. 5.2.

Steiner Triple Systems (STS) Instances. The 11 STS problem instances from
[12] have a regular structure with each row being covered by exactly 3 columns.
Only 4 of them (STS243, STS405, STS729 and STS1215) were used in [14] to
demonstrate the effectiveness of RWLS.

5.2 Preprocessing

The two following instance reduction procedures (identified by Beasley [5]) have
been used to reduce the 7 large-scale RAIL instances. In the following, rows and
columns denotes the rows and columns of the zero-one matrix A defined in Eq. 1,
where the rows are the elements of U , and the columns are the sets of S.

Column Domination. If a column is a subset of another column, this column
is said to be dominated by the other: since the problem is unicost, dominated
columns can be removed from the instance.

Column Inclusion. If a column is the only one covering a row, it is mandatory
to include this column in the solution for it to be valid. Such a column can thus
be included by default, which makes the row covered, and then allows to remove
the column and the row from the instance.

RWLS requires that there is no row covered by only one column, and col-
umn domination can slow down the optimization process. However, it has been
observed that removing dominated columns can lead to rows covered by only
one column, and that removing rows covered by included columns can lead to
dominated columns. Therefore, both reduction procedures have been alterna-
tively applied, starting with the column domination until it is no longer possible
to reduce the instance (results are reported in Table 1).
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Table 1. Results of the reduction procedures presented in Sect. 5.2. Dominated
columns are removed since other columns cover the same rows. Included columns and
their corresponding covered rows are also removed, but these columns are still taken
into account in the fitness as they are necessarily part of the solution.

Instance Rows Columns Included columns Covered rows Dominated columns

RAIL507 507 63 009 8 20 37 842

RAIL516 516 47 311 27 62 8 990

RAIL582 582 55 515 7 17 28 311

RAIL2536 2 536 1 081 841 5 32 290 967

RAIL2586 2 586 920 683 50 155 496 329

RAIL4284 4 284 1 092 610 17 76 436 693

RAIL4872 4 872 968 672 86 321 499 406

5.3 Experimental Setting and Results

MASC has been implemented in C++17 and uses OpenMP to parallelize the 2
concurrent RWLS executions in the algorithm. All experiments were run on the
high-performance computing cluster of the University of Strasbourg1 (which is
a heterogeneous computing system).

Tables 2 and 3 present the results of RWLS and MASC on the random USCP
instances, and the combinatorial and STS instances, respectively. These tables
report the best found solution value, the number of runs finding this best, and
the average time over these “successful” runs. Results in boldface indicate that
the best known solution (BKS) was reached, and starred results indicate an
improvement of the BKS.

RWLS results are taken from [14]. The same experimental setting has thus
been used to ensure a fair comparison between RWLS and MASC: 10 runs with
different random seeds, a stopping criterion of 3×107 steps for the random USCP
instances, and 1 × 108 steps allowed for the combinatorial and STS instances.

Regarding these 91 problem instances, MASC gets the same best value as
RWLS on 76 instances (including 72 BKS) with similar frequency. The proposed
algorithm also improves the best know solution for 8 instances (the best solution
value of CYC10 in particular, which is improved from 1798 to 1792 and reached
with a good frequency). It is worth noting that RWLS has been run only on
4 of the STS instances [14], but the whole set of 11 STS instances has been
considered here: it allows to assess the effectiveness of MASC on the one hand
(it has reached all BKS), and to provide the first BKS on instance STS2187 on
the other hand.

In [14], the 7 RAIL instances were solved with RWLS-R, a modified version
of RWLS that uses Lagrangian relaxation and its dual information to reduce
the number of columns. The authors benchmarked RWLS-R with a time limit
depending on the instances: 100 s for instances RAIL507, RAIL516 and RAIL586,

1 https://services-numeriques.unistra.fr/les-services-aux-usagers/hpc.html (french).

https://services-numeriques.unistra.fr/les-services-aux-usagers/hpc.html
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Table 2. Best solutions found by RWLS and MASC on the random USCP instances

Inst. Rows Columns BKS RWLS MASC

Best #Best Time(s) Best #Best Time(s)

4.1 200 1 000 38 38 10 0.02 38 10 0.26

4.2 200 1 000 37 37 10 0.01 37 10 0.14

4.3 200 1 000 38 38 10 0.01 38 10 0.16

4.4 200 1 000 38 38 10 0.17 38 10 1.43

4.5 200 1 000 38 38 10 0.02 38 10 0.37

4.6 200 1 000 37 37 10 0.13 38 10 0.85

4.7 200 1 000 38 38 10 0.07 38 10 0.34

4.8 200 1 000 37 37 10 0.08 37 10 0.72

4.9 200 1 000 38 38 10 0.02 38 10 0.28

4.10 200 1 000 38 38 10 0.15 38 10 0.85

5.1 200 2 000 34 34 10 0.40 34 10 1.22

5.2 200 2 000 34 34 10 0.10 34 10 0.50

5.3 200 2 000 34 34 10 0.04 34 10 0.28

5.4 200 2 000 34 34 10 0.07 34 10 0.30

5.5 200 2 000 34 34 10 0.06 34 10 0.26

5.6 200 2 000 34 34 10 0.09 34 10 0.39

5.7 200 2 000 34 34 10 0.04 34 10 0.17

5.8 200 2 000 34 34 10 0.17 34 10 0.37

5.9 200 2 000 35 35 10 0.03 35 10 0.28

5.10 200 2 000 34 34 10 0.16 34 10 0.43

6.1 200 1 000 21 21 10 0.02 21 10 0.14

6.2 200 1 000 20 20 10 0.17 20 10 0.48

6.3 200 1 000 21 21 10 0.02 21 10 0.16

6.4 200 1 000 20 20 10 0.48 20 10 1.16

6.5 200 1 000 21 21 10 0.03 21 10 0.15

A.1 300 3 000 38 38 10 320.27 38 10 17.53

A.2 300 3 000 38 38 10 3.46 38 10 1.81

A.3 300 3 000 38 38 10 181.40 38 10 21.71

A.4 300 3 000 37 37 10 6.04 37 10 4.89

A.5 300 3 000 38 38 10 0.42 38 10 0.69

B.1 300 3 000 22 22 10 0.35 22 10 0.43

B.2 300 3 000 22 22 10 0.31 22 10 0.48

B.3 300 3 000 22 22 10 0.68 22 10 0.79

B.4 300 3 000 22 22 10 1.07 22 10 0.92

B.5 300 3 000 22 22 10 0.68 22 10 0.68

(continued)
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Table 2. (continued)

Inst. Rows Columns BKS RWLS MASC

Best #Best Time(s) Best #Best Time(s)

C.1 400 4 000 40 43 10 0.81 43 10 1.00

C.2 400 4 000 40 43 10 1.14 43 10 1.46

C.3 400 4 000 40 43 10 0.73 43 10 2.19

C.4 400 4 000 40 43 10 0.82 43 10 1.47

C.5 400 4 000 43 43 10 4.25 43 10 3.62

D.1 400 4 000 24 24 10 9.73 24 10 5.22

D.2 400 4 000 24 24 10 285.28 24 10 42.44

D.3 400 4 000 24 24 10 364.87 24 10 56.97

D.4 400 4 000 24 24 10 270.87 24 10 33.40

D.5 400 4 000 24 24 10 346.74 24 10 67.62

E.1 50 500 5 5 10 0.00 5 10 0.05

E.2 50 500 5 5 10 0.00 5 10 0.07

E.3 50 500 5 5 10 0.00 5 10 0.05

E.4 50 500 5 5 10 0.00 5 10 0.04

E.5 50 500 5 5 10 0.00 5 10 0.04

NRE.1 500 5 000 16 16 2 3 441.29 16 3 424.55

NRE.2 500 5 000 16 16 2 6 437.21 16 2 256.20

NRE.3 500 5 000 16 16 1 2 935.55 16 3 351.32

NRE.4 500 5 000 16 16 5 2 925.08 16 3 906.27

NRE.5 500 5 000 16 16 2 3 576.99 16 2 693.12

NRF.1 500 5 000 10 10 10 35.09 10 10 3.69

NRF.2 500 5 000 10 10 10 84.45 10 10 4.50

NRF.3 500 5 000 10 10 10 71.61 10 10 3.64

NRF.4 500 5 000 10 10 10 36.48 10 10 5.87

NRF.5 500 5 000 10 10 10 47.25 10 10 6.42

NRG.1 1 000 10 000 61 61 10 74.27 60* 5 191.34

NRG.2 1 000 10 000 61 61 10 124.62 60* 4 166.16

NRG.3 1 000 10 000 61 61 10 104.36 60* 1 143.49

NRG.4 1 000 10 000 61 61 10 139.69 60* 1 231.59

NRG.5 1 000 10 000 61 61 10 176.31 60* 1 109.90

NRH.1 1 000 10 000 34 34 10 280.76 34 10 268.20

NRH.2 1 000 10 000 34 34 10 407.19 33* 1 682.88

NRH.3 1 000 10 000 34 34 10 409.27 34 10 499.08

NRH.4 1 000 10 000 34 34 10 533.78 34 10 197.11

NRH.5 1 000 10 000 34 34 10 495.10 33* 1 190.31
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Table 3. Best solutions found by RWLS and MASC on the combinatorial and STS

instances

Inst. Rows Columns BKS RWLS MASC

Best #Best Time(s) Best #Best Time(s)

CLR10 511 210 25 25 10 0.01 25 10 0.07

CLR11 1 023 330 23 23 10 0.08 23 10 0.07

CLR12 2 047 495 23 23 10 0.38 23 10 0.12

CLR13 4 095 715 23 23 10 3.89 23 10 1.07

CYC6 240 192 60 60 10 0.00 60 10 0.19

CYC7 672 448 144 144 10 0.02 144 10 0.33

CYC8 1 792 1 024 342 342 10 0.30 342 10 1.44

CYC9 4 608 2 304 772 772 2 266.70 772 6 103.95

CYC10 11 520 5 120 1 798 1 798 7 663.73 1 792* 8 267.99

CYC11 28 160 11 264 3 968 3 968 1 520.69 3 968 1 275.82

STS9 12 9 5 — — — 5 10 0.05

STS15 35 15 9 — — — 9 10 0.04

STS27 117 27 18 — — — 18 10 0.06

STS45 330 45 30 — — — 30 10 0.17

STS81 1 080 81 61 — — — 61 10 0.04

STS135 3 015 135 103 — — — 103 10 2.81

STS243 9 801 243 198 198 10 0.09 198 10 0.25

STS405 27 270 405 335 335 5 321.26 335 10 41.40

STS729 88 452 729 617 617 10 23.26 617 10 10.59

STS1215 245 835 1 215 1 063 1 063 1 886.25 1 063 1 1971.41

STS2187 796 797 2 187 — — — — 1 963* 10 1883.39

and 1 000 s for RAIL2536, RAIL2586, RAIL4284 and RAIL4872. For MASC, a
larger limit has been used (i.e. 10 000 s for all instances) to try to benefit from
the evolutionary loop and the self-adaptation strategy regarding the maximum
number of steps allowed in the local search. Table 4 reports the corresponding
results, and shows that the proposed algorithm manages to reach only 2 BKS.
Actually, even with this time limit, only 2 or 3 generations were realized for the
largest RAIL instances, which is not enough for the dynamic RWLS step system
to be efficient and for the crossover operators to explore the search space. This
highlights that MASC is not well suited for these very large instances, and should
thus be further improved to tackle this kind of problem.
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Table 4. Best solutions found by RWLS-R and MASC on the RAIL instances

Inst. Rows Columns BKS RWLS-R MASC

Best #Best Time(s) Best #Best Time(s)

RAIL507 507 63 009 96 96 1 0.06 97 10 320.30

RAIL516 516 47 311 134 134 9 0.09 134 10 5.84

RAIL582 582 55 515 126 126 7 0.08 126 1 602.67

RAIL2536 2 536 1 081 841 378 381 4 37.34 386 2 6 188.21

RAIL2586 2 586 920 683 518 520 2 16.18 530 1 5 499.93

RAIL4284 4 284 1 092 610 594 597 3 165.58 614 2 6 549.11

RAIL4872 4 872 968 672 879 882 2 56.34 899 1 4 301.85

6 Conclusion

This paper proposes a memetic approach to solve the USCP. It combines the two-
individual HEAD algorithm [21] with the RWLS local search [14]. The HEAD
evolutionary framework has been adapted to handle both solutions and weight
vectors used by RWLS, and it has lead to the design of two specific crossover
operators. RWLS is integrated in HEAD as local search for exploitation purpose
on the one hand, and it is also used in the solution crossover to solve a subproblem
for exploration purpose on the other hand. In addition to that, an adaptation
strategy has been proposed so that the maximum number of RWLS steps can
evolve and better fit the needs for each instance.

An experimental study carried out on a set of 98 classical instances (from
OR-Library and STS) showed the effectiveness of the so-called MASC algo-
rithm, reaching 80 BKS, improving 8 other BKS, and providing the first BKS
on instance STS2187.

As a future work, it would be interesting to conduct a comprehensive study on
the adaptation strategy that automatically adjusts the step limit of RWLS. Other
strategies could be considered in addition to the one proposed here, and could
be thoroughly compared to the classical static strategy. Another perspective
would be to modify and further improve the algorithm to get better results on
instances containing a significantly large number of columns but only a few rows
(i.e. RAIL instances). It can also be planned to test different crossover operators
and to analyze the specificity of the instances in order to reach better solutions,
especially regarding NRH instances (2 improved BKS out of 5) and the two last
STS instances (whose run times suggest that the algorithm is struggling).
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Abstract. Though machine learning algorithms have achieved great
performance when adequate amounts of labeled data is available, there
has been growing interest in reducing the volume of data required. While
humans tend to be highly effective in this context, it remains a challenge
for machine learning approaches. The goal of our work is to develop a
visual learning based few-shot system that achieves good performance
on novel few shot classes (with less than 5 samples each for training)
and does not degrade the performance on the pre-trained large scale base
classes and has a fast inference with little or zero training for adding new
classes to the existing model. In this paper, we propose a novel, compu-
tationally efficient, yet effective framework called Param-Net, which is a
multi-layer transformation function to convert the activations of a partic-
ular class to its corresponding parameters. Param-Net is pre-trained on
large-scale base classes, and at inference time it adapts to novel few shot
classes with just a single forward pass and zero-training, as the network
is category-agnostic. Two publicly available datasets: MiniImageNet and
Pascal-VOC were used for evaluation and benchmarking. Extensive com-
parison with related works indicate that, Param-Net outperforms the
current state-of-the-art on 1-shot and 5-shot object recognition tasks in
terms of accuracy as well as faster convergence (zero training). We also
propose to fine-tune Param-Net with base classes as well as few-shot
classes to significantly improve the accuracy (by more than 10% over
zero-training approach), at the cost of slightly slower convergence (138 s
of training on a Tesla K80 GPU for addition of a set of novel classes).

Keywords: Param-Net · MiniImagenet · Pascal-VOC · Activations ·
Few-shot learning

1 Introduction

Current state of the art on semantic segmentation, object detection, image classi-
fication and most other learning based tasks rely on deep neural networks. Deep
neural networks are high-capacity powerful models which require large amounts
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of annotated data and millions of parameters. Large amounts of supervised train-
ing data per concept is required for deep learning algorithms to achieve great
performance, and the learning process could take multiple days to weeks using
specialized expensive hardware like GPUs. Adapting a deep learning model to
recognize a new class includes 2 major steps: 1) Collection of the large scale
dataset, 2) Fine-tune the existing model to recognize the new class. Both of
these steps are time, memory and resource intensive. If new classes are to be
recognized, then typically thousands of training examples are required for train-
ing and fine-tuning the model. Sometimes, unfortunately this fine-tuning might
result in the model forgetting the initial classes on which it was trained. One of
the most important objectives of few-shot learning based algorithms is to adapt
the existing models at real-time, to recognize novel classes which were unseen
during the initial training phase. The major challenge is that, these novel classes
have less than 5 visual examples each for training the model. The performance
of state-of-the-art classification models deteriorates when the number of images
per new class reduces to less than 10, whereas humans are capable of learning
new visual concepts reliably and effortlessly with very few examples. This has
inspired scientists to adapt deep learning algorithms to work on few-shot domain,
where the main goal is to learn novel concepts using limited number of examples.
The main advantage of solving the few-shot problem is that it relies only on very
few examples and eliminates or restricts the need to formulate large amount of
labeled training data, which is usually a cumbersome and costly process.

In this paper, we propose a novel, computationally efficient, yet effective
framework called Param-Net, which is a fusion of the best practices of param-
eter generation, gradient descent and data augmentation methods. Two pub-
licly available dataset: MiniImageNet and Pascal-VOC have been used in this
paper for evaluation and bench-marking. MiniImageNet dataset is the most pop-
ular dataset for benchmarking few-shot learning algorithms. Pascal-VOC is the
most popular dataset for object detection tasks. Using Pascal-VOC dataset, an
attempt can be made to scale the few-shot classification task to few-shot detec-
tion task. The dataset is split into: (1) classes that contain adequate number of
samples denoted as CBase, this is considered as large scale dataset and (2) classes
that contain 1–5 images each which are denoted as CFew, these are the few shot
classes. The goal of our work is to devise a visual learning based few-shot system
that achieves good performance on novel few shot classes, CFew (with less than
5 samples each) and does not degrade the performance on the large scale base
classes CBase and has a fast inference with little or zero training for adding new
classes to the existing model.

In neural networks, parameters of a particular class and its activations share
a strong relationship and this property is used by Param-Net to predict weights
for novel classes. For fair comparison with state-of-the-art approaches, we use
a Res-Net based model for extracting the most relevant features/activations of
the input images. The activations which are determined prior to the final fully
connected layer in the base model, is used as input to the Param-Net, which is
a multi-layer transformation function. Param-Net is used to convert activations
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of a particular class to its corresponding weights. Res-Net as well as Param-Net
model is pre-trained on CBase. Param-Net can adapt to novel few shot classes
with just a forward pass and zero training as the network is category agnostic.

In this paper, the models are initially tested on MiniImageNet dataset and
compared with state-of-the-art few shot algorithms. The proposed Param-Net
model outperforms the state-of-the-art methods on few-shot classes, while also
not compromising on the efficiency on base classes (CBase). On MiniImageNet
dataset, Param-Net achieves an accuracy of 62.69% for 5-way 1-shot learning
and 86.14% for 5 shot learning. The inference time of the model to add novel
few shot classes is also very low (because of zero-training time), it only takes
around 23 ms for adding a novel class on a Tesla K80 GPU. Inspite of this state-
of-the-art performance it has been observed that the accuracy of Param-Net on
closely similar classes is slightly compromised. To account for this, we suggest
fine-tuning the Param-Net with base classes as well as few-shot classes. This
significantly improves the accuracy at the cost of slightly slower convergence.
Fine-tuned Param-Net achieves an accuracy of: a) 94.23% for 5-way and 5 shot
learning on MiniImageNet dataset and b) 87.26% on Pascal-VOC dataset for
20 way 5-shot settings. The fine-tunable version of Param-Net takes around
138 s of training on Tesla K80 GPU for the addition of a set of novel classes
for MiniImageNet dataset. Hence with little fine-tuning, Param-Net can be used
to adapt a deep learning model to add novel classes with just a single training
image.

In “Sect. 2”, we describe the techniques widely used and documented in
literature to achieve current state-of-the-art results, most of the techniques
described in this section are used to benchmark the Param-Net framework. Then
in “Sect. 3” we elaborate the proposed Param-Net approach, in “Sect. 4”, we dis-
cuss the experimental setup, results and benchmarks and in “Sect. 5”, we discuss
the conclusion and future scope.

2 Related Work

The ideas behind Param-Net has broad prior support in literature, but mostly
appear in disjoint or in incompatible problem setting. Research literature on
few-shot learning techniques exhibits great diversity. We adapt these concepts
into a unified framework for recognition in real-world scenarios. In this section,
we focus on methods using the supervised meta-learning paradigm [12], [51], [9]
most relevant to ours and compared to in the experiments. We can divide these
methods into 5 categories:

Data Generation and Data Augmentation Methods: In [9], a sampling
method was proposed that extracts varying sequences of patches by decorrelating
an image based on maximum entropy reinforcement learning. This is a form of
“learned” data augmentation. In [19], GAN based approach was proposed to
address the few shot learning, where GAN allows the few shot classifiers to learn
sharper decision boundary, which could generalize better. In [30], a modified
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auto-encoder was proposed to synthesize new samples for an unseen category
just by seeing few examples from it.

Gradient Descent Based Methods: Meta-LSTM [12], treats the model
parameters as its hidden states and uses LSTM as a model updater, that not
only learns the initial model, but also the update rule. In contrast to Meta-
LSTM, MAML [14] only learns an initial update. In MAML, the updating rule
is fixed to a stochastic gradient descent (SGD). In [26], a variant of MAML was
proposed where only first order gradients were used. In [21], MetaSGD was pro-
posed as an extension of MAML, which learns weight initialization as well as
learner’s update step size. In [1,2], a modification to MAML was proposed to
prevent overfitting. In [2] entropy based and inequality minimization measures
were introduced and in [1], Meta-Transfer Learning approach was introduced
where it leverages transfer learning and benefits from referencing neuron knowl-
edge in pre-trained deep nets. A framework was proposed in [18] to unify meta
learning and gradient based hyperparameter optimization. In [20], Neuron-level
adaptation was suggested, to reduce the complexity of weight modification when
the connections are dense.

Metric Learning Methods: Siamese Neural Network which uses a two stream
convolutional neural network was originally utilized by Koch et al. [30], to learn
powerful discriminative representations and then generalized them to unseen
classes. Vinyals et al. [13] proposed Matching-Nets and introduced the episodic
training mechanism into few-shot learning. Prototypical Network was proposed
in [15], which is built upon the matching network [13], uses cosine similarity and
4-layer network. Here, query image is compared with support images using class
centroids to eliminate outliers in support set. In [16], a variant of Matching net-
work [13] was proposed and named the Relation-Net. It uses additional network
to learn similarity between image through a deep non-linear metric. Relationship
of every query-support pair is evaluated using a neural network. As an extension
to prototypical network in [15], three light weight and parameter free improve-
ments were proposed in [5]. In [10,25] modifications to Relation-Net was pro-
posed. In [10], images were encoded into feature vectors by an encoding network.
In [25], second order descriptors were proposed instead of first order descriptors.
Given a new task with its few-shot support set, Garcia et al. [23] proposed to
construct a graph where all examples of the support set and a query set are
densely connected. There have been modifications proposed to [23], by [27] and
[7]. In [27], transductive propagation network was proposed to propagate labels
from known labeled instances to unlabeled test instances. In [7], Edge Labeling
Graph Neural Network (EGNN) was proposed to predict edge-labels rather than
node-labels, this is ideal for performing classification on various tasks without
retraining. In [4], local descriptor based image-to-class measure was proposed
which was obtained using deep local descriptors of convolutional feature maps.
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Parameter Generation Methods: Using attention based mechanism to pre-
dict the classification weights of each novel class as a mixture of base classifica-
tion weights of each novel class, Gidaris et al. in [22] proposed Dynamic-Net to
capture class dependencies in the context of few-shot learning. But in Dynamic-
Net [22], dependencies were considered between base classes and novel classes.
In contrast, the dependencies were considered to exist between all the classes
in [6], and these dependencies were proposed to be captured using GNN archi-
tectures. But this is computationally more expensive than the simple attention
based mechanism proposed in [22]. The episodic formulation proposed in [13],
was used by [6], to apply the Denoising Autoencoder framework in the context of
few-shot learning, thereby improving the performance of parameter generation,
by forcing it to reconstruct more discriminative classification weights. In GNN,
input is the labeled training examples and unlabeled test examples of few shot
problem and the model is trained to predict the label of test examples. But here,
input to GNN is some initial estimate of classification weights of the classes that
needs to be learnt and it is trained to reconstruct more discriminative classifi-
cation weights.

Model Fine-Tuning Methods: Most of the ADAS based models, usually opt
for fine-tuning the pre-trained model to add novel classes, but this method works
well, only when there is sufficient number of novel class examples for training.
The method that has been proposed in this paper is a fusion of the most effective
features of Parameter generation, Model fine-tuning, data generation and gradi-
ent based methods. In the following section, we shall discuss the architecture of
the model followed by the experimental results.

3 Methodology

The datasets are split into large-scale dataset (DBase) and few-shot dataset
(DFew), where DBase contains classes which have sufficient number of images
for training, whereas DFew contains classes with less than 5 images. CBase refers
to the classes present in DBase and CFew refers to the classes present in DFew.
There is no overlap between CBase and CFew. The distribution of the dataset
into DBase and DFew is illustrated in Table 1.

Table 1. Random distribution of classes from public datasets into large scale and
few-shot classes.

Datasets Number of classes in DBase Number of classes in DFew

MiniImageNet 80 20

Pascal-VOC 13 7

The goal of our work is to devise a visual learning based few-shot system that
achieves good classification performance on novel few shot classes, CFew (with
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less than 5 samples each) and does not degrade the performance on the large
scale base classes CBase and has a fast inference with little or zero training for
adding new classes to the existing model.

In a neural network, for a particular class: weights and activations are closely
related. In this paper, we propose a novel, computationally efficient, yet effective
framework called Param-Net, which is a multi-layer dense regression transforma-
tion function to convert the activations of a particular class to its corresponding
weights.

Initially, Resnet-101 deep neural network was considered as the base model
and was pre-trained on the large scale dataset (DBase). In the base-model, the
entire network prior to the final fully connected layer was considered as feature
extractor. The final fully connected layer was considered as the classifier network.
For an input image ‘Xi’, the feature extractor will output a “d”-dimensional
feature vector ZXi = F(Xi). The weights “w” of the classifier network consists of
“N” classification weights, where “N” is the number of classes in DBase:

w = [wi]Ni=1 (1)

where wi is the d-dimensional classification weight vector for the ith class. For
input image ‘Xi and for ‘N’ classes, the classifier will compute the classification
scores as: For input image ‘Xi’,

[s1i, s2i, ..., sNi] = [Zxiw1, Zxiw2, .., ZxiwN ], (2)

For an image “Xe”, belonging to class “k”, the objective of the feature extrac-
tor and classifier is to maximize ske, where ske = Zxewk, and minimize [s1e,
s2e, ..., s(k-1)e] and [s(k+1)e, s(k+2)e, ..., sNe]. The weights “w” are learnt through
back-propagation using the loss function:

M∑

i=0

Li

M
(3)

where,

Li = −log
eZXiWyi

N∑

j=1

eZXiWj

(4)

where “M” is the number of images per epoch, for image “Xi”: “Li” is the
loss and “yi” is the annotation label. To adapt the base model to include novel
few-shot classes, a transformation layer named Param-Net has been proposed
in this paper. The objective of the Param-Net is to predict parameters of a
particular class based on its corresponding activations. The activations which
are used as input to the Param-Net are determined using the feature extractor
network. Parameters of the original base-model classifier network is replaced by
the Parameters estimated from the Param-Net which can be denoted as:
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T (ZXi) = wei (5)

where T() is the transformation function or the Param-Net, ZXi is the acti-
vation of the image “Xi” and wei is the estimated parameters for the image
“Xi”.

During the training phase of the Param-Net, initially a mini-batch of input
images is formed from the CBase classes, containing M

′
images of each class.

Hence the size of the mini-batch was N * M
′
, where N is the number of

classes. Using the feature extractor network, d-dimensional activation vectors
are extracted for the entire mini-batch, containing N classes and M

′
images for

each class. Mean activations are extracted for each class using:

Mzj =

M
′

∑

k=0

ZXjk

M ′ (6)

where Mzj is the mean activation of the batch of images belonging to jth class,
M

′
is the number of images per class in the batch and ZXjk is the activation of

the kth image of the jth class.
The d-dimensional mean activations of each of the class is input to the

Param-Net to estimate the parameters of the corresponding classes, as illus-
trated in Fig. 1(a). The Param-Net is a regression network whose input and
output dimensions are of the same size, but to reduce overfit, we have posed it
as a classification task. After estimating parameters of all the classes individually,
they are concatenated into a “d * N” vector.

A mini-batch of training images X′
1,X

′
2, ...,X

′
N, containing an equal sample

of all the classes is considered and features are extracted, where X′
1, contains a

subset of images belonging to class 1. These features are then convolved with
the estimated parameters from the transformation layer and softmax activations
are applied. The output is compared with the input annotated labels and the
loss function is computed and the gradients are propagated. The loss function
from Eq. 4 is modified to:

Li = −log
e
Z
x

′
i
[T(Mz)]yi

N∑

j=1

e
Z
x

′
i
[T(Mz)]j

(7)

where, Li is the loss for the image ‘Xi’, ‘N’ is the number of classes, Zx
′
i

is the activations estimated or features extracted for the image ‘Xi’ using the
feature extraction network, ‘[Mz]yi

’ is the mean activation of the actual class that
the image ‘Xi’ belongs to, ‘[Mz]j’ is the mean activation of all the other classes
ranging from 1 to N and T[] is the estimated weights from the Param-Net. The
entire flow of the network has been illustrated in Fig. 1 (b).

There are three distinct phases in this approach: Training, Parameter predic-
tor and inference. During the training phase, only images from DBase are used
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to train the transformation layer/Param-Net. None of the images from the DFew

are used. In the parameter predictor phase, the images 1–5 of a given class CFew

from DFew are considered and passed through the feature extractor and mean
activations of the extracted features are determined.

Fig. 1. Illustration of few-shot learning pipeline proposed in this paper using Param-
Net based approach with zero-training. (a): Parameter Generator network (b): Training
and inference pipeline for the proposed model.

These mean activations are input to the transformation layer to estimate the
parameters for the few shot class CFew. These estimated parameters for few-
shot classes are concatenated with the estimated parameters of the other base
classes. This way, a new class is added to the existing model with zero training.
At inference time, for any input image, features are extracted and convolved
with the estimated parameters to determine the class of the input image.

We also propose to fine-tune the Param-Net with base classes as well as few-
shot classes to significantly improve the accuracy. For addition of a novel class to
the existing model, Param-Net is fine-tuned with mean-activations from CBase

as well as from CFew.
But the convergence of the fine-tuned model does not require too many

epochs nor too many computation cycles because: (1) Param-Net is just a 2-
layer dense network, (2) Input to the Param-Net is only mean activations which
are of lower dimension, compared to the high-dimension raw input. Hence, with
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little training, the efficiency of Param-Net can be considerably increased. The
modified flow for the proposed Param-Net is illustrated in Fig. 2.

Fig. 2. Illustration of few-shot learning pipeline proposed in this paper using fine-
tuning based Param-Net approach with little-training. Training and inference pipeline
for the proposed model has been shown with the Param-Net being fine-tuned, every
time a novel few-shot class is added to the model.

4 Results

We evaluate the proposed Param-Net extensively in terms of few-shot recogni-
tion accuracy and model convergence speed on MiniImageNet and Pascal-VOC
datasets. In the following sections, we describe the datasets, detailed experimen-
tal setup, comparison to the state-of-the-art methods and an ablation study with
respect to different model architectures.

4.1 Dataset

MiniImageNet was proposed by Vinyals et al. in [13], for evaluating few-shot
learning based algorithms. Its complexity is high due to the use of images from
ImageNet dataset, but requires less resources and cheaper infrastructure than
running on the full ImageNet dataset. It is the most popular dataset for bench-
marking few-shot learning algorithms. We used the same split proposed by [1]
for fair comparison. We consider 5-way classification for both 1-shot and 5-shot.
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Pascal-VOC dataset is one of the most popular datasets for object detection task.
The logical extension of few-shot learning based algorithms is object detection
based few-shot learning. Hence the use of Pascal-VOC helps us to make the
model robust to scale to object detection tasks. Param-Net was evaluated on
the Pascal VOC for 20-way 1-shot performance.

4.2 Model

For a fair comparison with the state-of-the-art we use pre-trained Resnet-101
as our base model for feature extraction, for MiniImageNet and Pascal-VOC
datasets. Resnet-101 was pre-trained on ImageNet and the model was later fine-
tuned on DBase dataset. Model fine-tuning was performed by freezing the initial
layers and only updating the weights of the final few layers. The layer prior to
the final fully connected layer serves as a feature extractor for Param-Net. The
dimension of the extracted features is 2048. The learning rate for fine-tuning
Resnet-101 was 0.0001 using an Adam optimizer.

For MiniImageNet dataset, the DBase dataset had 80 classes with 600 images
each and these images were used for fine-tuning Resnet-101. Of the 600 images,
500 images were used for training and 50 images each for validation and testing.
The same distribution of DBase is used for training the Param-Net as well. One
of the most important characteristics of Param-Net is that it is class-agnostic,
which indicates that the network need not be trained on images from DFew.
Adam optimizer was used with a learning rate of 0.001 and it took around 187 s
for the Param-Net to be trained on a Tesla K80 GPU. Once the Param-Net
is trained, it has the capability to add novel classes with zero-training and the
addition of novel classes can be done at real time. It takes only 18 ms to add
novel classes to the existing base-classes because Param-Net is just a two layer
dense regression network with a low-dimensional input.

In the following sections, we shall discuss the key role that a robust feature
extractor plays, in improving the performance of few-shot learning algorithms.
We shall also discuss the effect of the number of dense layers in the Param-Net
on the quality of the weights generated, in the following sections.

Table 2 shows the comparison between: a) Accuracy of conventional fine-
tuning based approach, where Resnet-101 model was fine-tuned and test only
using the DBase dataset b) Accuracy of the Param-Net based approach on the
DBase dataset, where similarly, the Param-Net was trained and tested only using
the DBase dataset and the weights of the classification layer of the Res-Net
model was replaced by the weights estimated using the Param-Net. It is evident
from the results in Table 2, that the Param-Net is able to achieve comparable
performance on the DBase dataset, while achieving state-of-the-art results on
DFew dataset as depicted in later sections.
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Table 2. Comparative study between: a) ResNet-101 based feature extractor and clas-
sifier and b) ResNet-101 based feature extractor with Param-Net based classifier. Both
are trained and tested only on DBase dataset.

Dataset ResNet (Feature
extractor + classifier)
(%)

Resnet feature extractor
+ Param-Net classifier
(%)

Training Data 94.91 92.36

Validation Data 92.63 91.93

Testing Data 93.14 91.06

4.3 Evaluation Results and Comparisons

In Table 3, we compare Param-Net with state-of-the-art methods of different
few-shot techniques. The accuracies of all the techniques have been reported on
the test dataset.

Data generation techniques [9,11,19,30]: Different techniques like decorrela-
tion [9], GAN [19], auto-encoder [30] and image deformation network [11] have
been used. But these models need to be trained on more than just 5 examples for
the generators to generate useful data, otherwise the generators under-perform
on few-shot data. Hence the accuracy of the data augmentation based methods
is lower than the most of the other approaches.

Metric learning techniques [4,5,7,10,13,15,16,23,25]: In [13], few-shot learn-
ing problem was addressed using cosine similarities between the features pro-
duced by CNN, which is a very simplistic metric to differentiate between the
images. In [15] and [16], instead of cosine similarities, a non-linear similarity
score was introduced using neural networks, but the descriptors were of first
order. As an extension to [15], different approaches [5,10,25] were proposed like
second order descriptors, encoding feature vectors using encoder network, batch
folding, few shot localization (fsl) and covariance pooling (cp). But still they
under-performed because of the inability of the feature extractors to extract
meaningful features. GNN based approach, proposed by [22] under-performed
because it uses node-labeling to model intra-cluster similarity and inter-cluster
dissimilarity. This was addressed in [7] to achieve better performance. In [4], k-
nearest neighbors metric was used, but one drawback of this approach was that it
used Conv4 as a feature extractor, which is a weak feature extractor. Most of the
mentioned metric learning techniques, learn a feature similarity metric between
few-shot training examples and a test (query) example. But, these methods treat
each training class independently from one another. Hence, the performance of
metric learning frameworks is weakened.

Gradient descent techniques: In [12] and [14], element-wise fine tuning was
used, hence inducing overfitting on the designed models, and in [12], LSTM was
used to update the initial model as well as the update rule, hence it was time
consuming as well, this was addressed in [14], by learning only the initial model.
As an update to [14], different solutions were proposed like: using first order
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gradients [26], joint learning of weight initialization as well as learner’s step size
[21], entropy based inequality minimization measures [2] and transfer learning
and fine-tuning [1]. But the problem with gradient based approaches is that,
they require many iterative steps over many examples to perform well.

Parameter generation: In [22], dependencies were considered between novel
classes and base classes using simple attention based mechanism. In [6], GNN
based techniques were used to differentiate between all the classes, novel and
base.

The Param-Net that has been proposed here, is a combination of data
augmentation, gradient descent and parameter generation methods. This has
resulted in state-of-the-art performance on 1-shot and 5-shot settings for Mini-
ImageNet, which is the most popular public dataset for benchmarking few-shot
learning algorithms. The existing state-of-the-art methods mainly focus on mak-
ing relation measure, concept representation and knowledge transfer, but do not
pay enough attention to final classification. This issue has been addressed in
this paper by posing a regression problem of the Param-Net into a classification
task, thereby also reducing the overfit of the model onto the training dataset
considerably.

Table 3. 5-way accuracy on MiniImageNet. Blue: Best accuracy.

Method Algorithm Models 1-shot (%) 5-shot (%)

Data
augmentation

Decorrelation [9] Conv4 51.03 67.96

Meta-Gan [19] Resnet-12 52.71 68.63

Delta-encoder [30] VGG-16 (pre) 58.7 73.6

Image deformation Meta
Network [11]

ResNet-18 57.71 74.34

Metric
learning

Matching networks [13] Conv4 43.44 55

Protonets (PN) [15] Conv4 49.42 68.2

RelationNet [16] Conv4 50.44 65.32

2nd order similarity network
[25]

52.96 68.63

GNN [23] Conv-256F 50.33 66.41

Deep Nearest Neighbor
neural network [4]

Conv4 51.24 71.02

PN+ fsl + CP [5] Res-Net50 69.45

Salient-Network [10] Conv4 57.45 72.01

Edge-Labeling GNN [7] Resnet 76.37

Gradient
descent

Meta-learning LSTM [12] Conv-32F 43.56 60

MAML [14] Conv-32F 48.7 63

Reptile [26] Conv-32F 49.97 65.99

TAML [2] Conv-32F 49.4 66.0

Matasgd [21] Conv-32F 50.47 64.03

MTL [1] Resnet-12 61.2 75.5

Parameter
generation

DynamicNet [22] Conv-4-64 55.45 70.13

WDAE-ML [6] WRN-28-10 60.61 76.56

Our-Param-Net: 2-layer
(Resnet)

ResNet-101 63.31 82.29
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Table 4. Results of ablation study

Algorithm 1-shot (%) 5-shot (%)

Resnet-101 + 1 layer Param-Net 61.95 78.95

Resnet-101 + 2 layer Param-Net 63.31 82.29

Nasnet + 2 layer Param-Net 64.69 86.14

Resnet-101 + fine-tune(2 layer Param-Net) 71.18 94.23

Table 3 and Table 4, indicates the importance of a robust feature extrac-
tor. In Table 3, the techniques which used Resnet based architecture for feature
extraction performed better than the approaches that used Conv-4 or Conv-32
based feature extractors. Similarly, we also experimented using Nas-Net (network
based on neural-architecture search) instead of Resnet-101 as feature extractor
as shown in Table 4. Nas-Net improved the performance of the algorithm on both
1-shot as well as 5-shot settings. We also conducted experiments to ascertain the
contribution of the number of layers in the Param-Net, to the eventual perfor-
mance of the algorithm on MiniImageNet dataset. It has been observed that a
2-layer dense network performs better than a 1-layer dense network, as has been
indicated in Table 4.

In this paper, we also propose an approach where, Param-Net is finetuned
with DBase as well as DFew. For every new class that needs to be added, the
Param-Net needs to be finetuned. It significantly leads to an increase in the
accuracy but with a little extra training time of 138 s for addition of a set of
novel classes to the existing model, on a NVIDIA K80 GPU.

5 Conclusion

In this work, we contribute to few-shot learning by developing a novel, compu-
tationally efficient framework called Param-Net which achieves top performance
in tackling few-shot learning problems.

The main objective of few-shot applications is to add novel classes at real
time to the existing model in the presence of less than 5 visual examples. Hence
Param-Net has been proposed in this paper. It is a dense transformation layer
which converts the activations of a particular class to its corresponding weights.
It is pre-trained on large-scale base classes and at inference time it adapts to
novel few-shot classes with just a single forward pass and zero or little training
as the network is class agnostic.

Extensive comparison with related works indicate that the Param-Net out-
performs state-of-the-art algorithms in terms of accuracy (1-shot and 5-shot)
and in terms of faster convergence (zero or very-little training). We evaluate the
performance of Param-Net on two publicly available datasets: MiniImageNet
and Pascal-VOC. MiniImageNet is the most popular dataset for benchmarking
few-shot algorithms. Pascal-VOC dataset was used to verify the scalability of
Param-Net from few-shot classification task to few-shot detection task.
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The future scope of improvement for the proposed Param-Net would be to
scale the algorithm to address few-shot detection rather than just few-shot clas-
sification problems. The first step to address this challenge has been successfully
accomplished by testing the Param-Net on the Pascal-VOC dataset, which is
the premier dataset for object detection tasks.
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Abstract. We investigate a nonconvex, nonsmooth optimization app-
roach based on DC (Difference of Convex functions) programming and
DCA (DC Algorithm) for the reduced-rank multitask linear regression
problem with covariance estimation. The objective is to model the linear
relationship between a multitask response and more explanatory vari-
ables by estimating a low-rank coefficient matrix and a covariance matrix.
The problem is formulated as minimizing the constrained negative log-
likelihood function of these two matrix variables. Then, we consider a
reformulation of this problem which takes the form of a partial DC pro-
gram i.e. it is a standard DC program for each variable when fixing the
other variable. Next, an alternating version of a standard DCA scheme is
developed. Numerical results on many synthetic multitask linear regres-
sion datasets and benchmark real datasets show the efficiency of our
approach in comparison with the existing alternating/joint methods.

Keywords: DC programming · DCA · Alternating DCA ·
Reduced-rank multitask linear regression · Covariance estimation

1 Introduction

In this paper, we consider the reduced-rank multitask linear regression problem
with covariance estimation (see, e.g., [7]). Given m different tasks with the d-
dimensional feature vector denoted φi ∈ R

d, the corresponding respond denoted
zi ∈ R

m is generated using the linear model

zi = Xφi + εi, (1)

where X ∈ R
m×d is an unknown matrix whose rows represent the coefficient

vector for each task; the error εi ∈ R
m is assumed from a centered multivari-

ate normal distribution with a covariance matrix Cov(εi) = (Θ)−1, Θ ∈ R
m×m.

