
Interpreting Mathematical Texts
in Naproche-SAD

Adrian De Lon, Peter Koepke(B), and Anton Lorenzen

Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
koepke@math.uni-bonn.de

Abstract. Naproche-SAD is a natural proof assistant based on the con-
trolled natural input language ForTheL. Integrating ForTheL into LATEX
allows to leverage type setting commands for the disambiguation and
structuring of mathematical texts, with high-quality mathematical type-
setting coming for free. A new generic parsing mechanism allows the
translation of texts into other formal languages besides the original first-
order internal format of Naproche-SAD. We can generate correct Lean
code from ForTheL statements which may be useful for writing readable
fabstracts.

1 Natural Proof Assistants

Leading proof assistants have enabled spectacular successes like fully formal
and certified proofs of the four-color theorem or of the Kepler conjecture. On
the other hand proof assistants have so far not been widely adopted in mathe-
matical practice since their input languages look like conventional programming
languages, use unfamiliar foundations and require a lot of detail that seem to be
mathematically irrelevant (see also [15]).

To facilitate the use of formal methods in the mathematical community at
large proof assistants should employ:

1. input languages which are close to the mathematical vernacular, including
symbolic expressions;

2. familiar text structurings that support, e.g., the axiomatic definition-theorem-
proof approach;

3. underlying logics that correspond to strong foundations in set theory or type
theory;

4. automatic handling of tedious formalization details that are usually left
implicit;

5. strong automatic proof checking to approximate proof granularities found in
the mathematical literature.

In principle, these points were already addressed in the early years of inter-
active theorem proving, e.g., in the Mizar project [7], see also [4]. Other proof
assistants have implemented Mizar-like proof languages with declarative proof
c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 284–289, 2020.
https://doi.org/10.1007/978-3-030-53518-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_19

Interpreting Mathematical Texts in Naproche-SAD 285

structures [14]. Note, however, that the Mizar language is a restricted formal
language that is not part of commonly used mathematical English.

To reach an even higher degree of naturality, a small number of experimental
proof assistants accept proofs in controlled natural languages (CNL) which are
fully formal subsets of common natural English (with symbolic mathematical
terms). Moreover, input texts may be structured just like proof texts in the
published mathematical literature. This development should eventually lead to
systems that one may term natural proof assistants. In this paper we highlight
some aspects of points 1–3 in view of recent improvements [12] to the previous
Naproche-SAD release [3]. More technical details are contained in an informal
system description that we are also submitting to this conference.

2 Naproche-SAD and ForTheL

The Evidence Algorithm project (EA) which was started by V. Glushkov was
inspired by the idea of a system to assist actual mathematical work [13]. It was
centered around the development of a controlled natural language for mathemat-
ics called ForTheL (Formula Theory Language). The project culminated in the
implementation of the proof assistant SAD (System for Automated Deduction)
in the PhD work of Andrei Paskevich [11].

Independently, the Naproche (Natural Proof Checking) initiative [10] devel-
oped a controlled natural language on top of classical first-order logic, with
an emphasis on techniques from formal linguistics. The PhD thesis of Marcos
Cramer demonstrated that formal grammars and discourse representation theory
could deal adequately and efficiently with mathematical proof texts [1].

A few years ago Naproche has adopted and extended the ideas and algorithms
of SAD (see [2], [5]) because of SAD’s superior logical setup and performance.
Naproche-SAD accepts and proof-checks texts like

Definition 1. A natural number p is prime iff p �= 0, 1 and for every k such
that k | p, we have k = p or k = 1.

Theorem 1 (Euclid’s lemma). If p is prime and p | m ·n then p | m or p | n.

By stripping away pretty-printing commands in the LATEX source of this text
fragment one obtains a valid text in the ForTheL proof language for Naproche-
SAD. This can be done by a simple filter or by hand. The stripped text proof-
checks in Naproche-SAD within the context of a larger file that formalizes a suf-
ficient amount of arithmetic and contains a standard proof of the theorem. Such
formalizations are representative of a growing library of proof-checked ForTheL
texts from various fields of mathematics [9].

ForTheL, the proof language of Naproche-SAD, is a controlled natural lan-
guage (CNL). Its design goes back to the 1980s and was based on extensive
studies of published mathematical texts. It was found that a large part of math-
ematical language can be simply built up from fixed patterns which consist of
(multiple) words and symbols. Formal production rules of the ForTheL grammar

286 A. De Lon et al.

are based on patterns without further analysis of its constituent tokens. On the
other hand ForTheL gives a lot of freedom for the creation of patterns, allowing
rather arbitrary ASCII sequences as tokens.

For the above sample text, the pattern “natural number (−)” with a slot (−)
for some other term can be introduced by a language extension of the form

Signature. A natural number is a notion.

Internally this generates a unary predicate aNaturalNumber() which can be
addressed by phrases like “x is a natural number” or “for all natural numbers”.
Note that after “natural number” is parsed there is no attempt to break this
down into “natural” and “number”. This corresponds to the mathematical prac-
tice of taking “natural number” as an “atomic” notion whose meaning cannot
be derived from meanings of “natural” and “number”.

