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Chapter 10
Personalized Critical Care Medicine

Aditi Balakrishna and Abraham Sonny

 Defining Our Terms

The term “personalized medicine” first came into use following the completion of 
the human genome project in 2003, when Dr. Leroy Hood coined the phrase to 
describe the use of individual genetic signatures to risk stratify individuals and 
therefore enact targeted preventative strategies for disease (Hood 2003). Since that 
time, other terms have come about, including P4 medicine (predictive, personalized, 
preventative, and participatory) (Hood and Friend 2011), precision medicine, and 
individualized medicine. All of these seek to prompt clinicians and researchers to 
acknowledge the heterogeneity in people and diseases themselves, and approach 
treatment accordingly (Agusti et al. 2015).

The terminology surrounding this concept has further nuance and variation that 
warrants clarification. Ideally, a “personalized” approach should allow for targeted 
treatments for groups with defined biological features, but how these groups are 
defined and studied varies in the literature. For instance, instead of “personalized” 
medicine, some advocate the use of the term “strata” to refer to groups of patients 
with similar features, thus resulting in the term “stratified” medicine (Hingorani 
et al. 2013). Others use the term “phenotype” to define populations based on a con-
dition’s clinical presentation that can therefore be used as criteria for study 
enrollment.

When these groups have similar presentations but have subclinical differences, 
they can be further broken down into “endotypes,” a term that implies an under-
standing of biological mechanism for a presentation (Lotvall et al. 2011). In prac-
tice, however, the mechanism may not be known, so these subgroups may be 
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referred to as subphenotypes (Bhatraju et al. 2016), but this term, too, has variable 
connotation, so the term “subtype” is occasionally used (Thompson et al. 2017). 
The purpose of these groupings is to help guide therapy and improve outcome, but 
the terms defining outcome also vary. The word “prognostic” implies that a given 
quality portends or is associated with a specific outcome. The term “predictive” is 
similar, but the outcome in question is more specifically related to drug or device 
responsiveness.

 How Does Personalized Medicine Influence Critical Care?

The impact of personalized medicine on critical care can be seen in the following 
five areas: risk stratification, diagnosis, treatment plans and response, prognostica-
tion, and research.

Stratifying clinical risk has significant implications for triage and timing of inter-
vention. For example, predicting which of our patients are at highest risk of devel-
oping Acute Respiratory Distress Syndrome (ARDS) or Acute Kidney Injury (AKI) 
may allow us to intervene upon those individuals sooner and in a more informed 
manner. Tools to make more accurate diagnoses (e.g. does an individual have sterile 
inflammation or a bacterial infection?) have immense implications for patient out-
come and resource utilization. Tailoring treatment plans to those most likely to 
respond to a given intervention increases the impact of what we do and decreases 
unnecessary off-site effects; for example, we know that there are different responses 
to the commonly used sedative dexmedetomidine (Holliday et al. 2014) and varia-
tions in adverse events during use of vasopressin (Anantasit et al. 2014). Personalized 
medicine may help us prognosticate for critically ill patients, which is vital for care 
planning on a systems and individual level. Finally, Seymour et al. (2017) outlined 
three ways in which personalized medicine could impact research: (1) retrospective 
studies can uncover associations that are predictive or prognostic of a given out-
come, (2) treatment response characteristics (e.g. determining patient subsets who 
might benefit from a particular drug) can guide trial enrollment strategies in order to 
enrich groups (Meurer et al. 2012), and (3) heterogeneity of treatment effect can be 
identified post-trial by determining which treatment strategy work better in some 
patients versus others (Iwashyna et al. 2015).

The promise of this approach seems substantial, and many areas of medicine 
have begun to harness these tools, particularly oncology. But critical care medicine 
has become increasingly protocol-driven, especially since the positive outcomes 
associated with early goal-directed therapy were seen in sepsis (Rivers et al. 2001). 
Indeed, there has been a push toward checklists and bundles to standardize care to a 
population, while personalized medicine would seek to individual care to a single 
patient or  small group of patients. And while this approach has improved outcomes 
in many arenas, there are limitations to this strategy, and on a practical level, 
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patients’ clinical course often requires clinicians to practice in an individualized 
fashion. Currently, this individualization may or may not be based on evidence and 
may vary greatly between different clinicians. Advances in personalized medicine 
will allow this to be implemented based on strong  evidence and in a much higher- 
fidelity manner.

 What Tools Do We Have to Bring Personalized Medicine 
to the Intensive Care Unit?

While the current utilization of personalized medicine in the intensive care unit 
(ICU) may be limited, the tools abound in the research space to improve this going 
forward. These include biomarkers, the use of large data (neural networks and arti-
ficial intelligence), and the various flavors of Omics. Application in specific disease 
states will be discussed later in the chapter.

A biomarker is a physiologic or molecular characteristic that is objectively mea-
sured and evaluated as an indicator of normal biological processes, pathogenic pro-
cesses, or pharmacologic responses to therapeutic intervention (Biomarkers 
Definitions Working 2001). Biomarkers play a role in diagnosis, treatment monitor-
ing, and outcome stratification, and they can serve as surrogate endpoints in clinical 
research (Sandquist and Wong 2014). They have been studied in numerous critical 
illness disease states, including ARDS, AKI, sepsis, and pulmonary embolism.