In most applications of the multivariate regression problem, the errors in the
regression model (e.g., εi in (1)) are distributed with an unknown covariance
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matrix Cov(εi) (see, e.g., [26,34,36]). Thus, the estimation of the noise covari-
ance matrix plays an important role. The techniques for estimating the noise
covariance matrix for other problems have been developed in many years (see,
e.g., [5,27]).

The objective is to find the matrices X and Θ from n points {(zi, φi)}i=1,...,n.
In the high-dimensional setting, the problem aims to minimize the constrained
negative log-likelihood function:

min

[
1
n

n∑
i=1

(zi − Xφi)�Θ(zi − Xφi)

]
− log det(Θ) (2)

s.t. X ∈ X , Θ ∈ Y,

where X = {X ∈ R
m×d : rank(X) ≤ r} represents the low-rank constraint

set and Y = {Θ ∈ R
m×m : Θ � 0} is the set of positive semi-definite (PSD)

matrices.
This problem has many real-world applications ranging from chemometrics

(see, e.g., [39]) to imaging neuroscience (see, e.g., [8]), to quantitative finance
and risk management [25], to bioinformatics [9], to robotics (see e.g. [4,10]), to
cite a few. For instance, in robotics, multivariate regression analysis is applied
to evaluate the impact of robotic technique and high surgical volume on the
cost of radical prostatectomy [10]. In another robotics application [4], linear
regression analysis is performed to quantify the effect of surgeon experience on
the operating time for each surgical step in the robotic-assisted laparoscopic
prostatectomy procedure. In bioinformatics, the multitask regression algorithms
are developed to solve the genomic selection problem in the fields of plant/animal
breeding and genetic epidemiology (see [9] for more details).

In general, it is very hard to search globally optimal solutions to the problem
(2) due to a double difficulty: first, the objective function of (2) is nonconvex
in the variable (X,Θ), and, second, the rank function in the constraint set X is
discontinuous and nonconvex.

For solving the problem (2), some existing approaches used an alternating
optimization procedure on the variable (X,Θ). In particular, a classic Alternat-
ing Method (AM) will alternate between computing two variables X and Θ at
every iteration (see, e.g., [29]). It leads to solving, at each iteration, a reduced-
rank regression problem in X (see [1]) and a convex program in Θ. Recently, Ha
et al. [7] have proposed an Alternating method using Gradient Descent method
(AGD) for solving (2). The AGD method differs from the AM method by the
fact that the AGD performs one iteration of the gradient descent method for
solving the reduced-rank regression problem. Another approach without com-
puting two variables alternatively is the joint gradient descent (JGD) method
[7] which takes one gradient descent step in (X,Θ). All three AM, AGD, and
JGD algorithms are described completely in the Appendix.

In this work, we continue using the alternating optimization procedure on
the variable (X,Θ). However since the problem (2) is nonconvex in X, we will
investigate an alternating approach for solving (2) based on DC (Difference of
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Convex functions) programming and DCA (DC Algorithm) (see, e.g., [12,19,
21,30–32] and the list of references in [21]) which are well-known as powerful
nonsmooth, nonconvex optimization tools. DCA aims to solve a standard DC
program that consists in minimizing a DC function f = g − h (with g, h being
convex functions) over a convex set or on the whole space. Here g −h is called a
DC decomposition of f , while g and h are DC components of f. The idea of the
standard DCA is, at each iteration k, approximating the second DC component
h by its affine minorant and then solving the resulting convex subproblem.

Our Contribution. First, we consider a penalized reformulation of the problem
(2) which can be expressed as a partial DC program i.e. it is a standard DC
program in each variable while fixing other variables. Second, we propose an
alternating DCA scheme for solving this problem. In particular, at each iteration,
we perform one iteration of standard DCA for the corresponding DC program in
each variable when fixing the other variable. Finally, we evaluate our alternating
approach by comparing with three alternating/joint methods on six synthetic
multitask linear regression datasets and eight benchmark real datasets.

The rest of the paper is organized as follows. Section 2 gives a brief introduc-
tion to Partial DC programming and Alternating DCA, and then shows how to
apply them for solving the penalty problem of (2). Section 3 reports the numer-
ical results on several test problems. Finally, Sect. 4 concludes the paper.

2 Solution Method

DC programming and DCA were introduced by Pham Dinh Tao in a prelim-
inary form in 1985 and have been extensively developed by Le Thi Hoai An
and Pham Dinh Tao since 1994. DCA is well-known as an efficient approach in
the nonconvex programming framework (see, e.g., [12,19,21,30–32]). In recent
years, numerous DCA-based algorithms have been developed for successfully
solving large-scale nonsmooth/nonconvex programs in several application areas
(see, e.g., [13–16,18,20,22,24,28,33,38] and the list of references in [21]). For
a comprehensible survey on thirty years of development of DCA, the reader is
referred to the recent work [21].

The standard DCA scheme is described below. Its convergence properties are
given completely in, e.g, [30].

Standard DCA scheme
Initialization: Let x0 ∈ R

p be a best guess. Set k = 0.
repeat

1. Calculate xk ∈ ∂h(xk).
2. Calculate xk+1 ∈ argmin{g(x) − 〈x, xk〉 : x ∈ R

p}.
3. k = k + 1.

until convergence of {xk}.
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2.1 A Brief Introduction to Partial DC Programming
and Alternating DCA

Now, we briefly introduce partial DC programming and Alternating DCA in
[17]. A partial DC (PDC) program takes the form

min F (x, y) := G(x, y) − H(x, y) s.t. (x, y) ∈ R
p × R

q, (3)

where G and H are partial convex functions in the sense that they are convex
in each variable when fixing all other variables. Such a function F is called a
partial DC function.

An alternating version of DCA for solving (3) consists in, at the iteration k,
alternatively computing xk+1 and yk+1 by performing one iteration of standard
DCA for solving the following DC programs in variable x and y, respectively:

min F (x, yk) := G(x, yk) − H(x, yk) s.t. x ∈ R
p,

and
min F (xk+1, y) := G(xk+1, y) − H(xk+1, y) s.t. y ∈ R

q.

This version, named Alternating DCA, is described as follows.

Alternating DCA scheme
Initialization: Let (x0, y0) ∈ R

p × R
q be a best guess. Set k = 0.

repeat
1. Calculate xk ∈ ∂xH(xk, yk).
2. Calculate xk+1 ∈ argmin{G(x, yk) − 〈x, xk〉 : x ∈ R

p}.
3. Calculate yk ∈ ∂yH(xk+1, yk).
4. Calculate yk+1 ∈ argmin{G(xk+1, y) − 〈y, yk〉 : y ∈ R

q}.
5. k = k + 1.

until convergence of {(xk, yk)}.

2.2 A Reformulation of the Problem (2)

Recall that our main goal in this paper is to investigate a nonconvex approach
based on DCA for directly solving the nonconvex problem (2). Thus, we need to
reformulate the problem (2) as an unconstrained PDC program (3). We penalize
the difficult low-rank constraint in X into the objective function of (2) by using
the squared distance function d2X as a penalty function (see e.g. [23,35]). Thus,
for a given parameter α > 0, the problem (2) can be transformed into the
following optimization problem

min
1
n

n∑
i=1

(zi − Xφi)�Θ(zi − Xφi) − log det(Θ) + αd2X (X) (4)

s.t. X ∈ R
m×d, Θ � 0.
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Here the squared distance function d2X is defined as d2X (X) := minY ∈X ‖Y −X‖2F
and ‖ · ‖F is a Frobenius norm.

Since the PSD constraint Θ ∈ Y in (4) is convex, we use the indicator function
χΘ≥0, defined as χC(x) = 0 if x ∈ C, +∞ otherwise. Thus, we can derive from
(4) the following formulation

min F (X,Θ) :=
1
n

n∑
i=1

(zi − Xφi)�Θ(zi − Xφi)

− log det(Θ) + αd2X (X) + χΘ�0(Θ), (5)

s.t. X ∈ R
m×d, Θ ∈ R

m×m.

Note that if (X∗, Θ∗) is a globally optimal solution to the problem (5) and
(X∗, Θ∗) ∈ X × Y, then (X∗, Θ∗) is also a globally optimal solution to the
problem (2).

Knowing that the function d2X is a DC function with DC decomposition

d2X (X) = min
Y ∈X

‖X − Y ‖2F = ‖X‖2F − max
Y ∈X

(2〈X,Y 〉 − ‖Y ‖2F ),

the problem (5) can be rewritten as a partial DC program

min F (X,Θ) := G(X,Θ) − H(X,Θ) (6)

where

G(X,Θ) :=
1
n

n∑
i=1

(zi − Xφi)�Θ(zi − Xφi) − log det(Θ) + α‖X‖2F + χΘ�0(Θ),

H(X,Θ) := α max
Y ∈X

(2〈X,Y 〉 − ‖Y ‖2F ).

Since the function H(X,Θ) is convex in X and the function log det is concave
in Θ [3], the functions G and H are partially convex.

2.3 Alternating DCA for Solving the Problem (6)

According to the Alternating DCA scheme in Sect. 2.1, we need to construct two
sequences {(Xk, Θk)} and {(Uk, V k)} such that

Uk ∈ ∂XH(Xk, Θk),

Xk+1 ∈ argmin{G(X,Θk) − 〈X,Uk〉 : X ∈ R
m×d}, (7)

and

V k ∈ ∂ΘH(Xk+1, Θk),

Θk+1 ∈ argmin{G(Xk+1, Θ) − 〈Θ, V k〉 : Θ ∈ R
m×m}. (8)
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From the subdifferential formula for a maximum function of an infinite num-
ber of affine functions [11,41] and the definition of the function H, we have

∂XH(X,Θ) ⊃ 2αco{ProjX (X)}, ∂ΘH(X,Θ) = {0}.

Here ProjC and co(C) denote, respectively, the projection operator on the set
C and the convex hull of C. Thus, we can choose the subgradients Uk ∈
∂XH(Xk, Θk) and V k ∈ ∂ΘH(Xk+1, Θk) as follows:

Uk = 2αW k, W k ∈ ProjX (Xk), and V k = 0. (9)

Solving the convex subproblem (7) amounts to solving the problem

min
X∈Rm×d

[
1
n

n∑
i=1

(zi − Xφi)�Θk(zi − Xφi)

]
+ α‖X‖2F − 〈Uk,X〉. (10)

By setting the derivative of the objective function of the last problem (10) to
zero, we can see that its optimal solution Xk+1 satisfies the Sylvester equation

AkX + XBk = Ck, (11)

where the matrices Ak ∈ R
m×m, Bk ∈ R

d×d, and Ck ∈ R
m×d are defined as

Ak = α(Θk)−1, Bk =
1
n

n∑
i=1

(
φiφ

�
i

)
, Ck = α(Θk)−1W k +

1
n

n∑
i=1

(
ziφ

�
i

)
.

Here Z−1 denotes an inverse of a matrix Z.
From (8) and the definition of G, Θk+1 is an optimal solution to the convex

program

min
Θ�0

[
1
n

n∑
i=1

(zi − Xk+1φi)�Θ(zi − Xk+1φi)

]
− log det(Θ). (12)

It is easy to check that the problem (12) has a closed-form optimal solution [7]
as follows:

Θk+1 =

(
1
n

n∑
i=1

(zi − Xk+1φi)(zi − Xk+1φi)�
)−1

. (13)

Finally, the Alternating DCA scheme applied to (6) can be summarized in
Algorithm 1 (Al-DCA).

Algorithm 1. Al-DCA: Alternating DCA for solving (6)
Initialization: Let ε be a sufficiently small positive number. Let X0 ∈ R

m×d, Θ0 ∈
R

m×m, Θ0 � 0, α > 0. Set k = 0.
repeat

1. Compute W k ∈ ProjX (Xk).
2. Compute Xk+1 by solving the Sylvester equation (11).
3. Compute Θk+1 using (13).
4. k = k + 1.

until Stopping criteria are satisfied.
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The convergence properties of our algorithm are derived from [17] and given
in Theorem 1 below.

Theorem 1. Convergence properties of Al-DCA
i) Al-DCA generates the sequence {(Xk, Θk)} such that the sequence of the objec-
tive function values {F (Xk, Θk)} is decreasing.
ii) Assume that the sequence {(Xk, Θk)} is bounded and (X∗, Θ∗) is its limit
point. Then, (X∗, Θ∗) is a weak critical point of G − H i.e. ∂XG(X∗, Θ∗) ∩
∂XH(X∗, Θ∗) �= ∅, ∂ΘG(X∗, Θ∗) ∩ ∂ΘH(X∗, Θ∗) �= ∅.
Remark 1. In numerical experiments, X∗ obtained by Al-DCA does often not
belong to X . Thus, after running Al-DCA, we propose performing one projection
step: projecting X∗ into the set X and then updating Θ∗ by (13).

3 Numerical Experiments

Our experiments aim to compare the proposed alternating algorithm Al-DCA
with other alternating/joint algorithms for the multitask linear regression prob-
lem (2).

Comparative Algorithms. As listed in Sect. 1, we consider three alternat-
ing/joint algorithms for solving the problem (2): classic alternating method
(AM), alternating method using gradient descent method (AGD) [7], and joint
gradient method (JGD) [7] (see the Appendix for more details).

Datasets. We test the four algorithms Al-DCA, AGD, JGD, and AM on six
synthetic datasets and eight real datasets.

We generate synthetic datasets using the linear model (1) as described in the
works, e.g., [2,7,34,40]. Specifically, the feature vector φi is drawn independently
from a multivariate normal distribution N (0, Σφ) where each element Σφ(i, j) =
0.5|i−j|. Similarly, the error εi is also generated from N (0, σ2Σε) where σ2 is
chosen such that the corresponding signal-to-noise is equal to 1 (see e.g. [2,7])
and Σε is defined by the following type: AR(1), denoted ar(ρε), with Σφ(i, j) =
(ρε)|i−j|. Here, ρε represents a correlation parameter; the larger its value is, the
more the degree of dependence of errors would be. The coefficient matrix X is
computed as X = AB where the orthonormal matrices A ∈ R

m×r and B ∈ R
r×d

are generated form N (0, 1). Finally, the respond vector zi ∈ R
m is computed

using (1). By setting r = 3, m ∈ {10, 20, 60}, d ∈ {10, 20, 40}, ρε ∈ {0, 0.5}, we
have six synthetic datasets which are summarized in Table 1. For each synthetic
dataset, we generate 50 training samples and 1000 test samples in each run time,
and we repeat the whole process 30 times.

As for real datasets, we test on eight benchmark multitask regression
datasets1. These datasets are collected from various interesting applications and
can be found in the recent work of [37] (see the references therein). The parame-
ters of these datasets and the given values of r are provided in Table 3. We split
1 For the detailed descriptions of all datasets, the reader is referred to [37] and the

website http://mulan.sourceforge.net/datasets-mtr.html.

http://mulan.sourceforge.net/datasets-mtr.html
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each real dataset into a training set containing the first 75% of dataset and a
test set containing the rest of dataset.

Comparison Criteria and Stopping Criteria. We are interested in the fol-
lowing aspects: prediction error and CPU time (in seconds) for training the
solution (X∗, Θ∗). As for synthetic datasets, the prediction error is defined by
the mean squared error (MSE) [2]

MSE =
∑n

i=1 ‖Xφi − ABφi‖22
nm

, (14)

while the relative root mean squared error (RRMSE) on real datasets is used to
measure the prediction error of the algorithm on each task and defined as [37]

RRMSE =

√∑n
i=1 ‖ẑi − zi‖22∑n
i=1 ‖zi − zi‖22

, (15)

where ẑi is a respond vector estimated by the algorithm and zi is the mean
value of the respond vectors on the training set. We stop the algorithms if the
relative difference between two consecutive points (Xk−1, Θk−1) and (Xk, Θk)
or between two corresponding objective function values is less than or equal to
ε.

Set Up Parameters. Our experiment is performed in MATLAB R2016b on a
PC Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz of 8 GB RAM. The MATLAB’s
sylvester function is used for solving Sylvester equation (11). The projection
algorithm Proj on the set X is given in [6]. The MATLAB’s svd function is used
for computing the singular value decomposition (SVD) in the Proj algorithm
on the set X . All algorithms start with the same point (X0, Θ0). The start-
ing point X0 is set to a zero matrix in R

m×d, and the matrix Θ0 is computed
using (13). To validate the performance of the algorithms on all synthetic/real
datasets, we consider the following validation procedure: first we run the algo-
rithm with the different parameters on the training set, then choose the solu-
tion (X∗, Θ∗) that provides the best objective function value F (X∗, Θ∗), and
finally evaluate the obtained model using MSE (14) or RRMSE (15) on the test
set. The ranges of parameters ηX , ηΘ, and α are defined as: α ∈ {5, 10, 100},
ηX ∈ {10−5, 10−4, . . . , 102}, ηΘ belongs in a geometric sequence from 5 to 400
[7]. The default tolerance is ε = 10−3.

Descriptions of Result Tables. The average MSE and its standard deviation
obtained by all comparative algorithms on six synthetic datasets over 30 run
times are reported in Table 1. The average results of training time of the algo-
rithms on synthetic datasets are given in Table 2. Table 3 shows the experimental
results on real datasets in terms of RRMSE and training time.

Comments on Numerical Results
Synthetic Datasets. We observe from Table 1 that, in terms of MSE, Al-DCA
is more efficient than AGD, JGD, and AM. To be specific, Al-DCA is the best
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Table 1. Comparative results of Al-DCA, AGD, JGD, and AM in terms of the average
of mean-squared-error MSE defined by (14) (upper row) and its standard deviation
(lower row) on six synthetic datasets over 30 run times. Bold values indicate the best
result.

d m Σε Al-DCA AGD JGD AM

10 60 ar(0.0) 2.44e−02 2.65e−02 2.64e−02 5.73e−01

6.47e−03 5.78e−03 5.71e−03 8.94e−01

ar(0.5) 2.00e−02 2.42e−02 2.40e−02 4.34e−01

6.15e−03 4.64e−03 4.81e−03 6.04e−01

20 10 ar(0.0) 4.79e−02 5.83e−02 1.37e−01 5.04e−02

1.67e−02 2.39e−02 2.24e−02 1.65e−02

ar(0.5) 3.30e−02 5.47e−02 1.33e−01 3.56e−02

1.24e−02 2.87e−02 2.01e−02 1.10e−02

40 20 ar(0.0) 6.13e−02 6.15e−02 6.23e−02 2.34e+00

8.01e−03 8.07e−03 8.28e−03 9.66e+00

ar(0.5) 6.35e−02 6.27e−02 6.31e−02 5.72e−01

8.76e−03 8.54e−03 8.42e−03 5.96e−01

Table 2. Comparative results of Al-DCA, AGD, JGD, and AM in terms of the average
of training time in seconds (upper row) and its standard deviation (lower row) on six
synthetic datasets over 30 run times. Bold values indicate the best result.

d m Σε Al-DCA AGD JGD AM

10 60 ar(0.0) 1.52e−02 4.08e−03 4.79e−03 5.81e−03

9.29e−03 1.60e−03 1.62e−03 2.88e−03

ar(0.5) 1.44e−02 3.92e−03 9.79e−03 4.81e−03

5.35e−03 2.00e−03 3.78e−03 1.34e−03

20 10 ar(0.0) 3.14e−02 4.25e−02 8.82e−04 2.32e−03

1.98e−02 1.65e−02 2.30e−04 1.04e−03

ar(0.5) 2.06e−02 3.50e−02 9.33e−04 1.97e−03

5.48e−03 1.75e−02 8.11e−05 3.48e−04

40 20 ar(0.0) 1.20e−01 7.35e−02 1.40e−03 4.87e−03

2.60e−02 7.10e−02 6.87e−04 7.55e−04

ar(0.5) 9.77e−02 6.10e−02 8.92e−04 4.64e−03

1.96e−02 4.54e−02 1.63e−04 2.04e−04

on 5/6 datasets – the ratio of gain of Al-DCA versus AGD, JGD, and AM
varies from 0.32% to 39.6%, from 1.60% to 75.1% and from 4.96% to 97.3%,
respectively. Moreover, Al-DCA well performs for two model errors (independent,
moderately correlated). In terms of training time, all four algorithms run very
fast (less than 0.1 s).
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Table 3. Comparative results of Al-DCA, AGD, JGD, and AM in terms of the relative
root-mean-squared error RRMSE defined by (15) (upper row) and training time in
seconds (lower row) on eight real datasets. Bold values indicate the best result.

Name n d m r Al-DCA AGD JGD AM

andro 49 30 6 4 8.42e−01 3.75e+00 3.75e+00 1.22e+00

5.17e−01 1.21e−03 6.32e−04 4.06e−03

atp7d 296 411 6 4 3.63e+00 4.60e+00 4.83e+00 2.74e+04

2.45e+01 7.93e−03 3.05e−03 1.12e−01

oes10 403 298 16 4 5.18e−01 1.18e+00 1.26e+00 1.95e+01

5.41e−01 2.82e−02 3.56e−03 7.53e−02

osales 639 376 12 4 9.89e−01 1.05e+00 1.05e+00 1.09e+03

4.71e−02 4.61e−03 4.50e−03 1.34e−01

rf2 7679 576 8 6 1.09e−01 1.48e+00 1.48e+00 7.70e−01

2.67e+00 2.54e−02 2.52e−02 3.48e−01

scpf 1137 8 3 3 9.88e−01 1.03e+00 1.03e+00 9.35e−01

6.48e−03 6.22e−04 6.66e−04 1.65e−03

sf1 323 7 3 3 9.61e−01 1.02e+00 1.07e+00 1.24e+00

1.49e−03 1.40e−03 4.12e−04 1.51e−03

wq 1060 16 14 4 9.98e−01 1.01e+00 1.62e+00 9.14e−01

1.48e−02 1.45e−02 9.50e−04 2.85e−03

Real Datasets. The error RRMSE obtained by Al-DCA is the best on 6/8
datasets, especially the rf2 dataset with more than 7000 samples. In particular, as
for the rf2 dataset, Al-DCA significantly outperforms AGD, JGD and AM with
the ratio of gain of 92.6%, 92.6% and 85.8%, respectively. On other datasets, the
ratio of gain varies from 1.18% to 77.5%, from 4.07% to 77.5% and from 22.5%
to 99.9%. Comparing with AM, Al-DCA is worse on 2/8 datasets with the ratio
from 5.36% to 9.19%. In Table 3, training times of Al-DCA are reasonable (less
than 1 s on 6/8 datasets and 25 s on the atp7d and rf2 datasets).

4 Conclusions

We have investigated a new approach based on DC programming and DCA
for solving the reduced-rank multitask linear regression problem with covari-
ance estimation. An Alternating version of DCA (Al-DCA) has been devel-
oped. Numerical results on synthetic/real datasets have turned out that the
Al-DCA is more efficient than exiting alternating/joint methods in terms of the
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prediction error, and runs within a reasonable consuming time. In the future,
we plan to show the efficiency of Al-DCA on many other synthetic/real datasets
with different model errors as well as various applications.

Appendix: Comparative Algorithms for Solving the Problem (2)

The AM method alternates between computing the variable X and Θ at every
iteration. In particular, at iteration k, for fixed Θ, we need to compute Xk+1,
an optimal solution to the following problem (see, e.g., [1])

min
1
n

n∑
i=1

(zi − Xφi)�Θk(zi − Xφi) s.t. rank(X) = r. (16)

Let us denote by Z (resp. Φ) a matrix in R
m×n (resp. Rd×n) whose each column is

a vector zi (resp. φi); and define Dk := (ΦΦ�)(−1/2)(ΦZ�)(Θk)(1/2). A reduced-
rank regression estimate Xk+1 of (16) is given by

Xk+1 =
r∑

t=1

λt

[
(1/n)ΦΦ�](−1/2)

utv
�
t (Θk)(−1/2), (17)

where the sequence {λt} is the singular values of matrix Dk; {ut} and {vt}
are the left-hand and right-hand singular vectors of Dk. For fixed X, the AM
computes the point Θk+1 using (13) at Xk+1. Note that the AM method does
not have any parameters.

AM: classic Alternating Method for solving (2)
Initialization: Let ε be a sufficiently small positive number. Let X0 ∈ R

m×d,
Θ0 ∈ R

m×m, Θ0 � 0. Set k = 0.
repeat

1. Compute Xk+1 using (17).
2. Compute Θk+1 using (13).
3. k = k + 1.

until Stopping criteria are satisfied.

The AGD method differs from the AM method by the fact that the AGD
performs one iteration of gradient descent method for solving the convex problem
(16). In particular, Xk+1 is computed as follows [7]:

Xk+1 = ProjX

(
Xk +

2ηX

n
Θk

n∑
i=1

(zi − Xkφi)φ�
i

)
, (18)

where the step size ηX is a tuning parameter. It is similar for the AM to update
the point Θk+1 using (13) at Xk+1.
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AGD: Alternating method using Gradient Descent method for
solving (2)

Initialization: Let ε be a sufficiently small positive number. Let X0 ∈ R
m×d,

Θ0 ∈ R
m×m, Θ0 � 0. Set k = 0.

repeat
1. Compute Xk+1 using (18).
2. Compute Θk+1 using (13).
3. k = k + 1.

until Stopping criteria are satisfied.

The JGD method does not compute two variables alternatively, but takes
one gradient descent step in the joint variable (X,Θ). For estimating Xk+1, it
is the same as (18), while the point Θk+1 is computed by using gradient descent
method for (12) at the point (Xk, Θk) as follows [7]:

Θk+1 = ProjY
(
Θk + ηΘΔk

)
, (19)

where the step size ηΘ is a tuning parameter and

Δk = (Θk)(−1) −
[

1
n

Θk
n∑

i=1

(zi − Xkφi)(zi − Xkφi)�
]

.

JGD: Joint Gradient Descent method for solving (2)
Initialization: Let ε be a sufficiently small positive number. Let X0 ∈ R

m×d,
Θ0 ∈ R

m×m, Θ0 � 0. Set k = 0.
repeat

1. Compute Xk+1 using (18).
2. Compute Θk+1 using (19).
3. k = k + 1.

until Stopping criteria are satisfied.
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Abstract. Bio-inspired optimization consists of drawing inspiration
from the behavior and internal functioning of physical, biological and
social systems to design enhanced optimization algorithms. Our aim in
this paper is to enhance the performance of particle swarm optimization
(PSO), when optimizing the feature selection (FS) problem, by com-
bining two bio-inspired approaches which are chunking and cooperative
learning. The experimental results show that our hybrid wrapper-filter
approach gives competitive results in terms of the predictive accuracy
on the training set.

Keywords: Particle swarm optimization · Cooperative learning ·
Chunking · Feature selection

1 Introduction

Nowadays, with the appeal of artificial intelligence, a challenging problem is to
stimulate principles of real life and turn them into algorithmic solutions that can
be applied to address real-life issues. The ultimate goal is to come up with simple,
easy-to-implement ideas that are adequate for complex real-world problems in
which traditional approaches have difficulties to be applied successfully.

In particular, over the last few decades, many researchers have tried to
advance optimization in this way. The idea of these approaches, which fall under
the umbrella of bio-inspired (or nature-inspired) optimization, is to draw inspi-
ration from the behavior and internal functioning of physical, biological and
social systems to design enhanced optimization algorithms with potential value
in real-world applications [6]. In many cases, these metaheuristics [5] rely either
on evolutionary computation or swarm intelligence.

By analyzing the state of the literature on this subject, we can notice that
there is a large variety of similar methods which have been defined in differ-
ent forms or applied in related fields without cross-referencing them. Readers
are referred to [19] for more details and clarifications on these issues that chal-
lenge research in the field of metaheuristics. Therefore, instead of re-iterating
the existing knowledge in a different form, a line of research that could make a
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real contribution is to properly and newly combine ideas already approved and
to take advantage of different concepts.

In this paper, we are interested in two wily nature-inspired learning
approaches which could be utilized, while solving complex optimization prob-
lems: which are chunking and cooperation. The former, which is inspired by
human behavior, consists in grouping basic information units allowing to build
a higher level solution. Regarding the latter, we can note here that swarm intel-
ligence approaches are by principle based on cooperation, and that most bio-
inspired algorithms belong to the category of swarm intelligence [6] (even if
some of them were criticized for instance in [19]).

These two concepts have been defined in different forms, and were proposed
as an alternative to the classical approach which consists of decomposing a large
problem into sub-components, solve each one using a basic approach, and then
concatenate them to find the final solution. Such approaches were integrated in
some optimization algorithms. In this paper, we focus on PSO which is nowadays
among the most adopted ones. In fact, owing to its simple concept and high
efficiency, PSO has become a widely adopted optimization technique and has
been used successfully to solve many optimization problems, including machine
learning (ML) optimization and function optimization. But, unlike continuous
optimization, less attention has been paid to assessing the relevance of PSO for
discrete optimization problems. In addition, many of the proposed approaches
have shown certain weaknesses and have been applied only to discrete problems
of small dimensionality.

In this work, we are interested in whether our extension of PSO will work well
in combinatorial optimization. In particular, we are interested in the problem
of FS which is among the most important optimization problems in ML. This
problem could be defined as the process of selecting a subset of the most relevant
features (also named attributes or predictors) for the use in the model construc-
tion. FS is a combinatorial optimization problem with 2n possible combinations,
where n is the number of original features. That is, the search space grows expo-
nentially with the number of features, and therefore FS is still a problematic
issue especially on high-dimensional data due to its huge search space.

Researchers have proposed a large number of FS methods for prediction
problems, which can be classified into wrapper and filter approaches [16]. While
a wrapper method evaluates the goodness of a feature subset using a predic-
tion algorithm, a filter method is based solely on the intrinsic characteristic
of the training data. Therefore, wrappers can usually obtain better prediction
performance than filters, but with higher computation time. Therefore, our con-
tribution in this paper is to propose a combination of these two approaches to
combine the advantages of both approaches.

The rest of the paper is organized as follows: in the next section, the related
works are outlined. In Sect. 3, we expose our proposed approach. Section 4
presents the experiments. Finally, the conclusion and the perspectives are
depicted.
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2 Literature Review

In this section, we begin by presenting the notions of chunking and cooperative
learning, and then we focus on the use of PSO in FS.

2.1 Chunking and Cooperative Learning

On the one hand, the purpose of chunking is to limit the cost of computation. It
was first introduced in psychology [13] and then extended into ML [9]; its first
introduction in optimization was in [23]. There were few attempts to apply this
work (e.g. [22] and [24]). In this paper, we aim to use this idea of chunking as
the basis to include cooperative learning in PSO.

On the other hand, regarding cooperative learning, it should first be noted
that the fundamental principle of PSO is based on learning through coopera-
tion and sharing of knowledge: each particle participates in the evolution of the
population and in the improvement of the solution. However, in the canonical
version, all the particles follow the best at each iteration, then the algorithm
could be easily trapped in a local optimum. Therefore, several different learning
mechanisms have been introduced to tackle this issue. The most commonly used
learning concept is the comprehensive learning which has been introduced in [11]
in which each particle learns from another particle chosen according to a learn-
ing probability. We refer to [1] for other examples of learning approaches that
were adopted in PSO. However, as further illustrated in [2], in these learning
approaches, as for the canonical PSO, it is possible that some vector compo-
nents have moved closer to the optimal solution, while others have moved away
from it. As long as the effect of the enhancement outweighs the impact of the
weakening components, these PSO would consider the new vector as an overall
enhancement, although some vector components may have shifted further from
the solution. Therefore, another form of learning was introduced in [2] under the
name of cooperative PSO.

We can notice in this part that most of the adopted approaches for coop-
erative PSO are tailored to continuous optimization. In contrast, less attention
has been paid to understanding how learning and cooperative approaches can be
adapted to combinatorial optimization. An example of such approaches is given
in [7]. In this paper, a discrete adaptation of the cooperative PSO was used to
solve the problem of field programmable gate array placement. Their idea con-
sists of the placement of the I/O and logic block being optimized by different
swarms. In [12], a cooperative multi-swarm PSO algorithm was adopted to solve
the problem of minimizing the electricity payments, the consumer’s dissatisfac-
tion, and the carbon dioxide emissions.

2.2 PSO for FS

Nowadays, FS has become an essential technique in data pre-processing espe-
cially on high-dimensional data in different ML applications [10]. Typical FS
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methods are greedy sequential forward selection (SFS) and backward FS meth-
ods (SBS). However, such greedy approaches are prone to be stuck in local
optima, especially now in the big data era. A global search technique is then
needed to explore this huge search space better, and therefore metaheuristics
have gained much attention in solving this problem. Concerning the use of PSO
for FS, it has been applied for FS in different forms; the most used form is the
native one proposed by [8] as presented in the following section. This approach
has been applied, for instance, in [20] and [25].

With regard to the concepts outlined above, to the best of our knowledge,
the unique paper which used such kind of cooperation in swarm intelligence for
FS is [21]. However, their cooperative design adopted the first ant colony system
to detect optimal cardinality features and the second to select the most relevant
based on this information. When dealing with the problem of FS, we can notice
that most of the papers that were interested in the concept of chunking defined
it under the term of clustering. For instance, in [18], the features are divided into
clusters by using a graph-theoretic clustering method. Their idea is to form a set
of clusters of independent features. Another graph-based approach was proposed
in [15]. In this paper, the authors adopted the community detection algorithm
defined in [3] to divide the features into clusters.

3 The Proposed Approach

In this section, we start by showing how PSO could be applied to the problem of
FS, and then exposing how we have incorporated both the concepts of chunking
and cooperation to improve it.

3.1 PSO for FS

PSO was initially designed for continuous optimization problems, but was
extended in several binary and discrete forms to deal with combinatorial opti-
mization problems such as FS. In this paper, we adopt the traditional and most
known discrete and binary version which was proposed in [8]. In this binary PSO
form, the update of the population of particles t+1 is done according to Eqs. 1,
2 and 3, concerning the inertia weight, and it is updated as in Eq. 4 (more details
can be found in [8]).

vji (t) = wvji (t−1)+ c1r1(p
j
i (t−1)−xj

i (t−1))+ c2.r2.(pjg(t−1)−xj
i (t−1)) (1)

where vji (t) and xj
i (t) correspond to the jth dimension of velocity and position

vectors of the particle i. pji (t−1) represents the j dimension of the best previous
position of particle i. pjg(t − 1) represents the j dimension of the best previous
position among all particles in the population. r1 and r2 are two independently
uniformly distributed random variables. c1 and c2 are the acceleration factors
and w is the inertia weight.

vji (t) = sig(vji (t)) =
1

1 + e−vj
i (t)

(2)
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xj
i (t) =

{
1 if randi ≤ sig(vji (t))
0 else

(3)

where sig is the sigmoid function used to transform continuous values into binary
ones, and randi is a uniform random variable in the interval [0,1].

w = wmax − t

tmax
(wmax − wmin) (4)

t and tmax are, respectively, the current iteration and the maximum number of
iterations.

PSO could be integrated with a wrapper approach as in Algorithm 1 ([17]).
In the following section, we show our contribution to this algorithm.

3.2 FS by Combining Chunking and Cooperative Learning

In this part, our objective is to bridge the gap between the different concepts
highlighted in the previous section. That is, we propose an insight into how to
adopt cooperative learning in PSO by using chunking/clustering in FS.

In the conventional PSO presented in the previous section, each individual
in the swarm represents a complete solution vector. But, in our proposed PSO-
based cooperative learning, instead of having one swarm (of n particles) trying
to find the optimal d-dimensional vector, the vector is split into its clusters
of features that we can consider independent of the others. In other words, a
solution vector of the selected features is a combination of the different solutions
provided by each swarm according to the same principle of the cooperative PSO
[2]. However, a challenging issue is to assign each particle to its appropriate
swarm in order to obtain swarms that optimize an independent sub-problem. In
this paper, we associate with each swarm a cluster of features for which their
F-Correlation with the remaining features could be neglected, and could then
be considered independent of the others. For this, we adopt the idea defined in
[18] which we summarize in the next paragraph.

In [18], after computing the F-Correlation for each pair of features, the fea-
ture set is considered as a vertex set (graph), where each feature is considered
as a vertex and the weight of the edge between vertices f

′
i and f

′
j is their F-

Correlation, the concept of a minimum spanning tree (MST) was adopted for
grouping features, as it does not suppose that the points are grouped around the
centers. More concretely, after having connected all the vertices so that the sum
of the weights of the edges is minimal, the clusters are formed by removing the
edges whose weights are smaller than the T-Relevance of both features with the
class. We must note that we are based here on the consideration of [18] that the
highly correlated features are assembled in a cluster; that is why we defined our
assumption of independence of different clusters.

In Algorithm2, we define the different steps of the proposed approach.
As we can see above, the approach is simple and consists mainly of combin-

ing the approaches explored before. In fact, unless it is necessary, it is generally
recommended to define the approaches in the simplest form. Our proposed app-
roach is based on two concepts which are chunking/grouping and cooperative
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Algorithm 1: PSO for FS [17]
Data: Training set (X,Y ) = (x1, y1), ..., (xm, ym) , c1, c2 (PSO parameters), l

population size
Initialization: Initialize the vector positions (p1, ..., pn where
pi = p1i , ..., p

d
i ∀i = 1, ..., n) and velocities (v1, ..., vn where

vi = v1i , ..., v
d
i ∀i = 1, ..., n) of particles, the fitness fit , pbest and gbest ;

Initialize the scalars inertia weight ( w ) and f(gbest) ) ;
Set t value to 1 ;
while number of iterations t ≤ tmax do

for i = 1 to n do
for j = 1 to d do

Compute the velocity vji (t) according to the Eqs. (1) and (2);
Compute the position xj

i (t) according to the Eq. (3) ;
end
Evaluate the fitness fiti(t) of the particle i using ML prediction ;
if (fiti(t) ≤ f(pi(t))) then

(pi(t) ← xi(t))&(f(pi(t)) ← fiti(xi(t)))
end
if (fiti(t) ≤ f(pg(t))) then

(pg(t) ← xi(t))&(f(gbest) ← fiti(xi(t)))
end

end
Update the inertia weight w according to the Eq. (4) ;
t −→ t+ 1

end
Return pg ;
for k = 1 to d do

if (pg(k) = 1) then
(f

′
(l) ← f(k)) ;

l ← l + 1
end

end
for k = i to n do

x
′
i = (x

i(f
′
1)
, ..., x

i(f
′
d
)
;

end
Result: A training subset of (x

′
1, y1), ..., (x

′
m, ym) of d∗ features (f

′
1, ..., f

′
d )

(where x
′
i = (x

i(f
′
1)
, ..., x

i(f
′
d
)
)

learning, and our contribution is to newly combine them to better address the
problem of FS.
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Algorithm 2: Cooperative PSO with chunking for FS
Data: Same of Algorithm 1
Initialization: positions and velocities of particles ;
Divide dataset into a training set and a test set ;
Set k value to 1 ;
calculate the F-Correlation for each pair of features ;
Determine a minimum spanning tree ;
Generate d clusters by removing edges using T-Relevance [18] ;
for k = 1 to d do

Run Algorithm 1 ;
end
Concatenate the selected features to obtain the final solution ;
Evaluate the solution on both training and test set ;
Result: The chosen subset and parameter values based on the best solution in

the training set and the corresponding fitness values on the training
and test sets

4 Experiment

4.1 Parameter Setting

In this experiment, on the one hand, 80% of the sample are used in training
while the remaining 20% of the sample are used in testing. Concerning the ML
approach adopted in the wrapper part of our approach, a support vector machine
(SVM) approach [4] is chosen as it has shown good performance in both ML
classification and regression tasks. That is, SVM is adopted in this paper in order
to measure the predictive power of the subset. To implement PSO for FS, we
have adopted the “PySwarms” research toolkit [14]. Concerning PSO parameters,
we consider c1 = 0.5 and c2 = 0.5 ; the number of particles is set to 30. We have
chosen these values, which are the default parameters provided in “PySwarms”,
as they enable a balance between exploration and exploitation. More details on
the impact of these parameters can be found in [1]. The maximum number of
iterations is set to 10. We must note that in this paper, as a first experiment,
we have considered the numbers of chunks/clusters in Algorithm 2 as 2. In other
words, if the T-Relevance-based condition is detected, the feature set is clustered
for only once.

To evaluate our approach, we used publicly available datasets from the UCI
ML repository. More information on these datasets can be found in Table 1.

To measure the prediction accuracy of the algorithm, we have adopted for
classification problems the classification accuracy, while for the regression prob-
lem, we have used the mean percentage error. We compare our approach with
the PSO-based wrapper approach (with the same design adopted in [17]). The
algorithms were executed on a computer equipped with an Intel i7-9750H and
16GB of RAM.
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Table 1. Benchmark dataset

Data name Features Samples Target Type

1 Boston 13 506 Real 5. - 50 Regression
2 Breast cancer 30 569 2 classes Classification
3 Ionosphere 34 351 2 classes Classification
4 Lung cancer 56 32 2 classes Classification
5 Sonar 60 208 2 classes Classification
6 Digits 60 1797 10 classes Classification
7 Madelon 100 4400 2 classes Classification
8 Semeion 256 1593 2 classes Classification
9 Voice rehabilitation 309 126 2 classes Classification

10 Speech 756 754 2 classes Classification

4.2 Results

For each one of the two optimizations algorithms: (our approach and the PSO-
based wrapper approach), we display in Table 2 the results obtained for the
different datasets, which consists of the prediction accuracy on training and test
sets (based on the measurements mentioned above).

Table 2. Comparison of the prediction on training and test sets

Our approach PSO-based approach
Training acc. Test acc. Training acc. Test acc

Boston 0.1291 1.0207 0.1291 1.0207
Breast-cancer 0.980 0.763 0.943 0.886
Ionosphere 0.907 0.901 0.896 0.901
Lung cancer 0.840 0.429 0.480 0.429
Sonar 0.512 0.619 0.530 0.714
Digits 1.000 0.508 0.999 0.714
Madelon 0.500 0.492 0.500 0.492
Semeion 0.651 0.352 0.590 0.426
Voice rehabilitation 1.000 0.720 1.000 0.720
Speech 1.000 0.429 1.000 0.429

We can see that the proposed approach outperforms the PSO-based approach
in terms of the accuracy on the training set. Indeed, with the exception of the
“Sonar” dataset, and other datasets such as “Voice Rehabilitation” and “Speech”
in which both approaches give the same results (as the best result is trivial),
our approach gives better results on the training set in the remaining datasets,
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which is more representative of the efficiency of the algorithms. That is, both
optimization algorithms try to optimize the training accuracy, by selecting the
most relevant features, so as to have the best ML prediction possible. We can
conclude then that if the features are clustered in an appropriate way, PSO may
be able to optimize the SVM performance in a smaller number of iterations (in
our case 10). But, this performance also depends on other factors (e.g. SVM
parameters) and this is the reason for the difference in performance for the
different data.

