
Christoph Benzmüller
Bruce Miller (Eds.)

 123

LN
A

I 1
22

36

13th International Conference, CICM 2020
Bertinoro, Italy, July 26–31, 2020
Proceedings

Intelligent Computer
Mathematics

Lecture Notes in Artificial Intelligence 12236

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Christoph Benzmüller • Bruce Miller (Eds.)

Intelligent Computer
Mathematics
13th International Conference, CICM 2020
Bertinoro, Italy, July 26–31, 2020
Proceedings

123

Editors
Christoph Benzmüller
Department of Mathematics
and Computer Science
Freie Universität Berlin
Berlin, Germany

Bruce Miller
National Institute of Standards
and Technology
Gaithersburg, MD, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-53517-9 ISBN 978-3-030-53518-6 (eBook)
https://doi.org/10.1007/978-3-030-53518-6

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3392-3093
https://orcid.org/0000-0002-2300-0367
https://doi.org/10.1007/978-3-030-53518-6

Preface

With the continuing, rapid progress of digital methods in communications, knowledge
representation, processing and discovery, the unique character and needs of mathe-
matical information require unique approaches. Its specialized representations and
capacity for creation and proof, both automatically and formally as well as manually set
mathematical knowledge apart.

The Conference on Intelligent Computer Mathematics (CICM) was initially formed
in 2008 as a joint meeting of communities involved in computer algebra systems,
automated theorem provers, and mathematical knowledge management, as well as
those involved in a variety of aspects of scientific document archives. It has offered a
venue for discussing, developing, and integrating the diverse, sometimes eclectic,
approaches and research. Since then, CICM has been held annually: Birmingham (UK,
2008), Grand Bend (Canada, 2009), Paris (France, 2010), Bertinoro (Italy, 2011),
Bremen (Germany, 2012), Bath (UK, 2013), Coimbra (Portugal, 2014), Washington D. C.
(USA, 2015), Bialystok (Poland, 2016), Edinburgh (UK, 2017), Linz (Austria, 2018),
Prague (Czech Republic, 2019).

This 13th edition (CICM 2020) was originally scheduled to be held in Bertinoro,
Italy. Due to the COVID-19 pandemic, the organizers decided to host the conference as
an online event held during July 26–31, 2020. This year’s meeting exposed advances in
automated theorem provers and formalization, computer algebra systems and their
libraries, and applications of machine learning, among other topics. This volume
contains the contributions of this conference.

From 35 formal submissions, the Program Committee (PC) accepted 24 papers
including 15 full research papers and 9 shorter papers describing software systems or
datasets. With two exceptions, all papers were reviewed by at least three PC members
or external reviewers. The reviews were single-blind and included a response period in
which the authors could respond and clarify points raised by the reviewers.

In addition to the main sessions, the conference included a doctoral program,
chaired by Katja Bercic, which provided a forum for PhD students to present their
research and get advice from senior members of the community. Additionally, the
following workshop was scheduled:

– Workshop on Natural Formal Mathematics, organized by Florian Rabe and Peter
Koepke

Finally, the conference included three invited talks:

– Kevin Buzzard (Imperial College, UK): “Formalizing undergraduate mathematics”

– Catherine Dubois (ENSIIE, CNRS, France): “Formally Verified Constraints Sol-
vers: a Guided Tour”

– Christian Szegedy (Google Research, USA): “A Promising Path Towards Auto-
formalization and General Artificial Intelligence”

A successful conference is due to the efforts of many people. We thank Claudio
Sacerdoti-Coen and his colleagues at the University of Bologna for the difficult task of
first organizing what promised to be an enjoyable meeting in Bertinoro and then
evolving it into an online event. We are grateful to Serge Autexier for his publicity
work. We thank the authors of submitted papers, the PC for reviews, organizers of
workshops, as well as invited speakers and participants to the conference.

June 2020 Christoph Benzmüller
Bruce Miller

vi Preface

Organization

Program Committee

Akiko Aizawa University of Tokyo, Japan
David Aspinall University of Edinburgh, UK
Frédéric Blanqui INRIA, France
Jacques Carette McMaster University, Canada
James H. Davenport University of Bath, UK
William Farmer McMaster University, Canada
Jacques Fleuriot University of Edinburgh, UK
Osman Hasan NUST, Pakistan
Jan Jakubuv Czech Technical University, Czech Republic
Mateja Jamnik University of Cambridge, UK
Cezary Kaliszyk University of Innsbruck, Austria
Fairouz Kamareddine Heriot-Watt University, UK
Manfred Kerber University of Birmingham, UK
Andrea Kohlhase University of Applied Sciences Neu-Ulm, Germany
Michael Kohlhase FAU Erlangen-Nürnberg, Germany
Laura Kovacs TU Vienna, Austria
Temur Kutsia JKU Linz, Austria
Adam Naumowicz University of Bialystok, Poland
Karol Pak University of Bialystok, Poland
Florian Rabe FAU Erlangen-Nürnberg, Germany, and LRI Paris,

France
Moritz Schubotz FIZ Karlsruhe, Germany
Volker Sorge University of Birmingham, UK
Geoff Sutcliffe University of Miami, USA
Olaf Teschke FIZ Karlsruhe, Germany
Josef Urban Czech Technical University, Czech Republic
Makarius Wenzel sketis.net, Germany
Abdou Youssef George Washington University, USA

Additional Reviewers

Almomen, Randa
Betzendahl, Jonas
Brown, Chad
Butler, David
Cerna, David
Chevallier, Mark
Dundua, Besik
Greiner-Petter, André
Humenberger, Andreas

Korniłowicz, Artur
Marin, Mircea
Müller, Dennis
Palmer, Jake
Schaefer, Jan Frederik
Scharpf, Philipp
Seidl, Martina
Steen, Alexander
Tiemens, Lucca

viii Organization

Contents

Invited Talks

A Promising Path Towards Autoformalization and General
Artificial Intelligence . 3

Christian Szegedy

Full Papers

Formal Adventures in Convex and Conical Spaces 23
Reynald Affeldt, Jacques Garrigue, and Takafumi Saikawa

Towards a Heterogeneous Query Language for Mathematical Knowledge . . . 39
Katja Berčič, Michael Kohlhase, and Florian Rabe

Leveraging the Information Contained in Theory Presentations 55
Jacques Carette, William M. Farmer, and Yasmine Sharoda

Metamath Zero: Designing a Theorem Prover Prover. 71
Mario Carneiro

Adding an Abstraction Barrier to ZF Set Theory . 89
Ciarán Dunne, J. B. Wells, and Fairouz Kamareddine

A Framework for Formal Dynamic Dependability Analysis Using HOL
Theorem Proving . 105

Yassmeen Elderhalli, Osman Hasan, and Sofiène Tahar

Induction with Generalization in Superposition Reasoning 123
Márton Hajdú, Petra Hozzová, Laura Kovács, Johannes Schoisswohl,
and Andrei Voronkov

A Survey of Languages for Formalizing Mathematics 138
Cezary Kaliszyk and Florian Rabe

OntoMathEdu: A Linguistically Grounded Educational
Mathematical Ontology . 157

Alexander Kirillovich, Olga Nevzorova, Marina Falileeva,
Evgeny Lipachev, and Liliana Shakirova

FrameIT: Detangling Knowledge Management from Game
Design in Serious Games . 173

Michael Kohlhase, Benjamin Bösl, Richard Marcus, Dennis Müller,
Denis Rochau, Navid Roux, John Schihada, and Marc Stamminger

Formalizing Graph Trail Properties in Isabelle/HOL 190
Laura Kovács, Hanna Lachnitt, and Stefan Szeider

Representing Structural Language Features in Formal Meta-languages 206
Dennis Müller, Florian Rabe, Colin Rothgang, and Michael Kohlhase

Formally Verifying Proofs for Algebraic Identities of Matrices 222
Leonard Schmitz and Viktor Levandovskyy

AutoMSC: Automatic Assignment of Mathematics Subject
Classification Labels . 237

Moritz Schubotz, Philipp Scharpf, Olaf Teschke, Andreas Kühnemund,
Corinna Breitinger, and Bela Gipp

Maintaining a Library of Formal Mathematics . 251
Floris van Doorn, Gabriel Ebner, and Robert Y. Lewis

System Descriptions and Datasets

The Tactician: A Seamless, Interactive Tactic Learner and Prover for Coq . . . 271
Lasse Blaauwbroek, Josef Urban, and Herman Geuvers

Tree Neural Networks in HOL4 . 278
Thibault Gauthier

Interpreting Mathematical Texts in Naproche-SAD 284
Adrian De Lon, Peter Koepke, and Anton Lorenzen

TGView3D: A System for 3-Dimensional Visualization of Theory Graphs . . . 290
Richard Marcus, Michael Kohlhase, and Florian Rabe

Simple Dataset for Proof Method Recommendation in Isabelle/HOL 297
Yutaka Nagashima

Dataset Description: Formalization of Elementary
Number Theory in Mizar . 303

Adam Naumowicz

Guiding Inferences in Connection Tableau by Recurrent Neural Networks . . . 309
Bartosz Piotrowski and Josef Urban

First Neural Conjecturing Datasets and Experiments 315
Josef Urban and Jan Jakubův

x Contents

A Contextual and Labeled Math-Dataset Derived from NIST’s DLMF. 324
Abdou Youssef and Bruce R. Miller

Abstracts of Invited Talks

Formalizing Undergraduate Mathematics . 333
Kevin Buzzard

Formally Verified Constraints Solvers: A Guided Tour 334
Catherine Dubois

Author Index . 337

Contents xi

Invited Talks

A Promising Path Towards
Autoformalization and General Artificial

Intelligence

Christian Szegedy(B)

Google Research, Mountain View, CA, USA
szegedy@google.com

Abstract. An autoformalization system is an AI that learns to read
natural language content and to turn it into an abstract, machine ver-
ifiable formalization, ideally by bootstrapping from unlabeled training
data with minimum human interaction. This is a difficult task in gen-
eral, one that would require strong automated reasoning and automated
natural language processing capabilities. In this paper, it is argued that
autoformalization is a promising path for systems to learn sophisticated,
general purpose reasoning in all domains of mathematics and computer
science. This could have far reaching implications not just for mathemat-
ical research, but also for software synthesis. Here I provide the outline
for a realistic path towards those goals and give a survey of recent results
that support the feasibility of this direction.

1 Introduction

Today, AI systems are able to learn solving tasks that used to be thought of
taking uniquely human capabilities until recently: computer vision [46], gener-
ating artistic images [13], music [21], mastering the game of go [43], discovering
novel drugs [15] and performing symbolic integration [31], to name just a few.
These and many other domains seemed to require uniquely human intuition and
insight, but were transformed by deep learning in the past few years. While
progress has been extremely impressive in those areas, each particular solution
addresses a relatively narrow use case. On the other hand, general reasoning
still seems a uniquely human feat and many [20] would argue that creating AI
agents with general reasoning capabilities equaling to those of humans would
take decades, maybe centuries, if possible at all.

This invited paper argues that in the coming years we will see automated
systems to rival humans in general reasoning and the fastest path to achieve this
is by creating automated mathematical reasoning systems via autoformalization.

Here, I give an overview of the hurdles involved, a realistic path ahead and
indications on the feasibility of that path.

Mathematics is the discipline of pure reasoning. Mathematical reasoning is
not about mathematics per se, it is about reasoning in general. Whether to verify

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-53518-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_1

4 C. Szegedy

the correctness or resource use of a computer program or to derive the conse-
quences of a physical model, it is all mathematical reasoning, as long as it is
based on fully formalized premises and transformation rules. Some tasks may
require such a large number of logical steps that humans find it impossible to
check them manually, but often they are easily solved by SAT-solvers [5] – pro-
grams whose sole goal is to decide if a Boolean expression can ever evaluate to
true.

For certain classes of expressions, like those that occur frequently in chip
design, SAT solvers work remarkably well [10]. An extreme demonstration of
their power is their use in the computer generated proof of a previously unsolved
famous conjecture in mathematics [25] – the Boolean Pythagorean triples prob-
lem. The final proof was 200 terabytes long.

However, SAT-solvers cannot verify statements about infinitely many cases.
For example, they can’t even verify that the addition of integer numbers is com-
mutative. There are automated theorem provers (ATPs [11]) for finding moder-
ately difficult proofs in first order logic that can deal with such problems. Proof
automation via “hammers” [6,27] is also applied for higher order logic as well
in the context of interactive theorem proving. Most existing proof automation is
based on hand engineered heuristics, not on machine learning and is not capable
of open-ended self-improvement.

Mathematical reasoning is just reasoning about anything specified formally.
Reasoning about anything formal could be a powerful general tool. If we want to
create an artificially intelligent system and demonstrate its general intelligence,
it should be able to reason about any area of mathematics or at least it should
be able to learn to do so given enough time. If it succeeds in practice, then we
can be convinced that it is likely that it will be able to learn to cope with any
scientific discipline as far as it can be formalized precisely.

Human mathematics consists of a large variety of loosely connected domains,
each of them having its own flavor of proofs, arguments and intuition. Human
mathematicians spend years studying just to become experts in a few of those
domains. An artificial system engineered to produce strong results in a particular
area is not a “general purpose” reasoning engine. However, if a system demon-
strates that it can learn to reason in any area it is exposed to, then that would
be a convincing demonstration of artificial general intelligence.

Therefore it is natural to ask: Will we ever arrive at the point where an AI
agent can learn to do reasoning as well as the best humans in the world in most
established domains of mathematics.

2 What is (Auto-)formalization?

The task of formalization is to turn informal descriptions into some formally
correct and automatically checkable format. Examples of mathematical formal-
ization include the formal proofs of the Kepler conjecture [22], the Four-Color
theorem [16] and the Feit-Thompson theorem [17]. These formalization works
required a lot of human effort. For example the formalization of the Kepler con-
jecture took over 20 man-years of work. The aim of autoformalization would be

A Promising Path Towards Autoformalization and General AI 5

to automate such efforts and scale them up to process large chunks of existing
mathematics in a fully automated manner.

More generally, “formalization” can refer to any process that takes an infor-
mal description for input and produces machine executable code. By this defi-
nition, formalization covers both programming and mathematical formalization.
This generalized notion is also justified because computer verifiable proofs are in
fact programs to feed some minimalistic verification kernel. For example, most
proof assistants are complete programming languages that allow for running
arbitrary programs while guaranteeing the correctness of the produced proofs.

Complex mathematics is especially time consuming to formalize by humans.
Therefore, it is highly unlikely that a significant portion of mathematics will be
formalized manually in the coming decades. Could formalization be ever auto-
mated completely? The ideal solution could process natural language text fully
automatically, with minimal intervention from the user.

We call an automated system that is capable of automatically formalizing
significant portions of mathematics from a natural language input and verifying
it automatically an autoformalization system.

3 Why is Autoformalization Essential?

Is targeting autoformalization a prerequisite for training – and evaluating – AI
systems for general purpose reasoning?

As was argued in the introduction, all formalizable reasoning can be viewed
as mathematical in nature. Conversely, general purpose reasoning systems should
be able to learn to reason about any domain of mathematics and should be able
to discover new mathematical domains when needed or useful for another task.

Avoiding autoformalization (interpreting natural language text and commu-
nicating in natural language) would seem to simplify the engineering of formal
reasoning systems. However, evaluating a highly sophisticated, general purpose,
automated mathematical reasoning system without natural language communi-
cation capabilities would raise several problems:

1. Training and evaluation of a purely formal system would require a wide range
of formalized statements. Creating a large corpus of diverse and correct for-
malized statements is a daunting task in and of itself.

2. Any human interaction with our system would be by formal inputs and out-
puts. If the system is trained by automated exploration and develops its own
web of definitions (about which it does not need to communicate in natural
language), it will resemble alien mathematics that is very hard to decipher
and interpret by humans.

3. Every time the system needs to be applied to a new application domain, it
would require full-blown manual formalization of that domain. This would
limit its usefulness significantly.

Training a strong mathematical reasoning system without autoformalization
might be still possible if one could develop a concise, well defined notion of

6 C. Szegedy

“interestingness” that is used as the objective for open-ended exploration. How-
ever it would be very hard to communicate with such a system as it would not
be able to communicate in terms of human mathematics. Furthermore, “inter-
estingness” and “usefulness” of mathematical statements and theories are not
easy to capture formally. It is hard to decide whether some mathematical area
will ever have external applications or would provide insights for other domains
down the line. Usefulness is highly contextual. There is no known way to guide
a search process automatically towards useful theorems and notions in an open
ended manner.

Since only a tiny portion of human mathematics is formalized currently, the
only way for utilizing a significant fraction of accumulated human mathemati-
cal knowledge is by processing it from natural language. Therefore, the safest
option is to use the entirety of human mathematics as a basis for training and
benchmarking.

It could be easier to engineer and train an AI agent that can reason and
formalize at the same time than designing one for just reasoning or just for
formalization alone if one manages to initiate a positive feedback loop between
reasoning abilities and formalization capabilities. Improving one aspect (trans-
lation or reasoning) of the system helps collecting new training data for the
other:

– Improved reasoning allows for filling in larger holes in informal arguments,
allows for translating and interpreting inputs specified more informally.

– Improved informal to formal translation expands the amount of data to guide
mathematical exploration.

4 Potential Implications of Successful Autoformalization

Autoformalization is not just a challenge: successful autoformalization would
represent a breakthrough for general AI with significant implications in various
domains.

Autoformalization would demonstrate that sophisticated natural language
understanding between humans and AI is feasible: machines could communicate
in natural language over ambiguous content and use it to express or guide internal
experiences. It would serve as a clear demonstration that natural language is a
feasible communication medium for computers as well.

By nature, autoformalization would have immediate practical implications
for mathematics. Initially, a strong autoformalization system could be used for
verifying existing and new mathematical papers and would enable strong seman-
tic search engines.

In the more general sense of formalization, a solution to autoformalization
could give rise to programming agents that turn natural language descriptions
into programs. Since programming languages can be formalized completely, rea-
soning systems trained on mathematical formalization could be fine-tuned for the
task of creating algorithms in specific programming languages. By formalizing

A Promising Path Towards Autoformalization and General AI 7

domain level knowledge, the system could learn to produce code from natu-
ral language input. Such reasoning systems should be able to create the formal
specification of the task, the executable code and correctness proof of the newly
designed algorithm, all at the same time.

Furthermore, this would give rise to strong and flexible general purpose rea-
soning engines that could be integrated into AI applications, combining reasoning
with perception. This could be used to infuse strong reasoning capabilities into
other AI systems and serve as a basis for a wide range of such applications (for
example semantic search, software synthesis and verification, computer aided
design, etc.).

5 Hurdles of Autoformalization

Designing and implementing a strong autoformalization system is a difficult
undertaking and is subject to several current research efforts. Let us start with
the outline of some straighforward attempt at its construction and analyze its
most likely failure modes. We assume a system based on the following two
components:

1. A reasoning engine (theorem prover),
2. a translation component for translating informal (natural language) state-

ments into formal statements.

The translation component could generate multiple formal candidate state-
ments in the context of the previously formalized statements and definitions. The
system is successful if it creates formal translations for a substantial fraction of
the informal statements after a reasonable number of attempts. (The automated
verification of the correctness of translation remains a fuzzy, practical question
that is subject to ongoing research, however.)

The first problem with mathematical formalization is that it requires at least
some initial core formalization data-sets with a significant amount of parallel
corpus in formalized and informal mathematical content. One limiting factor is
the cost and effort of generating this seed corpus of translations.

Once we have a somewhat working “seed” translation model, one can try
bootstrapping and training the system by generating several candidate transla-
tions of mathematical statements and trying to prove/refute each of them until
we find a formalization that is correct, but not trivial. This means that we can
see at least four major potential failure modes:

1. The seed formalization system is too weak to initiate a feedback loop that
can open-endedly improve itself.

2. The system might start to generate mistranslations for further training of the
translation model, entering a feedback loop of increasingly worse translations.

3. Translation gets stuck: it would generate a lot of incorrect statements that
are never verified; and the system stops to improve.

8 C. Szegedy

4. The translation never crosses domain boundaries: it formalizes significant
parts of some domain, but never succeeds in generalizing to new domains;
and the training gets stuck after formalizing limited parts of the corpus.

Natural language is context dependent: it might contain hidden assumptions
in far away parts of the text which are impossible to find without a thorough
search. For example, papers tend to refer to text books for “basic terminology”.
The formalization system would need to look up the textbook and mine it for
all the subtleties of its definitions and verify that those definitions are consistent
with those in the repository of the formal system. If not, then the system would
need to create new formal definitions that match those in the paper. Moreover,
the paper itself might use inconsistent notations: “abuses of language”. Addi-
tionally, it might just have plain errors obvious to the human reader. Therefore
a straightforward translation attempt is not a robust solution and is unlikely to
work in practice.

6 A Proposed Path to Autoformalization

It is hard to anticipate solutions of the potential problems from the previous
section. Still, one can aim at designing a system that has a plausible chance of
being bootstrapped without getting stuck or misguided.

Instead of direct translation, we propose to rely on a combination of explo-
ration and approximate translation. By “approximate translation”, we mean
that the translation model does not produce concrete formal transcriptions but
approximate embedding vectors thereof. These are then used as guides for an
exploration algorithm as the following diagram shows:

Informal content T Approximate Embeddings T’

Formalized Corpus D

Embedding

Guiding exploration

Form

Exploration

The first technical issue concerns the input format of informal mathematical
content (i.e. mathematical papers and text books). A textual representation
could work well for use cases that do not require the understanding of formulas,
diagrams and graphs. However, mathematical content often uses a lot of formulas
and diagrams. Geometric illustrations play a role in informing the reader as well.
The safest path seems to rely on images instead of textual representation. While
this puts more burden on the machine learning part of the system, it can reduce
the engineering effort significantly.

Let S denote the set of syntactically correct formal mathematical statements
in some formalization environment (e.g. HOL Light). By S′, we denote those
statements with a formal proof already present in our database. C is the set

A Promising Path Towards Autoformalization and General AI 9

of possible forward reasoning rules called “conversions”. C consists of partial
functions with signature c : S′∗ −→ S, that given a sequence s of true statements
in S′ it either generates a new true statement c(s) or it just fails. Our system
will rely on a few deep learning models:

– An embedding model eθ : S −→ R
n that embeds formal mathematical state-

ments as low dimensional vectors.
– An approximate translation model aξ : Rk×l −→ R

n, that outputs an approx-
imate embedding of the formal translation of the informal input statement
(given as a picture).

– An exploration guidance model gη : S × R
n × R

n −→ [0, 1]C × [0, 1]. This
model acts as a premise selection model, combined with a conversion type
prediction, assuming a finite number of possible conversions. fη(s, t, p) which
takes a formal statement s, a target embedding t and the embedding for
additional conversion parameters and predicts probabilities for the best con-
version steps [0, 1]C and conversion parameter list p at the same time. The
exact working of such models is described in [4].

For technical simplicity, we made the simplifying assumption that statements
and input images are represented by fixed dimensional vectors, but this is not
essential and could be easily changed. The parameters of the deep learning mod-
els eθ, aξ and gη are trained in lock step as described below.

The system is designed to learn to explore the set of true statements while
this exploration is guided by a set of target embeddings. These target embedding
vectors are produced by translation model aξ. During the process, we maintain
the following data sets:

– A fixed set of informal target content T ⊆ R
k×l in raw image format. (The

pages containing the statements and definitions we are aiming to formalize.)
– The image of T ′

ξ of T under the approximate translation model: {aξ(t)|t ∈
T} ⊆ R

n. (The predicted embeddings of the informal statements on the formal
side.)

– A set of already explored mathematical statements D ⊆ S′ of true and proven
statements,

– The embeddings of the explored mathematical statements: D′
θ = {eθ(s)|s ∈

D} ⊆ R
n.

Our goal is to find a subset of D′ ⊆ D, whose image under eθ aligns well with
T ′. If our translation model is reasonably good, then true – but non-trivally true
– translations are likely to correspond to their informal description. We train all
the models simultaneously while we update the datasets T ′, D and D′ as we go.

The goal of embedding model eθ is to map semantically similar statements
to vectors that are close. One can train such models in some supervised, end-to-
end manner for one or multiple concrete semantic tasks. For example, the model
could embed statements in order to predict whether the statement is useful for
proving another specified statement, cf. [1] and [4]. Another related semantic
task is that of reasoning in latent space [33], in which the model is trained to
perform approximate rewrite operations in the embedding space.

10 C. Szegedy

For processing the natural language input, our computer vision model aξ

predicts aξ(p) = eθ(t(p)), where t(p) stands for the hypothesized formalization
of page p. Since eθ is assumed to be an embedding model that reflects semantic
similarity, t can be multi-valued, reflecting that there are several correct formal
translations of the same informal statement, the embedding vectors of which are
expected to cluster in R

n.
In order to create a feedback loop between training θ and ξ, we maintain a

set of proved theorems, a large set of informal statements P and translations
Tξ = {aξ(p)|p ∈ P} of approximate translations of informal statements. To
generate the training data for training, we run guided exploration by sampling
forward reasoning steps using another deep neural network gη starting from
our already proved theorems with the goal of getting close to as many of the
approximate translated embeddings Tξ as possible. For this purpose, η is trained
via reinforcement learning in which the reward is based on the negative mini-
mum distance to the closest target embedding vector. The guidance model gη

samples both conversions and conversion parameters (“premises” used for the
conversion). Note that gη can be trained while circumventing the sparse reward
problem: even if we do not get close to any of our original targets, we can pretend
that the embedding of the statement we arrived at was our original goal from
the start. This idea is known as hindsight experience replay [2].

Once our guided search finds enough statements that match some of the
prescribed embeddings in Tξ, we would check that they are non-trivially true
and use them as verified translations for retraining aξ. As we proceed, we can
incrementally train eθ and gη as well. For example eθ could be trained by analyz-
ing the dependency structure of the explored statements (the tactic parameters
that led to the new statement), while gη is trained using reinforcement learning
utilizing the rewards collected during exploration.

The main advantage is that this system is expected to be more robust to
errors and incomplete inputs: if exploration is powerful enough, then it can work
even if we fail to translate some of the statements properly. Also, if formaliza-
tion gets stuck, the system can just relax the distance with which it accepts
formalization attempts in the embedding space, still producing valid theories
that might not exactly correspond to the informal corpus.

Also the system should be able to generalize to completely new domains more
easily, as exploration is more likely to be efficient in the early stages. This can
bootstrap the easy parts of the system and can prime the translation model and
later exploration so that it can continue bootstrapping successfully.

7 Further Ideas and Considerations

The previous section has given a rough outline of a system that could bootstrap
itself for mathematical reasoning via autoformalization. Here we consider addi-
tional details that are less critical but helpful for engineering a system described
in Sect. 6.

A Promising Path Towards Autoformalization and General AI 11

7.1 Choice of Foundation and Framework

Traditionally, many people would argue that the choice of the right framework
and foundation is crucial for the success of a formalization project. For human
users of interactive proof assistants the right framework can affect the pro-
ductivity of formalization, but generally these effects are hard to quantify and
there had been several types of logical foundations and frameworks that have
been applied successfully in large scale formalization efforts: Mizar [38], HOL
Light [23], HOL4 [45], Isabelle [53], Coq [7], Metamath [37] and Lean [8]. We
have only listed proof assistants that have demonstrated a significant amount of
successful formalization efforts: tens of thousands of theorems, some of them of
great complexity.

A few considerations apply when it comes to automatically formalizing from
natural language. Theorem libraries based on purely constructive non-classical
logic might have a significant mismatch with most mainstream mathematical
text for non-constructive mathematical objects. Also it is useful if the proof
assistant can be extended easily with new high level algorithms (new “tactics”,
for example). Engineering efforts required to interface with external libraries,
especially machine learning systems is a point of consideration, too.

One last concern is the expressiveness of the logic. Although first order logic
is generally capable of expressing the Zermelo-Fraenkel axiom system, it requires
maintaining axiom schemes which is a handicap. Based on these considerations,
higher order logic based systems with large theorem libraries (HOL, Isabelle,
Coq, Lean) seem to be best suited to be the foundation of an autoformalization
system.

