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Abstract. Much mathematical writing exists that is, explicitly or
implicitly, based on set theory, often Zermelo-Fraenkel set theory (ZF) or
one of its variants. In ZF, the domain of discourse contains only sets, and
hence every mathematical object must be a set. Consequently, in ZF with
the usual encoding of an ordered pair 〈a, b〉, formulas like {a} ∈ 〈a, b〉
have truth values, and operations like P(〈a, b〉) have results that are
sets. Such ‘accidental theorems’ do not match how people think about
the mathematics and also cause practical difficulties when using set the-
ory in machine-assisted theorem proving. In contrast, in a number of
proof assistants, mathematical objects and concepts can be built of type-
theoretic stuff so that many mathematical objects can be, in essence,
terms of an extended typed λ-calculus. However, dilemmas and frustra-
tion arise when formalizing mathematics in type theory.

Motivated by problems of formalizing mathematics with (1) purely
set-theoretic and (2) type-theoretic approaches, we explore an option
with much of the flexibility of set theory and some of the useful features
of type theory. We present ZFP: a modification of ZF that has ordered
pairs as primitive, non-set objects. ZFP has a more natural and abstract
axiomatic definition of ordered pairs free of any notion of representation.
This paper presents axioms for ZFP, and a proof in ZF (machine-checked
in Isabelle/ZF) of the existence of a model for ZFP, which implies that
ZFP is consistent if ZF is. We discuss the approach used to add this
abstraction barrier to ZF.

Keywords: Set theory · Formalisation of mathematics · Theorem
proving

1 Introduction

1.1 Background: Set Theory and Type Theory as Foundations

A large portion of the mathematical literature is based on set theory, explicitly or
implicitly, directly or indirectly. Set theory is pervasive in mathematical culture.
University mathematics programmes have introductory courses on set theory and
many other courses that rely heavily on set-theoretic concepts (sets, classes, etc.),
notation (comprehensions a.k.a. set-builders, power set, etc.), and reasoning.
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Formal foundations for mathematics have been developed since the early 20th
century, with both set-theoretic and type-theoretic approaches being considered.
Although there are a number of set-theoretic foundations, for this paper it is suf-
ficient to consider Zermelo-Fraenkel set theory (ZF), which anyway seems to be
broadly accepted and reasonably representative of the strengths and weaknesses
of set theory in actual practice. The core concept of ZF is the set membership
relation ∈, which acts on a domain of objects called sets. The theory is a col-
lection of formulas (known as axioms) of first-order logic which characterise the
membership relation. Logical deduction from these axioms yields a rich theory
of sets. Moreover, mathematical objects such as ordered pairs, functions, and
numbers can be represented as sets in ZF.

At roughly the same time as Zermelo was formulating his axiomatic set the-
ory, Russell introduced the first type theory. Both Zermelo and Russell had the
goal of rigorous, formal, logical reasoning free from the paradoxes that plagued
the earlier systems of Cantor and Frege. Most modern type theories are descen-
dants of Church’s typed λ-calculus [9]. Many of the methods of modern type
theory have been developed by computer scientists to solve problems in program-
ming languages and formal verification. Types add layers of reasoning that help
with soundness and representation independence. Some type theories have been
used to formulate foundations of mathematics in which mathematical objects
(e.g., groups, rings, etc.) are represented by terms and types of what is essen-
tially a very fancy typed λ-calculus.

Formalizing mathematics that has been developed in a set-theoretic culture
using a type-theoretic foundation can lead to dilemmas and frustration [6]. Sub-
typing may not work smoothly when formalising chains of structures such as
the number systems and those belonging to universal algebra. There are also
design choices in how to model predicates which can make proving some things
easier but other things much harder. The rules of powerful type systems are also
very complicated, so users require machine assistance to follow the typing rules,
and even with machine support it can be quite challenging. In contrast, ZF-like
set theories typically have very few ‘types’, e.g., there might be a type of sets
and a type of logical formulas or perhaps a type of classes. When nearly every
mathematical object you need is of ‘type set’ it is easy to obey the typing rules.

There are problems formalizing mathematics in pure ZF set theory also.
When everything is of ‘type set’, a computer proof system has no easy way to
know that it would be wasting its time to try to prove a theorem about ordinal
numbers using lemmas and tactics for groups or rings, so automated support
is more challenging. When representing mathematical objects (e.g., numbers)
as sets, the bookkeeping of the intended ‘type’ of these objects is not avoided,
but must be managed by the user outside the realm of a type system. In many
not-too-tricky cases, a type inference algorithm can automatically infer type
information that represents necessary preconditions for successful use of theo-
rems and lemmas, but in pure set theory such automated inference is not very
useful when the only type is ‘set’.
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Furthermore, practical computerisation in ZF requires abbreviation and def-
inition mechanisms which first-order logic does not provide. Two contrasting
examples of how this can be done are Metamath and Isabelle/ZF. Metamath
[10] is mostly string based, and has ‘syntax definitions’ to introduce new con-
stants, or syntax patterns. These definitions are given meaning by ‘defining
axioms’ (whose correctness is not checked by the verifier). Isabelle/ZF is built
on top of Isabelle/Pure, which is a fragment of intuitionistic higher-order logic
that is based on Church’s typed λ-calculus [11]. This means that meta-level
activities such as variable binding, definitions, and abbreviations are handled
by Isabelle/ZF in a type theory, albeit a very simple type theory. Isabelle also
handles proof tactics in SML, which can be seen as another typed λ-calculus.