On the other hand, we can see that the PSO-based approach gives better
results in many cases on the test set, based on the selected features.

Moreover, to show a more in-depth comparison of the two approaches, we
depict in Table 3 a comparison of the CPU time (in seconds) and the number of
selected features.

Table 3. Comparison of the CPU time and the number of features

Our approach PSO-based approach
CPU time Nb. of Features CPU time Nb. of Features

Boston 2.2207 5 1.466 5
Breast-cancer 1.7131 11 1.7272 12
Ionosphere 0.7679 14 0.5984 13
Lung cancer 1.2077 26 1.0588 29
Sonar 1.9025 20 1.8045 29
Digits 22.1199 37 22.6183 29
Madelon 25.2395 46 15.1205 47
Semeion 2.3154 212 1.9778 212
Voice rehabilitation 1.4800 142 1.3682 153
Speech 30.0225 383 25.0361 379

We can see that both approaches have given a close CPU time depending
on each case study. The same remark applies to the number of features. We
can note in particular that for the “Semeion” dataset, even if the number of
selected features is equal, they have selected different features, and hence differ-
ent results are obtained in Table 2. On the other hand, for “Voice Rehabilitation”
and “Speech” datasets, even if the number of selected features is different, the
two approaches have given similar results.

5 Conclusion

In this paper, we have introduced a novel extension of PSO based on an
hybridization of two bio-inspired concepts, which are chunking and coopera-
tive learning, adapted to the problem of FS. The experiment consisted of a first
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investigation of the efficiency of the approach and has shown that it could be
more suitable than a PSO-based wrapper approach in terms of the predictive
accuracy on the training set.

Further research should attempt to examine the proposed approach in the
largest datasets available in the literature, and to compare it with the state of
the art of FS approaches. Moreover, statistical tests will be useful to provide a
more detailed comparison of the different approaches.
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Abstract. We consider the dynamic patient scheduling for the hospital
surgery department with electronic health records. Models for increas-
ing the throughput of the surgery are proposed. It is based on classical
intellectual optimization problems, such as the assignment problem, the
scheduling problem, and the forecasting problem. Various approaches to
solving the proposed problem are investigated. The formalization of the
surgery planning problem of the large medical hospital surgery depart-
ment is considered.

Keywords: Dynamic patient scheduling · Health care programs ·
Electronic information card · Scheduling problem

1 Introduction

High-tech medical care (HTMC) is medical care with the use of high technologies
for the treatment of complex diseases. It includes both treatment and diagnostic
services that are performed in a specialized hospital. There is a list of HTMC
operations that can be done for Russian citizens for free. If the required oper-
ation is in the list, the order of further actions is as follows: visit the General
Practitioner; consult and get a referral for analysis and diagnostic tests; pass
the necessary tests; go to a doctor again with the results of the tests; get a
referral from the doctor for a commission; pass the commission; visit a doctor
to get a referral for hospitalization; undergo second testing for hospitalization;
admission to the hospital registration in the hospital, setting the date of the
operation. In total, the entire process of preparing for a free operation can take
up to six months. If the operation is needed urgently, patient can agree to a paid
operation, and then apply for a compensation. Each organization has its own
special aspects of the surgery unit. In the daily activities of a multi-specialty
surgical hospital with a large bed capacity, the capacity of the surgery unit can
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often become a limiting factor for the intensification of the whole hospital’s func-
tioning. This problem can be particularly acute if individual surgery rooms are
specialized and equipped to perform surgical interventions of a dedicated profile
(for example, neurosurgery). The Burdenko Neurosurgery Center is a neuro-
surgical clinic that provides care to patients with diseases of the central and
peripheral nervous system. Optimizing the operation of the surgery department
of the Burdenko Neurosurgery Center will increase its throughput and improve
conditions for patients.

The scheduling practices are being discussed in health care programs of dif-
ferent countries. Patients undergo a series of medical analysis before being eligi-
ble for elective surgery. At the same time various aspects of implementation and
improvement of medical Electronic Information Card (EIC) are studied and ana-
lyzed in many countries, such as technological [1–3], legal [4], managerial [5,6]. In
Russia the situation is different [7–9] because of the process of organizing medi-
cal care is quite complicated. There are three main areas of research in medical
processes automation: electronic medical records in various versions; decision
support based on clinical guidelines; clinical process management .

An interesting research is being conducted in the Kaliningrad [10,11] on the
use of EIC in solving diagnostic problems and organizing consultations. The
most significant analytical information systems (AIS) are the following.

– AIS in the president’s polyclinic. The 1st version of it was developed in the
70s and 80s in Institute of Control Sciences of Russian Academy of Sciences.

– The system developed at the Burdenko Neurosurgical Center [12–15].
– Regional information and analytical medical system (an example can be found

in [16]).

However, the majority of potential users have insufficient skills to work with
modern information technologies [17]. This significantly complicates the imple-
mentation and wide distribution of the technologies. Among the restraints to
the widespread introduction of EIC, researchers include: unwillingness of many
ordinary doctors to spend additional time working on a computer; immetodical
approach to automation; bad automation experience obtained earlier; inflated
(or low) expectations of the opportunities provided by AIS and EIC; psycholog-
ical problems; fear of appearing incompetent; unwillingness to provide primary
information openly; laziness and illiteracy. All of these interferences inhibit the
widespread use of medical AIS and EIC. But this is surmountable. In the last
few years, a team of scientists from the Institute of Control Sciences of RAS
and the Burdenko Neurosurgical Center creates a more modern EIC focused on
solving management problems [18–20].

Features of the treatment process organization in the Burdenko Neurosurgi-
cal Center are dependent of the following two main circumstances that creates
additional problems during the organization of the treatment process.

1. The system of financing of the treatment is complex and quite confusing.
2. Patients come to Burdenko Center from all over Russia. Forming the input

flow of patients is a hard and time-consuming work.
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The main source of information and expert opinions for building the concept
was expert information received from the specialists of the Burdenko Neurosur-
gical Center: the chief physician, heads of surgical departments, doctors of the
emergency department, etc. Working with experts and analyzing the informa-
tion received from them requires a special technique. The issue is that different
experts have different (sometimes diametrically opposite) opinions on many key
aspects of the treatment process organization. It happens because their opin-
ions depend on their position in the organization and the functions they per-
form. Institute of Control Sciences of RAS has developed a method of collec-
tive multivariate expertise for working with experts in a specific language they
understand. The method has many modifications for different types of prob-
lems, but the principle of cross-discussion is common to all modifications. But
the Burdenko Neurosurgical Center has another source of information: a care-
fully designed and efficient information system that provides electronic storage
of medical records and centralized access to the medical information. For each
patient, time moments of main treatment events are recorded. This information
was not used before this project. In the process of developing the concept, this
information have been used to build a clearly arranged picture of the treatment
process, to identify the real workload of surgical departments and the surgery
units, the available reserves, which allow to check and clarify the opinions of the
specialists about the bottlenecks of the system and possible ways to improve it.

The paper is organized as follows. In Sect. 2, we reviewed existing solution
methods of health scheduling problems. In Sect. 3 scheme of the hospitalization
process in the Burdenko Neurosurgical Center. The initial data of the mathemat-
ical model are discussed in Sect. 4. Mathematical model we consider in Sect. 5.
Section 6 reviews the experimental results. And some remarks in Conclusion.

2 Health Scheduling

Due to modern technology, medical care is becoming automated. Therefore, the
study of optimizing service processes is relevant. There are many publications
on health scheduling. Let’s consider some articles for the investigated problem
of optimizing surgery rooms.

The article [21] is devoted to the study of the schedule of surgical operations
and the appointment of surgeons in the operating room focusing on elective
patients with different urgency. Long waiting times can increase the urgency of
the patient and lead to complications. The goal is to maximize the sum of the
urgency values assigned to each operation. The average duration of surgery was
obtained from hospital data. Since it takes a long computational time to solve
a large-scale model problem, the authors developed a local search algorithm
based on a simple heuristic to solve the problem. A simple heuristic (SH) is
developed to schedule the surgeries based on their urgency value. An urgency
value will determine the assignment of the surgeries to the operating rooms on
each days. The SH start by sequencing the waiting list. Authors sequence the
patient with high urgency value over patient with lower urgency value. Finally,
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they will scheduled the patients based on the list. After executing the SH, an
initial schedule is obtained. Next you need to improve the schedule in terms of
efficiency through LS. This heuristic is developed to assist the hospital by giving
priority to the urgent patient based on their condition. LS consider the searching
of solutions in the neighborhood and it will move from one neighborhood to
another to find a better solution. The iteration will continue until no better
solution can be found. If the best solution is found, it will replaced the current
solution with the best solution. Based on the results, both heuristics are very
good in reducing the large running time of the ILP model. The Local Search is
better since it significantly reduce the computational time while giving a good
solution which is as close as the optimal solution from the model.

The article [22] presents an integer programming model for scheduling oper-
ating rooms. This model tries to minimize the total weighted time to start opera-
tions. To calculate the weight, three age groups of patients are taken into account.
The setup time for this group of patients depends on the sequence and the dura-
tion of the operation is analyzed using fuzzy logic. The proposed model is solved
using a hybrid algorithm. When the operation is completed, it takes time to
prepare the operating room for the next operation (cleaning the room, changing
doctors, replacing equipment). Installation time plays a very important role in
choosing the operating room schedule. The main contribution of this study is
that the installation time between operations depends on the sequence, and the
duration of the surgical operation depends on fuzzy numbers. The scheduling
decision for operating room (OR) includes the assignment of surgical operations
to ORs, and the operation sequence in each OR. Different types of each oper-
ations may need various resources and equipment. Some resources and equip-
ment for each surgical operation can be used among several ORs, some of them
are dedicated to particular ORs. Each surgical operation is constrained by the
resources and equipment associated with the OR. Solution procedure has two
steps: first, need to choose initial scheduled based on Weighted Shortest Process-
ing Time because the objective of proposed model relates to total weighted so
this procedure for initial solution is decent option. Second, we tested some local
search heuristics, which focus on solution improvement by swapping two differ-
ent surgeries between OR-days (a two-exchange), or by moving one surgery to
another OR (a one exchange). The algorithm is implemented using the software
package MATLAB version 8.4. After the launch of the model, acceptable results
were achieved. The paper [23] proposes a multi-step approach and a typing pri-
ority rule to generate the initial sequence for “bin-packing”. Case studies show
that the PTD (Priority-Type-Duration) rule is superior to the LPT (Longest
Processing Time) rule based on the cost of operating planning. In the proposed
model, patients are divided into 5 groups according to priority. At the planning
stage, the interest is in defining a set of planned activities for resource alloca-
tion. In this study, N elective cases with different priorities and different types of
operations are selected from the waiting list. A set of costs is defined as a mea-
sure for evaluating operational cost planning, for example, fixed costs, overtime
costs, downtime costs and installation costs. A bin-packing model maximizes uti-
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lization and minimizes the idle time, which consequently affects the cost at the
planning phase. Since the priority is the most important factor for performing
a surgery, authors first sequence surgeries according to their relative priorities.
There are five groups. The second step is to group surgeries according to surgery
types within each priority group. The third step is to sequence surgeries in each
subgroup by the LPT rule based on their durations. After obtaining the initial
sequence, authors assign surgeries to surgery room from the head of sequence
(the highest priority) to the tail of sequence (the lowest priority), while they
avoid combining different surgery types into one surgery room. If there is still
some remaining time in the surgery room after assigning all patients, need to
search for a compatible patient from lower priority groups with the same surgery
type. If there is no compatible cases, they leave the remaining time idle.

Paper [24] focuses on the block operating room planning strategy. In such a
strategy, each specialty receives several operating blocks during a certain plan-
ning period, in which it can distribute its surgical cases. The planning problem
is further complicated by the change in the duration of surgical cases, which
reduces the use of operating rooms. The proposed model includes trying to opti-
mize the use of operating rooms without canceling and increasing overtime. The
objective function includes patient waiting time, operating downtime and over-
time. Patients belong to a waiting list, where they are registered at the moment
they are referred. A subset of patients is selected who will be operated on in
the planning horizon under consideration and assigned to weeks and operating
blocks, while ensuring that the capacity of each block is not exceeded. The objec-
tive function is aimed at minimizing the overall penalty due to delays in service
of patients. Authors propose an approach combining offline and online decisions.
The offline solutions are applied and modified online so as to manage patients
who have been cancelled and must be rescheduled and newly patient arrivals.
Uncertainty in surgery duration must be considered in the offline step, so as to
reduce the number of cancelled patients: Authors apply a cardinality-constrained
robust optimization approach to model the off-line scheduling problem. Tests on
a set of real-based instances are carried on. They apply the proposed two-step
approach on a set of randomly generated scenarios in order to assess its behavior
in managing patients to be rescheduled and new arrivals. Beside, we evaluate
the benefit of applying a robust solution rather than a non-robust one in the
off-line step.

This model can be solved using stochastic programming and various heuristic
methods. In [25], a problem of scheduling of the surgical department of a Chi-
nese hospital is considered. Emergency and planned patients can be served in
the same operating rooms. There are fixed time slots for planned operations as
well as flexible slots for unscheduled operations. Authors propose a simulation-
optimization approach consisting of two models. For a two-stage stochastic opti-
mization model, uncertain arrival times of emergency patients are represented by
a set of scenarios. The discrete event simulation model is designed to eliminate
the uncertainties associated with the duration of the operation and the length
of stay in the hospital, as well as to verify the basic schedule of the operation
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developed using the stochastic model. A simulation model is also used to gen-
erate scenarios. The resulting system shows good results both on emergency
waiting time and on the stability of the planned operations schedule.

3 Scheme of the Hospitalization Process

The goal is to increase throughput due to two factors: reducing gaps in schedule
and increasing the number of resources (bed stock, IDs of surgery rooms). We
can use information system of the Burdenko Neurosurgical Center and doctors’
expert evaluation to solve the problem. Experts identify subproblems such as
hospitalization, surgical department manipulations, and monitoring of surgery
rooms.

The problem is divided into three subproblems. The first is the problem of
allocating specialists to the appropriate rooms at a certain time. The second
problem is to create a schedule for receiving patients for surgery. The third is
the problem of predicting downtimes of surgery rooms. Let’s consider the facts
that determine the features of the problem:

1. Hospitalization. The main focus is on patients who are admitted to the hos-
pital for their planned hospitalization and are registered in the queue. In
addition, there are patients who are served on a commercial basis. As soon as
a patient leaves the hospital, employees look through the queue list and select
the next patient. The choice depends on the department, where a vacant bed
is appeared. The person from the queue whose diagnosis corresponds to the
service in the department is being selected.
The constraints of the problem are formed out of the following facts.

– Patients come from different regions of the Russian Federation as soon as
beds are released in 10 specialized surgical departments.

– All the patient documents are checked.
– Comorbidities are checked.
– There is a mandatory list of medical analysis and diagnosing tests.
– Appearing of unscheduled patients, as well as those who arrived without

a call or their representatives.
– The anesthesiologist consults patients only from 14:00 to 15:00.
– Necessary time for monitoring the course of the disease.

The following factors affect the delay in hospitalization.
A. The difference between the call for hospitalization and the actual arrival

of the patient. It is assumed that calling a patient means reserving a bed.
We assume that the reserve has a time limit.

B. Difference between patient arrival and hospitalization. It consists of
the time spent on checking documents, the comorbidities, conducting a
mandatory list of medical analysis and diagnosing tests, as well as the
need to consult an anesthesiologist and other specialists.

2. The surgical department.
– The patient’s stay includes a pre-operation procedures, one or more oper-

ations, and restorative treatment.
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– Each surgical department has 30 beds.
– When a patient is undergoing surgery or intensive care, a new patient

cannot be placed in their bed.
– Necessary time for monitoring the course of the disease.

3. Monitoring of surgeries.
– The medical center has 14 main surgery rooms, including rooms numbered

R1 – R4 (usually less busy) for operations that require x-ray inspection.
– Each surgery department has priority for using its own surgery room,

but if there is free time, it provides the surgery room to other surgery
departments.

– Longer operations are to be started at the beginning of the day.

The rooms. Each department contains a set of rooms. The room can be:
registry, consulting, patients, surgery and emergency. Capacity of registry room
is determined by the number of available receptionists. In consulting rooms the
doctor can consult one patient at a time and doctors can accept patients from
different departments. Patients rooms have 30 beds for each department, wards
are assigned to certain departments. Only one patient can be in a surgery room
at a time. There are 14 surgery rooms, including 4 with x-ray equipment. Each
surgery room is assigned to a specific department, but can be provided for the
work of another department. In emergency room also can be only one patient at
a time. Many rooms of different departments may overlap in certain cases.

The Specialists. The specialist can be: a consulting doctor, a doctor perform-
ing a surgery, a GP who is supervising the patient, a receptionist. In cases where
several specialists are working with the patient at the same time, the responsible
doctor will be designated as a specialist. For example, in the case of an oper-
ation, this is the doctor who performs the operation directly. Many specialists
from different departments may overlap in certain cases.

The Patients. Each patient is assigned to a specific department upon arrival,
from which they can be transferred to other departments during treatment. For
each patient, there is a disease (group of diseases) that corresponds to a set of
procedures: observation, consultation, operation, resuscitation, delivery of the
analysis. We will also include here the procedures necessary for receiving each
patient: registration (this also includes checking documents), arriving (time from
receiving the call to arriving at the hospital).

Time for each procedure has a fixed upper bound. The set of procedures may
change depending on the preceding procedures. For example, an operation may
be canceled due to a specialist’s consultation, or an unplanned emergency pro-
cedures may occur after the operation. After certain procedures are completed,
the service may be terminated prematurely if:

– the patient did not collect all the documents (this is checked at the registry
just after arrival),

– the patient’s analysis and diagnosing tests do not allow the operation to be
performed in the near future,

– the consultation states that the operation is contraindicated,
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– the patient is being transferred to another hospital,
– the patient died.

The precedence relations between the procedures are set in the form of
an acyclic oriented graph. Based on the problem condition, a specific set and
sequence of procedures are typical for each department.

4 Data

Burdenko Neurosurgical Center information system includes information about a
patient’s hospitalization, the principles of his treatment, the work of the depart-
ment, including occupied beds, the work of the surgical department, etc.

For each patient, information about their operations is generated in the sys-
tem. This creates a table that consists of the following columns: number of the
patient; date; the host department; surgery room ID; complexity category of
operation; start of operation; end of operation.

Based on this table, we can conclude that usage periods of surgery rooms
usually have gaps, which greatly reduces the efficiency of surgery rooms.

According to examples for each operation we know its duration, complexity
category and the department in which it should be performed. The relationship
of all entered parameters of the operation is not defined. Thus, the connection
between the complexity of the operation and the time of its execution is not
known. By using these example we created the frequency dictionary of various
parameters and used it in the generation.

In the generated data the Center received a random number of patients n
with a 15 min frequency. The value n is distributed normally with parameters μ
and σ2: n ∼ N(μ, σ2). By varying the values of μ and σ2, it is possible to set
the admission density of patients. The department and complexity category for
each patient was set randomly based on a weighted selection procedure. That is,
the more often the complexity category was encountered in the initial data, the
greater will be the probability of its generation. The time of operation was also
set on the basis of a weighted selection, but from those values that were usual
of the given complexity and for the given department.

A pattern could not be identified for preliminary stay. Thus, the time of
preliminary stay of patients awaiting for hospitalization is an random value,
evenly distributed at [T0, T1] interval.

5 Monitoring of Surgeries

Consider the problem of planning patients J = {1, . . . , n} in the operating room
I = {1, . . . , 10}. Each patient j ∈ J has time rj , after which the patient can
start the operation, and processing time of operation pj . Each patient is tied to
a specific operating room wj ∈ I. We introduce the decision variable Xt

ij , which
is equal 1 if the patient j starts operation in operating room i ∈ I in time t ∈ l,
and equal 0 otherwise. l - is the upper time limit. A set of times S represents a
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off-hours. In daytime mode, operations are carried out only from 9:00 to 18:00.
As the objective function, we take the total completion time of all operations.

We consider two models: a model of a twenty-for-hour clinic (Model A) and
a model of a clinic with ‘standard’ working day from 9:00 to 18:00 (Model B).

Model A
Objective function:

∑

j∈J

Cj → min
Xt

ij

(1)

Subject to:
l∑

t=0

Xt
wjj = 1, ∀j ∈ J ; (2)

∑

j∈J

t−1∑

h=max(0,t−pj)

Xh
ij ≤ 1, ∀i ∈ I, ∀t ∈ l; (3)

Cj =
∑

i∈I

l−1∑

t=0

(t + pj)Xt
ij , ∀j ∈ J ; (4)

Cj ≥ rj + pj , ∀j ∈ J. (5)

Model B is model A with the following constraints added:

Cj − pj ≥ 9 : 00, ∀j ∈ J ; (6)

Cj ≤ 18 : 00, ∀j ∈ J. (7)

An objective function is to minimize a total completion time of all opera-
tions. A set of constraints (2) ensures that each patient will be operated in a
pre-assigned operating room. Constraint set (3) allows at most one job to be
processed at any time on any machine. Constraint sets (4) and (5) determines
the completion time of operations. Constraints (6,7) define the working hours of
the surgery rooms.

6 Computational Experiments

We conducted experiments on the real-like data for models A and B.

Experiment 1. The objective and constraints of model A are represented by
formulas (1–5). Operating rooms are supposed to work around the clock. The
results of the experiments are presented in the Figs. 1 and 2. In the Fig. 1 the
department number is plotted on the x-axis, the objective function value is
plotted on the y-axis at different densities of patient penetration. The figure
shows that with a patient density of 25 patients per hour, a significant increase
in the value of the objective function for the 7th department occurs. For the
density of patient admission of 5 people per hour, an increase in the objective
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Fig. 1. Histogram of objective function values for different densities, around the clock.

function in the 3rd department is visible. The solution seems to be to compensate
for the load on the busiest branch of the department by transferring the load to
a less busy department.

The Fig. 2 shows a Gantt chart for a patient density of 25 patients per hour.
Departments are on the y-axis. The picture shows that operating rooms loaded
with different intensities.

Fig. 2. Gantt chart for round-the-clock operation



The Problem of the Hospital Surgery Department Debottlenecking 299

Fig. 3. Histogram of objective function values for different densities, 9:00 to 18:00.

Fig. 4. Gantt chart for working 9:00 to 18:00

Experiment 2. The objective function and constraints of model B are represented
by formulas (1–7). Operating rooms are supposed to work from 9:00 to 18:00 and
to be closed at night. The results are presented in the Figs. 3 and 4. Figure 3 on
the x-axis contains number of the department, on the y-axis contains the value of
the objective function for the department, the color of the column indicates the
density of patients per hour. We can see a significant increase in the objective
function value for 7th department at the patient arrival density of 25 patients
per hour, which indicates an overload of the department. For an arrival density
of 5 patients per hour, we can see the increase of the objective function in the 3rd
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department. It is possible to compensate the load of the busiest department by
transporting it’s patients to the free surgery rooms of less loaded departments.

The Fig. 4 shows a Gantt chart for a patient density of 25 patients per hour
for model B. Departments are on the y-axis. The picture shows that with a high
load in the 7th department, up to five days delay in patient care can occur. The
7th department should be unloaded at the expense of other departments.

7 Conclusion

This paper presents a formal statement of the problem of predictive planning
of surgery units in a large medical hospital and outlines the ways of its optimal
solution. Experiments were carried out on the real-like data, which were gen-
erated on the basis of data provided by Burdenko Institute. An experiment for
operating round-the-clock operating rooms showed that some departments are
loaded much more intensively than others.

The Gantt chart in Fig. 2 shows that with a very high load, patients arrived
in one day in the 7th department are served in two days. The difference in the
load of the departments is even greater. With this intensity of patient admission,
it is impossible to establish the work of the department. But at the same time
it can be seen on the diagram that there are departments that are complete the
service ahead of schedule. If operating rooms in less loaded departments will be
used for other departments, the throughput of a large unit can be increased.

Further work will be aimed at creating a schedule for the model, which implies
the possibility of transferring the patients to the operating rooms of another
departments if it is not busy. Planning the maintenance process with the new
condition will allow us to build a long-term schedule with fewer gaps.
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Abstract. Sequential Model-based Bayesian Optimization has been success-
fully applied to several application domains, characterized by complex search
spaces, such as Automated Machine Learning and Neural Architecture Search.
This paper focuses on optimal control problems, proposing a Sequential Model-
based Bayesian Optimization framework to learn optimal control strategies. The
strategies are synthetized by pressure-based rules, whose parameters are the
design variables of the optimization problem whose black-box objective is the
energy cost. A Bayesian optimization framework is presented which handles a
quite general formalization of the control problem including multiple con-
straints, also black box. Relevant results on a real-life Water Distribution Net-
work are reported, comparing different possible choices for the proposed
framework.

Keywords: Sequential Model-based Bayesian optimization � Optimal control �
Water distribution networks

1 Introduction

Sequential Model-based Bayesian Optimization (SMBO) is a sample-efficient strategy
for global optimization (GO) of black-box, expensive and multi-extremal functions [1–
4], where the solution of the problem is traditionally constrained to over a box-bounded
search space X:

min
x2X�R

d
f xð Þ ð1Þ

SMBO has been successfully applied in several domains, ranging from design
problems (new materials, drugs, software, structural design) to robotics, control and
finance (a brief overview about application domains is provided in Chap. 7 of [5]).

In the Machine Learning (ML) community, it recently became the standard strategy
for Automated Machine Learning (AutoML) [6] and Neural Architecture Search
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(NAS) [7], which are usually characterized by a search space being more complex than
a box-bounded domain. More precisely, x can consists of mixed (continuous, integer,
categorical) components as well as “conditional”, where conditional means that the
value of a component xi depends on the value of another component xj, with i 6¼ j. An
example of complex search space in AutoML is related to the optimization of ML
pipelines, such as the one presented in [8].

Starting from the SMBO advances in the ML domain, we consider in this paper an
optimal control problem sharing many characteristics with AutoML. More precisely,
we addressed the optimal definition of control rules regulating the ON/OFF switching
of pumps in a Water Distribution Network (WDN). The objective is the minimization
of the energy-related costs while guaranteeing the supply of the water demand.

We remark that the problem is black-box because the evaluation of both the
objective function and the constraints is based on a hydraulic simulator: moreover the
constraints on decision variables make the search-space complex (i.e., analogously to
AutoML, decision variables are both mixed – numeric and discrete – and possibly
conditional).

The rest of the paper is organized as follows: in Sect. 2, the methodological
background about SMBO and optimization of operations in WDNs is presented.
Section 3 provides the mathematical formulation of the optimal control problems,
along with the proposed solution. Section 4 defines the experimental setting and
Sect. 5 summarizes the results obtained. Finally, conclusions and discussion on
advantages and limitations of the proposed approach are provided.

2 Background

2.1 Sequential Model-Based Bayesian Optimization

To solve problem (1), SMBO uses two key components: a probabilistic surrogate
model of f xð Þ, sequentially updated with respect to new function evaluations, and an
acquisition function (aka infill criterion or utility function), driving the choice of the
next promising point x where to evaluate f xð Þ while dealing with the exploitation-
exploration dilemma. A typical choice for the probabilistic surrogate model is a
Gaussian Process (GP) [9] (in this case, SMBO is also known as GP-based opti-
mization or Bayesian Optimization [5, 10]). An alternative probabilistic surrogate
model is a Random Forest (RF) [11], an ensemble learning approach which, by con-
struction, can deal with mixed and conditional components of x, making RFs more
well-suited than GPs to solve problems with these characteristics.

The probabilistic surrogate model – whichever it is – should provide an estimate of
f xð Þ along with a measure of uncertainty about such an estimate, with x 2 X. These two
elements are usually the mean and standard deviation of the prediction provided by the
probabilistic surrogate model, denoted by l xð Þ and r xð Þ, respectively.

With respect to the acquisition function, several alternatives have been proposed,
implementing different mechanisms to balance exploitation and exploration (i.e., l xð Þ
and r xð Þ, respectively) [5, 10]. In this paper we focused on a subset of acquisition
functions, reported in the experimental setting section.
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Due to the sequential nature of SMBO, at a generic iteration n we can denote the set
of function evaluations performed so far by D1:n ¼ x ið Þ; y ið Þ� �� �

i¼1;::;n, where

y ið Þ ¼ f x ið Þ� �þ e, and e�N le; reð Þ in the case of a noisy objective function.
The probabilistic surrogate model is learned at every iteration, providing the

updated l nð Þ xð Þ and r nð Þ xð Þ. Then, x nþ 1ð Þ, is chosen by solving the auxiliary problem:

x nþ 1ð Þ ¼ argmax
x2X�R

d

a nð Þ xð Þ ð2Þ

where a nð Þ xð Þ is the acquisition function, typically a nð Þ x; l nð Þ xð Þ; r nð Þ xð Þ� �
. This aux-

iliary problem is usually less expensive than the original one, and can be solved by
gradient-based methods (e.g., L-BFGS) – in the case that the analytical form of l nð Þ xð Þ
and r nð Þ xð Þ is given (i.e., when a GP is used as probabilistic surrogate model) – or GO
approaches (e.g., DIRECT, Random Search and its recent variants, evolutionary meta-
heuristics, etc.) – in the case that l nð Þ xð Þ and r nð Þ xð Þ are also black-box (i.e., when a RF
is used as a probabilistic surrogate model).

Then, the objective function is evaluated at x nþ 1ð Þ, leading to the observation of
y nþ 1ð Þ and the update D1:nþ 1 ¼ D1:nþ 1 [ x nþ 1ð Þ; y nþ 1ð Þ� �� �

. The process is iterated
until some termination criterion is achieved, such as a maximum number of function
evaluations has been performed.

2.2 Constrained SMBO

Real life optimization problems have most often constraints making the search space
more complex than simply box-bounded [10] and the “vanilla” SMBO not well suited
for solving them. In constrained SMBO, the problem (1) can be rewritten as:

min
x2X�R

d
f xð Þ

gi xð Þ� 0i ¼ 1; . . .; ng
ð3Þ

Solving approaches can be categorized depending on the nature of the constraints:
they can be known a-priori and given in analytical form or, on the contrary, they are
unknown (aka hidden, black-box). With respect to the first case, several approaches
have been proposed in the GO community [12–14], while the second case is more
related to simulation-optimization and AutoML [15–19].

A further consideration, with respect to unknown constraints, is that the objective
function could be not computable in association with the violation of one or more
constraint, leading to the global optimization of partially defined functions [20–22].
Recently, a two-stage approach has been proposed in [23], using Support Vector
Machine (SVM) to estimate the portion of the box-bounded search space where the
objective function is defined (aka computable), depending on a set of unknown con-
straints. In the second stage a constrained Bayesian Optimization task is performed on
the estimated feasible region. This paper makes use of this approach.
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3 Problem Definition and Solution Approach

3.1 Optimization of Operations in Water Distribution Networks

Optimization of WDNs’ operations has been an active research field in the last decades.
Optimal pump operation, aimed to minimize energy related costs due to pumping
water, has been one of the most relevant topics. A systematic review on WDNs’
operations optimization has been recently provided in [24], where approaches for
optimal pumps management are categorized into: (i) explicit control of pumps by times
to operate and (ii) implicit control by pumps’ pressures, flows or speeds, or tanks
levels. Although explicit control solutions were the most frequently adopted, the
optimization problem (also known as Pump Scheduling Optimization, PSO) could be
characterized by a huge number of decision variables in the case that the WDN has
many pumps and/or times to operate (e.g., decisions about pump activation every hour
on a daily horizon).

Most of the explicit control solutions proposed use meta-heuristics, mainly evo-
lutionary strategies, such as in [25–27]. However, contrary to SMBO, these strategies
are not sample efficient, requiring a huge number of hydraulic simulation runs to
identify an optimal pump schedule. More recently, an SMBO approach to PSO has
been initially proposed in [28] and then extended in [18] to include unknown con-
straints on the hydraulic feasibility of the pump schedules proposed by SMBO.

On the other hand, implicit control strategies allow reduction of the number of
decision variables, but make more complex the search space, due to the introduction of
further constraints on and conditions among decision variables. Another important
advantage offered by implicit control solutions is that they do not require specification
of times to operate; they usually work by applying simple (control) rules depending on
the values of collected measurements. Thus, time to operate is given by the data
acquisition rate instead of prefixed timestamps as in explicit control solutions.

3.2 Learning Optimal Control Rules as a Black-Box Optimization
Problem

We consider the case of an implicit control solution, where pumps are controlled
depending on the associated pressure values. In the simplest case, control for a given
pump is defined by two different thresholds, x1 and x2; and the following rule:

IF (pump’s pressure \x1 AND pump is OFF) THEN pump is switched ON
ELSE
IF (pump’s pressure [ x2 AND pump is ON) THEN pump is switched OFF

This means that the pump is activated if its pressure is lower than a minimum
threshold, x1, it is deactivated if its pressure exceeds a maximum threshold, x2, and
remains in the current status (ON/OFF) otherwise. Clearly, x1 and x2 are the decision
variables to optimize with respect to the minimization of energy cost, constrained to
water demand satisfaction. A graphical representation of this kind of simple control for
a single pump is reported in Fig. 1.
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It is important to highlight that both energy costs and water demand satisfaction (as
well as any other relevant constraints related to the hydraulic behavior of the WDN,
such as min/max tanks levels) are black-box, because they can be only evaluated after
having fixed the values of the decision variables. Moreover, an analytical constraint
must be added, modelling that the minimum threshold x1 cannot be greater or equal
than the maximum one x2. As follows, we define the optimization problem in the more
general case consisting of more than a pair of thresholds. This situation is quite
common in real-life WDNs, having more than one pump and/or requiring different
control thresholds over the day (e.g., during morning and evening) for a given pump:

min
x2X�R

d
f xð Þ

xi 2 Si i ¼ 1; . . .; 2s c1ð Þ
xj � xjþ s � 0 j ¼ 1; . . .; s c2ð Þ
g xð Þ ¼ 0 c3ð Þ

ð4Þ

where f xð Þ is the energy cost associated to the control rule defined by the xi value, Si is
the set of possible values for the thresholds, Si ¼ s1; . . .; sNj

� �
, s is the number of

thresholds pairs to be set up (leading to d ¼ 2s) and g xð Þ is related to the hydraulic
feasibility: it is unknown/black-box and makes f xð Þ partially defined. Thus, both f xð Þ
and g xð Þ are black-box and are computed via hydraulic software simulation, typically
over a simulation horizon of a day. The open-source EPANET 2.0 is the most widely
adopted tool for simulating the hydraulic behavior of a pressurized WDN, so that the
search for the optimal values of the control thresholds is sequentially performed on the
software model of the WDN. A single simulation run, referred to a specific set up of the
thresholds, involve computational costs; SMBO is a sample-efficient strategy to
identify an optimal set up within few simulation runs (i.e., function evaluations).

Fig. 1. A schematic representation of implicit pump control based on thresholds (red dotted
lines) on pressure (in blue). If pressure goes below/over the lower/upper threshold the pump is
switched ON/OFF, respectively. Pressure value could not change immediately after the pump
switch because it also depends on the status of the other pumps in the WDN (Color figure online)
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Thresholds are modelled as discrete variables to consider the resolution of the
monitoring sensors (i.e., in the case study analyzed in this paper, measurements are
acquired with a resolution of 0.5[m]). In the case of continuous variables, constraint c1

turns into xi 2 min Si;max Si
h i

. According to (4), the optimal definition of an implicit

control strategy, based on pressure values, shares common characteristics with
AutoML: decision variables are discrete c1ð Þ and conditional c2ð Þ – such as many
Machine and Deep Learning algorithms’ hyperparameters – and g xð Þ is black-box –

such as a constraint on resources (i.e., memory usage) for a trained Machine/Deep
Learning algorithm.

4 Experimental Setting

4.1 Case Study Description

The case study considered in this paper refers to a WDN in Milan, Italy, supplying
water to three different municipalities: Bresso (around 20’000 inhabitants), Cormano
(around 26’000 inhabitants) and Cusano-Milanino (around 19’000 inhabitants). The
overall WDN consists of 7418 pipes, 8493 junctions, 14 reservoirs, 1381 valves, 9
pumping stations with 14 pumps overall. Piezometric level of the WDN ranges in 136
to 174 m (average: 148 m). Moreover, this WDN is also interconnected with the
WDNs of other three municipalities (namely, Paterno Dugnano, Sesto San Giovanni
and Cinisello Balsamo). The hydraulic software models of these further municipalities
were not available, the hydraulic behavior at the interconnections was modelled
through three reservoirs with levels varying over time according to historical data about
the flow from the WDN to the other three municipalities and vice versa (Fig. 2).

4.2 SMBO Setting

In this section we provide all the details about the setting of our experiments, organized
in two different sub-sections. The first one provides all the details about the SMBO

Fig. 2. The three municipalities considered in the study (on the left) and the hydraulic software
model, developed in EPANET, of the associated WDN (on the right)
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process applied to problem (4). In the second, we decided to relax the constraint related
to the discreteness of the decision variables. The aim is to evaluate which could be the
difference between the optimal solution identified for the problem (4) and a more
optimistic one, in the hypothetical case that the numerical precision of the actual
control could be finer. In both cases, RF have been used as probabilistic surrogate
model due to the presence of conditional decision variables.

Since the actual global optimizer x� is unknown, we cannot use performance
measures such as regret [29] or Gap metrics [30], but just looking at the best value
observed over SMBO iterations, the so called “best seen”:

yþ nð Þ ¼ min
i¼1;...;n

f x 1ð Þ
� �

; . . .; f x nð Þ
� �n o

Finally, it is important to highlight that, in this study, we have evaluated all the
control strategies identified through SMBO by simulating them over the same “test
day”. This means that we have considered an unnoisy setting, so yn ¼ f x nð Þ� �

, for every
n ¼ 1; . . .;N and with N the maximum number of function evaluations.

4.2.1 RF-Based SMBO
As mentioned in Sect. 4.1, the WDN has 14 pumps, overall. However, 4 are only used
to support supply during peak-hours. They are controlled by time and will not be part
of the optimization. With respect to the other 10 pumps, 8 of them requires the
identification of optimal control thresholds which can be different during the day (i.e.,
06:00–23:00) and the night (i.e., 23:00–06:00). This means that we have optimized 2
thresholds for 2 pumps and 4 thresholds for 8 pumps, leading to 36 decision variables
overall (i.e., thresholds xi) for the problem (4) – that is s ¼ 18. It is important to
highlight that the number of decision variables is significantly higher in the case of
explicit control: the optimization of hourly-based schedules on the same case study
would require 240 decision variables (that is 10 pumps time 24 h).

The possible discrete values for all the lower thresholds, that are the sets Si¼1;...;s,
range from 21[m] to 32[m], with a step of 0.5[m] (i.e., 23 possible values). The
possible discrete values for all the upper thresholds, that are the sets Si¼sþ 1;...;2s, range
from 26[m] to 44[m], with a step of 0.5[m] (i.e., 23 possible values). These two sets
instantiate the constraint c1ð Þ of the problem (4). Due to the nature of the problem,
involving discrete and conditional decision variables, the most suitable probabilistic
surrogate model is a RF. Initialization of the probabilistic surrogate model was per-
formed by randomly sampling 10 initial vectors of control thresholds (“initial design”).
More precisely, a Latin Hypercube Sampling (LHS) procedure has been applied.
Remaining budget (i.e., function evaluations) has been set to 200.

We decided to compare three different acquisition functions, namely Lower Con-
fidence Bound (LCB), Expected Improvement (EI) [5, 10] and Augmented Expected
Improvement (AEI) [31] – the last usually replaces EI in the noisy setting. Although in
this paper we solve the case study deterministically (i.e., in the noise-free setting), we
have decided to include AEI just to evaluate how much the assumption of working in a
noisy setting – while the problem is noise-free – could affect the final solution. We plan
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to use AEI to extend our approach to the noisy setting by considering the water demand
as a random variable, instead of known (or predicted) a priori.

LCB xð Þ ¼ l xð Þ nð Þ�b nð Þr xð Þ nð Þ

EI xð Þ ¼ yþ � l xð Þ nð Þ
� �

U Zð Þþ r xð Þ nð Þ/ Zð Þ if r xð Þ nð Þ [ 0
0 otherwise

(

AEI xð Þ ¼ yþ � l xð Þ nð Þ
� �

U Zð Þþ r xð Þ nð Þ/ Zð Þ 1� reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ r xð Þ nð Þð Þ2

q
0
@

1
A if r xð Þ nð Þ [ 0

0 otherwise

8>><
>>:

where b nð Þ manages the exploitation-exploration trade-off, Z ¼ yþ�l xð Þ nð Þ

r xð Þ nð Þ and yþ is the

best seen up to n. Then, x nþ 1ð Þ is selected by minimizing LCB and maximizing EI and
AEI.

Since we are using a RF as probabilistic surrogate model, the acquisition functions
are also black-box. A global-local method has been used to solve the auxiliary problem
(2) and identify the next promising x nþ 1ð Þ. More precisely, the global-local method
used is known as “focus-search” [32]: it can handle with numeric, discrete and mixed
search spaces, also involving conditional variables. Other approaches, also recent
evolutionary methods such as Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [33] are suitable for dense spaces, but the conditionality of the search
spaces makes their usage still problematic. Focus-search is an adaptive Random Search
strategy: it starts from a large set of random points where the acquisition function is
evaluated. Then, it shrinks the search space around the current best point and perform a
new random sampling of points within the “focused space”. The shrinkage operation is
iteratively performed until a maximum number of iterations and the entire procedure
can be restarted multiple times to mitigate the risk to converge to a local optimum.
Finally, the best point over all restarts and iterations is returned as the solution of the
auxiliary problem (2). The R package mlrMBO [32] provides an implementation of
focus-search.

Although different acquisition functions have been used, all the associated SMBO
processes started from the same initial design. Furthermore, to mitigate the effect of
randomness, we have performed 20 experiments with 20 different initial designs.

4.2.2 RF Based SMBO with Relaxation of the Discreteness Constraint
In this experiment we have relaxed the problem (4) by removing the constraint about
the discreteness of the decision variable c1ð Þ. This makes the initial box-bounded
search space continuous, even if it remains complex due both to the presence of
conditional decision variables c2ð Þ and the black-box hydraulic feasibility constraint
c3ð Þ. The rest of the experimental setup is identical to what reported in the previous
sub-section.
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5 Results

This section summarizes the most relevant results. Figure 3 shows how the “best seen”
changes over function evaluations: solid lines are the averages over 20 different runs,
while the shaded areas represent the standard deviations (almost 0). The first value, at
iteration 0, is the best seen observed within the initial design.

With respect to the second experiment – related to the relaxation of the discreteness
constraint c1ð Þ – Fig. 4 shows how the “best seen” changes over function evaluations.
Visualization is limited to the first 20 evaluations – out of the overall 200 – because,
already after two function evaluations, no further improvements have been obtained.