The sheer volume of genetic data that exists for analysis provides untold oppor-
tunity to further our understanding of critical illness disease states. In fact, some 
estimates suggest that since the Human Genome Project was completed, the volume 
of data has grown tenfold each year (Berger et al. 2013). The term “omics” describes 
the identification and use of specific genetic markers to improve fidelity of diagno-
sis and treatment. These markers include genes, single nucleotide polymorphisms 
(SNPs), proteins (cell signaling molecules, those that influence DNA expression, 
etc.), messenger RNA, and metabolites. Again, the role of this type of inquiry in 
furthering our understanding of specific disease states will be discussed later in the 
chapter, but this approach is also frequently utilized to further our understanding of 
drug therapy (both response and adverse effects), which is called 
pharmacogenomics.

As more ICUs begin to use electronic health records, physiologic and lab data is 
accruing automatically. Processing and analyzing this mass of data may require 
leveraging neural networks and artificial intelligence systems that can appropriately 
mine and process this information. While these methods may not provide mechanis-
tic information, they can help provide real-time feedback about data as it is gener-
ated such that study models can adapt continuously.
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 Current Status of Personalized Medicine in Critical Care

Though admission to the intensive care unit occurs due to a variety of disease pro-
cesses, morbidity and mortality in ICU is largely related to organ system failure. 
Despite various process improvement strategies geared to improving outcomes in 
the ICU, mortality still remains high. The leading cause of death in the ICU is from 
multi-organ failure, which is the final common pathway for various etiologies caus-
ing critical illness (Waydhas et al. 1992; Orban et al. 2017). Among critically ill 
patients, the incidence of mortality is 15–28% when more than one organ system 
fails (Elias et al. 2015).

The underlying pathophysiological heterogeneity of various clinically similar 
diagnoses in the ICU calls for personalized medicine to improve outcomes. With 
current technological advancements we are able to leverage the whole spectrum of 
data from various omics-based approaches to real time artificial intelligence-based 
decision making to institute targeted therapy in ICU. Below we describe the current 
status of various precision medicine approaches to different clinical questions and 
common scenarios encountered in an ICU.

 Pharmacogenomics in the ICU

Pharmacogenomics is actively used in the oncology space, and approximately 10% 
of all drugs have pharmacogenetic information and/or recommendations included in 
their product labeling (Hamburg and Collins 2010; Allen and Gelot 2014). Much of 
the existing work in this space has been in elucidating the SNPs of the cytochrome 
P-450 (CYP) enzymes, which are central to the metabolism, absorption, distribu-
tion, and elimination of many drugs. Applications in the ICU setting remain limited, 
likely because of the impact of critical illness on basic pharmacokinetic and phar-
macodynamic variables—like volume status and organ function—as well as signifi-
cant polypharmacy in this population. There are, however, a number of medications 
commonly utilized in the ICU for which there are known SNPs that affect drug 
function. These include opioids (genetic variations impact pharmacokinetics/phar-
macodynamics), clopidogrel (CYP2C19 polymorphisms affect levels of platelet 
inhibition), coumadin (CYP2C and VKORC1, a vitamin K-related gene) (Bodin 
et al. 2005), succinylcholine (butyrylcholinesterase) (McGuire et al. 1989) and pro-
cainamide (N-acetyltransferase-2) (Hamdy et al. 2003).

Two commonly utilized drugs in the ICU that have been examined in this manner 
are the sedative dexmedetomidine and vasopressin. Dexmedetomidine is an alpha-2 
agonist commonly used for sedation, but it can also be associated with hypo- and 
hypertension depending on the dose and speed of administration. Clinically, how-
ever, there is a wide variability in susceptibility to sedative effects as well as in 
blood pressure response. Holliday et al. (2014) examined the existing studies look-
ing at the effect of alpha-2 adrenoreceptor polymorphisms, CYP2A6 (encodes the 
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enzyme responsible for metabolism of dexmedetomidine), and the uridine diphos-
phate gluconosyltransferase genes responsible for non-CYP metabolism, on seda-
tion and blood pressure effects. Only one study demonstrated a positive result, 
which demonstrated that a specific allele of the ADRA2A alpha-2 adrenoreceptor 
gene reduced efficacy and increased time to effect after receiving dexmedetomidine, 
however, the result has not yet been replicated (Esteller 2008).

Vasopressin has also been studied, where SNPs in genes related to its action site 
were investigated. Although the result has not been replicated, the authors found 
that serious adverse events were associated with a presence of an SNP near AVPR1a, 
a vasopressin receptor gene (Anantasit et al. 2014).

 Can We Predict Individuals Who Are More Susceptible to ARDS 
or Are at Higher Risk of Adverse Outcomes?

Risk factors associated with ARDS development and its severity has been studied 
using various omics approaches including candidate gene association studies, 
genome wide association studies, and whole-exome sequencing (Reilly et al. 2017).

Candidate gene association studies investigate the association of ARDS risk with 
a set of a priori selected genes, which are known to be linked to biological mecha-
nism of ARDS. These studies have identified several genes associated with ARDS 
susceptibility and outcome. Some notable examples are, a functional variant in the 
gene encoding for angiotensin converting enzyme, ACE I/D polymorphism geno-
type, has been associated with a higher mortality risk (Matsuda et al. 2012). An SNP 
in the advanced glycosylation end-product specific receptor (AGER) gene (encod-
ing a marker of pulmonary epithelial injury) confers a higher risk for developing 
ARDS as well as a higher mortality among patients with ARDS. Susceptible patients 
also have a higher plasma concentration of sRAGE (soluble receptor advanced gly-
cosylation end-product), a measurable biomarker (Jabaudon et al. 2018). Two func-
tional polymorphisms of IL17 has been associated with significant risk and 
prognosis in ARDS (Xie et al. 2019). On the other hand, some candidate genes have 
been found to be protective. A genetic variant of the leucine-rich repeat-containing 
16A (LRRC16A) gene, which has a role in platelet formation, reduces ARDS risk 
(Wei et al. 2015). Studies have revealed at least 90 candidate genes associated with 
ARDS, but its relevance has been questioned due to lack of reproducibility and dif-
ficulties in interpretation (Hernandez-Beeftink et al. 2019).

