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Abstract Numerical simulation of density-driven convection in a porous medium
modeling underground flows in crusts is conducted. Convective flows are initiated
by an admixture source of finite length in a semi-infinite domain. An influence of
the Rayleigh-Darcy number and variable viscosity on the structure and the number
of convection regimes is discussed.
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1 Introduction

Investigations of groundwater flows containing dissolved admixture and filling a
porous medium are important for environmental management, mining, alternative
energy engineering. Filtration problems are considered for carbon dioxide seques-
tration, underground repositories for nuclear waste, displacement of oil by water,
extraction of hot fluids transporting geothermal energy.

One can specify a class of problems in which the fluid motion is driven by density
inhomogeneities induced by dissolved admixture. If the system is under gravity,
then natural haline convection develops. Such flows are generally called density-
driven convection in the groundwater literature. Along with variable density, other
factors can be essential for the hydrodynamic behavior of fluid phase, for example,
temperature inhomogeneities, nonuniform solid matrix, variable physical properties
of fluid.
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In this work, the onset and development of density-driven convective flows and
mass transfer in a fluid phase with constant and variable viscosity is investigated.
We consider a semi-infinite porous domain bounded by the upper horizontal surface.
The part of this surface is the source of admixture triggering convective flows.

2 Theoretical Background

2.1 Solution Viscosity

The viscosity of groundwater depends on the concentration and composition of dis-
solved salts and other matters. The temperature is considered to be constant. The
data (Aleksandrov et al. 2012) for water with sodium chloride based on numerous
experiments are used to estimate the viscosity change. In theoretical studies, the
Frank-Kamenetskii law is often used, i.e., the viscosity of solution is fitted to an
exponential function of admixture density. We have

μ = μ0 exp(Γ
′ρc). (1)

Here, μ and μ0 are the viscosity of solution and pure water, ρc is the density of
dissolved admixture, Γ ′ is the viscosity variation parameter. We transform Eq. (1)
introducing the dimensionless density S = ρc/ρc(sat) and dimensionless viscosity
variation parameter Γ = Γ ′ρc(sat), i.e., replacing the product Γ ′ρc by the equality:
Γ ′ρc = Γ S. Here, ρc(sat) is the density of admixture in saturated solution. Taking
the logarithm of the left-hand and right-hand sides of the result equation, one can
obtain the linear dependence of ln(μ) on S: ln(μ) = ln(μ0) + Γ S. We fit the data
on μ (Aleksandrov et al. 2012) depending on S to the last linear relation and find
out μ0 and Γ . In Fig. 1, the markers coincide with data (Aleksandrov et al. 2012)
corresponding to the pressure P = 10 MPa and the temperature T = 423 (a), 473 K
(b). The selected thermodynamic conditions are typical for geothermal systems. The
theoretical straight lines drawn for each temperature T are obtained by the method
of least squares. According to our estimations, μ0 = 190.7 µPa s and Γ = 1.022
(a), μ0 = 143.5 µPa s and Γ = 1.004 (b). Note that the found viscosity of pure
water is close to that in the open database NIST (National Institute of standards
and Technology, USA) (NIST Chemistry WebBook 2016). We have in NIST for
thermodynamic conditions indicated above: μ0 = 184.9 μPa s (a) and μ0 = 136.4
µPa s (b). Obviously, that the estimated parameter Γ does not change significantly
if T varies, therefore we take Γ = 1 in numerical simulation.
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Fig. 1 Dependence of solution viscosity μ (in µPa s) on the dimensionless density of dissolved
admixture S. Markers denote the data (Aleksandrov et al. 2012), solid lines are the theoretical
straight lines

2.2 Governing Equations and Numerical Method

Flows and mass transfer in a solution filling a porous medium is described by the
hydrodynamicmodel that includes the equations of continuity, motion (in the form of
the Darcy equation) and admixture transport. The model is added by the linear equa-
tion of state relating the density of solution ρ to the density of dissolved admixture
ρc. The equations are as follows.

∇ · U = 0 (2)

U = − k

μ
(∇P − ρg · e) (3)

φ
∂ρc

∂t
+ U · ∇ρc = ∇(φD∇ρc) (4)

ρ = ρ0 + αρc (5)

The values U, P , ρ0, k, φ, D, g, e are the filtration velocity, pressure, density
of pure water, permeability, porosity, admixture diffusion coefficient, modulus of
gravity acceleration and unit vector co-directional with the gravity. The constant
α = 0.815 is actual for water.