7.2 Unsupervised Pretraining Tasks

Self-supervised pretraining might become an enabling factor for autoformaliza-
tion system. BERT [9] style pretraining for both formal and informal corpora
can pave the way, but formal content allows for much more creativity and pos-
sibility for pretraining models, these include training “skip-tree” models that
generate missing trees from their context. This task subsumes a lot of other
logical reasoning tasks
1. Skip-tree: removing some random or strategically selected subtree and predict

the whole missing subtree.
2. Type inference model: Learn to do (partial) type inference of formulas.
3. Predicting the embedding or the text of possible useful lemmas that could

help proving the statement.
4. Predicting the result (embeddings) of rewrites.
5. Predicting substitutions or inductive invariants.
6. Given a subtree, predict the containing tree.
7. Rewrite a formula with a sequence of rewrites, try to predict the sequence of

rewrites that has lead to the result.

Prior work also includes predicting the symbolic integral of expressions [31] and
predicting how general mathematical statements behave under rewrites in the
latent space [33].

12 C. Szegedy

7.3 Additional Technical Considerations

For the neural representation of formal content, the network architecture has a
significant effect on the performance of the reasoning system. Currently, deep
graph embedding networks [40,52] with node-sharing do best, however trans-
former networks [51] have yielded breakthrough on formal integration [31],
recently.

Our main approach is based on forward exploration. Aligning the result of
forward exploration with the target statement might require reverse (goal ori-
ented) proof search, however. As most research is done on reverse proof search
e.g. [4,26,55], integrating with such methods is likely a useful idea and a fruitful
engineering direction.

As described in the Sect. 6, we need to filter out translation candidates that
are incorrect, trivial or uninteresting. The first criterion is clear: we do not expect
wrong statements to be correct formalization candidates. It is harder to discard
candidate translations that are trivially true (e.g. due to too general assumptions
or other translation errors). This could be identified by observing the hardness of
proving statements. Also, if a statement is overly long, or has a lot of redundant
subtrees, then it is highly unlikely to come from formalizing human content. The
usefulness of the produced statements should give another strong indication of
good translations.

Curriculum learning is a promising way of learning to find longer proofs. A
remarkable result demonstrating the power of strong curriculum is [61] in which
they trained a reinforcement learning system to find proofs consisting of several
thousand elementary proof-steps without any search, just by letting the policy
network predict them in a single run.

Tactics in proof assistants are subroutines that perform complicated algo-
rithms in order to produce long chains of arguments about the correctness of
certain formulas. Examples of existing tactics include the application of SAT-
solvers or first order automated provers to prove statements that require simple
logical reasoning, but they can be as complex as using Gröbner bases of ILP
solvers to reason about polynomial equations or linear systems of Diophantine
inequalities. Given the complexity of such algorithms, it is unlikely that one
could synthesize a general purpose computer algebra system from scratch ini-
tially. However, the vast majority of sophisticated human mathematics was dis-
covered without the aid of computer programs, so we can hope that matching the
performance of human mathematicians could be achieved without synthesizing
complicated tactics.

For refutation and counterexample generation, it might be important to find
substitutions into statements that provide a refutation of that statement. In
general it is a promising research direction to use deep learning based models to
embed not just the syntactic form of formulas, but also some experience stream
associated with experimentation with the statements.

One difference between theorem proving and game playing engines is the
much wider breadth of mathematics. For neural network based systems, this
might mean that it could require very large neural networks to distill all the

A Promising Path Towards Autoformalization and General AI 13

skills required to cope with all areas of mathematics at once. One could try to
cope with that by utilizing mixture of expert models [58]. However, their fixed
gating mechanism and rigid model architectures are relatively hard to extend.
More flexible are multi-agent architectures using artificial market mechanisms
that allow arbitrary agents to bet on the status of mathematical conjectures
while the agents are rewarded for correct predictions, proving theorems formally
and for introducing interesting new conjectures. The above direction opens a
large box of interesting mechanism design [39] questions. [12] proposes that a
betting market based multi-agent system under resource constraints is useful for
assigning consistent probability values to mathematical statements. This could
give some theoretical backing and guidance towards such solutions.

8 Short History of Autoformalization

The idea of autoformalization was first presented in 1961 by John McCarthy [36].
Another early attempt was the 1990 doctoral thesis of Donald Simons [44]. A
first thorough study was performed in the 2004 doctoral thesis of Claus Zinn [60].
These works did not result in even partially practical solutions.

Josef Urban started to work on the topic in the early 2000s. He devised a
first large scale benchmark for reasoning in large theories [48], motivated by the
insight that reasoning in the presence of a large knowledge base of mathemat-
ical facts is a critical component in any autoformalization system. In 2007, he
published the pioneering MaLARea [50] system for reasoning in large theories.
From then on, with Cezary Kaliszyk they have been spearheading the research
on reasoning in large theories and autoformalization [28,29].

9 Indications of Feasibility

Given the great complexity and breadth of the problem, it is justified to ask why
is autoformalization even considered as a realistic goal in the short term – that
is, within years. This section tries to give heuristic arguments for the feasibility
of this task by methods that are either known or are on a clear improvement
trajectory.

The success of autoformalization hinges on solving two difficult-looking tasks:

1. General purpose symbolic reasoning
2. Strong natural language understanding

The thesis of this paper is that deep learning will enable the advancement of both
of those areas to the extent that is necessary for human level formalization and
reasoning performance in the coming years. Let us review their recent progress in
separation with the focus of exploring how they could enable autoformalization.

14 C. Szegedy

9.1 Search and Reasoning

Recently, it has been demonstrated by AlphaZero [42] that the same relatively
simple algorithm based on Monte Carlo tree search (MCTS) [30] and residual
convolutional networks [24] could achieve higher than human performance in
several two-person games: go, chess and shogi, by self-play alone, utilizing the
same algorithm for each of those games, without learning on any human expert
games at all. Effectively, AlphaZero was able to rediscover all of the important
chess, go and shogi knowledge in a few days that took human players centuries
to discover.

However, mathematical reasoning differs from game playing in many respects:

1. The impossibility of self play: If open ended exploration is considered as
an alternative, it is to decide what to explore. The lack of self play makes
automated curriculum learning much harder for theorem proving.

2. Large, indefinitely growing knowledge base, resulting in a virtually infinite
action space.

3. Very sparse reward: In the case of theorem proving, it is very hard to assign
reward to failed proof attempts.

4. The diversity of mathematical knowledge: by nature, two-player games are
very coherent, since each player has to be able to answer any move by any
other player. Mathematics consists of wide range of loosely connected disci-
plines and it takes a lot of human experts to cover each of them.

DeepMath was the first attempt for applying deep learning at premise selec-
tion for the Mizar corpus [49] via convolutional networks and it yielded some
initial improvements for this task. Also theorem prover E was improved by inte-
grating neural network guidance [35]. In 2017, TacticToe [14], has demonstrated
that tactic based higher order theorem proving via machine learning (even with-
out the use of deep learning) is possible.

More recently the DeepHOL system [4] gave further demonstration of the
power of deep learning in the more general case: for higher order logic and
in the presence of a large knowledge base of premises to be used. However,
formulas can be best described as graphs, suggesting the use of graph neural
networks, which was suggested first in [52] and then yielded significant gains
(40% relative increase in success rate) on the HOList benchmark in the end-to-
end proving scenario [40]. DeepHOL-Zero [3] has demonstrated that relatively
simple exploration heuristic allows for bootstrapping systems that can learn to
prove without existing human proof logs to train on. While the proofs created
by the above systems are very short, [61] demonstrates successfully, that with
the right curriculum, in their limited setting, it is possible to train models that
create proofs of several thousand steps without error.

9.2 Natural Language Processing and Understanding

Since 2017, natural language processing went through a revolution similar to that
of computer vision, due to new neural model architectures, especially transformer

A Promising Path Towards Autoformalization and General AI 15

networks [51] and large scale self-supervised training on vast corpora [9,41,56].
This has spurred fast advances in machine translation and language understand-
ing. On some of the benchmark, this has resulted in human or close to human
performance, for example on SQuAD 1.0 [57]. However this has lead to devel-
opment of improved benchmarks to target the common weak points of those
algorithms. Progress is still strong in this domain: improved model architectures
and better tasks on larger corpora have yielded significant gains at a steady
pace. On the analogy with computer vision, one can also foresee that natural
architecture search will give rise to further advances in this field as well. Aut-
oformalization systems can leverage all those advances for stronger translation
models from natural language to the embedding space of formal statements.

9.3 Overview

Here is a short overview of the factors that support the potential success of
autoformalization in the coming years:

1. The success of deep learning infused search in two person games, especially
AlphaZero [42] style Monte Carlo tree search [30].

2. The demonstrations of the usefulness of deep learning in automated reason-
ing: premise selection [1] and proof guidance [4,35,40]

3. The demonstration that automated proof search can be learned without
imitation [3].

4. The fast progress and success of neural architectures for formal and natural
language content, especially graph neural networks [40,52,54] and transform-
ers [51] for symbolic mathematics [31].

5. The success of imposing cyclic translation consistency [59] in image genera-
tion and unsupervised translation [32] give strong indications that autofor-
malization could be bootstrapped using very limited set of labeled pairs of
formalized theorems.

6. The success of hindsight experience replay [2] to address the sparse reward
problem for robotics applications.

7. The quick pace of progress in natural language processing via large, deep net-
work models, and large scale self-supervised pretraining. Impressive results
in several translation and natural language understanding benchmarks [34].

8. Generative neural models improve at a fast pace and yield impressive result
in a wide range of domains from image generation to drug discovery.

9. Multi-agent system with agents specialized in different domains [12] could
give a rise to open-ended self-improvement.

10. Automated optimization of neural architectures via neural architecture
search [47,62] and other automated methods [19].

11. Computational resources available for deep learning purposes are still
expanding quickly and are getting cheaper. For example, as of July 2019,
Google’ TPUv3 based pods can deliver over 100 petaFLOPS performance
for deep learning purposes [18].

16 C. Szegedy

10 General Summary and Conclusions

We have argued in this paper that:

1. Autoformalization could enable the development of a human level mathe-
matical reasoning engine in the next decade.

2. The implementation of autoformalization presents significant technical and
engineering challenges.

3. Successful implementation of mathematical reasoning (theorem proving) and
autoformalization has many implications that go far beyond just transform-
ing mathematics itself and could result in the creation of a general purpose
reasoning module to be used in other AI systems.

4. A reasoning system based purely on self-driven exploration for reasoning
without informal communication capabilities would be hard to evaluate and
use.

5. It is easier to engineer and bootstrap a system that learns to perform both
formalization and reasoning than either task in separation.

6. It seems easier to create a formalization system from image than text data.
7. A näıve, direct translation approach for autoformalization would be brittle,

hard to engineer and unlikely to work.
8. Combining approximate formalization (predicting embedding vectors instead

of formulas) and guided exploration is a more promising direction to auto-
formalization than direct translation.

9. Deep Learning should be crucial for open ended improvement and reaching
human level reasoning and formalization performance.

10. Recent progress in neural architectures, language modelling, self- and semi-
supervised training, reinforcement learning, automated neural architecture
search, and AI driven theorem proving paves the way for strong automated
reasoning and formalization systems.

Acknowledgements. My warmest thanks go to my close collaborators and colleagues
Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, Francois Chollet, Alex Alemi, Stew-
art Wilcox, Niklas Een, Geoffrey Irving, Victor Toman and Aditya Paliwal for their
contributions towards the goals sketched here. I am also indebted to Josef Urban and
Cezary Kaliszyk for their pioneering work and selflessly sharing their vision and exper-
tise and also for their collaboration on this area. I am also thankful to Ilya Sutskever,
Henryk Michalewski, Daniel Huang, Quoc Le, Dániel Varga, Zsolt Zombori, Adrián
Csiszárik for their feedback and valuable discussions on this topic. I would like to
thank to Jay Yagnik, Rahul Sukthankar, Ashok Popat, Rif Saurous, Jeff Dean and
Geoffrey Hinton for their support of deep learning based reasoning work at Google. I
am grateful to Péter Szoldán, Christoph Benzmüller and Bruce Miller for proofreading
the manuscript.

A Promising Path Towards Autoformalization and General AI 17

References

1. Alemi, A.A., Chollet, F., Eén, N., Irving, G., Szegedy, C., Urban, J.: Deepmath -
deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., von
Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 29: Annual Conference on Neural Information Processing Systems
2016, Barcelona, Spain, 5–10 December 2016, pp. 2235–2243 (2016)

2. Andrychowicz, M., et al.: Hindsight experience replay. In: Advances in Neural
Information Processing Systems 30 (NIPS 2017), pp. 5048–5058 (2017)

3. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C.: Learning to reason in large the-
ories without imitation. arXiv preprint arXiv:1905.10501 (2019)

4. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: an envi-
ronment for machine learning of higher-order theorem proving. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, Proceedings of Machine Learning Research, Long
Beach, California, USA, 9–15 June 2019, vol. 97, pp. 454–463. PMLR (2019)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016)

7. The Coq Proof Assistant. http://coq.inria.fr
8. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean

theorem prover (System Description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

9. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Long and Short Papers), vol. 1, pp.
4171–4186 (2019)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

11. Fitting, M.: First-order Logic and Automated Theorem Proving. Springer, New
York (2012). https://doi.org/10.1007/978-1-4612-2360-3

12. Garrabrant, S., Benson-Tilsen, T., Critch, A., Soares, N., Taylor, J.: Logical induc-
tion. arXiv preprint arXiv:1609.03543 (2016)

13. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neu-
ral networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 2414–2423. IEEE
Computer Society (2016)

14. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4
tactics. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–
12 May 2017, EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair (2017)

15. Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inform.
35(1), 3–14 (2016)

16. Gonthier, G.: Formal proof-the four-color theorem. Not. AMS 55(11), 1382–1393
(2008)

http://arxiv.org/abs/1905.10501
https://doi.org/10.1007/3-540-49059-0_14
http://coq.inria.fr
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-1-4612-2360-3
http://arxiv.org/abs/1609.03543

18 C. Szegedy

17. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 14

18. Google’s scalable supercomputers for machine learning, Cloud TPU Pods, are now
publicly available in beta. https://bit.ly/2YkZh3i

19. Gordon, A., et al.: MorphNet: Fast & simple resource-constrained structure learn-
ing of deep networks. In: 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1586–
1595. IEEE Computer Society (2018)

20. Grace, K., Salvatier, J., Dafoe, A., Zhang, B., Evans, O.: When will AI exceed
human performance? evidence from AI experts. J. Artif. Intell. Res. 62, 729–754
(2018)

21. Hadjeres, G., Pachet, F., Nielsen, F.: DeepBach: a steerable model for Bach chorales
generation. In: Proceedings of the 34th International Conference on Machine Learn-
ing, vol. 70, pp. 1362–1371. JMLR (2017)

22. Hales, T., et al.: A formal proof of the Kepler conjecture. In: Forum of Mathematics,
Pi, vol. 5. Cambridge University Press (2017)

23. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society
(2016)

25. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2 15

26. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: GamePad: a learning environment
for theorem proving. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

27. Kaliszyk, C., Urban, J.: HOL (y) hammer: online ATP service for HOL light. Math.
Comput. Sci. 9(1), 5–22 (2015)

28. Kaliszyk, C., Urban, J., Vyskočil, J.: Learning to parse on aligned corpora (Rough
Diamond). In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 227–233.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1 15

29. Kaliszyk, C., Urban, J., Vyskocil, J.: System description: statistical parsing of
informalized Mizar formulas. In: Jebelean, T., Negru, V., Petcu, D., Zaharie, D.,
Ida, T., Watt, S.M., (eds.) 19th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2017, Timisoara, Romania, 21–24
September 2017, pp. 169–172. IEEE Computer Society (2017)

30. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

31. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: 8th Inter-
national Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, 26–30 April 2020. OpenReview.net (2020)

32. Lample, G., Conneau, A., Denoyer, L., Ranzato, M.: Unsupervised machine trans-
lation using monolingual corpora only. In: 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018,
Conference Track Proceedings. OpenReview.net (2018)

https://doi.org/10.1007/978-3-642-39634-2_14
https://bit.ly/2YkZh3i
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-22102-1_15
https://doi.org/10.1007/11871842_29

A Promising Path Towards Autoformalization and General AI 19

33. Lee, D., Szegedy, C., Rabe, M.N., Loos, S.M., Bansal, K.: Mathematical reasoning
in latent space. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020)

34. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

35. Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–12 May
2017, EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017)

36. McCarthy, J.: Computer programs for checking mathematical proofs. In: A Paper
Presented at the Symposium on Recursive Function Theory, New York, April 1961

37. Megill, N.: Metamath. In: Wiedijk, F. (ed.) The Seventeen Provers of the World.
LNCS (LNAI), vol. 3600, pp. 88–95. Springer, Heidelberg (2006). https://doi.org/
10.1007/11542384 13

38. The Mizar Mathematical Library. http://mizar.org
39. Nisan, N., et al.: Introduction to mechanism design (for computer scientists). Algo-

rithmic Game Theor. 9, 209–242 (2007)
40. Paliwal, A., Loos, S., Rabe, M., Bansal, K., Szegedy, C.: Graph representations for

higher-order logic and theorem proving. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, New York, NY, USA, 7–12 February 2020.
AAAI Press (2020)

41. Peters, M.E., et al.: Deep contextualized word representations. In: Walker, M.A.,
Ji, H., Stent, A. (eds.) Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, 1–6 June 2018,
(Long Papers), vol. 1, pp. 2227–2237. Association for Computational Linguistics
(2018)

42. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

43. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354 (2017)

44. Simon, D.L.: Checking number theory proofs in natural language. Ph.D thesis
(1990)

45. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

46. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June
2015, pp. 1–9. IEEE Computer Society (2015)

47. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neu-
ral networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, Long Beach, Califor-
nia, USA, 9–15 June 2019, Proceedings of Machine Learning Research, vol. 97, pp.
6105–6114. PMLR (2019)

48. Urban, J.: Translating Mizar for first order theorem provers. In: Asperti, A., Buch-
berger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36469-2 16

49. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reasoning 37(1–2), 21–43 (2006)

http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/11542384_13
https://doi.org/10.1007/11542384_13
http://mizar.org
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/3-540-36469-2_16

20 C. Szegedy

50. Urban, J.: MaLARea: a metasystem for automated reasoning in large theories.
In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) Proceedings of the CADE-21 Work-
shop on Empirically Successful Automated Reasoning in Large Theories, Bremen,
Germany, 17th July 2007, CEUR Workshop Proceedings, vol. 257. CEUR-WS.org
(2007)

51. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp.
5998–6008 (2017)

52. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by
deep graph embedding. In: Advances in Neural Information Processing Systems 30
(NIPS 2017), pp. 2786–2796 (2017)

53. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 7

54. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. In: IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–21 (2020)

55. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, Long Beach, California,
USA, 9–15 June 2019, Proceedings of Machine Learning Research, vol. 97, pp.
6984–6994. PMLR (2019)

56. Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: XLNet:
generalized autoregressive pretraining for language understanding. In: Wallach,
H.M., et al. (eds.) Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
Canada, Vancouver, BC, 8–14 December 2019, pp. 5754–5764 (2019)

57. Yu, A.W., et al.: QANet: combining local convolution with global self-attention
for reading comprehension. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference
Track Proceedings. OpenReview.net (2018)

58. Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty years of mixture of experts. IEEE
Trans. Neural Networks Learn. Syst. 23(8), 1177–1193 (2012)

59. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26
July 2017, pp. 2223–2232. IEEE Computer Society (2017)

60. Zinn, C.: Understanding informal mathematical discourse. Ph.D thesis, Institut für
Informatik, Universität Erlangen-Nürnberg (2004)

61. Zombori, Z., Csiszárik, A., Michalewski, H., Kaliszyk, C., Urban, J.: Towards find-
ing longer proofs. arXiv preprint arXiv:1905.13100 (2019)

62. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

https://doi.org/10.1007/978-3-540-71067-7_7
http://arxiv.org/abs/1905.13100

Full Papers

Formal Adventures in Convex
and Conical Spaces

Reynald Affeldt1 , Jacques Garrigue2(B) , and Takafumi Saikawa2

1 National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
2 Nagoya University, Nagoya, Japan
garrigue@math.nagoya-u.ac.jp

Abstract. Convex sets appear in various mathematical theories, and
are used to define notions such as convex functions and hulls. As an
abstraction from the usual definition of convex sets in vector spaces,
we formalize in Coq an intrinsic axiomatization of convex sets, namely
convex spaces, based on an operation taking barycenters of points. A
convex space corresponds to a specific type that does not refer to a
surrounding vector space. This simplifies the definitions of functions on
it. We show applications including the convexity of information-theoretic
functions defined over types of distributions. We also show how convex
spaces are embedded in conical spaces, which are abstract real cones,
and use the embedding as an effective device to ease calculations.

1 Introduction

The notion of convex sets appears in various mathematical theories. A subset X
of a real vector space is called a convex set if, for any x, y ∈ X and p ∈ [0, 1],
their convex combination px + (1 − p)y is again in X. One basic use of it is to
define the convexity of functions. A function f is said to be convex if f(px +
(1− p)y) ≤ pf(x)+ (1− p)f(y) for any convex combination px+(1− p)y. Thus,
convex sets are natural domains for convex functions to be defined on. Good
examples of these notions can be found in information theory, where convexity is
a fundamental property of important functions such as logarithm, entropy, and
mutual information. Our InfoTheo library [17] developed in the Coq proof
assistant [29] has a formalization of textbook proofs [12] of such results.

In the course of formalizing such convexity results, we find that axiomatizing
convex sets is a useful step which provides clarity and organizability in the
results. We abstract the usual treatment of convex sets as subsets of some vector
space and employ an algebraic theory of convex spaces, which was introduced
by Stone [27]. The formalization uses the packed class construction [15,24], so
as to obtain generic notations and lemmas, and more importantly, to be able
to combine structures. Binary convex spaces are formalized in Sect. 2, and their
multiary versions are formalized in Sect. 3, along with proofs of equivalence.

We also formalize an embedding of convex spaces into conical spaces (a.k.a.
cones or real cones [31]), which we find an indispensable tool to formalize convex
c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 23–38, 2020.
https://doi.org/10.1007/978-3-030-53518-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_2&domain=pdf
http://orcid.org/0000-0002-2327-953X
http://orcid.org/0000-0001-8056-5519
http://orcid.org/0000-0003-4492-745X
https://doi.org/10.1007/978-3-030-53518-6_2

24 R. Affeldt et al.

spaces. Examples in the literature avoid proving properties of convex spaces
directly and choose to work in conical spaces. This is especially the case when
their goal can be achieved either way [23,31]. Some authors suggest that the
results in conical spaces can be backported to convex spaces [13,21]. We apply
this method in Sect. 4 to enable additive handling of convex combinations. By
formalizing the relationship between convex and conical spaces, we work out
short proofs of a number of lemmas on convex spaces. Among them is Stone’s
key lemma [27, Lemma 2], whose proof is often omitted in the literature despite
its fundamental role in the study of convex spaces.

We complete this presentation with applications of our formalization to con-
vex hulls (Sect. 5) and to convex functions (Sect. 6).

While our proofs do not introduce extra axioms, some libraries used in our
development, such as mathcomp-analysis [1], contain axioms which make parts
of our work classical. In particular, our definition of convex sets is based on
classical sets, assuming decidable membership.

2 Convex Spaces

Let us begin with the definition of convex spaces. As mentioned in the introduc-
tion, convex spaces are an axiomatization of the usual notion of convex sets in
vector spaces. It has a long history of repeated reintroduction by many authors,
often with minor differences and different names: barycentric algebra [27], semi-
convex algebra [28], or, just, convex sets [19].

We define convex spaces following Fritz [14, Definition 3.1].

Definition 1 (Module ConvexSpace in [18]). A convex space is a structure for
the following signature:

– Carrier set X.
– Convex combination operations (� p �) : X × X → X indexed by p ∈ [0, 1].
– Unit law: x � 1 � y = x.
– Idempotence law: x � p � x = x.
– Skewed commutativity law: x � 1−p � y = y � p � x.
– Quasi-associativity law: x � p � (y � q � z) = (x � r � y) � s � z,

where s = 1 − (1 − p)(1 − q) and r =

{
p/s if s �= 0
0 otherwise

.

(Note that r is irrelevant to the value of (x � r � y) � s � z if s = 0.)

We can translate this definition to Coq as a packed class [15] with the fol-
lowing mixin interface:
1 Record mixin_of (T : choiceType) : Type := Mixin {

2 conv : prob -> T -> T -> T where "a <| p |> b" := (conv p a b);

3 _ : forall a b, a <| 1%:pr |> b = a ;

4 _ : forall p a, a <| p |> a = a ;

5 _ : forall p a b, a <| p |> b = b <| p.~%:pr |> a;

6 _ : forall (p q : prob) (a b c : T),

7 a <| p |> (b <| q |> c) = (a <|[r_of p, q]|> b) <| [s_of p, q] |> c }.

Formal Adventures in Convex and Conical Spaces 25

There are some notations and definitions to be explained. The type prob in
the above Coq code denotes the closed unit interval [0, 1]. The notation r%:pr is
a notation for a real number r equipped with a canonical proof that 0 ≤ r ≤ 1.
The notation p.~ is for 1− p. The notation [s_of p, q] is for 1− (1− p)(1− q),
and [r_of p, q] for p/[s_of p, q].

Intuitively, one can regard the convex combination as a probabilistic choice
between two points. At line 3, the left argument is chosen with probability 1.
The lines that follow correspond to idempotence, skewed commutativity, and
quasi-associativity.

An easy example of convex space is the real line R, whose convex combination
is expressed by ordinary addition and multiplication as pa+(1−p)b. Probability
distributions also form a convex space. In the formalization, the type fdist
A of distributions over any finite type A (borrowed from previous work [6]) is
equipped with a convex space structure, where the convex combination of two
distributions d1, d2 is defined pointwise as x �→ pd1(x) + (1 − p)d2(x).

As a result of the packed class construction, we obtain the type convType of
all types which implicitly carry the above axioms. Then, each example of convex
space is declared to be canonically a member of convType, enabling the implicit
inference of the appropriate convex space structure. These two implicit inference
mechanisms combined make the statement of generic lemmas on convex spaces
simple and applications easy.

3 Multiary Convex Combination

Convex spaces can also be characterized by multiary convex combination oper-
ations, which combine finitely many points x0, . . . , xn−1 at once, according to
some finite probability distribution d over the set In = {0, . . . , n−1}, i.e., di ≥ 0
and

∑
i<n di = 1. In this section we consider different axiomatizations, and their

equivalence with the binary axioms.

3.1 Axiomatization

A definition of convex spaces based on multiary operations is given as follows
(see for example [10, Definition 5] and [16, Sect. 2.1]).

Definition 2 (Convex space, multiary version). A convex space based on
multiary operations is a structure for the following signature:

– Carrier set X.
– Multiary convex combination operations, indexed by an arity n and a distri-

bution d over In:

Xn → X
(xi)i<n �→ ��

i<n
dixi

– Projection law: if dj = 1, ��
i<n

dixi = xj. (ax proj in [18])

26 R. Affeldt et al.

– Barycenter law: ��
i<n

di

(
��
j<m

ei,jxj

)
= ��

j<m

(∑
i<n

diei,j

)
xj. (ax bary in [18])

Note that in our Coq code, ��i<n dixi appears as <&>_d x or altConvn d x,
indicating more explicitly that the operation takes two arguments d and x.

This multiary convex structure and the binary one given in Sect. 2 are equiva-
lent: the multiary and binary operators interpret each other satisfying the needed
axioms, and the interpretations cancel out when composed. While the binary
axiomatization is easy to instantiate, the multiary version exhibits the relation-
ship to probability distributions. Therefore we want to establish this equivalence
before working further on other constructions over convex spaces.

In the literature, this equivalence is justified without much detail by referring
to the seminal article by Stone [27] (see, e.g., [19, Theorem 4], [10, Proposition
7]). Yet, what Stone gave is not an explicit axiomatization of the multiary convex
operator, but a number of lemmas targeted at proving an embedding of (binary)
convex spaces into vector spaces. These lemmas include the following one, that
is seen as a justification for the barycenter law in the binary axiomatization.

Lemma 1 (Lemma 4 in [27]). If the given masses and their associated points
are partitioned into groups (of non-zero total masses) in any way, then the center
of mass is identical with that of masses equal to the respective total masses for
the various groups, each placed at the center of mass for the corresponding group.