Fig. 3. Best seen over function evaluations of RF-based SMBO using three acquisition
functions: EI (red), AEI (green) and LCB (blue). Solid lines and shaded areas represent,
respectively, mean and standard deviation (that is almost 0) of the best seen over 20 different runs
(Color figure online)

Fig. 4. Best seen over function evaluations of RF-based SMBO with relaxation of the
discreteness constraint. Comparison between three acquisition functions: EI (red), AEI (green)
and LCB (blue). Solid lines and shaded areas represent, respectively, mean and standard
deviation (that is almost 0) of the best seen over 20 different runs (Color figure online)
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Finally, we have evaluated the improvement, in terms of energy costs reduction,
provided by SMBO with respect to the energy cost implied by the current pressure-
based control operated by the water utility, that is 332,30€/day. In Table 1, the best cost
over 20 runs has been selected for every acquisition function and separately for the two
types of experiments described in Sect. 4.2.1 and 4.2.2.

The relaxation of discreteness constraint does not provide any improvement. This
could be due to the use of RF, which can result less effective on continuous variables
than discrete ones, also depending on the smoothness of the objective function.
Probably, in the second experiment, the approach was not able to escape from some
plateau, within the maximum number of function evaluations allowed.

As an example, we report in Fig. 5 the activation pattern of two pumps, A and B,
according to the control currently operated by the WDN (“curr” suffix) versus the new
activation implied by the new control optimized through SMBO (“opt” suffix).

Table 1. Optimal energy costs obtained via SMBO and associated costs reduction with respect
to the current cost implied by the current pressure-based control operated by the water utility

Original Problem (4) Relaxation of c1ð Þ
EI AEI LCB EI AEI LCB

Energy cost [€] 150.29 150.32 150.31 158.12 154.91 150.42
Cost reduction w.r.t. the
control strategy currently
operated [€]

182.01 181.98 181.99 174.18 177.39 181.88

Fig. 5. Activation of two pumps according to current and optimized implicit control
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6 Conclusions and Discussion

We have presented a SMBO approach for solving optimal control problems charac-
terized by black-box objective functions and complex, partially unknown, search
spaces. A general formalization of the problem was provided along with an instanti-
ation on a specific real-life application, that is the optimal control of pumps in water
distribution networks. The use of a hydraulic simulation software, EPANET, makes
both objective function and constraints – related to hydraulic feasibility of the identified
control rules – black-box. Using SMBO to search for an optimal implicit control
allowed us to work with a dimensionality which is significantly lower than the one
required by the (more widely adopted) explicit controls. A more realistic experimen-
tation should consider different “simulation days”, characterized by random water
demands whose empirical distribution is generated from historical data. This requires
evaluating the robustness of the implicit control rules proposed by SMBO and to move
towards a “distributionally robust” SMBO.
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Abstract. Bayesian Optimization has become the reference method for the
global optimization of black box, expensive and possibly noisy functions.
Bayesian Optimization learns a probabilistic model about the objective function,
usually a Gaussian Process, and builds, depending on its mean and variance, an
acquisition function whose optimizer yields the new evaluation point, leading to
update the probabilistic surrogate model. Despite its sample efficiency, Bayesian
Optimization does not scale well with the dimensions of the problem. Moreover,
the optimization of the acquisition function has received less attention because
its computational cost is usually considered negligible compared to that of the
evaluation of the objective function: its efficient optimization is also inhibited,
particularly in high dimensional problems, by multiple extrema and “flat”
regions. In this paper we leverage the additivity – aka separability – of the
objective function into mapping both the kernel and the acquisition function of
the Bayesian Optimization in lower dimensional subspaces. This approach
makes more efficient both the learning/updating of the probabilistic surrogate
model and the optimization of the acquisition function. Experimental results are
presented for a standard test function and a real-life application.

Keywords: Bayesian optimization � Gaussian processes � Additive functions

1 Introduction

Bayesian Optimization (BO) [1, 2] has become the reference method for the global
optimization of a black box function, whose evaluations are expensive and possibly
noisy. BO maintains a probabilistic surrogate model – usually a Gaussian Process
(GP) – of the objective function, updated depending on data as we observe them,
namely function evaluations [3–6]. GP-based BO has two key design factors: the
choice of the GP kernel – which sets an assumption about the hypothetical smoothness
of the black-box function to optimize – and the acquisition function whose optimiza-
tion provides the next point for the evaluation of the objective function, then exploited
to update the GP model. BO has been generalized to the constrained case [7–9],

© Springer Nature Switzerland AG 2020
I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 316–323, 2020.
https://doi.org/10.1007/978-3-030-53552-0_29

http://orcid.org/0000-0003-1431-576X
http://orcid.org/0000-0002-6065-0473
http://orcid.org/0000-0003-0117-2237
http://orcid.org/0000-0003-1131-3830
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_29&amp;domain=pdf
https://doi.org/10.1007/978-3-030-53552-0_29


including black-box constraints and more recently partially defined objective functions
or non-computable domains [10]. BO is sample efficient when applied to low
dimensional problem, up to 10 or 20, but already midsize problems are challenging.
This difficulty is of course exacerbated when the evaluations of the objective function
are very expensive, like in most simulation-optimization problems, hyperparameter
optimization of large-scale Machine Learning applications (e.g., Automated Machine
Learning [11], Neural Architecture Search [12] and complex Machine Learning
pipelines [13]). Many approaches have been suggested to mitigate the computational
load of high dimensional BO, such as random embeddings [14] and the exploitation of
the additivity of the objective function. Additive structure is often assumed in high
dimensional GP-based regression, even if f xð Þ is not additive: in particular, in small
sample situations, fitting a simpler model to the data gives better results. This is exactly
the case in which BO is the method of choice since querying the black-box objective
function – and in case constraints – l is expensive. The global structure of the problem
is managed through the kernel: [15, 16] describe methods to search over possible kernel
compositions starting with basic kernels. A major step was taken in [17] and succes-
sively developed in [18] by introducing, based on the Bochner’s theorem, a Fourier
Features approximation which is shown to yield an error decreasing exponentially with
the number of features, while allowing a reduction in the complexity of the kernel
matrix inversion.

In this paper we focus on a strategy which leverages additivity – aka separability –

of the objective function into the decomposition of the kernel and the acquisition
function. The main contributions of this paper are:

• To show that the function additivity can be leveraged to (i) reduce the cost of
updating the GP and (ii) improve the performance of different acquisition functions.

• To show, in a realistic problem, that also the case of black-box constraints fits
naturally into the proposed framework.

• To compare the proposed additive BO with the standard one providing results on a
benchmark test function and a real-life case study.

2 Background

The global optimization problem is usually defined as:

minx2X�R
d f xð Þ

where the search space X is generally box-bounded. A GP is a stochastic process given
by a collection of random variables, any finite number of which have a joint Gaussian
distribution. The random variables consist of function values f xð Þ at different locations
x within the domain X � R

d . A GP is fully specified by its mean and covariance
functions, respectively denoted by l xð Þ and the kernel k : X � X ! R. Many kernels
are available, such as Squared Exponential (SE) and Matérn among others [1, 2].
The SE kernel has been used in this paper:
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k x; x0ð Þ ¼ e�
x�x0k k2
2‘2

Let D1:t ¼ xi; yið Þf gi¼1;::;t, where yt ¼ f xtð Þþ e, and e � N le; r
2
e

� �
in the case of a

noisy objective function. Given the set of observations D1:t, the posterior distribution of
the GP is given by:

P ytþ 1jD1:t; xtþ 1ð Þ ¼ N ytþ 1jlt xtþ 1ð Þ; r2t xtþ 1ð Þ� �

where

lt xtþ 1ð Þ ¼ kTt Kt þ r2e I
� ��1

y1; . . .; ytf g

r2t ¼ k xtþ 1; xtþ 1ð Þ � k|t Kt þ r2e I
� ��1

kt

with Kt; i;j½ � ¼ k xi; xj
� �

and kt ¼ k x; x1ð Þ; . . .; k x; xtð Þ½ �.
The kernel’s parameter, that is the length-scale ‘ in the case of SE kernel, is usually

fit on data via Maximum Likelihood Estimation (MLE). It has been recently demon-
strated [19] that SE kernel could be inadequate for many functions, specifically for any
dense sequence of points x1; x2; . . .; xN with N ! 1. However, according to the goal
of this study, the length of the sequences generated through BO are small, making less
relevant this issue.

The acquisition function is the mechanism to implement the trade-off between
exploration and exploitation in BO. This trade-off is also addressed in deterministic
global optimization methods, such as via local tuning in Lipschitz global optimization
[20]. Any acquisition function aims to guide the search of the optimum towards points
with potentially low values of objective function either because the prediction of f xð Þ is
low or the uncertainty is high (or both). While exploiting means to consider the region
of the search space providing more chance to improve the current best solution (with
respect to the current surrogate model), exploring means to move towards less explored
regions. Many acquisition functions have been proposed, such as Probability of
Improvement, Expected Improvement, Confidence Bound (Upper/Lower Confidence
Bound for maximization/minimization problems, respectively), Entropy Search, Pre-
dictive Entropy Search, Knowledge Gradient and Thompson Sampling (TS) – a brief
review is provided in [2]. Each acquisition offers its own blend of the GP’s mean and
variance. One of the most widely adopted is the Upper/Lower Confidence Bound
(UCB/LCB), respectively for solving maximization/minimization problems. The next
promising point, where to evaluate the objective function, is obtained by solving the
following auxiliary problem (± refer to UCB and LCB, respectively):

xtþ 1 ¼ argmax
x2D

lt xð Þ 	 b1=2t rt xð Þ

where bt satisfies the converge criteria analysed in [21]. Although UCB/LCB shows
some theoretical deficiency from the point of view of rational decision theory [22], we
did not experienced this deficiency in our study.
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Thompson Sampling (TS) is based on a different approach: when used in BO, TS
searches for the minimizer of a function drawn from the GP posterior and that mini-
mizer will be chosen as the location where the next function evaluation takes place. In
[23], an analysis of TS for GP is presented along with the proposal to use an e-greedy
strategy to mitigate the intrinsic exploitation bias of TS.

3 Additive Functions and Basic Decomposition in BO

Additive GP based models assume that the objective function f xð Þ is a sum of functions
f jð Þ defined over low-dimensional components:

f xð Þ ¼
XG
j¼1

f jð Þ x jð Þ
� �

where each x jð Þ belongs to a low dimensional subspace X jð Þ � D and G denote the
number of these components. We assume in this paper that X jð Þ \X lð Þ ¼ ; if l 6¼ j.

The concept of additive functions translates to GPs, where the stochastic process is
a sum of stochastic processes, each one having low dimensional indexing. The effective
dimensionality of the model is defined as the largest dimension among all additive
groups, �d ¼ maxj2 G½ �dim X jð Þ� �

.
Under the additive assumption, the kernel and the mean function of a GP decompose

similarly to the GP’s stochastic process. Specifically, k x; x0ð Þ ¼ PG
j¼1 k

jð Þ x jð Þ; x0 jð Þ� �
and

l xð Þ ¼ PG
j¼1 l

jð Þ x jð Þ� �
. Consequently, BO can be applied, independently, on each

subspace, while at the same time including the cross correlation of additive groups
through the observations D1:t restores the global structure of the objective function.

Preliminary we provide some relevant notations. A kernel can be viewed as the
inner product in a Reproducing Kernel Hilbert Space (RKHS) H equipped with a
feature map u : X ! H, such that k x; x0ð Þ ¼ u xð Þ;u x0ð ÞH. In the case that H is sep-
arable, the inner product can be approximated leading to:

k x; x0ð Þ ¼ u xð Þ;u x0ð Þh iH
 / xð Þ|/ x0ð Þ

with / xð Þ : X ! R
m a finite-dimensional feature map, with m defining the level of

approximations: the greater m the better the approximation. For stationary kernels,
Bochner’s theorem implies that a suitable m-dimensional feature map can be con-
structed using a set of random Fourier features.

Thus, the covariance matrix can be approximated as Kt 
 U Xtð Þ|U Xtð Þ, with Xt ¼
x1; . . .; xtf g and U Xtð Þ ¼ / x1ð Þ; . . .;/ xtð Þ½ �|.

Let define mt ¼ U Xtð Þ|U Xtð Þ; þ r2e I
� ��1

U Xtð Þ y1; . . .; ytf g, then the approximated

GP’s mean and variance can be computed as: ~lt xð Þ ¼ U xð Þ|mt and ~rt xð Þ2¼ r2eU xð Þ|
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U Xtð Þ|U Xtð Þ; þ r2e I
� ��1

U xð Þ, when U xð Þk k2¼ 1 (which is true for Random as well as
Quadrature Fourier Features approximations [18]).

Following, we report the algorithm for additive BO with TS as acquisition function

In the case that a different acquisition function is used, such as EI or UCB/LCB,
step 3 is not needed and step 5 is modified with the associated equation.

4 Experiments

4.1 Benchmark Function

The first experiment is related to a well-known test function, namely the Styblinski-
tang [24]:

f xð Þ ¼ 1
2

Xd

i¼1
x4i � 16x2i þ 5xi
� �

where d is the dimensions of the search space, which is the hypercube xi 2 �5; 5½ � for
all i ¼ 1; . . .; d. In our experiment we considered d ¼ 10, where the maximum number
of dimensions for each group of decision variables is �d ¼ 1.

Fig. 1. Best-seen over function evaluations; comparison between additive BO and “standard”
BO with three acquisition functions (i.e., TS, LCB and EI)
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Figure 1 shows the best value of the objective function observed along the BO
function evaluations (aka “best seen”). All the additive BO implementations resulted
both more effective (i.e., they provided a better optimal solution) and more efficient
(i.e., they achieve the optimal solution in a lower number of function evaluations) than
“standard” BO, where “standard” refers to traditional BO algorithm working on the
whole search space. Moreover, TS and LCB resulted better than EI, irrespectively to
standard and additive BO.

4.2 Control Problems

Here we consider the Pump Scheduling Optimization (PSO) of an urban Water
Distribution Network (WDN), using a benchmark WDN, namely AnyTown [25],
powered by 4 variable speed pumps. The goal of PSO is to minimize the energy cost
associated to the pump schedule, that is defined as the status (or speed) of the pumps at
given times (e.g., hours of the day). Status refers to ON/OFF pumps, while speed refers
to variable speed pumps.

minC ¼ Dt
XT
t¼1

ctE
XNv

kv¼1

cxtkQ
t
k

Ht
k

gk

where C is the total energy cost, Dt is the time step, Ct
E is the energy price at time t, c is

the specific weight for water, Qt
kj is the water flow provided by the pump kj at time t,

Ht
kj is the head loss on pump kj at time t, gkj is the efficiency of pump kj, and Pt

i is the

pressure at the control node i at time t, Nv is the number of variable speed pumps.
The decision variables are xtkv 2 0; 1ð Þ, where each one represents the speed of

pump kv at time t. Both energy cost and hydraulic feasibility of the a given pump
schedule are computed via software simulation, more specifically through the tool
EPANET. Indeed, even if the objective function is clearly additive, inter-temporal
relations exist from a time step to the next: all the underlying equations, related to water
mass balance, pressure variation, etc., are solved by EPANET.

In the case of non-additive BO, the problem has been solved in [25], where the
search space of pump schedules had dimensionality d ¼ 96 (i.e., 4 pump’s speeds for
each hour of the day). By using additivity, we solved 24 problems with dimensionality 4
each (i.e., �d ¼ 4). Table 1 summarizes the preliminary results obtained on this bench-
mark study, compared to those obtained via “standard” BO (i.e., non-additive) and
previously reported in [25]. Results confirm what observed on the test function exper-
iment: additive BO provides better optimal solutions with less computational time.

Table 1. PSO of a WDN: results on the AnyTown benchmark, standard vs additive BO

Strategy Energy cost ($) Iteration number Overall clock time

BO-LCB [25] 653.55 356 21256.48 [s]
BO-EI [25] 609.17 290 23594.36 [s]
Additive BO-LCB 605.23 344 12331.65 [s]
Additive BO-EI 653.55 276 10775.44 [s]
Additive BO-TS 604.51 281 11331.31 [s]
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5 Conclusions

Although the results are preliminary, exploiting the additivity property inherent in the
objective function allowed to boost BO performance in our experiments.

This improvement is observed for several acquisition functions but is more sig-
nificant for Thompson Sampling than LCB and EI. We observe experimentally that the
additive algorithm convergence, proved for the cumulative regret, is no-regret also for
the performance metric based on best seen.

Significantly this result translates from the test function to the real-life case of the
control of a water distribution network. The resulting optimization problem has close to
96 variables: the additive algorithm brings it to a dimension (i.e., �d ¼ 4) where BO is
very sample efficient.
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Abstract. Efficient planning and scheduling of operations at congested
seaside container terminals are issues of extreme importance because
of the ever growing worldwide demand for container shipments. In this
paper, the two main problems of berth and quay crane scheduling are
integrated in a novel mathematical model. It is assumed that the arrival
times of vessels are stochastic and can take any value that exists within
a specific interval. The presented model includes three objectives. They
are the minimisation of weighted deviations from the target berthing
locations and times as well as departure delays. In the first solution
attempt, an ε-constraint method is used which employs an exact solver.
Since the problem has high complexity and cannot be solved in large
scales with an exact solver, a Pareto Simulated Annealing (PSA) algo-
rithm is designed for it. It is proved that this metaheuristic can provide
better non-dominated solutions in much shorter times compared to the ε-
constraint approach. Furthermore, the advantage of integrating the berth
and quay crane scheduling is examined by comparing the results with the
case that these two problems are processed separately.

Keywords: Multiobjective optimisation · Maritime container
terminal · Berth and quay crane scheduling · Mathematical modelling ·
Pareto simulated annealing

1 Introduction

Containerisation provides reliable and standardised means of transportation
which leads to shorter transit times and the possibility of using multiple modal-
ities. Moreover, it reduces the shipping as well as handling costs [24]. According
to [2], the global container port throughput in the world has raised from 560
million 20-foot equivalent units (TEUs) in 2010 to 753 million in 2017. In addi-
tion, the increase in the worldwide containerised trade volume was more than
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40% in the decade 2007–2016. Respecting this considerable growth, container
terminals are faced with larger quantities of throughput and becoming busy
and congested more and more. This clearly shows the significance of efficient
planning and scheduling of operations at a seaside container terminal. Opera-
tions in a container terminal can be grouped based on the location into: seaside
operations, yard operations, and land-side operations [21,23] and [18].

The berth scheduling problem (BSP), also in less detail called berth alloca-
tion problem (BAP), is recognised as the most important operational problem
at the seaside area [6]. Usually it is sought to reduce the process time of vessels
at the berth. This strongly depends on the assignment and scheduling of the
available quay cranes, which work on the vessels. This problem is called quay
crane assignment problem (QCAP) and its more complete version which deter-
mines the start and finish time of each crane on each vessel is known as quay
crane scheduling problem (QCSP). One other goal can be berthing of the vessels
with minimum deviation from their target berthing times. Furthermore, it is
important to assign the vessels to the berthing locations which are possibly less
distant from their desired berthing locations.

Regarding the connections between BSP and QCSP, they can be integrated
as one problem called berth and quay crane scheduling problem (BQCSP). The
advantage of this integration is verified in our work by means of some numerical
comparisons. A comprehensive mathematical model with the components of both
problems is developed. This novel model includes three objectives of minimising
the weighted sum of distances from the desired (target) berthing locations, the
weighted sum of temporal deviations from the target berthing times and the
weighted sum of the departure (completion time) delays of all vessels. A real
aspect in such problems at container terminals is the variability of inputs, which
has not been taken into account enough in the previous works. Nonetheless, our
work considers this aspect by solving a version of the BQCSP which includes
stochastic arrival times for vessels.

In the first step, a classical solution method is applied with the aid of an exact
solver. This method is called ε-constraint. Since the problem has a high com-
putational complexity, in the next step, a metaheuristic called Pareto simulated
annealing (PSA) is adapted and employed.

This paper is organised as follows: Sect. 2 gives a brief categorisation of some
related works. The model is introduced in Sect. 3. Section 4 describes the solution
methodologies. The computational efforts and experiments as well as the com-
parisons of results are covered in Sect. 5. Finally, Sect. 6 draws the conclusions
of our research and gives some directions for its extension.

2 Related Work

A variety of researches have been conducted on the BAP and the QCAP so far.
They considered different versions of the problems and variable assumptions.
Some works considered an integrated model (BAQCAP) to solve these two inter-
related problems simultaneously. [11] considers vessels’ fuel consumption and
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emissions in the BAQCAP and applies a novel non-linear multi-objective mixed-
integer programming model. [9] proposes an integrated heuristics-based solution
methodology that tackles a continuous BAQCAP. A GRASP-based metaheuris-
tic is applied to the problem in [20] aiming at minimisation of the total waiting
time elapsed to serve all vessels. [25] formulates the problem as a binary integer
linear model that is later extended by incorporating the quay crane scheduling
problem. In [29], an online model is given considering a hybrid berth which con-
sists of three adjacent small berths together with five quay cranes. [12] uses a
mixed integer linear programming model including multiple objectives. [16] con-
siders the problem with a single objective of minimising a weighted sum of the
waiting times, the deviations from desired locations and the departing delays.
[17] presents a mathematical model for the BQCSP which encompasses all asso-
ciated operations and constraints. A significant assumption in their problem is
that preemption is allowed in the quay crane tasks.

Some others works considered the berth and quay crane assignment or
both separately (are, e.g., [4,7,10,13,15,23,26–28] and [22]). The uncertainty
or dynamics in the inputs are respected in a small number of researches such as
[26–28] and [13]. There are a couple of multiobjective models (e.g. in [11,26,28]
and [13]), and the application of heuristic and metaheuristic solution method-
ologies is observable (for example in [13,16,20,22,27] and [7]) in the previous
literature.

3 Mathematical Model

In this section, our multiobjective mathematical model is explained in three
subsections of assumptions, notations and formulations.

3.1 Assumptions

Our model is built based on some assumptions, which can also be called the char-
acteristics of the BQCSP focused in this work. We try to make these characteris-
tics conform with the reality as much as possible while also following the goal of
simplification. The berth, where vessels dock at, is assumed to be continuous and
has a given length. The vessels are assumed to be of three sizes (small, medium
and large). The arrival times of vessels are stochastic in the sense that an inter-
val is considered for this parameter. A linear and symmetric probability density
function (PDF) is defined as shown in Fig. 1. An average value is determined for
the stochastic parameter a shown as E(a) and the parameter values are between
min(a) = 0.75E(a) and max(a) = 1.25E(a). The maximum probability density
max[f(a)] is at the average value and its minimum is min[f(a)] = max[f(a)]

6
happening at min(a) and max(a). Regarding the probability rules we have:



A Pareto Simulated Annealing 327

∫ max(a)

min(a)

f(a)da = min[f(a)].(max(a) − min(a)) + (max[f(a)] − min[f(a)]).

(
max(a) − min(a)

2
) =

1
6
max[f(a)](0.5E(a)) +

5
6
max[f(a)](0.25E(a)) =

E(a)(
1
12

max[f(a)] +
5
24

max[f(a)]) = E(a)(
7
24

max[f(a)]) = 1 (1)

Therefore, by having E(a), we can calculate min(a), max(a), min[f(a)] and
max[f(a)].

min(a) E(a) max(a)

min[f(a)]

max[f(a)]

a

f(
a)

Fig. 1. Probability density function for arrival times of vessels f(a)

3.2 Notations

Our mathematical model contains the following notations:

Sets

V The set of arriving vessels i, j ∈ V

QC The set of quay cranes k, l, m ∈ QC

Parameters

H The planning horizon

BL The length of the berth

TTi Target berthing time (arrival time) of vessel i.
This is stochastic and its average is called
E(TTi)

TBi Target berthing location of vessel i

RTi The required quay crane hours to serve vessel i

Li The length of vessel i

Ci The importance coefficient of vessel i

Qmaxi The maximum number of cranes which can
work on vessel i at the same time
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Decision Variables

bi The berthing location of vessel i

svi The berthing time of vessel i

fvi The time that vessel i leaves the berth

scki The time that quay crane k begins its work on vessel i

fcki The time that quay crane k finishes its work on vessel i

qki Binary variable = 1, if crane k works on vessel i

yij Binary variable = 1, if vessel j docks physically after vessel
i along the berth

zij Binary variable = 1, if vessel j docks chronologically (in
terms of time) after vessel i

ukli Binary variable = 1, if cranes k and l work on vessel i at
the same time

wkli Binary varaible = 1, if crane l begins its work on vessel i
after the start time of crane k

mkij Binary variable = 1, if crane k works on vessel i before j

ΔBi The deviation from the target berthing location of vessel i

ΔTSi The deviation from the trarget berthing time of vessel i

ΔTFi The departure delay from an early departure time
calculated according to the case that vessel i is served with
the maximum number of cranes

3.3 Formulations

Objectives

Min Z1 =
∑
i∈V

CiΔBi (2)

Min Z2 =
∑
i∈V

CiΔTSi (3)

Min Z3 =
∑
i∈V

CiΔTFi (4)

Constraint∑
k∈QC

qki(fcki − scki) ≥ RTi i ∈ V (5)

wkli + wlki = 1 i ∈ V ; k, l ∈ QC (6)

qkiqliwkli(scli − fcki)(scli − scki) ≤ ukliH i ∈ V ; k, l ∈ QC (7)

−qkiqliwkli(scli − fcki)(scli − scki) ≤ (1 − ukli)H i ∈ V ; k, l ∈ QC (8)
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qkiqliwlki(scki − fcli)(scki − scli) ≤ ulkiH i ∈ V ; k, l ∈ QC (9)

−qkiqliwlki(scki − fcli)(scki − scli) ≤ (1 − ulki)H i ∈ V ; k, l ∈ QC (10)

1
6

∑
k∈QC

∑
l∈QC/k

∑
m∈QC/k,l

ukliumli(2 + ukmi) ≤ Qmaxi i ∈ V (11)

ΔBi ≥ TBi − bi i ∈ V (12)

ΔBi ≥ bi − TBi i ∈ V (13)

ΔTSi ≥ TTi − svi i ∈ V (14)

ΔTSi ≥ svi − TTi i ∈ V (15)

fvi ≥ qkifcki i ∈ V, k ∈ QC (16)

ΔTFi ≥ fvi − (svi +
RTi

Qmaxi
) i ∈ V (17)

bj + BL(1 − yij) ≥ bi + li i, j ∈ V (18)

svj + (1 − zij)H ≥ fvi i, j ∈ V (19)

yij + yji + zij + zji ≥ 1 i, j ∈ V (20)

(kqik − lqjl)(bi − bj) ≥ 0 i, j ∈ V ; k, l ∈ QC (21)

sckj + (1 − mkij)H ≥ fcki i, j ∈ V ; k ∈ QC (22)

mkij + mkji ≤ 1 i, j ∈ V ; k ∈ QC (23)

mkij + mkji ≤ qki i, j ∈ V ; k ∈ QC (24)

mkij + mkji ≤ qkj i, j ∈ V ; k ∈ QC (25)

Three objectives are considered for our BQCSP. Equation (2) and (3) for-
mulate the sum of weighted deviations of all vessels from the target berthing
locations and times, respectively. The third objective, (4), is the sum of weighted
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delays of all vessels from their ideal departure times. Constraint (5) implies satis-
fying the required crane-hours of each vessel. Constraints (6)–(10) together have
the function of setting ukli = 1 if and only if the working times of cranes k and
l overlap and otherwise ukli = 0. Respecting the maximum available number
of cranes which can work on each vessel is guaranteed by constraint (11). The
deviation from the target berthing location is calculated by relations (12) and
(13). Likewise, (14) and (15) calculate the deviation from the target berthing
times. (16) states that the departure time of each vessel is equal to the lat-
est finish time of all quay cranes which work on it. Constraint (17) calculates
the departure delay according to a desirable process time which is based on the
assignment of maximum possible number of cranes to the vessel. Constraint (18)
is for respecting the vessel’s length at the berth and assures that no more than
one vessel can dock in each point at the same time. Constraint (19) ensures that
if vessel j chronologically berths after i (zij=1), its berthing time is after the
departure time of i. Regarding any pair of vessels i and j, they must not collide
each other. It means that they berth at different locations by respecting their
lengths or they berth at different times considering the process time of the for-
mer. This is guaranteed by (20). Constraint (21) prevents cranes from crossing
each other. Each crane cannot serve more than one vessel at a time which is
enforced by (22)–(25).

4 Solution Methodologies

In multiobjective optimisation each solution corresponds to more than one objec-
tive value. Therefore, solutions can not be easily sorted based on the objective
function value. Instead, a trade-off between the objectives should be considered.
Here we are involved with the concept of dominance. It is said that in the pres-
ence of n objectives, a solution x dominates another solution y, x ≺d y, if the
following conditions hold:

1) zi(x) ≤ zi(y),∀i ∈ 1, 2, ..., n
2) ∃j ∈ 1, ..., n : zj(x) < zj(y)

The goal in multiobjective optimisation is to find a set of globally non-
dominated solutions as the best ones instead of only one optimal solution. These
solutions are known as Pareto optimal and the set is called Pareto front.

There are various solution methodologies for multiobjective problems. Some
of them are classical and some in the category of evolutionary algorithms. Due
to some drawbacks of classical methods such as long computational times or the
necessity of numerous runs to obtain a set of non-dominated solutions, Multi-
Objective Evolutionary Optimisation Algorithms (MOEAs) are used as alterna-
tive approaches for large-sized instances.

In this research, a practical MOEA called Pareto Simulated Annealing (PSA)
is adapted to be applicable to our BQCSP with regard to the high computational
complexity of this problem. The performance of this evolutionary approach is
tested by comparing its results with those of an ε-Constraint method which uses
an exact solver.
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4.1 ε-Constraint

The ε-constraint is one promising classical multi-objective optimisation method,
which is proposed by [5]. Unlike some other classical methods, it does not have
any problem in finding solutions on non-convex parts of the Pareto curve. In
this method, one objective is chosen out of all (n) objectives to be minimised.
The other objectives are constrained to be less than or equal to some given
values. Mathematically expressed, if fi(x) is chosen for minimisation, we have
the following problem P (εi):

min fi(x)
fj(x) ≤ εj , ∀j ∈ {1, ..., n}\i.

Each time that the problem is solved by different values of εi, one Pareto optimal
solution may be found. Therefore, we need multiple solving attempts to search
for a set of non-dominated Pareto solutions. In the case of our BQCSP, each
of the three objectives can be selected to be minimised and the other two are
restricted by two values.

4.2 Pareto Simulated Annealing

Pareto simulated annealing (PSA), proposed in [8], is a multiple criteria meta-
heuristic that uses the general concept of the classical single objective Simulated
Annealing (SA) as well as several specific notions related to multicriteria.

The basic SA proposed by [14] begins with an initial solution (s0) and temper-
ature (T0). Then in each iteration a specific number of neighbourhood searches
are done. Each time the fitness of a neighbouring solution is compared with
that of the current solution. If the neighbouring solution has a better fitness,
the current solution is replaced with it, otherwise this happens by a probability
according to the fitness difference and the current temperature. The probability
is calculated as e

−(Znew−Z)
T , where Znew and Z are the objective function value

of the new and the current solution; T is the current temperature. The smaller
the difference and the higher the temperature is, the bigger is the replacement
probability. If a specific number of neighbours (NS) have been investigated, the
SA starts a new iteration by reducing the temperature based on a plan, for
example, dividing the current temperature by a constant value CT . By going
forward iteration by iteration, the chance of moving to a new solution becomes
lower. Finally, after meeting a termination criterion, the algorithm stops. For
example, if the algorithm has exceeded the maximum allowable number of its
consecutive unsuccessful iterations (MQ) or its execution time limit (MET ) is
over.

Now, in the PSA algorithm some new ideas which take the multiobjective
aspect are added or replace some concepts of the single objective SA. The specific
concepts that PSA uses are as follows:
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– Generating solutions or agents:
Initially, a set G of generating solutions with a fixed cardinality |G| = φ is
randomly produced to provide a sufficiently large search space for PSA. With
each of the generating solutions, a separate weight vector λs = (λs

1, ..., λ
s
n) is

associated such that λs
i ∈ [0, 1] and

∑n
i=1 λs

i = 1. Manipulating these weights
provides a good dispersion of the outcome Pareto front and makes the solu-
tions of PSA more representative. The generating solutions are treated as “spy
agents” which can work almost independently while exchanging information
about their position.

– Aggregation function-based acceptance probabilities:
In PSA, when we move from solution s to its neighbour s′ due to having
multiple objectives to be taken into account and considering the concept of
domination, one of these mutually exclusive cases can happen: 1) s′ dominates
or is equivalent to s 2) s′ is dominated by s 3) s′ is non-dominated with
respect to s. In the first case, the new solution is not worse than the current
one. Thus it should be accepted with probability one. In the second case,
the new solution is worse than the current one (s is considered as potentially
Pareto-optimal) and should be accepted with a probability less than one in
order to avoid getting trapped in local optima. In the third case, s and s′

are incomparable (and initially non-dominated). Hence, the probability of
accepting the new solution s′ for a problem with n objectives is defined as:

P (s, s′, λ, T ) = min(1, exp(− max
i=1,...,n

λi[(zi(s′) − zi(s)]
T

)) (26)

where T is the current temperature.
– Management of generating solutions or repulsion:

A degree of repulsion α is determined as a very small positive value close to
zero. The weight vector λs associated with a given agent s is modified in order
to increase the probability of moving it away from its closest neighbour agent
s̃ which is non-dominated with respect to s. This is achieved by increasing
the weights of those objectives for which s is better than s̃ and decreasing
the weights of the objectives for which s is worse than s̃. This can be stated
as below:

λs
i =

{
λs
i + α, zi(s) ≤ zi(s̃)

λs
i − α, otherwise.

(27)

In the space of normalised objectives, the metric distance between solutions
which is used to determine the closest neighbour s̃ from s is:
n∑

i=1

(zi(s) − zi(s̃))2 (28)

Moreover, we need to normalise λs
i in each iteration to satisfy:

∑n
i=1 λs

i = 1
– Updating the set of potentially Pareto optimal solutions:

The set of potentially Pareto optimal solutions ρ is empty in the beginning
of the algorithm. It is updated each time after a new non-dominated solution



A Pareto Simulated Annealing 333

is generated. Updating the set of potentially Pareto optimal solutions with
solution s requires: (1) adding s to ρ if no solution in ρ dominates s and (2)
removing all solutions dominated by s from ρ.

The pseudocode of the PSA is given as Algorithm 1.

Algorithm 1: The applied Pareto Simulated Annealing (PSA)
Data: Problems’ inputs and PSA parameters (φ, T0, CT , NS, α, MQ, and

MET )
Result: A set of high quality non-dominated solutions

1 - Generate a set G of agents at random, |G| = φ
2 - Generate λs for s ∈ G
3 - T = T0

4 - q = 0. For the number of consecutive unsuccessful iterations.
5 while q < MQ and time ≤ MET do
6 - For each agent find its closest non-dominated agent according to the

distance calculated by (28).
7 - Update λs based on (27).
8 for s ∈ S do
9 -n = 1

10 while n ≤ NS do
11 - Construct s′ as a neighbouring solution of s.
12 - If s does not dominate s′, update the set of non-dominated

solutions ρ with s′.
13 - Replace s with s′ according to (26).
14 - n = n + 1

15 end

16 end
17 - If no new non-dominated solution has been found during the whole

iteration, set q = q + 1; otherwise set q = 0
18 - Decrease the temperature and calculate T = T

CT
.

19 end
20 - Output the set ρ

4.3 Application to the BQCSP

Solution Encoding. Solutions are encoded as matrices with |V | (number of
vessels) columns each containing the data of one vessel. The number of rows
is 2 + 2|QC|. The first two rows are for berthing locations and berthing times,
where the values are encoded in the interval [0,1]. The next |QC| rows are for
the starting time and the last |QC| rows are for the finish time of QCs on vessels
of the corresponding rows. The contents of these two sections are generated in
the interval [-2,1]. If a cell has a negative value, it means that the QC is not
assigned to the corresponding vessel and values from 0 to 1 are decoded to times
in the planning horizon.
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Neighbourhood. A neighbour solution (s′) of a solution (s) is defined as one,
which is in nbn cells different from s. Therefore, we randomly choose nbn cells
and change their values to other allowable random values.

Constraints-Handling. The constraints of the problem are respected during
the process of solution generation. By this way, firstly, a feasible solution is
found among a population of randomly generated solutions. Then the variables
are randomly prioritised. We begin from the variable with the highest priority,
consider its value to be unknown and find a feasible interval for it according
to the given values of the other variables. Then the corresponding value coming
from the encoded structure (matrix) explained above is decoded to a real amount
within the found interval. This process is repeated for the next variables until
all variables are reassigned with new feasible values. The method is applied to a
subset of the variables to construct a feasible neighbouring solution in the PSA.

Normalisation of the Objectives. An objective value zj is normalised to
znormj as:

znormj =
zj − Zminj

Zmaxj − Zminj
Zminj = 0; j = 1, 2, 3 (29)

Where Zmaxj and Zminj are the maximum and minimum value of objective
j. Zmaxj for the three objectives are calculated as below:

Zmax1 =
∑
i∈V

Ci[γi(BL − TBi) + (1 − γi)TBi] γi =

{
1, TBi ≤ BL

2

0, TBi > BL
2 .

(30)

Zmax2 =
∑
i∈V

Ci[βi(H − TTi) + (1 − βi)TTi] βi =

{
1, TTi ≤ H

2

0, TTi > H
2 .

(31)

Zmax3 =
∑
i∈V

Ci[H − (TTi +
RTi

Qmaxi
)] (32)

5 Computational Experiments

The experiments are done on a Core(TM) i7 computer with 3.10GHz CPU and
16 GB of RAM. PYTHON is used for programming the models and algorithms.
In addition, we apply GUROBI [1] for exact solution required in the ε-constraint.

5.1 Generating Test Problems

The required test problems are randomly generated according to the following
patterns. BL = 100; |QC| = 10; H = 6|V |; E(TTi) = U [0,H − RTi

Qmaxi
]; TBi =

U [0, BL − li].
The data of vessels are based on their size. They are shown in Table 1.
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Table 1. Technical specifications and cost rates

Class Proportion of frequency li RTi Qmaxi Ci

Small 0.5 15 10 2 1

Medium 0.3 25 20 3 2

Large 0.2 35 30 4 3

5.2 Evaluation Metrics

The metrics used to evaluate the performance of our multiobjective methods
are quality metric (QM) and Hypervolume (HV ) [30]. To calculate QM , the
final non-dominated sets obtained by all the methods are merged together. Sub-
sequently, we find the solutions which are not dominated by any other solu-
tion existing in this pool and put them in a set called TNS. For each method:
QM = The number of the method’s solutions in TNS

The number of solutions in TNS .
HV , which can indicate both the accuracy and diversity, is used the most

in the multiobjective works [19]. It is an unary metric that measures the size of
the objective space covered by the set of non-dominated solutions found by the
method under evaluation based on a reference point. Regarding the normalised
objectives, [1,1,1] is considered as our reference point for the calculation of HV .

5.3 Parameter Tuning

The parameters of our PSA are set by the response surface method (RSM) [3],
which is a design of experiments approach. The tuning is done for each problem
size (number of vessels) separately based on a half design duo to so many factors.
The response factor is HV . An interval is given for each parameter value in the
beginning, which is determined according to the experience. These intervals and
the values set by RSM are shown in Table 2. The parameter as used in the last
column is the number of cells or elements in the solution matrix. The solution
time limit (MET ) is set to 30 min or 1800 s.

Table 2. Parameter setting of PSA by RSM

Nr. of

vessels

φ NS α MQ T0 CT nbn

Interval [102, 103]

integer

[5,30]

integer

[0.25,0.75] [5,20]

integer

[102, 105] only

multiples of 10

[1,10]

integer

[0.1 × as,

0.3 × as] integer

10 202 7 0.43 12 103 5 26

20 320 10 0.45 15 104 5 61

50 484 15 0.46 15 104 4 140

100 618 18 0.51 16 104 2 264

200 967 26 0.56 18 105 2 538
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5.4 Results

Test instances including 10, 20, 50, 100 and 200 vessels are built according to the
explained patterns. For the implementation of the ε-constraint method, the third
objective (z3) is considered to be minimised, and z1 and z2 are constrained by
the combination of eleven ε1 and ε2 values which are scattered in equal distances
within [0,1], i.e. they are 0, 0.1, 0.2, 0.3,..., 1. This means that we have altogether
11× 11 = 121 runs for the ε-constraint to find distinct non-dominated solutions.
A time limit of 10 min is considered for each run.

The PSA is applied to each of the instances with 20 replications because solu-
tions can be different each time. As the arrival times of the vessels are stochastic,
the values of the objectives are calculated according to stochastic optimisation
by the reference to averages regarding the probability distributions. Figure 2
depicts the number of non-dominated solutions obtained by the two methods.
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Fig. 2. The number of non-dominated solutions found by the methods

In the following, the outcomes of the approach that the berth and quay crane
scheduling are separately solved by the PSA and then the results are added
together are compared with the integrated solutions. The QM and HV metrics
for the three approaches are depicted in Fig. 3 and 4.

Figure 5 illustrates the average execution time of only the PSA method
because except for the smallest case with 10 vessels, the exact solver cannot
find any optimal solution in any of the ε-constraint runs for larger instances.
The total execution time of the ε-constraint for the smallest instance is over
21000 s, while the average elapsed time of the PSA is under 270s even for the
largest instance including 200 vessels.



A Pareto Simulated Annealing 337

1020 50 100 200
0

0.2

0.4

0.6

0.8

1

Nr. of vessels

Q
M

ε-constraint
PSA

Seperated models by PSA

Fig. 3. Quality Metric (QM) of the methods
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Fig. 4. Hypervolume (HV) metric of the methods

As it is evident from the results, the integration of the two problems leads to
better solutions which dominate the solutions obtained by the separated mod-
els (regarding QM) and have altogether higher HV . In addition, we observe
that our solution methodology can locate more non-dominated solutions which
have better evaluation metrics in comparison to the ε-constriant. The reason is



338 A. Nourmohammadzadeh and S. Voß

1020 50 100 200
0

100

200

300

Nr. of vessels

T
im

e
in

se
co
nd

s

PSA

Fig. 5. Execution time of the methods

that the exact solver in the ε-constraint cannot find any non-dominated solution
within our time limit in many runs.