Only two genome wide association studies (GWAS) have evaluated ARDS sus-
ceptibility, one evaluating trauma related ARDS and the other evaluating all-cause 
ARDS (Christie et al. 2012; Bime et al. 2018). Although no locus achieved genome 
wide significance, marginal significance was seen in more than 150 loci. Both stud-
ies were able to reveal previously unknown ARDS susceptibility genes. Other inves-
tigators have used Mendelian randomization analysis, which explores the genetic 
variability in intermediate features of ARDS, which might have a causal 
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relationship with ARDS.  In addition to risk stratification, identification of such 
causal relationships may also help develop individual specific therapeutic targets. 
For instance, Mendelian randomization analysis showed that plasma levels of 
plasma angiopoietin-2, a biomarker of endothelial permeability and activation, was 
strongly associated with ARDS (Wada et al. 2013). Additionally, genetic variation 
in the angiopoietin-2 gene (ANGPT2) has been linked to risk of ARDS (Su et al. 
2009). Pharmacological modification of angiopoietin-2 levels or its signaling may 
bring us close to using precision medicine for prevention or treatment of ARDS 
(Reilly et al. 2018).

In addition to omics methods, clinical prediction scores exist for quantifying 
ARDS risk. The most widely studied among them is the Lung Injury Prediction 
Score, which was derived from a cohort of more than 5000 patients who were at risk 
of acute lung injury at hospital admission, and among whom 7% developed acute 
lung injury (Gajic et al. 2011). The input to the score consists of a variety of vari-
ables including co-morbidities and presenting diagnosis. Prediction scores can be 
used with biomarkers to improve predictive ability. After studying various plasma 
biomarkers of ARDS, Xu and colleagues concluded that angiopoietin-2 plasma lev-
els markedly enhanced the ability of Lung Injury Prediction Score to predict ARDS 
(Xu et al. 2018).

 Can Ventilation Strategies Be Individualized to Patients?

Though key advances in lung protective ventilation and resuscitation has improved 
mortality from ARDS, the morbidity and mortality associated with ARDS remains 
substantial (Phua et al. 2009). The landmark ARDS net trial demonstrated that ven-
tilating patients with a low tidal volume (4–6  ml/kg of predicted body weight) 
improved mortality, when compared to a higher tidal volume strategy (Acute 
Respiratory Distress Syndrome Network et  al. 2000). No subsequent ventilation 
strategies have consistently reduced mortality in ARDS.

Mechanical ventilation could worsen lung injury in ARDS as well as among 
patients with normal lungs. A heterogenous portion of the lung remains collapsed or 
atelectatic in ARDS, and contributes to secondary inflammation and lung injury. 
Presence of atelectasis during mechanical ventilation causes lung injury in at least 
two ways, (1) dynamic recruitment and de-recruitment with each breath causing 
dynamic strain, and (2) stress concentration which occurs between open and col-
lapsed alveoli (Nieman et al. 2017). It is well known that application of positive end 
expiratory pressure (PEEP) reduces atelectasis, improves lung compliance and 
potentially reduce lung injury, however, the amount of PEEP which is most benefi-
cial is unclear. Various studies have evaluated a low versus high PEEP strategy and 
has found neither to be superior (Briel et al. 2010). However, the emerging concept 
is that rather than one strategy fits all, the amount of PEEP applied needs to be per-
sonalized based on patient characteristics and type of lung injury.
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Various strategies are currently being explored to personalize PEEP. Traditionally, 
optimal PEEP has been decided by what leads to best oxygenation, or best compli-
ance. Setting PEEP based on lung compliance (i.e., setting PEEP which results in 
the highest compliance) logically makes sense, especially since compliance is pre-
dictive of mortality (Amato et al. 2015). Another strategy is to choose the mini-
mum PEEP needed to keep open all recruitable portions of the lung, and hence 
minimize atelectasis. This can be achieved by various methods. Volumetric cap-
nography allows calculation of dead space, and hence allows personalizing PEEP 
in each patient to minimize atelectasis (Suarez-Sipmann et al. 2014). This is valu-
able, since increased dead space is independently associated with mortality in 
ARDS (Cepkova et al. 2007). More recently, investigators have used bedside imag-
ing modalities like lung ultrasound to monitor atelectasis and thereby titrate 
PEEP.  A novel bedside device, electrical impedance tomography, has become 
available which allows measurement of regional variations in lung ventilation at 
bedside (Bikker et al. 2010). Animal studies have shown that electrical impedance 
tomography guided ventilation improved regional and global lung compliance and 
reduced lung injury as shown in histopathology (Wolf et  al. 2013). Another 
approach to minimize atelectasis is to maintain PEEP marginally above the trans-
pulmonary pressure (airway opening pressure minus pleural pressure) (Talmor 
et  al. 2008). Pleural pressure is estimated via esophageal manometry. Although 
various strategies are available to personalize PEEP, the best strategy remains 
unknown, and needs further evaluation.