1.2 The Issue of Representation and the Case of the Ordered Pair

As discussed above, set theory can represent a multitude of mathematical objects
as sets, but in some cases the user might prefer that some of their mathematical
objects are genuinely not sets. The alternative of using a sophisticated type-
theoretic foundation might not be the right solution, for a variety of reasons,
some of which are mentioned above. So the user might ask: “May I please have
a set theory which has genuine non-sets that I can use for purpose XYZ?”

There are indeed set theories with non-set objects [7], which are generally
known as urelements, so named because they are often considered to be primor-
dial, existing independently of and before the sets. A popular use for urelements
is as ‘atoms’ whose only properties are being distinct from everything else and
existing in large enough multitudes. Adding genuine non-sets takes some work,
because the assumption that ‘everything is a set’ is deeply embedded in ZF’s
axioms. One example is the axiom of Extensionality,

∀x, y : (∀a : a ∈ x ↔ a ∈ y) → x = y

which asserts that any two objects are equal if they have exactly the same set
members. Because non-set objects of course have no set members, this ZF axiom
forces them all to equal the empty set, meaning there can not be any.

Existing set theories with urelements generally (except see GST below) do
not consider urelements with ‘internal’ structure that might include sets. The
ordered pair is a simple and important example of a mathematical object with
‘internal’ structure which is not usually intended to be viewed as a set. Ordered
pairs have been of enormous value in building theories of relations, functions, and
spaces. The most widely used set-theoretical definition, by Kuratowski, defines
the ordered pair 〈a, b〉 to be the set {{a}, {a, b}}. Because a is in all sets in
〈a, b〉 and b is only in one, a first-order logic formula using only the membership
relation can check if an object is the first (or second) projection of an ordered
pair. Kuratowski pairs satisfy the characteristic property of ordered pairs:

〈a, b〉 = 〈c, d〉 ↔ (a = c ∧ b = d)
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Like for any ZF representation of mathematical objects not thought of as sets,
Kuratowski pairs have ‘accidental theorems’ such as {b} ∈ 〈b, c〉, and {〈b, b〉} =
{{{b}}} = 〈{b}, {b}〉, and {〈0, 0〉} = 〈1, 1〉 with Von Neumann numbers.

The set representation of conceptually non-set objects raises issues. There
are places in the literature where some mathematical objects are thought of
as (or even explicitly stated to be) non-sets with no set members. One can find
definitions or proofs by cases on ‘type’ that assume the case of sets never overlaps
with the cases of pairs, numbers, etc. To view such writing as being founded
on pure set theory requires either proving that none of the sets used overlap
with the set representations used for abstract objects or inserting many tagging
and tag-checking operations (see, e.g., the translation we give in Definition 4.7
as part of proving a model for our system ZFP can be built in the pure set
theory ZF). When formalizing and machine-checking mathematics, additional
difficulties arise, some of which are mentioned above.

1.3 ZFP: Extending ZF Set Theory with Primitive Ordered Pairs

We aim to go beyond previous set theories with urelements to develop methods
for extending set theories with genuine non-set objects whose internal structure
can contain other objects including the possibility of sets. As a first instance of
this aim, we achieve the objective of ZFP, a set theory with primitive non-set
ordered pairs such that there is no limit on the ‘types’ of objects that sets and
ordered pairs may contain. We axiomatise ZFP and prove its consistency relative
to ZF. We hope that our explanation of how we did this will be useful guidance
for other work extending set theories.

ZFP extends ∈ with two new binary predicate symbols, π1 and π2, whose
intended meanings are ‘is first projection of’ and ‘is second projection of’. We
define abbreviations for formulas Set(x) and Pair(x) that distinguish sets and
ordered pairs by the rule that an ordered pair has a first projection and a set
does not. ZFP’s axioms are in two groups, one for sets and one for ordered pairs.
We were able to generate nearly all of ZFP’s axioms for sets by modifying the
axioms of ZF by restricting quantifiers using Set(x) in the right places. The
axiom of Foundation needed to be modified to handle sets and ordered pairs
simultaneously. ZFP’s axioms for ordered pairs specify the expected abstract
properties, including that ordered pairs have no set members.

To prove ZFP is consistent if ZF is, we construct in ZF a model and prove it
satisfies ZFP’s axioms [4]. Building a model for a set theory with non-set objects
with ‘internal’ structure that can include sets differs from building a model for
a set theory with no urelements or with only simple urelements, because there
can be new non-set objects at each stage of the construction. W, the domain of
our model, is similar to the domain V of the Von Neumann hierarchy. Each tier
of V is constructed by taking the power set of the previous tiers. In contrast,
when building the tiers of W, each successor tier Wα+ is formed by taking the
disjoint sum of the power set P(Wα) and the cartesian product (Wα)2. Hence
every object in W has a tag that tells whether it is intended to model a set or an
ordered pair. This supports defining relations that model ZFP’s ∈, π1, and π2
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which may only return true when their second argument is of the correct ‘type’.
This proof has been machine-checked in Isabelle/ZF.1

Although our model for ZFP is built purely of sets and implements ordered
pairs as sets, another model could use other methods (e.g., type-theoretic) and
implement ordered pairs differently. Hence, we have put an ‘abstraction barrier’
between the user of ZFP and the implementation of ordered pairs.

1.4 Related Work

Harrison [6] details the challenges that face both type-theoretic and set-theoretic
foundations for formalised mathematics. Harrison makes the case for using set
theory as ‘machine code’, leaving theorem proving to layers of code. Harrison
suggests using a set theory with urelements to avoid the issue of ‘accidental
theorems’. Weidijk [13] formulates axiomatic set theories and type theories in
AutoMath in order to compare them and assess their relative complexity.