The relation to the barycenter law is implied if one sees a convex combination
��j<m (

∑
i<n diei,j)xj as a point defined in terms of a set of generating points

{xj}j<m (they generate their convex hull). Then ��i<n di(��j<m ei,jxj) corre-
sponds to grouping the generating points by filtering through the distributions
{ei}i<n. But this grouping is not necessarily a partition since there could be
shared elements, hence the relation is not direct.

Beaulieu [8, Definition 3.1.4] proposed an alternative multiary axiomatiza-
tion, which was actually presented as a model for countable probabilistic choice
(rather than a definition of convex space). His partition law corresponds exactly
to the statement of Stone’s lemma.

Definition 3 (Convex space, Beaulieu style). A convex space is a structure
for the previous operations ��i<n di and the following laws.

– Partition law: ��
i∈I

λixi = ��
j∈J

ρj

(
��

k∈Kj

λk

ρj
xk

)
(ax part in [18])

where {Kj | j ∈ J} is a partition of I, and ρj =
∑

k∈Kj
λk �= 0.

– Idempotence law: ��
i∈I

λiAi = A if Ai = A for all λi > 0. (ax idem in [18])

In the implementation, using sets as indexing domains of the combination oper-
ators would be cumbersome, so that the partition law is actually expressed as
follows, using a map Ǩ and Kronecker’s δ.

��
i<n

λixi = ��
j<m

ρj

(
��
k<n

δj,Ǩ(k)

λk

ρj
xk

)
where Ǩ : In → Im, Kj = Ǩ−1(j)

Formal Adventures in Convex and Conical Spaces 27

We also have to separately show that (δj,Ǩ(k)
λk

ρj
)k<n and (ρj)j<m form probabil-

ity distributions. As an exceptional case, (δj,Ǩ(k)
λk

ρj
)k<n is replaced by a uniform

distribution if ρj = 0.

3.2 Equivalence of Axiomatizations

After considering the different axiomatizations, we decided to prove a triangular
equivalence: between multiary convex structures in standard and Beaulieu style,
and then with the binary convex structure given in Sect. 2. The relations we will
explain in this section are depicted in Fig. 1.

Beaulieu
Multiary operator <&>_
- Partition law
- Idempotence law

Standard
Multiary operator <&>_
- Projection law
- Barycenter lawBeaulieuToStandard

- Partition-barycenter law
- Injective map law

StandardToBeaulieu

convType

Binary operator <| |>

- Laws from Def. 1
NaryToBin

- Map law
BinToNary

Fig. 1. Relations between the various formalizations of convex spaces

The first equivalence, between multiary convex axioms, is rather technical.
The first direction, proving Beaulieu’s axioms from the standard presentation
(functor StandardToBeaulieu in [18]), is relatively easy, as the partition law is
intuitively just a special case of the barycenter law, where supports1 are disjoint,
and the idempotence law can be derived as a combination of the two standard
laws. However, the second direction (functor BeaulieuToStandard) is harder,
and led us to introduce two derived laws:

– Partition-barycenter law: barycenter law, with disjoint supports.
(ax bary part)

– Injective map law: ��
i<m

digu(i) = ��
j<n

∑
i<m

u(i)=j

digj with u injective. (ax inj map)

The partition-barycenter law can be derived from the Beaulieu style axioms, and
in turn is used to prove the injective map law. Together they allow to prove the
barycenter law.

The equivalence between binary and multiary axiomatizations requires first
to define their operators in terms of each other.
1 The support of a probability distribution d is the set {i | di > 0}.

28 R. Affeldt et al.

Definition 4 (Convn and binconv in [18])

(a) Let d : In → [0, 1] be a finite distribution, and x : In → X be points in a
convex space X. Then the multiary convex combination of these points and
distribution is defined from the binary operator by recursion on n as follows:

��
i<n

dixi =

⎧⎨
⎩

x0 if d0 = 1 or n = 1

x0 � d0 �

(
��

i<n−1
d′

ixi+1

)
otherwise

where d′ is a new distribution: d′
i = di+1/(1 − d0).

(b) Let p be a probability and x0, x1 be points in a convex space. Then their
binary combination is defined from the multiary operator as follows:

x0 � p � x1 = ��
i<2

dixi where d0 = p and d1 = 1 − p.

The first direction, functor BinToNary in [18], must prove that the first defi-
nition satisfies the multiary axioms, and indeed amounts to proving a variant of
Stone’s lemma. We will see in the next section that the original proof by Stone
is better formalized by transporting the argument to conical spaces.

The opposite direction, functor NaryToBin, must prove the binary axioms
from the multiary ones. While we start from the standard version, the idem-
potence law proved to be instrumental in this task, together with the following
unrestricted map law.

– Map law: ��
i<m

digu(i) = ��
j<n

∑
i<m

u(i)=j

digj for any map u. (ax map in [18])

Finally, one also needs to prove that the definitions we used for each operation
in both directions are coherent.

Lemma 2 (equiv conv and equiv convn in [18]). The constructions in Def-
inition 4 (Convn and binconv) cancel each other. That is,

– If ��∗ is the operator induced by Definition 4(a), and � �† the one induced from
it by Definition 4(b), we can derive a � p �† b = a � p � b from the binary axioms.

– If � �∗ the operator induced by Definition 4(b), ��† is the one induced from it
by Definition 4(a), we can derive ��†

i<n dixi = ��i<n dixi from the multiary
axioms.

4 Conical Spaces and Embedded Convex Spaces

The definition of multiary convex combination operator in the previous section
(Definition 4(a)) relied on recursion. This makes the definition look complicated,
and moreover, the algebraic properties of the combination difficult to see. If we
consider the special case of convex sets in a vector space, the meaning of multiary
combinations and the algebraic properties become evident:

��
i<n

dixi = d0x0 + · · · + dn−1xn−1.

Formal Adventures in Convex and Conical Spaces 29

The additions on the right-hand side are of vectors, and thus are associative and
commutative. This means that the multiary combination on the left-hand side
is invariant under permutations or partitions on indices. We want to show that
these invariance properties are also satisfied generally in any convex space.

However, the search for the proofs is painful if naively done. This is because
binary convex combination operations satisfy associativity and commutativity
only through cumbersome parameter computations. For example, a direct proof
of the permutation case involves manipulations on the set In of indices and on
the symmetry groups, which require fairly long combinatorics [27, Lemma 2].

We present a solution to this complexity by transporting the arguments
on convex spaces to a closely related construction of conical spaces. Conical
spaces are an abstraction of cones in real vector spaces just like convex spaces
are an abstraction of convex sets. Like convex spaces, the definition of conical
spaces appears in many articles. We refer to the ones by Flood (called semicone
there) [13] and by Varacca and Winskel (called real cone there) [31]:
Definition 5 (Conical space). A conical space is a semimodule over the semir-
ing of non-negative reals. That is, it is a structure for the following signature:
– Carrier set X.
– Zero 0 : X.
– Addition operation + : X × X → X.
– Scaling operations c : X → X indexed by c ∈ R≥0.
– Associativity law for addition: x + (y + z) = (x + y) + z.
– Commutativity law for addition: x + y = y + x.
– Associativity law for scaling: c(dx) = (cd)x.
– Left-distributivity law: (c + d)x = cx + dx.
– Right-distributivity law: c(x + y) = cx + cy.
– Zero law for addition: 0 + x = x.
– Left zero law for scaling: 0x = 0.
– Right zero law for scaling: c0 = 0.
– One law for scaling: 1x = x.

We display this definition only to show that conical spaces have straightfor-
ward associativity and commutativity. In fact, the formalization is elaborated
on the embedding of convex spaces into canonically constructed conical spaces,
which appeared in the article by Flood [13]. We build on top of each convex
space X, the conical space SX of its “scaled points”:
Definition 6 (scaled pt, addpt, and scalept in [18]). Let X be a convex
space. We define a set SX which becomes a conical space with the following
addition and scaling operations.

SX := (R>0 × X) ∪ {0}.

That is, the points of SX are either a pair p ∗ x of p ∈ R>0 and x ∈ X, or a new
additive unit 0. Addition of points a, b ∈ SX is defined by cases to deal with 0:

a + b :=

⎧⎪⎨
⎪⎩

(r + q) ∗ (x � r/(r+q) � y) if a = r ∗ x and b = q ∗ y

a if b = 0
b if a = 0

30 R. Affeldt et al.

Scaling a ∈ SX by p ∈ R≥0 is also defined by cases:

pa :=

{
pq ∗ x if p > 0 and a = q ∗ x

0 otherwise

We omit here the proofs that SX with these addition and scaling satisfies the
conical laws. They are proved formally in [18] (see the lemmas addptC, addptA,
scalept addpt, etc.).

Properties of the underlying convex spaces are transported into and back
from this conical space, through an embedding:

Definition 7 (S1 in [18])
ι : X � SX

x �→ 1 ∗ x

Convex combinations in X are mapped by ι to additions in SX .

Lemma 3 (S1 convn in [18])

ι(��
i<n

dixi) =
∑
i<n

diι(xi).

The right-hand side of the lemma is a conical sum (Fig. 2), which behaves like
an ordinary linear sum thanks to the conical laws, and enjoys good support from
MathComp’s big operator library [9].

wx

y

z
ι−→

wx

y

z

0

x/2
y/4

z/4

y/4+z/4

Fig. 2. Example of S1 convn: 1 ∗ w = 1
2

∗ x + 1
4

∗ y + 1
4

∗ z

With these preparations, properties such as [27, Lemma 2] can be proved in
a few lines of Coq code:

Lemma 4 (Convn perm in [18])

��
i<n

dixi = ��
i<n

(d ◦ s)i(x ◦ s)i,

where s is any permutation on the set of indices n.

Formal Adventures in Convex and Conical Spaces 31

The proof of the barycenter property [27, Lemma 4] from Sect. 3 is based on
the same technique (see Convn convnfdist in [18]).

A way to understand this conical approach is to start from Stone’s definition
of convex spaces [27]. He uses a quaternary convex operator (x, y;α, β) where x
and y are points of the space, and α and β are non-negative coefficients such that
α + β > 0. Its values are quotiented by an axiom to be invariant under scaling,
removing the need to normalize coefficients for associativity. This amounts to
regarding a convex space as the projective space of some conical space.

The definition of SX is a concrete reconstruction of such a conical space from
a given convex space X. The benefit of this method over Stone’s is the removal of
quotients by moving the coefficients from operations to values. We can then use
the linear-algebraic properties of conical sums such as the neutrality of zeroes,
which had to be specially handled in Stone’s proofs (e.g., [27, Lemma 2]).

Examples. We illustrate how ι is used in practice with the proof of the entropic
identity. Let T be a convType; we want to show that

(a � q � b) � p � (c � q � d) = (a � p � c) � q � (b � p � d). (1)

We could use the properties of convex spaces, but this will result in cumbersome
computations, in particular because of quasi-associativity. Instead, we proceed
by an embedding into the set of scaled points over T using ι. First, we observe
that these scaled points form a convex space for the operator p, a, b �→ pa + p̄b
and that ι(a � p � b) = ι(a) � p � ι(b). As a consequence, when we apply ι to
Equation (1), its left-hand side becomes

p(qι(a) + q̄ι(b)) + p̄(qι(c) + q̄ι(d)).

The main difference with Eq. (1) is that + (Coq notation: addpt) enjoys (uncon-
ditional) associativity, making the rest of the proof easier. In the proof script
below, line 4 performs the embedding by first using the injectivity of ι (lemma
S1 inj), then using the fact that ι is a morphism w.r.t. �p � (lemma S1 conv),
and last by revealing the definition of the operator of the convex spaces formed by
scaled points (lemma convptE). The proof can be completed by rewritings with
properties of addpt and scalept until the left-hand side matches the right-hand
side.
1 Lemma convACA (a b c d : T) p q :

2 (a <|q|> b) <|p|> (c <|q|> d) = (a <|p|> c) <|q|> (b <|p|> d).

3 Proof.

4 apply S1_inj; rewrite ![in LHS]S1_conv !convptE.

5 rewrite !scalept_addpt ?scalept_comp //.

6 rewrite !(mulRC p) !(mulRC p.~) addptA addptC (addptC (scalept (q * p) _)).

7 rewrite !addptA -addptA -!scalept_comp -?scalept_addpt //.

8 by rewrite !(addptC (scalept _.~ _)) !S1_conv.

9 Qed.

We conclude this section with an example that provides a closed formula for
the multiary convex combination ��i<n eigi (Coq notation: <|>_e g) in the
case of the real line (seen as a convex space):

32 R. Affeldt et al.

1 Definition scaleR x : R := if x is p *: y then p * y else 0.

2 Definition big_scaleR := big_morph scaleR scaleR_addpt scaleR0.

3 Lemma avgnRE n (g : 'I_n -> R) e : <|>_e g = \sum_(i < n) e i * g i.

4 Proof.

5 rewrite -[LHS]Scaled1RK S1_convn big_scaleR.

6 by under eq_bigr do rewrite scaleR_scalept // Scaled1RK.

7 Qed.

This corresponds to the following transformations of the left-hand side.

��i<n eigi = scaleR(ι(��i<n eigi)) by Scaled1RK
= scaleR(

∑
i<n eiι(gi)) by S1 convn

=
∑

i<n scaleR(eiι(gi)) by big scaleR
=

∑
i<n eiscaleR(ι(gi)) by scaleR scalept

=
∑

i<n eigi by Scaled1RK

5 Formalization of Convex Sets and Hulls

Our first application of convex and conical spaces is the formalization of convex
sets and convex hulls. Besides mathematics, they also appear in many applica-
tions of convex spaces such as program semantics [8,11].

Definition 8 (is convex set in [18]). Let T be a convex space. A subset D
in T is a convex set if, for any p ∈ [0, 1] and x, y ∈ D, x � p � y ∈ D.

We use the predicate is convex set to define the type {convex_set T} of convex
sets over T.

We can turn any set of points in a convex space into a convex set, namely,
by taking convex hulls.

Definition 9 (hull in [18]). For a subset X of T , its hull X is

X =
{

��
i<n

dixi

∣∣∣∣ n ∈ N ∧ d is a distribution over In ∧ ∀i < n, xi ∈ X

}
.

Example. The following example illustrates the usefulness of conical spaces when
reasoning about convex hulls.

Our goal is to prove that for any z ∈ hull (X ∪ Y) (X �= ∅, Y �= ∅), there exist
x ∈ X and y ∈ Y such that z = x � p � y for some p (see the formal statement at
line 1 below).

We first introduce two notations. Let scaled set X be the set {p ∗ x |x ∈ X}.
For any a �= 0, let [point of a0] (where a0 is the proof that a �= 0) be the x
such that a = p ∗ x for some p.

To prove our goal, it is sufficient to prove that there exist a ∈ scaled set X
and b ∈ scaled set Y such that ι(z) = a + b (this reasoning step is the purpose
of line 6). When a = 0 or b = 0, we omit easy proofs at lines 8 and 9. Otherwise,
we can take x to be [point of a0] and y to be [point of b0] as performed by
the four lines from line 10.

Formal Adventures in Convex and Conical Spaces 33

We now establish the sufficient condition (from line 14). Since z is in the
hull, we have a distribution d and n points gi such that z = ��i<n digi. We then
decompose ι(z) as follows:

ι(z) =
∑
i<n

di(ι(gi)) =
∑

i<n,gi∈X

di(ι(gi))

︸ ︷︷ ︸
b

+
∑

i<n,gi /∈X

di(ι(gi))

︸ ︷︷ ︸
c

.

We conclude by observing that b is in scaled set X and that c is in scaled set
Y because {gi|gi /∈ X} ⊆ Y .

1 Lemma hull_setU (z : T) (X Y : {convex_set T}) : X !=set0 -> Y !=set0 ->

2 hull (X `|` Y) z ->

3 exists2 x, x \in X & exists2 y, y \in Y & exists p, z = x <| p |> y.

4 Proof.

5 move=> [dx ?] [dy ?] [n -[g [d [gT zg]]]].

6 suff [a] : exists2 a, a \in scaled_set X & exists2 b, b \in scaled_set Y &

7 S1 z = addpt a b.

8 have [/eqP -> _ [b bY]|a0 aX [b]] := boolP (a == Zero) by ...

9 have [/eqP -> _|b0 bY] := boolP (b == Zero) by ...

10 rewrite addptE => -[_ zxy].

11 exists [point of a0]; first exact: (@scaled_set_extract _ a).

12 exists [point of b0]; first exact: scaled_set_extract.

13 by eexists; rewrite zxy.

14 move/(congr1 (@S1 _)): zg; rewrite S1_convn.

15 rewrite (bigID (fun i => g i \in X)) /=.

16 set b := \ssum_(i | _) _.

17 set c := \ssum_(i | _) _.

18 move=> zbc.

19 exists b; first exact: ssum_scaled_set.

20 exists c => //.

21 apply: (@ssum_scaled_set _ [pred i | g i \notin X]) => i /=.

22 move/asboolP; rewrite in_setE.

23 by case: (gT (g i) (imageP _ I)).

24 Qed.

6 Formalization of Convex Functions

In this section, we first (Sect. 6.1) formalize a generic definition of convex func-
tions based on convex spaces; for that purpose, we introduce in particular ordered
convex spaces. To demonstrate this formalization, we then apply it to the proof of
the concavity of the logarithm function and to an information-theoretic function
(Sect. 6.2).

34 R. Affeldt et al.

6.1 Ordered Convex Spaces and Convex Functions

An ordered convex space extends a convex space with a partial order structure:

Definition 10 (Module OrderedConvexSpace in [18]). An ordered convex space
is a structure whose signature extends the one of convex spaces as follows:

– Convex space X.
– Ordering relation (≤) ⊂ X × X.
– Reflexivity law: x ≤ x.
– Transitivity law: x ≤ y ∧ y ≤ z ⇒ x ≤ z.
– Antisymmetry law: x ≤ y ∧ y ≤ x ⇒ x = y.

The above definition does not force any interaction between convexity and
ordering. It would also be a natural design to include an axiom stating that
convex combinations preserve ordering [21, Sect. 2]. We however do not need
such interactions for defining convex functions, which is our purpose here.

Convexity of a function is defined if its codomain is an ordered convex space.
In the following, let T be a convex space and U be an ordered convex space.

Definition 11 (convex function at in [18]). A function f : T → U is convex
at p ∈ [0, 1] and x, y ∈ T if f(x � p � y) ≤ f(x) � p � f(y).

Definition 12 (convex function in [18]). A function f : T → U is convex if
it is convex at all p ∈ [0, 1] and x, y ∈ T .

The above predicates expect total functions. For partial functions, we resort
to convex sets (Definition 8).

Definition 13 (convex function in in [18]). Let D be a convex set in T .
A function f : T → U is convex in D if it is convex at any p ∈ [0, 1] and
x, y ∈ D.

Concave functions are defined similarly since f is concave for the order ≤ if
it is convex for ≥. When the codomain of f is R, the prototypical example of an
ordered convex space, it is also easy to prove that f is concave if −f is convex.

6.2 Examples of Convex Functions

As a first example, we prove that the real logarithm function is concave. The
concavity of logarithm is frequently used in information theory, for example,
properties of data compression depend on it [4].

The definition of logarithm we use in Coq is the one of the standard library;
it has the entire R as its domain by setting log(x) = 0 for x ≤ 0. The statement
of concavity is then restricted to the subset R>0.2

2 This way of restricting the domain of functions in their properties rather than in the
definitions is a design choice often found in Coq. It makes it possible for functions
such as the logarithm to be composable without being careful about their domains
and ranges, and leads to a clean separation between definitions and properties of
functions in the formalization.

Formal Adventures in Convex and Conical Spaces 35

Lemma 5 (log concave in [17, probability/ln facts.v]). The extended
logarithm function

x �→
{

log(x) if x ∈ R>0

0 otherwise

is concave in R>0.

The statement in Coq of these lemmas is as follows:
Lemma log_concave : concave_function_in Rpos_interval log.

The predicate concave function in has been explained in Sect. 6.1. The object
Rpos interval is the set of positive numbers described as the predicate
fun x => 0 < x equipped with the proof that this set is indeed convex. The heart
of the proof is the fact that a function whose second derivative is non-negative is
convex (Section twice_derivable_convex in [18]). Our proof proceeds by using
the formalization of real analysis from the Coq standard library; our formaliza-
tion of convex spaces can thus be seen as an added abstraction layer of convexity
to this library.

Our second example of convex function is the divergence (a.k.a. relative
entropy or Kullback-Leibler divergence) of two probability distributions: an
important information-theoretic function. Let P and Q be two finite distribu-
tions (over some finite type A). Their divergence div is defined as follows:
Variables (A : finType) (P Q : fdist A).

Definition div := \sum_(a in A) P a * log (P a / Q a).

Actually, div P Q is defined only when Q dominates P, i.e., when Q a = 0 implies
P a = 0 for all a. We call such a pair of probability distributions a dominated
pair. Hereafter, we denote div P Q by D(P || Q) and the dominance of P by Q
by P `<< Q.

We now show that the divergence function is convex over the set of domi-
nated pairs. To formalize this statement using our definitions, we first need to
show that dominated pairs form a convex space. To achieve this, it suffices to
define the convex combination of the dominated pairs a `<< b and c `<< d as
a <| p |> c `<< b <| p |> d (where we use the convex combination of prob-
ability distributions). This operator is easily shown to enjoy the properties of
convex spaces (Sect. 2). Once this is done, one just needs to uncurry the diver-
gence function to use the convex function predicate:
Lemma convex_div : convex_function (uncurry_dom_pair (@div A)).

The proof follows the standard one [12, Theorem. 2.7.2] and relies on the
log-sum inequality formalized in previous work [6].

In previous work [5], we applied above results to the proofs of convexity
of other information-theoretic functions such as the entropy and the mutual
information.

7 Related Work

Conical spaces have been known in the literature to work as a nice-behaving
replacement of convex spaces when constructing models of nondeterministic

36 R. Affeldt et al.

computations. Varacca and Winskel [31] used convexity when building a cat-
egorical monad combining probability and nondeterminism, but they chose to
avoid the problem of equational laws in convex spaces by instead working with
conical spaces. There is a similar preference in the study of domain-theoretic
semantics of nondeterminism, to a conical structure (d-cones [23]) over the cor-
responding convex structure (abstract probabilistic domain [20]). The problem
is the same in this case: the difficulty in working with the equational laws of
convex spaces [22,30].

Flood [13] proposed to use conical spaces to investigate the properties of
convex spaces. He showed that for any convex space, there is an enveloping
conical space and the convex space is embedded in it. (A version of the embedding
for convex sets into cones in vector spaces was already present in Semadini’s
book [26].) Keimel and Plotkin [21] extended the idea for their version of ordered
convex spaces and applied it in the proof of their key lemma [21, Lemma 2.8],
which is an ordered version of the one proved by Neumann [25, Lemma 2].

Another aspect of convex spaces is the relationship to probabilistic distri-
butions. From any set, one can freely generate a convex space by formally tak-
ing all finite convex combinations of elements of this set. The resulting convex
space can be seen as a set of distributions over the original set, since the for-
mal convex combinations are equivalent to distributions over the given points.
By this construction, convex spaces serve as a foundation for the algebraic and
category-theoretic treatments of probability. This allows for another application
of our work to the semantics of probabilistic and nondeterministic program-
ming [16,19]. We have also been investigating this topic [3,7]. Our most recent
result [2] is based on the properties of convex sets and convex hulls, and deals
with derived notions such as convex powersets. Its purpose is the formal study of
program semantics from a category-theoretic point of view, rather than the for-
mal study of the mathematical structure of convex spaces itself, which is rather
the purpose of this paper.

8 Conclusion

In this paper, we formalized convex and conical spaces and developed their
theories. In particular, we formally studied the various presentations of the con-
vex combination operator, be it binary or multiary (Sect. 3). We provide formal
proofs of the equivalence between several axiomatizations of both operators,
where “proofs” in the literature were often only mere references to Stone’s foun-
dational paper [27], while it only contains a reduction of the multiary case to
the binary one. Based on convex and conical spaces, we also developed a theory
of convex functions and of convex hulls. We illustrated these developments with
detailed examples from real analysis and information theory.

Acknowledgments. We acknowledge the support of the JSPS KAKENHI Grant
Number 18H03204. We also thank Shinya Katsumata for his comments.

Formal Adventures in Convex and Conical Spaces 37

References

1. Affeldt, R., Cohen, C., Rouhling, D.: Formalization techniques for asymptotic rea-
soning in classical analysis. J. Formaliz. Reason. 11(1), 43–76 (2018)

2. Affeldt, R., Garrigue, J., Nowak, D., Saikawa, T.: A trustful monad for axiomatic
reasoning with probability and nondeterminism, March 2020, https://arxiv.org/
abs/2003.09993

3. Affeldt, R., et al.: Monadic equational reasoning in Coq (2019). https://github.
com/affeldt-aist/monae/, Coq scripts

4. Affeldt, R., Garrigue, J., Saikawa, T.: Examples of formal proofs about data com-
pression. In: International Symposium on Information Theory and Its Applications
(ISITA 2018), Singapore, 28–31 October 2018, pp. 665–669. IEICE, IEEE Xplore,
October 2018

5. Affeldt, R., Garrigue, J., Saikawa, T.: Reasoning with conditional probabilities
and joint distributions in Coq. Computer Software (2020, to appear). Japan Soci-
ety for Software Science and Technology. https://staff.aist.go.jp/reynald.affeldt/
documents/cproba preprint.pdf

6. Affeldt, R., Hagiwara, M., Sénizergues, J.: Formalization of Shannon’s theorems.
J. Autom. Reason. 53(1), 63–103 (2014)

7. Affeldt, R., Nowak, D., Saikawa, T.: A hierarchy of monadic effects for program
verification using equational reasoning. In: Hutton, G. (ed.) MPC 2019. LNCS,
vol. 11825, pp. 226–254. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-33636-3 9

8. Beaulieu, G.: Probabilistic completion of nondeterministic models. Ph.D. thesis,
University of Ottawa (2008)

9. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp.
86–101. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-
7 11

10. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: Meyer, R.,
Nestmann, U. (eds.) 28th International Conference on Concurrency Theory (CON-
CUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 85, pp.
23:1–23:18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017). https://doi.
org/10.4230/LIPIcs.CONCUR.2017.23

11. Cheung, K.H.: Distributive interaction of algebraic effects. Ph.D. thesis, University
of Oxford (2017)

12. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

13. Flood, J.: Semiconvex geometry. J. Aust. Math. Soc. 30(4), 496–510 (1981).
https://doi.org/10.1017/S1446788700017973

14. Fritz, T.: Convex spaces I: Definition and examples (2015). https://arxiv.org/abs/
0903.5522, First version: 2009

15. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03359-9 23

16. van Heerdt, G., Hsu, J., Ouaknine, J., Silva, A.: Convex language semantics for
nondeterministic probabilistic automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC
2018. LNCS, vol. 11187, pp. 472–492. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02508-3 25

https://arxiv.org/abs/2003.09993
https://arxiv.org/abs/2003.09993
https://github.com/affeldt-aist/monae/
https://github.com/affeldt-aist/monae/
https://staff.aist.go.jp/reynald.affeldt/documents/cproba_preprint.pdf
https://staff.aist.go.jp/reynald.affeldt/documents/cproba_preprint.pdf
https://doi.org/10.1007/978-3-030-33636-3_9
https://doi.org/10.1007/978-3-030-33636-3_9
https://doi.org/10.1007/978-3-540-71067-7_11
https://doi.org/10.1007/978-3-540-71067-7_11
https://doi.org/10.4230/LIPIcs.CONCUR.2017.23
https://doi.org/10.4230/LIPIcs.CONCUR.2017.23
https://doi.org/10.1017/S1446788700017973
https://arxiv.org/abs/0903.5522
https://arxiv.org/abs/0903.5522
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-030-02508-3_25
https://doi.org/10.1007/978-3-030-02508-3_25

38 R. Affeldt et al.

17. Infotheo: A Coq formalization of information theory and linear error-correcting
codes (2020). https://github.com/affeldt-aist/infotheo/, Coq scripts

18. Infotheo: probability/convex choice.v. In: [17] (2020), Coq scripts
19. Jacobs, B.: Convexity, duality and effects. In: Calude, C.S., Sassone, V. (eds.) TCS

2010. IAICT, vol. 323, pp. 1–19. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15240-5 1

20. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: [1989]
Proceedings. Fourth Annual Symposium on Logic in Computer Science, pp. 186–
195, June 1989. https://doi.org/10.1109/LICS.1989.39173

21. Keimel, K., Plotkin, G.: Mixed powerdomains for probability and nondeterminism.
Log. Meth. Comput. Sci. 13, December 2016. https://doi.org/10.23638/LMCS-
13(1:2)2017

22. Keimel, K., Plotkin, G.D.: Predicate transformers for extended probability and
non-determinism. Math. Struct. Comput. Sci. 19(3), 501–539 (2009). https://doi.
org/10.1017/S0960129509007555

23. Kirch, O.: Bereiche und Bewertungen. Master’s thesis, Technischen Hochschule
Darmstadt (1993)

24. Mahboubi, A., Tassi, E.: Canonical structures for the working coq user. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 19–34.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 5

25. Neumann, W.D.: On the quasivariety of convex subsets of affine spaces. Archiv der
Mathematik 21, 11–16 (1970)

26. Semadini, Z.: Banach Spaces of Continuous Functions. PWN (1971)
27. Stone, M.H.: Postulates for the barycentric calculus. Ann. Mat. Pura Appl. 29(1),

25–30 (1949)
28. Świrszcz, T.: Monadic functors and convexity. Bulletin de l’Académie polonaise

des sciences. Série des sciences mathématiques, astronomiques et physiques 22(1)
(1974)

29. The Coq Development Team: The Coq Proof Assistant Reference Manual. Inria
(2019). https://coq.inria.fr. Version 8.11.0

30. Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and
non-determinism. Electron. Notes Theor. Comput. Sci. 222, 3–99 (2009). https://
doi.org/10.1016/j.entcs.2009.01.002

31. Varacca, D., Winskel, G.: Distributing probability over non-determinism. Math.
Struct. Comput. Sci. 16(1), 87–113 (2006)

https://github.com/affeldt-aist/infotheo/
https://doi.org/10.1007/978-3-642-15240-5_1
https://doi.org/10.1007/978-3-642-15240-5_1
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.23638/LMCS-13(1:2)2017
https://doi.org/10.23638/LMCS-13(1:2)2017
https://doi.org/10.1017/S0960129509007555
https://doi.org/10.1017/S0960129509007555
https://doi.org/10.1007/978-3-642-39634-2_5
https://coq.inria.fr
https://doi.org/10.1016/j.entcs.2009.01.002
https://doi.org/10.1016/j.entcs.2009.01.002

Towards a Heterogeneous Query
Language for Mathematical Knowledge

Katja Berčič(B) , Michael Kohlhase , and Florian Rabe

Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany
katja.bercic@fau.de

Abstract. With more than 120.000 articles published annually in math-
ematical journals alone, mathematical search has often been touted as
a killer application of computer-supported mathematics. But the arte-
facts of mathematics – e.g. mathematical documents, formulas, examples,
algorithms, concrete data sets, or semantic web-style graph abstractions
– that should be searched cover a variety of aspects. All are organized
in complex ways and offer distinct challenges and techniques for search.
Existing representation languages, the corresponding query languages
and search systems usually concentrate on only one of these aspects. As a
consequence, each system only partially covers the information retrieval
needs of mathematical practitioners, and integrated solutions allowing
multi-aspect queries are rare and basic.