 Is There Evidence for Different Endotypes in ARDS and Can 
Treatment Be Personalized Based on These Endotypes?

Very few strategies, other than low tidal volume ventilation, has shown to improve 
outcome in patients with ARDS. A likely explanation is that most ARDS trials have 
applied strategies to the whole ARDS cohort, and it is possible that some of these 
strategies might be better effective in certain subset of ARDS patients. This is sup-
ported by the fact that ARDS is a heterogenous disease and tailoring therapy to 
endotypes may facilitate therapeutic discovery.

Calfee et al. has used latent class analysis to identify subgroups among patients 
with ARDS. Latent class analysis uses mixture modelling to identify the best fitting 
model based on a set of variables, assuming that the sample contains various 
unknown groups. It explores presence of subgroups within a cohort defined by a 
similar combination of baseline variables. Using clinical and biological variables 
available from previously published ARDS studies, Calfee et al. (2014) identified 
two subgoups: a hyperinflammatory phenotype characterized by higher levels of 
inflammatory biomarkers, shock, metabolic acidosis, and mortality, and a second, 
non-hyperinflammatory phenotype. These clinical phenotypes were also found to 
be stable over a period of time (Delucchi et al. 2018).
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As expected, these two phenotypes respond differently to therapeutic strategies. 
In a cohort of 1000 patients with ARDS, Famous et al. (2017) found that a restric-
tive fluid management strategy reduced mortality in the hyperinflammatory group, 
while increased mortality in the non-hyperinflammatory group. Similarly, statins 
improved survival in the hyperinflammatory phenotype (Calfee et  al. 2018). To 
facilitate easier identification in a clinical setting, Famous et al. (2017) found that 
measuring serum concentrations of interleukin-8, bicarbonate, and tumor necrosis 
factor receptor-1 can be used to identify the hyperinflammatory sub-phenotype with 
excellent accuracy.

 Can We Predict Susceptibility and Survival of Sepsis?

Sepsis is a heterogenous disease which is influenced by various factors including 
immune status, genetic predisposition, pathogen type, and extend of infection. 
Genetic variation may influence the risk of disease and its clinical evolution. Such 
variations have been studied in an attempt to develop novel personalized therapeutic 
strategies. Candidate gene association studies of sepsis susceptibility and outcome 
has looked at a variety of target genes. For instance, certain toll like receptor-1 poly-
morphisms have been associated with organ dysfunction, proinflammatory responses 
and sepsis outcome (Wurfel et al. 2008; Pino-Yanes et al. 2010; Thompson et al. 
2014). However, the results of these studies have often been inconsistent and not 
reproducible in different populations, potentially because the populations studied 
have been small and heterogenous (Clark and Baudouin 2006).

GWAS could circumvent some of these limitation by performing a relatively 
unbiased evaluation of genomic risk. Until now, three genome wide association 
studies have been published in sepsis (Man et  al. 2013; Rautanen et  al. 2015; 
Scherag et al. 2016). Rautanen and colleagues used GWAS to explore association of 
6 million SNPs with 28-day mortality after sepsis from community acquired pneu-
monia. Among the 11 loci identified, an SNP in the intronic region of FER gene 
within chromosome 5 was consistently associated with mortality in all examined 
cohorts (Rautanen et al. 2015). Scherag and colleagues also evaluated 28-day mor-
tality in adult patients with sepsis. They found 14 loci, none of which overlapped 
with the loci found by Rautanen, or with FER gene (Scherag et al. 2016). This lack 
of reproducibility reduces clinical utility, however, studying more homogeneous 
populations and larger sample sizes may provide clinically useful associations.

Another promising approach to predict development of sepsis, is by using high- 
resolution vital signs data and electronic medical record data. This has been used to 
develop clinician decision support tools which can identify patients at highest risk 
of future sepsis (Nemati et al. 2018). Development of these tools harness complex 
artificial intelligence based machine learning techniques including deep learning 
using long short-term memory neural networks (Saqib et al. 2018). A recent meta- 
analysis found that machine learning models outperform traditional sepsis scoring 
system such as sequential organ failure assessment score (Islam et al. 2019).
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 What Is the Role of Metagenomics in Sepsis?

Metagenomics is the study of genetic material recovered directly from an environ-
ment. It has been used to study the microbiome, i.e., the genetic material of all 
microbes living inside or on the human body. Intestinal microbiome forms a com-
plex ecosystem and is involved in a wide array of functions including production of 
hormones and host immunity. Changes in diversity and quantity of gut microbiota, 
called dysbiosis, alters host immunity to pathogens and may increase susceptibility 
to infections and sepsis. In addition to intestinal microbiome, the respiratory micro-
biome is also markedly altered in patients with sepsis (Lee and Banerjee 2020). 
Better understanding of the relationship between human microbiome and host 
immunity will help develop strategies to favorably modulate microbiota, and 
develop a personalized therapy for individuals with dysbiosis.