A significant work aiming to make computer formalisation of set-theoretical
mathematics practical is Farmer’s Chiron [5], a conservative extension of the
set theory NBG (itself a conservative extension of ZF). Chiron has additional
features such as support for undefinedness, definite descriptions, quotation and
evaluation of expressions, and a kind of types.

Aczel and Lunnon worked on Generalised Set Theory (GST) [1] with the
aim of better supporting work in situation theory. GST extends set theory with
a mechanism for primitive functions, as well as a number of other features. It
appears that GST assumes the Anti-Foundation axiom instead of Foundation
which ZF uses. Unfortunately, we failed to find a specification of the axioms
of GST. Part of GST seems similar to our work but a technical comparison is
difficult without the axioms.

Although ordered pairs now seem obvious, Kanamori’s excellent history [8]
shows a sequence of conceptual breakthroughs were needed to reach the modern
ordered pair. How we built a model for ZFP was heavily inspired by the way
Barwise [2] interprets KPU (Kripke-Platek set theory with Urelements) in KP.

1.5 Outline

Section 2 presents and discusses the first-order logic we use and definitions and
axioms of ZF. Section 3 presents and discusses ZFP in the form of definitions
and two collections of axioms, one for sets, and one for ordered pairs. Section 4
proves the existence in ZF of a model for the axioms of ZFP (which implies that
ZFP is consistent if ZF is). Section 5 discusses the significance of these results,
and how they will be used in further investigation.

2 Formal Machinery

Let X := Y be meta-level notation meaning that X stands for Y .
1 See http://www.macs.hw.ac.uk/∼cmd1/cicm2020/ZFP.thy for the source, and

http://www.macs.hw.ac.uk/∼cmd1/cicm2020/ZFPDoc/index.html for the HTML.

http://www.macs.hw.ac.uk/~cmd1/cicm2020/ZFP.thy
http://www.macs.hw.ac.uk/~cmd1/cicm2020/ZFPDoc/index.html
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2.1 First-Order Logic with Equality

We use a fragment of first-order logic (FOL) with equality sufficient for defining
ZF and ZFP. We consider only four binary infix predicate symbols including
equality. The MBNF [12] specification of the syntax is:

a, . . . , z ∈̇ Var ::= v0 | v1 | · · · ∼ ∈̇ Pred ::= ∈ | π1 | π2 | =
A, . . . , Z ∈̇ Term ::= x | ιx : ϕ ϕ,ψ ∈̇ Form ::= X ∼ Y | ϕ → ψ | ¬ϕ | ∀x : ϕ

We work with terms and formulas modulo α-conversion where ∀x and ιx bind
x. Except where explicitly specified otherwise, we require metavariables ranging
over the set Var to have the attribute of distinctness. Two different metavariables
with the distinctness attribute can not be equal. For example, x = v9 and
x1 = v27 and y = v53 could hold simultaneously, but neither x = v9 = x1

nor x = v53 = y are allowed. This restriction applies only to metavariables:
the same object-level variable can be used in nested scopes, e.g., the formula
(∀ v7 : ∀ v7 : v7 ∈ v7) is fine and equal to (∀ v0 : ∀ v1 : v1 ∈ v1). We assume
the usual abbreviations for logical connectives (∧, ∨, ↔), for quantifiers (∃, ∃!,
∀x1, . . . , xn, ∃x1, . . . , xn), and for predicate symbols (�=, /∈, ).

A term can be a definite description ( ιx : ϕ) which, if there is exactly one
member x of the domain of discourse such that the formula ϕ is true, evaluates
to that member and otherwise evaluates to a special value ⊥ outside the domain
of discourse such that any predicate symbol (including equality) with ⊥ as an
argument evaluates to false.2 A term is said to be undefined or to have no value iff
it evaluates to ⊥. An alternative specification of definite descriptions that gives
formulas the same meanings is eliminating them by the following rule (only the
left case is given; the right case is similar):

(( ιx : ϕ) ∼ Y ) := (∃x : x ∼ Y ∧ ϕ) ∧ ∃!x : ϕ where x is not free in Y

2.2 Zermelo-Fraenkel Set Theory

The only predicate symbols ZF uses are the membership relation ∈ and equality.
ZF makes no use of the FOL predicate symbols π1 and π2, but instead we define
these symbols as parts of abbreviations in Sect. 2.3. We use the following abbre-
viations where n ≥ 3 and a, c, x, y, and z are not free in the other arguments
and b is not free in X:

(∀b ∈ X : ϕ) := (∀b : b ∈ X → ϕ) (∃b ∈ X : ϕ) := (∃b : b ∈ X ∧ ϕ)
∪X := ( ιy : ∀a : a ∈ y ↔ ∃z ∈ X : a ∈ z) X ⊆ Y := (∀ c ∈ X : c ∈ Y )
{A,B} := ( ιx : ∀c : c ∈ x ↔ (c = A ∨ c = B)) X ∪ Y := ∪ {X,Y }
P(X) := ( ιy : ∀ z : z ∈ y ↔ z ⊆ X) {A} := {A,A}
{A1, . . . , An} := {A1} ∪ {A2, . . . , An} ∅ := ( ιx : ∀a : a /∈ x)
{ b ∈ X | ϕ } := ( ιy : ∀b : b ∈ y ↔ (b ∈ X ∧ ϕ)) X+ := X ∪ {X}
These abbreviations are defined if their arguments are defined due to the axioms.
2 When working with functions that might be applied outside their domain, one might

prefer to have ⊥ = ⊥, but this is a bit more complex and not needed for this paper.
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Definition 2.1. The axioms of ZF are all the instances of the following formu-
las for every formula ϕ with free variables at most a, b, c1 and c2.