We present an architecture for a generic multi-aspect search sys-
tem and analyze the requirements on paradigmatic practical information
retrieval needs.

1 Introduction and Related Work

Motivation. Computers and Humans have complementary strengths: Computers
can handle large data and computations flawlessly at enormous speeds. Humans
can sense the environment, react to unforeseen circumstances and use their intu-
itions to guide them through only partially understood situations. We speak of
a horizontal task if it involves systematically sifting through large volumes of
data or carrying out large computations. This contrasts with a vertical task,
which involves intricately combining multiple previously unclear methods in a
limited domain. In general, humans excel (only) at vertical tasks, while machines
excel (only) at horizontal ones. For example, in mathematics humans explore
mathematical theories and come up with novel insights/proofs but may dele-
gate symbolic/numeric computation, proof checking/search, data storage, and
typesetting of documents to computers.

A general goal is to develop solutions for horizontal problems in mathemat-
ics and dovetail the solutions into the vertical workflows of practicing math-
ematicians. One of the most important horizontal problems is Mathematical

The authors were supported by DFG grant RA-1872/3-1, KO 2428/13-1 OAF and EU
grant Horizon 2020 ERI 676541 OpenDreamKit.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 39–54, 2020.
https://doi.org/10.1007/978-3-030-53518-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_3&domain=pdf
http://orcid.org/0000-0002-6678-8975
http://orcid.org/0000-0002-9859-6337
http://orcid.org/0000-0003-3040-3655
https://doi.org/10.1007/978-3-030-53518-6_3

40 K. Berčič et al.

Information Retrieval (MIR), i.e., finding mathematical objects with particular
properties—e.g. a counterexample, a theorem that allows rewriting a formula
into a more tractable form, an article that describes a method applicable to a
current problem, or an algorithm that computes a particular value.

Despite significant efforts and successes, current MIR systems are far behind
practical needs. It is not even clear how to best design a good MIR system. Many
existing mathematical tools are highly specialized, e.g., into proof assistants,
computer algebra systems, mathematical databases, or narrative languages like
LATEX or HTML+MathML. Current MIR solutions often exploit this specializa-
tion by custom-fitting indexing and querying solutions to the data model of the
tool, e.g., using substitution tree indexing for a set of theorems or SQL queries
for a mathematical database. But MIR is often needed outside such a tool, e.g.,
imagine a mathematics-aware Google-like interface that finds semantically rel-
evant results in the Coq library, the arXiv, and the OEIS. Thus, the question
arises how to query heterogeneous mathematical knowledge, i.e., how to design
representation and query languages that allow finding results in many different
libraries using vastly different representation languages.

Contribution. We present the high-level design of an indexing and querying
infrastructure that we believe to be an interesting candidate for a comprehensive
solution. We cannot provide a detailed scalable solution at this point. In fact, we
believe more conceptual and experimental research is needed before that would
be feasible.

Concretely, our design is based on the ideas of [Car+20a], which classify mathe-
matical libraries and objects by five aspects: deductive, computational, narrative,
databases containing concrete objects, and organizational ontologies—a classifi-
cation that matches existing tools and optimized indexing and querying solutions
quite well. Our key ideas are: (i) While every library typically has one primary
aspect (e.g., deductive for a Coq library), it may contain objects of any other aspect
as well (e.g., narrative comments). (ii) Our solution is centered around a set of spe-
cialized indexes (one per aspect), and indexing a library generates entries in each of
these indexes. (iii) For each index, existing solutions provide optimized querying
support (e.g., SQL for concrete databases), and these supply the atomic queries
of a comprehensive MIR system. (iv) Complex queries arise by combining atomic
ones (e.g., intersection), and query evaluation is based on decomposing a query
into atomic ones that are executed by the respective tools. This paper is a short
version of [BKR20], which has more details and examples.

Related Work. Information retrieval (IR) is the activity of obtaining infor-
mation relevant to an information need from a collection of resources. In MIR,
both the resources and the information need are mathematical in nature. Cur-
rent approaches to MIR have mostly been technology-oriented, focusing either
on formula search or on adapting traditional IR techniques to include formula
data. [GSC15] gives a survey and [Aiz+16] a description of the NTCIR MIR
challenges. An exception to this is the work reported in [ST16,Sta+18] which

Towards a Heterogeneous Query Language for Mathematical Knowledge 41

concentrates on extracting semantic/mathematical information from mathemat-
ical documents and then use it for information retrieval.

Our architecture can be seen as a variant of the data integration system using
a Global-as-View schema mapping in the sense of [DHI12], which combines differ-
ent relational databases. They use a query language based on what they call the
mediated global schema, which is induced as the union of the local schemas under
a database view. That kind of heterogeneity problem is much simpler because
it involves only mediating between different schemas in a fixed aspect (namely
relational databases) whereas the MIR problem requires mediating across dif-
ferent aspects. It remains an open question whether such SQL-specific solutions
can be applied directly to MIR: the awkwardness of encoding knowledge of the
other aspects in SQL may be offset by the high levels of optimization in existing
solutions such as Apache Drill [AD]; but also see [Cho+05].

Overview. In the next section we will show that mathematical resources and
information needs have more aspects than the formulas and words used in MIR so
far. In Sect. 3 we present an architecture for a generic multi-aspect representation
and search system, in Sect. 4 we discus indexing concrete mathematical data, and
in Sect. 5 we specify a cross-aspect query language for MIR. Section 6 concludes
the paper.

A Multi-aspect Library. The Online Encyclopedia of Integer Sequences (OEIS)
[Slo03,OEIS], a popular web portal that contains information on more than
300.000 integer sequences, is an example of a mathematical library whose con-
tents range over multiple aspects.

Internally, the OEIS uses a line-based text format to represent this infor-
mation. Listing 1.1 shows a fragment of the representation for the Fibonacci
numbers. Lines are prefixed by a classifier letter (%I for identifiers, %S for a
prefix of the sequence, %N for the “name”, %C for comments, %D for references,
%A for the OEIS author, and %F for formulae) that indicates the item class.

%I A000045 M0692 N0256
%S A000045 0 ,1 , 1 , 2 , 3 , 5 , 8 , 13 ,21 ,34 ,55 ,89 ,144 ,233 ,377 ,610 ,987
%N A000045 F i b ona c c i numbers : F(n) = F(n−1) + F(n−2) wi th F (0) = 0 and F (1) =

1 .
%C Also somet imes c a l l e d Lamés sequence .
%D A000045 V. E . Hoggatt , J r . , F i b ona c c i and Lucas Numbers . Houghton , Boston ,

MA, 1969 .
%F A000045 F(n) = ((1+ s q r t (5)) ˆn−(1− s q r t (5)) ˆn) /(2ˆn∗ s q r t (5))
%F A000045 G. f . : Sum {n>=0} xˆn ∗ Product {k=1. . n} (k + x) /(1 + k∗x) . − Pau l

D. Hanna , Oct 26 2013
%F A000045 This i s a d i v i s i b i l i t y sequence ; t ha t i s , i f n d i v i d e s m, then a (n

) d i v i d e s a (m)
%A A000045 N . J . A . S loane , Apr 30 1991

Listing 1.1. OEIS Sources for Sequence A000045 (Fibonacci Numbers)

The OEIS portal features a simple boolean search engine which allows
to search for sequences by OEIS ID, name, keywords, and subsequence (this
can contain anonymous wildcards for integers and subsequences). Additionally,
atomic queries can be qualified by prefixes that restrict keywords to the various

42 K. Berčič et al.

classes of items or change the sequence matching algorithm (e.g. from signed to
unsigned equality on components). The query results of this query are a sequence
of complete presentations of the sequence information ordered by “relevance”,
which combines match quality, sequence popularity and number. There is a vari-
ant called superseeker (an e-mail server) that “tries hard to find an explanation
for a number sequence” combining information from the OEIS and other sources.

2 Aspects of Math Resources and Information Needs

In [Car+20a] we have identified the following five basic aspects of mathematics:

i) Inference: deriving statements by deduction (i.e., proving), abduction (i.e.,
conjecture formation from best explanations), and induction (i.e., conjecture
formation from examples).

ii) Computation: algorithmic manipulation and simplification of mathemat-
ical expressions and other representations of mathematical objects.

iii) Concretization: generating, collecting, maintaining, and accessing collec-
tions of examples that suggest patterns and relations and allow testing of
conjectures.

iv) Narration: bringing the results into a form that can be digested by humans,
usually in mathematical documents like articles, books, or preprints, that
expose the ideas in natural language but also in diagrams, tables, and sim-
ulations.

v) Organization, i.e., the modular structuring of mathematical knowledge.

Narration

Inference
Organization

Computation

Concretization

Fig. 1. Five aspects of math artefacts

These aspects—their existence and
importance to mathematics—should be
rather uncontroversial. Figure 1 illus-
trates their tight relation: we locate
the organization aspect at the centre
and the other four aspects at the cor-
ners of a tetrahedron, since the lat-
ter are all consumers and producers
of the mathematical knowledge repre-
sented by the former. [Car+20b] gives
a survey of paradigmatic mathemati-
cal software systems by the five aspects
they address.

We use the term symbolic to cover deductive (aspect Inference) or compu-
tational (aspect Computation) in this paper. While these libraries are pragmat-
ically very different and are thus distinguished in the classification above they
can be treated in the same way for the purpose of search. Coming back to OEIS,
we see that it contains all five aspects of mathematical knowledge:

1. symbolic knowledge: the formulae, even though in this case they are informal
ASCII art; there is also computer code,

Towards a Heterogeneous Query Language for Mathematical Knowledge 43

2. concrete knowledge: the sequence prefix,
3. narrative knowledge: the name and comments,
4. organizational knowledge: the identifiers and references.

Mathematical information needs typically involve combinations of these five
aspects. A paradigmatic example is the quest for “all published integer sequences
that are not (yet) listed in the OEIS” of an OEIS editor who wants to extend
OEIS coverage. Answering this information need will involve finding integer
sequences in documents (a combination of concretized and narrative knowl-
edge), determining whether these documents are published (i.e. part of the
archival literature; this involves organizational metadata), and pruning out the
OEIS sequences. An OEIS user might be interested in “the integer sequences
whose generating function is a rational polynomial in sin(x) that has a Maple
implementation not affected by the bug in module M”. This additionally involves
symbolic knowledge about generating function (formula expressions), and Maple
algorithms.

We take these examples as motivation to develop an approach for multi/cross-
aspect information retrieval now.

3 Heterogeneous Indexing of Mathematical Libraries

We motivate and introduce some general concepts that can be seen as funda-
mental assumptions from which much of our proposed design is derived.

Fragments of a Library. We require that libraries of any aspect define document
fragments and assign unique identifiers (URIs) to them. These fragments will
be used critically in the interface specification for query engines. In particular,
query results contain at least a set of fragments that match the query (plus
possibly other information, e.g., how or how well they match the query).

Identifying and Producing the fragments is natural as individual libraries
typically already have a corresponding concept, e.g.:

– An organizational library already focuses on introducing concepts with unique
identifiers. Each such concept is a fragment, with the same id.

– A symbolic library is structured into files which contain a tree structure of
nested theories/modules/etc. whose leaves are declarations for named types,
functions, etc. Each node is a fragment with a qualified identifier. The under-
lying languages usually already define fragments and their identifiers in this
way because they need them for intra-logical referencing.

– A concretized library is essentially a set of database tables (however the actual
implementation may look like), and each table row is a fragment. In practice,
typically one column serves as a key, and the triple of database, table name,
and key provides the fragment identifier. For example, in many mathemati-
cal tables that contain enumerations of objects (e.g., in LMFDB [Lmf]), the
key can be obtained by concatenating multiple properties of the object that,
together, uniquely characterize it.

44 K. Berčič et al.

– A narrative library is structured both non-semantically into sections, para-
graphs, etc. and semantically into statements like definitions and theorems.
These are often numbered in the presentation, and internally labels are used
to identify them. Those are the fragments, and their identifiers.

Thus, it is straightforward to extend an existing implementation of a language
L in such a way that it can produce the list of fragment-id pairs in a L-libraries.
This is the basic functionality of what we call a harvester for L below.

Findable Objects in a Fragment. Next, to describe what it means for a fragment
to match a query, we assume that every fragment has some internal structure
that allows defining occurrences of objects in the fragment. This is the main task
of the harvester: it has to define what exactly an occurrence is and produces for
each fragment the list of objects in it.

Most of the time, these objects have the same aspect as the containing library.
For example, if L is a symbolic language, the most important objects are symbolic
expressions such as the types of the declarations or the formulas in theorems.
Similarly, in a narrative library, they are n-grams of words, and in a table-based
database, they are the primitive database values in the table cells.

However, it is critical to observe that the same library may contain objects
of many different aspects. In fact, libraries of any primary aspect can and in
practice often do contain objects of the other aspects as well. Some of these
objects work in the same way across libraries, although the concrete syntax may
vary. Any library can contain:

– metadata attributing narrative or symbolic objects to a fragment,
– cross-references to fragments of any other library,
– contain narrative comments.

Other such cross-aspect objects are specific to the combination of aspects, e.g.:

– The text of a fragment of a narrative library may be interspersed with sym-
bolic expressions. This occurs in virtually every scientific document.

– A table in a database can use a schema that declares some columns to con-
tain objects of other aspects. These may be narrative objects represented as
a string, or symbolic objects encoded as primitive database values (e.g., a
polynomial encoded as a list of integer coefficients).

– An expression in a symbolic fragment may contain references to concrete
objects stored externally, e.g., when using a database for persistent memo-
rization. This can be useful in mathematical computation systems1, which
often need to handle complex pure functions.

Thus, it would be a mistake to assume that a library of aspect A is indexed
in an A-index and queried with an A-query language. Instead, every library
fragment F can contain objects Oi of any aspect Ai. We require that it be

1 https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP6/D6.9/
report-final.pdf.

https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP6/D6.9/report-final.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP6/D6.9/report-final.pdf

Towards a Heterogeneous Query Language for Mathematical Knowledge 45

possible to find F as a result of queries in any aspect Ai. For example, a symbolic
query (i.e., a symbolic expression with some free variables) can be matched
against the symbolic objects found in F irrespective of the aspect of the library
containing F .

Libraries

lib 1

...

lib n

Indexes

symbolic

narrative

concrete

organizational

harvest

Fig. 2. Heterogeneous indexing

Heterogeneous Indexing. While every
library can contain objects of any aspect,
the aspects of the objects may not be
neglected: indexing and efficient querying
differs vastly across aspects. For exam-
ple, querying n-grams of words is different
from querying symbolic expressions.

From the above, we can derive the
general design of an indexing infrastruc-
ture. Figure 2 gives an overview. For every
library, we need to run a harvester, which
returns the set of findable objects, each
consisting of (i) an aspect and an object of that aspect (ii) the identifier of
the containing fragment, (iii) optionally, any other information about the occur-
rences of the object, e.g., the position within the fragment. The findable objects
of all libraries are collected and stored in aspect-specific indexes, i.e., we use
one index per aspect and arbitrarily many libraries. (If this runs into scalability
issues, we can federate the individual indexes, but that is an implementation
issue.)

For example, these indexes could be

– a triple store like GraphDB [Eso] for organizational metadata and cross-
references,

– a substitution tree index like MathWebSearch [HKP14] for symbolic objects,
– a text indexer like Elastic search [Eso] for narrative objects,
– a yet-to-be-developed index for concrete values that we discuss in Sect. 4.

The harvesters are specific to a library language and often integrated with
the respective tool. For example, a Coq harvester could be integrated with Coq
to harvest any library written in Coq while compiling it; a CSV harvester could
be a stand-alone tool to harvest any concrete database represented as a CSV
dump. Alternatively, if the language-specific part has already been abstracted
away by exporting libraries in aspect-independent formats such as OMDoc, one
can write language-independent harvesters once and for all.

In all cases, it may make sense to write four different harvesters (one for
each index aspect) for the same language. For example, the Coq harvester for
narrative objects may be written as a stand-alone parser of the Coq language
that extracts all comments.

Indexing Induced Objects. Finally, we mention an optional concept that we
expect to become relevant in practice as well even though it might not be present
in the first implementations: harvesters that generate new objects that did not

46 K. Berčič et al.

physically occur in the fragment but logically belong to it. We call these induced
objects. There are many instances of induced objects, e.g.:

– In an organizational library, we can take the transitive closure of a relation.
– In a symbolic language that uses some kind of inheritance or logical imports,

a fragment F might be a class/module etc., and we can index also objects
logically occurring in F through inheritance. That is already done routinely
in many documentation generation tools, especially for object-oriented pro-
gramming languages. We also built a symbolic index like that for Mmt in
[IKP14].

– Sometimes, especially in deduction systems, the most feasible way to imple-
ment the harvester is to instrument the kernel. But the kernel may perform
extensive normalization, in which case the index will contain the objects
induced by normalization. Unfortunately, that also means it might not con-
tain some objects originally in the library (because they are normalized away),
which is a known problem with indexing deductive libraries.

4 Indexing Concrete Values

Motivation. Above we have described concrete values as being stored in rela-
tional databases. Conceptually, this fits well for all the datasets we have sur-
veyed [MDT]. In practice, the situation may differ a bit. Sometimes the infor-
mation is more efficiently retrieved by on demand computation. For example, the
authors of the GAP small groups library [EBO] used computer algebra system
integration to bring the average space demand down to less than two bits per
group without significantly sacrificing the speed of retrieval. When computation
is not feasible, custom compression is often needed to manage the size of large
datasets like [FL]. All of these datasets could be stored as simple tables, but
that has not been seen as advantageous so far.

Even if all libraries used relational tables, an indexing and querying solution
should not necessarily be built on operations such as filters and joins. These
are what SQL focuses on, and work for MIR needs where the user knows the
data format and how to extract information from it. SQL is less useful for more
exploratory MIR tasks, which is what we focus on in this paper. Relational
database indexes usually focus on each index providing fast access to the rows
in one table. This is not as suitable for the design from Sect. 3, where we require
a single index holding all objects (i.e., the entries of all cells) searcheably.

It is therefore helpful to develop an indexing solution that goes beyond just
taking the union of the individual datasets. We have already collected some
initial experiences in the MathDataHub system [DMH], where datasets are bro-
ken down into parts that roughly correspond to mathematical properties (group
order, number of triangles in a graph, ...). Such an approach supports indexing
subsets of datasets and allows for building new datasets from old ones. Even
though that work predates and is in fact not always consistent with the ideas
developed in this paper, some parts of it can be seen as an ad-hoc prototype
solution of a concrete index.

Towards a Heterogeneous Query Language for Mathematical Knowledge 47

In the sequel, we follow our design from the previous section and specify how
a relational database can be used to build an index of concrete objects. Note that
in this design, the entire database serves as the index, and that use of the word
“index” must be distinguished from any internal indexes kept by the database
implementation.

The Symbolic-Concrete Spectrum. We use the following intuition to distinguish
between symbolic and concrete objects: Symbolic objects include free names
(constants, variables) and thus cannot always be reduced to a value. Concrete
objects, on the other hand, are closed and fully evaluated. The distinction is not
as clear-cut as one might think:

– A closed expression containing bound variables is a borderline case; we con-
sider it symbolic.

– A polynomial (with evaluated coefficients) contains the variable name; but if
we consider those names to be string values (which is done in many datasets),
the whole polynomial can be seen as concrete.

– Irrational numbers such as e or
√

2 contain names but are still generally
considered to be values.

The distinction is important because it leads to differences in indexing. The
MIR needs for symbolic objects focus on their structure. Symbolic objects can be
stored efficiently in a substitution tree index and queried by unification queries
as done in MathWebSearch. However, the more desirable querying up to infer-
able/computable properties is difficult, e.g., search/unification up to associative
and commutative properties is a well-known difficult problem. On the other
hand, many interesting properties of concrete objects are (often efficiently) com-
putable, e.g., it is easy to check if a finite prefix of an integer sequence contains
a certain subsequence. Thus, it is desirable to index concrete objects and their
properties in a way that supports such queries.

To make the distinction precise, we have introduced a rigorous treatment in
[WKR17]. Firstly, we standardized a set of types (numbers, strings, lists, and
tuples) for concrete objects commonly used in data representation languages such
as JSON or CSV. Secondly, we standardized a notation of codecs that represent
symbolic objects as concrete ones. This allows treating any mathematical object
as a triple of its symbolic representation, a codec, and the corresponding encoded
concrete object.

An Index Design. We use a relational database with one table for each type in
our standardized language of concrete objects. Each table has a column “value”
holding the object using a chosen standard encoding.

For each type we define a set of operations that are precomputed and stored
with the objects (e.g., the factorization of an integer or the roots of a polynomial),
and their results are stored in additional columns. However, these columns do
not hold the actual result objects; instead, the results are concrete objects that
are themselves stored in the index, and the columns just hold references to them.
(A recursion threshold is used in case this process does not terminate.)

48 K. Berčič et al.

In practice, we must distinguish between different kinds of precomputed oper-
ations. Some will require so much mathematical knowledge that they can only
be computed by computer algebra systems. Those computations may or may
not be linkable via the database’s foreign function interface. On the other end
of the spectrum, some computations will be so easy that they can be carried out
by the database on the fly, e.g., in a function-based SQL index.

Overall, this design has the advantage of being extensible. We can easily add
new types (i.e., tables) and new precomputed operations (i.e., columns). This
results in a formal language of types, constructors for objects of these types,
and operations on such objects, which we call MDDL (for mathematical data
description language).

Concrete Queries. A concrete query over this index is of the form SELECT X1 :
T1, . . . , Xn : Tn WHERE P (X1, . . . , Xn). Here the Ti are types and P is a com-
putable MDDL-expression of boolean type. The Xi represent objects in the
index of type Ti and are bound in P . The intended semantics is that it returns
all substitutions to the Xi for which P is true.

It is straightforward to develop more complex query languages, but even
this simple form is quite difficult to implement. Most critically, even if P is
computable, it may not be efficiently computable. And even if it is, it may not
be practical to program the computation inside an SQL database.

On the other hand, many simple forms of P can be directly translated to SQL
queries. For example, if f is one of the precomputed values for T , then SELECT X :
T WHERE f(X) = 5 becomes the SQL query SELECT value FROM T WHERE f = 5.

Open Problems. While we are convinced in general of the utility of this design,
several open problems remain, for which further research is needed. We discuss
these in the remainder.

In some cases, our design will explode. For example, storing all subsequences
of an OEIS sequence may become infeasible quickly even if attention is restricted
to fixed-length prefixes of sequences. Thus, special indexing techniques must be
developed for individual types and operations.

Another issue is the choice of codec in the index. For each type, we can choose
a standard codec and use it to represent the objects in that type’s table. Then
harvesters that find encoded objects in different encodings must transcode them
into the standard encoding. However, in some cases this will be inefficient—the
most common example is the trade-off between sparse and dense encodings of
lists.

But even in the seemingly trivial case of integers, this can become an issue:
For example, in [WKR17], we encountered multiple different encodings of unlim-
ited precision integers transcoding between which was not always trivial. This
is aggravated in connection with the next issue discussed below: different codecs
may commute more easily with different mathematical operations. Therefore,
it may be necessary to use multiple tables for the same type—one per codec.
This will make retrieval harder as results from all tables have to be considered;
moreover, the same object might exist in multiple tables.

Towards a Heterogeneous Query Language for Mathematical Knowledge 49

Finally, if an index is hosted by a relational database, it is desirable to match
mathematical operations to primitive database operations. But this is difficult
because the database only sees the encoding. For example, computing the degree
of a univariate polynomial encoded as a list of coefficients can easily be done by
the database by taking the length of the list. But computing its roots requires
decoding it, computing the roots in custom code, presumably in a computer
algebra system, and then encoding the results.

5 A Heterogeneous Query Language

Libraries

lib 1

...

lib n

Indexes

sym:MWS

narr:Elastic

conc:SQLDB

org:GraphDB
...

Querying

QuComp

ResAgg

Q1:unif

R1

Q 2
:B

oW

R2

Q
3
:S
Q
L

R3

Q
4
:S

P
A
R
Q
L

R4

Q

R

Qp

Q∗
s

Fig. 3. The search architecture

Overview. Figure 3 shows
the general search architec-
ture we propose. On the
left we have any num-
ber of libraries, which are
harvested into four aspect-
specific indexes as described
above. A user query Q is
expressed in a cross-aspect
query language described
below. It is passed to a
query engine that separates
Q into a set of aspect-
specific atomic queries Qi,
for which the respective
database returns result Ri. These are then aggregated into the overall result
R that is returned to the user. Note that our drawing uses exactly one query
Qi per aspect—that is just an example, and there can be any number of queries
(including zero) per index. It is also straightforward to extend the design with
additional indexes if new kinds of indexes are conceived.

In this paper, we focus on a relatively simple format for the queries: Every
query Q consists of

– a list of query variables X1, . . . , Xn, we use upper case letters for them,
– a list of atomic queries Qi(X1, . . . , Xn).

Each atomic query is aspect-specific and resolved by lookup in the respective
index. The intuition of the overall result R is to return the intersection of the
atomic queries Qi. More formally, the results Ri and R of the queries are sub-
stitutions for the query variables. The atomic queries are evaluated sequentially;
each time some query variables may already have been instantiated by previous
atomic queries, and the results are substitutions for the remaining ones.

More complex queries can easily be conceived, but this simple fragment cap-
tures not only the most practically relevant cases but also one of the biggest
difficulties of heterogeneous queries: How can queries of different aspects mean-
ingfully share query variables? The latter is what we discuss in the remainder.