Modulation of gut microbiota can be achieved by administration of a pool of 
microbes normally found in gut (probiotics), and/or by improving the intestinal 
microenvironment using agents which favor growth of normal gut microbiota (pre-
biotics) (Haak et al. 2018). A meta-analysis of 30 studies evaluating the effect of 
probiotics in critically ill patients showed significant reduction in infections includ-
ing ventilator associated pneumonia, but no effect of mortality or length of stay 
(Manzanares et  al. 2016). A randomized controlled trial of 4500 infants in rural 
India found that administering a combination of Lactobacillus plantarum (probi-
otic) and fructooligosaccharide (prebiotic) reduced mortality and incidence of sep-
sis (Panigrahi et al. 2017). Fecal microbiota transplantation is another strategy to 
treat dysbiosis, and is now commonly used to treat recurrent Clostridium difficile 
infection. Regulating human microbiota in individuals with dysbiosis is an emerg-
ing area of research, and may have potential to reduce the incidence of sepsis, 
improve immediate outcomes and reduce long term mortality after sepsis.

 Can We Differentiate Sepsis from Non-infectious Inflammation?

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated 
host response to infection. Hence, a diagnosis of sepsis has two components, pres-
ence of organ dysfunction and suspicion or presence of infection. The presence of 
organ dysfunction is easily quantified based on the numeric sequential organ failure 
assessment score. However, tools for differentiating infection from non-infectious 
inflammation are limited, and is largely based on clinical suspicion. Current gold 
standard for identification of infection is microbial growth of a pathogen in culture 
media. However, culture based techniques suffer from various limitations including 
long time to diagnosis, and poor sensitivity. Each hour delay in administration of 
effective antimicrobial therapy is associated with a measurable increase in mortality 
in various studies. This has led to inadvertent antimicrobial therapy causing inad-
vertent toxicity, increased cost, and growth of antimicrobial resistance.
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Development of a biomarker to diagnose sepsis with precision will help target 
delivery of antimicrobial agents to only individuals with infection. Over 150 protein 
and cytokine biomarkers has been studied in the context of sepsis. Procalcitonin is 
by far the most commonly studied, has been shown to be specific for bacterial infec-
tion in various patient populations. A recent meta-analysis shows a pooled sensitiv-
ity of 0.77 and pooled specificity of 0.79 for procalcitonin to differentiate infection 
from non-infectious inflammation (Wacker et al. 2013). Other biomarkers such as 
C-reactive protein and interleukin-6 are equally elevated in both infection and non- 
infectious inflammation, limiting their utility.

Recently, there has been interest in utilizing systems biology based approaches 
to identify differences in host transcription response between infection and non- 
infectious inflammation (van Engelen et al. 2018). Use of RNA molecules as bio-
markers has the advantage of them being incorporated into polymerase chain 
reaction based bedside testing, making them attractive for integration into rapid 
clinical decision making. Three diagnostic RNA marker panels which have been 
studied in this context, specifically, sepsis meta score (Sweeney et al. 2015), septi-
cyte lab (McHugh et  al. 2015) and FAIM3:PLAC8 (Scicluna et  al. 2015), with 
promising results. Sepsis meta score and septicyte lab consists of a panel of 11 and 
4 gene transcription products respectively, and has been developed to diagnose sep-
sis. While FAIM3:PLAC8 gene expression ratio was developed to diagnose com-
munity acquired pneumonia. These tools await further trials before they can be 
incorporated into sepsis diagnostic algorithms.

 Can We Personalize Antibiotic Regimens in Sepsis?

Choosing an effective antibiotic regimen as well as administering it early in the 
course of disease markedly improves sepsis survival (Rhodes et al. 2017). Culture 
based methods remains the gold standard and are most widely used to identify the 
type of microbial infection (viral versus bacterial) and presence of antimicrobial 
resistance. However, these take days to report and have a high rate of false negative 
results.

Identifying the pathogen early on will favor a more effective and personalized 
approach to choosing antimicrobial agents. Bacterial and viral infections lead to dif-
ferent host immune responses. Based on the concept that bacterial and viral agents 
generate different responses in the host, Tsalik and colleagues identified transcrip-
tomic biomarkers to differentiate between bacterial and viral agents causing an acute 
respiratory illness (Tsalik et  al. 2016). This was validated in publicly available 
genomic databases showing high sensitivity and specificity (AUC > 0.9). Several 
rapid molecular pathogen specific diagnostic tools have been developed for early 
identification of the causative microbial agent. Pathogen specific assays are not suf-
ficient by themselves due to large number of pathogens which can cause sepsis. 
However, they can be used to rule out (or confirm) certain infections like malaria and 
dengue. Various multiplex polymerase chain reaction based tests are available which 
can detect a predetermined array of bacteria and fungi. Some of them allow for 
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detection of certain resistance genes as well. For instance, Staphylococcus aureus 
acquires methicillin resistance by insertion of mecA gene into its chromosome, 
which can be detected by polymerase chain reaction based techniques (Wang et al. 
2013). It is also being used to identify certain genotypes of vancomycin resistant 
enterococcus, specifically VanA, and VanB (Seo et al. 2011). Majority of these tests 
provide no information on antimicrobial susceptibility. These tests can be used 
directly on clinical specimens or after its enrichment in a culture medium. However, 
direct detection has many disadvantages including false positive rate, contamination, 
and interference with human DNA.  Hence, rapid molecular diagnostic tests has 
some role in early detection and pathogen identification in sepsis, but in their current 
status they complement rather than replace microbial culture data (Rello et al. 2018).

 Is There Evidence for Endotypes in Sepsis and Instituting 
Endotype Specific Treatment Strategies?