1. Extensionality: ∀x, y : (∀a : a ∈ x ↔ a ∈ y) → x = y
2. Union: ∀x : ∃y : ∀a : a ∈ y ↔ (∃z ∈ x : a ∈ z)
3. Power Set: ∀x : ∃y : ∀z : z ∈ y ↔ z ⊆ x
4. Infinity (ugly version; pretty version below): ∃y : (∃ z ∈ y : ∀ b : b /∈ z)∧(∀x ∈

y : ∃ s ∈ y : ∀ c : c ∈ s ↔ (c ∈ x ∨ c = x))
5. Replacement: ∀c1, c2, x : (∀a ∈ x : ∃!b : ϕ) → (∃y : ∀b : b ∈ y ↔ ∃a ∈ x : ϕ)
6. Foundation: ∀x : x = ∅ ∨ (∃y ∈ x : ¬∃b ∈ x : b ∈ y)

The axioms are due to Zermelo, except for Replacement which is due to
Fraenkel and Skolem [3] and Foundation which is due to Von Neumann. Exten-
sionality asserts that sets are equal iff they contain the same members. Union
and Power Set state that ∪X and P(X) are defined if X is defined; this implies
the domain of discourse is closed under ∪ and P. Infinity states that there exists
a set containing ∅ which is closed under the ordinal successor operation; from
this we can extract the Von Neumann natural numbers N. Here is a prettier
presentation of Infinity that we do not use as the axiom to avoid bootstrap
confusion3:

∃y : ∅ ∈ y ∧ (∀x ∈ y : x+ ∈ y)

The powerful infinite axiom schema Replacement asserts the existence of the
range of a function determined by any formula ϕ where the values of the variables
a and b that make ϕ true have a functional dependency of b on a and where the
domain of the function exists as a set. Foundation enforces the policy that there
are no infinite descending chains of the form X0  X1  · · · .
Lemma 2.2. The following theorems of ZF are often presented as axioms. For
every formula ϕ such that any free variable must be a, the following hold in ZF:

1. Empty Set: ∃x : ∀b : b �∈ x
2. Pairing: ∀a, b : ∃x : ∀c : (c ∈ x ↔ (c = a ∨ c = b))
3. Specification: ∀x : ∃y : ∀a : (a ∈ y ↔ (a ∈ x ∧ ϕ))

2.3 Ordered Pairs in ZF

We define the Kuratowski ordered pair 〈A,B〉 and related operations as follows
where a, b, p, and x are not free in A, B, and Q:

〈A,B〉 := {{A}, {A,B}}
A π1 Q := (∀x ∈ Q : A ∈ x) B π2 Q := (∃!x ∈ Q : B ∈ x)
A × B := ( ιx : ∀p : p ∈ x ↔ (∃c ∈ A, d ∈ B : p = 〈c, d〉))

3 Provided some object exists, Replacement can build ∅, and then further axiom use
can build operations like {B, C}, {B}, X ∪ Y , and X+, thus ensuring the terms ∅
and x+ are defined in the pretty version of Infinity. We prefer getting that initial
object from an axiom over using the FOL assumption that the domain of discourse is
non-empty. The only axiom giving an object for free is Infinity. We find it confusing
to use Infinity in proving the definedness of subterms of itself, so we don’t.
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We call a and b the first and second projections of 〈a, b〉 respectively. The first
projection of an ordered pair q is in all sets in q, whereas the second is only in
one.4 The projection relations π1 and π2 only give meaningful results when the
set Q on the right side of the relation is an ordered pair, i.e., this holds:

(∃c, d : Q = 〈c, d〉) → (∀a, b : (a π1 Q ∧ b π2 Q) ↔ Q = 〈a, b〉)
Kuratowski ordered pairs are sets and have set members that are distinct from
their projections. In fact, no matter which representation we use, there will
always exist some x such that x ∈ 〈a, b〉 (for all but at most one ordered pair
which can be represented by ∅). If A and B are defined, we can show the cartesian
product A × B is defined using Replacement nested inside Replacement5:

A × B = ∪ { z | ∃ c ∈ A : z = { p | ∃ d ∈ B : p = 〈c, d〉 } }

3 Extending ZF to ZFP

This section introduces Zermelo-Fraenkel Set Theory with Ordered Pairs (ZFP),
a set theory with primitive non-set ordered pairs. ZFP axiomatises the member-
ship predicate symbol ∈ similarly to ZF. The ordered pair projection predicate
symbols π1 and π2 are axiomatised in ZFP instead of being abbreviations that
use ∈ as in ZF. Ordered pairs in ZFP qualify as urelements because they contain
no members via the set membership relation ∈, but they are unusual urelements
because they can contain arbitrary sets via the π1 and π2 relations.

