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Chapter 16
The Role of Artificial Intelligence 
in Personalized Anesthesiology 
and Perioperative Medicine

Richard Boyer and Lei Gao

�Introduction

The practice of anesthesiology has evolved over the last two decades from a field 
focused on the intraoperative and postoperative phases of care, to now encompass 
an entire perioperative medicine specialty with the goal of continuous optimization 
of patients from preoperative risk reduction to postoperative recovery and preven-
tion. This transition from a largely reactive to a proactive and preventative periop-
erative specialty has opened the door to new opportunities for personalized medicine, 
particularly by leveraging the vast amounts of data generated today in our electronic 
health record systems, interconnected medical devices and consumer wearables. It 
is estimated that over 2000 exabytes (1 exabyte = 1 billion gigabytes) of healthcare 
data will be generated in 2020 (Dimitrov 2016; Ibarra-Esquer et  al. 2017; Sheth 
et al. 2018). Clearly, analyzing all of the available healthcare data today for informed 
clinical decision-making is beyond the ability of any single clinician. Data science 
and artificial intelligence are therefore playing increasingly important roles in 
today’s healthcare system, and particularly in the data-intensive field of 
anesthesiology.

Data science is a rapidly evolving interdisciplinary field of applied mathematics, 
statistics and computer science that extracts knowledge from increasingly large and 
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complex datasets. Artificial intelligence, although often discussed interchangeably 
with data science, is specifically focused on computer systems which are capable of 
solving problems that traditionally require human intelligence. Machine learning 
and deep learning are computational techniques at the intersection of data science 
and artificial intelligence that are often employed in large healthcare datasets where 
standard logistic regression and statistical methods are inefficient or impractical. 
Machine learning uses algorithms such as decision trees, vector machines or 
Bayesian learning to achieve weak artificial intelligence, while deep learning uses 
higher-order neural networks and similar algorithms to achieve higher artificial 
intelligence.

In healthcare, high-volume information assets are ubiquitous, with countless 
patient records existing in tens of thousands of disparate electronic health record 
systems. We think of healthcare data in terms of two major buckets—big data (large 
N to create population level models and hypotheses) and small data (small N or 
N = 1 to create individual models and hypotheses) (Ofili et al. 2018; Hekler et al. 
2019). In healthcare, big data often refers to electronic health records, genetic data, 
billing records and clinical research data, while small data often includes patient 
monitor data and patient generated health data from consumer health devices, wear-
ables and mobile applications. While big data practitioners aim to process this vast 
patient data to model the generalized population and apply systematic hypotheses to 
individuals, small data practitioners, conversely, use individual digital phenotypes 
(aka “digital fingerprints”) and subject-specific data to inform algorithms and 
develop individualized models. In simpler terms, while the strength of big data is 
evidence-based medicine, or applying population-based hypothesis to a patient, the 
strength of small data is precision or personalized medicine through modeling of the 
individual.

Murdoch and Detsky theorized in their 2013 JAMA article “The Inevitable 
Application of Big Data to Health Care” that big data would advance medicine in 
four main areas: generation of new medical knowledge, dissemination of medical 
knowledge, translation of personalized medicine initiatives into clinical practice 
and empowerment of patients with actionable data (Murdoch and Detsky 2013). For 
the most part, Murdoch and Detsky have been proven right. Advancement of 
machine learning, deep learning and natural language processing in electronic 
health records, using tools such as IBM Watson, have increased our medical knowl-
edge base. Clinical decision support tools that integrate AI techniques have also 
been developed to apply patient data analytics to evidence-based clinical guidelines. 
However, unlike medical oncology, which has heavily invested in genomics and 
precision medicine initiatives, anesthesiology and perioperative medicine have 
lagged behind in the implementation of personalized anesthesiology and periopera-
tive big data technologies.