50 K. Berčič et al.

Atomic Queries with Shared Variables. To specify our query language in detail,
we have to spell out the structure of the atomic queries. Here, we are mostly
bound by the capabilities of the existing aspect-specific indexes except for occa-
sionally deriving improvement suggestions for them.

All atomic queries are relative to a set of query variables ranging over formal
objects. All query variables may by typed with MDDL types. The results are
substitutions of the query variables with formal objects. Here the set of formal
objects should be a large enough to subsume content MathML but should also
allow any URI as an identifier even if it is not declared in some content dictionary
(e.g., any identifier of a paper, author, etc.) as well as sufficient literals as needed
to build concrete objects.

Concretely, we assume the following:

– An organizational atom is an RDF triple s p o possibly containing a query
variable as the subject s or object o. It instantiates these with identifiers or
literals.

– A symbolic atom is of the form F ∈ Symb(S(X1, . . . , Xn)) where S is some
formal object with free query variables and F is a query variable. It substitutes
F with the identifier of the fragment that contains an object matching S and
substitutes the Xi according to that match.

– A concrete atom is as described in Sect. 4 except that the free variables
are taken from the globally bound query variables Xi. Thus, it is simply an
MDDL predicate. It substitutes the query variables with pairs of concrete
object and codec.

– A narrative atom is of the form F ∈ Narr(W1, . . . ,Wm) where F is a query
variable and each Wi is a string-valued object. The query instantiates F with
the identifier that matches the bag of words containing the Wi. Due to the
nature of implementations of narrative queries, the bag of words may not
contain any free variables when sent to the narrative index, i.e., any Wi that
are query variables must have been instantiated previously (with a string
value) by some other atoms.

Both SPAQRL and MDDL queries naturally use a SELECTWHERE form with the
WHERE clause containing a conjunction of atoms. This inspires our overall syntax
for heterogeneous queries: SELECT V ∗ WHERE A∗ where each V declares a query
variable X as X : T , and each A is one of the four atoms. For convenience,
we also allow undeclared query variables—these are simply dropped from the
returned substitutions.

Notably, stand-alone symbolic query engines only use S as the query (rather
than F ∈ Symb(S)) and return pairs of fragment identifiers and substitutions.
Similarly, stand-alone narrative query engines usually only use the bag of words
as the query. But in heterogeneous queries, we may want to use the fragment
identifier in other atoms of the query. Therefore, we have extended the syntax
for symbolic and narrative atoms with an explicit query variable referring to
the fragment. The corresponding extension is not needed for organizational and
concrete atoms.

Towards a Heterogeneous Query Language for Mathematical Knowledge 51

A key difficulty is that atoms of different aspects instantiate variables with
different kinds of objects, and these cannot always be directly substituted into
atoms of other aspects. For example, consider a symbolic atom F ∈ Symb(X2)
that substitutes X with some identifier MathML symbol s. We can still use the
variable X is a subsequent narrative atom by converting it to a string, e.g., by
using the name of s. But if X is substituted with a composite MathML object,
we have to first evaluate it into a string, which may or may not be possible or
easy. Similarly, we can still use X in a subsequent concrete atom, but only if
we infer a codec that should be used to encode X into a concrete object; this
codec can be inferred from the type declared for X in the query or in some cases
simply from the shape of X. Therefore, for each pair (a, b) of aspects, we need
conversion rules that allow converting objects substituted by a-atoms to objects
usable in b-atoms. Figure 4 gives an overview of possible conversions for column
heads a and row head b.

instantiating query∗ organizational symbolic concrete
instantiates with id or literal symb. obj. conc. obj.+codec

used by . . . queries via . . .
organizational as is ids, literals: as is

other: evaluate
symbolic as is as is decode
concrete literals: as codes encodeP as is

ids: fail
narrative ids: name as string value as string

literals: as string
other: evaluate

∗: narrative queries never instantiate variables; P marks partial conversions

Fig. 4. Conversions of objects across queries of different aspects

Of course, if a query contains multiple atoms of the same aspects, it may be
reasonable to merge them. Multiple organizational atoms can be directly joined
into a SPARQL query, and similarly, multiple concrete atoms can be translated
jointly into a single SQL query. However, two additional and conflicting imple-
mentations strategies must be considered: On the one hand, it is desirable to
first execute those atomic queries that fill in many query variables. That makes
later queries more specific and thus more efficient. On the other hand, it is desir-
able to first execute those atomic queries that return the fewest results. Because
every result leads to a different substitution, all subsequent atomic queries using
those query variables must be duplicated for each result. It remains an open
question which strategy works best in practice, and it is unlikely that a single
best strategy exists. But there is a large databases literature to draw experience
from.

While it is, in our experience, not very common to find queries that naturally
combine all four index types, combinations of two or three are quite common.

52 K. Berčič et al.

Example 1. Consider a concrete library of graphs in a table that additionally
stores human-recognizable names and arc-transitivity for each graph (for exam-
ple, [EET]). These are harvested into a concrete index with a type and codec
for graphs, e.g., the sparse6 format [McF], a Boolean computed property for
the arc-transitivity, and a string property for the name. Additionally, consider
all papers from the Cornell e-Print arXiv harvested into the same narrative
index [SK08], and an organizational index that stores triples for the BIBO pub-
lication and SPAR semantic publishing ontologies.

Q1: Find arc-transitive graphs that are mentioned by name in articles in
journals with h-index greater than 50.

can be encoded in the following query using the concrete, narrative, and orga-
nizational aspects:

SELECT G : Graph WHERE
arcTransitive(G), F ∈ Narr(Name(G), ”graph”),
F partOf P, P bibo : publishedIn J, J spar : hasHindex H,H > 50

The first atom in the WHERE-clause returns all arc-transitive graphs G in the
concrete index.

The second atom retrieves the names of these graphs and runs a narrative
query for them. This includes evaluating the expression Name(G) into a string
by retrieving the corresponding value from the concrete index. To avoid false-
positives, we include the word “graph” in the narrative atom. It instantiates F
with the identifier of the matching fragment, presumably a part of a paper.

The next three atoms are organizational atoms that perform a SPARQL
query retrieving first the identifier P of the paper containing F , the identifiers
J of the journal it appeared in, and its h-index H. H is a concrete value that is
reused in the final concrete query on the size of H.

Finally, we throw away all variables from the obtained substitutions except
for the graphs G. Alternatively, we could include P in the SELECT-clause to also
return the paper.

In the above example, we see how a query compiler should consider merging
consecutive organizational atoms into a single SPARQL query. In that case, the
last concrete atom of the example could, because it is so simple, alternatively
and more efficiently be included in that SPARQL query as well. Moreover, the
atoms in the WHERE-clause were ordered in a way that previous queries restrict
the scope of the subsequent ones. More generally, the query compilers should
reorder the atoms automatically.

6 Conclusion and Future Work

We have presented a high-level design for a cross-aspect query language and
search engine for mathematical information retrieval. The crucial observation is
that mathematical information needs address multiple aspects and even though

Towards a Heterogeneous Query Language for Mathematical Knowledge 53

mathematical libraries often have a primary aspect, they usually also contain or
reference material of other aspects as well. Our cross-aspect search architecture
proposes to harvest all objects into aspect-specific indexes. Correspondingly, the
proposed query language combines atomic queries from existing aspect-specific
query languages and a query compiler distributes them to the respective indices.
The query language is more than just a sum of the four parts as it allows to
share variables between the aspect-specific sub-queries and compute non-trivial
joins.

We have conducted a requirement analysis on the respective basis technolo-
gies and have confirmed the principal adequacy of the query language on paradig-
matic, cross-aspect information needs. This shows that existing search/indexing
technologies are essentially sufficient for cross-aspect search except for the con-
crete aspect, where our previous work in MathDataHub provides a good first
step.

The obvious next step is an implementation of a distributed cross-aspect
search engine as sketched as part of the MathHub system. MathHub already has
already collected most of the largest theorem prover libraries (symbolic), the
1.5M preprints of the arXiv, and several large collections of concrete mathemat-
ical objects in a common representation format and assigned uniform identifiers
to their fragments. MathHub already integrates symbolic and narrative indices,
and the MMT system which MathHub employs for knowledge management –
while not a dedicated index – can already answer complex symbolic and organi-
zational queries [Rab12].

References

[AD] Apache Drill - Schema-free SQL Query Engine for Hadoop, NoSQL and
Cloud Storage. https://drill.apache.org. Accessed 03 Feb 2020

[Aiz+16] Aizawa, A., et al.: NTCIR-12 MathIR task overview. In: Kando, N., Sakai,
T., Sanderson, M. (ed.) Proceedings of the 12th NTCIR Conference on
Evaluation of Information Access Technologies, Tokyo, Japan: NII, Tokyo,
pp. 299–308 (2016). https://tinyurl.com/sofcxjs

[BKR20] Berčič, K., Kohlhase, M., Rabe, F.: Towards a Heterogeneous Query Lan-
guage for Mathematical Knowledge - Extended Report (2020). http://
kwarc.info/kohlhase/papers/tetrasearch.pdf. Accessed 27 Mar 2020

[Car+20a] Carette, J., et al.: Big math and the one-brain barrier - the tetrapod model
of mathematical knowledge. In: Mathematical Intelligencer (2020, in press).
https://arxiv.org/abs/1904.10405

[Car+20b] Carette, J., et al.: The space of mathematical software systems - a survey
of paradigmatic systems. preprint; http://arxiv.org/abs/2002.04955 (2020)

[Cho+05] Chong, E.I., et al.: An efficient SQL-based RDF querying scheme. In: Pro-
ceedings of the 31st VLDB Conference (2005)

[DHI12] Doan, A.H., Halevy, A., Ives, Z.: Principles of Data Integration. Elsevier,
Amsterdam (2012)

[DMH] Datasets on MathHub.info. https://data.mathhub.info. Accessed 24 Sept
2019

https://drill.apache.org
https://tinyurl.com/sofcxjs
http://kwarc.info/kohlhase/papers/tetrasearch.pdf
http://kwarc.info/kohlhase/papers/tetrasearch.pdf
https://arxiv.org/abs/1904.10405
http://arxiv.org/abs/2002.04955
https://data.mathhub.info

54 K. Berčič et al.

[EBO] Eick, B., Besche, H.U., O’Brien, E.: SmallGrp - The GAP Small
Groups Library. https://www.gap-system.org/Manuals/pkg/SmallGrp-1.
3/doc/chap1.html. Accessed 13 Oct 2018

[EET] Wilson, S., Potočnik, P.: A Census of edge-transitive tetravalent graphs.
https://jan.ucc.nau.edu/∼swilson/C4FullSite/index.html. Accessed 23 Jan
2019

[Eso] Elastic Search, 20 February 2014. http://www.elasticsearch.org/. Accessed
20 Feb 2014

[FL] Kohonen, J.: Lists of finite lattices (modular, semimodular, graded and geo-
metric). https://www.shsu.edu/mem037/Lattices.html. Accessed 25 Jan
2019

[GSC15] Guidi, F., Sacerdoti Coen, C.: A survey on retrieval of mathematical knowl-
edge. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS (LNAI), vol. 9150, pp. 296–315. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20615-8 20

[HKP14] Hambasan, R., Kohlhase, M., Prodescu, C.: MathWeb-search at NTCIR-11.
In: Kando, N., Joho, H., Kishida, K. (ed.) NTCIR 11 Conference, Tokyo,
Japan: NII, Tokyo, pp. 114–119 (2014). https://tinyurl.com/wzj7mcg

[IKP14] Iancu, M., Kohlhase, M., Prodescu, C.: Representing, archiving, and search-
ing the space of mathematical knowledge. In: Hong, H., Yap, C. (eds.) ICMS
2014. LNCS, vol. 8592, pp. 26–30. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44199-2 5

[Lmf] The L-functions and Modular Forms Database. http://www.lmfdb.org.
Accessed 27 Aug 2016

[McF] McKay, B.: Description of graph6, sparse6 and digraph6 encodings. http://
users.cecs.anu.edu.au/∼bdm/data/formats.txt. Accessed 22 Mar 2019

[MDT] Berčič, K.: Math Databases Table. https://mathdb.mathhub.info/.
Accessed 15 Jan 2020

[OEIS] The On-Line Encyclopedia of Integer Sequences. http://oeis.org. Accessed
28 May 2017

[Rab12] Rabe, F.: A query language for formal mathematical libraries. In: Jeuring,
J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 143–158. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5 10

[SK08] Stamerjohanns, H., Kohlhase, M.: Transforming the arX iv to XML. In:
Autexier, S., et al. (eds.) CICM 2008. LNCS (LNAI), vol. 5144, pp.
574–582. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85110-3 46

[Slo03] Sloane, N.J.A.: The on-line encyclopedia of integer sequences. In: Notices
of the AMS, vol. 50, no. 8, p. 912 (2003)

[ST16] Stathopoulos, Y., Teufel, S.: Mathematical information retrieval based on
type embeddings and query expansion. In: Proceedings of COLING 2016,
ACL, pp. 2344–2355 (2016). https://www.aclweb.org/anthology/C16-1221

[Sta+18] Stathopoulos, Y., et al.: Variable typing: assigning meaning to variables
in mathematical text. In: NAACL 2018 Proceedings, ACL, pp. 303–312
(2018). https://doi.org/10.18653/v1/N18-1028

[WKR17] T. Wiesing, M. Kohlhase, and F. Rabe. ”Virtual Theories - A Uniform
Interface to Mathematical Knowledge Bases”. In: Mathematical Aspects of
Computer and Information Sciences. Ed. by J. Blömer et al. Springer, 2017,
pp. 243–257

https://www.gap-system.org/Manuals/pkg/SmallGrp-1.3/doc/chap1.html
https://www.gap-system.org/Manuals/pkg/SmallGrp-1.3/doc/chap1.html
https://jan.ucc.nau.edu/~swilson/C4FullSite/index.html
http://www.elasticsearch.org/
https://www.shsu.edu/mem037/Lattices.html
https://doi.org/10.1007/978-3-319-20615-8_20
https://tinyurl.com/wzj7mcg
https://doi.org/10.1007/978-3-662-44199-2_5
https://doi.org/10.1007/978-3-662-44199-2_5
http://www.lmfdb.org
http://users.cecs.anu.edu.au/~bdm/data/formats.txt
http://users.cecs.anu.edu.au/~bdm/data/formats.txt
https://mathdb.mathhub.info/
http://oeis.org
https://doi.org/10.1007/978-3-642-31374-5_10
https://doi.org/10.1007/978-3-540-85110-3_46
https://doi.org/10.1007/978-3-540-85110-3_46
https://www.aclweb.org/anthology/C16-1221
https://doi.org/10.18653/v1/N18-1028

Leveraging the Information Contained in
Theory Presentations

Jacques Carette, William M. Farmer, and Yasmine Sharoda(B)

Computing and Software, McMaster University, Hamilton, Canada
{carette,wmfarmer,sharodym}@mcmaster.ca

http://www.cas.mcmaster.ca/research/mathscheme/

Abstract. A theorem prover without an extensive library is much less
useful to its potential users. Algebra, the study of algebraic structures, is
a core component of such libraries. Algebraic theories also are themselves
structured, the study of which was started as Universal Algebra. Various
constructions (homomorphism, term algebras, products, etc.) and their
properties are both universal and constructive. Thus they are ripe for
being automated. Unfortunately, current practice still requires library
builders to write these by hand. We first highlight specific redundancies
in libraries of existing systems. Then we describe a framework for gen-
erating these derived concepts from theory definitions. We demonstrate
the usefulness of this framework on a test library of 227 theories.

Keywords: Formal library · Algebraic hierarchy

1 Introduction

A theorem prover on its own is not nearly as useful for end-users as one equipped
with extensive libraries. Most users have tasks to perform that are not related to
new ideas in theorem proving. The larger the library of standard material, the
faster that users can just get to work. However building large libraries is currently
very labor intensive. Although some provers provide considerable automation for
proof development, they do not the same for theory development.

This is the problem we continue [1,6,8,9] to tackle here, and that others [11]
have started to look at as well. It is worthwhile noting that some programming
languages already provide interesting features in this direction. For example,
Haskell [22] provides the deriving mechanism that lets one get instances for some
classes “for free”; recently, the Deriving Via mechanism [2] has been introduced,
that greatly amplifies these features. Some libraries, such as the one for Lens [24],
use Template Haskell [33] for the same purpose.

Libraries of algebra define algebraic structures, constructions on these, and
properties satisfied by the structures and constructions. While structures like
Semigroup, Monoid, AbelianGroup, Ring and Field readily come to mind, a
look at compendiums [21,23] reveals a much larger zoo of hundreds of structures.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 55–70, 2020.
https://doi.org/10.1007/978-3-030-53518-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_4

56 J. Carette et al.

Haskell

class Semiring a => Monoid a

where

mempty :: a

mappend :: a -> a -> a

mappend = (<>)

mconcat :: [a] -> a

mconcat =

foldr mappend mempty

Coq

class Monoid {A : type}

(dot : A → A → A)

(one : A) : Prop := {

dot_assoc : forall x y z : A,

(dot x (dot y z)) =

dot (dot x y) z

unit_left : forall x,

dot one x = x

unit_right : forall x,

dot x one = x

}

Alternative Definition:

Record monoid := {

dom : Type;

op : dom -> dom -> dom

where "x * y" := op x y;

id : dom where "1" := id;

assoc : forall x y z,

x * (y * z) = (x * y) * z;

left_neutral : forall x,

1 * x = x;

right_neutal : forall x,

x * 1 = x;

}

MathScheme

Monoid := Theory {

U : type;

* : (U,U) → U;

e : U;

axiom right_identity_*_e :

forall x : U · (x * e) = x;

axiom left_identity_*_e :

forall x : U · (e * x) = x;

axiom associativity_* :

forall x,y,z : U ·
(x * y) * z = x * (y * z);

}

Agda

record Monoid c � :

Set (suc (c � �)) where

infixl 7 _•_
infix 4 _≈_

field

Carrier : Set c

≈ : Rel Carrier �
• : Op2 Carrier

isMonoid : IsMonoid _≈_ _•_ ε
where IsMonoid is defined as

record IsMonid (• : Op2) (ε : A)

: Set (a � �) where

field

isSemiring : IsSemiring •
identity : Identity ε

identity l : LeftIdentity ε •
identity l : proj1 identity

identityr : Rightdentity ε •
identityr : proj2 identity

MMT

theory Semigroup : ?NatDed =

u : sort

comp : tm u → tm u → tm u

1 * 2 prec 40

assoc : � ∀ [x, y, z]

(x * y) * z = x * (y * z)

assocLeftToRight :

{x,y,z} � (x * y) * z

= x * (y * z)

= [x,y,z]

allE (allE (allE assoc x) y) z

assocRightToLeft :

{x,y,z} � x * (y * z)

= (x * y) * z

= [x,y,z] sym assocLR

theory Monoid : ?NatDed

includes ?Semigroup

unit : tm u # e

unit_axiom : � ∀ [x] = x * e = x

Fig. 1. Representation of Monoid theory in different languages.

Picking Monoid as an example, it is a structure with a carrier set, an associa-
tive binary operation and an identity element for the binary operation. Different

Leveraging the Information Contained in Theory Presentations 57

systems implement Monoid in different ways (see Fig. 1). Other than layout and
vocabulary, different libraries also make more substantial choices:

– Whether declarations are arguments or fields.
– The packaging structure — whether theory, record, locale, etc.
– The underlying notion of equality.

Some of these choices are mathematically irrelevant—in the sense that the
resulting theories can be proved to be equivalent, internally or externally—while
others are more subtle, such as the choice of equality.

A useful construction on top of Monoid is the homomorphism between two
of its instances, which maps elements of the carrier of the first instance to that
of the second one such that structure is preserved. For an operation op and a
function hom, the preservation axiom has the form

hom (op x1 .. xn) = op (hom x1) .. (hom xn)

One can see that this definition can be “derived” from that of Monoid. And that,
in fact, this derivation is uniform in the “shape” of the definition of Monoid,
so that this construction applies to any single-sorted equational theory. This
observation is one of the cornerstones of Universal Algebra [35].

There are other classical constructions that can also be generated. This poses
a number of questions:

– What other information can be generated from theory presentations?
– How would this affect the activity of library building?
– What pieces of information are needed for the system to generate particular

constructions?

Theories written in equational logic that describe algebraic structures are rich
in implicit information that can be extracted automatically.

There are obstacles to this automation. For example, definitional and
“bundling” choices can make reuse of definitions from one project in another
with different aims difficult. Thus users resort to redefining constructs that have
already been formalized. We then end up with multiple libraries for the same
topic in the same system. For example, there are at least four algebra libraries in
Coq [17,18,30,34], and even more for Category Theory [19]. In [17], the authors
mention, referring to other libraries:

“In spite of this body of prior work, however, we have found it difficult to
make practical use of the algebraic hierarchy in our project to formalize
the Feit-Thompson Theorem in the Coq system.”

Universal Algebra [29,31,35] provides us with tools and abstractions well-
suited to this task. It is already used in providing semantics and specifications
of computer systems [14,15,32] and has been formalized in Coq [3] and Agda [20].
We use Universal Algebra abstractions as basis for our framework to automate
the generation of useful information from the definition of a theory. We use Tog

58 J. Carette et al.

to realize our framework1. Tog is a small implementation of a dependent type
theory, in the style of Agda, Idris and Coq. It serves well as an abstraction over
the design details of different systems. Studying theory presentations at this level
of abstraction is the first step to generating useful constructions for widely used
systems, like Agda, Coq, Isabelle and others.

In Sect. 2 we highlight some of the redundancies in current libraries. We
present our framework for mechanizing the generation of this information in
Sect. 3. We follow this with a discussion of related work in Sect. 4 and a conclusion
and future work in Sect. 5.

2 Algebra in Current Libraries

Our first observation is that current formalizations of Algebra contain quite a bit
of information that is “free” in the sense that it can be mechanically generated
from basic definitions. For example, given a theory X, it is mechanical to define
X-homomorphisms. To do this within a system is extremely difficult, as it would
require introspection and for theory definitions to be first-class citizens, which is
not the case for any system based on type-theory that we are aware of. Untyped
systems in the Lisp tradition do this routinely, as does Maude [10], which is based
on rewriting logic; the downside is that there is no difference between meaning-
ful and meaningless transformations in these systems, only between “runs suc-
cessfully” and “crashes”. However, these constructions are fully typeable and,
moreover, are not system-specific (as they can be phrased meta-theoretically
within Universal Algebra), even though an implementation has to be aware of
the syntactic details of each system.

Lest the reader think that our quest is a little quixotic, we first look at current
libraries from a variety of systems, to find concrete examples of human-written
code that could have been generated. We look at Agda, Isabelle/HOL and Lean in
particular. More specifically, we look at version 1.3 of the Agda standard library,
the 2019 release of the Isabelle/HOL library and Lean’s mathlib, where we link to
the proper release tag.

We use the theory Monoid as our running example, and we highlight the
reusable components that the systems use to make writing the definitions easier
and more robust.

2.1 Homomorphism

How do the libraries of our three systems2 represent homomorphism?

Agda defines Monoid homomorphism, indirectly, in two ways. First, a predicate
encapsulating the proof obligations is defined, which is layered on top of the

1 The implementation is available at https://github.com/ysharoda/tog.
2 We do not have enough room to give an introduction to each system; hopefully each

system’s syntax is clear enough for the main ideas to come through.

https://github.com/agda/agda-stdlib/releases/tag/v1.3
https://isabelle.in.tum.de/website-Isabelle2019/dist/library/HOL/HOL-Algebra/index.html
https://github.com/leanprover-community/mathlib/releases/tag/snapshot-2019-10
https://github.com/ysharoda/tog

Leveraging the Information Contained in Theory Presentations 59

predicate for Semigroup homomorphism. This is then used to define homomor-
phisms themselves.

module _ {c1 �1 c2 �2}
(From : Monoid c1 �1)
(To : Monoid c2 �2) where

private

module F = Monoid From

module T = Monoid To

record IsSemigroupMorphism (�_�:Morphism)
: Set(c1 � �1 � c2 � �2) where

field

��-cong : �_� Preserves F._≈_ → T._≈_

·-homo : Homomorphic2 �_� F._·_ T._·_
· · ·

record IsMonoidMorphism (�_�:Morphism)
: Set(c1 � �1 � c2 � �2) where

field

sm-homo : IsSemigroupMorphism F.semigroup T.semigroup �_�
ε-homo : Homomorphic0 �_� F.ε T.ε

open IsSemigroupMorphism sm-homo public

There are many design decisions embedded in the above definitions. These deci-
sions are not canonical, so we need to understand them to later be able to both
abstract them out and make them variation points in our generator. Namely,
these decisions are:

– The choice of which declarations are parameters and which are fields. The
monoids (From and To) over which we define homomorphism are parameters,
not fields, as is the function �_�.

– The preservation axioms can be defined based on their arity patterns, as
type-level function such as Homomorphic2:

Homomorphic2 : (A → B) → Op2 A → Op2 B → Set _

Homomorphic2 �_� _·_ _◦_ =

∀ x y → � x · y � ≈ (� x � ◦ � y �)

The library also provides shortcuts for 0-ary and 1-ary function symbols, the
most common cases.

– The definition of structures over setoids. Thus equalities need to be preserved,
and that is what the ��-cong axiom states.

Isabelle/HOL provides the following definition of monoid homomorphism:

definition

hom :: "_ ⇒ _ ⇒ (’a ⇒ ’b) set" where

"hom G H =

{h · h ∈ carrier G → carrier H ∧

https://github.com/agda/agda-stdlib/blob/4a8d8f5ffbdbd967ca1bb708895ea63709e0063d/src/Algebra/Morphism.agda
https://isabelle.in.tum.de/website-Isabelle2019/dist/library/HOL/HOL-Algebra/Group.html

60 J. Carette et al.

(∀ x ∈ carrier G · ∀ y ∈ carrier G ·
h (x ⊕G y) = h x ⊕H h y)}"

The reader might notice a discrepancy in the above: unit preservation is missing.
The Isabelle library does not provide this version. There is, however, a proof that
such a multiplication-preserving homomorphism necessarily maps the source unit
to a unit of the image (sub)monoid, but that unit is not necessarily that of the
full image. The above definition is also used to define group homomorphism and
other structures. We consider this to be missing information in the library.

Lean’s definition of monoid homomorphism is the one that most resembles the
one found in textbooks.

structure monoid_hom (M : Type*) (N : Type*)

[monoid M] [monoid N] :=

(to_fun : M → N)

(map_one ’ : to_fun 1 = 1)

(map_mul ’ : ∀ x y, to_fun (x * y) = to_fun x * to_fun y)

However, in the same file, there is another definition of add_monoid_hom that
looks “the same” up to renaming. This points to a weakness of Lean: there is
no renaming operation on structure, and for a Ring to contain two “monoids”,
one is forced to duplicate definitions. This redundancy is unpleasant.

2.2 Term Language

The “term language” of a theory is the (inductive) data type that represents the
syntax of well-formed terms of that theory, along with an interpretation function
from expressions to the carrier of the (implicitly single-sorted) given theory, i.e.
its denotational semantics.

In Agda, the definition of Monoid term language is straightforward:

data Expr (n : N) where

var : Fin n → Expr n

id : Expr n

⊕ : Expr n → Expr n → Expr n

Defining the interpretation function requires the concept of an environment.
An environment associates a value to every variable, and the semantics associates
a value (of type Carrier) to each expression of Expr.

Env : Set _

Env = λ n → Vec Carrier n

�_� : ∀ {n} → Expr n → Env n → Carrier

� var x � ρ = lookup ρ x

� id � ρ = ε
� e1 ⊕ e2 � ρ = � e1 � ρ · � e2 � ρ

https://github.com/leanprover-community/mathlib/blob/3c58f160fd51ebf989138ed7c8981f821f08f860/src/algebra/group/hom.lean

Leveraging the Information Contained in Theory Presentations 61

In Agda, these definitions are not found with the definitions of the algebraic
structures themselves, but rather as part of the Solver for equations over that
theory. Here, we find more duplication, as the above definitions are repeated
for the following three highly related structures: Monoid, CommutativeMonoid and
IdempotentCommutativeMonoid.

Despite its usefulness, we were not able to find the definition of the term
language of a theory in Isabelle/HOL or Lean.