3.1 Definitions and Axioms of ZFP

We use the metavariables p, q, P , and Q where it might help the reader to think
‘ordered pair’, and the metavariables s, x, y, z, X, Y , and Z where it might
help the reader to think ‘set’; this convention has no formal status and all FOL
variables continue to range over all objects in the domain of discourse. We call
b a member of x iff b ∈ x. We call b a projection of q iff b π1 q or b π2 q. An
ordered pair is any object with a projection, and a set is any object that is not
an ordered pair. We use the following abbreviations where b is not free in Q and
X and q is not free in A and B:

Pair(Q) := ∃b : b π1 Q Set(X) := ¬Pair(X)
∀Pair p : ϕ := ∀p : Pair(p) → ϕ ∀Set x : ϕ := ∀x : Set(x) → ϕ
∃Pair p : ϕ := ∃p : Pair(p) ∧ ϕ ∃Set x : ϕ := ∃x : Set(x) ∧ ϕ

ι

Pair p : ϕ := ιp : Pair(p) ∧ ϕ ι

Set x : ϕ := ιx : Set(x) ∧ ϕ
(A,B) := ( ιq : A π1 q ∧ B π2 q)

4 This holds even in the case of 〈a, a〉 = {{a}, {a, a}} = {{a}}.
5 The traditional construction of A × B as { p ∈ P(P(A ∪ B)) | ∃c ∈ A, d ∈ B :

p = 〈c, d〉 } is only needed if the weaker Specification is preferred over Replacement.
We avoid the traditional construction because it depends on a set representation of
ordered pairs and thus will not work for ZFP.
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We reuse the text of the abbreviation definitions for ZF for {A,B}, X ∪Y , {A},
and {A1, . . . , An} where n ≥ 3. We redefine the following abbreviations a bit
differently for ZFP, where a, b, c, p, x, y, and z are not free in A, B, X and Y :

X ⊆ Y := Set(X) ∧ Set(Y ) ∧ (∀ c ∈ X : c ∈ Y )
∪X := ( ι

Set y : ∀a : a ∈ y ↔ ∃z ∈ X : a ∈ z)
P(X) := ( ι

Set y : ∀ z : z ∈ y ↔ z ⊆ X)
∅ := ( ι

Set x : ∀a : a /∈ x)
{ b ∈ X | ϕ } := ( ι

Set y : ∀b : b ∈ y ↔ (b ∈ X ∧ ϕ))
A × B := ( ιx : ∀p : p ∈ x ↔ (∃c ∈ A, d ∈ B : p = (c, d)))

These abbreviations are defined if their arguments are defined due to the axioms.

Definition 3.1. The axioms of ZFP are all the instances of the following for-
mulas for every formula ϕ with free variables at most a, b, c1, c2.

– Sets
S1. Set Extensionality: ∀Set x, y : (∀a : a ∈ x ↔ a ∈ y) → x = y
S2. Union: ∀Set x : ∃y : ∀a : a ∈ y ↔ (∃z ∈ x : a ∈ z)
S3. Power Set: ∀Set x : ∃y : ∀z : z ∈ y ↔ z ⊆ x
S4. Infinity (ugly version): ∃y : (∃Set z ∈ y : ∀ b : b /∈ z) ∧ (∀x ∈ y : ∃ s ∈ y :

∀ c : c ∈ s ↔ (c ∈ x ∨ c = x)).
S5.Replacement: ∀c1, c2, x : (∀a ∈ x : ∃!b : ϕ) → (∃Set y : ∀b : b ∈ y ↔ ∃ a ∈ x : ϕ)

S6 Foundation: ∀Set x : x = ∅ ∨ (∃a ∈ x : ¬∃b ∈ x : b π1 a ∨ b π2 a ∨ b ∈ a)
– Ordered Pairs

P1. Ordered Pair Emptiness: ∀Pair p : ∀a : a /∈ p
P2. Ordered Pair Formation: ∀a, b : ∃p : a π1 p ∧ b π2 p
P3. Projection Both-Or-Neither: ∀p : (∃a : a π1 p) ↔ (∃b : b π2 p)
P4. Projection Uniqueness: ∀Pair p : (∃!a : a π1 p) ∧ (∃!b : b π2 p)
P5. Ordered Pair Extensionality:

∀Pair p, q : (∀a : (a π1 p ↔ a π1 q) ∧ (a π2 p ↔ a π2 q)) → p = q

Lemma 3.2. For every formula ϕ such that any free variable must be a, the
following hold in ZFP:

1. Unordered/Set Pairing: ∀a, b : ∃x : ∀c : c ∈ x ↔ (c = a ∨ c = b)
2. Specification: ∀Set x : ∃Set y : ∀a : a ∈ y ↔ (a ∈ x ∧ ϕ))
3. Cartesian Product Existence:

∀Set x, y : ∃Set z : ∀p : p ∈ z ↔ (∃a ∈ x, b ∈ y : a π1 p ∧ b π2 p)

For Lemma 3.2 (3), note that the cartesian product A×B can be built in ZFP
using the same construction given for ZF in Sect. 2.3, which does not depend on
any set representation of ordered pairs.
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3.2 Discussion

Axioms for Sets. Each ZF axiom was transformed to make a ZFP axiom.
First, because we use abbreviations for more readable axioms, those used in
axioms needed to be modified for ZFP. The definition of ⊆ (used in Power Set)
was changed to ensure an ordered pair is neither a subset nor has a subset. The
definition of ∅ (used in Foundation) was changed to ensure a defined result.

Second, some occurrences of (∀ b : ψ) and (∃ b : ψ) needed to enforce that
ψ can be true only when b stands for a set. Where needed, such occurrences
were changed to (∀Set b : ψ) respectively (∃Set b : ψ). Each quantifier needed
individual consideration. If the sethood of b was already enforced by ψ only
being true when b has at least 1 set member, there was no need for a change but
a change might also clarify the axiom. If the truth of ψ was unaffected by any
set members of b, there was no need for a change and this generally indicated
that a change would go against the axiom’s intention. We needed to understand
the axiom’s intention and expected usage because it was not written to specify
where it is expected that ‘X is a set’ (because this always holds in ZF).

Finally, Foundation was extended to enforce a policy of no infinite descending
chains through not just ∈ but also π1 and π2, so that ZF proofs using Kuratowski
ordered pairs (having no such chains) would continue to work in ZFP.