Various investigators have used transcriptomics to identify various sepsis endo-
types, which might have therapeutic and prognostic implications. Wong and col-
leagues identified two subgroups (A and B) among pediatric septic shock patients, 
based on a 100-gene expression panel representing adaptive immunity and gluco-
corticoid receptor signaling pathways. Subgroup A, where these genes are down 
regulated, has worse clinical outcomes (Wong et al. 2015). Using predictive enrich-
ment strategies, they were able to show that subgroup B is more likely to benefit 
from corticosteroids (Wong et al. 2016). This could pave way to conducting future 
trials evaluating effect of corticosteroids in sepsis, in an enriched cohort.

Similarly, Davenport and colleagues used a similar approach to identified two 
transcriptomic signatures, sepsis response signature 1 and 2, among critically ill 
patients with community acquired pneumonia. Surprisingly, there was no difference 
in expression of proinflammatory cytokine genes between the two groups. Sepsis 
response signature 1 was associated was a much higher mortality (Davenport et al. 
2016). Sepsis endotypes represented by sepsis response signature 1 and 2 has also 
been replicated patients who developed sepsis from peritonitis (Burnham et  al. 
2017). Predictive enrichment based on these endotypes may be useful in developing 
treatment strategies which work on a specific subgroup.

 Can Fluid Management Be Personalized Among Patients 
with Septic Shock?

The surviving sepsis guidelines suggest initial resuscitation with 30 ml/kg of crys-
talloids within 3 hours of presentation (Rhodes et al. 2017). In the past, guidelines 
advocated for early goal directed fluid therapy based on trial by Rivers et al. in 2003 
(Rivers et al. 2001). Subsequently, three randomized trials showed no improvement 
in outcomes with early goal directed fluid therapy (ARISE Investigators et al. 2014; 
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Pro et al. 2014; Mouncey et al. 2015). In fact, a meta-analysis of these three trials 
showed that broad protocolized approaches like early goal directed therapy leads to 
larger fluid administration, a higher ICU admission rate and increased ICU resource 
utilization (Angus et al. 2015). Subsequently, the latest surviving sepsis guidelines 
from 2016 recommend a more personalized approach to fluid therapy. They recom-
mend that fluid resuscitation (after the initial bolus) be based on dynamic indices of 
volume responsiveness, measured in each patient (Rhodes et  al. 2017). These 
include stroke volume variation and pulse pressure variation, but such indices are 
not reliable in patients who breath spontaneously or has arrhythmias. Further clini-
cal trials are needed to identify optimal strategy to personalize fluid therapy in sep-
tic or distributive shock.

 Can We Predict Who Will Develop Acute Kidney Injury?

AKI refers to a spectrum of renal dysfunction, ranging from minor dysfunction to 
the need for replacement therapy. AKI is immensely important and common in the 
critical care setting. Variability in definition of AKI has rendered exact incidence 
difficult to determine, but it has been reported as being between 22% and two thirds 
of all ICU patients (Hoste and Kellum 2006), and numerous studies have demon-
strated an association between AKI and adverse outcomes including mortality.

At present, our ability to predict the development, severity and impact of AKI on 
each patient is limited. Serum creatinine and urine output are the most commonly 
used metrics for assessing renal function. The limitation of creatinine, however, is 
that it is a surrogate for glomerular function and does not provide information about 
tubular function; its rise may also lag days behind actual insult, so intervention may 
begin after significant tubular damage (Koyner and Parikh 2013). Given these limi-
tations, biomarkers that can detect injury early on can help institute treatment strate-
gies personalized to that individual.

Neutrophil gelatinase-associated lipocalin (NGAL)—also known as siderocalin 
or lipocalin-2—is a molecule that scavenges pericellular labile iron released from 
organelles after an ischemic or toxic insult, which may help attenuate oxidative 
stress during injury. It is expressed in multiple types of epithelia throughout the 
body, including renal tubular cells, and appears to be substantially upregulated in 
AKI. It has been shown to detect subclinical AKI both prior to a rise in creatinine 
and without a rise in creatinine (Haase et al. 2011). NGAL is available for use in 
routine care in many institutions, allowing for earlier identification of injury. Other 
molecular biomarkers include enzymes, proinflammatory mediators, structural pro-
teins that are released during tubular damage, markers of glomerular filtration that 
are reabsorbed by functional tubular epithelium, hormonal markers, and proteins 
involved in cell cycle regulation (Malhotra and Siew 2017). While studies have 
identified scores of potential target molecules, which has in turn furthered our 
understanding of the pathophysiology of kidney injury, their use has not yet 
impacted clinical outcomes.
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Another approach is to identify tests that can give clinicians information about 
functional organ reserve, similar to stress testing in cardiology (Ronco and Chawla 
2016). Ronco’s group proposed the use of fixed protein loads for investigating a 
kidney’s ability to increase glomerular filtration rate when faced with stress (Sharma 
et al. 2016). In addition, Chawla et al. developed a “furosemide stress test,” that 
when used in patients with early AKI was able to identify progression to AKI 
Network Stage III injury with an area under the curve of 0.87 (Chawla et al. 2013).

Two research groups have recently harnessed machine learning using electronic 
health record data to develop models to predict the development of AKI using data 
points that are standardly collected during the course of care. From a discovery 
cohort of 70,000 inpatients, Koyner et  al. developed an algorithm for predicting 
kidney injury. Their model had a sensitivity of 84% and a specificity of 85% for 
stage 2 AKI and was able to predict it at a median of 41 h prior to patients meeting 
diagnostic criteria (Koyner et al. 2018). Tomasnev et al. utilized a deep learning 
approach to analyze over 700,000 adult patients across 172 inpatient and 1062 out-
patient sites to create a predictive model for AKI. They were able to predict 55.8% 
of all inpatient episodes of AKI and 90.2% of those injuries that would require renal 
replacement therapy with up to 48  h of lead time over clinical manifestation of 
AKI. They were also able to generate relevant clinical features to support alerts and 
provide prediction for lab test trajectory (Tomasev et al. 2019).