2.3 Product

Until recently, there was no definition of the product of algebraic structures in
the Agda library. A recent pull request has suggested adding these, along with
other constructions. The following hand-written definition has now been added:

rawMonoid : RawMonoid c c� → RawMonoid d d� →
RawMonoid (c � d) (c� � d�)
rawMonoid M N = record

{ Carrier = M.Carrier × N.Carrier

; _≈_ = Pointwise M._≈_ N._≈_

; _·_ = zip M._·_ N._·_
; ε = M.ε , N.ε
}

where

module M = RawMonoid M

module N = RawMonoid N

These could have been mechanically generated from the definition of Monoid.
Both Isabelle/HOL and Lean provide definitions of product algebras for

monoids, which we omit for space. It is worth mentioning that the Lean library
has 15 definitions for products of structures that look very similar and could be
generated.

2.4 More Monoid-Based Examples

We have presented three concrete examples, based on monoid, of human-written
code in current libraries that could have instead been generated. There are many
more that could be, although these are sparsely found in current libraries. We
continue to use monoid as our guiding example, and also briefly discuss how
they can be generalized to a larger algebraic context and why they are useful.
These are presented in a syntax that closely resembles that of Agda (and is
formally Tog syntax), which should be understandable to anyone familiar with
dependently-typed languages.

Trivial Submonoid. Given a monoid M, we can construct the trivial monoid,
also called the zero monoid3 (containing only the identity element) in the same
language as M.
3 As it is both initial and terminal in the corresponding Category.

https://github.com/agda/agda-stdlib/blob/4a8d8f5ffbdbd967ca1bb708895ea63709e0063d/src/Algebra/Solver/Monoid.agda
https://github.com/agda/agda-stdlib/blob/4a8d8f5ffbdbd967ca1bb708895ea63709e0063d/src/Algebra/Solver/CommutativeMonoid.agda
https://github.com/agda/agda-stdlib/blob/4a8d8f5ffbdbd967ca1bb708895ea63709e0063d/src/Algebra/Solver/IdempotentCommutativeMonoid.agda
https://github.com/agda/agda-stdlib/pull/1109
https://isabelle.in.tum.de/website-Isabelle2019/dist/library/HOL/HOL-Algebra/Group.html
https://github.com/leanprover-community/mathlib/blob/3c58f160fd51ebf989138ed7c8981f821f08f860/src/algebra/pi_instances.lean

62 J. Carette et al.

record TrivialSubmonoid {A : Set} (M : Monoid A) : Set

where

constructor trivialSubmonoid

field

singleton : {x : A} → x == M.e

One can easily proceed to show that this predicate on a monoid induces a new
(sub)monoid. In fact, we do not need associativity for this; in other words,
already a unital magma induces a trivial monoid.

Flipped Monoid. Given a monoid M, we can construct a new monoid where
the binary operation is that of M but applied in reverse order.

The construction here is direct, in that the result is a Monoid.

record FlippedMonoid : {A : Set} → Monoid A → Monoid A

record FlippedMonoid m = {

A = M.A,

e = M.e,

op = (x y : A) → M.op y x,

lunit = M.runit ,

runit = M.lunit ,

assoc = sym M.assoc

}

This example can be generalized from a monoid to a magma.

Monoid Action. This example constructs, from a Monoid M and a set B, a
monoid action of M on B.

record MonoidAction {A : Set} (M : Monoid A)

(B : Set) : Set where

constructor monoidAction

field

act : A → B → B

actunit : {b : B} → (act M.e b) == b

actop : {x y : A} → {b : B} →
(act (M.op x y) b) == (act x (act y b))

Monoid actions are extremely useful for expressing ideas in group theory, and in
automata theory. They are only defined in the presence of a monoid structure,
which can be easily checked at the meta level.

Subsets Action. The fourth example construct, from a Monoid M, the monoid
on the subsets of M. Note that the following is pseudo-code written in an imagined
Set-theoretic extension of dependent type theory.

record SubsetsAction {A : Set} (M : Monoid A) : Set

where

constructor subsetsAction

Leveraging the Information Contained in Theory Presentations 63

field

S : (powerset A)

e’ : S

op’ : S → S → S

e’def : e’ == {M.e}

op’def : {x y : S} → (op’ x y)

== {(M.op a b) | a ∈ x and b ∈ y}

The subsets monoid is used extensively in automata theory and group theory.
The above can also be written as a construction of a new monoid, in depen-

dent type theory, where the carrier is the set of unary relations on A.

Monoid Cosets. The next example constructs, from a Monoid M , the cosets
of M . This is also pseudo-code, as above.

record MonoidCosets {A : Set} (M : Monoid A) : Set

where

constructor monoidCosets

field

S : (powerset A)

e’ : S

op’ : A → S → S

e’def : e’ == {M.e}

op’def : {a : A} → {x : S} → (op’ a x)

== {(M.op a b) | b ∈ x}

Monoid cosets are extensively used in group theory.

3 Constructions for Free!

A meta-theory (either a logic or a type theory) provides us with a concrete
language in which to represent axiomatic theories. Through having a uniform
syntactic representation of the components of axiomatic theories, we can manip-
ulate them, and eventually generate new ones from them.

Our meta-theory is Martin-Löf Type Theory, as implemented in Tog [27].
Tog is developed by the implementors of Agda for the purpose of experimenting
with new ideas in (implementations of) dependent type theories. It has mainly
been used to experiment with type checking through unification [26]. Tog is
minimalistic, and serves our purpose of being independent of the design details
of many of the large proof languages. It also gives us a type checker.

The following implementation details of Tog are worth pointing out:

– It has one universe Set, which is the kind of all sorts.
– Functions are represented as curried lambda expressions: Fun Expr Expr.
– Axioms are represented as Π-types: Pi Telescope Expr. They use the under-

lying propositional equality: Eq Expr Expr.
– Theories are represented as parameterized dependent records, Σ-types.

64 J. Carette et al.

• A parameter to the record has the type Binding. It can be hidden using
HBind [Arg] Expr, or explicit using Bind [Arg] Expr.

• A declaration within the record has the type Constr Name Expr.

In Universal Algebra, an algebraic theory consists of sorts, function symbols
(with their arities) and a list of axioms, often denoted as a theory T having three
components (S,F,E). We assume a single sort. This can be internalized, in the
Haskell implementation of Tog, as

data EqTheory = EqTheory {

thryName :: Name_ ,

sort :: Constr ,

funcTypes :: [Constr],

axioms :: [Constr],

waist :: Int }

where:

– sort, funcTypes, and axioms are treated as elements of a telescope [13]. There-
fore, the order in which they are defined matters.

– The waist is a number referring to how many of the declarations within the
telescope are parameters. The notation is taken from [1]. This information is
needed in generating some constructions, like homomorphism.

Given a Tog record type that exhibits an equational theory structure, like
that of Monoid in Sect. 1, we convert it into an instance of EqTheory. We, then,
proceed with generating useful information from the theory. Finally, we convert
this information into Tog records and data types, so they can be type checked
by Tog, i.e. our approach builds on Tog, without changing its syntax or type
checker. In the sequel of this section, we describe the constructions we generate.

3.1 Signature

Given a theory T = (S,F,E), the signature of the theory is Sig(T) = (S,F). A
signature is obtained from an EqTheory as follows:

signature_ :: Eq.EqTheory -> Eq.EqTheory

signature_ =

over Eq.thyName (++ "Sig") . set Eq.axioms [] . gmap ren

For a theory with name X, the signature is an EqTheory with the name XSig and
an empty axioms list. The theory and its signature exists in the same module.
Tog requires that they have different field names. We use gmap ren to apply this
renaming. We discuss this in more details in Sect. 3.5.

3.2 Product Algebra

Given a theory T = (S,F,E), we obtain the product theory
Prod(T) = (S×S, F′, E′) by replacing each occurrence of the type S by S×S.
The modification to the function symbols and axioms is straightforward.

Leveraging the Information Contained in Theory Presentations 65

productThry :: Eq.EqTheory -> Eq.EqTheory

productThry t =

over Eq.thyName (++ "Prod") $

over Eq.funcTypes (map mkProd) $

over Eq.axioms (map mkProd) $

gmap ren t

Similar to what we did with signatures, the ren function renames the fields of
the input theory. mkProd changes the sort to be an instance of Prod, with the sort
of the input theory as the type parameter.

3.3 Term Language

For a theory T = (S,F,E), the closed term language is generated by converting
every function symbol to a constructor, with the same arity. The axioms are
dropped.

termLang t =

let constructors =

gmap (ren (getConstrName $ t^.Eq.sort) nm) $ t^.Eq.funcTypes

in Data (mkName $ t^. thyName ++ "Lang") NoParams $

DataDeclDef setType constructors

Constructors are generated by substituting the name of the language type for a
sort A. Term languages are realized as Tog data declarations using the constructor
Data.

Generating the closed term language is a first step to generating an open
term language (i.e. a term language parametrized by a type of variables), and
an interpreter.

For some kinds of axioms, namely those that can be oriented, we can turn
these into simplification rules, i.e. into (unconditional) rewrite rules. The result-
ing simplifier can be shown to be meaning preserving. These two pieces, the
evaluator and simplifier, can be attached to each other to form a partial evalua-
tor, using the “finally tagless” [7] method. Eventually, we would like to be able
to automate the majority of the hand-written code for a generative geometry
library [4], which is indeed quite amenable to such techniques. Unfortunately,
the details will have to wait for a future paper.

3.4 Homomorphism

For a theory T = (S,F,E), with instances T1 and T2, the homomorphism of T

consists of

1. a function mapping the carrier of T1 to that of T2,
2. a set of axioms asserting that operations (i.e. elements of F) are preserved.

Our definition of homomorphism is parameterized by the instances T1 and T2.
The parameters of T, if waist > 0, are lifted out as parameters to the resulting
homomorphism, and used to define the instances of the theory.

66 J. Carette et al.

homomorphism :: Eq.EqTheory -> Decl

homomorphism t =

let nm = t ^. Eq.thyName ++ "Hom"

a = Eq.args t

(psort ,pfuncs ,_) = mkPConstrs t

((i1, n1), (i2 , n2)) = createThryInsts t

homFnc = genHomFunc psort n1 n2

axioms = map (oneAxiom fnc psort n1 n2) pfuncs

in Record (mkName nm)

(mkParams $ (map (recordParams Bind) a) ++ [i1,i2])

(RecordDeclDef setType

(mkName $ nm ++ "C")

(mkField $ fnc : axioms))

The genHomFunc function generates the homomorphism function. Each preser-
vation axiom is created using the oneAxiom function.

Other kinds of morphisms can also be generated by providing more axioms to
describe properties of the functions. For example a monomorphism would have
the same definition with one more axiom stating that the function is injective.
An endomorphism is a self-homomorphism, and thus can be parametrized by a
single theory.

3.5 Discussion

The above are a small sample of what can be done. We’ve found at least 30
constructions that should be amenable to such a treatment and are currently
implementing them, including quotient algebras and induction axioms. Figure 2
shows the generated constructions. The input is the theory of Monoid represented
as a Tog record type (illustrated on the left with the blue background). For
this, we generate the four constructions discussed above (illustrated with pink
background). The names of carriers A1 and A2, names of instances Mo1 and Mo2

are machine generated based on the names used by the input theory, which are
given by the user. A somehow unpleasant restriction is that all field names need
to be distinct, even if the fields belong to different records. That is the reason
we have names like eL in MonoidLang and eS in MonoidSig. This is still a minor
inconvenience, given that we are working on an abstract level, from which more
readable and usable code will be generated.

4 Related Work

Many algebraic hierarchies have been developed before. [18] documents the devel-
opment of the algebra needed for proving the fundamental theorem of algebra.
[17] formalizes the same knowledge in Coq, but suggests a packaging struc-
ture alternative to telescopes, to support multiple inheritance. [11] addresses
the important problem of library maintainability, especially when dealing with
changes to the hierarchy. We have proposed an alternate solution in [9], based
on the categorical structures already present in dependent type theories.

Leveraging the Information Contained in Theory Presentations 67

record Monoid (A : Set) : Set

where

constructor monoid

field

e : A

op : A → A → A

lunit : {x : A} → (op e x) == x

runit : {x : A} → (op x e) == x

assoc : {x y z : A} →
op x (op y z) == op (op x y) z

record MonoidHom

(A1 : Set) (A2 : Set)

(Mo1 : Monoid A1)

(Mo2 : Monoid A2) : Set where

constructor MonoidHomC

field

hom : A1 → A2

pres -e : hom (e Mo1) == e Mo2

pres -op :

(x1 : A1) (x2 : A1) →
hom (op Mo1 x1 x2)

== op Mo2 (hom x1) (hom x2)

data MonoidLang : Set where

eL : MonoidLang

opL : MonoidLang → MonoidLang

→ MonoidLang

record MonoidSig (AS : Set) : Set

where

constructor MonoidSigSigC

field

eS : AS

opS : AS → AS → AS

record MonoidProd (AP : Set)

: Set

where

constructor MonoidProdC

field

eP : Prod AP AP

opP : Prod AP AP → Prod AP AP

→ Prod AP AP

lunit_eP : (xP : Prod AP AP)

→ opP eP xP == xP

runit_eP : (xP : Prod AP AP)

→ opP xP eP == xP

associative_opP :

(xP : Prod AP AP)

(yP : Prod AP AP)

(zP : Prod AP AP)

→ opP (opP xP yP) zP

== opP xP (opP yP zP)

Fig. 2. The generated constructions from Monoid theory (Color figure online)

The algebraic library of Lean [12] is of particular interest, as its developers
are quite concerned with automation. But this automation, also done via meta-
programming, is largely oriented to proof automation via tactics. We instead
focus on automating the generation of structures.

Universal Algebra constructions are grounded in set theory, yet is neverthe-
less quite constructive. It has been formalized in Coq [3,34] and Agda [20]. [34]
is notable for the use of type classes to formalize the algebraic hierarchy.

While the work in interactive provers has been mainly manual, the pro-
gramming languages community has been actively investigating the generation
of various utilities derived from the definition of algebraic data types. Haskell’s
deriving mechanism has already been mentioned. This has been greatly extended
twice, first in [25], to allow more generic deriving, and then in [2] allowing the
users to define new patterns. The usefulness of these mechanisms has been of
great inspiration to us. We would like to provide similar tools for library devel-
opers of interactive proof systems.

68 J. Carette et al.

5 Conclusion and Future Work

Building large libraries of mathematical knowledge can greatly enhance the use-
fulness of interactive proof systems. Currently, the larger the library, the more
labor intensive it becomes. We suggest automating some of the definitions of
concepts derivable via known techniques. We have tested our implementation on
a library of 227 theories, including Ring and BoundedDistributedLattice, built
using the tiny theories approach [5] and the combinators of [9]. A theory defined
declaratively using the combinators elaborate into a Tog record, which is then
manipulated to generate the constructions presented in Sect. 3. From the declar-
ative description of the 227 theories, we were able to generate a much larger
library which contains 1132 definitions and, when pretty-printed, spanned 14811
lines, containing theories and data types representing the structures we discussed
in Sect. 3. We are adding more derived theories, and can then get a multiplicative
factor, as each time we do, we get 227 new theories.

While the knowledge representable in single-sorted equational logic is still
impressive (e.g. it covers most of Algebra), we are also interested in generating
the same structures (and more) for theories represented in more sophisticated
logics [28], such as category theory represented in dependent type theory.

We currently generate all constructions for all theories in a given library.
As more structures get generated, we would want to give developers more con-
trol over what to generate. Thus we intend to provide a scripting language for
referring to theories, or groups of theories, and specifying what constructions
to apply. This could also include an “on demand” version, similar to how the
deriving mechanism of Haskell works. We are also interested in generating mor-
phisms, as explained in [16], between theories. Even for our constructions, some
of these morphism are not obvious, but are needed to transport results.

We envision using our current implementation as a meta-language to generate
definitions for existing, full-featured systems, such as Isabelle/HOL and Agda.
To achieve this, we will need to reintroduce certain details (such as notations)
that we elided. The scripting language described above will need to be extended
to cover different kinds of design decisions.

We envision a framework in which the contents of the library can be defined
succinctly, and elaborated to a large reusable and flexible body of standardized
mathematics knowledge.

References

1. Al-hassy, M., Carette, J., Kahl, W.: A language feature to unbundle data at will
(short paper). In: Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Generative Programming: Concepts and Experiences, GPCE 2019, pp.
14–19. ACM, New York (2019)

2. Blöndal, B., Löh, A., Scott, R.: Deriving via: or, how to turn hand-written
instances into an anti-pattern. In: Proceedings of the 11th ACM SIGPLAN Interna-
tional Symposium on Haskell, Haskell 2018, pp. 55–67. Association for Computing
Machinery, New York (2018)

Leveraging the Information Contained in Theory Presentations 69

3. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G., Théry,
L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 131–148.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48256-3 10

4. Carette, J., Elsheikh, M., Smith, S.: A generative geometric kernel. In: Proceed-
ings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, pp. 53–62. ACM (2011)

5. Carette, J., et al.: The MathScheme library: Some preliminary experiments. arXiv
preprint arXiv:1106.1862, June 2011

6. Carette, J., Farmer, W.M., Kohlhase, M., Rabe, F.: Big math and the one-brain
barrier a position paper and architecture proposal. arXiv preprint arXiv:1904.10405
(2019)

7. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009)

8. Carette, J., O’Connor, R.: Theory presentation combinators. In: Jeuring, J., Camp-
bell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM
2012. LNCS (LNAI), vol. 7362, pp. 202–215. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31374-5 14

9. Carette, J., O’Connor, R., Sharoda, Y.: Building on the diamonds between theories:
theory presentation combinators. arXiv preprint arXiv:1812.08079 (2018)

10. Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of Maude. In: Meseguer,
J. (ed.) Proceedings of the First International Workshop on Rewriting Logic, vol.
4, pp. 65–89 (1996)

11. Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy builder: algebraic hierarchies made
easy in Coq with Elpi. https://hal.inria.fr/hal-02478907 (2020). working paper or
preprint

12. The Mathlib Community. The lean mathematical library. arXiv preprint
arXiv: 1910.09336 (2019).

13. de Bruijn, N.G.: Telescopic mappings in typed lambda calculus. Inf. Comput.
91(2), 189–204 (1991)

14. Denecke, K., Wismath, S.L.: Universal Algebra and Applications in Theoretical
Computer Science. Taylor & Francis, New York (2002)

15. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-69962-7

16. Farmer, W.M., Guttman, J.D., Javier Thayer, F.: Little theories. In: Kapur, D.
(ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55602-8 192

17. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03359-9 23

18. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic
hierarchy in Coq. J. Symb. Comput. 34(4), 271–286 (2002)

19. Gross, J., Chlipala, A., Spivak, D.I.: Experience implementing a performant
category-theory library in Coq. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS,
vol. 8558, pp. 275–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08970-6 18

20. Gunther, E., Gadea, A., Pagano, M.: Formalization of universal algebra in Agda.
Electron. Not. Theor. Comput. Sci. 338, 147–166 (2018). The 12th Workshop on
Logical and Semantic Frameworks, with Applications (LSFA 2017)

https://doi.org/10.1007/3-540-48256-3_10
http://arxiv.org/abs/1106.1862
http://arxiv.org/abs/1904.10405
https://doi.org/10.1007/978-3-642-31374-5_14
https://doi.org/10.1007/978-3-642-31374-5_14
http://arxiv.org/abs/1812.08079
https://hal.inria.fr/hal-02478907
http://arxiv.org/abs/1910.09336
https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/3-540-55602-8_192
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-319-08970-6_18
https://doi.org/10.1007/978-3-319-08970-6_18

70 J. Carette et al.

21. Halleck, J.: Logic system interrelationships. http://www.horizons-2000.org/
2.%20Ideas%20and%20Meaning/John%20Halleck%27s%20Logic%20System
%20Interrelationships.html. Accessed 20 Mar 2020

22. Haskell; an advanced, purely functional programming language. https://www.
haskell.org/. Accessed 22 Mar 2020

23. Jipsen, P.: List of mathematical structures. http://math.chapman.edu/∼jipsen/
structures/doku.php. Accessed 20 Mar 2020

24. Haskell lens library. https://hackage.haskell.org/package/lens. version 4.19.1.
Accessed 22 Mar 2020

25. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mechanism
for Haskell. ACM SIGPLAN Not. 45(11), 37–48 (2010)

26. Mazzoli, F., Abel, A.: Type checking through unification. arXiv preprint
arXiv:1609.09709 (2016)

27. Mazzoli, F., Danielsson, N.A., Norell, U., Vezzosi, A., Abel, A.: Tog, a prototypical
implementation of dependent types. https://github.com/bitonic/tog

28. Meinke, K.: Universal algebra in higher types. Theor. Comput. Sci. 100(2), 385–
417 (1992)

29. Meinke, K., Tucker, J.V.: Universal algebra. University of Wales (Swansea). Math-
ematics and Computer Science Division (1991)

30. Pottier, L.: Coq user contributions - algebra library. https://github.com/coq-
contribs/algebra

31. Sankappanavar, H.P., Burris, S.: A Course in Universal Algebra. Graduate Texts
Math, vol. 78. Springer, New York (1981)

32. Sannella, D., Tarlecki, A.: Universal algebra. In: Foundations of Algebraic Speci-
fication and Formal Software Development. Monographs in Theoretical Computer
Science. An EATCS Series, pp. 15–39. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-17336-3 1

33. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Proceedings
of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell 2002, pp. 1–16. Asso-
ciation for Computing Machinery, New York (2002)

34. Spitters, B., van der Weegen, E.: Developing the algebraic hierarchy with type
classes in Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol.
6172, pp. 490–493. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14052-5 35

35. Whitehead, A.N.: A Treatise on Universal Algebra: With Applications. Cornell
University Library Historical Math Monographs. The University Press (1898)

http://www.horizons-2000.org/2.%20Ideas%20and%20Meaning/John%20Halleck%27s%20Logic%20System%20Interrelationships.html
http://www.horizons-2000.org/2.%20Ideas%20and%20Meaning/John%20Halleck%27s%20Logic%20System%20Interrelationships.html
http://www.horizons-2000.org/2.%20Ideas%20and%20Meaning/John%20Halleck%27s%20Logic%20System%20Interrelationships.html
https://www.haskell.org/
https://www.haskell.org/
http://math.chapman.edu/~jipsen/structures/doku.php
http://math.chapman.edu/~jipsen/structures/doku.php
https://hackage.haskell.org/package/lens
http://arxiv.org/abs/1609.09709
https://github.com/bitonic/tog
https://github.com/coq-contribs/algebra
https://github.com/coq-contribs/algebra
https://doi.org/10.1007/978-3-642-17336-3_1
https://doi.org/10.1007/978-3-642-17336-3_1
https://doi.org/10.1007/978-3-642-14052-5_35
https://doi.org/10.1007/978-3-642-14052-5_35

Metamath Zero: Designing a Theorem
Prover Prover

Mario Carneiro(B)

Carnegie Mellon University, Pittsburgh, PA, USA
mcarneir@andrew.cmu.edu

Abstract. As the usage of theorem prover technology expands, so too
does the reliance on correctness of the tools. Metamath Zero is a ver-
ification system that aims for simplicity of logic and implementation,
without compromising on efficiency of verification. It is formally speci-
fied in its own language, and supports a number of translations to and
from other proof languages. This paper describes the abstract logic of
Metamath Zero, essentially a multi-sorted first order logic, as well as
the binary proof format and the way in which it can ensure essentially
linear time verification while still being concise and efficient at scale.
Metamath Zero currently holds the record for fastest verification of the
set.mm Metamath library of proofs in ZFC (including 71 of Wiedijk’s 100
formalization targets), at less than 200 ms. Ultimately, we intend to use
it to verify the correctness of the implementation of the verifier down to
binary executable, so it can be used as a root of trust for more complex
proof systems.

Keywords: Metamath zero · Mathematics · Formal proof ·
Verification · Metamathematics

1 Introduction

The idea of using computers to check mathematical statements has been around
almost as long as computers themselves, but the scope of formalizations have
grown in recent times, both in pure mathematics and software verification, and
it now seems that there is nothing that is really beyond our reach if we aim
for it. But at the same time, software faces a crisis of correctness, where more
powerful systems lead to more reliance on computers and higher stakes for failure.
Software verification stands poised to solve this problem, providing a high level
of certainty in correctness for critical components.

But software verification systems are themselves critical components, partic-
ularly the popular and effective ones. A proof in such a system is only as good
as the software that checks it. How can we bootstrap trust in our systems?

This paper presents a formal system, called Metamath Zero (MM0), which
aims to fill this gap, having both a simple extensible logical theory and a straight-
forward yet efficient proof format. Work to prove the correctness theorem is
c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 71–88, 2020.
https://doi.org/10.1007/978-3-030-53518-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_5&domain=pdf
http://orcid.org/0000-0002-0470-5249
https://doi.org/10.1007/978-3-030-53518-6_5

72 M. Carneiro

ongoing, but this paper explains the design of the system and how it relates to
other theorem provers, as well as general considerations for any bootstrapping
theorem prover.

1.1 Who Verifies the Verifiers?

There are two major sources of untrustworthiness in a verification system: the
logic and the implementation. If the logic is unsound, then it may be able to
prove absurd statements. This is bad, but there are a number of axiomatic
foundations such as ZFC that are widely believed to be consistent, and this is
sufficient for our purpose. Much more concerning is implementation correctness.
Implementation bugs can exist in the theorem prover itself, the compiler for the
language, any additional components used by the compiler (the preprocessor,
linker, and assembler, if applicable), as well as the operating system, firmware,
and hardware. In this area, mathematics and logic holds little sway, and it is
“common knowledge” that no nontrivial program is or can be bug-free. The
argument for correctness of these systems is largely a social one: the compiler
has compiled many programs without any bugs (that we noticed) (except when
we noticed and fixed the bugs), so it must work well enough.

What can we do? Our strategy is to start from the ground up, defining all
the properties that the verifier system of our dreams should have, and then start
building it. With the right set-up, this turns out to be surprisingly achievable,
and we believe we have come within striking distance of all targeted goals. Here
are some dream goals:

1. It should be proven correct down to the lowest possible level. Some options
for the lowest level include:
(a) a logical rendering of the code;
(b) the code itself, inside a logical rendering of the language;
(c) the machine code, specified given an ISA (instruction set architecture);
(d) the computer, down to the logic gates that make it up;
(e) the fabrication process relative to some electrical or physical model.

2. It should permit the user to prove any theorem they like (including specifying
the axiom system of interest).

3. It should permit the user to write any program they like and prove any
theorem about that program.

4. There should be no practical upper limit on the complexity of the target
programs, and they should be able to run as fast as the machine is capable.

5. It should be fast.
6. It should be easy to use.

While there is no theoretical reason not to push (1) all the way to level (e), the
drawback of the most aggressive levels (d) and (e) is that it limits redistribution
capabilities. If you prove a system correct at level (e), the proof only holds if
you use the given fabrication process, and similarly (d) only holds if you use the
given chip design. A proof relative to (c) holds as long as the “reader” has the

Metamath Zero 73

same ISA as the author, so if we pick a relatively popular ISA then we can write
proofs that are independently verifiable by a large segment of the population.
For the MM0 project, we target (c) with the Intel x86-64 architecture on Linux.
(This does put the OS in the trusted base, but it is not possible to do otherwise
for a regular, user-mode application, which is again important for distribution.
We can at least keep interaction with the OS to a minimum and formally specify
what we expect from the OS, such that a “bare-metal” version of the verifier is
largely the same.)

To satisfy (2), MM0 is a logical framework, with “pluggable axioms” to sup-
port any desired mathematical foundation. To satisfy (3) and (4), we imple-
mented, in MM0, a specification for x86-64, so that users can write any program
they like. To satisfy (5), proofs will be laid out such that checking them is as
straightforward as possible, roughly linear time, while keeping the de Bruijn
factor down.

(6) is a subjective criterion, and also one we are willing to compromise on in
favor of the others. Nevertheless some degree of ease of use is needed in order
to get enough done to achieve the other goals. To that end, MM0 the verifier
has a front end MM1, which provides some ITP (interactive theorem prover)
features, in an unverified setting. This is an extension of the LCF-style prover
architecture to completely separate and isolate the verifier from the prover.

In particular, a compiler for producing verified programs would sit at this
unverified prover level, producing machine code from high level code so that
users don’t have to write machine code. This compromises (4) to some extent if
the compiler produces poor code, but that has an obvious mitigation.