6 Conclusions

We presented a novel integrated model for the BQCSP with stochastic arrival
times for vessels and solved the problem by a modified PSA algorithm. This
method provides good non-dominated solutions regarding the evaluation metrics.
In addition, the advantage of integration is verified by comparing the results
with the outcomes of the separated BSP and QCSP added together. For future
research, the model can be extended by adding other related problems and their
elements to it. Other non-deterministic parameters and their behaviour can be
found and suitable solution methodologies can be devised to tackle the problem.

References

1. Gurobi optimization. https://www.gurobi.com
2. UNCTAD 2018: Review of maritime transport, united nations conference on trade

and development (2018)
3. Box, G.E.P., Draper, N.R.: Response Surfaces, Mixtures, and Ridge Analyses. 2nd

edn. Wiley-Interscience
4. Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J., Lusby, R.: Models for the discrete

berth allocation problem: a computational comparison. Transp. Res. Part E: Log.
Transp. Rev. 47(4), 461–473 (2011)

5. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and
Methodology. Elsevier Science, New York (1983)

https://www.gurobi.com


A Pareto Simulated Annealing 339

6. Correcher, J.F., Alvarez-Valdes, R., Tamarit, J.M.: New exact methods for the
time-invariant berth allocation and quay crane assignment problem. Eur. J. Oper.
Res. 275(1), 80–92 (2019)

7. Correcher, J.F., Van den Bossche, T., Alvarez-Valdes, R., Vanden Berghe, G.: The
berth allocation problem in terminals with irregular layouts. Eur. J. Oper. Res.
272(3), 1096–1108 (2019)
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Abstract. Exact and approximated mathematical optimization meth-
ods have already been used to solve hotel revenue management (RM)
problems. However, to obtain solutions which can be solved in accept-
able CPU times, these methods require simplified models. Approximated
solutions can be obtained by using simulation-based optimization, but
existing approaches create empirical demand curves which cannot be
easily modified if the current market situation deviates from the past
one. We introduce HotelSimu, a flexible simulation-based optimization
approach for hotel RM, whose parametric demand models can be used
to inject new information into the simulator and adapt pricing policies
to mutated market conditions. Also, cancellations and reservations are
interleaved, and seasonal averages can be set on a daily basis. Monte
Carlo simulations are employed with black-box optimization to maxi-
mize revenue, and the applicability of our models is evaluated in a case
study on a set of hotels in Trento, Italy.

Keywords: Revenue management · Dynamic pricing ·
Simulation-based optimization

1 Introduction

Information technology drastically changed how people plan travels and accomo-
dations. In fact, tools such as online travel agencies or price comparison websites
are now extensively used [31], and hotels are no longer forced to sell their rooms
only through traditional intermediaries. Also, many hotels have already adopted
RM techniques to manage their availability of rooms, in order to maximize their
revenue.

Optimization problems related to hotel RM are usually expressed following
two approaches: capacity control [3,5,8,10,11,15,21,22], where the decision vari-
able is the amount of offered supply, and dynamic pricing [4,6,20,34,35], where
the price is the decision variable. In both cases, several mathematical optimiza-
tion methods have already been proposed to maximize revenue [12,19,28]. Many
of these formulations assume that demand is independent from the chosen pol-
icy. More complex scenarios, where demand is influenced by other factors (e.g.,
c© Springer Nature Switzerland AG 2020
I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 341–355, 2020.
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price), are more difficult to handle and closed-form solutions are rarely avail-
able [9]. Demand is usually considered as a known deterministic function or as a
stochastic function following a known distribution family with unknown param-
eters. Also, if stochastic cancellations are considered, the CPU time for solving
the problem tends to grow exponentially and approaches like dynamic program-
ming are effective only in specific cases [23]. A possible solution to mitigate the
complexity of the model is approximated dynamic programming [3,8,35], where
the problem is partitioned into simpler subproblems. Nonetheless, approximated
models cannot provide exact solutions for realistic scenarios because of the large
number of possible states [27].

The approximate maximization of revenue can be achieved using simulation-
based optimization [7,13]. The analytical model is substituted with a simulator
of many inter-related processes like reservations, cancellations, no-shows, walk-
ins. Then, black-box optimization is used to find the policy which maximizes
the revenue. An effective technique to maximize revenue and simulate different
stochastic aspects of the hotel booking scenario is Monte Carlo simulation [26].
The generation of reservations and cancellations leads to a distribution of pos-
sible revenues, and the expected value of the distribution is considered as the
variable to be maximized. For example, in [6,34] a Monte Carlo approach is
employed to simulate demand as the result of many stochastic processes, and in
[6] the effect that price has on demand is also considered.

In this paper, we present a flexible simulation-based optimization approach
for hotel RM based on dynamic pricing. We simulate demand using a novel set
of parametric models based on the RIM quantifiers [32], whose parameters are
daily statistics which can be estimated from data. Our models allow to change
the curves parametrically, redistributing demand along the booking horizon,
without requiring any change of advance historical data. In fact, bookings and
cancellations associated to each day are distributed along the booking horizon
with a non-homogeneous Poisson process, where demand expectations of each
day are defined by our parametric models. The hotel manager can inject new
information in the system, adapting pricing policies to the mutated conditions
of the market. For the optimization, we use an efficient implementation of the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)[16]1. We position
after the work of [6,34], on which we build, to provide a simpler way for the
hotel manager to run what-if analyses. Furthermore, reservation requests and
cancellations are not grouped into disjoint sets of events like in [34], but occur
in an interleaved way. The structure of the remainder of this paper is as follows.
Section 2 describes HotelSimu, and defines more in detail the parametric models
used for the simulations. Section 3 provides some details about the optimization
algorithm, and Sect. 4 shows the applicability of our models to a set of hotels
in Trento, Italy. Results show that our approach leads to an average revenue
increase similar to that of other dynamic pricing strategies, even though only
aggregated data has been used. Finally, Sect. 5 provides the main implications
of our work for the hotel manager and briefly describes possible extensions.

1 Code available at http://beniz.github.io/libcmaes.

http://beniz.github.io/libcmaes.
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Fig. 1. HotelSimu overview. Reservation requests and cancellations are interspersed.
The state of the hotel after one complete simulation is used by the optimizer to compute
the total revenue and adjust the pricing policy.

2 Simulation Methods

The main components of HotelSimu are shown in Fig. 1. An event generator
simulates the reservation requests and the cancellations. A registry stores the
information about the state of the hotel, in particular accepted reservations and
room availability. A dynamic pricing model proposes an offer for each reservation
request, and an acceptance probability model simulates the stochastic process
by which customers accept or discard reservation offers. An optimizer searches
for the optimal pricing policy to maximize revenue.

2.1 Definitions

Let us now define the main concepts and the notation used throughout the paper.

Definition 1. A reservation request (RR) is an event characterized by the fol-
lowing features. The reservation day (RRres), which is the day the request occurs.
The arrival day (RRarr), which is the day the customer arrives at the hotel. The
length of stay (RRlos), which is the number of nights reserved. The size (RRsize),
which is the number of rooms reserved.

Definition 2. A reservation offer (RO) is an admissible reservation request (for
which there is room availability) characterized by the price (ROprice) proposed by
the hotel, which depends on the features of RR.

Definition 3. An accepted reservation or simply reservation (R) is a reserva-
tion offer accepted by the customer. It is registered on the hotel registry and it
effectively changes room availability.

Definition 4. The acceptance probability of a reservation offer (Praccept(RO))
is the probability that a customer accepts RO and the proposed price, and there-
fore is equal to the probability that RO is registered on the book.
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Definition 5. The state of the hotel S(t) is defined as the state of the booking
registry at time t, which corresponds to the historical records up to t as well as
the set of reservations for future arrival days that are in the registry at time t.

Definition 6. Given two days identified by i, j ∈ {0, 1, 2, . . . }, the number of
days between i and j, or their distance, is d(i, j) = d(j, i) = |i − j| ≥ 0.

Definition 7. Given a reservation R, the time-to-arrival of R is RTTA =
d(Rres, Rarr). If RTTA = 0, a customer makes a reservation on the arrival day
or arrives at the hotel with no reservation and we refer to the customer as a
walk-in user.

Definition 8. The booking time window or booking horizon (BH) is the maxi-
mum time-to-arrival allowed by the hotel.

Definition 9. A cancellation (C) is characterized by the cancellation day
(Cday), which is the day the event occurs, and the reservation (Cres), which is
the reservation on the book that is canceled by the customer. When a reservation
is canceled, it is removed from the hotel registry and the associated rooms can be
booked by other customers.

Definition 10. The cancellation probability, t days before arrival of a reserva-
tion R (Prcancel(R, t)), is the probability that the customer associated with R
cancels it exactly t days before arrival, with t ∈ [0, RTTA]. According to this
definition, the probability that R is canceled within its lifetime is

Prcancel(R) =
∑

t∈[0,RTTA]

Prcancel(R, t). (1)

Definition 11. The reservation requests horizon (RH) is the set of all the reser-
vation days to be simulated. It corresponds to the values that each Rres can
assume during the simulation.

Definition 12. The arrivals horizon (AH) is the set of all possible arrival days.
It corresponds to the values that each Rarr can assume during the simulation.

Definition 13. The optimization horizon (OH) is the set of arrival days for
which there is the need of an optimal dynamic pricing policy to maximize revenue.

For each simulated reservation day r ∈ RH, a random sequence of Cr can-
cellations and Rr reservation requests is generated. Each reservation request is
associated with an arrival day a ∈ AH following or coinciding to r (a � r),
and each cancellation is associated with a registered reservation. The proposal
of a price depends on a reservation request and on the state of the hotel at the
moment the event occurs. Once a price has been proposed to the customer, a
reservation is accepted according to the acceptance probability model. It is then
registered into the hotel registry and, if a cancellation does not occur until the
end of the simulation, it is considered in the evaluation of the total revenue to
be passed to the optimizer. As concerns the optimization, one objective function
evaluation corresponds to the average total revenue of several simulation runs,
with respect to the reservations recorded in the registry within the OH.
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2.2 Simulation of Reservation Requests

Let Ra
r , r ∈ RH, a ∈ AH, be the number of reservation requests generated on day

r that are associated with arrival day a. The total number of requests generated
within RH and associated with one arrival day is therefore given by:

Ra =
∑

r∈RH
r�a

Ra
r , (2)

where � describes the relation precedes or coincides to. The expected total num-
ber of reservation requests associated with one arrival day can be seen as the
result of several independent processes, which occur on each simulated day within
the BH of an arrival day:

E[Ra] = Λ(a) =
BH∑

i=0

λ(i, a), (3)

where λ(i, a) is the expected number of reservation requests occurring i days
before the arrival day a. If historical data are available, one can estimate directly
λ(i, a) for each i and a. To avoid the computational load of a point-wise estima-
tion, and to facilitate what-if analyses, we define each λ(i, a) by the following
parametric model:

λα(i, a) = Λ(a) × Qα(i,BH)

= Λ(a) ×
((

BH + 1 − i

BH + 1

)α

−
(

BH − i

BH + 1

)α)
, (4)

with i = 0, 1, . . . ,BH, a ∈ AH, and for any parameter α > 0. The expression
of Qα(i,BH) is similar to that of the RIM quantifiers proposed in [32], after
reflection and translation. We use Qα(i,BH) because:

– they define a function with discrete domain and continuous values;
– they sum up to 1:

BH∑

i=0

Qα(i,BH) = 1,

for any α > 0 and therefore can represent a discrete probability distribution
or a normalized curve;

– they can model different reservation scenarios through α, from a constant
curve (α = 1) to increasing and decreasing curves (see Fig. 2);

– they provide a simple way of finding α from the ratio of walk-in users with
respect to the total number of reservations, that is, Qα(0,BH).

In the current implementation, we assume that the reservation requests fol-
low a non-homogeneous Poisson process with an expected value given by our
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Fig. 2. Qα(i, BH) for BH = 30 and for different values of α.

parametric model, so Ra ∼ Poisson(Λ(a)). Therefore, reservation requests are
generated for each simulated day according to the following model:

{
Ra

r ∼ Poisson(λα(i, a)) if i ≤ BH,

Ra
r = 0 otherwise.

(5)

Poisson processes are usually chosen to model arrival processes [14] and, in our
context, they can represent the arrival of reservation requests with a minimum
set of parameters. In [34], a binomial distribution is used, with additional con-
straints on the variance of samples in order to set the success probability and the
number of trials. However, a binomial distribution converges to a Poisson dis-
tribution when the number of trials (e.g., customers generating requests) grows.
Removing the limit on the pool of customers that can generate new reserva-
tions makes the model more realistic, since the number of possible customers
is usually unbounded and independent from the capacity of the hotel. For the
estimation of Λ(a), we assume that it is possible to estimate the expected num-
ber of reservation requests for a specific arrival day that are accepted by the
customers and not canceled (Ra

accept). Similarly, we assume that one has access
to the expected number of reservation requests for a specific arrival day that are
accepted by the customers and canceled (Ra

cancel). Ra
accept can be approximated

by the expected number of arrivals, while Ra
cancel can be seen as the expected

number of cancellations.
HotelSimu includes also a model of the acceptance probability Praccept(RO).

A model of probabilities (possibly one for each admissible input) can be esti-
mated from data retrieved by an online booking platform, where one can keep
track of users that search for a room and decide to finalize the reservation or
leave the website. One can also estimate the expected acceptance probability
E[Praccept(RO)] as the expected fraction of reservation requests that are finalized
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by the users after the search. Therefore, the expected total number of reservation
requests (accepted or rejected) associated with one arrival day can be estimated
as follows:

E[Ra] = Λ(a) ≈ Ra
accept + Ra

cancel

E[Praccept(RO)]
. (6)

2.3 Simulation of Nights and Rooms

Let nightsa be the expected number of nights for a reservation associated with an
arrival day a. Analogously, roomsa is the expected number of rooms. max-nightsa

and max-roomsa represent the limits imposed by the hotel manager. Since each
reservation request includes at least one night and one room, we model the
discrete probability distribution of the number of additional nights/rooms as
follows:

Pr(X − 1 = k) =
∫ k+1

max(X)

k
max(X)

(1 − x)
max(X)

avg(X)−0.5−2

B(1, max(X)
avg(X)−0.5 − 1)

dx, (7)

where X is the number of nights/rooms, X − 1 is the number of additional
nights/rooms, max(X) is either max-nightsa or max-roomsa, and avg(X) is either
nightsa or roomsa. k = 0, 1, . . . ,max(X) − 1, and B(α, β) is the Beta function
with parameters α and β.

The previously defined distribution is a discrete analogue of a (continuous)
Beta distribution with α = 1 and β = max(X)

avg(X)−0.5 − 1. The value of α is chosen
so as to have a distribution with an exponential-decay profile, which is similar
to the distribution seen in [34]. β is chosen so as to have an expected value
approximately equal to avg(X) − 1. This is achieved by imposing the equal-
ity of the expected value of the (continuous) Beta distribution, which is α

α+β ,
to the expected number of additional nights/rooms rescaled to [0, 1], which is
avg(X)−0.5
max(X) . We consider a correction of 0.5 to account for the discretization error

and to position rescaled expected values in the middle of the discretization inter-
val. Experiments show that the maximum error between the expected values and
the empirical averages of the discrete analogue with max(X) = 5 is at most 0.33,
for expected values equal to 0, 0.1, 0.2, . . . ,max(X) − 1.

Even though modeling the length of stay or the number of rooms as Bernoulli
or Poisson processes provides a simple and exact way of imposing the expected
value, it is not applicable to our context, which cannot be reduced to a coin toss
or to an arrival process. In the literature, the Beta distribution is often used to
model unknown probability distributions, with shapes that can be controlled by
the parameters α and β. By building a discrete analogue of a Beta distribution,
we can exploit its macroscopic features and to obtain a realistic model of the
variable of interest. A similar model can be defined also for group reservations,
which usually follow a different distribution from that of the length of stay of
normal reservations. This can be easily achieved by considering a different value
for avg(X). By following (7), an instance of the random variable X, which is
either RRlos or RRsize, is generated as X = 1 + 	Y × max(X)
, where Y ∼
Beta(1, max(X)

avg(X)−0.5 − 1).
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2.4 Simulation of Cancellations

Under the same assumptions of Sect. 2.2, and by analogy to (1), the probability
that a reservation is canceled during its lifetime can be seen as the summation of
the probabilities that a reservation is canceled exactly on a specific day within
its lifetime:

Prcancel(R) = Ω(a) =
RTTA∑

i=0

ω(i, a), (8)

where ω(i, a) is the probability that R is canceled exactly i days before the
arrival day a, with i within its lifetime. We define each ω(i, a) by the following
parametric model:

ωα(i, a) = Ω(a) × Qα(i, RTTA)

= Ω(a) ×
((

RTTA + 1 − i

RTTA + 1

)α

−
(

RTTA − i

RTTA + 1

)α)
, (9)

with i = 0, 1, . . . , RTTA, a = Rarr, and for any parameter α > 0. In this context
one can also find α from the fraction of cancellations that occur on the last day
(Qα(0, RTTA)), which includes the so-called no-shows. Ω(a) can be estimated as
follows:

Ω(a) ≈ Ra
cancel

Ra
cancel + Ra

accept

, (10)

with an arrival day a = Rarr. In HotelSimu, different stochastic cancellation
scenarios can be simulated by changing ωα(i, a) through Ω(a) and α.

3 Optimizing the Noisy Simulator Function

Since Monte Carlo simulation employs stochastic processes, the performance of
each solution corresponds to a distribution of results. The expected value of
the distribution is used as an approximation of the objective function to be
optimized, so the optimization operates in the presence of noise.

In the literature, multiple works tested diverse heuristic algorithms on noisy
functions, and they have shown that population-based approaches like CMA-ES
are a good choice to optimize noisy functions [1,2,24,25]. In fact, instead of
relying only on a single solution, at each iteration CMA-ES combines a subset
of its candidate solutions in order to direct the search in the most promising
direction. By combining multiple solutions located in a restricted area of the
search space, the impact of noise is decreased due to an implicit averaging effect
[1,33]. Moreover, to further reduce the effect of noise on the optimization, we
compute the performance of each solution as the mean of the outcome of multiple
simulations. From probability theory, one knows that the effect of noise can be
reduced by evaluating multiple times each solution [33]. More precisely, CMA-
ES is an evolutionary optimization algorithm in which a multivariate normal
distribution N(μt,Mt) is used to sample solutions, where t defines the iteration
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of the algorithm. At each iteration, the mean μt defines the center of the distri-
bution, while the covariance matrix Mt determines shape and orientation of the
ellipsoid corresponding to N(μt,Mt). Also, a step size σt controls the spread of
the distribution as a percentage of the search space. Iteratively, CMA-ES follows
the following steps. First, a population of λ solutions is sampled from N(μt,Mt).
Second, candidates are evaluated and ranked according to the respective evalua-
tions. Third, the best 	λ

2 
 results are used to update μt and Mt, in order to move
the search towards the most promising search direction. Fourth, σt is increased
or decreased according to the length of the so-called evolution paths. Evolution
paths are weighted vector sums of the last points visited by the algorithm. They
provide information about the correlations among points, and they are used to
find the direction recently followed by the optimization. If consecutive steps are
going in the same direction, the same distance could be covered by longer steps
and the current path is too long. If consecutive steps are not going in the same
direction, single steps tend to cancel each other out and so the current path is
too short.

CMA-ES is executed with λ = 4 + 	3 log d
 and σ = 0.5, where d is the
dimensionality of the objective function and σ ∈ (0, 20]. The size of the pop-
ulation is the one suggested by the authors of [16], who have also tested that
CMA-ES with this population size is a robust and fast local search method [18].
We experimented even other parameter settings of the algorithm, but because
of space limitations of this publication we present only the preliminary results
obtained with the mentioned settings. Also, all the standard stopping criterias of
CMA-ES are active [17]. Each time a stopping criteria is triggered, the algorithm
is restarted from another randomly generated point in the search space, with a
new population of the same size.

4 Results

In the following experiments, we show how our models can be used to search for
the optimal pricing policies that maximize the total revenue of a set of hotels of
different sizes. We assume there is only one category of rooms, and that at least
historical data about final demand is available. However, if advance historical
data is also available and empirical demand curves can be estimated, our models
can be calibrated using optimization algorithms [29].

4.1 Setup of the Experiments

We consider a monotonically decreasing reservation curve with 40% of the cus-
tomers treated as walk-in users, calibrating our models according to the reserva-
tion models estimated from historical data in [34]. The goodness of this choice
is also confirmed by data collected by the Italian Institute of Statistics (Istat)
on the features of trips2, which show that approximately 40% of the interviewed
2 http://dati.istat.it/?lang=en;section:Communication,culture,trips/Trips/Tripsand

theircharacteristics.

http://dati.istat.it/?lang=en; section: Communication,culture,trips/Trips/Trips and their characteristics.
http://dati.istat.it/?lang=en; section: Communication,culture,trips/Trips/Trips and their characteristics.
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people travel without booking. As a consequence, it is reasonable to assume that
the remaining 60% of the reservations is monotonically distributed in the BH in
a decreasing fashion as moving away from the walk-in day. We also assume that
the maximum number of cancellations occurs on the last day, and we fix this
number to 40% of the total number of cancellations. BH is fixed to 180 days, the
maximum number of nights for one reservation to 10, and the maximum number
of rooms to 4. As concerns the pricing policy, we use the model proposed in [6],
which is based on a set of multipliers that leads to an increase or decrease in the
average price according to the features of a reservation request. The multipliers
vary around 1, and each multiplier changes the reference price according to the
value it assumes: a value lower than 1 corresponds to a discount and a value
larger than 1 is a price increase. We assume that ROprice corresponds to the
unit price for 1 room and 1 night, where the unit price proposed to the customer
is computed as follows:

ROprice = pricea · ξ(RRTTA, RRlos, RRsize, S,Δ, η), (11)

where pricea is the expected unit price for customers arriving on day a, and ξ(·)
is a function of the reservation request features and of the hotel registry, with
average value equal to 1. This function smoothly adjusts the price within the
interval [(1 − Δ)pricea, (1 + Δ)pricea], with a slope proportional to η:

ξ(RRTTA, RRlos, RRsize, S,Δ, η) = ξ(t, l, s, S,Δ, η) = (12)
= (1 − Δ) + 2Δ · Φ(η · (MT (t)ML(l)MS(s)MC(S) − 1)).

Φ(·) is the cumulative distribution function of the standard normal distribution,
and MT (·), ML(·), MS(·) and MC(·) are functions (or multipliers) of the time-to-
arrival, the length of stay, the number of rooms and the remaining hotel capacity
at the moment the reservation request is generated, respectively. As concerns the
parameters of the multipliers, we set T0 = 30 and C0 = L0 = G0 = 1.6. Also,
η = 3 and Δ = 0.6 in order to propose prices with a maximum increase/decrease
of 60% with respect to pricea.

The effect on the room demand of changing the unit price is modeled by the
acceptance probability, which we define similarly to [34]. When the proposed
price is equal to the average price of reservations with the same arrival day, the
acceptance probability is set to 0.5, to model the absence of any preference about
accepting or rejecting the reservation. With prices fixed to the average values, the
expected number of accepted reservations is equal to half of the total number of
reservation requests. The expected percentage of accepted reservations increases
when the price decreases and decreases otherwise. This phenomenon, called price
elasticity, is modeled by the following function:

Praccept(RO) = 1 − Φ(ρ · (ROprice − pricea)), (13)
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where Φ(·) is the cumulative distribution function of the standard normal distri-
bution, and ρ is a parameter that controls the slope of the function and allows
us to consider different price elasticity scenarios. In the experiments, ρ is cho-
sen so that Praccept(RO) ≈ 1 when there is a discount of at least 50% and
Praccept(RO) ≈ 0 when the price increases of at least 50%.

Table 1. Characteristics of hotels used for the tests, and results. Arrivals, occupancy
(as room-nights) and revenue after optimization are expressed as percentage increase,
where maximum and minimum values are in bold. Optimization total CPU time and
single-run simulation CPU time are defined in seconds.

Hotel Rooms Price (e) Arrivals Occupancy Revenue Optimization Simulation

01 52 120.00 48.2± 0.5 47.6± 0.6 18.4± 0.6 11000± 109.0 2.0 ± 0.012

02 34 69.50 50.6± 0.6 50.6± 0.7 20.4± 0.7 10800± 82.33 1.91± 0.006

03 136 290.00 51.6± 0.3 52.6± 0.3 21.6± 0.3 18400± 258.5 3.54± 0.030

04 46 153.33 44.0± 0.5 44.2± 0.6 17.8± 0.6 9910± 97.61 1.78± 0.008

05 113 136.675 55.5 ± 0.3 55.2 ± 0.4 23.1 ± 0.4 16700± 241.2 3.19± 0.031

06 37 74.00 46.9± 0.6 45.8± 0.6 17.8± 0.6 9570± 87.87 1.69± 0.012

07 9 39.00 38.2 ± 1.1 37.7 ± 1.3 12.8 ± 1.2 7370± 17.70 1.25± 0.010

08 22 216.50 43.2± 0.7 42.0± 0.8 18.0± 0.8 7870± 35.67 1.35± 0.004

09 14 66.50 42.0± 0.9 41.8± 1.0 17.7± 1.0 7740± 32.26 1.3 ± 0.010

10 19 82.67 41.8± 0.8 40.5± 0.9 17.3± 0.9 8650± 46.21 1.49± 0.008

We empirically show the applicability of HotelSimu to 10 hotels in Trento,
Italy. We selected representative hotels from the official open data of the Province
of Trento3, as reported in Table 1. The information on the average arrivals and
the average number of nights per reservation is taken from the Statistics Insti-
tute of the Province of Trento (Ispat)4. No information is available about the
average number of rooms per reservation, so we assumed it to be equal to 1.
We disaggregated data on arrivals and mapped them onto each hotel accord-
ing to their capacity, under the assumption that bigger hotels usually register
more arrivals than smaller hotels. We use real aggregated data on tourists and
different hotels to simulate time series of reservations and cancellations, and we
consider these time series as a baseline to be compared to the outcome of the
optimization.

In the experiments RH starts on July 1st, 2017, and ends on December 31st,
2018. AH starts on July 1st, 2017, and ends on January 31st, 2019. OH starts
on January 1st, 2018, and ends on December 31st, 2018.

The optimization has a budget of 300 iterations (for a maximum running
time of 5/6 h). Each iteration retrieves the total revenue as the average on 20
simulation runs, all with the same parameter configuration, for a total of 6000
simulations within one optimization run. The optimization is repeated 10 times.
Each experiment is started from an initial solution which has been generated
by a uniform distribution defined over the search space. Tests have been run on
3 http://dati.trentino.it/dataset/esercizi-alberghieri.
4 http://www.statistica.provincia.tn.it, section “Annuari del Turismo”.

http://dati.trentino.it/dataset/esercizi-alberghieri.
http://www.statistica.provincia.tn.it
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Fig. 3. Average daily revenue for Hotel 05 and Hotel 07 (one value per week).

virtual machines using a KVM hypervisor (1 per hotel), each one with 512 MB
of RAM and 1 CPU (1 core) at 2.1 GHz.

4.2 Results on Arrivals, Occupancy and Revenue

In Table 1 we report the results on customer arrivals, occupancy and total rev-
enue as the percentage increase led by the optimized pricing model with respect
to the configuration with the multipliers equal to 1. Results are expressed in
terms of averages and standard errors, and they are statistically significant
according to the two-tailed unequal variances t-test [30], with a significance level
α = 0.01. A unit of occupancy corresponds to the so-called room-night, which is
a room occupied for one night.

Results are promising for all the hotels, with a minimum of 12.8% increase
in revenue, 37.7% in occupancy and 38.2% in arrivals. The maximum increase
in revenue is reached for Hotel 05, with a value of 23.1%. The minimum values
are reached for small hotels, where the limited number of rooms leads to fewer
arrivals and then relatively low revenues. In this context, there is also more
variability, since the hotel can become full with few reservations, thus leading to
the rejection of more requests. Experiments suggest that higher revenues can be
obtained for medium and big hotels, where the system exploits the capacity of
the hotel to increase the number of arrivals. The time series of the average daily
revenue during the year of interest for the best and worst scenarios are reported
in Fig. 3. For Hotel 05, it is evident that the time series produced by the optimized
model is significantly higher than that produced without optimization. In this
case, there is less chance of having a loss in revenue because of an optimistic
configuration found during the optimization process. For Hotel 07, the two time
series are not significantly different because of the higher uncertainty caused by
the small dimension of the hotel. This leads to higher risk and to the possibility
of having a loss (with probability ≈ 0.03), as it is evident from the distribution
of the increase in revenue in Fig. 4. These results are in accordance with the
expected behavior of non-homogeneous Poisson distributions, whose coefficient
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Fig. 4. Estimated distributions of increase in revenue after optimization for Hotel 05
and Hotel 07.

of variation decreases as the expected value increases. In the context of hotel
demand, this property implies that for smaller hotels, which can accommodate
a limited number of guests and therefore are characterized by less arrivals, the
coefficient of variation is higher than that of large hotels. As a consequence, the
increased variability for small hotels leads to higher risk of losses, as empirically
shown by our results.

5 Conclusions

In this work we proposed HotelSimu, a flexible simulation-based optimization
approach which can be used for maximizing the revenue of hotels. Since the
output of the simulations is noisy, we optimized the noisy simulator function by
using CMA-ES, a population-based algorithm which has already been studied
in the literature and proved to be effective in noisy scenarios. Furthermore, we
aggregated the outcome of multiple simulations in order to use the expected
value to further reduce the effects of the noise on the optimization.

HotelSimu models stochastic arrivals and cancellations in an interleaved fash-
ion, considering several characteristics of reservation requests in order to pro-
pose dynamic prices. Furthermore, it models the effect that price variations have
on demand (price elasticity). Our models, based on the RIM quantifiers, allow
the hotel manager to adapt pricing policies to dynamic market conditions, and
to analyze different booking scenarios by changing a compact set of meaning-
ful parameters. Seasonal averages can be set even on a day-by-day basis, thus
allowing the hotel manager to adapt the pricing policy to special events and to
consider monthly as well as weekly seasonal effects.

The case study shows that our parametric models lead to results similar to
other dynamic pricing models in the literature, while relying only on aggregated
data. The average revenue increase is ≈ 19% with respect to the original pricing
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policies, and the risk of losses is absent for medium-big hotels and limited for
small hotels, with a maximum loss probability of ≈ 0.03. Moreover, experiments
show that HotelSimu can simulate one year and a half in ≈ 2 s on average on a
low-end machine. Also, a complete optimization can be run within one night.

Acknowledgements. A. Mariello would like to thank H. T. Nguyen for the useful
advice on the RIM quantifiers.

References

1. Arnold, D.V.: Noisy Optimization with Evolution Strategies, vol. 8. Springer,
Cham (2012). https://doi.org/10.1007/978-1-4615-1105-2

2. Arnold, D.V., Beyer, H.G.: A comparison of evolution strategies with other direct
search methods in the presence of noise. Comput. Optim. Appl. 24(1), 135–159
(2003)

3. Aydin, N., Birbil, S.: Decomposition methods for dynamic room allocation in hotel
revenue management. Eur. J. Oper. Res. 271(1), 179–192 (2018)

4. Aziz, H.A., Saleh, M., Rasmy, M.H., Elshishiny, H.: Dynamic room pricing model
for hotel revenue management systems. Egypt. Inform. J. 12(3), 177–183 (2011)

5. Baker, T.K., Collier, D.A.: A comparative revenue analysis of hotel yield manage-
ment heuristics. Decis. Sci. 30(1), 239–263 (1999)

6. Bayoumi, A.E.M., Saleh, M., Atiya, A.F., Aziz, H.A.: Dynamic pricing for hotel
revenue management using price multipliers. J. Revenue Pricing Manag. 12(3),
271–285 (2013)

7. Bertsimas, D., De Boer, S.: Simulation-based booking limits for airline revenue
management. Oper. Res. 53(1), 90–106 (2005)

8. Bertsimas, D., Popescu, I.: Revenue management in a dynamic network environ-
ment. Transp. Sci. 37(3), 257–277 (2003)

9. Bitran, G., Caldentey, R.: An overview of pricing models for revenue management.
Manuf. Serv. Oper. Manag. 5(3), 203–229 (2003)

10. Bitran, G.R., Mondschein, S.V.: An application of yield management to the hotel
industry considering multiple day stays. Oper. Res. 43(3), 427–443 (1995)

11. Choi, T.Y., Cho, V.: Towards a knowledge discovery framework for yield manage-
ment in the Hong Kong hotel industry. Int. J. Hosp. Manag. 19(1), 17–31 (2000)

12. Denizci Guillet, B., Mohammed, I.: Revenue management research in hospital-
ity and tourism: a critical review of current literature and suggestions for future
research. Int. J. Contemp. Hosp. Manag. 27(4), 526–560 (2015)

13. Figueira, G., Almada-Lobo, B.: Hybrid simulation-optimization methods: a taxon-
omy and discussion. Simul. Model. Pract. Theory 46, 118–134 (2014)
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Abstract. Many real-world optimization problems are subject to noise,
and making correct comparisons between candidate solutions is not
straightforward. In the literature, various heuristics have been proposed
to deal with this problem. Most studies compare evolutionary strate-
gies with algorithms which propose candidate solutions deterministi-
cally. This paper compares the efficiency of different randomized heuristic
search strategies, and also extends randomized algorithms non based on
populations with a statistical analysis technique in order to deal with
the presence of noise. Results show that this extension can outperform
population-based algorithms, especially with higher levels of noise.

Keywords: Noisy optimization · Heuristics · Statistical analysis

1 Introduction

In many real-world optimization problems, the evaluation of candidate solu-
tions is affected by noise. Possible sources of noise include physical measurement
limitations, or the stochastic component employed in simulations. Similarly, in
machine learning, the diversity of data used to train and test models adds a
layer of uncertainty to the problem. Different models are usually compared using
cross-validation approaches, but comparisons are not guaranteed to be correct.
In noisy scenarios, since the true value of the objective function is distorted,
making correct comparisons between candidate solutions is not straightforward.
If the noise is too high with respect to the difference between the true values of
two candidates (signal), and so the signal-to-noise ratio is too low, comparisons
done using a single evaluation per solution might be wrong.

In order to deal with noise, various heuristics have been proposed and stud-
ied [2,4,5,17,27]. In particular, many studies employ variants of evolutionary
algorithms, which adopt a set of candidate solutions (population) subject to
local perturbative search and stronger diversification means, often described
with terms derived from genetics. Since these algorithms iteratively employ a
population to explore the search space and propose new solutions, they are con-
sidered to be robust to the presence of noise [2,21]. Multiple works compared
various heuristic algorithms with evolutionary strategies, and they have shown
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that population-based approaches are a good choice to optimize noisy functions
[2,4,27]. However, these studies mostly compare evolutionary strategies with
algorithms which propose candidate solutions deterministically. But, according
to the results of [4], when information about gradients is not available and the
objective function is noisy, randomized algorithms might be an effective choice.

Apart from the search policy, which defines how the search space is explored
and new solutions are proposed, also other building blocks are necessary to
build effective noisy optimization strategies. In fact, to be efficient in this con-
text, algorithms must deal with the presence of noise. In general, this can be
achieved in two ways: by increasing the strength of the signal, or by reducing
the effect of noise. In randomized algorithms, the signal can be improved by
adapting the search region according to the signal-to-noise ratio. Multiple vari-
ants of this strategy have been studied in the field of evolutionary algorithms
[2,5]. It has been shown that the way in which the search region is adapted dur-
ing the optimization has a relevant impact. On the other hand, the effect of noise
can be reduced by evaluating multiple times each solution [8,9,13,28,29]. Also,
if a heuristic is population-based, the impact of noise can be decreased by incre-
menting the number of candidates (size) of the population [3,5,15]. This effect,
called implicit averaging, has been studied using normally distributed noise with
zero mean and different values of constant standard deviations [16,17,22]. Also,
[17] shows that increasing indiscriminately the population size can be counter-
productive, but without providing an explanation for this behavior. As will be
shown empirically, the effect of implicit averaging depends on the type and the
amount of noise in the objective function. It is also worth noticing that, in order
to deal with noise, randomized algorithms can be extended with statistical anal-
ysis techniques. An example is given by simulated annealing [32], which has
been extended by adapting the number of samples per solution based on some
statistical analysis [1,7]. However, studies which compare diverse randomized
algorithms extended with statistical methods are missing in the literature, and
this work is a first step in this direction.

This study aims at comparing the efficiency of different heuristic search
strategies in the presence of noise, and to investigate the effects that differ-
ent components of these strategies have on the performance. Differently from
previous studies, all the heuristic search strategies employed in this study are
randomized, and algorithms not based on populations are extended using a reac-
tive sample size scheme proposed by [14]. The rest of the paper is structured as
follows. Section 2 states more formally the noisy optimization problem and gives
an overview of the reactive sample size scheme. Section 3 outlines the heuristic
search algorithms which have been used in the experiments, and comments the
components of the algorithms which are analyzed empirically. Section 4 defines
the experiments and analyzes the results.

2 Noisy Optimization

Let F be a stochastic function that models a real world problem. The output of
F depends on some decision variables x and on a random vector ξ that represents
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the stochasticity of the problem. The expectation of F is defined as

f(x) = E[F (x, ξ)] (1)

and it can be estimated by using a sample ξ1, ..., ξn of independent identically
distributed (i.i.d.) realizations of the random vector ξ, in order to compute the
Sample Average Approximation (SAA) of (1) as

f̂n(x) =
1
n

n∑

i=1

F (x, ξi). (2)

If the sample ξ1, ..., ξn is i.i.d., by the Law of Large Numbers, as n approaches
infinity f̂n(x) converges to f(x) and so f̂n(x) is an unbiased estimator of f(x).
Moreover, if the variance of F is finite, by the Central Limit Theorem f̂n(x)
asymptotically follows a normal distribution with mean f(x) and variance σ2/n
where σ2 is the variance of F . As a consequence, the accuracy of the estimation
increases with sample size n, but this also increments the computational burden
(see also [26,31]). The problem might be defined in the constraints-defined region
Θ in which x can assume values as

min
x∈Θ

f(x). (3)

The SAA defined in (2) can be used as objective function by heuristic opti-
mization techniques, in order to optimize f(x). The presence of noise might
require large samples in order to obtain sufficiently accurate estimates, so com-
paring the performance of different configurations is not straightforward. Given
any configuration x, f(x) − f̂n(x) defines an error εn(x) that goes to 0 only in
the limit of n going to infinity. As a consequence, when comparing two configu-
rations x1 and x2, the difference f̂n(x1)− f̂n(x2) is not sufficient to decide which
configuration has a better average. If the signal |f(x1)−f(x2)| is lower than the
noise |εn(x1) − εn(x2)|, the signal-to-noise ratio is too low and the comparison
might be not significant.

2.1 A Reactive Sample Size Algorithm

In this work, in order to deal with the presence of noise, heuristic techniques
which do not use a population are extended with a reactive sample size algorithm
[14] based on paired t-tests and indifference-zone (IZ) selection. IZ selection is
a concept commonly used in ranking and selection (R&S) algorithms. These
methods aim at selecting, in a statistically significant manner, the best solution
x∗ which performs better among a finite set of k possibilities. In R&S methods
based on IZ selection, the target is to select the best configuration x∗ among a
finite set of k configurations, where x∗ is better than all other configurations in
the set by at least δ and the probability of correct selection (PCS) is 1 − α >
0, where α is the probability of making an error of type I. δ is called the IZ
parameter, and it defines the minimum difference in means considered to be
worth detecting. More information about R&S can be found in [10,23,25].
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The algorithm works as follows. Given a pair of configurations {x1, x2} to
be compared, paired evaluations are obtained by evaluating x1 and x2 using the
same ξi. Then, these evaluations are used to compute the paired t-test statistic.
In fact, as observed by [24], using the same realizations helps to reduce the effect
of noise. The correlation among pairs of evaluations reduces the variance with
respect to an unpaired statistic. Also, the scheme assumes that F is normally
distributed and that its variance is finite.

The algorithm reactively decides, in an online manner, the sample size to
be used for each comparison done during the optimization. Also, all the evalu-
ations of solutions previously visited during the search are kept in memory, to
avoid the waste of computational budget if a configuration has to be compared
multiple times. Significant differences are detected by considering the relation-
ship between probabilities α and β of making an error of type I and type II.
To remind the reader, given a null hypothesis H0 and an alternative hypothesis
H1, α is the probability to reject H0 when H0 is true and β is the probability
to fail to reject H0 when H0 is false. To compute β, a significant difference in
means for which H0 is assumed to be false and H1 to be true has to be defined.
The value for which H1 is assumed to be true is δobserved, which corresponds
to f̂n(x1) − f̂n(x2). So, given a paired sample, the minimum sample size n that
should be used to test a one-tailed hypothesis with error probabilities α and β
can be computed. See [14] for more details.

Also, in real world problems, one might not be interested to correctly detect
very small differences between means. If x1 and x2 have a very similar perfor-
mance and δobserved is smaller than a certain user-defined δ, the comparison
is done heuristically by considering only the values of f̂n(x1) and f̂n(x2). The
value of δ is expressed as a percentage of the current best solution, because in
many cases the user does not know a priori the best possible result which can
be obtained by the optimization.

3 Optimization Algorithms

The optimization algorithms employed in the experiments are Random Search
(RS), the Reactive Affine Shaker (RAS) [11] and the Covariance Matrix Adap-
tation Evolutionary Strategy (CMA-ES) [19,20]. RS is a simple stochastic local
search algorithm which is often used as baseline for comparisons, while RAS
and CMA-ES are more advanced stochastic schemes which adapt step size and
direction of the search during the optimization.

In RS, a new candidate solution xnew is sampled from an interval defined
in a neighborhood of the current best solution xcurrent, according to a uniform
distribution. A step size σ is used to define, as a percentage of the intervals
which define Θ along each dimension, the boundaries of the local search region
located around xcurrent. Consequently, diverse step sizes correspond to search
policies with different levels of locality. A step size of 1 would make the search
global, and the optimization would correspond to pure random search.

In RAS, a local search region is adapted by an affine transformation. The
aim is to scout for local minima in the attraction basin where the initial point
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falls. The step size σ and the direction of the search region are adapted in order
to maintain heuristically the largest possible movement per function evaluation.
The search occurs by generating points in a stochastic manner, with a uniform
probability in the search region, following a double shot strategy. A single dis-
placement Δ is generated, and two specular points xcurrent +Δ and xcurrent −Δ
are considered for evaluation. An evaluation is successful if the objective func-
tion value in at least one of the two candidates is better than f̂(xcurrent). The
search region is modified according to the outcome of the comparisons. It is com-
pressed if both comparisons are unsuccessful, and it is expanded otherwise. In
both cases, the search region is modified according to an expansion factor ρ > 1.