Consider the example of Power Set which states that for any set X there
exists a set Y containing all of the subsets of X and nothing else, i.e., P(X):

∀Set x : ∃y : ∀z : (z ∈ y ↔ z ⊆ x)

We could have left ∀Set x as ∀x, because when x is an ordered pair it would
act like ∅ and this would only add another reason that P(∅) exists. However,
we thought this would be obscure. It would not hurt to change ∃y to ∃Set y but
there is no need to do so because the body forces y to contain a set member and
hence rejects y being an ordered pair. We did not change ∀z to ∀Set z because
this would allow y to contain extra junk ordered pairs that proofs expecting to
get P(x) would have to do extra work using Replacement to filter out.

Axioms for Ordered Pairs. The ZFP axioms for ordered pairs specify the
abstract properties of ordered pairs via the relations π1 and π2. These ordered
pairs have no ‘type’ restrictions, i.e., each pair projection can be either a set
or an ordered pair. Ordered Pair Emptiness (P1) ensures that no object has
both a projection (ordered pairs only) and a set member (sets only). Ordered
Pair Formation (P2) ensures that for every two objects b and c there exists an
ordered pair with b as first projection and c as second. Projection Both-Or-
Neither (P3) ensures that every object either has no projections (sets) or both
projections (ordered pairs). Projection Uniqueness (P4) ensures each ordered
pair has exactly one first projection and one second projection. Ordered Pair
Extensionality (P5) ensures that for every choice of first and second projections,
there is exactly one ordered pair.
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Comparing the Objects and Theorems of ZF and ZFP. A set is pure iff
all its members are pure sets. Each ZF object is a pure set and is also a pure
set of ZFP, but ZFP has additional impure sets which have members that are
primitive ordered pairs or impure sets, and ZFP also has primitive ordered pairs.
The set membership relation ∈ of ZF is the restriction of the relation ∈ of ZFP
to pure sets. Let Pure(x) be a formula (implemented with transfinite recursion)
that holds in ZFP when x is a pure set. For every ZF formula ϕ, let PRestrict(ϕ)
be the ZFP formula obtained from ϕ by changing each subformula (∀x : ψ) to
(∀x : Pure(x) → ψ). Then ϕ is a ZF theorem iff PRestrict(ϕ) is a ZFP theorem.
If one wants to go the other direction and take a ZFP formula ψ and find a
ZF formula ψ′ that ‘does the same thing’, one must represent as ZF sets both
(1) the primitive ordered pairs and (2) the sets of ZFP, and then one must either
prevent or somehow manage the possible confusion between the representations
of (1) and (2). Section 4.2 is an example of doing this rigorously.

Design Alternatives. We considered having the projections π1 and π2 be
unary FOL function symbols, but this would require the term π1(x) to denote
an object within the domain of discourse for every set x, so we avoided this. We
considered having the pairing operator (·, ·) be a binary FOL function symbol.
Using a binary function symbol would mean the graph model would have hyper-
edges (i.e., connecting 3 or more nodes) which is more difficult to think about.
Because we used two separate binary predicate symbols, one for each projection,
we get a fairly standard-looking directed-graph model with ordinary edges. If
we used a binary FOL function symbol (·, ·) for pairing, we could replace our
axioms P2, P3, P4, and P5 by the characteristic property of ordered pairs:

∀ a, b, c, d : (a, b) = (c, d) → (a = b ∧ c = d)

Our axioms can be seen as the result of applying a function-symbol-elimination
transformation to this alternative.

Very early on, we considered simply using ZF’s axioms as they are, adding a
binary pairing function symbol, and adding the characteristic property of ordered
pairs as an axiom. In this theory, formulas such as {b} ∈ 〈b, c〉 would be inde-
pendent, because the representation of ordered pairs would be unknown (and
need not even be definable in ZF), so some ‘junk theorems’ would no longer
hold. We avoided this alternative for many reasons. First, Extensionality would
force all but one ordered pair (which could be ∅) to have set members, so there
would be ‘junk theorems’ such as (a, b) �= (c, d) → ∃ e : e ∈ (a, b) ↔ e /∈ (c, d).
Second, we could not see how to do transfinite induction and recursion. Third,
genuine non-sets make it easier to talk about the distinction between sets and
conceptually non-set objects, e.g., to students. Fourth, we hope our approach
might help a weak form of ‘type checking’, where a prover might more quickly
solve or disprove subgoals, and if a user mistakenly requires a non-set to have a
set member, this might be detected earlier and result in a more understandable
failure message. Some further reasons are discussed in Sect. 1.
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4 A Model of ZFP

We define within ZF a model for ZFP, i.e., an interpretation of the domain and
predicate symbols of ZFP. A translation from a ZFP formula ψ to a ZF formula
ψ∗ is defined to interpret ZFP formulas in the model. Terms and formulas in
this section belong to ZF except for the arguments of ( · )∗. All axioms of ZFP
hold under this translation, which implies that if ZF is consistent, so is ZFP [4].
That each axiom’s translation holds has been checked in Isabelle/ZF.

4.1 The Cumulative Hierarchy W

Like the Von Neumann universe V used as the domain of a model of ZF, our
domain W is a set hierarchy indexed by ordinal numbers.

An ordinal is a transitive set that is totally ordered by ∈, which we specify
formally by Ord(x) := (∀ y ∈ x : y ⊆ x) ∧ (∀ y, z ∈ x : y = z ∨ y ∈ z ∨ z ∈ y). Let
α and β range over ordinals. Let 0 := ∅, 1 := 0+, 2 := 1+, and so on. Ordinal
β is a successor ordinal iff β = α+ for some α. Ordinal β is a limit ordinal
iff β is neither 0 nor a successor ordinal. Let λ range over limit ordinals. Let
(x < y) := (x ∈ y ∧ Ord(y)) and define related symbols (e.g., ≤) as usual.