3 ForTheL and LATEX

Mathematical typography and typesetting is a prominent part of mathematical
culture. An iconic formula like eiπ = −1 uses non-Latin letters (π) and a two-
dimensional arrangement of letters to denote certain constants and operations.
Typography and typesetting carry semantic information that is utilizable in
mathematical text processing.

These days mathematicians routinely do their own typesetting using LATEX
or related software. LATEX has become the universal format for editing and
exchanging mathematics. It provides fonts and symbols to distinguish many
mathematical objects and notions. Environments like \begin{theorem} ...
\end{theorem} mark statements to be proved and define scopes for assump-
tions and variable declarations. The original ForTheL language has only primi-
tive theorem and proof environments. Special symbols have to be simulated by
“ASCII-art”.

Therefore we are integrating ForTheL into LATEX, extending features of the
original Naproche input language. This work uses some previous experiences
with the Naproche input language. A grammatically correct ForTheL text is
supposed to be a valid LATEX file in the context of appropriate document classes
and packages. Further benefits will be achieved by semantically enriched versions
of LATEX.

The previous version of Naproche-SAD [3] used a parser which employed an
internal parser combinator library. We are replacing the ASCII syntax with a
LATEX-based syntax. The old parser had some logical transformations interwoven
with the parsing process, assuming that the target would only be first-order logic.
We have now separated the parser module from further logical processing. This
required a change of internal representations. Whereas the old parser produced
blocks of tagged first-order formulas, we replaced this with a higher-level abstract
syntax tree, which is not committed to any particular foundational framework
and is also amenable to type-theoretic semantics.

Interpreting Mathematical Texts in Naproche-SAD 287

Text Mode and Math Mode. A characteristic feature of ordinary mathe-
matical language is the intuitive distinction between ordinary text and specific
mathematical terms and phrases. In LATEX, this is reflected by commands for
switching between text mode and math mode. This distinction is often crucial
for disambiguations like between the article “a” and the mathematical variable
“a”, recognizable by different typesettings. In the old parser, patterns definitions
such as “the closure of X as a metric space” resulted either in the unintended
pattern “the closure of (−) as (−) metric space” or gave a nondescript parser
error.

Another example is that the phrase “vector space” may be parsed as the
structure vector space or as a vector named space, provided that both vectors
and vector spaces have been defined previously. This led to surprising errors,
requiring awkward rephrasings to fix. With the new syntax, variables only occur
within math environments which removes many ambiguities.

Ease of Learning and Compatibility. A significant advantage of the new
syntax is that most mathematicians are already comfortable with using LATEX,
which eases the learning curve for the CNL. We can also re-use some of the exist-
ing tooling around LATEX: editors, syntax-highlighters, bibliography managers,
metadata extractors, etc.

Generating Documents. We provide a custom LATEX package that makes a
CNL text a valid LATEX document. This way we get prettyprinted documents
for free! Furthermore we allow patterns to contain LATEX commands. The above
sample text is prettyprinted from the following ForTheL source:

\begin{definition}
A natural number p is prime iff $p \neq 0, 1$
and for every k such that $k \divides p$,
we have $k = p$ or $k = 1$.

\end{definition}
\begin{theorem}[Euclid’s lemma]

If p is prime and $p \divides m\mul n$
then $p \divides m$ or $p \divides n$.

\end{theorem}

Expression Parsing. The old syntax made no distinction between symbolic
expressions and word patterns, both were parsed as patterns. This approach was
flexible, allowing free mixing of words and symbols in patterns. The downside
was that parsing of symbolic expressions was complicated and had no mecha-
nism for operator precedences. With the new distinction between math and text
content, it seems natural to investigate alternative approaches. We are currently
experimenting with more traditional precedence-based expression parsers.

Expression parsing is complicated by allowing relator chaining, as in “a <
b < c = d”. Some operators (e.g. logical connectives) should have lower prece-
dence than relators, and some should have higher precedence (e.g. arithmetic

288 A. De Lon et al.

operations). We address this by maintaining two operator tables, along with the
list of relators, and parsing expressions in three steps.

Introduction of Grammatical Number. Naproche-SAD used to have no
concept of grammatical number, treating singular and plural forms completely
synonymously. This can lead to ambiguities. For example, treating “is”/“are”
synonymously in “the maximum of x and y is/are smaller than z” creates an
ambiguity; with the first interpretation being “(the maximum of x and y) is
smaller than z” and the second interpretation being “(the maximum of x) and
y are smaller than z”, where the maximum is understood as an operation on a
list or set. This ambiguity can be resolved with grammatical number.

4 ForTheL and Types

ForTheL is a language with soft types which are called notions. One can intro-
duce notions like integer and modify them with adjectives like positive. In the
current Naproche-SAD system dependent notions in n parameters are translated
into (n + 1)-ary relation symbols and processed in classical first-order logic.

Since many established interactive theorem provers are based on type the-
ories, it appears natural to translate ForTheL into (dependent) type theory.
Parsing of ForTheL texts should yield an internal representation that can be
translated alternatively into FOL or type theory.