CMA-ES [19,20] is an evolutionary optimization paradigm in which configu-
rations are sampled from a multivariate normal distribution N(μt,Mt), where t
defines the iteration of the algorithm. At each iteration, the mean μt defines the
center of the distribution, the covariance matrix Mt determines shape and ori-
entation of the ellipsoid corresponding to N(μt,Mt), and a step size σt controls
the spread of the distribution as a percentage of the intervals which define each
dimension of Θ. The ellipsoid is the local search region used by the algorithm to
explore the search space and propose candidate solutions. Iteratively, CMA-ES
follows four steps. First, it samples a fixed number λ of new configurations from
N(μt,Mt), creating a population. Second, candidates are evaluated and ranked
according to the quality of the evaluations. Third, the best �λ

2 � results are used
to update N(μt,Mt), in order to move the search towards the most promising
search direction. Fourth, σt is increased or decreased according to the length of
the so-called evolution paths, in order to maximize the expected improvement
of the optimization. This last step is explained more in detail in the follow-
ing subsection. Also, CMA-ES has been extended with an uncertainty handling
(UH) method, to deal with possible noise in the objective function [18]. In this
version of CMA-ES, referred as UH-CMA-ES, the uncertainty is measured by
rank changes among members of the population. Once each solution of the pop-
ulation has been evaluated and ranked, a few additional evaluations are taken
and the population is ranked again. By doing so the algorithm tries to estimate
the amount of noise in the evaluations, in order to increase σt and prevent the
signal-to-noise ratio from becoming too low.

3.1 A Note on CMA-ES Step-Size Adaptation

The adaptation of σt, also called cumulative step-size adaptation, is based on the
evolution paths mentioned in Sect. 3. An evolution path is a weighted vector sum
of the last points successively visited by the algorithm. It provides information
about the correlations between points, and it can be used to detect the direction
of consecutive steps taken by the optimization. If consecutive steps are going in
the same direction (scalar product greater than zero), the same distance could
be covered by longer steps and the current path is too long. If consecutive steps
are not going in the same direction (scalar product lower than zero), single steps
tend to cancel each other out and so the current path is too short. Therefore,
to make successive steps more efficient, σt is changed accordingly. The step size
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determines the signal strength used by CMA-ES to estimate the direction of the
gradient. If the steps of the algorithm are very small, the signal is also likely low
and therefore the signal-to-noise ratio becomes small as well. Also, it has been
shown that in noisy optimization the cumulative step-size adaptation may result
in premature convergence [6].

4 Experiments

Before showing the results about the performance of different randomized algo-
rithms in various noisy scenarios and higher dimensions, a preliminary study on
CMA-ES is presented. In order to investigate the effects of implicit averaging,
the algorithm is tested using populations larger than the standard size proposed
by its authors.

4.1 Benchmarking Functions and Noise Models

In order to test diverse heuristic strategies in the presence of noise, Sphere and
Rastrigin functions have been extended with multiple types and levels of noise.
As in other works in the literature, both functions are optimized in [−5.12, 5.12]d,
where d is the number of dimensions. To evaluate the impact of noise on the opti-
mization, a standard practice in the literature is to extend deterministic functions
by introducing multiplicative or additive noise. In the case of multiplicative noise,
a percentage ε of f(x) is added to f(x) according to a displacement generated
using a standard normal distribution:

f(x, ε) = f(x) + f(x) · ε · N(0, 1). (4)

This kind of noise is typical of devices which take physical measurements, like
speed cameras, where values are guaranteed to be accurate up to a certain
percentage of the measured quantity. However, as the optimization proceeds
towards lower values, the noise decreases. This means that, as the optimization
approaches the global optimum x∗, it is easier to move into the right direction
and, if f(x∗) = 0, there is almost no noise in proximity of the global optimum.

Although such a situation is true in many real-world scenarios, there exist
other problems where the noise does not always go to zero as the global optimum
(if any) is approached. As examples, consider the optimization of simulation
models, or the tuning of the hyperparameters of machine learning algorithms.
In this case, the noise can be simulated by adopting additive noise. However,
determining the amount of noise to add is up to the practitioner. In fact, additive
noise is usually normally distributed with zero mean and constant standard
deviation σε. Since this kind of perturbations does not depend on the signal, the
signal-to-noise ratio might cause problems only when approaching the minimum
and its effects are going to be very different from function to function.

To avoid these drawbacks, a possibility is to define additive noise as normally
distributed with zero mean and dynamic standard deviation. Since the step size
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used by randomized algorithms impacts the strength of the signal, in order to
test harder noise scenarios it makes sense to set the noise level according to the
step size. So, given a point x in Θ and a percentage ε, the dynamic standard
deviation σi along each dimension i is computed as follows. Compute lower
bound li = xi − ε · Θi and upper bound ui = xi + ε · Θi, where Θi is the interval
in which the function is defined along dimension i. Then, find the minimum m
and the maximum M among {f(li), f(xi), f(ui)}. Finally, σi = |m−M | and the
additive noise model is defined as

f(x, ε) = f(x) +
N∑

i=1

N(0,
σi

k
), (5)

where N is the dimensionality of the function and k is a constant used to control
the amount of noise. In the experiments, ε = 0.1 and k ∈ {1, 2, 3, 6}. Therefore,
while using this model of noise, the distortion of the signal is set according to
the maximum signal which can be detected by an algorithm which adopts a
fixed step size (like RS). With k = 6, 99.7% of the noise is generated within the
intervals which define the local search region. With k = 3, k = 2, k = 1 the same
is true respectively for 81.86%, 68, 27%, 34.14% of the noise.

4.2 Setup

Each experiment is based on 100 macroreplications, where each optimization
process has a budget (number of function evaluations) of 5000. Initial solutions
are generated according to a uniform distribution defined on the interval of
each dimension of Θ. In each experiment, algorithms start the optimization
from a randomly generated solution x0 and consider a local search region of
the same size defined around x0. Then, the local search region is iteratively
modified according to the algorithm. Apart from CMA-ES and UH-CMA-ES,
the algorithms are employed in two versions: with a naive scheme which uses
1 evaluation for each solution, and the reactive scheme proposed by [14]. The
acronym of each algorithm is preceded with N in the former case and with R in
the latter. As suggested in [14], the values of the parameters are set as αreq = 0.1,
βreq = 0.4 and δ = 0.01.

In the first set of experiments on CMA-ES, restarts are not considered. In
fact, the standard implementation of CMA-ES includes various stopping criterias
and restart policies [20], but they have been deactivated in order to improve
the analysis of the different components of the algorithm. When activated, all
algorithms use global restarts based on a single stopping criterion: if the current
best solution does not improve by at least 10% in k = 500 function evaluations,
a restart is done. An exception is given by RAS, which possibly needs to be
restarted because of its double-shot strategy. In fact, if x0 is generated nearby
the boundaries of the search space, the double shot strategy might be unable to
generate a valid configuration.

RS uses σ ∈ {0.1, 0.2}, while RAS employs σ ∈ {0.1, 0.2} and ρ = 2. CMA-ES
and UH-CMA-ES adopt σ ∈ {1.0, 2.0}, because the library used to implement
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the algorithm defines σ ∈ (0, 10]1. Also, λ = 4 + �3 log d�, where d is the dimen-
sionality of the objective function. The values of ρ and λ are the ones suggested
respectively by the authors of [11,20].

4.3 Average Loss Signal per Iteration

In a noisy scenario, in order to understand how the algorithm behaves with pop-
ulations of different sizes, a possible way to proceed is to measure the magnitude
of the error made when estimating the gradient. To do so, at each iteration, the
population of candidate solutions p = {x1, ..., xm} is ranked in two ways. Firstly,
according to the noisy ranking r̂ based on f̂1(x1), ..., f̂1(xm). Secondly, following
the noiseless ranking r defined by f(x1), ..., f(xm). Then, the signal loss L is
defined as the difference between the signal of these two rankings, where the sig-
nal of a ranking is the sum of the absolute differences among the ordered values
used for ranking. More formally, in the case of r̂ and r,

ŝ(r̂, p) =
m−1∑

i=1

|f̂1(xi) − f̂1(xi+1)| (6)

and

s(r, p) =
m−1∑

i=1

|f(xi) − f(xi+1)|, (7)

where the set {1, ...,m−1} is ordered respectively according to r̂ and r. Therefore,

L(r̂, r, p) = ŝ(r̂, p) − s(r, p) (8)

and the average signal loss per iteration is defined as

E(L) =
1
N

N∑

i=1

L(r̂i, ri, pi), (9)

where N is the number of iterations of the algorithm. By following this proce-
dure, the optimization estimates the gradient according to r̂ and it is possible
to measure by how much the optimization goes in the wrong direction. Also, by
comparing r̂ and r, the number of misrankings among each population’s candi-
dates can be computed, as well as the average misrankings’ percentage E(M) of
the whole optimization.

4.4 Results When Using Larger Populations in CMA-ES

This set of experiments is based on the bidimensional Sphere function. As it is
possible to see in Table 1, E(L) keeps increasing as the population grows. Larger
populations can potentially detect more signal, but are unable to do so. In fact,

1 https://github.com/beniz/libcmaes.

https://github.com/beniz/libcmaes.


364 M. Dalcastagné

Table 1. Performance of CMA-ES with σ = 1.0 and λ ∈ {6, 36, 60} on the Sphere
function in 2 dimensions. Macrocolumns show respectively the results obtained when
using multiple levels of constant additive noise, multiplicative noise and dynamic addi-
tive noise. In each macrocolumn, the average best results f(x∗) are in bold and all
values based on f(x) are normalized by the number of dimensions.

Constant additive Multiplicative Dynamic additive

λ N σε E(M) E(L) f(x∗) ε E(M) E(L) f(x∗) k E(M) E(L) 1f(x∗)
6 833 0.1 81.92 0.0048 0.02 0.1 13.37 0.0032 0.00 6 82.28 0.0392 0.15

6 833 1.0 82.55 0.0512 0.22 0.2 24.34 0.0099 0.00 3 82.39 0.1219 1.45

6 833 2.0 82.74 0.0986 0.42 0.3 33.82 0.0264 0.28 2 82.61 0.2362 3.26

6 833 3.0 82.85 0.1476 0.75 0.4 43.78 0.0526 2.29 1 82.50 1.1282 9.10

36 138 0.1 93.26 0.0138 0.01 0.1 53.48 0.0400 0.00 6 95.72 0.1639 0.35

36 138 1.0 95.72 0.1506 0.05 0.2 70.86 0.0662 0.00 3 95.85 0.5872 2.26

36 138 2.0 95.98 0.3336 0.11 0.3 79.03 0.1368 0.38 2 95.87 1.3667 4.22

36 138 3.0 96.20 0.4303 0.14 0.4 84.30 0.2789 4.63 1 96.22 4.1927 9.07

60 83 0.1 93.75 0.0188 0.00 0.1 66.15 0.0508 0.00 6 97.10 0.2641 0.40

60 83 1.0 97.05 0.2078 0.04 0.2 80.16 0.1322 0.00 3 97.25 0.8849 2.49

60 83 2.0 97.50 0.3776 0.08 0.3 86.12 0.2235 0.58 2 97.33 2.1270 5.24

60 83 3.0 97.59 0.6161 0.12 0.4 90.09 0.4825 6.56 1 97.64 5.7731 10.04

as Figs. 1a, 1b, 1c show, larger populations contribute to mantain a larger step
size and so to make wider steps. However, as the amount of noise increases,
misrankings are going to happen first among similarly ranked candidates and
then also between solutions ranked farther away from each other. Also, the mag-
nitude of the errors increases with the noise. Consequently, larger populations
tend to lose more signal and to guide the optimization farther away from the
true direction of the gradient.

The effect of the misrankings depends on the amount of noise. Even if E(M)
increases with the population size, it is not implied that the performance of the
optimization deteriorates. For example, Table 1 shows that in the case of constant
additive noise, larger populations obtain better results. This happens because
the signal-to-noise ratio is sufficiently high to avoid misrankings which would
guide the optimization towards a significantly wrong direction. The amount of
noise starts creating problems only when approaching the minimum, as shown
in Fig. 2. With this amount of noise, even N-RS is able to perform comparably
well. In contrast, in the case of dynamic additive noise, the signal-to-noise ratio is
approximately the same throughout the search space and results are expected to
deteriorate much more, as confirmed by the results in Table 1. Even in the case of
multiplicative noise, larger populations possibly worsen the performance of the
optimization. Therefore, when the signal-to-noise ratio is low and misrankings
happen among further positions, increasing the population size or the number of
parents is not going to significantly improve the robustness of the optimization.
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Fig. 1. Each row shows respectively average variation of CMA-ES step size (1a) and
CMA-ES covariance matrix volume (1a), with σ = 1.0 and λ ∈ {6, 36, 60}. Each column
refers respectively to a particular case of the diverse types of noise used in Table 1. More
precisely, they show the cases with constant additive noise with σ = 1.0 (first column),
multiplicative noise with ε = 0.2 (second column) and dynamic additive noise with
k = 3 (third column).

In this case, it is preferable to increase the sample size used to estimate each
candidate solution.

It is also worth noticing the premature convergence of the covariance matrix.
Figures 1d, 1e, 1f show that the volume of the covariance matrix goes to zero
in the first part of the optimization. After that, CMA-ES is no longer able to
propose significantly different solutions.

4.5 Results When Using Larger Sample Size

These experiments are based on both Sphere and Rastrigin functions, with
d ∈ {2, 10}. Results in Tables 2 and 3 show that, with high levels of noise, a
simple optimization algorithm such as R-RS performs better than more complex
algorithms like RAS, CMA-ES or UH-CMA-ES. Without increasing the sam-
ple size of estimators, using a population of solutions is not able to compete
with single-point algorithms which adapt the sample size of estimators accord-
ing to empirical evidence. Furthermore, in this context, UH-CMA-ES might even
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Fig. 2. Average convergence of CMA-ES with σ = 1.0 and λ = 60, and N-RS with
σ = 0.1 on the bidimensional Sphere function, with multiple levels of constant additive
noise. Lines represent the mean noiseless value of the best configuration found during
the optimization (which is not known by the optimizers). Also, all evaluations are
normalized by the number of dimensions.

worsen the performance. As shown in Fig. 3d, increasing the step size according
to observed misrankings provides better results when the initial step size is very
low with respect to the distortion caused by the noise.

Figure 3a shows that a larger step size can improve the efficiency of the opti-
mization. On average, compared solutions correspond to more different estima-
tors and a lower sample size is required to make statistically significant compar-
isons. However, since a larger step size also implies reducing the sampling gran-
ularity, the optimization enhances the global search phase and the convergence
speed tends to decrease. For the same reason, as shown in Fig. 3b, the effective-
ness of the double-shot strategy in a noisy environment is questionable. Although
such an approach can be a good strategy for deterministic optimization, on each
iteration very similar configurations are compared, the signal-to-noise ratio tends
to be low and the sample size required to make statistically significant compar-
isons increases. Furthermore, as the search region is compressed, this effect is
further enhanced.

In noisy scenarios, step-size adaptation mechanisms and adaptations of the
search space are potentially counterproductive. In deterministic functions, com-
pressions of the search region usually lead to a better exploitation of the local
structure of the objective function. However, because of the presence of noise,
decisions to compress the search region might be wrong and therefore the opti-
mization might prematurely converge to false local optima.

In larger dimensions, the situation changes in the case of Rastrigin function
with lower levels of noise. However, it is expected that a population-based algo-
rithm performs better than single-point algorithms in the case of a multimodal
function like Rastrigin. Combining a set of candidate solutions at each iteration
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Fig. 3. Average convergence of the optimizers on the Sphere function, with d = 10
k = 3. The results obtained by using a very small step size are also shown.

gives the algorithm the ability to adapt to the local topology of the objective
function, reducing the risk to get stuck in local optima.

5 Conclusions

This paper investigated different components of diverse heuristic strategies in
the context of noisy optimization. A preliminary study on the bidimensional
Sphere function showed how the implicit averaging effect of population-based
algorithms does not always improve the optimization as the size of the population
is increased, and analyzed how different amounts of noise change the impact of
this effect on the optimization. Randomized algorithms not based on populations
have been extended with a statistical analysis technique [14] to deal with the
presence of noise, and they have been compared with CMA-ES and UH-CMA-
ES.
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Table 2. Average best objective function value found by different optimizers, with
different levels of dynamic additive noise added to the Sphere function. In each column,
the best results are in bold and all values are normalized by the number of dimensions.

d = 2 d = 10

Optimizer σ k = 1 k = 2 k = 3 k = 6 k = 1 k = 2 k = 3 k = 6

R-RS 0.1 1.14 0.29 0.15 0.05 4.29 1.75 0.81 0.29

R-RS 0.2 1.25 0.45 0.26 0.05 3.77 1.74 1.16 0.51

R-RAS 0.1 4.12 1.37 0.78 0.12 6.85 4.27 2.59 0.83

R-RAS 0.2 3.41 1.35 0.55 0.05 7.63 4.63 3.34 0.70

CMA-ES 1.0 13.95 5.72 2.45 0.44 11.98 7.22 3.13 0.69

CMA-ES 2.0 14.76 5.00 2.14 0.41 12.17 7.47 3.17 0.71

UH-CMA-ES 1.0 14.71 5.09 2.15 0.45 12.96 9.86 5.26 1.02

UH-CMA-ES 2.0 15.46 5.66 2.03 0.38 12.79 10.33 6.09 0.98

Table 3. Average best objective function value found by different optimizers, with
different levels of dynamic additive noise added to the Rastrigin function. In each
column, the best results are in bold and all values are normalized by the number of
dimensions.

d = 2 d = 10

Optimizer σ k = 1 k = 2 k = 3 k = 6 k = 1 k = 2 k = 3 k = 6

R-RS 0.1 1.87 0.58 0.30 0.13 10.94 8.07 7.29 6.60

R-RS 0.2 2.19 0.77 0.48 0.25 10.30 7.24 6.40 5.93

R-RAS 0.1 7.68 5.65 5.10 3.68 13.20 9.55 8.47 6.97

R-RAS 0.2 6.61 4.77 4.61 2.86 13.98 10.16 8.35 6.88

CMA-ES 1.0 16.85 6.62 3.58 1.03 18.83 12.37 6.21 2.24

CMA-ES 2.0 17.48 6.16 2.85 0.98 19.59 13.31 6.46 2.13

UH-CMA-ES 1.0 16.79 4.73 2.98 1.11 19.89 15.94 11.02 3.95

UH-CMA-ES 2.0 17.67 5.21 2.11 0.95 19.71 16.57 12.64 3.91

Results in Sect. 4.4 confirm the findings of [17]. The analysis provides an
explanation about the reason for which larger populations do not always improve
the optimization, and a higher sample size should be preferred when the signal-
to-noise ratio is too low. Furthermore, these results also agree with [2]: in the
presence of noise, step length control mechanisms are crucial to the performance
of the optimization. If optimization methods are extended with statistical anal-
ysis techniques such as [14], the resolution at which the search space is explored
matters significantly. With lower step sizes, solutions correspond to more similar
function evaluations, and the sample size required to statistically determine a
difference increases.

Future work aims at extending current results in order to consider other
derivative-free optimization strategies and more benchmarks. Also, it would
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be worth investigating the performance of more global search policies, which
iteratively compare configurations located farther away in Θ and search more
locally in different parts of Θ only if sufficient empirical evidence to do so is
observed. Approaches like CoRSO [12] or Bayesian Optimization [30] could be
good choices.
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Abstract. Portfolio optimization is a large area of investigation both
in theoretical and practical setting since the seminal work by Markowitz
where a mean-variance model was introduced. From optimization point
of view, the problem of optimal portfolio in mean-variance setting can
be formulated as convex quadratic optimization under uncertainty. In
practice one needs to estimate parameters of the model to find an opti-
mal portfolio. Error in the parameter estimation generates error in the
optimal portfolio. It was observed that the out of sample behavior of
obtained solution is not in accordance with what is expected. Main rea-
son for this phenomena is related with the estimation of means of stock
returns, estimation of covariance matrix being less important. In the
present paper we study uncertainty of identification of efficient frontier
(Pareto optimal portfolios) in mean-variance model. In order to avoid
the estimation of means of returns we use CVaR optimization method
by Rockafellar and Uryasev. First we prove, that for a large class of ellip-
tical distributions efficient frontier in mean-variance model is identical
to the trajectory of CVaR optimal portfolios with the change of the con-
fidence level. This gives an alternative way to recover efficient frontier
in mean-variance model. Next we conduct a series of numerical experi-
ments to test the proposed approach. We show that proposed approach
is competitive with existing methods.

Keywords: Optimization under uncertainty · Portfolio optimization ·
Efficient frontier · Mean-variance optimization · CVaR optimization

1 Introduction

Financial optimization is an attractive fields in optimization which is marked
by presence of uncertainty, such as economic factors, returns on financial instru-
ments, future prices of goods, etc. One of the most known problems in this
field is portfolio optimization initiated by the seminal work by Markowitz [15].
The objective is to distribute in optimal way the capital between stocks in the
financial market. Markowitz approach, also called mean-variance approach, has
become very popular and continue to be useful our days [9,14]. However, prac-
tical application of this approach hurts a serious obstacle. Since Markowitz’s
c© Springer Nature Switzerland AG 2020
I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 371–376, 2020.
https://doi.org/10.1007/978-3-030-53552-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_33&domain=pdf
https://doi.org/10.1007/978-3-030-53552-0_33


372 V. A. Kalygin and S. V. Slashchinin

framework assumes that mean vector and covariances of returns are known,
in practice it requires estimation of parameters from historical data. This can
result in estimation errors or bias and hence non-optimal solutions and poor
out-of-sample performance. Impact of estimation error in optimal portfolios cal-
culation can be so important that in some cases trivial equal weights portfo-
lio can be competitive with optimal portfolios [4,16]. Different aspects of the
impact of estimation errors on optimal portfolio were investigated in [2,3]. Vari-
ous techniques to improve estimations of means and covariances were developed
in the literature [8,11,12]. However, as it was shown in [10] these improvements
don’t eliminate the “bias” of optimal portfolio obtained by estimations from the
expected optimal portfolio.

In the present paper we study uncertainty of identification of efficient frontier
of optimal portfolios in mean-variance setting. For a large class of distributions
(elliptical distributions) we suggest a different approach for efficient frontier iden-
tification which is based directly on observations and does not involve parameter
estimations. More precisely, we suggest to use conditional value at risk (CVaR)
optimization for the identification of efficient frontier. In order to do it we prove
that for elliptical distributions mean-variance efficient frontier is identical to
the trajectory of CVaR optimal portfolios. This allows to apply CVaR portfolio
optimization technique developed by Rockafellar and Uryasev [17,18] to effi-
cient frontier identification. We show by experiments that proposed approach is
competitive with other approaches.

2 Basic Definitions and Notations. Problem Statement

Suppose we have N stocks on the stock market. Let R = (R1, R2, . . . , RN ) be a
random vector of stock returns with some multivariate distribution. Denote by
μ = (μ1, μ2, . . . , μN ) the vector of means of R, μi = E(Ri), and by Σ = (σi,j)
the covariance matrix of R, σi,j = Cov(Ri, Rj). Portfolio is defined by the vector
w = (w1, w2, . . . , wN ) of the proportions of the capital investment, i.e. wi is the
proportion of the capital invested in the stock i. Portfolio return is the random
variable R(w) =

∑N
i=1 wiRi, with the mean E(R(w)) =

∑N
i=1 wiμi = wμ′ and

variance σ2(R(w)) =
∑ ∑

σi,jwiwj = wΣw′. In what follows we assume that
wi ≥ 0, i = 1, 2, . . . , N (short sales are forbidden). We are interested in portfolios
related with two-objectives optimization problem

E(R(w)) = wμ′ → max,
σ(R(w)) = wΣw′ → min,

s.t. wi ≥ 0,
∑N

i=1 wi = 1

Efficient (optimal) portfolio is a Pareto optimal solution of this problem, i.e.
for efficient portfolio it is impossible to simultaneously improve both objectives:
efficiency and risk. Efficient frontier is defined in the coordinates (σ,E) as the
set of points (σ(R(w)), E(R(w))) where w are efficient portfolios. It is known
that efficient frontier is a concave curve which is bounded in the case wi ≥ 0,
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i = 1, 2, . . . , N . To find the efficient frontier one can solve a family of one-
objective optimization problems (γ ≥ 0):

wμ′ − γwΣw′ → max,

s.t. wi ≥ 0,
∑N

i=1 wi = 1,

where γ is usually called risk aversion coefficient. This is convex quadratic opti-
mization problem and one can use existing effective algorithms to solve it. It can
be proved that all portfolios from efficient frontier can be obtained as solutions
of this optimization problem for different values of γ ≥ 0.

However, in practice vector of means μ and covariance matrix Σ are not
known and to identify the efficient frontier on can use estimates μ̂, Σ̂ and solve
associated one-objective problems. This “obvious” approach has some drawback.
It results in estimation errors or bias of the obtained efficient frontier from the
true efficient frontier [10]. It is interesting in this case to find a way for efficient
frontier identification, which uses observed data directly and avoids estimations
of μ, and Σ (data driven approach). In the present paper we propose to use for
this purpose CVaR optimization technique initiated by Rockafellar and Uryasev
[17,18].

Suppose that loss Y has the density distribution function, which we denote
by p(y). Conditional value at risk for the loss Y at the confidence level β is
defined by (see more details in [19])

β − CV aR : φβ(Y ) = E(Y/Y ≥ αβ) =
1

(1 − β)

∫

y≥αβ

p(y)dy

where αβ is the Value at Risk (VaR) associated with the loss Y :

β − V aR : αβ(Y ) = min{α : Ψ(α) ≥ β}, where Ψ(α) = P (Y ≤ α)

By definition, CVaR is the expected value of loss under condition that loss is
larger than αβ . In the case of CVaR portfolio optimization the loss is defined by
Y = −R(w) and optimization problem is β − CV aR(−R(w)) → min, wi ≥ 0,∑

wi = 1.

3 Efficient Frontiers. Theoretical Results

In this Section we show that for elliptical distributions the mean-variance efficient
frontier can be recovered by CVaR optimal portfolios. Elliptically contoured
distributions (or simply elliptical distributions) are known to be useful in many
applications and especially in finance [7]. Random vector X belong to the class
of elliptically contoured distributions if its density function has the form [1]:

f(x;μ,Λ) = |Λ|− 1
2 g{(x − μ)′Λ−1(x − μ)} (1)

where Λ = (λi,j)i,j=1,2,...,N is positive definite symmetric matrix, g(x) ≥ 0, and
∫ ∞

−∞
. . .

∫ ∞

−∞
g(y′y)dy1dy2 · · · dyN = 1
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This class is a natural generalization of the class of Gaussian distributions. Many
properties of Gaussian distributions have analogs for elliptical distributions, but
this class is much larger, in particular it includes distributions with heavy tails,
such as multivariate Student distributions. For detailed investigation of ellipti-
cal distributions see [1,7]. It is known that if E(X) exists then E(X) = μ. One
important property of elliptical distribution X is the connection between covari-
ance matrix of the vector X and the matrix Λ. Namely, if covariance matrix
exists one has

σi,j = Cov(Xi,Xj) = C · λi,j (2)

where C is some constant. In particular, for Gaussian distribution one has
Cov(Xi,Xj) = λi,j . For multivariate Student distribution with ν degree of free-
dom (ν > 2) one has σi,j = ν/(ν − 1)λi,j .

Theorem 1. Let random vector of returns R has elliptical distribution. Then
any mean variance efficient portfolio is exactly CVaR optimal portfolio for an
appropriate choice of the parameter β.

Sketch of the Proof. The proof uses general properties of elliptical distribu-
tions [1], description of CVaR optimal portfolios from [17], and specific properties
of CVaR risk measure [5].

This theoretical results gives a possibility to use CVaR optimization tech-
nique for identification of the efficient frontier from observations. We model
observations of stock returns as a sample R(t), t = 1, 2, . . . , T of the size T
from distribution of R. Observed values of the stocks return Ri are denoted by
ri(t). It is shown in [17] that calculation of β − CV aR optimal portfolio can be
reduced to the solution of the following LP problem, where all observations ri(t)
are involved:

α +
1

T (1 − β)

T∑

t=1

ut → min

subject to (t = 1, 2, . . . , T )

x ∈ X, ut ≥ 0, x1r1(t) + x2r2(t) + · · · + xNrN (t) + α + ut ≥ 0

where ut are dummy variables. This LP problem can be solved by any LP solver.
It is possible to improve the quality (uncertainty) of obtained solution by an
appropriate use of machine learning scenario generation technique [6].

4 Efficient Frontiers. Experimental Results

We test our approach by simulations using a real stock market data of daily stock
returns from S&P100 index. The collected data contains returns from January
2014 to November 2018 for 96 stocks. From these data we estimated distribution
parameters (vector of means and covariance matrix) and then use these param-
eter in the generator to generate samples of independent identically distributed
random vectors from multivariate elliptical distributions. The experiments were
conducted as follows.
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Fig. 1. Efficient frontiers obtained by different approaches, samples generated from
Student t distribution

1. Select elliptical distribution for data generator
2. Generate sample of T observations
3. For each model, solve the corresponding optimization problems to construct

the efficient frontier of portfolios
4. Measure out-of-sample characteristics of obtained portfolios using true

parameters of the underlying distribution
5. Repeat steps 2–4 100 times to compute more stable estimation of out-of-

sample characteristics of selected portfolios
6. Construct efficient frontier

We compare 4 different approaches for identification of efficient frontier: mean-
variance (standard estimation of means and covariance matrix), shrinkage esti-
mator for covariance matrix from [13], CVaR optimization, CVaR optimization
with generated scenarios [6]. The results show that CVaR approach competitive
with other approaches especially in the case of heavy tail distributions. This is
illustrated by the Fig. 1, where efficient frontiers obtained by different approaches
are presented.

5 Concluding Remarks

A new data driven approach for identification of mean-variance efficient frontier
of investment portfolios is proposed. This approach is based on CVaR optimiza-
tion. It is shown that proposed approach is competitive with other approaches.
This first observation needs further investigation.
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Abstract. We discuss the issue of finding a good mathematical pro-
gramming solver configuration for a particular instance of a given prob-
lem, and we propose a two-phase approach to solve it. In the first phase
we learn the relationships between the instance, the configuration and
the performance of the configured solver on the given instance. A spe-
cific difficulty of learning a good solver configuration is that parameter
settings may not all be independent; this requires enforcing (hard) con-
straints, something that many widely used supervised learning methods
cannot natively achieve. We tackle this issue in the second phase of our
approach, where we use the learnt information to construct and solve
an optimization problem having an explicit representation of the depen-
dency/consistency constraints on the configuration parameter settings.
We discuss computational results for two different instantiations of this
approach on a unit commitment problem arising in the short-term plan-
ning of hydro valleys. We use logistic regression as the supervised learning
methodology and consider CPLEX as the solver of interest.

Keywords: Mathematical programming · Optimization solver
configuration · Hydro Unit Commitment

1 Introduction

Mathematical Programming (MP) is a formal language for describing optimiza-
tion problems; once a problem is modelled by a MP formulation, an off-the-shelf
solver can be used to solve it. Off-the-shelf solvers must be general enough to
encompass a significant family of problems, and yet fast enough that sufficiently
large-scale instances will be solved in reasonable time. By the usual trade-off

This paper has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement n. 764759
“MINOA”.

c© Springer Nature Switzerland AG 2020
I. S. Kotsireas and P. M. Pardalos (Eds.): LION 14 2020, LNCS 12096, pp. 377–389, 2020.
https://doi.org/10.1007/978-3-030-53552-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53552-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-53552-0_34


378 G. Iommazzo et al.

between generality and efficiency, implementing a good solver is extremely hard.
Today’s most successful solvers, such as e.g. IBM-ILOG CPLEX [17], meet these
specifications by actually embodying a corpus of different solution algorithms,
each with their own (often very large) set of algorithmic options [18]. The default
values for these options are usually chosen so that the solver will perform reason-
ably well on a large instance library, but for many problem classes performances
can be improved by carefully tuning the solver configuration. Identifying good
solver parameters for a given problem instance, however, is a difficult art, which
requires a considerable experience in solver usage, and an in-depth hands-on
knowledge of the application giving rise to the considered MP formulation.

Automatic configuration of algorithmic parameters is an area of active
research, going back to the foundational work in [26]. Many approaches are based
on sampling algorithmic parameter values, testing the solver performance, and
performing local searches in order to find the parameters that most improve
performance [10,14,16,22]. An algorithmic configuration method, derived from
[16] and specifically targeted to MP solvers (including CPLEX), is described in
[15]. All of these methods learn from a set of instances the best configuration for
a similar set of instances; the configuration provided is not “per-instance” but
common to all of the instances in the same problem class. This is different to the
approach investigated in the present paper, which aims at providing a specific
configuration for each given instance. The per-instance approach is necessary
whenever the solver performance on instances of a problem class varies much, as
in the case of our specific application. A more theoretical approach to choosing
provably optimal parameter values based on black-box complexity, and limited
to evolutionary algorithms, is given in [9] and references therein. Many artificial
intelligence methodologies have been applied to this problem, see e.g. [23].

While the previously cited methodologies—and the one proposed in this
paper—try to learn the best parameter values of an algorithm before launching
it to solve a new instance, other approches learn on-the-fly, during its execution.
For instance, the CPLEX Automatic Tuning Tool [17, Ch. 10], accompanying
the corresponding solver, runs it on an instance (or a set thereof) several times,
within a user-decided time limit, testing a specific parameter setting at each run,
and saves the configuration providing the best algorithmic performance. Another
on-the-fly methodology is presented, e.g., in [3], where one or more parameters
of a tabu-search heuristic are adjusted, during its execution and in function of
its behaviour, until a good configuration is learned.

In this work we present a new two-phase approach to automatic solver con-
figuration. In the first phase, called the Performance Map Learning Problem
(PMLP), we use a supervised Machine Learning (ML) methodology in order
to learn the relationships between the features f of an instance ι, the solver
configuration c and the performance quality p of the solver configured by c
on the instance ι. Formally, p is defined as a function p : (f, c) → R mea-
suring the integrality gap achieved by the solver within a certain time limit.
We propose two different variants of the PMLP. In the Performance-as-Output
(PaO) one, we learn an approximation p̄(f, c) of the performance function. In
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the Performance-as-Input (PaI) one, we instead learn an approximation C̄ of the
map C : (f, r) → c, where c is any configuration allowing to obtain a required
performance level r ∈ R for the instance ι. In the second phase we use the learnt
information (either p̄ or C̄) to define the Configuration Space Search Problem
(CSSP), a constrained optimization problem, which is different for the two vari-
ants PaO and PaI. The input of the CSSP is an encoding of the performance map
as well as the features of the instance to be solved. Its constraints encode the log-
ical dependency and compatibility conditions over the configuration parameters:
this ensures feasibility of the produced configuration. The objective function of
the CSSP is a proxy to the performance map: optimizing it over the constraints
yields a good configuration for the given instance.

Our approach is therefore capable of handling configuration spaces having
arbitrarily complex logical conditions. This overcomes a weakness in previous
learning-based approaches to the algorithm configuration problem, as acknowl-
edged e.g. by [15,16]. To see how this weakness might adversely impact a solver
configuration methodology, consider the following naive approach: learn the map
C using a supervised ML method, then ask the trained method to output C(f, 1)
(1 being the best possible performance) for a new, unseen instance encoded by
f . Unfortunately, this approach would fail over most off-the-shelf supervised ML
methodologies, which are unable to reliably enforce dependency and compatibil-
ity constraints on the output configuration. Some attempts have been made to
overcome this issue. For instance, the authors of ParamILS [16], that performs
local searches in configuration space, declare that their algorithm supports the
encoding of dependence/compatibility constraints on feasible parameters con-
figurations. Unfortunately, we were unable to find the precise details of this
encoding. Other approaches, used in learning-based optimization try to directly
integrate a constrained optimization problem in a neural network, embedding
it into the gradient computations of the back-propagation pass [11,29] or into
an individual layer [2]. However, they are not generalizable to any ML algo-
rithm and/or MP. We make one last introductory remark about the parameter
search space: obviously, our approach can help configure any subset of solver
parameters; in order to reduce the time spent in constructing the training set,
a judicious choice would consider a reasonably small subset of parameters that
are thought to have a definite impact on the problem at hand.

The rest of this paper is organized as follows. In Sect. 2 we formally introduce
the notation and the main ingredients of our approach. In Sect. 3 we discuss both
variants of the PMLP, and in Sect. 4 we discuss the corresponding CSSP. Finally,
in Sect. 5 we report computational experiments and we draw some conclusions.

2 Notation and Preliminaries

2.1 The Training Set

Let C be the set of valid solver configurations. We assume for simplicity that C ⊆
{ 0 , 1 }s, although extension to integer and continuous numerical parameters is
clearly possible. Since every subset of the unitary hypercube can be described
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by means of a polytope [25, Cor. 1], we assume that its representation as a set
of linear inequalities in binary variables, say

C = { c ∈ { 0 , 1 }s | Ac ≤ d } (1)

is known. In practice, deriving A and d from the logical conditions on the param-
eters can be assumed to be easy.

Let I be an optimization problem consisting of an infinite number of
instances. In order to be able to use a ML approach, we have to encode each
instance ι ∈ I by a feature vector fι ∈ R

t for some fixed t ∈ N. This is surely
possible at least by restricting ourselves to some subset of I ′ ⊆ I (say, instances
with appropriately bounded size). We also assume availability of a finite subset
I ⊂ I ′ of instances and let F = { fι | ι ∈ I } be their feature encodings. We
remark that F must be representative of I. Since feature extraction is an inten-
sively studied field, we do not dwell on the specifics here. We also remark that ML
methodologies are known to perform well on training sets that are not “overly
general” [13, Ch. 5.3]: thus, we assume that I is a set of instances belonging to
the same problem, or at least to different variants of a single problem.

In practice, in this paper we focus on a unit commitment problem arising in
the energy industry, which is solved hundreds of times per day. The instances
all have the same size; the constraints do not vary overmuch; the features are
the objective function coefficients. Notwithstanding, our approach is general:
the “problem structure” is encoded in the set of features (extracted from the
instances), which are certainly class-specific, but need not be size-specific (one
can e.g. use dimensionality reduction techniques to achieve feature vectors of the
same size even for instances of varying size).

We can then, in principle, compute p(f, c) on each feature vector f ∈ F with
every configuration c ∈ C by calling the solver configured with c on the instance
ι, in order to exploit (F × C, p(F,C)) as a training set for learning estimates
p̄ or C̄ as described above. Hopefully, then, these can be used to generalize our
approach to instances outside I, with known encoding and that are in some way
similar (in size or otherwise) to those in I.

2.2 Logistic Regression

Logistic Regression (LR) is a supervised ML methodology devised for binary
classification of vectors [8].

Let X = (X1, . . . ,Xm) be a vector of random variables, and let Y be a
Bernoulli distributed random variable depending on X . Following [20], and
denoting P(X = x) by P(x) and P(Y = y) by P(y), we have

P(1|x) =
P(x|1)P(1)

P(x)
=

P(x|1)P(1)
P(x|1)P(1) + P(x|0)P(0)

=
1

1 + P(x|0)P(0)
P(x|1)P(1)

=
1

1 + e−z
= σ(z), (2)

where z = ln
P(x|1)
P(x|0)

+ ln
P(1)
P(0)

. (3)
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We now assume that z depends linearly on x:

∃w ∈ R
m, b ∈ R z = wx + b. (4)

In some cases w, b can be computed explicitly: for example, if we assume that
the conditional probabilities P(x|y) are multivariate Gaussians with means μy

and identical covariance matrices Σ, and use the above expression for P(1|x),
we obtain

P(1|x) =
1

1 + e−(wx+b)

where w = Σ−1(μ1 − μ0) and b = 1
2 (μ0 + μ1)

�
Σ−1(μ0 − μ1) + ln(P(1)/P(0)).

In general, however, explicit formulæ cannot always be given, and w, b must be
computed from sampled data.

To simplify notation in this section, we let τ(x,w, b) � 1
1+e−(wx+b) , simply

denoted τ(x) when w, b are fixed. Since we only consider two class labels {0, 1},
we model the probability of Y = y conditional to X = x using the function τ(x)
if y = 1 and 1 − τ(x) if y = 0, i.e.

P(y |x) = τ(x)y(1 − τ(x))1−y, (5)

which evaluates to τ(x) whenever y = 1 and 1 − τ(x) whenever y = 0.
We consider a training set T = (X,Y ) where X = (xi ∈ R

m | i ≤ n) and
Y = (yi ∈ {0, 1} | i ≤ n) consist of independent and identically distributed
samples. We then use the Maximum Likelihood Estimation methodology [13] to
find the optimal values of the parameters w and b. To this end, we define the
likelihood function

LT (w, b) =
∏

i≤n P(yi |xi) =
∏

i≤n τ(xi, w, b)yi

(1 − τ(xi, w, b))1−yi

. (6)

We want to maximize LT (w, b). Since the logarithmic function is monotone in
its argument, maximizing ln(LT (w, b)) yields the same optima (w∗, b∗) as max-
imizing LT (w, b). The training problem of LR is therefore:

max
w,b

∑
i≤n

[
yi ln

(
1

1+e−(wxi+b)

)
+ (1 − yi) ln

(
1 − 1

1+e−(wxi+b)

)]
(7)

We recall that the functions

ψ1(z) = ln
(

1
1+e−z

)
and ψ2(z) = ln

(
1 − 1

1+e−z

)

are concave [6, Ex. 3.49(a)]. Since 0 ≤ yi ≤ 1 for each i ≤ n, (7) maximizes the
sum of convex combinations of concave functions, so it is a convex optimization
problem which can be solved efficiently.

Once trained, the LR maps input vectors x ∈ R
m to an output scalar y ∈

[0, 1]: in this sense, LR approximates a binary scalar; binary values can of course
be retrieved by rounding, if necessary. We denote this by y = LR(x,w∗, b∗).
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2.3 The Performance Function

Since any LR output must be in [0, 1] by definition, the performance data set
p(F,C) must be scaled to [0, 1]. We first measured, on different instance and
solver configuration and within a given time limit, the CPLEX integrality gap,
which is defined as

|best integer sol.value − best relaxation value|
1e−10 + |best integer sol.value|

in [17], pg. 263. Unfortunately, CPLEX performance data sometimes include
very large values which stand for “infinity” (denoted ∞ below), meaning that
CPLEX may not find feasible solutions or valid bounds at every run within
the allotted CPU time. Instead of scaling in the presence of these outliers, we
employed the following algorithm to obtain our performance function:

1. fix a constant γ > 0;
2. let p̂ = max(p(F,C) � {∞});
3. for each v ∈ p(F,C) if v > p̂ let v = p̂ + γ;
4. let ρ = (ρ1, . . . , ρn) be a ranking of p(F,C) = (v1, . . . , vn) so that ρ1 ≥ ρ2 ≥

· · · ≥ ρn and ρ1 ranks the best performance value (equal values in p(F,C)
are assigned the same rank);

5. scale ρ to [0, 1] so that ρ1 is mapped to 1 and ρn to 0.