In the preoperative assessment, anesthesiologists often describe an individual 
based on a risk stratification score, such as American Society of Anesthesiologists 
(ASA) class 1–6 or the Revised Cardiac Risk Index (RCRI). While these classifiers 
are helpful for high-level preoperative risk stratification, in order to personalize a 
patient’s perioperative plan, additional data is needed to understand their specific 
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medical comorbidities, functional capacity, hemodynamic status, nutritional status 
and mental fitness. Advancements in big data and small data mining and analysis 
are assisting us in supplementing our existing risk classifiers with the data produced 
by electronic health records, physiologic monitors, consumer health devices and 
smartphones for perioperative management. High fidelity patient waveform record-
ings and machine learning algorithms have also introduced a new dimension to 
patient analytics, with millisecond-resolution data that allow us to model dynamical 
physiology and real-time hemodynamic status (Cannesson et al. 2019). Additionally, 
wearable monitors are producing prehospital patient-generated health data that 
complement our subjective preoperative exams with new objective and longitudinal 
metrics, and mobile applications are providing valuable insights into outpatient 
activity levels, psychological stressors and dietary habits.

Through application of these big and small data tools, preoperative risk stratifica-
tion, patient monitoring, clinical decision support and perioperative medicine initia-
tives, such as Enhanced Recovery After Surgery (ERAS), can be advanced beyond 
empirical protocols to create personalized data-driven algorithms that optimize 
individual patient outcomes. In this chapter, we review how data science and artifi-
cial intelligence is currently playing a role in personalized anesthesiology and peri-
operative medicine, as well as lay out a vision for the future directions of this 
growing field.

�Big Data and Electronic Health Records

Big data and machine learning algorithms for multivariate modeling have been 
applied in recent years to predict surgical patient risks, diagnose disease and guide 
patient management using patient demographics, comorbidities, laboratory results, 
medications and other patient data found in electronic health records. Many of these 
algorithms, while still at the exploratory research stage, have outperformed the cur-
rent standards of care or expert clinicians in comparative studies. Targets of machine 
learning algorithms in the perioperative environment have included development of 
dynamic clinical metrics, predictions of surgical outcomes and complications (e.g. 
perioperative bleeding), mortality predictions and more recently, real-time indica-
tors and predictors of patient hemodynamic status, such as hypotension prediction 
index (Hatib et al. 2018).

Due to the wide range of outcomes and predictor variables included in existing 
perioperative machine learning models, there is only limited high quality, random-
ized controlled data to support implementation of these technologies. However, a 
2018 systematic review of neurosurgical machine learning algorithms for a range of 
outcomes found a median accuracy of machine learning predicted outcomes of 
94.5% with an absolute improvement in accuracy of 15% over logistic regression. 
Input features of the 30 machine learning studies in this systematic review included 
electronic health record data, such as patient demographics (age, sex, symptoms, 
signs, disease history, family history, medicine usage), radiological images, EEG 
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recordings, microelectrode recordings, pathology reports, surgeon volume and hos-
pital volume (Senders et al. 2018) (Fig. 16.1).

�Small Data and Consumer Health Devices

While an enormous amount of patient data exists in electronic health records and 
other big data repositories, personalized healthcare is also dependent on the digital 
traces that we don’t often collect. Data contained in consumer health products, 
mobile applications and social media accounts are often ignored by our healthcare 
system, but contain high volumes of objective and calibrated data about our indi-
vidual patients. These digital fingerprints, known collectively as “small data”, are 
key components to personalized perioperative medicine.

IBM Watson estimates that each person generates over one million gigabytes of 
health-related data in their lifetime. This patient-generated health data (PGHD) 
coming from fitness trackers, heart monitors, wearables and mobile applications is 
invaluable for modeling individual health status. For high-risk surgical patients, 
PGHD can be used not only for predictive risk modeling, but can also help guide 
preoperative optimization, i.e. prehabilitation, and calibrate evidence-based guide-
lines for improved perioperative outcomes, such as ERAS protocols.

However, there are limitations of our current healthcare system for implementa-
tion of systems that integrate small data. In a 2018 review of barriers to the clinical 
use of PGHD, investigators found data structure, data completeness, reliability, 
measurement context, information overload, interoperability and workflow to be the 
most commonly cited barriers (Petersen and DeMuro 2015; Zhu et al. 2016; West 
et al. 2017; Abdolkhani et al. 2019) (Fig. 16.2).