Translating to Lean. Lean [8] is a proof assistant with a growing library
of mathematical texts [6] from a wide variety of undergraduate courses up to
some formalizations of research mathematics. We have implemented a translation
from the new syntax to Lean definitions. We include some predefined commands
mapping to basic definitions from Leans stdlib and mathlib, such as \naturals,
\rationals, \divides, etc.

The above sample text renders as the correct and idiomatic Lean fragment:

def prime (p : N) : Prop :=
p �= 0 ∧ p �= 1 ∧ (∀ k, has_dvd.dvd k p -> k = p ∨ k = 1)

theorem euclids_lemma {p} {n} {m} : prime p ∧ has_dvd.dvd p (m * n)
-> has_dvd.dvd p m ∨ has_dvd.dvd p n := omitted

The Transformation. We translate pattern definitions to definitions of propo-
sitions, and theorems to Lean-theorems. Premises become arguments and the
statement the result type of the theorem. Patterns inside the premises and
statement will not be unrolled, but rather refer to the Lean definitions defined
previously (like prime above). We use the optional argument of the amsthm
environments (in this case Euclid’s lemma) to pick an appropriate Lean name,
with a fallback to thm0, thm1, etc.

5 Future Work

The naturalness of an interactive system is the result of a large number of small
natural features. We shall continue to enhance Naproche-SAD in this direction.

Interpreting Mathematical Texts in Naproche-SAD 289

One important example is the handling of common type coercions: Given a
rational number q and a natural number n, the expression q = n type-checks in
Lean thanks to implicit coercions, while n = q does not, as Lean cannot “undo”
the specialization of = to the natural numbers. Having coercions depend on the
order of arguments is undesirable for natural language texts. While it is of course
possible for users to supply coercions manually, we plan on addressing this issue
by adding a system that manages subtyping relations. We are also evaluating
the possibility of translating ForTheL proofs to Lean tactics.

References

1. Cramer, M.: Proof-checking mathematical texts in controlled natural language.
Ph.D. thesis, University of Bonn (2013)

2. Frerix, S., Koepke, P.: Automatic proof-checking of ordinary mathematical texts.
In: CICM Informal Proceedings (2018). http://ceur-ws.org/Vol-2307/paper13.pdf

3. Frerix, S., Wenzel, M., Koepke, P.: Isabelle/Naproche (2019). https://sketis.net/
2019/isabelle-naproche-for-automatic-proof-checking-of-ordinary-mathematical-
texts

4. Harrison, J., Urban, J., Wiedijk, F.: Interactive theorem proving. In: Gabbay, D.M.,
Siekmann, J., Woods, J. (eds.) Computational Logic of the Handbook of the His-
tory of Logic, vol. 9, pp. 266–290. Elsevier, Amsterdam (2014)

5. Koepke, P.: Textbook Mathematics in the Naproche-SAD System. In: CICM Infor-
mal Proceedings (2019). http://cl-informatik.uibk.ac.at/cek/cicm-wip-tentative/
FMM4.pdf

6. Lean community: The Lean mathematical library. https://github.com/leanprover-
community/mathlib

7. Mizar. http://mizar.org/
8. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean

theorem prover. In: Automated Deduction - CADE-25 (2015)
9. Naproche community: A ForTheL Library. https://github.com/naproche-

community/FLib
10. Naproche. https://korpora-exp.zim.uni-duisburg-essen.de/naproche/
11. Paskevich, A.: Méthodes de formalisation des connaissances et des raisonnements

mathématiques: aspects appliqués et théoriques. Ph.D. thesis, Université Paris 12
(2007)

12. Prototype CNL. https://github.com/adelon/nave
13. Glushkov, V.M.: Some problems in the theories of automata and artificial intelli-

gence. Cybern. Syst. Anal. 6, 17–27 (1970). https://doi.org/10.1007/BF01070496
14. Wenzel, M.: Isabelle/Isar - a versatile environment for human-readable formal proof

documents. Ph.D. thesis, TU Munich (2002)
15. Wiedijk, F.: The QED manifesto revisited. In: From Insight to Proof, Festschrift

in Honour of Andrzej Trybulec, pp. 121–133 (2007)

http://ceur-ws.org/Vol-2307/paper13.pdf
https://sketis.net/2019/isabelle-naproche-for-automatic-proof-checking-of-ordinary-mathematical-texts
https://sketis.net/2019/isabelle-naproche-for-automatic-proof-checking-of-ordinary-mathematical-texts
https://sketis.net/2019/isabelle-naproche-for-automatic-proof-checking-of-ordinary-mathematical-texts
http://cl-informatik.uibk.ac.at/cek/cicm-wip-tentative/FMM4.pdf
http://cl-informatik.uibk.ac.at/cek/cicm-wip-tentative/FMM4.pdf
https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/naproche-community/FLib
https://github.com/naproche-community/FLib
https://korpora-exp.zim.uni-duisburg-essen.de/naproche/
https://github.com/adelon/nave
https://doi.org/10.1007/BF01070496

	Interpreting Mathematical Texts in Naproche-SAD
	1 Natural Proof Assistants
	2 Naproche-SAD and ForTheL
	3 ForTheL and LaTeX
	4 ForTheL and Types
	5 Future Work
	References