The choice of LR for this work is motivated by the fact that: (a) the parame-
ters chosen for automatic configuration are all binary, and LR is a good method
for estimating binary values; (b) the performance function has range [0, 1]. In
general, LR can be replaced by other ML methodologies: this changes the tech-
nical details of the two phases, but it does not change the overall approach.

3 The PMLP

We now describe in details the two announced variants of the PMLP.

3.1 PMLP-PaO

In this variant, the output that we want to produce is an approximation p̄(f, c)
of the performance function. Therefore, we interpret the symbols in Sect. 2.2
using the entities defined in Sect. 2.1. We note that the y variables in Eq. (7)
are continuous, as noted at the end of Sect. 2.2. We have X = F × C ⊆ R

t+s

and Y = ρ; that is, x = (f, c) in (7) encodes the concatenation of features and
configurations, and y = ρ is a vector of dimension 1 (i.e., a scalar) encoding the
performance (see Fig. 1 (left)). We optimize (7) using some local Nonlinear Pro-
gramming (NLP) algorithm able to deal with large-scale instances, e.g. stochastic
gradient descent (SGD).
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Fig. 1. Standard (left) and multiple (right) logistic regressions.

3.2 PMLP-PaI

In this variant, we want to output an approximation C̄(f, r) of the map that,
given an instance and a desired performance in [0, 1], returns the most appropri-
ate configuration. Therefore, X = F × [0, 1] and Y = C in the training set, i.e.,
x = (f, r) is a pair (features, performance) and y ∈ R

s is a configuration. By
the definition of y in PMLP-PaI, the LR requires multiple output nodes instead
of a single one (see Fig. 1 (right)), since s > 1 in general. This can simply be
achieved by considering s standard LRs sharing the same input node set.

Proposition 3.1. The training problem of a multiple LR with k output nodes
consists of k independent training problems for standard LRs, as in Eq. (7).

Proof. A multiple LR on k outputs is equivalent to k standard LRs with training
sets T 1 = (X,Y 1), . . . , T k = (X,Y k) where Y h = (y1

h, . . . , yn
h) for all h ≤ k

and t ≤ n. Note that all these training sets share the same input vector set
X. For each h ≤ k we define Bernoulli random variables Yh. Then P(Yh =
1 | X = x) (for some x ∈ R

m) is given by τ(x,wh, bh), where wh ∈ R
m and

bh ∈ R, for all h ≤ k. The training problem aims at maximizing the log-likelihood
functions lnLTh(wh, bh) Eq. (7) of each output node h ≤ k, which yields the
objective function max

∑
h≤k ln LTh(wh, bh). Now we note that the optimum of

∑
h ln LTh(wh, bh) is achieved by optimizing each term separately, since each

term depends on separate decision variables. 
�
As anticipated, it is already rather hard to have the LR to produce a bona

fide y ∈ { 0 , 1 }s, although this might be easily solved by rounding; what is much
harder to obtain is that y ∈ C. Since s > 1 in general, the LR requires multiple
output nodes instead of one f

4 The CSSP

The CSSP is the problem of computing a good configuration c∗ for an input
instance f̄ and the learnt PMLP map. Clearly, its formulation depends on the
output of the learning phase, that is, either p̄(f, c) or C̄(f, r). However, the
solution of both the PaO and the PaI variant is guaranteed to be feasible w.r.t. all
the dependence/compatibility constraints, i.e. c∗ ∈ {c | c ∈ {0, 1}s, Ac ≤ d}.
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4.1 CSSP-PaO

In this case, the most obvious version of the CSSP would be to just maximize the
expected performance over the set of feasible configurations, consistently with
the dynamics of the trained LR. This yields the following (nonconvex) Mixed-
Integer NonLinear Program (MINLP):

max
{

(1 + e−(w∗(f̄ ,c)+b∗))−1 | Ac ≤ d , c ∈ { 0 , 1 }s
}

, (8)

for given f̄ . Note that Eq. (8) depends on the instance at hand through the
input parameters f̄ , w∗ ∈ R

t+s and b∗ ∈ R. As already remarked in Sect. 2.2,
the objective function of (8) is log-concave, which means that

max
{

ln
(

1
1 + e−(w∗(f̄ ,c)+b∗)

) ∣
∣
∣
∣ Ac ≤ d , c ∈ { 0 , 1 }s

}

(9)

is a MINLP yielding the same optima as (8).
We identified a different interpretation for the CSSP objective, namely that

of maximizing the likelihood that any new instance would be matched with a
solver configuration and a performance value “as closely as possible” to the asso-
ciations between (f, c) and p(f, c) established during training. In other words, we
maximize the likelihood given in (6) as a function of c and r, r being a specific
performance value. In order to have the CSSP pick out a high performance, we
add a term +r to the objective:

max
c,r

r ln
(

1
1+e−(w∗(f̄,c)+b∗)

)
+ (1 − r)

(
1 − ln

(
1

1+e−(w∗(f̄,c)+b∗)

))
+ r (10)

Ac ≤ d , c ∈ { 0 , 1 }s , r ∈ [0, 1] (11)

Note that, while the performance measure r is not binary, it is in [0, 1] (where
1 corresponds to maximum (excellent) performance), which is compatible with
LR.

Finally, we tested a third CSSP interpretation, where each alternative r and
1 − r is weighted by the corresponding conditional probability:

max
c,r

{
r
(

1
1+e−(w∗(f̄,c)+b∗)

)
+ (1 − r)

(
1 −

(
1

1+e−(w∗(f̄,c)+b∗)

))
| (11)

}
(12)

While (12) is non-convex, we were still able to (heuristically) solve it efficiently
enough using bonmin.

4.2 CSSP-PaI

We now consider the multiple LR setting which correlates a given instance fea-
ture/performance vector (f, p) to a configuration c. Although p being part of
the input means we need not restrict it to [0, 1], we chose to replace it with a
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ranked and scaled version r for better comparing with CSSP-PaO. The most
direct interpretation of the CSSP in this case is the nonconvex MINLP

max
c,r

{

r | cj = 1

1+e
−〈(wj)∗,(f̄,r)〉−b∗

j
∀ j ≤ s, (11)

}

, (13)

where(wj)∗ ∈ R
t+1 is the weight vector of the j-th output. However, this inter-

pretation does not satisfy the feasibility requirements on the cj .

Proposition 4.1. (13) is infeasible, even if the constraint r ∈ [0, 1] is relaxed.

Proof. The constraint of the problem implies for all j ≤ s

1

1 + e−〈(wj)∗,(f̄ ,r)〉−b∗
j

∈ {0, 1}.

However, for any given (wj)∗, b∗
j and f̄ , there is no value of r ∈ R which makes

the LHS either 0 or 1, hence the result. 
�
Because of Proposition 4.1, we consider the same interpretation of the CSSP

yielding the best objective function for the PaO case, i.e., the MINLP

max
c,r

{ ∑
j≤s

[
cj

(
1

1+e
−〈(wj)∗,(f̄,r)〉−b∗

j

)
+ (1− cj)

(
1−

(
1

1+e
−〈(wj)∗,(f̄,r)〉−b∗

j

))]
| (11)

}

which, through simple rearrangements, can be reformulated as

max
c,r

{
∑

j≤s

(
1−e

−〈(wj)∗,(f̄,r)〉−b∗
j

)
cj−1

1+e
−〈(wj)∗,(f̄,r)〉−b∗

j
| (11)

}

(14)

5 Computational Experiments

We tested both the PaO and PaI variants of our approach in the following general
set-up:

– we consider 41 mixed-integer linear programming instances of the Hydro Unit
Commitment (HUC) problem [5];

– the MP solver of choice is CPLEX [17];
– the supervised ML methodology used in the PMLP is LR [8,28];
– the CSSP is a MINLP which we heuristically solve—using the bonmin open-

source solver [4]—to find good parameter values for CPLEX deployed on 41
instances of the HUC problem.

5.1 Technical Specifications

All experiments were carried out on a single virtual core of a 1.4GHz Intel
Core i7 of a MacBook 2017 with 16 GB RAM running under macOS Mojave
10.14.6. Our implementations are based on Python 3.7 [27], AMPL 20200430
[12], and bonmin 1.8.6 [4]. We implemented LR as a Keras+TensorFlow [1,7]
neural network with sigmoid activation and a stochastic gradient descent solver
minimizing a loss function given by binary cross-entropy (a simple reformulation
of the log-likelihood function (7)). The ranking function turning the performance
data into ρ was supplied by scipy.stats.rankdata [19], and the scaling to [0, 1]
by sklearn.preprocessing.minmax scale [24].
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5.2 The Algorithmic Framework

In this section we give a detailed description of the general algorithmic framework
we employ.

1. Feature extraction. A set of t = 54 features was extracted from each of the
41 problem instances, so |F | = 41 and F ⊆ R

54.
2. Selection of configuration parameters. We considered a subset of 11 CPLEX

parameters (fpheur, rinsheur, dive, probe, heuristicfreq, startalgo-
rithm, subalgorithm from mip.strategy; crossover from barrier; and
mircuts, flowcovers, pathcut from mip.cuts), each with a varying num-
ber of discrete settings (between 2 and 4), which we combined so as to obtain
9216 configurations. We transformed each of these settings into binary form,
obtaining s = 27 binary parameters, so |C| = 27. These parameters were
chosen because, in our experience, they were reasonably likely to have an
impact on the problem we considered. Therefore, our dataset is composed
of 41 × 9216 = 377856 points.

3. Obtaining the performance data. For each (f, c) ∈ F × C in the dataset, we
ran three times, with different random seeds, CPLEX configured by c over
the instance described by f for 60 seconds, recording as p(f, c) the second
best integrality gap attained (the closer to zero, the better); this allows to
mitigate the effect of performance variability issues, by which MIP solvers
such as CPLEX have been shown to be affected [21]. We then form the
performance value list p = (p(f, c) | (f, c) ∈ F × C).

4. Ranking and scaling. We ranked p, scaled it to p̂ ⊂ [0, 1], and let ρ = 1 − p̂
in order for the value 1 to mean “best performance”.

5. Separating in-sample and out-of-sample sets. We randomly choose 11 out of
the 41 instances as “out-of-sample”, put them in a set F ′′, and let F ′ =
F � F ′′ be the “in-sample” set.

6. Construction of the training sets. For PMLP-PaO we let X = F ′ × C and
Y = ρ, while for PMLP-PaI we let X = F ′ × ρ and Y = C.

7. We use the sklearn.cluster.KMeans k-means algorithm implementation
to cluster the dataset into 5 clusters. We form a training set with 75% of the
vectors from each cluster, a validation set with 20%, and a test set with the
remaining 5%. By using clustering, we want to ensure that, even after the
sampling, the actual distribution of the instances is preserved in all sets.

8. We implement a LR using a keras.layers.Dense complete bipartite pair
of input/output layers (for PMLP-PaO with f +s input nodes and 1 output
node, for PMLP-PaI with f + 1 input nodes and s output nodes), with a
sigmoid activation function in the output nodes. We train the LR using the
corresponding training, validation and test sets, using the keras SGD opti-
mizer optimizing the binary cross-entropy loss function (which corresponds
to minimizing the negative of Eq. (7)). Then, for further use in the different
CSSP (as described in Sect. 4), we save:
– (w∗, b∗), with w ∈ R

t+s and b ∈ R, for PMLP-PaO;
– ( (wj)∗, b∗

j ), ∀j ≤ s, with wj ∈ R
t+1 and bj ∈ R, for PMLP-PaI.
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9. For each out-of-sample instance feature vector g ∈ F ′′ we perform the fol-
lowing actions:
a. we establish a link from Python to AMPL via amplpy;
b. we solve the CSSP corresponding to the feature vector g with bonmin;
c. we retrieve the optimal configuration c∗;
d. we retrieve the stored performances p(g, c∗) and p(g, d), where d is the

default CPLEX configuration;
e. if p(g, c∗) > p(g, d) we count an improvement;
f. if p(g, c∗) ≥ p(g, d) − 0.001 we count a non-worsening;
g. we record the performance difference |p(g, c∗) − p(g, d)|.

10. We count the number of improvements im and non-worsenings nw over the
number of successful bonmin runs on the CSSP instances; sometimes bonmin
fails on account of the underlying NLP solver, which is why some lines of
Table 1 consider a total of less than 11 instances.

11. We repeat this process 10 times from Step 5., and report cumulative statistics
of improvements, non-worsenings, performance differences, and CPU time.

Table 1. Computational results. Best results are marked in boldface.

Run im nw pd CPU

PaO PaI PaO PaI PaO PaI PaO PaI

1 0/08 5/09 0/08 7/09 0.63 0.30 41.44 30.55

2 0/11 4/11 0/11 6/11 0.42 0.47 41.62 29.28

3 4/09 4/10 5/09 8/10 0.08 0.14 43.06 33.37

4 0/09 5/10 0/09 8/10 0.43 0.12 42.65 35.28

5 3/10 1/10 7/10 2/10 0.08 0.70 43.30 31.69

6 8/09 3/11 8/09 9/11 0.20 0.18 43.69 28.98

7 5/10 1/11 8/10 4/11 0.05 0.52 45.54 30.05

8 7/08 3/09 7/08 8/09 0.21 0.02 45.49 31.28

9 0/09 0/10 0/09 0/10 0.40 0.88 43.83 31.88

10 8/10 5/08 8/10 7/08 0.21 0.10 43.50 33.88

sum 35/93 34/99 43/93 59/99 2.69 3.40 434.12 316.24

mean 0.38 0.32 0.46 0.60 0.26 0.34 43.41 31.62

stdev 0.36 0.20 0.39 0.30 0.18 0.27 1.30 1.94

5.3 Results

We first conducted experiments on the simple PaO interpretation (9) of the
CSSP. However, this gave very poor results in practice. Equation (11), instead,
gave better computational results than those obtained optimizing (9), although
each CSSP instance took considerably more time to solve w.r.t. (9) and (12).
The PaO formulation (12) is the one which gave the best results and is therefore
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the only one considered in Table 1. As for the PaI variant, Table 1 shows the
results of formulation (14). In the table below, we report improvements im,
non-worsenings nw, performance differences pd, and CPU times. We also report
cumulative statistics (sum, mean, standard deviation) for the 10 runs of the
algorithmic framework in Sect. 5.2 for the PaO and PaI variants. We remark
that the “by-run” comparison is only meant for presentation, as the out-of-
sample instances involved in each run of PaO and PaI differ.

The results show that the PaO and PaI variants are comparable. PaO
improves more, but also worsens more. PaI improves slightly less, but it has
three considerable advantages w.r.t. PaO: (i) it does not worsen results more
than 60% of the times, which means it can be recommended for usage w.r.t. the
default CPLEX configuration; (ii) it is more reliable in terms of standard devi-
ation of improvements and non-worsening; (iii) it is faster.

5.4 Conclusions

We presented a general two-phase framework for learning good mathematical
programming solver configurations, subject to logical constraints, using a per-
formance function estimated from data. We proposed two significantly different
variants of the methodology, both using Logistic Regression as the Machine
Learning technique of choice, but using different configurations for the inputs
and outputs of the LR. Tested on a problem arising in scheduling of hydro-electric
generators, both variants showed promise, although the PaI one appeared to be
preferable for several reasons. We remark that these encouraging results were
obtained with a relatively small number of instances.

In future works, we are going to investigate our general framework using
different Machine Learning methodologies, such as (deep) Neural Networks and
Support Vector Machine/Regression. Each ML technique requires a different
definition of both the PMLP and the CSSP (for each of the two PaO and PaI
variants); hence, the exploration of the vast landscape of possible versions will
offer a vast choice of the trade-offs between computational cost and effectiveness
of the obtained configuration, hopefully finally leading to versions that may
become actually useful for day-to-day use of MP solvers.
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Abstract. The paper proposes an approach to solving multiclass pat-
tern recognition problem in a geometric formulation based on convex
hulls and convex separable sets (CS-sets). The advantage of the proposed
method is the uniqueness of the resulting solution and the uniqueness of
assigning each point of the source space to one of the classes. The app-
roach also allows you to uniqelly filter the sourse data for the outliers in
the data. Computational experiments using the developed approach were
carried out using academic examples and test data from public libraries.

Keywords: Multiclass pattern recognition · Convex hull · Machine
learning algorithm

Introduction

The paper deals with multiclass pattern recognition problem in a geometric
formulation. Different approaches to solving such a problem could be found in
[1,2,5,8,12,15,18,19,21]. Mathematical models for solving applied pattern recog-
nition problems are considered in [1–4,12,13]. In this paper there is proposed
a method for solving this problem which is based on the idea of separability
of convex hulls of sets of training sample. The convex-hulls and other efficient
linear approaches for solving similar problems were also proposed in [2,6,7,17].
To implement this method, two auxiliary problems are considered: the problem
of selecting extreme points in a finite set of points in the space R

n, and the
problem of determining the distance from a given point to the convex hull of a
finite set of points in the space R

n using tools of known software packages for
solving mathematical programming problems. An efficiency and power of the
proposed approach are demonstrated on classical Irises Fischer problem [16,22]
as well as on several applied economical problems.

Let a set of n-dimensional vectors be given in the space R
n

A = {ai = (ai1, ai2, ..., ain)} : i = [1, N ] , (1)
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and let there also be given a separation of this set into m classes

A = A1 ∪̇ A2 ∪̇ . . . ∪̇ Am. (2)

You need to construct a decision rule for assigning an arbitrary vector ai to
one of the m classes.

There are a number of methods [14,23] for solving this multiclass pattern
recognition problem in a geometric formulation: linear classifiers, committee
constructions, multiclass logistic regression, methods of support vectors, nearest
neighbors, and potential functions. These methods are related to metric classi-
fication methods and are based on the ability to measure the distance between
classified objects, or the distance between objects and hypersurfaces that sep-
arate classes in the feature space. This paper develops an approach related to
convex hulls of subsets Ai, i = [1,m], of the family A.

1 Multiclass Pattern Recognition Algorithm Based
on Convex Hulls

The main idea of the proposed approach is as follows.
Let for the given family of points A, which is separated into m classes Ai

where i ∈ [1,m], corresponding convex hulls conv Ai contain only points from
classes Ai respectively. Then it is natural to assume that any point x ∈ conv Ai

represents a vector belonging to the class Ai. Below, we will extend this idea for
the general case.

Definition 1. The set Ai from (2), where i ∈ [1,m], is named a convex sepa-
rable set (CS-set, CSS), if the following holds

conv Ai ∩ Aj = ∅, ∀ j ∈ [1,m] \ {i} . (3)

If the family A = {A1, . . . , Am} contains a CSS Ai0 , then it is natural to
assume that each point x ∈ convAi0 belongs to the corresponding set Ai0 . In
such a case the set Ai0 can be excluded from the further process of constructing
the decision rule. In other words, the condition x ∈ convAi0 must be checked
first, and further process on the assigning point x to one of classes from training
sample, must continue if and only if x �∈ convAi0 .

An interesting case of families (1) is when you can specify a sequence
(i1, i2, . . . , im), which is a permutation for the sequence (1, 2, . . . ,m), and such
that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

conv Ai1 ∩
m⋃

k=2

Aik = ∅,

conv Ai2 ∩
m⋃

k=3

Aik = ∅,

. . . ,
conv Aim−1 ∩ Am = ∅.

(4)
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The problem of constructing a decision rule for the family (1) with proper-
ties (4) will be called as CSS-solvable.

We denote by class(x) the class number of [1,m], to which the point x
belongs. Thus, if x ∈ Ai, i ∈ [1,m], then class(x) = i. For the point x �∈ A,
the problem of pattern recognition in the geometric formulation is to construct
a decision rule for determining class(x) for x ∈ R

n\A.
Let’s consider the case of m = 2, i.e. A = A1 ∪̇ A2. Let’s construct convex

hulls conv A1 and conv A2. It is natural to assume that if x ∈ conv A1\conv A2,
then class(x) = 1.

Similarly, if x ∈ conv A2\conv A1, then we assume that class(x) = 2. If
x /∈ conv A1 ∪ conv A2, it is natural to assume that the point x belongs to such
a class whose convex hull is located closer to the point x.

Let’s denote by ρ
(
x, conv A

′
)

the distance from the point x to the convex

hull of a finite set A
′ ⊂ R

n. Then we have class(x) = arg min
i∈{1,2}

{ρ (x, conv Ai)} .

Finally, let’s consider the case of x ∈ conv A1 ∩ conv A2.
Let’s consider the following two sets.

A
′
1 = A1 ∩ conv A1 ∩ conv A2,

A
′
2 = A2 ∩ conv A1 ∩ conv A2.

(5)

Logically there are possible cases:

1. A
′
1 = ∅, A

′
2 = ∅

2. A
′
1 �= ∅, A

′
2 = ∅

3. A
′
1 = ∅, A

′
2 �= ∅

4. A
′
1 �= ∅, A

′
2 �= ∅

⎫
⎪⎪⎬

⎪⎪⎭

(∗)

Following the assumption mentioned above, i.e. x ∈ conv A1 ∩ conv A2, we
have:

class(x) is not defined for the case 1,
class(x) = 1 for the case 2,
class(x) = 2 for the case 3.

Case 4 leads us to the following situation.
We have a family of two subsets A

′
=

{
A

′
1, A

′
2

}
, which locate inside the set

conv A1∩conv A2. You need to construct a decision rule for assigning the vector
x ∈ conv A1 ∩conv A2 to one of the two classes A

′
1, A

′
2 and, respectively, A1, A2.

This problem corresponds to the original one, and therefore the proposed
algorithm can be re-applied. Repeating the process we become to situation when
for regular sets of the form (5) there holds conv A

′′
1 ∩ conv A

′′
2 = ∅, and thus

the process will be completed.

Proposition 1. If for the sets A1, A2 we have A1 ∩ A2 = ∅, then algorithm
described above converges, i.e. for any point x from A1 ∪ A2 it will lead to the
case 1, 2 or 3 (*).
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Proof. Let’s consider the following chain of pairs of sets
A = A1 ∪ A2, C1 = conv A1, C2 = conv A2:
A

(1)
1 = A1 ∩ C1 ∩ C2

A
(1)
2 = A2 ∩ C1 ∩ C2

A(1) = A
(1)
1 ∪ A

(1)
2 , C

(1)
1 = conv A

(1)
1 , C

(1)
2 = conv A

(1)
2

A
(2)
1 = A

(1)
1 ∩ C

(1)
1 ∩ C

(1)
2

A
(2)
2 = A

(1)
2 ∩ C

(1)
1 ∩ C

(1)
2

. . .
A(k−1) = A

(k−1)
1 ∪ A

(k−1)
2 , C

(k−1)
1 = conv A

(k−1)
1 , C

(k−1)
2 = conv A

(k−1)
2

A
(k)
1 = A

(k−1)
1 ∩ C

(k−1)
1 ∩ C

(k−1)
2

A
(k)
2 = A

(k−1)
2 ∩ C

(k−1)
1 ∩ C

(k−1)
2

A(k) = A
(k)
1 ∪ A

(k)
2 , C

(k)
1 = conv A

(k)
1 , C

(k)
2 = conv A

(k)
2

. . .
Let’s show that at some step one of the conditions A

(k)
1 = ∅ or A

(k)
2 = ∅

will be hold, which means that the proposed algorithm converges.
Let’s show that at any step we will have

∣
∣
∣A

(k+1
1 ∪ A

(k+1)
2

∣
∣
∣ <

∣
∣
∣A

(k)
1 ∪ A

(k)
2

∣
∣
∣.

Since A1 ∩ A2 = ∅, then A
(k)
1 ∩ A

(k)
2 = ∅.

On the other hand,

A
(k+1)
1 , A

(k+1)
2 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 . (6)

Let’s show that there is a point x ∈ A
(k)
1 ∪ A

(k)
2 such that x ∈ conv A

(k)
1 ∩

conv A
(k)
2 . Let’s assume the opposite:

{
A

(k)
1 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 ,

A
(k)
2 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 .

(7)

Therefore, we have
{

conv A
(k)
1 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 ,

conv A
(k)
2 ⊆ conv A

(k)
1 ∩ conv A

(k)
2 .

(8)

On the other hand, by the definition of a convex hull, we get
{

conv A
(k)
1 ⊇ conv A

(k)
1 ∩ conv A

(k)
2 ,

conv A
(k)
2 ⊇ conv A

(k)
1 ∩ conv A

(k)
2 .

(9)

From (8) and (9) there follows that

conv A
(k)
1 = conv A

(k)
2 . (10)

From (10) there follows that
⎧
⎨

⎩

ext
(
conv A

(k)
1

)
= ext

(
conv A

(k)
2

)
⊆ A

(k)
1 ,

ext
(
conv A

(k)
2

)
= ext

(
conv A

(k)
2

)
⊆ A

(k)
2 .

(11)
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Hence, A
(k)
1 ∩ A

(k)
2 �= ∅, which contradicts the assumption above. Thus, the

proposition is proved.

Let’s consider the case m > 2.
Just as in the case of m = 2, the solution of the multiclass pattern recognition

problem is reduced to solving a series of similar problems characterized by a
sequential decreasing their dimensions. To characterize such a problem, we need
to specify the following.

X
′ ⊂ R

n — subset of points for which the problem is solving,

A
′
=

{
A

′
i ⊆ A: i ∈ J ⊆ [1,m]

}
— the family of finite sets,

for which the problem is solving,

C
(
A

′)
=

{
C

′
i = convA

′
i : i ∈ J ⊆ [1,m]

}
— the family of convex hulls

of the sets of the family A
′
i,

J
′ ⊆ J — the set of classes, which take part in the problem.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

Let’s denote by
〈
x

′
,X

′
, J

′
,A

′
, C

(
A

′
)〉

the problem of determining whether

a point x
′ ∈ X

′
belongs to one of the classes J

′ ⊂ J , provided by training sample
A

′
with a set of convex hulls C

(
A

′
)
.

Further classification of the point x
′ ∈ X

′
will be determined by the value

M
′
=

∣
∣
∣

{
i ∈ J

′
: x

′ ∈ C
′
i

}∣
∣
∣

and will break up into 3 cases: M
′

= 0, M
′

= 1 and M
′

> 1. Let rules of
obtaining the problem

〈
x

′′
,X

′′
, J

′′
,A

′′
, C

(
A

′′
)

,M
′′
〉

in case
∣
∣
∣M

′
∣
∣
∣ > 1 are as

following:
x

′′
= x

′
,

J
′′

=
{

i ∈ J
′
: x

′′ ∈ C
′
i

}
,

M
′
=

∣
∣
∣J

′′
∣
∣
∣ ,

X
′′

= ∩
{

C
′
i : i ∈ J

′′}
,

A
′′

=
{

A
′′
i = A

′
i ∩ X

′′
: i ∈ J

′′}
,

C
(
A

′′)
=

{
C

′′
i = convA

′′
i : i ∈ J

′′}
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Thus, the decision rule for a multiclass pattern recognition problem based
on convex hulls can be represented as a hierarchical tree of basic problems
of the form (12). And the root of this tree is the problem of the form Z =
〈x, R

n, J = [1,m],A, C (A)〉.
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Let’s denote by Z
(
J

′
)

a problem of the form (13), which is obtained from

the problem Z for the set J
′ ⊆ J such that
⋂ {

Ci : i ∈ J
′} � =∅. (14)

Let
{

J
′
1, . . . , J

′
k1

}
be the family of all subsets of J

′ ⊆ J satisfying (14). Then

for the problem Z of the first level, we get k1 problems of the form Z
(
J

′
i

)
,

i ∈ [1, k1], of the second level. For each second-level problem of the form Z
(
J

′
i

)
, a

series of next-level problems of the form Z
(
J

′
i

) (
J

′′
i

)
will be obtained, and so on.

A vertex in such a hierarchical tree becomes terminal if the subsample A involved
in its formulation is included in no more than in one convex hulls involved in
its formulation. Thus, to construct a decision rule, you need to construct a
hierarchical graph of problems of the form (12) by constructing convex hulls
for obtaining subsamples located in at least two convex hulls of the generating
problem. To implement such an algorithm for constructing a decision rule, it is
necessary to have effective algorithms for solving the following problems.

(1) Let a finite set A ⊆ R
n be given. You need to find all extreme points of its

convex hull ext (conv A).
To detect either a point x is an extreme one for a finite set A, you could to
solve a following problem LP1 from [20] (see also [24]).
Let aj denote an element of A.

min xj :
∑

i∈I

xiai = aj ,
∑

i∈I

xi = 1, xi � 0 ∀ i ∈ I,

where I denotes the set {1, 2, . . . , n}.
It also should be mentioned that [20] provide an efficient algorithm to solving
a problem on the detecting all extreme points of a finite set A by solving a
sequence of problems of the form LP1.

(2) Let a point x and a set ext (M) of extreme points of the polyhedron M be
given. You need to determine whether the point x belongs to the polyhedron
M , i.e. is it true that x ∈ conv exe (M)?
The LP 2 problem can be used to solve this problem.
Let x ∈ R

n and A = {a1, a2, . . . , am} ⊆ R
n, and let you need to determine

either a point x will belongs to convA.
Let’s consider the following system.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

i=1

αiai = x,

m∑

i=1

αi = 1,

αi � 0, i ∈ [1,m].

(15)
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It’s obvious that x ∈ convA if and only if a system above is feasible. From
the other hand, such a system could be transformed into linear program LP2
of the form: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v + w −→ min,
m∑

i=1

αiai = x,

m∑

i=1

αi + v − w = 1,

αi � 0, i ∈ [1,m],
v � 0, w � 0.

(16)

where v and w are correcting variables in case a system (15) is infeasible.
So, a point x will belongs to convA if and only if g = 0.

(3) Let a point b and a set ext (M) of extreme points of the polyhedron M be
given.
You need to find the shortest distance from the point x to M , i.e. ρ (x,M) =
min {ρ (x, y) : y ∈ M}.
The following quadratic programming problem can be used to solve this
problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

(xi − bi)
2 → min,

m∑

j=1

αj · aj = x,

m∑

j=1

αi = 1,

αj 0, j ∈ [1,m].

(17)

Then we get that the required shortest distance from the point b to the
convex hull of a finite set A in the space R

n is equal to the following:

ρ (b, conv A) =

√
√
√
√

n∑

i=1

(xi − bi)
2
.

2 Application of the CSS Machine Learning Algorithm

Let’s consider several applied problems, for which proposed CSS machine learn-
ing algorithm could be used. Such problems are the problem on the bank scor-
ing [9], analysis of financial markets [10,11], medical diagnostics, non-destructive
control, and search for reference clients for marketing activities in social net-
works.

Problem 1. A Classical Problem of Irises Fisher [16]
There is a training sample of 150 objects in the space R

n, which is divided into
3 classes: class A1—Setosa, class A2—Versicolor and class A3—Virginica, and
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each class contains 50 objects. It turns out that this well-known classical problem
is CSS-solvable: {

conv A1 ∩ (A2 ∪ A3) = ∅,

conv A2 ∩ A3 = ∅.

In this case, the class(x) decision rule looks as following:

class(x) =

⎧
⎪⎨

⎪⎩

1, x ∈ conv A1,

2, x ∈ conv A2, x �∈ conv A1

3, x ∈ conv A3, x �∈ conv A1.

arg min
i∈{1,2,3}

ρ (x, conv Ai) , x �∈ conv A1 ∪ conv A2 ∪ conv A3.

Problem 2
The proposed approach was used to develop a strategy for trading shares of the
Bank of the Russian Federation1,2. 5 stock market indicators were selected as
input parameters. Table 1 below provides a description of these parameters.

Table 1. Description of features

No. Indicator Values range

1 How many days with no break a moving average convergence
divergence (MACD) becomes > than 0 or < than 0

Integer

2 Slow stochastic oscillator signal (SSO) From 0 to +1

3 How many days with no break SSO gives a strong signal Integer

4 Relative strength index signal (RSI), From 0 to +1

5 How many days with no break RSI gives a signal Integer

The following object classes were required to be recognized:

1. Class Yes—the set of positions on the trading strategy that were closed with
a profit and the profit was greater than the maximum loss for the period of
holding the position.

1 When opening a position on the exchange, the position is constantly re-evaluated
at current prices. Accordingly, the maximum loss on the position is the maximum
amount of reduction in the value of the position relative to the value of the position
when opening.

2 Position hold period is the time from the moment of initial purchase or sale of a
certain amount of financial instrument to the moment of reverse in relation to the
first trading operation. For more information about the concept of opening and clos-
ing positions, see https://www.metatrader5.com/ru/mobile-trading/android/help/
trade/positions manage/open positions (accessed 01.09.2019).

https://www.metatrader5.com/ru/mobile-trading/android/help/trade/positions_manage/open_positions
https://www.metatrader5.com/ru/mobile-trading/android/help/trade/positions_manage/open_positions
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2. Class No—the set of positions on the trading strategy that were closed with
a loss or the profit was less than the maximum loss for the period of holding
the position.

Corresponding classes were formed based on real data obtained in the period
from 26.02.10 until 03.10.19.

Description of cardinality of obtained sets, as well as the number of extreme
points and belonging to convex hulls, are shown in the following Table 2.

Table 2. Description of obtained results

Level 1 Level 2 Level 3

The set Yes 125 82 51

An extremal Yes 47 38 40

% An extremal 37.60 % 46.34% 78.43%

Yes in the convex hull of the Yes only 43 31 4

% Yes in the convex hull of the Yes 34.40% 37.80% 7.84%

Yes in the convex hull of the No 82 51 47

% Yes in the convex hull of the No 65.60% 62.20% 92.16%

The set No 416 290 179

An extremal No 83 84 68

% An extremal 19.95% 28.97% 37.99%

No in the convex hull of the No only 126 111 167

% No in the convex hull of the No 30.29% 38.28% 93.30%

No in the convex hull of the Yes 290 179 12

% No in the convex hull of the Yes 69.71% 61.72% 6.70%

From the table above you can conclude that a position needs to be open if
and only if current status corresponds to the convex hull of the class Yes of the
Level 1 or 2. And in other cases the risk is very high.

Problem 3
Convex hulls method was used for solving the problems on the bank scoring.
Let’s describe the most representative examples of favorable and unfavorable
cases we had meet.

Favorable Case. There are 6 input parameters, and all of them are related with
financial well-being of the borrower. Data from the first stage of calculations are
shown in Table 3.

Further the procedure needs to be repeating for the next 9858 non-default
and 242 default items. We will not explain all stages, but it should be mentioned
that an acceptable solution was obtained with 7 iterations.
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Table 3. Favorable case. First stage

Non-default 15000 Default 300

Including an extreme one 320 Including an extreme one 112

Outside of the Default convex hull 5142 Outside of the Non-default convex hull 58

% Definable in the unique way 34.28 % Definable in the unique way 19.33

Unfavorable Case. There are 5 input parameters (loan amount, loan term, bor-
rower age, loan amount-to-age ratio, loan amount-to-loan term ratio). Data from
the first stage of calculations are shown in Table 4.

Table 4. Unfavorable case. First stage

Non-default 62635 Default 1347

Including an extreme ones 612 Including an extreme ones 69

Outside of the Default convex hull 1148 Outside of the Non-default convex hull 29

% Definable in the unique way 1.83 % Definable in the unique way 2.15

In this case, the convex hulls of default and non-default sets are significantly
intersected, which is due to the specifics of the problem (the share of default
loans is 2.1%), as well as to small number of explanatory features. Further we
plan to develop a method for solving similar problems (if one set is fully belongs
to the another one and strongly blurred in it). In particular, we plan to consider
a problem on the determining the balance between the percentage of points
included in the convex hull and the size of this convex hull.

It is naturall that practical situations are much more complicated, but the
sequence of actions described above allows you to get an efficient desicion rule.

Conclusion

The paper proposes an approach to solving multiclass pattern recognition prob-
lems in geometric formulation based on convex hulls and convex separable sets
(CS-sets). Such problems often arise in the field of financial mathematics, for
example, in problems of bank scoring and market analysis, as well as in various
areas of diagnostics and forecasting. The main idea of the proposed approach is
as follows. If for the given family of points A, which is separated into m classes
Ai where i ∈ [1,m], each convex hull conv Ai contains only points from class
Ai, then we suppose that any point x ∈ conv Ai represents a vector belonging
to the class Ai. In the paper is introduced key definition of convex separable
set (CSS) for the family of A = {A1, . . . , Am} subsets of R

n. Based on this
definition another important for this approach definition of CSS-solvable fam-
ily A = {A1, . . . , Am} is introduced. The advantage of the proposed method is
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the uniqueness of the resulting solution and the uniqueness of assigning each
point of the source space to one of the classes. The approach also allows you to
uniqelly filter the sourse data for the outliers in the data. Computational exper-
iments using the developed approach were carried out using academic examples
and test data from public libraries. An efficiency and power of the proposed
approach are demonstrated on classical Irises Fischer problem [16] as well as
on several applied ecomonical problems. It is shown that classical Irises Fischer
problem [16] is CSS-solvable. Such a fact allows you to expect a high efficiency
of the proposed method from the applied point of view.
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Abstract. Robust linear regression is one of the well known areas in
data analysis, and various methods to solve the robust regression prob-
lems are available in the literature. However, one of the key issues in these
methods is the adaptability of the scale/tuning parameter to the data
demographics. In this work, a correntropic loss based linear regression
model is proposed. An approximation and simplification of the model
reduces the model to the well known class of weighted linear regres-
sion models. Iterative solution methodology is proposed to solve the pro-
posed formulation. Performance of the proposed approach is evaluated
on simulated data. Results of the experiments highlight the usability and
importance of the proposed approach.

Keywords: Robust linear regression · Correntropic loss · Weighted
least square errors

1. Introduction

Least square error minimization is one of the earliest and commonly known form
of linear regression. The method was coined in early 1800’s by the individual
seminal works of Legendre and Gauss. The survival of linear regression over the
past 2 centuries can be attributed to its simplicity and applicability in multitude
of pragmatic applications. The literal meaning of word ‘regression’ is ‘return to
a formal state’. The linear regression problem can be described as follows. Given
Δ independent and identical (iid) records (xr, yr), for r = 1, . . . ,Δ collected
from a system, where xr ∈ R

1×D corresponds to the system’s input parameters
or regressors, and yr ∈ R corresponds to the system’s output or response for
r = 1, . . . ,Δ; find β such that the following relation holds:

yr = xT
r β• + β0 + εr ∀o = 1, . . . ,Δ, (1)

where β = [β0,β•] is unknown (D + 1) × 1 vector, and εr’s are iid errors that
are independent of xr with E(εr|xr) = 0. Equation (1) can be written in the
compact form as:

y = Xβ + ε, (2)
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where X ∈ R
Δ×(D+1) and the rth row of X is defined as [1,xr], and y, ε ∈

R
Δ are vectors containing responses and errors respectively. The mathematical

formulation of least square linear regression, a.k.a, Ordinary Least Square (OLS)
regression can be modeled as follows:

minimize :
|| y − Xβ ||2, (3)

where || ||2 is the second norm or the quadratic norm. Although Formulation (3)
is nonlinear, it is a convex optimization problem. Furthermore, for a reasonable
size of data and computing power, the formulation has a closed form solution. By
reasonable size and computation power, we mean that the computer system is
capable to inverse or handle XTX. The closed form solution for Formulation (3)
is an immediate result of the optimality conditions for unconstrained non-linear
programs [1]. Since Formulation (3) is convex, the necessary and sufficient con-
ditions for ̂β to be optimal is, ∇f(̂β) = 0, where f(̂β) =|| y − X̂β ||2. Upon
further simplification, the optimality conditions can be stated as:

y − X̂β = 0 or X̂β = y (4)

If XTX is non-singular, then the solution of Eq. (4) can be written as:

̂β = (XTX)−1XTy (5)

With the development of numerical methods and computing power, XTX of
10, 000 × 10, 000 can be easily inverted in a single go (See [14]). Furthermore,
there are many iterative methods to solve Eq. (4), which can extend the usage
of OLS to big data. For example, in [5], OLS estimates of 1011 regressors are
estimated.

2. Relevant Work

One of the critical drawbacks of OLS is its sensitivity to outliers (data points
that do not fit in with the majority of the data points). Even a single outlier
can have huge impact on the OLS estimate, ̂β. For example, see Figs. 1 & 2. In
Fig. 1, the data is free from outliers. Whereas, in Fig. 2 10% of the observations
are replaced with outliers.

To overcome the above limitation for OLS, many approaches have been devel-
oped by data scientists (see [7,10,13,20,22,24,29] and the reference there in).
Indeed robust regression approaches have been well studied in many research
areas originating from various disciplines over the past five decades. The robust
approaches typically vary in degree of robustness, type of robustness, and compu-
tational complexity. It is out of scope of this work to review or list all the robust
regression approaches. Interested readers are directed to see [16,31] in addition
to the above references. From the literature, two major ideas for robust linear
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Fig. 1. OLS estimates without outliers

Fig. 2. OLS estimates with 10% outliers

regression can be grouped as: robust approach methods, and robust statistic
methods.

Robust Approach: In robust approach methods, the key idea is to use the
current OLS method with sampling mechanisms. For example, RANdom SAmple
Consensus (RANSAC) is one of the robust approaches that withstood the test of
time. In 1981, Fischler and Bolles proposed a generic framework called RANSAC
that handles outliers in parameter estimation [4]. Usage of OLS with RANSAC
strategy has since then became a popular approach to handle outliers in linear
regression. The wide applicability of RANSAC can be attributed to its simple
and generic characteristics. Many extensions of RANSAC are also available in
the literature [17].

Robust Statistic: In robust statistic methods, the key idea is to use replace the
squared error measure with a measures that is insensitive to the outliers. Among
myriad of robust methods, some of the well known robust statistic methods
used in robust linear regression are: Huber’s M-estimates [9,10], MM-estimates
[13,30], Generalized M-estimates [2,8], R-estimates [11,15], S-estimates [19], GS-
estimates [3,18], LMS-estimate [24], LTS estimates [21], REWLSE estimates [6],
and regularized estimates [12,23].

In this work, an adaptive weighted linear regression method that is robust
to outliers is proposed. The proposed method uses a robust measure called cor-
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rentropic loss. Although, weighted methods are available in the literature, the
adaptive nature of the weights proposed in this paper improves the quality of the
estimates. The rest of the paper is organized as follows: Sect. 3 presents the pro-
posed model, followed by the proposed solution methodology. A numerical study
involving simulated data is illustrated in Sect. 4. Some discussion and concluding
remarks are depicted in Sect. 5.

3. Methodology

In this section, a mathematical model that is robust and/or insensitive to outliers
is presented. An iterative solution methodology for the proposed formulation is
developed in the latter part of this section.