1.2 Efficiency Matters

Why should it matter if a proof takes hours or days to compile? Sometimes,
performance is about more than just getting work done a little faster. When
something takes a lot less time, it changes the way you interact with the com-
puter. A process that takes hours goes on the nightly build server; a process that
takes minutes might be a compile that runs on your local machine; a process
that takes seconds is a progress bar; and a process that takes milliseconds might
happen in an editor between keystrokes.

A verifier is a component in a larger system. People have a tendency to stack
libraries on top of libraries, so the cost of the thing at the base of the stack will
ripple into every downstream use. It is easy to think that a proof that runs in
1 second is not so bad, and a factor of ten improvement is not noticeable, but
a math library that has tens of thousands of these proofs will take hours, and a
factor of ten improvement here is massive.

The set.mm Metamath library of theorems in ZFC contains over 34000 proofs,
and MM0 can check a translation of it in 195 ± 5 ms. This can be (unfairly)
compared to libraries in other systems such as Isabelle, Coq, or Lean that take
over an hour to compile their standard library and sometimes much more, a
difference of 4–5 orders of magnitude. While this is not definitive evidence, such

74 M. Carneiro

a vast discrepancy indicates that architectural differences matter, and significant
gains are possible over the status quo.

To be clear, it is not that these systems are implemented inefficiently – this
can account for 1–2 orders of magnitude at most. The primary architectural
difference is that Metamath does not put the running of tactics on the “critical
path” of verification. The set.mm distributable artifact contains already fully
elaborated compressed proofs, which makes loading and verification much faster.
Tactics are ephemeral mechanisms in proof production that are not stored in
the public repository. This approach has drawbacks for replaying or modifying
heavily tactic-based proofs, though, and we will show how MM0 bridges this gap
by enabling a range of caching strategies.

Most of the major theorem provers have some approximation to a “compiled
proof” format. Coq’s .vo files, and Lean’s .olean files, were originally designed
to be used to cache the result of compiling a source file, and so while they
bear a passing resemblance to our .mmb format, because they are not actually
intended as a substitute for verification, they quite unstable across versions, and
undocumented. Isabelle and HOL systems usually use a memory dump for this
purpose, which is even more obviously unstable and non-portable.

These systems also may have a “proof export” function [3,22], but these often
do significant (and sometimes expensive in time and/or space) alterations to the
kernel data structures, making it difficult for any external checker to be able to
compete with the built-in checker. They are also not viewed as a high priority,
and so they tend to be neglected and fall out of support.

1.3 The Metamath Zero Architecture

Fig. 1. The MM0 workflow. Underlined components are trusted.

At this point, we have what we need to explain the overall architecture,
depicted in Fig. 1. The user writes proofs and programs in MM1, receiving feed-
back on their proof. This live feedback is implemented in MM1 and is not neces-
sarily reliable, but the quick feedback loop helps with producing the proof. Once
it is done, the MM1 compiler produces an .mmb (proof) file, and either produces
an .mm0 (specification) file or checks the result against a given .mm0 file. The
.mm0 file is a human readable file containing the statements of axioms and tar-
get theorems, while the .mmb file is a binary artifact containing the proof. The
trusted MM0 verifier then reads the .mm0 and .mmb files, and reports success if
the .mmb file is a proof of the .mm0 statements.

Metamath Zero 75

The trusted components in this architecture are the verifier, and the .mm0
file containing the statements of the theorems. Additionally one has to trust
that the text file is faithfully shown to the reader, and the reader understands
the content of the file. As such, the .mm0 file format balances human-readability
with simplicity of the verifier implementation required to parse it and validate
it against the data in the proof file.

The remainder of the paper discusses the various components of this process.
Section 2 describes the logical framework in which theorems are proved, Sect. 2.1
describes the specification format, Sect. 3 describes the proof format, and Sect. 4
discusses how MM0 proof objects can be generated. Section 5 shows work done
to connect MM0 to other proof languages. Section 6 discusses progress towards
proving the verifier implementation correctness theorem.

2 The Metamath Zero Logic

As its name suggests, Metamath Zero is based on Metamath [18], a formal system
developed by Norman Megill in 1990. Its largest database, set.mm, is the home
of over 34000 proofs in ZFC set theory. In the space of theorem prover languages,
it is one of the simplest, by design. The main difference is that MM0 has a native
concept of definitions, rather than using axioms and trusting that those axioms
are set up correctly. This is necessary in order to support the architecture in
Sect. 1.3, because the .mmb proof file may introduce definitions that were not in
the original specification, and the verifier must be able to validate these without
adding to the trust base. Most of the other changes are knock-on effects of this.
More detail on Metamath vs. MM0 can be found in [5].

MM0 is intended to act as a schematic metatheory over multi-sorted first
order logic. This means that it contains sorts, two kinds of variables, expressions
constructed from term constructors and definitions, and axioms and theorems
using expressions for their hypotheses and conclusion. Theorems have proofs,
which involve applications of other theorems and axioms. The remaining sections
will go into more detail on each of these points.

Sorts. An MM0 file declares a (finite) collection of sorts. Every expression has
a unique sort, and an expression can only be substituted for a variable of the
same sort. There are no type constructors or function types, so the type system
is finite. (Higher order functions are mimicked using open terms, see Sect. 2.)

Variables. MM0 distinguishes between two different kinds of variables. One may
variously be called names, first order variables or bound/binding variables. These
play the role of “variable variables” from Metamath, and will be denoted in this
paper with letters x, y, z, They are essentially names that may be bound
by quantifiers internal to the logic. “Substitution” of names is α-conversion;
expressions cannot be substituted directly for names, although axioms may be
used to implement this action indirectly. The other kind of variable may be called

76 M. Carneiro

Fig. 2. MM0 syntax and well formedness judgments. · denotes iteration or lists, and
ei denotes the ith element of e. The Γ ctx, Γ � e : s, Γ � e :: Γ ′, and δ ok judgments
are parameterized over a fixed global environment E. (f(Γ ′) : s x) ∈ E means there is
a term or def in E with this signature. See Fig. 3 for the definition of Γ ; A � B.

Metamath Zero 77

Fig. 3. MM0 proof and convertibility judgments Γ ; Δ � A and Γ ; Δ � e ≡ e′. The
arguments E, Γ, Δ are fixed and hidden. (Γ ′; A � B) ∈ E means that an axiom or
theorem with this signature is in E, that is, axiom (Γ ′; A � B) ∈ E or thm (Γ ′; A �
B) ∈ E.

a (schematic) metavariable or second order variable, and these may not be bound
by quantifiers; they are always implicitly universally quantified and held fixed
within a single theorem, but unlike names, they may be directly substituted for
an expression. We use ϕ,ψ, χ, . . . to denote schematic metavariables.

In FOL, notations like ϕ(x̄) are often used to indicate that a metavariable is
explicitly permitted to depend on the variables x̄, and sometimes but not always
additional “parameter” variables not under consideration. In MM0, we use a
binder ϕ : s x, where s is the sort and x are the dependencies of ϕ, to indicate
that ϕ represents an open term that may reference the variables x declared in
the context. Such a variable may also be glossed as a pre-applied higher order
variable; for example a variable of type ϕ : wff x can be interpreted as a predicate
P : U → bool where every occurrence of ϕ in the statement is replaced with P x.

Term Constructors. Term constructor declarations are represented in Fig. 2
by term f(Γ) : s x. A term constructor is like a function symbol in FOL, except
that it can bind variables if names are used in the arguments. Examples of term
constructors are imp(: wff, : wff) : wff, which defines implication as a binary
operator on the sort wff (which can be shortened to imp : wff ⇒ wff ⇒ wff), and
all (x : var, ϕ : wff x) : wff, which defines the forall binder—all x ϕ represents the
FOL expression ∀x, ϕ(x).

Using the rules in Fig. 2, we can calculate that FV(all y ψ) = FV(ψ) \ {y}
(which accords with the usual FOL definition of the free variables of ∀y, ψ(y)),

78 M. Carneiro

and V(all y ψ) = {y} ∪ V(ψ). It is easy to see that FV(e) ⊆ V(e) generally;
that is, every free variable in an expression e is present in e. Metamath, and
Metamath Zero, take the somewhat unorthodox approach of using V instead of
FV in the definition of an admissible substitution (the side condition ∀i j x, Γi =
x /∈ VΓ ′(Γj) → ei /∈ VΓ (ej) in the theorem application rule in Fig. 3, which says
in words that if Γj is a variable in the context that is not declared to depend on
x, then the substitution for Γj cannot contain the name that is being substituted
for x), but this is sound because if e does not contain any occurrence of x then it
clearly does not contain a free occurrence of x. This is done because V is faster
to compute than FV, and α-conversion in the logic can make up the difference.

Definitions. Definitions, denoted by def f(Γ) : s x = y : s′. e in Fig. 2, are
similar to term constructors, but definitions can be unfolded by the convertibility
judgment � e ≡ e′.

Axioms and Theorems. Provable assertions are simply expressions of desig-
nated sorts. A general axiom or theorem is really an inference rule Γ ;Δ � A,
where Δ is a list of hypotheses and A is a conclusion, and Γ contains the vari-
able declarations used in Δ and A. For example, the �Lukasiewicz axioms for
propositional logic in this notation are:

ϕ ψ : wff; · � ϕ → ψ → ϕ

ϕ ψ χ : wff; · � (ϕ → ψ → χ) → (ϕ → ψ) → (ϕ → χ)
ϕ ψ : wff; · � (¬ϕ → ¬ψ) → (ψ → ϕ)
ϕ ψ : wff; ϕ → ψ, ϕ � ψ

Things get more interesting with the FOL axioms:

x : var, ϕ ψ : wff x; · � ∀x (ϕ → ψ) → (∀xϕ → ∀xψ)
x : var, ϕ : wff; · � ϕ → ∀xϕ

Notice that ϕ has type wff x in the first theorem and wff in the second, even
though x appears in both statements. This indicates that in the first theorem
ϕ may be substituted with an open term such as x < 2, while in the second
theorem ϕ must not contain an occurrence of x (not even a bound occurrence).

Proofs and Convertibility. Metamath has only the first and third rules of
Fig. 3: the hypothesis rule, and the application of a theorem after (direct) admis-
sible substitution. Metamath Zero adds the second rule, which consists only of
definition unfolding and compatibility rules.

The rule for thm (Γ ;A � B) ok allows additional dummy variables y : s′ to
be used in the proof, as long as they do not appear in the statement (A and
B must not mention y). This in particular implies that all sorts are nonempty.
(The free sort modifier allows us to relax this constraint; see [5].)

Metamath Zero 79

2.1 The .mm0 Specification Format1

The .mm0 file is responsible for explaining to the reader what the statement of
each relevant theorem is. It closely resembles the axiomatic description of Sect. 2,
but with a concrete syntax. The two FOL axioms above are rendered like so:

axiom all_mono {x: var} (P Q: wff x):
$ A. x (P -> Q) -> A. x P -> A. x Q $;

axiom all_vacuous {x: var} (p: wff): $ p -> A. x p $;

assuming the sorts var, wff, the terms imp and all, and notations -> and A.
for them have been previously declared.

As its name implies, the .mm0 specification file is only about specifying axioms
and theorems, so it does not contain any proofs. Axioms and theorems look
exactly the same except for the keyword used to introduce them. This is an
unusual choice for a theorem prover, although some systems like Mizar and
Isabelle support exporting an “abstract” of the development, with proofs omit-
ted. We do this so that there is a clean separation between the trusted part (the
statements of the theorems) and the verified part (the proofs of the theorems).

We can do something similar with definitions. A definition requires a definiens
in Fig. 2, but we can instead write a definition with no definiens, so that it looks
just like a term declaration. This allows us to assert the existence of a term
constructor which satisfies any theorems that follow, which gives us a kind of
abstraction. Sometimes it is easier to write down characteristic equations for
a function rather than an explicit definition, especially in the case of recursive
functions.

Once one is committed to not proving theorems in the specification file, it
is able to shrink dramatically, because theorems never reference each other, and
only reference terms and definitions involved in their statements. So if focus is
given to one theorem, then almost everything else goes away, and even in extreme
cases it becomes quite feasible to write down everything up to and including
the axiomatic framework. For example, if we specify Fermat’s last theorem, we
must define the natural numbers and exponentiation in the specification file, but
certainly not modular forms, which are properly the domain of the proof file.

Notation. The notation system was crafted so as to make parsing as simple
as possible to implement, while still ensuring unambiguity, and allowing some
simple infix and bracketing notations. Notations are enclosed in $ sentinels (as
in LATEX) so that parsing can be separated into a static part (containing the top
level syntax of the language) and a dynamic part (containing user notations for
mathematical operations that have been defined).

The dynamic parser is a precedence parser, with a numeric hierarchy of prece-
dence levels 0, 1, 2, . . . with an additional level max, forming the order N∪ {∞}.
(max is the precedence of atoms and parenthesized expressions.) Infix constants
are declared with a precedence, and left/right associativity.
1 https://github.com/digama0/mm0/blob/master/mm0.md.

https://github.com/digama0/mm0/blob/master/mm0.md

80 M. Carneiro

General notations are also permitted; these have an arbitrary sequence of
constants and variables, and can be used to make composite notations like
sum_ i < n ai as an approximation of

∑
i<n ai. The only restriction on general

notations to make them unambiguous is that they must begin with a unique con-
stant, in this case sum_. This is restrictive, but usually one can get away with a
subscript or similar disambiguating mark without significantly hampering read-
ability. (This may be relaxed in higher level languages, but recall that we are
still in the base of the bootstrap here, so every bit of simplicity matters.)

Coercions are functions from one sort to another that have no notation. For
example, if we have a sort of set expressions and another sort of class expressions,
we might register a coercion set → class so that x ∈ y makes sense even if x and
y are sets and x ∈ A is a relation between a set and a class. For unambiguity,
the verifier requires that the coercion graph have at most one path from any
sort to any other. (This is quite limitative of the type system. The intent is for
more complex typing schemes to be implemented through explicit typing proofs
generated by a front-end with a more robust type system. The sorts here are
more like syntactic classes than true types.)

3 The .mmb Binary Proof File2

Having a precise language for specifying formal statements is nice, but it is most
powerful when coupled with a method for proving those formal statements. We
have indicated several times now design decisions that were made for efficiency
reasons. By spoon-feeding the verifier a very explicit proof, we end up doing
a lot less computation, and by deduplicating and working directly with dag-
like expressions at all stages, we can avoid all the exponential blowups that
happen in unification. (As we will see in Sect. 4, the user does not have to write
these proofs directly. It is expected that they are compiled from a more human-
friendly input.) Using these techniques, we managed to translate set.mm into
MM0 (see Sect. 5) and verify the resulting binary proof file in 195 ± 5 ms (Intel
i7 3.9 GHz, single threaded). While set.mm is formidable, at 34 MB/590 kLOC,
we are planning to scale up to larger or less optimized formal libraries to see if
it is competitive even on more adversarial inputs.

The proof file is designed to be manipulated in situ; it does not need to be
processed into memory structures, as it is already organized like one. It contains
a header, the term and theorem tables, and the declaration stream, followed by
debugging data.

The term table and theorem table contain the statements of all theorems and
the types of all term constructors. These tables are consulted during typecheck-
ing, and the verifier uses a counter as a sliding window into the table to mark
what part of the table has been verified (and thus is usable). This means that a
term lookup is generally a single indexed memory access, usually in cache, which
makes type checking for expressions extremely fast in practice.

2 https://github.com/digama0/mm0/tree/master/mm0-c.

https://github.com/digama0/mm0/tree/master/mm0-c

Metamath Zero 81

After the term and theorem tables is the declaration stream, which validates
each declaration in the .mm0 file, possibly interspersed with additional definitions
and theorems. This data is processed in a single pass, and contains in particular
proofs of theorems. A proof stream is a sequence of opcodes (see [5] for the
full grammar) with associated data. Each instruction changes the state of the
verifier, roughly in one-to-one correspondence with the proof rules in Fig. 3, and
at the end the verifier should have a state indicating that the desired theorem
has been proven.

During a proof, the verifier state consists of a store (a write-once memory
arena that is cleared after each proof) which builds up pointer data structures
for constructed expressions, a heap H, and a stack S. A stack element can be
either an expression e or a proof � A, both of which are simply pointers into
the store where the relevant expression is stored. (There are also stack elements
corresponding to convertibility proofs, which we will not discuss.)

At the beginning of a proof, the heap is initialized with expressions for all the
variables. An opcode like Term f will pop n elements e from the stack, and push
f e, while Ref i will push H[i] to the stack. The verifier is arranged such that an
expression is always accessed via backreference if it is required more than once,
so equality testing is always O(1).

The opcode Thm T pops e from the stack (the number of variables in the
theorem), pops B′ from the stack (the substituted conclusion of the theorem),
then calls a unifier for T , stored in the theorem table for T , which is another
sequence of opcodes. This will pop some number of additional � A′ assumptions
from the stack, and then � B′ is pushed on the stack.

The unifier is responsible for deconstructing B′ and proving that B[Γ �→
e] = B′, where B and Γ are fixed from the definition of T , and e and B′

are provided by the theorem application. It has its own stack K and heap U ;
the unify heap is the incoming substitution, and the unify stack is the list of
unification obligations. For example URef i pops e from the stack and checks
that U [i] = e, while UTerm f pops an expression e from the unify stack, checks
that e = f e′, and then pushes e′ on the stack (in reverse order). The appropriate
list of opcodes can be easily constructed for a given expression by reading the
term in prefix order, with UTerm at each term constructor and URef for variables.
The UHyp instruction pops � A′ from the main stack S and pushes A′ to the
unify stack K; this is how the theorem signals that it needs a hypothesis.

The handling of memory is interesting in that all allocations are controlled
by the compiler in the sense that they happen only on Term f and Dummy s
steps (Dummy s puts a new variable on the heap and stack). There is no “auto-
allocation” during substitution because unification only deconstructs expres-
sions, it does not create new ones. This means that the compiler can preprocess
the proof to ensure that every equality test is a pointer equality, by only con-
structing the term on first use and referring back to it on subsequent uses. So the
verifier can assume that the compiler has already done so and reject files that
aren’t prepared in this way, achieving the aforementioned O(1) comparison.

82 M. Carneiro

Verification is not quite linear time, because each Thm T instruction causes
the verifier to read the unifier for T , which may be large if T has a long statement.
It is O(mn) where n is the length of the proof and m is the length of the longest
theorem statement. In practice this is essentially linear time, because it is rare to
have theorems with long statements, and even rarer to use them so many times
in a single proof.

One may think that the compilation process for such an intricately prepared
proof would be difficult, but assuming that proof trees are stored as tree data
structures in the usual way, the process is essentially hash-consing to deduplicate
the tree, followed by a postorder traversal of the proof to produce the proof
stream and a preorder traversal of the statement to produce the unify stream
for the theorem. (See [5] for an example.)

4 The .mm1 Proof Authoring File3

In order to make the MM0 pipeline useful, we need a way to produce formal
proofs, and that means a front end to complement the MM0 back end. The
MM1 language has a syntax which is mostly an extension of MM0 which allows
providing proofs of theorems. There are currently two MM1 compilers, mm0-hs
written in Haskell and mm0-rs written in Rust, both of which provide verifica-
tion, parsing and translation for all the MM0 family languages (the three formats
mentioned in this paper, plus some debugging formats), compilation of MM1 files
to MMB, and a server compliant with the Language Server Protocol to provide
editing support (syntax highlighting, live diagnostics, go-to-definition, hovers,
etc.) for Visual Studio Code, extensible to other editors in the future.

For the bootstrapping project, we used MM0 to specify (a conservative exten-
sion of) first order Peano Arithmetic (PA), and within this axiomatic system we
defined the x86 instruction set architecture [6] and the MM0 formal system as
defined in Sect. 2.1, to obtain an end-to-end specification from input strings,
through lexing, parsing, specification well-formedness, type checking, and proof
checking, relating it to the operation of an ELF binary file.

The PA formalization4 contains about 1000 theorems and is written in MM1.
Some of it is ported from set.mm, particularly in propositional logic and FOL,
but PA has not otherwise been worked out in Metamath before. It goes as far
as the construction of finite set theory and inductive types, needed for doing
the requisite metamathematics. But it is enough to get the sense of the scala-
bility of the approach. After compilation, verification takes 2 ± 0.05 ms using
mm0-c, which makes sense since it is only a small fraction of the size of set.mm.
Compilation is also quite competitive, at 306± 4 ms using mm0-rs. Based on the
current proof sketch, we don’t anticipate the x86 verification part to be more
than 100 times larger than this project (and that’s a generous bound – a more
accurate estimate is about 8–20 times the size of peano.mm1), except possibly
the compiler execution itself, which can skip the MM1 interface and produce
3 https://github.com/digama0/mm0/tree/master/mm0-c.
4 https://github.com/digama0/mm0/blob/master/examples/peano.mm1.

https://github.com/digama0/mm0/blob/master/mm0-hs/
https://github.com/digama0/mm0/blob/master/mm0-rs/
https://github.com/digama0/mm0/tree/master/mm0-c
https://github.com/digama0/mm0/blob/master/examples/peano.mm1

Metamath Zero 83

.mmb directly. (Note that tactics can make this number much less favorable,
depending on how complex and expensive they are. Our aim is to get a compiler
roughly comparable to a simple unoptimizing C compiler, so that execution time
is reasonable even with proof production.)

Here we see an important reason for speed: the faster the server can read and
execute the file, the faster the response time to live features like diagnostics that
the user is relying on for making progress through the proof. The MM1 language
also contains a Turing-complete meta-programming language based on Scheme.
It is intended for writing small “tactics” that construct proofs. Besides a few
small quality-of-life improvements, we used it to implement a general algorithm
for proving congruence lemmas (theorems of the form A = B → f(A) = f(B))
for all new definitions.

Support for multi-file developments is as yet nascent, but it is worth men-
tioning that besides other .mm1 files, an .mm1 file can import “compiled” .mmb
files (from an .mm1 source or even generated from another source, such as a large
scale tactic), which provides a way to isolate components and only compile as
needed. It is possible to do much more in this direction, but the need is not
pressing as end-to-end compiles are fast enough for interactive use.

While MM1 has a long way to go to compete with heavyweights in the theo-
rem proving world like Coq, Isabelle, or Lean, we believe this to be an effective
demonstration that even a parsimonious language like Metamath or MM0 can
be used as the backend to a theorem prover, and “all” that is necessary is a bit
of UI support to add features like a type system, a tactic language, unification,
and inference.

5 MM0 as an Interchange Format

MM0 is a logical framework in the sense that it doesn’t prescribe any particular
axioms or semantics. This makes it well suited for translations to and from other
systems. A downside of this approach is that while correctness is well defined,
soundness is not, absent a fixed foundation. Instead, one gets several soundness
theorems depending on what axioms are chosen and what semantics is targeted.

However, proof translation can function as a substitute for a soundness proof,
and indeed, a proof translation amounts to building a class model of the source
system in the target system. To that end, we have developed a translation from
Metamath to MM0, as well as from MM0 to HOL-like systems. The latter can
be used to give a proof of soundness relative to HOL, although each MM0 axiom
produces an axiom on the HOL side and these must be manually inspected and
either accepted or proven from HOL axioms.

The Haskell verifier mm0-hs contains a from-mm subcommand that will con-
vert Metamath proofs to MM0. We used this tool to create the MM0 version
of set.mm, and this has been very helpful for performance testing, although
we are not using set.mm0 for the bootstrapping theorem. Translation is mostly
cosmetic, but variable handling is a bit different so some theorems have to be
duplicated as part of the “unbundling” transformation that is required to trans-
late Metamath theorems into FOL-like systems. (See [5].)

84 M. Carneiro

The to-hol subcommand translates MM0 into a subset of HOL. A metavari-
able ϕ : s x becomes an n-ary variable ϕ : s1 → . . . → sn → s, where xi : si,
and all occurrences of ϕ in statements are replaced by ϕx. All hypotheses and
the conclusion, are universally closed over the names, and the entire implication
from hypotheses to conclusion is universally quantified over the metavariables.
For example, the MM0 statement x : var, ϕ : wff x; ϕ � all xϕ becomes

∀ϕ : var → wff, (∀x : var,� ϕx) ⇒ � all (λx : var, ϕ x).

The actual output of mm0-hs to-hol is a bespoke intermediate language
(although it has a typechecker), which is used as a stepping-off point to OpenThe-
ory and Lean. One of the nice side effects of this work was that Metamath the-
orems in set.mm finally became available to other theorem provers. We demon-
strate the utility of this translation by proving Dirichlet’s theorem in Lean5,
using the number theory library in Metamath for the bulk of the proof and
post-processing the statement so that it is expressed in idiomatic Lean style.
The raw translation produces a proof in Lean of the Metamath library relative
to the axioms of ZFC, which are then manually replaced with a proof of those
axioms relative to Lean’s standard axioms (note that Lean has higher consis-
tency strength than ZFC), so the final statement as good as a regular Lean
theorem.

6 Bootstrapping

There are a few components that go into bootstrapping a theorem prover. In
short, what we want to do is prove a theorem of the form � ‘mm0.exe is a piece
of machine code that when executed given input E, terminates with exit code 0
only if E env’. In order to even write this statement down, we need:

1. The definition of E env, that is, the formalization of Sect. 2.
2. The definition of mm0.exe, that is, a compiled executable artifact that can

act as a verifier in the manner of mm0-c.
3. The definition of executing a piece of machine code, which requires the for-

malization of the semantics of the target architecture, in this case x86-64
Linux. (It’s not actually a .exe file, it is an ELF file.)

We have done part 1 in mm0.mm06 and part 3 in x86.mm07. These parts are
brought together into x86 mm0.mm08, containing the short final theorem. We
use def Verifier: string; to declare an abstract definition of the verifier code itself
(part 2), assert that it parses to a valid ELF file VerifierElf, and then the
main theorems to prove are:

5 https://github.com/digama0/mm0/blob/master/mm0-lean/mm0/set/post.lean.
6 https://github.com/digama0/mm0/blob/master/examples/mm0.mm0.
7 https://github.com/digama0/mm0/blob/master/examples/x86.mm0.
8 https://github.com/digama0/mm0/blob/master/examples/x86 mm0.mm0.

https://github.com/digama0/mm0/blob/master/examples/mm0.mm0
https://github.com/digama0/mm0/blob/master/examples/x86.mm0
https://github.com/digama0/mm0/blob/master/examples/x86_mm0.mm0
https://github.com/digama0/mm0/blob/master/examples/x86_mm0.mm0#L9
https://github.com/digama0/mm0/blob/master/mm0-lean/mm0/set/post.lean
https://github.com/digama0/mm0/blob/master/examples/mm0.mm0
https://github.com/digama0/mm0/blob/master/examples/x86.mm0
https://github.com/digama0/mm0/blob/master/examples/x86_mm0.mm0

Metamath Zero 85

theorem Verifier_terminates (k s: nat):
$ initialConfig VerifierElf k -> alwaysTerminates k s 0 $;

theorem Verifier_Valid (k s: nat):
$ initialConfig VerifierElf k /\ succeeds k s 0 -> Valid s $;

which assert that if the operating system loads VerifierElf into memory, result-
ing in initial state k, then on any input s, the program always terminates with
no output (this is a bare verifier, which only produces success as an exit code),
and if it succeeds, then s is Valid, meaning that it parses as a MM0 file which
is well formed, and all the theorems in the file are provable.

This is a statement, but the proof is ongoing. [5] contains a discussion of the
design of the proof, which requires writing a proof producing compiler.

7 Related Work

The idea of a bootstrapping theorem prover is not new. There are a number of
notable projects in this space, many of which have influenced the design of MM0.
However, none of these projects seem to have recognized (in words or actions)
the value of parsimony, specifically as it relates to bootstrapping.

At its heart, a theorem prover that proves it is correct is a type of circular
proof. While a proof of correctness can significantly amplify our confidence that
we haven’t missed any bugs, we must eventually turn to other methods to ground
the argument, and direct inspection is always the fallback. But the effectiveness
of direct inspection is inversely proportional to the size of the artifact, so the
only way to make a bootstrap argument more airtight is to make it smaller.

The most closely related projects, in terms of bootstrapping a theorem prover
down to machine code, are CakeML and Milawa.