Any model of ZFP must have some way of distinguishing between the objects
in its domain representing ZFP sets, and those that represent ZFP pairs, i.e.,
ZFP needs a domain split into two disjoint subdomains. We model this in ZF
using Kuratowski ordered pairs and cartesian products to tag all domain objects
with 0 (‘set’) or 1 (‘ordered pair’).

Definition 4.1. For ordinal α, define the set Wα via transfinite recursion thus:

W0 = ∅, Wβ+ = ({0} × P(Wβ)) ∪ ({1} × (Wβ)2), Wλ =
⋃

β∈λ

Wβ

Starting from ∅, each successor tier Wβ+ is built by taking the disjoint union
of the power set and cartesian square of the previous tier. Each limit tier Wλ is
the union of all preceding tiers. The use of disjoint union to build each successor
tier Wβ+ gives a set-theoretic universe split into two. Although our disjoint
union uses Kuratowski pairs with 0 and 1 tags, we could use instead any two
definable injective operators from a large enough class (e.g., the universe) to
disjoint classes that raise rank by at most a constant.

Let W be the proper class such that x ∈ W iff x ∈ Wα for some α. We use a
bold upright serif font to emphasize that W is not a ZF set.6 By the transfinite
recursion theorem, given x there is a definite description W(x) that evaluates to
Wα when x evaluates to α.7 We express X belonging to W as follows:

Definition 4.2. H(X) := (∃ y : Ord(y) ∧ X ∈ W(y)).

6 W is a mathematical object in some other set theories.
7 A nested definite description is used that specifies the function f such that f(β) =

Wβ for β ≤ α, i.e., f is an initial prefix of the hierarchy. Then f(α) is returned.
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Let an m-object be any member of W (i.e., a ZF set x such that H(x) holds),
an m-set be any m-object of the form 〈0, x〉, and an m-pair be any m-object of
the form 〈1, x〉. The following result says every m-object x is either an m-set or
an m-pair, and tells where in the hierarchy the contents of x are.

Lemma 4.3. Suppose H(x), so that x ∈ Wα. Then for some β < α either:

x = 〈0, x′〉 where x′ ⊆ Wβ, or x = 〈1, 〈a, b〉〉 where a, b ∈ Wβ .

It holds that W is a cumulative hierarchy:

Lemma 4.4. If α ≤ β, then Wα ⊆ Wβ.

4.2 Interpreting ZFP in ZF

As explained above, we interpret the sets and ordered pairs of ZFP as the mem-
bers of W. Lemma 4.3 says any m-object is an ordered pair whose left projection
is an integer which decides its ‘type’ and whose right projection is either a set
or an ordered pair. We define our interpretations of ZFP’s predicate symbols:

Definition 4.5. Let ∈̂, π̂1, and π̂2 be defined by these abbreviations:

a ∈̂ x := (∃ y : x = 〈0, y〉 ∧ a ∈ y)
a π̂1 p := (∃u, v : p = 〈1, 〈u, v〉〉 ∧ a = u)
a π̂2 p := (∃u, v : p = 〈1, 〈u, v〉〉 ∧ a = v)

W is downward closed under these three relations. That is:

Lemma 4.6. Suppose H(x), i.e., x ∈ Wα for some α. Suppose a ∈̂ x, a π̂1 x,
or a π̂2 x for some a. Then a ∈ Wβ for some β < α, and thus H(a).

To interpret a ZFP formula ϕ in ZF, we must show the formula holds when
quantification is restricted to the domain W, and the predicate symbols are
replaced by the interpretations defined above.

Definition 4.7. Let ϕ be a ZFP formula. Define ϕ∗ recursively as follows:

(X ∈ Y )∗ := (X∗) ∈̂ (Y ∗) (ϕ → ψ)∗ := (ϕ∗) → (ψ∗)
(X π1 Y )∗ := (X∗) π̂1 (Y ∗) (¬ϕ)∗ := ¬(ϕ∗)
(X π2 Y )∗ := (X∗) π̂2 (Y ∗) (∀x : ϕ)∗ := (∀x : H(x) → (ϕ∗))
x∗ := x ( ιx : ϕ)∗ := ( ιx : H(x) ∧ (ϕ∗))

Lemma 4.8. (∃x : ϕ)∗ ↔ (∃x : H(x) ∧ (ϕ∗)).

Because the translation ( · )∗ inserts quite a lot of extra structure, a ZFP
user wanting to understand “the ZF formula corresponding to the ZFP formula
ψ” might be tempted to instead translate ZFP’s ∈ directly to ZF’s ∈ and ZFP’s
π1 and π2 to the ZF abbreviations for π1 and π2 defined in Sect. 2.3. However,
as discussed in Sect. 1.2, the user then would need to carefully prove that no
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problems arise from the coincidences where a ZFP set x and a ZFP primitive
ordered pair p would be represented by the same ZF set y.

Observe that the ZFP abbreviations Set and Pair from Sect. 3.1 that act like
unary predicates are interpreted in ZF as follows:

Pair(x)∗ := (∃ a : H(a) ∧ a π̂1 x) Set(x)∗ := ¬(Pair(x)∗)

These predicates are clearly meaningful within the model because:

Lemma 4.9. Suppose that H(x), then we have that:

Pair(x)∗ ↔ (∃ a, b : x = 〈1, 〈a, b〉〉) Set(x)∗ ↔ (∃ y : x = 〈0, y〉)
Now we reach our main result, which implies ZFP is consistent if ZF is [4]:

Theorem 4.10. For each ZFP axiom ϕ, the translation ϕ∗ holds in ZF.