The porosity φ, permeability k, diffusion coefficient D and viscosity μ can be
variable. The density ρ in Eq. (3) is substituted by Eq. (5) to exclude ρ from our
consideration. Then, Eqs. (2)–(4) are reduced to a dimensionless form. The diffusion
velocity and diffusion time are used as scales. Next, the differential equations are
approximated by the finite difference equations. The last ones are solved numerically
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using the numerical code designed for density-driven convective problems and effec-
tively employed during several years (Soboleva and Tsypkin 2014, 2016; Soboleva
2017a, b, 2018, 2019a). The code is based on the finite-difference method applied in
the case of straggled nonuniform grid. The algebraic linear equations are soled by the
tridiagonal matrix algorithm called also as the Thomas algorithm (Aziz and Settari
1979). At the present stage of research, the code is modified by applying a more effi-
cient numerical scheme for the convective term (QUICKscheme instead of the central
difference scheme) and extended to fluids with variable viscosity (Soboleva 2019a).

3 Numerical Simulation

3.1 Problem Under Study

We consider a semi-infinite porous domain under the Earth’s gravity bounded by
the upper horizontal surface. Initially, the domain is filled with pure water at rest.
There is a source of admixture at the upper boundary with length l which is held at
the constant admixture concentration c equal to one in saturation solution csat . The
sketch of the problem is given in Fig. 2.

The admixture diffuses into the domain dissolving in water. Thus, a zone of
concentrated solution is formed below the source. Solution is heavier than pure water
and therefore tends to fall down. Gravitational density-driven convection develops.

The density of dissolved admixture ρc is related to c by the relation:

ρc = ρ0
c

1 − αc
(6)

Fig. 2 Sketch of the
problem
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The dimensionless system of the governing equations includes the Rayleigh-
Darcy Rd number which is the criterion of similarity of convection observed. We
have

Rd = (ρsat − ρ0)glk0
μ0D0

(7)

Here,ρsat is the density of saturated solution, subscript “0” denotes some reference
values. Note, that the length scale in Eq. (7) is the source length l.

Before beginning numerical simulation, we have analyzed the Elder problem that
is on thermal convection inducedby afinite source in theHele-Shawcell (Elder 1967).
Later, they started to apply this problem to haline convection as well. As shown in
(Van Reeuwijk et al. 2009), the problem can have several solutions depending on the
Rayleigh-Darcy Rdh number. A single regime is induced if Rdh < 76. Note, Rdh
in the Elder problem includes the cell height h being twice shorter than the source
length. Recalculating the Rayleigh-Darcy number with the use of the source length,
we obtain the twice bigger threshold magnitude and condition ensuring a single
solution in the form: Rd < 152. One can believe, that the system passes through
the bifurcation points in the beginning of convection when small disturbances are

Fig. 3 Fields of admixture concentration at Rd = 60 and at times t = 2.0 × 10−2 (a), t = 7.0 ×
10−2 (b), t = 7.7 × 10−1 (c). Viscosity is constant (left) and variable (right)
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self-organising in the boundary layer under the source. It means, that the condition
on the Rayleigh-Darcy number can be applied in the case of a semi-infinite domain
and we expect to obtain several solutions if Rd > 152.

3.2 Results of Simulation

We conducted numerical simulation at Rd = 60 when regime of convection is single
and analyzed the role of variable viscosity. The porous domain 9× 10 is considered.
The space grid is uniform and includes 900× 1500 cells. The time step is τ =
3.3 × 10−6. The fields of admixture concentration are shown in Fig. 3; the part of
considered domain is presented. As obvious, convective structure is very simple. A
single convective plum is developed. In the case of variable viscosity, the depth of
penetration is shorter, as the velocity of flows near the source becomes lower. As a
result, a smaller amount of admixture moves into the domain.

Fig. 4 Fields of admixture concentration at Rd = 2000 and at times t = 1.0 × 10−3 (a), t =
2.0 × 10−3 (b), t = 3.0 × 10−3 (c), t = 1.3 × 10−2 (d). Viscosity is constant (left) and variable
(right)
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If Rd > 152, we expect to obtain not a single solution. However, only one of
possible regimes at Rd = 2000 is exhibited in Fig. 4. The porous domain is 3× 5.
The space gridwith steps refining near the source is 1500× 2000.The time step is τ =
1.25 × 10−7. We see, that motion arises near the edges of source there the horizontal
gradient of density is present. Initially, several small fingers occur. Then, motion is
rearranged and a central plum is formed. Motion and mass transfer are concentrated
in the central plum transporting admixture down. When variable viscosity is taken
into consideration, convective structure is qualitatively similar to that observed at
constant viscosity. However, convection develops slower and the depth of penetration
of central plum is shorter.

4 Conclusion

Wepresented here some results on numerical simulation of density-driven convection
triggered by an admixture source of finite length in semi-infinite porous domain.
As discussed, the regime of convection strongly depends on the Rayleigh-Darcy
Rd number. When Rd > 152 we expect to obtain several solutions. The variable
viscosity taken into consideration can influence the structure and the number of
convection regimes.
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