Big Data
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Fig. 16.1  Big data in personalized anesthesiology and perioperative medicine
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�Techniques in AI

Artificial intelligence (AI) is generally taught as containing several subfields, 
including learning methods (such as machine learning and deep learning), natural 
language processing, speech and image recognition and expert systems to name a 
few. In this chapter we will focus on AI learning methods and their application to 
personalized anesthesiology. Machine learning (ML) was defined by Arthur Samuel 
in 1959 as the “field of study that gives computers the ability to learn without being 
explicitly programmed” (Samuel 1959; Connor 2019). Historically, fuzzy set theory 
and fuzzy logic, in which rule-based algorithms are used with probabilistic catego-
rizations of features, were predecessors to machine learning that required human 
input to explicitly define rule sets. Instead of explicit rule definitions, machine 
learning algorithms use input features and data properties to learn how to perform a 
task through processes known as supervised learning, unsupervised learning or rein-
forcement learning.

Supervised learning which is found in classical machine learning, is the process 
of training an algorithm with data features to predict a specified output. Examples 
of supervised learning algorithms include k-nearest neighbor, naive Bayes, support 
vector machines, decision trees and neural networks. Conversely, unsupervised 
learning is used to identify patterns and clusters in data without specifying an out-
put. Some common algorithms for unsupervised learning are self-organizing maps 
and k-means clustering. Lastly, reinforcement learning algorithms, such as Monte 
Carlo methods and temporal-difference learning, use a process of trial and error to 
continually improve on their performance of a task. Supervised learning, unsuper-
vised learning and reinforcement learning are all capable of performing the classifi-
cation and prediction tasks that are commonly found in healthcare, and the selection 
of which specific AI technique to use is often determined by the data size and 
dimensionality, functional complexity, computational bandwidth and operator 
expertise.

Small Data

Mobile Applications Fitness Trackers
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Consumer Wearables

Physiological Monitors

Fig. 16.2  Small data in personalized anesthesia and perioperative medicine
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�Machine Learning

The most common form of AI used in clinical settings is supervised machine learn-
ing. While hundreds of specific machine learning techniques have been developed 
for optimization of accuracy, performance and fitting, four of the fundamental tech-
niques include linear regression, logistic regression, decision trees and random for-
ests. Linear regression uses a model that predicts a continuous outcome as a 
weighted sum of the input variables. Conversely, logistic regression is used for clas-
sification problems to assign inputs to a discrete set of outcome categories. Decision 
trees, otherwise known as Classification and Regression Trees (CART), partition 
input variable data into subsets with homogenous outcome values. Lastly, random 
forests are ensemble learning methods that fit a plurality of decision trees to subsets 
of input variable data to achieve improved performance.

�Neural Networks and Deep Learning

Artificial neural networks (ANN) are also commonly used in healthcare AI applica-
tions. Neural networks mimic the biological interconnectivity of neurons to create a 
weighted, directed graph of nodes with an input layer, output layer and varying 
number of hidden layers where computation is performed. In deep learning, neural 
networks contain several hidden layers, while traditional neural networks may con-
tain up to three (Fig. 16.3).

Artificial
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Fig. 16.3  A summary of 
AI hierarchy; from 
Rahmatizadeh S, 
Valizadeh-Haghi S, 
Dabbagh A. The Role of 
Artificial Intelligence in 
Management of Critical 
COVID-19 Patients. J Cell 
Mol Anesth. 2020; 5(1): 
16–22; with permission 
(Rahmatizadeh et al. 2020)
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�Preoperative

Perioperative complications are a major cause of preventable morbidity and mortal-
ity after critical illness or surgery but many of the mechanisms continue to be poorly 
understood. Recent strategies have moved towards characterizing patients’ health 
status preoperatively. There is an increasing possibility to leverage large volumes of 
unique preoperative data, including patient-generated health data, using artificial 
intelligence. This requires large-scale, unobtrusive, high quality continuous data 
collection from the patients’ natural environment, and from multiple domains (e.g. 
heart/motor/brain activity, temperature, circadian/sleep patterns, food intake and 
physical activity). Put simply, artificial intelligence allows us to use everything 
about the patient’s present state to predict a future state (i.e. perioperative morbidity 
and mortality). Advancements in health data processing, biosensors, genomics, and 
proteomics all will help provide a complete picture of a patient which will enable 
perioperative intelligence. The potential applications are vast, and include prehabili-
tation and rehabilitation, individualization of perioperative guidelines (ERAS pro-
tocols), risk stratification and risk management. These can incorporate not only well 
established comorbidities relevant to perioperative care, but also unique biomarkers 
such as circadian/sleep regulation, autonomic function, and genetic risk. All of these 
interact and are modulated by lifestyle factors.