 Can We Predict Who Will Develop Delirium?

ICU delirium is challenging for patients and caregivers alike, and it has been linked 
to prolonged admission (McCusker et al. 2003; Aitken et al. 2017), higher rates of 
readmission (Bokeriia et al. 2009), lower quality of life, increased mortality (Aitken 
et  al. 2017), and worse long-term cognitive function (Marcantonio et  al. 2000). 
Estimates of incidence range from 10 to 90% depending on the factors leading to 
admission (Maldonado 2008; Devlin et  al. 2018). This range may be partially 
explained by the fact that many patients experience hypoactive symptoms and there-
fore may not be identified.

The CAM-ICU (Confusion Assessment Method for the Intensive Care Unit) is 
the most ubiquitous tool to diagnose delirium in current clinical practice; it has been 
well-validated in large studies, and carries a sensitivity and specificity of approach-
ing 100% (Ely et al. 2001). Early identification of patients at risk for delirium will 
help direct delirium prevention strategies to patients who might benefit from it. 
Several delirium prediction tools, including the PRE-DELIRIC (PREdiction of 
DELIRium in ICu patients) and Lanzhou models has been studied in large cohorts, 
with AUCs of 0.78 and 0.77, respectively, for predicting delirium (Green et  al. 
2019). PRE-DELIRIC calculates risk based on age, APACHE-II score, coma status, 
surgical/medical/trauma/neurology/neurosurgical admission type, infection, meta-
bolic acidosis, degree of opioid consumption, sedative use, serum urea, and pres-
ence of urgent admission (Linkaite et al. 2018). The Lanzhou model incorporates 
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age, APACHE-II score, coma, emergency operation, mechanical ventilation, multi-
ple trauma, metabolic acidosis, history of hypertension, delirium and dementia, and 
use of dexmedetomidine (Chen et al. 2017).

However, these tools do not provide significant mechanistic insight into delir-
ium. Various investigators have studied biomarkers in delirium to help guide risk 
assessment, diagnosis, monitoring, and treatment. An exhaustive review by Toft 
et al. lists twenty biomarkers that are associated with or can detect delirium. These 
include IL-6, cortisol, prolactin, amyloid, neopterin, metalloproteinase-9 (MMP-9), 
neutrophil-lymphocyte ratio (NLR), phenylalanine-tyrosine ratio, thioredoxin, 
serpin family A member 3 (SERPINA3), and 8-iso-prostaglandin F2-alpha, many 
others. Despite these associations, they concluded that they are not useful in in 
current clinical practice. However, they propose that the commonly utilized inflam-
matory and metabolism biomarkers could be evaluated especially for screening 
and diagnosis of hypoactive delirium, which can be more difficult to diagnose 
(Toft et al. 2019).

 Next Steps for Research

As we identify biomarkers and gene targets involved in critical illness, we will next 
need to determine which markers are clinically useful—both alone and in combina-
tion with other markers—to help with risk stratification, aid in diagnosis, and inform 
prognostication. Once that is known, high-quality tests that result rapidly and can 
therefore be used in a clinical setting will need to be developed.

This work requires obtaining, manipulating, and interpreting vast amounts of 
information on a scale and pace that traditional methods of inquiry and experi-
mentation may not be equipped to handle. Accordingly, study and trial design may 
well need to innovate in both approach and structure to make this science happen. 
This era of research will necessarily be multidisciplinary and will require signifi-
cant collaboration across the preclinical, clinical, and implementation sci-
ence realms.

In the preclinical space, large cohort studies will be required to find targets for 
further investigation and testing; this will necessitate large patient samples as well 
as substantial processing power. Innovation in the clinical trial space may need to 
be more substantial. Trials in a critically ill population are difficult at baseline, as 
the population is rarely homogenous and tends to have many comorbid conditions, 
making individual interventions difficult to isolate or randomize. Traditionally 
structured clinical trials are addressing this challenge by recruiting enriched trial 
populations, which will ideally compensate for decreased statistical power with 
increased treatment effect size. One such study that used this approach was the 
MON-ARCS trial, which examined the TNF-alpha monoclonal antibody fragment 
afelimomab in septic shock patients. They specifically targeted patients with high 
baseline IL-6 levels, who they postulated would have the most effect from this 
intervention. They were able to show an outcome difference within this patient 
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subset, although the effect size was not significant in the overall study population 
(Panacek et al. 2004).

We will discuss two novel trial designs that may help address some of these 
issues: adaptive platform trials and registry-based randomized controlled trials. 
Adaptive platform trials involve study protocols that allow for the simultaneous 
evaluation of multiple treatments within a study population; they harness Bayesian 
analysis in order to preferentially “randomize” patients to treatments with higher 
likelihood of effect, thus automatically enriching the treatment group. The “plat-
form” denotes the structural framework that allows this type of study; the platform 
includes one control arm that allows simultaneous comparison of all other treatment 
arms. These trials also allow progression between traditional phases of trials based 
on preset rules within the study design, meaning that there does not need to be arbi-
trary stretches of time between phase 2 and phase 3 study of a given target (Berry 
et al. 2015). The I-SPY2 trial is a prime example of this type of study design that has 
allowed for the rapid identification and approval of a targeted biologic agent for 
breast cancer treatment. Since its inception in 2010, the trial has investigated twelve 
therapies in eight biomarker-defined subtypes, and it was able to send neratanib (a 
tyrosine kinase inhibitor) to phase 3 evaluation with less than 200 patients enrolled 
due to the adaptive trial design (Park et al. 2016).