The proof of this theorem simply observes the conjunction of a number of
lemmas, each of which shows for a ZFP axiom φ that φ∗ holds in ZF. Most of
these lemmas are straightforward. Here we show a representative example:

Lemma 4.11. The translation of ZFP’s Power Set axiom holds in ZF.

Proof. First, we find the translation using Definition 4.7 and Lemma 4.8:

∀x : H(x) → (Set(x)∗ → (∃y : H(y) ∧ ∀z : H(z) → (z ∈̂ y ↔ ((z ⊆ x)∗))))

Let x be such that H(x), and suppose Set(x)∗. By Lemma 4.9, x = 〈0, x′〉 for
some set x′. Let y = 〈0, y′〉 where y′ = {0}×P(x′) be our candidate for the power
set. We must show that y has the property ∀z : H(z) → (z ∈̂ y ↔ (z ⊆ x)∗),
and also that y is indeed a member of W. Fix z and assume H(z), then:

z ∈̂ y ↔ z ∈ y′ by def of y and ∈̂
↔ z ∈ {0} × P(x′) by def of y′

↔ ∃z′ : z = 〈0, z′〉 ∧ z′ ⊆ x′ by def of × and P
↔ Set(z)∗ ∧ (∀a : a ∈̂ z → a ∈̂ x) since z = 〈0, z′〉, z′ ⊆ x′

↔ Set(z)∗ ∧ Set(x)∗ ∧ (∀a : a ∈̂ z → a ∈̂ x) since H(x), x = 〈0, x′〉
↔ (z ⊆ x)∗ because H(z)

It now remains to show that H(y). From H(x), we have that x ∈ Wα for some
ordinal α. By Lemma 4.4, x ∈ Wα+ , and by Lemma 4.3, x′ ⊆ Wα. Then:

x′ ⊆ Wα → P(x′) ⊆ P(Wα)
→ {0} × P(x′) ⊆ {0} × P(Wα)
→ y′ ⊆ {0} × P(Wα) by def of y′

→ y′ ⊆ Wα+ because {0} × P(Wα) ⊆ Wα+

→ y ∈ Wα++ by def of y = 〈0, y′〉
→ H(y) by def of H

��
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5 Conclusion

5.1 Summary of Contributions

Presenting ZF Set Theory Using Definite Descriptions. In Sect. 2, we
give a formal presentation of ZF that accounts for the technical details, whilst
also defining notation for widely used operations. Although correct formal defi-
nitions of this notation can be found in computer implementations of set theory,
we have not seen definite descriptions used for this in published articles. Defi-
nite descriptions allow defining terms in a compact and readable way without
needing to add FOL function symbols, extend the model, or otherwise appeal
to the meta-level. We show precisely how Kuratowski pairs and their operations
are defined and highlight issues arising from their set representations.

Axiomatizing ZFP. Motivated by issues with the set representation in pure
ZF set theory of conceptually non-set objects, in Sect. 3 we introduce Zermelo-
Fraenkel Set Theory with Ordered Pairs, which extends ZF with predicate sym-
bols π1 and π2 and axioms to implement primitive non-set ordered pairs. ZFP
is akin to some alternative set theories that use urelements as genuine non-set
objects in the domain, with the difference that ZFP’s urelements have meaning-
ful internal structure endowed by the axiomatisation of π1 and π2. The design of
ZFP is deliberately similar to that of ZF, so that we can better understand the
relationship between the two theories. We axiomatize ZFP, and discuss how the
axioms of ZF were modified to yield the axioms of ZFP. As a result, we gain a set
theory with two types of individuals, both of which have a notion of ‘container’,
which is unusual as urelements are usually structureless. The primitive ordered
pairs of ZFP are unlike those typical of set theory, as they are free from any
notion of representation.

Showing ZFP Consistent. In Sect. 4, we construct a transfinite hierarchy to
be the domain of a model for ZFP and we define relations on this domain to be
interpretations for ∈, π1, and π2. We show that the resulting structure satisfies
the axioms of ZFP, i.e., it is a model for ZFP. As a result, we show ZFP is
consistent if ZF is.

5.2 Future Work

Model Theoretic Status of ZF and ZFP. Axiomatisations of both ZF
and ZFP are given within this paper, and we are aware that the sets of ZFP
behave in a similar fashion to those in ZF. We suggest employing model-theoretic
techniques to give a more detailed formal account of the relationship between
the formulas of both theories, as well as the models.
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Implementing ZFP. Preliminary experiments have taken place in implement-
ing ZFP as an object logic for Isabelle. Further work on this will allow comparing
mathematics formalised in ZF and in ZFP, and thus allow comparing the expres-
sivity, and automatability of both theories. Moreover, there is already a large
library of mathematics formalised in Isabelle/ZF. Once the formal relationship
between ZF and ZFP has been established, we will attempt to translate mathe-
matics between both bases.

Towards Abstract Data Types in Set Theory. In this paper we identified
a role performed by some sets in ZF, namely the role of being an ordered pair
for some representation (e.g., Kuratowski), together with the FOL abbreviations
for their relations. We axiomatised a new set theory in which this role can be
performed by non-set objects, yet maintain the same existence conditions and
abstract behaviour of this role. We will attempt to abstract and adapt this
method, to yield set theories in which the members of mathematical structures
can be genuine non-sets dedicated to their role. We believe such a framework
could be helpful when using set theory to formalise mathematics.
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