Artificial intelligence techniques will allow the development of integrative phys-
iological biomarkers that incorporate genetics, circadian biology, physical activity, 
diet and co-morbidities to predict important postoperative complications. In partic-
ular, there is increasing recognition for the link between patients’ perioperative out-
comes and their prior sleep and circadian health. For example, there is emerging 
evidence for the potential role of circadian/sleep disturbances in the risk for delir-
ium (Dessap et al. 2015). A fundamental aspect of physiological functions, includ-
ing sleep, is the adherence to ~24 h cycles, known as circadian rhythms. Circadian/
sleep disturbances are more common in the elderly, becoming more pronounced 
after critical illness (Brainard et al. 2015), and in neurodegenerative diseases such 
as Alzheimer’s disease (AD) (Musiek et al. 2018), groups most vulnerable to delir-
ium. Using wearable technology and actigraphy, personalized machine learning 
models of sleep-wake states outperform their generalized counterparts in terms of 
estimating sleep parameters and are indistinguishable from more time-consuming 
polysomnography labeled sleep-wake states. These personalized machine learning 
models can be used in actigraphy studies of sleep health, potentially screening for 
sleep disorders such as insomnia, sleep apnea, narcolepsy or restless leg syndrome 
known to impact postoperative outcome metrics such as cognition, pain, surgical 
site infections, and length of recovery or even patient satisfaction.

Preoperative genomics is another area that can leverage artificial intelligence 
techniques to reveal biological insight into why certain patients experience drasti-
cally different postoperative outcomes. Using genetic variability, a way to assess 
preoperative risk for important responses to perioperative stress is an active area of 
research. Clinical outcomes include neurocognitive dysfunction, bleeding, 
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myocardial injury, stroke, infections, acute kidney injury and many others. The abil-
ity for artificial intelligence to combine genomic advances with circadian/sleep 
biology, lifestyle factors and existing comorbidities and their multitude of complex 
interactions, is an exciting prospect.

�Intraoperative

In the intraoperative phase of care, there are numerous applications for artificial 
intelligence that have the potential to improve perioperative outcomes and personal-
ize anesthetics.

Depth of anesthesia monitoring is one application of artificial intelligence that 
has already shown promise. The majority of depth of anesthesia studies have focused 
on the use of the BIS (Medtronic, USA) or electroencephalography (EEG). This has 
borne out of research efforts to reduce the risk of intraoperative awareness and pre-
vious literature suggesting that low BIS and burst-suppression on electroencepha-
lography during anesthesia may be associated with poorer outcomes. For example, 
excess depth may contribute to suppressed intraoperative mean arterial pressure 
which has been associated with postoperative mortality. Machine learning 
approaches are well-suited to analyze complex data streams such as EEG. Studies 
starting in the 1990s described discriminating awake versus anesthetized patients by 
using neural networks to evaluate EEG power spectra, and in particular, specific 
frequency bands as a signal seen in commonly used anesthetic drugs. The use of 
index parameters of depth of anesthesia (e.g. BIS) increased in popularity, such that 
neural networks and other machine learning approaches were used to analyze EEG 
data with the goal of approximating BIS through multiple electroencephalography 
parameters of increasing complexity.

More recent papers have used artificial intelligence techniques and spectral anal-
ysis to more directly analyze EEG signals to estimate the depth of anesthesia. 
Mirsadeghi et  al. studied patients and compared the accuracy of their machine 
learning method of analyzing direct features from EEG signals (e.g., power in dif-
ferent bands [delta, theta, alpha, beta and gamma], total power, spindle score, 
entropy, etc.) in identifying awake versus anesthetized patients against the BIS 
index. Their accuracy in using electroencephalography features was 88.4% while 
BIS index accuracy was 84.2% (Mirsadeghi et al. 2016). Similarly, Shalbaf et al. 
used multiple features from EEG to classify awake versus anesthetized patients (as 
four possible states of awake, light, general, or deep anesthesia) during sevoflurane 
with 92.91% accuracy compared with the response entropy index which had an 
accuracy of 77.5% (Shalbaf et al. 2013). This same algorithm demonstrated with 
generalization to Propofol and volatile anesthesia patients with 93% accuracy ver-
sus the BIS index’s 87% accuracy. Other clinical variables such as heart rate vari-
ability have been investigated to approximate sedation level (Nagaraj et al. 2017). 
These studies highlight the power of artificial intelligence techniques in creating 
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models that can efficiently consider linear and non-linear data simultaneously to 
generate maximal prediction value.