Another subgroup of platform trials that utilizes electronic health records to eval-
uate existing therapies is known REMAP (randomized, embedded, multifactorial, 
adaptive, platform) studies (Angus 2015). These studies leverage electronic health 
records to screen for patients who may be eligible and then randomize patients to 
potential therapies; these studies can also harness adaptive trial design and therefore 
enrich study populations based on what the trial learns. This strategy is currently 
being used to investigate treatment approaches for severe pneumonia (REMAP 
CAP), with funding support from the European Union Platform for European 
Preparedness Against Re-emerging Epidemics (PREPARE network) as well as the 
governments of Australia and New Zealand. These collaborative networks are also 
investigating antibiotics, ventilator strategies, and immunomodulation across over 
100 ICUs in Europe (Seymour et al. 2017).

Another approach that harnesses existing data is the registry-based randomized 
controlled trials, which analyzes data collected for other purposes to answer novel 
questions (Lauer and D’Agostino 2013). In many parts of the world, large scale data 
is routinely collected. For instance, nearly all of the 90 hospitals with ICUs in the 
Netherlands send data to a central database known as the Dutch National Intensive 
Care Evaluation (NICE) registry; consequently, patient-level information on over 
half a million ICU admissions can be accessed and analyzed (van de Klundert et al. 
2015). Similarly, Australia and New Zealand’s Intensive Care Society Adult Patient 
Database similarly collects data from over two million admissions across 90% of 
the ICUs from both countries (Stow et al. 2006). These efforts exist in nearly twenty 
countries at present, and the International Forum for Acute Care Trialists (InFACT) 
reflects the possibility of collaborative registries in the future (InFACT Global 
H1N1 Collaboration 2010). From this large-scale data, electronic surveillance sys-
tems (also known as ESSs or “sniffers”) can be implemented to identify appropriate 
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patients for trials in real time. This has been actualized in the form of the METRIC 
Data Mart at the Mayo Clinic, which is a system that automatically receives elec-
tronic health records data and has been used to screen patients with AKI (Kashani 
and Herasevich 2013) and sepsis (Herasevich et al. 2011) and notify trial personnel 
to approach them for study enrollment in real time.

These processes are ambitious, and to be effective in the clinical space, imple-
mentation science must keep pace as well. Perhaps by leveraging existing informa-
tion frameworks (such as electronic health records), systems that can identify 
appropriate patients, prompt clinicians to consider targeted therapies, and measure 
relevant markers of progress and outcome in real time will need to develop and then 
become part of routine clinical practice (Seymour et al. 2017).

 Challenges for Implementation

The future is bright for precision medicine in critical care, but the implementation 
challenges are real and must be thoroughly understood so that they can be addressed 
appropriately. First and foremost, translating the findings from basic science 
research into usable tools that can be implemented with fidelity in critically ill 
patients with a host of comorbidities is a challenge at present and is likely to con-
tinue to pose difficulties. Once these tools exist, they also need to produce usable 
results on a short time frame that makes sense in an ICU environment. While the 
technology associated with sequencing and biomarker identification will get cheaper 
over time, the development of new diagnostic tests and therapeutics—which may 
need to be marketed to smaller subsets of patients—could confer additional finan-
cial burden.

These efforts require collaborative efforts across the globe to standardize mea-
surements and reporting so that when data is shared, we can do so meaningfully 
(Dzau and Ginsburg 2016). Data storage and security policies will also be neces-
sary to manage this information, in addition to the costs associated with storing, 
securing, and processing data. As discussed earlier in the chapter, analysis will 
likely require leveraging artificial intelligence and neural networks, given that we 
can ask increasingly complex questions, and the computational power required to 
mine this information will be immense. Furthermore, should we begin to harness 
the information being generated in ICUs with computerized monitoring and record 
systems, these requirements will only grow. Electronic health records data, how-
ever, does pose additional challenges. Currently, regulatory barriers to utilizing 
what is generated and recorded in the medical record are high, and the quality of 
information can be variable, as much of it still relies on human input. In addition, 
the various electronic health records nation and world-wide do not have standard-
ized ways of representing, storing, or searching for information (Maslove 
et al. 2016).
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 What Does the ICU of the Future Look Like?

Personalized medicine in a critical care setting is rife with challenges, but a more 
targeted approach to ICU patients is certainly possible, and it is likely what is best 
for many of our patients. We envision a world in which well-developed biomarker 
tools can be utilized upon patient presentation to aid in diagnosis, risk stratification, 
and initiation of appropriate care. Upon determining the clinical entity that a patient 
is facing, targeted tools to monitor response to therapy as well as their organ func-
tion (e.g. kidneys, cognitive system) can allow clinicians to adjust course where 
needed. Decision support tools will be integrated into electronic health records to 
help clinicians keep up-to-date with the latest data and recommendations. These 
individualized interventions will likely work hand in hand with checklists and care 
bundles, which will have their role in ensuring that overall quality of care remains 
at a high standard. All the while, robust data systems will be seamlessly integrated 
into clinical care, such that researchers in collaborative groups are able to learn in 
real time from every patient we see, so that we can continuously iterate the care we 
provide.
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