3.1 Proposed Model

The following model is proposed for linear regression:

minimize :
Δ

∑

r=1

(1 − e− (yr−xrβ )2

2σ2 ), (6)

where σ > 0 is a scale parameter. The exponential objective function (also
defined as correntropic loss) in Formulation (6) appears in many data analysis
works including [25–28]. From the theory of optimality conditions for uncon-
strained non-linear programs [1], a local optimal solution to the above formula-
tion should satisfy the following necessary condition:

Δ
∑

r=1

e− (yr−xrβ )2

2σ2

(

(yr − xrβ)(xrf )
σ2

)

= 0 ∀ f ∈ D (7)

Let w(β) : RD �→ R
Δ be defined as wr(β) = e− (yr−xrβ )2

2σ2 for r = 1, . . . ,Δ.
The above conditions can be recast as:

XTW(β)(y − Xβ) = 0 (8)

where W(β) is a diagonal matrix containing w(β) as its diagonal.

3.2 Proposed Solution Approach

In order to find β that satisfies the above necessary conditions, an iterative
procedure is proposed. The update rule for the procedure is described as follows:

XTW(βold)(y − Xβnew) = 0 (9)
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Since W(β) is a diagonal matrix with positive elements, and if XTX is non-
singular, then we have the following closed form solution:

βnew = (XTW(βold)X)−1XTW(βold)y. (10)

Notice that the above update rule is similar to the update rule obtained when
solving the following weighted linear regression problem:

minimize :
Δ

∑

r=1

ωr(yr − xrβ)2 (11)

where ωr is the non-negative weights assigned to the rth record. The simplifica-
tion depicted in Eq. (10) drastically reduces the complexity involved in obtaining
the solution to Formulation (6). However, the key issue lies in obtaining βold for
any value of σ, such that the Hessian of the objective function in Formulation (6)
is Positive Semi Definite (PSD) at βold. Obtaining such βold ensures that the
necessary conditions stated in Eq. (8) are also sufficient for local optimality.
When σ is very large, the Hessian is PSD everywhere. Thus, the main difficulty
is to obtain such βold for smaller values of σ. The iterative procedure depicted
in Algorithm-1 obtains such βold at each iteration.

Algorithm 1: Proposed Algorithm
Input : X ∈ R

Δ×(D+1),y ∈ R
Δ, βOLS ∈ R

D+1 and α
Output: β ∈ R

D+1

1 Set σ ← √
max

1≤r≤Δ
{(yr − xrβOLS)2} ;

2 Set βnew ← βOLS ;

3 while termination criteria is False do
4 Set βold ← βnew;
5 Construct W(βold);

6 Get βnew ← (XTW(βold)X)−1XTW(βold)y;
7 Update σ ← ασ;

8 end
9 Set β ← βnew

In Algorithm-1, βOLS are the OLS estimates for the given data, 0 < α < 1
is a tuning parameter. The termination criterion used in the current work is
σ < ε for some prespecified threshold ε. Upon termination at a low value of σ,
the algorithm gives a local minimum of Formulation (6). In addition to that, the
proposed approach to solve Formulation (6) involves solving Formulation (11) at
each iteration (Line-6 in Algorithm-1). Thus, the proposed algorithm may give
global minimum of Formulation (6) when α −→ 1.
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4. Experimentation

In order to compare the performance of the proposed method, following existing
weighted linear regression methods from the literature of robust linear regression
are considered (see Table 1). The first column in Table 1 indicates the commonly
known name of the method. The second column describes the mechanism to
generate wr’s for each of the methods based on the value of error/residual er.
Some of these methods are require a tuning parameter, and the third column
displays the suggested parameter value.

Table 1. Some robust linear regression methods

Method Description Constant

‘andrews’ ωr =

{
sin(er)/er |er| < pi,

0 o/w
1.339

‘bisquare’ ωr =

{
(1 − e2r)

2 |er| < 1,

0 o/w
4.685

‘cauchy’ ωr = 1/(1 + e20) 2.385

‘huber’ ωr = 1/ max(1, |er|) 1.345

‘logistic’ ωr = tanh(er)/rr 1.205

‘talwar’ ωr =

{
1 |er| < 1,

0 o/w
2.795

‘welsch’ ωr = exp(−(e2r)) 2.985

Following sequence of experiments are conducted in this section. At first, sim-
ulated data containing no outliers is used for checking the validity of the proposed
methodology. Next, simulated data containing outliers is used for demonstrating
the capability of the proposed methodology to handle outliers. Finally, simulated
data that contains outliers in a linear structure is considered.

4.1 Experiment-1

Setup: In this experiment, the data is simulated using the following equation:

y = β1x + β0 + 0.1ε, (12)

where the values of x are uniformly selected from 0 to 1, and ε is a Gaussian
noise with zero mean and unit variance. This experiment consists of 30 scenarios,
where each scenario contains 100 trials. At the beginning of each scenario, β0 and
β1 are uniformly randomly selected from the following interval [1, 10]. The values
for β0 and β1 will not be changed during the trials for a given scenario. However,
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these values will be updated at the start of every scenario. Validation: For each
scenario, following measure is used for reporting the quality of the estimates:

μ =
1

|T |
∑

t∈T

||βact − βt||2, (13)

where T represents the set of all trials, βact are the actual coefficients used for
data generation in the scenario, and βt represents the estimated coefficients. A
two sided hypothesis sign test is utilized for concluding any differences between
existing and the proposed method estimates. The null hypothesis (H0) is that
the mean of μ values of the existing method and proposed method are same.
The alternate hypothesis (Ha) is that the proposed method’s mean μ value is
lower than the existing method’s mean μ value. Results: The results of this
experiment are displayed in Table 2. Column labeled Avg μ(Std μ) represents
the average(standard deviation) μ value for the method over the 30 scenarios.
Column labeled Avg Time(Std Time) represents the average(standard devia-
tion) time in seconds used by the method per trial per scenario. Column labeled
Ha contains either 0 or 1. A value of 1 in Ha implies that the sign test sup-
ports/favors the alternate hypothesis at 5% significance level. Similarly, a value
of 0 in Ha indicates that, at 5% significance level, the test fails to reject the null
hypothesis. For Logistic method, based on the sign test, at the 5% significance
level, the test favors the alternate hypothesis.

4.2 Experiment-2

Setup: In this experiment, the data is simulated similar to Experiment-1. How-
ever, 10% of the response values are modified by updating the response values
to max{y} + 10. Validation: The measure, null and alternate hypotheses are
similar to Experiment-1. Results: The results of this experiment are displayed
in Table 3. The columns have similar meaning as described in Experiment-1. For
OLS, Logistic and Huber methods, based on the sign test, at the 5% significance
level, the test favors the alternate hypothesis.

4.3 Experiment-3

Setup: In this experiment, the data is simulated similar to Experiment-2. How-
ever, the number of regressors in this experiment are 10, i.e., β ∈ R

11. In addition
to that, three cases are considered in this experiment. In Case-1 10% of the data
are outliers, in Case-2 20% of the data are outliers, and in Case-3, 30% of the
data are outliers. Validation: The measure, null and alternate hypotheses are
similar to Experiment-1. Results: The results of this experiment are displayed
in Table 4. The columns have similar meaning as described in Experiment-1.
From the results, it can be concluded that as the percentage of outliers increase,
the number of existing methods favoring the alternate hypothesis increase (at
5% significance level).
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Table 2. Experiment-1 results

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 0.051 0.0015 0 0 0

‘proposed’ 0.0511 0.0018 0.0001 0.0002

‘andrews’ 0.0512 0.0017 0.0008 0.0029 0

‘bisquare’ 0.0512 0.0017 0.0006 0.0005 0

‘cauchy’ 0.0512 0.0017 0.0007 0.0002 0

‘huber’ 0.0511 0.0016 0.0005 0.0002 0

‘logistic’ 0.0513 0.0018 0.0008 0.0008 1

‘talwar’ 0.051 0.0015 0.0003 0.0001 0

‘welsch’ 0.0512 0.0017 0.0006 0.0001 0

Table 3. Experiment-2 results

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 1.9897 0.3105 0 0 1

‘proposed’ 0.0515 0.0007 0.0069 0.0005

‘andrews’ 0.0512 0.0006 0.0006 0.0011 0

‘bisquare’ 0.0512 0.0006 0.0006 0.0002 0

‘cauchy’ 0.0513 0.0006 0.0007 0.0001 0

‘huber’ 0.0575 0.0007 0.0008 0.0001 1

‘logistic’ 0.0588 0.0008 0.001 0.0003 1

‘talwar’ 0.051 0.0006 0.0003 0 0

‘welsch’ 0.0512 0.0006 0.0007 0.0001 0

4.4 Experiment-4

Setup: In this experiment, the data is simulated similar to Experiment-3. How-
ever, the outliers form a linear structure. Thus, the methods has to decide the
right linear structure based on the majority of the points. Validation: The
measure, null and alternate hypotheses are similar to Experiment-1. Results:
The results of this experiment are displayed in Table 5. The columns have similar
meaning as described in Experiment-1. From the results, it can be concluded that
as the percentage of outliers increase, the number of existing methods favoring
the alternate hypothesis increase (at 5% significance level).
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Table 4. Experiment-3 results

Case-1: 10% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 10.055 0.9696 0 0.0002 1

‘proposed’ 0.0655 0.0016 0.0139 0.0036

‘andrews’ 0.0634 0.0016 0.0014 0.0014 0

‘bisquare’ 0.0634 0.0016 0.0012 0.0004 0

‘cauchy’ 0.064 0.0016 0.0015 0.0003 0

‘huber’ 0.074 0.0015 0.0018 0.0004 1

‘logistic’ 0.077 0.0015 0.0022 0.0006 1

‘talwar’ 0.0623 0.0015 0.0006 0.0001 0

‘welsch’ 0.0636 0.0016 0.0013 0.0002 0

Case-2: 20% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

’OLS’ 15.253 1.5065 0.0001 0.0006 1

‘proposed’ 0.0671 0.0022 0.0139 0.0033

‘andrews’ 0.0645 0.002 0.0015 0.0013 0

‘bisquare’ 0.0645 0.002 0.0013 0.0004 0

‘cauchy’ 0.0651 0.0021 0.0017 0.0003 0

‘huber’ 0.1072 0.0192 0.0032 0.0011 1

‘logistic’ 0.1235 0.0294 0.004 0.0014 1

‘talwar’ 3.1556 0.8304 0.0008 0.0002 1

‘welsch’ 0.0647 0.002 0.0014 0.0002 0

Case-3: 30% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 29.669 20.613 0 0 1

‘proposed’ 0.0688 0.0017 0.0147 0.0033

‘andrews’ 0.9489 0.7712 0.002 0.0014 1

‘bisquare’ 0.9488 0.7711 0.0017 0.0008 1

‘cauchy’ 1.5867 1.0927 0.0025 0.0011 1

‘huber’ 7.4753 5.3805 0.0055 0.0017 1

‘logistic’ 8.3627 6.1255 0.0086 0.005 1

‘talwar’ 16.225 12.591 0.0009 0.0004 1

‘welsch’ 0.9102 0.7206 0.0019 0.001 1
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Table 5. Experiment-4 results

Case-1: 10% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 14.699 8.5397 0 0 1

‘proposed’ 0.0652 0.0015 0.0154 0.004

‘andrews’ 0.0631 0.0015 0.0015 0.0016 0

‘bisquare’ 0.0631 0.0015 0.0013 0.0003 0

‘cauchy’ 0.0636 0.0015 0.0016 0.0003 0

‘huber’ 0.0658 0.002 0.0018 0.0004 0

‘logistic’ 0.0681 0.0021 0.0022 0.0005 1

‘talwar’ 0.062 0.0015 0.0007 0.0001 0

‘welsch’ 0.0632 0.0015 0.0014 0.0002 0

Case-2: 20% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 22.265 16.762 0 0 1

‘proposed’ 0.067 0.0022 0.0154 0.004

‘andrews’ 0.0645 0.0021 0.0016 0.0013 0

‘bisquare’ 0.0645 0.0021 0.0014 0.0004 0

‘cauchy’ 0.0649 0.0021 0.0017 0.0003 0

‘huber’ 0.0887 0.017 0.003 0.001 1

‘logistic’ 0.1028 0.0306 0.0037 0.0013 1

‘talwar’ 0.4209 0.4141 0.0008 0.0002 1

‘welsch’ 0.0647 0.0021 0.0015 0.0003 0

Case-3: 30% Outliers

Method Avg μ Std μ Avg Time Std Time Ha

‘OLS’ 30.865 18.579 0 0.0001 1

‘proposed’ 0.0682 0.0018 0.0153 0.0037

‘andrews’ 1.0296 0.9179 0.002 0.0014 1

‘bisquare’ 1.0326 0.9182 0.0018 0.001 1

‘cauchy’ 1.8393 1.4973 0.0025 0.0011 1

‘huber’ 7.7281 5.1359 0.0055 0.0018 1

‘logistic’ 8.5068 5.6306 0.0096 0.0042 1

‘talwar’ 16.947 11.303 0.0009 0.0004 1

‘welsch’ 0.9615 0.7986 0.0019 0.0009 1

5. Conclusion

In this work, a formulation for robust linear regression related to the correntropic
loss minimization is presented. The proposed formulation can be approximated
as weighted OLS minimization problem. An iterative solution method for the
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weighted OLS problem, where the weights are adaptive, has been proposed and
implemented. Numerical experiments on the simulated data are presented, that
compares the proposed method head-to-head with some of the existing methods
from the literature. Based on the numerical study, it can be highlighted that
the adaptive nature of weights (or the scale parameter) is the key element in
handling outliers.
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Abstract. We introduce the idea of utilizing ensembles of Kernel Mini-
mum Enclosing Balls to detect novel datapoints. To this end, we propose
a novelty scoring methodology that is based on combining outcomes of
the corresponding characteristic functions of a set of fitted balls. We
empirically evaluate our model by presenting experiments on synthetic
as well as real world datasets.

1 Introduction

The notion of novelty discovery (or detection) [6] can be described as a one-
class classification problem (a.k.a data domain description [11]) aiming to learn
certain characteristics of the analyzed datasets to be able to separate novel
datapoints. It finds many applications in numerous scientific and engineering
areas such as fraudulent activity detection in financial applications or detect-
ing rare events in medical monitoring [6]. Although reservoir computing based
approaches [4] have been proposed to a variety of classification and regression
problems, to the best of our knowledge, corresponding methods that are oriented
to tackle one-class problems are scarce. The main contribution of this work is
about utilizing Minimum Enclosing Balls [1] for novelty discovery. Minimum
Enclosing Balls (MEBs) fall into the class of unsupervised representation learn-
ing methods that can be used to extract important characteristics about the
considered datasets [1]. The main idea behind the MEBs is about determining
the smallest ball encapsulating the entire dataset in the data- or feature space,
which can be found by formulating the problem as an inequality constrained con-
vex minimization problem with a dual allowing for invoking the kernel trick and
this dual can be solved using dynamical processes from reservoir computing [1].

Our contribution is based on the decisions of a set of Kernel Minimum Enclos-
ing Balls (KMEBs) by introducing a compound novelty score, which can allow
for, for instance, a majority voting based detection as decision based on sin-
gle balls might be limiting for novelty detection. In addition, our methodology
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can be easily implemented in neuromorphic architectures and is capable of deal-
ing with nonlinear patterns due to kernelization [1,10]. Figure 1 shows an illus-
trative example explaining our idea about detecting the novel datapoints (green
diamond shaped points in Fig. 1a) given a dataset of normal datapoints (black
round points in Fig. 1a), which can neither be detected using euclidean Mini-
mum Enclosing Balls (as seen in Fig. 1b) nor considering probabilistic novelty
detection such as the deviation from the sample data mean [6]. Instead by con-
sidering the characteristic functions of multiple KMEBs (see example in Fig. 1c)
with differently scaled Gaussian kernels we can detect all novel points that the
considered balls might not individually be capable of capturing (compare the
results of Fig. 1d to the others).

(a) datapoints (b) EMEB (c) f(x) for (d) (d) λ = 0.60

(e) λ = 0.55 (f) λ = 0.50 (g) λ = 0.45 (h) λ = 0.40

Fig. 1. A conceptual example illustrating the idea of utilizing Kernel Minimum Enclos-
ing Balls for novelty discovery. (a) shows the data (the inner ring), which is used to
compute the ball, and the novel (green diamond) points. It is important to note that
neither considering the deviation from the mean vector nor computing the euclidean
MEB, which is shown in (b), can in this case isolate the points inside the inner ring.
(c) shows a heat-map of the characteristic function from Eq. 7, where colors orange,
white and blue respectively indicate positive, zero and negative values. (d–h) shows
the dataset and the novel points with the decision boundaries for different Gaussian
Kernel scale values λ. Used individually to detect the novel points, the recall values
for detecting the novelty are respectively 0.935, 0.995 and 1.000 for the balls in (d),
(e) and (f–h). We obtain 1.000 recall when majority-voting over the prediction of the
balls (d–h) (i.e. by considering an ensemble of 5 KMEBs with evenly spaced λ values
over [0.4, 0.6]). (Color figure online)

The remaining of the paper is organized as follows. So as to be self-contained,
in Sect. 2 we will formally define the notion of KMEBs, show how we can com-
pute them following a process akin to the ones used in echo state networks and
finally show how, once computed, the support vectors of balls can be used to



416 R. Sifa and C. Bauckhage

characterize the interior of the fitted balls. Following that in Sect. 3 we will intro-
duce a new novelty scoring methodology based on the characteristic functions
for novelty discovery. In Sect. 4 we will present empirical results to evaluate our
approach using real world datasets and in Sect. 5 we will conclude our work.

2 An Overview of Kernel Minimum Enclosing Balls

Given a set of m-dimensional data points X = {x1, . . . ,xn} (for xi ∈ R
m) that

are grouped into a column data matrix X = [x1, . . . ,xn] ∈ R
m×n, we aim to find

the m-ball B(c, r) containing each of the given data points in X , where c ∈ R
m

and r ∈ R are respectively the center and the radius of B. Finding MEBs can
be cast as a convex optimization problem

c∗, r∗ = argmin
c, r

r2

s. t.
∥
∥xi − c

∥
∥
2 − r2 ≤ 0 i ∈ [1, . . . , n].

(1)

Upon evaluating the Lagrangian and the KKT conditions, the negated dual
of (1), allows for the kernel trick (as the data only occurs in form of inner
products [1]) and can be written as the minimization problem

μ∗ = argmin
μ

μᵀK μ − μᵀk

s. t.
n∑

i=1

μi = 1 ∧ μj ≥ 0 ∀ j ∈ [1, . . . , n],
(2)

where K ∈ R
n×n is a kernel matrix, k contains its diagonal (i.e. k = diag[K])

and μ ∈ R
n contains Lagrange multipliers. The kernel matrix K in (2) is built

by considering a Mercer kernel K : Rm×R
m → R such that Kij = K(xi,xj). An

example kernel function that we considered throughout our work is the Gaussian
kernel that for scale parameter λ is defined as K(xi,xj) = exp

(

−‖xi−xj‖2

2λ2

)

.
Considering (2), we note that finding Kernel Minimum Enclosing balls boils

down to finding optimal μ, which resides in the standard simplex Δn−1 and
minimizes a convex function L(μ) = μᵀk − μᵀK μ. Optimization settings of
this kind can be easily solved iteratively using the Frank-Wolfe algorithm [3],
which itself can be implemented as a recurrent neural network (see examples
from [1,2,8,10]). To this end, at each iteration t, the Frank-Wolfe algorithm
evaluates the gradient of the negated dual Lagrangian L(μ) from (2), which
amounts to ∇L(μ) = 2Kμ − k, and finds the vertex of Δn−1 for the update,
that minimizes

νt = argmin
vj∈Rn

vᵀ
j

[

2Kμt − k
] ≈ gβ

(

2Kμt − k
)

, (3)

where νt ∈ R
n represent the current solution at t, vj is the jth standard vector

vj = [δj1, δj2, . . . , δjp]T } (here δji represents the Kronecker delta) and, finally,
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gβ(x) represents the soft-min operator. This operator is the smooth approxima-
tion of argmin·, whose the ith entry defined as

(

gβ(x)
)

i
= e−βxi

∑
j e−βxj

and has the

limit
lim

β→∞
gβ(x) = argmin

vj∈Rn

vᵀ
j x = vi. (4)

Given that we can define the convergent iterative Frank-Wolfe updates [1] as

μt+1 ← (1 − ηt)μt + ηt gβ

(

2Kμt − k
)

, (5)

where ηt ∈ [0, 1] is a monotonically decreasing step size. Rearranging the right-
most expression in (5) as gβ

(

2Kμt−k
)

= gβ

(

2Kμt+K̄1̄
)

, where K̄ = diag(k)
and 1̄ is the vector of −1s defined as 1̄ = [−1, . . . ,−1]T , allows us to interpret
and implement these updates in terms of echo state networks [4]. That is, we
can describe this machinery as a structurally constrained echo state network, in
which we have the fixed input vector 1̄ containing −1s, the input weight matrix
K̄, n reservoir neurons with gβ(·) and 2K respectively being the nonlinear
activation function and the reservoir weight matrices and ηt acting as a leaking
rate for updating the Lagrange multipliers. Once optimal Lagrange multipliers
have been found using the updates from (5), we can determine the kernelized
radius and the squared magnitude of the center of the fitted ball B respectively
as r∗ =

√

μᵀ
∗k − μᵀ

∗K μ∗ and cᵀ
∗c∗ = μᵀ

∗K μ∗, which will allow us to define a
characteristic function defining the interior of B [1]. Namely, using these equali-
ties we can represent the inequality ‖x−c∗‖2 ≤ r2∗ to check whether an arbitrary
point x ∈ R

m within the ball B by considering

f(x) =
√

K(x,x) − 2 k̄
ᵀ
μ∗ + μᵀ

∗K μ∗ −
√

μᵀ
∗k − μᵀ

∗K μ∗, (6)

where k̄ ∈ R
n is defined as k̄i = K(x,xi) [1]. That is, f(x) > 0 holds if x is

outside of the ball B, whereas, f(x) ≤ 0 is the case when x is inside the ball B.
Though, f(x) = 0 only holds for the points with nonzero Lagrange multipliers
that are the support vectors of B and can be defined as S = {xi |∀ i ∈
[1, . . . , n] ∧ μi∗ > 0}. It is worth noting that, we can simplify (6) by grouping
the l ≤ n points in S into a column data matrix S = [s1, . . . , sl] ∈ R

m×l, putting
their corresponding multipliers in σ ∈ R

l, letting Q ∈ R
l×l be the kernel matrix

for the support vectors (i.e. Qij = K(si, sj)) and q ∈ R
l to contain its diagonal

(i.e. q = diag[Q]), which yields a simpler characteristic function

f(x) =
√

K(x,x) − 2 k̄
ᵀ
σ + σᵀQ σ −

√

σᵀq − σᵀQ σ (7)

where as in (6), k̄ ∈ R
l is evaluated as k̄j = K(x, sj) and we note that the term√

σᵀq − σᵀQ σ (which indeed amounts to r∗) is does not depend on x.

3 An Ensemble Approach for Novelty Discovery

Having explained how KMEBs are defined and can be computed so that we can
determine their interior, we will now turn our attention to novelty discovery
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by combining the characteristic functions of a set of balls. We note that, the
characteristic function from (7) for a given ball B can be used to label the
points outside of the ball to be the novel points. In this case a query point x is
considered novel if f(x) > 0 and not novel for f(x) ≤ 0. Although this approach
can capture novel points it might result in very restrictive or too general decision
boundaries that respectively might result in detecting every query point to be
novel or not novel (see Fig. 1d for the latter case). Both problems, however, can
be avoided if we generalize this approach by combining the decisions of multiple
balls. One approach for such a combination can be based on uniform voting [7].
That is, given a set of u KMEBs P = {B1, . . . ,Bu}, that are trained considering
a different setting, and fi(·) and �·� respectively indicating the characteristic
function from (7) for ball Bi and the Iverson bracket, we can assign the novelty
score of a query point x by evaluating z(x) =

∑u
i=1 �fi(x) > 0� and, for

instance, label x to be novel if z(x) ≥ ⌈
u
2

⌉

(i.e. x is outside of the majority of
the balls in P for an odd u) and not novel if z(x) <

⌈
u
2

⌉

. In the next section,
we will empirically evaluate this methodology to detect novelty by showing two
conceptual examples on benchmarking datasets.

Table 1. Novelty prediction results in terms of recall (RC), precision (PR), as well as
the harmonic mean and geometric mean of both (respectively referred as F1 and GM)
for (a) the CBLC Face and (b) the MNIST datasets to respectively detect non-face
images from face images and the images of digit 0 from the ones of 1. We benchmarked
methods to detect novelty that consider the deviation from the sample mean (MDEV),
matrix factorization (MF), euclidean MEBs (EMEB) and the ensemble of kernelized
MEBs (EKMEB). The superior prediction results indicate that EKMEB can indeed
be used for novelty discovery.

Method RC PR F1 GM

MDEV 0.686 1.000 0.813 0.828

MF 0.711 0.999 0.831 0.843

EMEB 0.790 0.999 0.882 0.889

EKMEB 0.974 0.998 0.986 0.986

(a) MNIST dataset

Method RC PR F1 GM

MDEV 0.043 1.000 0.082 0.207

MF 0.215 0.998 0.354 0.463

EMEB 0.095 1.000 0.173 0.308

EKMEB 1.000 0.949 0.974 0.974

(b) CBLC Faces

4 Empirical Results

We evaluated our method on the MNIST [5] and CBCL-face (bit.ly/2KwOVV6)
datasets. For the former we trained models on the digit 1 aiming to obtain
the 0s, whereas for the latter we leaned balls on faces to detect non-face novel
images. So as to evaluate the precision of the detections, we divided the training
data into 90/10 splits and the latter split is combined with the novel points,
which resulted in training/evaluation datsets of cardinality values 6067/6598
and 2186/4791 for respectively the MNIST and CBCL-face datasets. We note
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that for both examples, we constructed ensembles of KMEBs (i.e. distinct P
sets) with the Gaussian Kernel, whose scale values, in our case, were evenly
spaced over specified intervals (as in Fig. 1) by considering u = 5 KMEBs with λ
ranging in [40, 60]. We also normalized the datasets to have zero mean and unit
variance and always considered β = ∞ for the softmin function (see (4)).

In Table 1, we compare our method against thresholding the tested points
considering the maximum deviation from the sample mean vector [6], euclidean
MEBs [1] (where we consider points outside of the ball as novel) and matrix fac-
torization (MF) [8] based reconstruction to validate the use of kernel methods.
For the first method, we label points in the test set as novel if the euclidean dis-
tance is larger than the furthest point to the sample mean. For the last method,
we factorize the matrix with the number of latent factors k = 50 using the alter-
nating least squares method [9] and learn a threshold value based on the worst
reconstruction error (l2-norm). Unseen points with reconstruction error exceed-
ing this threshold are considered novel. Table 1a and Table 1b respectively depict
the prediction results for the MNIST and CBCL datasets, where we observe the
superiority of ensemble KMEBs to detect novel datapoints.

5 Conclusion and Future Work

In this work, we introduced the idea of using ensemble of KEMBs for novelty dis-
covery. We showed how we can construct ensembles of KEMBs and introduced
a voting-based approach to detect novel data points. Our empirical evaluation
yielded superior results over the use of mean deviation, euclidean MEBs and
matrix factorization approaches. Our future work involves studying different ball
selection as well as novelty determination strategies and extending the scope of
the applications. Another line of future work is related to physical implementa-
tion of our methodology and in resource-constrained devices for applications in
industrial domains such as for predictive maintenance.
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Abstract. Decomposition into Simple Components (DESICOM) is
a constrained matrix factorization method to decompose asymmetric
square data matrices and represent them as combinations of very sparse
basis matrices as well as dense asymmetric affinity matrices. When cast
as a least squares problem, the process of finding the factor matrices
needs special attention as solving for the basis matrices with fixed affini-
ties is a combinatorial optimization problem usually requiring iterative
updates that tend to result in locally optimal solutions. Aiming at com-
puting globally optimal basis matrices, in this work we show how we
can cast the problem of finding optimal basis matrices for DESICOM as
a metaheuristic search and present an algorithm to factorize asymmet-
ric data matrices. We empirically evaluate our algorithm on synthetic
datasets and show that it can not only find interpretable factors but
also, compared to the existing approach, can better represent the data
and escape locally optimal solutions.

1 Introduction

Decomposition into Directed Components (DEDICOM) [4] is a popular matrix
factorization method to analyze asymmetric data matrices. The method allows
for simultaneously extracting the latent structures, that are read-off the columns
of the basis matrices, as well as the (asymmetric) relationships among these
structures, which can be grouped into lower rank affinity matrices [1,4,5,7].
Formally, DEDICOM represents a given asymmetric matrix S ∈ R

n×n in terms
of a basis matrix A ∈ R

n×k and an affinity matrix R ∈ R
k×k such that the

data matrix and its arbitrary entry are resp. represented as S ≈ ARAT and
sij ≈ aT

i:Raj:, where AT represents the transpose of A, k defines the number of
latent dimensions (following k � n) and ab: represents the bth row of A.

In this work we will focus on aiming to find globally optimal solutions when
the Residual Sum of Squares (RSS) is minimized over A for fixed R for a vari-
ant of DEDICOM, that is called Decomposition into Simple Components [5],
and propose a metaheuristic search based algorithm that aims at finding con-
strained (for interpretability) globally optimal basis matrices A at each alternat-
ing update. DESICOM constrains the basis matrix A to contain simple rows by
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allowing every row of A to contain only one non-zero entry while considering a
non-constrained affinity matrix. That is, every ith row of A is defined as aib̂ ©�= 0,
which in our case is tantamount to aib̂ �= 0 and aim = 0 ∀ m �= b̂, resulting
in reconstructing an arbitrary entry of S as sij = aib̂rb̂ĉajĉ such that aib̂ ©�= 0
and ajĉ ©�= 0. Given that we can define the Frobenius norm of the reconstruction
matrix (a.k.a. the RSS) as a function of A and R for DESICOM as

E(A,R) =
∥
∥
∥S − ARAT

∥
∥
∥

2

=
∑

i,j

(sij − aib̂ajĉrb̂ĉ)
2 s.t. aib̂ ©�= 0 ∧ ajĉ ©�= 0. (1)

In [5] Kiers proposes an alternating least squares (ALS) algorithm (for more
information about this method we refer to [1,7]) to minimize (1) by first consid-
ering the matrix regression solution as an update for R as

R ← A†S(AT )†, (2)

where A† in this case represents the pseudo-inverse of A. Following that, so as
to find optimal and simple loadings minimizing (1), the algorithm alters each
row of A individually and sequentially by considering a greedy update rule while
keeping all the other rows of A as well as the matrix R fixed. To this end, [5]
shows that, for the updated row ai: this boils down to finding its lth element
minimizing

E(ail) =
∥
∥
∥

(
ŝi
ŝi:

)(
ÂiR

ÂiRT

)

l

∥
∥
∥

2

+ (sii − a2
ilrll)2, (3)

where ŝi and ŝi: represent resp. the ith column and row of the data matrix S
without the corresponding diagonal element, similarly Âi represents the matrix
A without the ith row and (·)l selects the lth column of the given stacked matrix.
The norm in (3) can be minimized by solving a fourth degree polynomial (for
ail) and the root yielding the lowest reconstruction error value (according to (3))
is set to be ail while all the other elements of ai: are set to zero. Although this
approach is simple to implement and only requires the rank k of A and R as the
single parameter to be set, it requires solving for a fourth degree polynomial nk
times and creating the compound matrices Âi for the update of each ith row on
the fly making the algorithm not scalable for large values n and k. We also note
that, there exist kn arrangements of having different basis matrices with zero
values (of course with infinitely many possibilities for the value of the nonzero
element), which the algorithm in [5] cannot generally explore due to the fact
that it only iterates over the rows once.

2 Updating the Loadings as Metaheuristic Search

One way to tackle the above mentioned issues is to formulate the process of
finding optimal simple basis matrices A minimizing (1) for fixed R as a meta-
heuristic search, which we will, in the following, cast as a Simulated Annealing
(SA) [6] problem. To this end, we propose to treat every A as a single solution
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Procedure UptA(S,R,T0,Tmin,μ,σ,λ,Q,Amax,Amin):
n, k = shape(A)
t = T0

g =
∥
∥
∥S − ARAT

∥
∥
∥

2

while t > Tmin do
//Create a copy of A

Â = A
//Select a random index
i ∼ U({1, 2, . . . , n})
//Select a probability for the perturbation-type
q ∼ U(0, 1)
if Q > q then

//Select a random column index j s.t. j �= b̂

j ∼ U({1, 2, . . . , k} \ {b̂})
//Flip the values between aij and aib̂
âij = âib̂ ∧ âib̂ = âij

else
//Select a random perturbation value

u ∼ N (μ, σ2)
//Perturb the nonzero element aib̂ and project it back to the defined range
âib̂ = max(min(âib̂ + u, Amax), Amin)

//Compute the reconstruction error with the new solution

ĝ =
∥
∥
∥S − ÂRÂT

∥
∥
∥

2

//Compute the difference in reconstruction error values
d = ĝ − g
//Select an acceptance probability
p ∼ U(0, 1)

if d < 0 or e−d/t > p then
//Update A and g

A = Â ∧ g = ĝ

//Reducing the temperature
t = λt

return A

Procedure MH-DESICOM(S, k,T0,Tmin,μ,σ,λ,Q,Amax,Amin):
Randomly initialize a nonnegative R and a simple nonnegative A
while stopping conditions are not satisfied do

R ← A†S(AT )†

A ← UptA(S, R,T0,Tmin,μ,σ,λ,Q,Amax,Amin)

Algorithm 1: The MH-DESICOM algorithm, which incorporates metaheuristic
search to the alternating least squares procedure to find optimal basis and affinity
matrices for DESICOM. See the text for more details.

(in the metaheuristic search terminology) and at each SA iteration (with a tem-
perature value t) work with a copy Â = A to perturb every of its randomly
selected ith row âi: s.t. âib̂ ©�= 0 by choosing (with probability Q ∈ [0, 1]) one of
the following two strategies. The first strategy is based on randomly selecting
a different column index j from a uniform distribution (which we represent as
j ∼ U({1, 2, . . . , k} \ {b̂}) s.t. j �= b̂) and flipping the values of âij and âib̂. The
second strategy is based on creating a random perturbation value u and updating
the nonnegative value aib̂ as aib̂ = aib̂ +u. Similar to the previous work on neural
networks [3], the value of u can be randomly chosen from Gaussian distribution
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as u ∼ N (μ, σ2), where μ and σ resp. represent the previously defined mean
and the standard deviation of the distribution. Note that, our approach also has
the advantage of constraining the matrix A to have certain properties such as
residing in a predefined range [Amin, Amax] for Amin, Amax ∈ R. For the lat-
ter we can consider projecting the perturbed value of the considered row âib̂ as
aib̂ = max(min(aib̂, Amax), Amin). This can especially be useful when the fac-
torized data matrix S contains only nonnegative entities. In this case, given that
Amin, Amax ≥ 0 we can safely consider the absolute value of the update of (2)
to guarantee having nonnegative factors as this projection cannot increase the
error in (1).

For consistency with the ALS optimization, we used the RSS from (1) as
the fitness function of the current as well as the perturbed solution. Given that,
the perturbed (and projected) solution Â is accepted either right away if it
results in lower error or with probability e−d/t to escape local minima, where
e is the irrational base of the natural logarithm and t and d resp. represent
the current temperature of the system and the difference value in RSS between
the current and the perturbed solutions. Starting with the predefined initial
temperature T0, we consider decreasing the current temperature t value by a
cooling parameter λ ∈ (0, 1) as t = λt and stop the SA optimization once a given
minimum temperature value is reached Tmin. Algorithm 1 summarizes the whole
procedure, that we called Metaheuristic (MH) DESICOM, of finding optimal
DESICOM parameters minimizing (1) in an ALS fashion using the update from
(2) for R and our metaheuristic search based approach for finding optimal A.

3 Empirical Evaluation

We consider three sets of experiments to evaluate our approach, where we will
evaluate (in order) its performance of obtaining global minimum solution, the
interpretability of the resulting factors and its performance on matrix recon-
struction on synthetic datasets.

We start by evaluating the ratio of ending up in a local minimum (as in [5])
of (1) for synthetically constructed noise-free (i.e. perfect) asymmetric datasets
of two types that have the same individual values for their diagonal, upper
diagonal and lower diagonal values resp. x, y, z (i.e. for any S we will have
sii = x ∀ i, sij = y ∀ i < j, sij = z ∀ i > j). The first type will be referred
to as mildly asymmetric and have x = 3, y = 1, z = 2 and the second type
will be called strong asymmetric containing x = 3, y = 1, z = 1. We created
two mildly asymmetric and two strongly asymmetric matrices with n ∈ {3, 4}
factorized using the algorithm from and Algorithm1. For the mildly asymmetric
matrices MH DESICOM resulted in local minimum with ratios 0.43 and 0.70
resp. for k = 3 and k = 4, which for the case of the original row-wise (RW)
DESICOM (the algorithm from [5]) were 0.63 and 0.93. Similarly, for the strongly
asymmetric matrices our approach’s local minima ratios were 0.50 and 0.73 while
RW-DESICOM’s results were worse (0.67 and 0.97) indicating that updating
the loading matrices using our algorithm has a higher probability of finding the
global optimum factors.
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s1 s2 s3 s4 s5 s6 s7 s8 s9

s1:

s2:

s3:

s4:

s5:

s6:

s7:

s8:

s9:

1.001 1.001 0.982 0.987 1.022 1.007 1.005 0.000 0.000

1.010 0.996 0.985 1.003 1.007 1.004 1.001 0.000 0.000

1.006 1.004 0.998 1.003 0.991 0.994 0.000 0.000 0.000

0.993 1.011 1.007 0.994 1.012 0.986 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.998 0.992 1.004 1.003 0.999

0.000 0.000 0.000 0.000 0.993 0.991 1.007 0.986 0.996

0.000 0.000 0.000 0.000 1.006 0.988 0.987 0.999 1.009

0.000 0.000 0.000 0.000 0.999 1.014 1.002 0.000 0.000

0.000 0.000 0.000 0.000 1.005 0.988 1.012 0.000 0.000

(a) adjacency matrix with noise

1 2 3

a1:

a2:

a3:

a4:

a5:

a6:

a7:

a8:

a9:

0.056 0.446 0.254

0.055 0.441 0.260

-0.004 0.363 0.329

-0.003 0.347 0.349

0.474 -0.202 0.270

0.471 -0.213 0.281

0.492 -0.222 0.177

0.392 0.340 -0.487

0.390 0.321 -0.467

(b) A (HO)

1 2 3

a1:

a2:

a3:

a4:

a5:

a6:

a7:

a8:

a9:

1.000 0.000 0.000

1.000 0.000 0.000

0.980 0.000 0.000

0.974 0.000 0.000

0.000 1.000 0.000

0.000 0.998 0.000

0.000 0.000 0.728

0.000 0.000 0.496

0.000 0.000 0.503

(c) A (MH)

r1 r2 r3

r1:

r2:

r3:

4.469 0.000 0.442

1.663 1.249 3.568

1.739 1.922 1.307

(d) R (HO)

r1 r2 r3

r1:

r2:

r3:

1.022 1.016 0.363

0.000 0.996 1.680

0.000 1.679 1.875

(e) R (MH)

Fig. 1. Illustrative example of factorizing a 9×9 noise-added adjacency matrix (shown
in (a)) of a directed graph containing three communities with asymmetric relations and
different self affinity values with HO-DEDICOM and MH-DESICOM for k = 3. (b, d)
resp. illustrate the resulting basis and affinity matrices from HO-DEDICOM, whereas,
(c, e) show the corresponding results from MH-DESICOM. While the basis matrix in
(b) shows soft assignments with negative loadings, that can only be interpreted as a
whole, the basis matrices from our approach define hard assignments and can be more
interpretable when we can assign every entity to a group.

Following that, we concentrated on factorizing a small matrix to illustrate the
interpretability of the basis and the affinity matrices. To this end, we constructed
an adjacency matrix S ∈ R

9×9 (from directed network of three communities with
different asymmetric interactions and different self affinity values) and added
Gaussian noise to each of its entries to show the resilience of the algorithms
against noise (shown in Fig. 1a). We compared the results of factorizing S using
the Semi Nonnegative Hybrid-Orthogonal (HO) DEDICOM algorithm from [8],
which constraints the basis matrix to be column orthonormal and the affinity
matrix to be nonnegative (shown resp. in Fig. 1b and Fig. 1d), and our approach
with nonnegative Amin, Amax values as well as nonnegative projections of R
(see Fig. 1c and Fig. 1e resp. for the basis and the affinity matrices). Compared
to soft assignments of HO-DEDICOM (read off the columns of A Fig. 1b), the
basis matrix A resulted from our approach clearly allow us to distinguish the
three communities (i.e. the objects {1, 2, 3, 4}, {5, 6, 7} and {8, 9}) in terms of
hard assignments and the nonnegative asymmetric affinities in R allow us to
summarize the pairwise relationships between these communities (for instance
showing high affinity from {1, 2, 3, 4} to {5, 6, 7} and low affinity for the opposite
case). Our final set of experiments is about investigating the RSS values for
different k values when factorizing the matrix from Fig. 1a. To this end, we ran
both MH- and RW-DESICOM algorithms 10 times for each k ∈ [3, 4, . . . , 9] and
showed the results in Fig. 2, which again show the superiority of our approach.



426 R. Sifa

0 10 20 30
RSS

3
4
5
6
7
8

k

RW-DESICOM MH-DESICOM

Fig. 2. Empirical evaluation of the RSS values for different values of k for factorizing
the matrix from Fig. 1a. The bars and the whiskers resp. show the mean and mini-
mum/maximum values of 10 runs of the benchmarked algorithms (the lower the bet-
ter). Well aligned with our previous results, our approach can find factors representing
the analyzed data better than the baseline approach.

4 Conclusion and Future Work

In this work we presented a metaheuristic search based algorithm to update
the loadings of DESICOM in an ALS fashion. Compared to the existing app-
roach, our method aimed at finding globally optimal solutions and our exper-
imental results validated this as we overall obtained more stable and better
reconstruction results. Our future work involves evaluating the performance of
population-based metaheuristic search models for finding optimal A as well as
importing our optimization paradigm to other data factorization methods, whose
parameter estimation involve discrete optimization problems. For the latter, for
instance, one can consider finding archetypal data points using metaheuristic
search (see [2,9]) or generalize MH-DESICOM to factorize asymmetric data ten-
sors (as in [1,7]).
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