Related to depth of anesthesia monitoring, there has been increasing interest in 
the control of automated anesthesia delivery. Control systems using machine learn-
ing have also been used to automate the delivery of neuromuscular blockade, where 
these systems have also incorporated forecasting of drug pharmacokinetics to fur-
ther improve the control of infusions of paralytics. Other applications include the 
use of artificial intelligence to achieve control of mechanical ventilation or to auto-
mate weaning from mechanical ventilation.

For perioperative care risk prediction, various techniques in machine learning, 
neural networks, and fuzzy logic have been applied. For example, neural networks 
used to predict the hypnotic effect (as measured by BIS) of an induction bolus dose 
of propofol were found to exceed the average estimate of practicing anesthesiolo-
gists (Liu et al. 2019). Neural networks have also been used to predict the rate of 
recovery from neuromuscular blockade and hypotensive episodes post-induction or 
during spinal anesthesia, while other machine learning approaches have been tested 
to automatically classify pre-operative patient acuity (i.e., ASA status), define dif-
ficult laryngoscopy findings, identify respiratory depression during conscious seda-
tion, and to assist in decision-making for the optimal method of anesthesia in 
pediatric surgery (Lin et al. 2002). Waveform data from arterial lines has been used 
to develop models that could predict hypotension before their occurrence on an arte-
rial line waveform (Hatib et al. 2018). Others have used machine learning models to 
predict morbidity/mortality, sepsis, weaning from ventilation, or readmission.

Imaging guidance has also benefited from using convolutional neural network to 
identify key vessels e.g. femoral artery/vein during a femoral nerve block, vertebral 
level, lamina or epidural space during real-time (Hetherington et  al. 2017). Pain 
management may improve with the use of machine learning to measure nociception 
levels based on photoplethysmograms and skin conductance waveforms or EEG 
(Hamunen et al. 2012; Pesteie et al. 2018).

Finally, even operating room logistics has benefitted from improved prediction 
of operation duration, bed usage, recovery throughput and length of recovery using 
a combination of information on staffing characteristics both anesthesia and surgi-
cal, and patient medical history (Gram et al. 2017). In these myriad of potential 
applications, anesthesiologists should continue to partner with data scientists and 
engineers to provide their valuable clinical insight into the development of artificial 
intelligence to ensure its clinical applicability, training data validity, generalizabil-
ity, and that interpretations of that data are clinically meaningful.

�Postoperative

In the postoperative setting, artificial intelligence and telehealth are playing increas-
ingly important roles in disposition and reducing length of stay. Remote monitoring 
technologies and early warning systems, such as AlertWatch® (Tremper et al. 2018), 
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are transforming postoperative care by reducing ICU admissions and alerting 
responding clinicians prior to patient decompensation. Postoperative monitors that 
combine artificial intelligence with plethysmographic and electrocardiographic sig-
nals have been developed for noninvasive respiratory and hemodynamic monitor-
ing. Additionally, consumer health wearable devices are providing new sources of 
patient generated health data for post-discharge monitoring and rehabilitation 
programs.

�Future Directions of AI in Personalized Anesthesiology

As degrees of freedom in a dataset increase, machine learning and deep learning 
algorithms require larger training datasets to develop accurate models. This means 
that as our patient datasets become larger and more complex, we’ll need more 
patients to predict outcomes and to leverage all of the available big data and small 
data resources. Personalized anesthesiology that leverages both electronic health 
record data and patient-generated health data is on the horizon, but will require col-
laborative initiatives between academic medical centers to minimize biases and 
ensure generalizable models. Perioperative data consortiums, such as Multicenter 
Perioperative Outcomes Group (MPOG), will be critical to the integration of artifi-
cial intelligence into the perioperative ecosystem (Kheterpal 2011; Simpao 
et al. 2015).
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