– CakeML [15] is a compiler for ML that is written in the logic of HOL4 [23],
and HOL4 is a theorem prover written in ML. Unfortunately, the ML that
CakeML supports is not sufficient for HOL4, and while a simpler kernel,
called Candle, has been implemented in CakeML, it supports a variant of
HOL Light, not HOL4.

– Milawa [8] is a theorem prover based on ACL2, which has a sequence of
verifiers Ai � Ai+1 with A12 � ‘A0is correct′. This project was later extended
by Magnus Myreen to Jitawa [20], a Lisp runtime that was verified in HOL4
down to the machine code and can run Milawa.

There are a few other projects that have done bootstraps at the logic level:

– “Coq in Coq” (1996) [2] is a formalization of Calculus of Constructions and
a typechecker thereof in Coq. Unfortunately, this lacks inductive types, so it
fails to “close the loop” of the bootstrap.

– “Towards self-verification of HOL Light” (2006) [11] writes down a transla-
tion of the HOL Light kernel (written in OCaml) in HOL Light, and proves
soundness given additional axioms. This leaves off verification of OCaml (in
fact OCaml is known to break soundness), and the translation from OCaml
code to HOL Light definitions is unverified and slightly nontrivial in places.

86 M. Carneiro

– “Coq Coq Correct!” (2019) [24] improves on “Coq in Coq” by verifying a
typechecker for PCUIC, which is a much closer approximation to Coq, and
expressive enough to contain the formalization itself. Sadly, the typechecker
is not fast enough in practice to be able to typecheck its own formalization.

The MM0 project draws from ideas in a number of fields, most of which have
long histories and many contributors.

– Code extraction [10,17] is a popular way to get verified binaries; however, as
argued in [14], we believe that this leaves large gaps in the verified part.

– ISA specification: [7] is a complete formal specification of Intel x86-64 in the
K framework [21]; Sail [1] is a language specifically for specifying ISAs. Our
x86.mm0 specification is based on a port of the Sail x86 spec. Centaur [9] is
using an x86 specification to build a provably correct chip design.

– Machine code verification using separation logic [19]
– Verified compilers such as CompCert [16] and CakeML [15]
– VST [4], a tool for proving correctness of C programs in Coq
– RustBelt [12] is a project to prove soundness of the Rust type system using

Iris [13], a higher order concurrent separation logic.

8 Conclusion

Metamath Zero is a theorem prover built to solve the problem of bootstrapping
trust into a system. It is general purpose, so it can support all common formal
systems (ZFC, HOL, DTT, PA, really anything recursively enumerable). It is
extremely fast, at least on hand-written inputs like set.mm, and is built to handle
computer-science-sized problems.

Although the correctness theorem for MM0 is still ongoing, we believe there
is value added in clearly delineating the necessary components for a system that
pushes the boundaries of formal verification to cover as much as possible, so that
we can have programs that are both fast and correct.

We hope to see a future where all the major theorem provers are either
proven correct or can export their proofs to systems that are proven correct, so
that when we verify our most important software, we bequeath the highest level
of confidence we are capable of providing. It’s not an impossible dream—the
technology is in our hands; we need only define the problem, and solve it.

Acknowledgments. I would like to thank Norman Megill for writing Metamath, and
André Bacci, Wolf Lammen, David A. Wheeler, Giovanni Mascellani, Seul Baek, and
Jeremy Avigad for their input and suggestions during the design phase of MM0. I
thank Jeremy Avigad, Jesse Han, Benôıt Jubin, and the anonymous reviewers for their
reviews of early versions of this work.

This work was supported in part by AFOSR grant FA9550-18-1-0120 and a grant
from the Sloan Foundation.

https://github.com/digama0/mm0/blob/master/examples/x86.mm0

Metamath Zero 87

References

1. Armstrong, A., et al.: ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS.
In: Proceedings of 46th ACM SIGPLAN Symposium on Principles of Programming
Languages, January 2019. https://doi.org/10.1145/3290384. Proc. ACM Program.
Lang. 3(POPL), Article 71

2. Barras, B.: Coq en coq (1996)
3. Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In:

Aagaard, M., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 38–52.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44659-1 3

4. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-FLOYD: a sep-
aration logic tool to verify correctness of C programs. J. Autom. Reason. 61(1–4),
367–422 (2018)

5. Carneiro, M.: Metamath Zero: The Cartesian Theorem Prover (2019, preprint)
6. Carneiro, M.: Specifying verified x86 software from scratch. In: Workshop on

Instruction Set Architecture Specification (SpISA 2019) (2019). https://www.cl.
cam.ac.uk/∼jrh13/spisa19/paper 07.pdf

7. Dasgupta, S., Park, D., Kasampalis, T., Adve, V.S., Roşu, G.: A complete for-
mal semantics of x86-64 user-level instruction set architecture. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2019), pp. 1133–1148. ACM, June 2019. https://doi.org/
10.1145/3314221.3314601

8. Davis, J.C., Moore, J.S.: A self-verifying theorem prover. Ph.D. thesis, University
of Texas (2009)

9. Goel, S., Slobodova, A., Sumners, R., Swords, S.: Verifying x86 instruction imple-
mentations. In: Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs, pp. 47–60 (2020)

10. Haftmann, F.: Code generation from Isabelle/HOL theories
11. Harrison, J.: Towards self-verification of HOL light. In: Furbach, U., Shankar, N.

(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg
(2006). https://doi.org/10.1007/11814771 17

12. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: Rustbelt: securing the founda-
tions of the rust programming language. Proc. ACM Program. Lang. 2(POPL),
1–34 (2017)

13. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic. J. Funct. Program. 28 (2018)

14. Kumar, R., Mullen, E., Tatlock, Z., Myreen, M.O.: Software verification with ITPs
should use binary code extraction to reduce the TCB. In: Avigad, J., Mahboubi, A.
(eds.) ITP 2018. LNCS, vol. 10895, pp. 362–369. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94821-8 21

15. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. SIGPLAN Not. 49(1), 179–191 (2014). https://doi.org/10.1145/
2578855.2535841

16. Leroy, X., et al.: The compcert verified compiler. Documentation and user’s man-
ual. INRIA Paris-Rocquencourt 53 (2012)

17. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 39

https://doi.org/10.1145/3290384
https://doi.org/10.1007/3-540-44659-1_3
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_07.pdf
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_07.pdf
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1007/11814771_17
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1007/978-3-540-69407-6_39

88 M. Carneiro

18. Megill, N., Wheeler, D.A.: Metamath: A Computer Language for Mathematical
Proofs. Lulu Press, Morrisville (2019)

19. Myreen, M.O.: Formal verification of machine-code programs. Technical report,
University of Cambridge, Computer Laboratory (2009)

20. Myreen, M.O., Davis, J.: A verified runtime for a verified theorem prover. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 265–280. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22863-6 20

21. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.
012

22. Sacerdoti Coen, C.: A plugin to export Coq libraries to XML. In: Kaliszyk, C.,
Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI),
vol. 11617, pp. 243–257. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-23250-4 17

23. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

24. Sozeau, M., Forster, Y., Winterhalter, T.: Coq Coq correct!

https://doi.org/10.1007/978-3-642-22863-6_20
https://doi.org/10.1007/978-3-642-22863-6_20
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1007/978-3-030-23250-4_17
https://doi.org/10.1007/978-3-030-23250-4_17
https://doi.org/10.1007/978-3-540-71067-7_6

Adding an Abstraction Barrier to
ZF Set Theory

Ciarán Dunne(B), J. B. Wells, and Fairouz Kamareddine

Heriot-Watt University, Edinburgh, Scotland
cmd11@hw.ac.uk

Abstract. Much mathematical writing exists that is, explicitly or
implicitly, based on set theory, often Zermelo-Fraenkel set theory (ZF) or
one of its variants. In ZF, the domain of discourse contains only sets, and
hence every mathematical object must be a set. Consequently, in ZF with
the usual encoding of an ordered pair 〈a, b〉, formulas like {a} ∈ 〈a, b〉
have truth values, and operations like P(〈a, b〉) have results that are
sets. Such ‘accidental theorems’ do not match how people think about
the mathematics and also cause practical difficulties when using set the-
ory in machine-assisted theorem proving. In contrast, in a number of
proof assistants, mathematical objects and concepts can be built of type-
theoretic stuff so that many mathematical objects can be, in essence,
terms of an extended typed λ-calculus. However, dilemmas and frustra-
tion arise when formalizing mathematics in type theory.

Motivated by problems of formalizing mathematics with (1) purely
set-theoretic and (2) type-theoretic approaches, we explore an option
with much of the flexibility of set theory and some of the useful features
of type theory. We present ZFP: a modification of ZF that has ordered
pairs as primitive, non-set objects. ZFP has a more natural and abstract
axiomatic definition of ordered pairs free of any notion of representation.
This paper presents axioms for ZFP, and a proof in ZF (machine-checked
in Isabelle/ZF) of the existence of a model for ZFP, which implies that
ZFP is consistent if ZF is. We discuss the approach used to add this
abstraction barrier to ZF.

Keywords: Set theory · Formalisation of mathematics · Theorem
proving

1 Introduction

1.1 Background: Set Theory and Type Theory as Foundations

A large portion of the mathematical literature is based on set theory, explicitly or
implicitly, directly or indirectly. Set theory is pervasive in mathematical culture.
University mathematics programmes have introductory courses on set theory and
many other courses that rely heavily on set-theoretic concepts (sets, classes, etc.),
notation (comprehensions a.k.a. set-builders, power set, etc.), and reasoning.
c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 89–104, 2020.
https://doi.org/10.1007/978-3-030-53518-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_6

90 C. Dunne et al.

Formal foundations for mathematics have been developed since the early 20th
century, with both set-theoretic and type-theoretic approaches being considered.
Although there are a number of set-theoretic foundations, for this paper it is suf-
ficient to consider Zermelo-Fraenkel set theory (ZF), which anyway seems to be
broadly accepted and reasonably representative of the strengths and weaknesses
of set theory in actual practice. The core concept of ZF is the set membership
relation ∈, which acts on a domain of objects called sets. The theory is a col-
lection of formulas (known as axioms) of first-order logic which characterise the
membership relation. Logical deduction from these axioms yields a rich theory
of sets. Moreover, mathematical objects such as ordered pairs, functions, and
numbers can be represented as sets in ZF.

At roughly the same time as Zermelo was formulating his axiomatic set the-
ory, Russell introduced the first type theory. Both Zermelo and Russell had the
goal of rigorous, formal, logical reasoning free from the paradoxes that plagued
the earlier systems of Cantor and Frege. Most modern type theories are descen-
dants of Church’s typed λ-calculus [9]. Many of the methods of modern type
theory have been developed by computer scientists to solve problems in program-
ming languages and formal verification. Types add layers of reasoning that help
with soundness and representation independence. Some type theories have been
used to formulate foundations of mathematics in which mathematical objects
(e.g., groups, rings, etc.) are represented by terms and types of what is essen-
tially a very fancy typed λ-calculus.

Formalizing mathematics that has been developed in a set-theoretic culture
using a type-theoretic foundation can lead to dilemmas and frustration [6]. Sub-
typing may not work smoothly when formalising chains of structures such as
the number systems and those belonging to universal algebra. There are also
design choices in how to model predicates which can make proving some things
easier but other things much harder. The rules of powerful type systems are also
very complicated, so users require machine assistance to follow the typing rules,
and even with machine support it can be quite challenging. In contrast, ZF-like
set theories typically have very few ‘types’, e.g., there might be a type of sets
and a type of logical formulas or perhaps a type of classes. When nearly every
mathematical object you need is of ‘type set’ it is easy to obey the typing rules.

There are problems formalizing mathematics in pure ZF set theory also.
When everything is of ‘type set’, a computer proof system has no easy way to
know that it would be wasting its time to try to prove a theorem about ordinal
numbers using lemmas and tactics for groups or rings, so automated support
is more challenging. When representing mathematical objects (e.g., numbers)
as sets, the bookkeeping of the intended ‘type’ of these objects is not avoided,
but must be managed by the user outside the realm of a type system. In many
not-too-tricky cases, a type inference algorithm can automatically infer type
information that represents necessary preconditions for successful use of theo-
rems and lemmas, but in pure set theory such automated inference is not very
useful when the only type is ‘set’.

Adding an Abstraction Barrier to ZF Set Theory 91

Furthermore, practical computerisation in ZF requires abbreviation and def-
inition mechanisms which first-order logic does not provide. Two contrasting
examples of how this can be done are Metamath and Isabelle/ZF. Metamath
[10] is mostly string based, and has ‘syntax definitions’ to introduce new con-
stants, or syntax patterns. These definitions are given meaning by ‘defining
axioms’ (whose correctness is not checked by the verifier). Isabelle/ZF is built
on top of Isabelle/Pure, which is a fragment of intuitionistic higher-order logic
that is based on Church’s typed λ-calculus [11]. This means that meta-level
activities such as variable binding, definitions, and abbreviations are handled
by Isabelle/ZF in a type theory, albeit a very simple type theory. Isabelle also
handles proof tactics in SML, which can be seen as another typed λ-calculus.

1.2 The Issue of Representation and the Case of the Ordered Pair

As discussed above, set theory can represent a multitude of mathematical objects
as sets, but in some cases the user might prefer that some of their mathematical
objects are genuinely not sets. The alternative of using a sophisticated type-
theoretic foundation might not be the right solution, for a variety of reasons,
some of which are mentioned above. So the user might ask: “May I please have
a set theory which has genuine non-sets that I can use for purpose XYZ?”

There are indeed set theories with non-set objects [7], which are generally
known as urelements, so named because they are often considered to be primor-
dial, existing independently of and before the sets. A popular use for urelements
is as ‘atoms’ whose only properties are being distinct from everything else and
existing in large enough multitudes. Adding genuine non-sets takes some work,
because the assumption that ‘everything is a set’ is deeply embedded in ZF’s
axioms. One example is the axiom of Extensionality,

∀x, y : (∀a : a ∈ x ↔ a ∈ y) → x = y

which asserts that any two objects are equal if they have exactly the same set
members. Because non-set objects of course have no set members, this ZF axiom
forces them all to equal the empty set, meaning there can not be any.

Existing set theories with urelements generally (except see GST below) do
not consider urelements with ‘internal’ structure that might include sets. The
ordered pair is a simple and important example of a mathematical object with
‘internal’ structure which is not usually intended to be viewed as a set. Ordered
pairs have been of enormous value in building theories of relations, functions, and
spaces. The most widely used set-theoretical definition, by Kuratowski, defines
the ordered pair 〈a, b〉 to be the set {{a}, {a, b}}. Because a is in all sets in
〈a, b〉 and b is only in one, a first-order logic formula using only the membership
relation can check if an object is the first (or second) projection of an ordered
pair. Kuratowski pairs satisfy the characteristic property of ordered pairs:

〈a, b〉 = 〈c, d〉 ↔ (a = c ∧ b = d)

92 C. Dunne et al.

Like for any ZF representation of mathematical objects not thought of as sets,
Kuratowski pairs have ‘accidental theorems’ such as {b} ∈ 〈b, c〉, and {〈b, b〉} =
{{{b}}} = 〈{b}, {b}〉, and {〈0, 0〉} = 〈1, 1〉 with Von Neumann numbers.

The set representation of conceptually non-set objects raises issues. There
are places in the literature where some mathematical objects are thought of
as (or even explicitly stated to be) non-sets with no set members. One can find
definitions or proofs by cases on ‘type’ that assume the case of sets never overlaps
with the cases of pairs, numbers, etc. To view such writing as being founded
on pure set theory requires either proving that none of the sets used overlap
with the set representations used for abstract objects or inserting many tagging
and tag-checking operations (see, e.g., the translation we give in Definition 4.7
as part of proving a model for our system ZFP can be built in the pure set
theory ZF). When formalizing and machine-checking mathematics, additional
difficulties arise, some of which are mentioned above.

1.3 ZFP: Extending ZF Set Theory with Primitive Ordered Pairs

We aim to go beyond previous set theories with urelements to develop methods
for extending set theories with genuine non-set objects whose internal structure
can contain other objects including the possibility of sets. As a first instance of
this aim, we achieve the objective of ZFP, a set theory with primitive non-set
ordered pairs such that there is no limit on the ‘types’ of objects that sets and
ordered pairs may contain. We axiomatise ZFP and prove its consistency relative
to ZF. We hope that our explanation of how we did this will be useful guidance
for other work extending set theories.

ZFP extends ∈ with two new binary predicate symbols, π1 and π2, whose
intended meanings are ‘is first projection of’ and ‘is second projection of’. We
define abbreviations for formulas Set(x) and Pair(x) that distinguish sets and
ordered pairs by the rule that an ordered pair has a first projection and a set
does not. ZFP’s axioms are in two groups, one for sets and one for ordered pairs.
We were able to generate nearly all of ZFP’s axioms for sets by modifying the
axioms of ZF by restricting quantifiers using Set(x) in the right places. The
axiom of Foundation needed to be modified to handle sets and ordered pairs
simultaneously. ZFP’s axioms for ordered pairs specify the expected abstract
properties, including that ordered pairs have no set members.

To prove ZFP is consistent if ZF is, we construct in ZF a model and prove it
satisfies ZFP’s axioms [4]. Building a model for a set theory with non-set objects
with ‘internal’ structure that can include sets differs from building a model for
a set theory with no urelements or with only simple urelements, because there
can be new non-set objects at each stage of the construction. W, the domain of
our model, is similar to the domain V of the Von Neumann hierarchy. Each tier
of V is constructed by taking the power set of the previous tiers. In contrast,
when building the tiers of W, each successor tier Wα+ is formed by taking the
disjoint sum of the power set P(Wα) and the cartesian product (Wα)2. Hence
every object in W has a tag that tells whether it is intended to model a set or an
ordered pair. This supports defining relations that model ZFP’s ∈, π1, and π2

Adding an Abstraction Barrier to ZF Set Theory 93

which may only return true when their second argument is of the correct ‘type’.
This proof has been machine-checked in Isabelle/ZF.1

Although our model for ZFP is built purely of sets and implements ordered
pairs as sets, another model could use other methods (e.g., type-theoretic) and
implement ordered pairs differently. Hence, we have put an ‘abstraction barrier’
between the user of ZFP and the implementation of ordered pairs.

1.4 Related Work

Harrison [6] details the challenges that face both type-theoretic and set-theoretic
foundations for formalised mathematics. Harrison makes the case for using set
theory as ‘machine code’, leaving theorem proving to layers of code. Harrison
suggests using a set theory with urelements to avoid the issue of ‘accidental
theorems’. Weidijk [13] formulates axiomatic set theories and type theories in
AutoMath in order to compare them and assess their relative complexity.

A significant work aiming to make computer formalisation of set-theoretical
mathematics practical is Farmer’s Chiron [5], a conservative extension of the
set theory NBG (itself a conservative extension of ZF). Chiron has additional
features such as support for undefinedness, definite descriptions, quotation and
evaluation of expressions, and a kind of types.

Aczel and Lunnon worked on Generalised Set Theory (GST) [1] with the
aim of better supporting work in situation theory. GST extends set theory with
a mechanism for primitive functions, as well as a number of other features. It
appears that GST assumes the Anti-Foundation axiom instead of Foundation
which ZF uses. Unfortunately, we failed to find a specification of the axioms
of GST. Part of GST seems similar to our work but a technical comparison is
difficult without the axioms.

Although ordered pairs now seem obvious, Kanamori’s excellent history [8]
shows a sequence of conceptual breakthroughs were needed to reach the modern
ordered pair. How we built a model for ZFP was heavily inspired by the way
Barwise [2] interprets KPU (Kripke-Platek set theory with Urelements) in KP.

1.5 Outline

Section 2 presents and discusses the first-order logic we use and definitions and
axioms of ZF. Section 3 presents and discusses ZFP in the form of definitions
and two collections of axioms, one for sets, and one for ordered pairs. Section 4
proves the existence in ZF of a model for the axioms of ZFP (which implies that
ZFP is consistent if ZF is). Section 5 discusses the significance of these results,
and how they will be used in further investigation.

2 Formal Machinery

Let X := Y be meta-level notation meaning that X stands for Y .
1 See http://www.macs.hw.ac.uk/∼cmd1/cicm2020/ZFP.thy for the source, and

http://www.macs.hw.ac.uk/∼cmd1/cicm2020/ZFPDoc/index.html for the HTML.

http://www.macs.hw.ac.uk/~cmd1/cicm2020/ZFP.thy
http://www.macs.hw.ac.uk/~cmd1/cicm2020/ZFPDoc/index.html

94 C. Dunne et al.

2.1 First-Order Logic with Equality

We use a fragment of first-order logic (FOL) with equality sufficient for defining
ZF and ZFP. We consider only four binary infix predicate symbols including
equality. The MBNF [12] specification of the syntax is:

a, . . . , z ∈̇ Var ::= v0 | v1 | · · · ∼ ∈̇ Pred ::= ∈ | π1 | π2 | =
A, . . . , Z ∈̇ Term ::= x | ιx : ϕ ϕ,ψ ∈̇ Form ::= X ∼ Y | ϕ → ψ | ¬ϕ | ∀x : ϕ

We work with terms and formulas modulo α-conversion where ∀x and ιx bind
x. Except where explicitly specified otherwise, we require metavariables ranging
over the set Var to have the attribute of distinctness. Two different metavariables
with the distinctness attribute can not be equal. For example, x = v9 and
x1 = v27 and y = v53 could hold simultaneously, but neither x = v9 = x1

nor x = v53 = y are allowed. This restriction applies only to metavariables:
the same object-level variable can be used in nested scopes, e.g., the formula
(∀ v7 : ∀ v7 : v7 ∈ v7) is fine and equal to (∀ v0 : ∀ v1 : v1 ∈ v1). We assume
the usual abbreviations for logical connectives (∧, ∨, ↔), for quantifiers (∃, ∃!,
∀x1, . . . , xn, ∃x1, . . . , xn), and for predicate symbols (�=, /∈,).

A term can be a definite description (ιx : ϕ) which, if there is exactly one
member x of the domain of discourse such that the formula ϕ is true, evaluates
to that member and otherwise evaluates to a special value ⊥ outside the domain
of discourse such that any predicate symbol (including equality) with ⊥ as an
argument evaluates to false.2 A term is said to be undefined or to have no value iff
it evaluates to ⊥. An alternative specification of definite descriptions that gives
formulas the same meanings is eliminating them by the following rule (only the
left case is given; the right case is similar):

((ιx : ϕ) ∼ Y) := (∃x : x ∼ Y ∧ ϕ) ∧ ∃!x : ϕ where x is not free in Y

2.2 Zermelo-Fraenkel Set Theory

The only predicate symbols ZF uses are the membership relation ∈ and equality.
ZF makes no use of the FOL predicate symbols π1 and π2, but instead we define
these symbols as parts of abbreviations in Sect. 2.3. We use the following abbre-
viations where n ≥ 3 and a, c, x, y, and z are not free in the other arguments
and b is not free in X:

(∀b ∈ X : ϕ) := (∀b : b ∈ X → ϕ) (∃b ∈ X : ϕ) := (∃b : b ∈ X ∧ ϕ)
∪X := (ιy : ∀a : a ∈ y ↔ ∃z ∈ X : a ∈ z) X ⊆ Y := (∀ c ∈ X : c ∈ Y)
{A,B} := (ιx : ∀c : c ∈ x ↔ (c = A ∨ c = B)) X ∪ Y := ∪ {X,Y }
P(X) := (ιy : ∀ z : z ∈ y ↔ z ⊆ X) {A} := {A,A}
{A1, . . . , An} := {A1} ∪ {A2, . . . , An} ∅ := (ιx : ∀a : a /∈ x)
{ b ∈ X | ϕ } := (ιy : ∀b : b ∈ y ↔ (b ∈ X ∧ ϕ)) X+ := X ∪ {X}
These abbreviations are defined if their arguments are defined due to the axioms.
2 When working with functions that might be applied outside their domain, one might

prefer to have ⊥ = ⊥, but this is a bit more complex and not needed for this paper.

Adding an Abstraction Barrier to ZF Set Theory 95

Definition 2.1. The axioms of ZF are all the instances of the following formu-
las for every formula ϕ with free variables at most a, b, c1 and c2.

1. Extensionality: ∀x, y : (∀a : a ∈ x ↔ a ∈ y) → x = y
2. Union: ∀x : ∃y : ∀a : a ∈ y ↔ (∃z ∈ x : a ∈ z)
3. Power Set: ∀x : ∃y : ∀z : z ∈ y ↔ z ⊆ x
4. Infinity (ugly version; pretty version below): ∃y : (∃ z ∈ y : ∀ b : b /∈ z)∧(∀x ∈

y : ∃ s ∈ y : ∀ c : c ∈ s ↔ (c ∈ x ∨ c = x))
5. Replacement: ∀c1, c2, x : (∀a ∈ x : ∃!b : ϕ) → (∃y : ∀b : b ∈ y ↔ ∃a ∈ x : ϕ)
6. Foundation: ∀x : x = ∅ ∨ (∃y ∈ x : ¬∃b ∈ x : b ∈ y)

The axioms are due to Zermelo, except for Replacement which is due to
Fraenkel and Skolem [3] and Foundation which is due to Von Neumann. Exten-
sionality asserts that sets are equal iff they contain the same members. Union
and Power Set state that ∪X and P(X) are defined if X is defined; this implies
the domain of discourse is closed under ∪ and P. Infinity states that there exists
a set containing ∅ which is closed under the ordinal successor operation; from
this we can extract the Von Neumann natural numbers N. Here is a prettier
presentation of Infinity that we do not use as the axiom to avoid bootstrap
confusion3:

∃y : ∅ ∈ y ∧ (∀x ∈ y : x+ ∈ y)

The powerful infinite axiom schema Replacement asserts the existence of the
range of a function determined by any formula ϕ where the values of the variables
a and b that make ϕ true have a functional dependency of b on a and where the
domain of the function exists as a set. Foundation enforces the policy that there
are no infinite descending chains of the form X0 X1 · · · .
Lemma 2.2. The following theorems of ZF are often presented as axioms. For
every formula ϕ such that any free variable must be a, the following hold in ZF:

1. Empty Set: ∃x : ∀b : b �∈ x
2. Pairing: ∀a, b : ∃x : ∀c : (c ∈ x ↔ (c = a ∨ c = b))
3. Specification: ∀x : ∃y : ∀a : (a ∈ y ↔ (a ∈ x ∧ ϕ))

2.3 Ordered Pairs in ZF

We define the Kuratowski ordered pair 〈A,B〉 and related operations as follows
where a, b, p, and x are not free in A, B, and Q:

〈A,B〉 := {{A}, {A,B}}
A π1 Q := (∀x ∈ Q : A ∈ x) B π2 Q := (∃!x ∈ Q : B ∈ x)
A × B := (ιx : ∀p : p ∈ x ↔ (∃c ∈ A, d ∈ B : p = 〈c, d〉))

3 Provided some object exists, Replacement can build ∅, and then further axiom use
can build operations like {B, C}, {B}, X ∪ Y , and X+, thus ensuring the terms ∅
and x+ are defined in the pretty version of Infinity. We prefer getting that initial
object from an axiom over using the FOL assumption that the domain of discourse is
non-empty. The only axiom giving an object for free is Infinity. We find it confusing
to use Infinity in proving the definedness of subterms of itself, so we don’t.

96 C. Dunne et al.

We call a and b the first and second projections of 〈a, b〉 respectively. The first
projection of an ordered pair q is in all sets in q, whereas the second is only in
one.4 The projection relations π1 and π2 only give meaningful results when the
set Q on the right side of the relation is an ordered pair, i.e., this holds:

(∃c, d : Q = 〈c, d〉) → (∀a, b : (a π1 Q ∧ b π2 Q) ↔ Q = 〈a, b〉)
Kuratowski ordered pairs are sets and have set members that are distinct from
their projections. In fact, no matter which representation we use, there will
always exist some x such that x ∈ 〈a, b〉 (for all but at most one ordered pair
which can be represented by ∅). If A and B are defined, we can show the cartesian
product A × B is defined using Replacement nested inside Replacement5:

A × B = ∪ { z | ∃ c ∈ A : z = { p | ∃ d ∈ B : p = 〈c, d〉 } }

3 Extending ZF to ZFP

This section introduces Zermelo-Fraenkel Set Theory with Ordered Pairs (ZFP),
a set theory with primitive non-set ordered pairs. ZFP axiomatises the member-
ship predicate symbol ∈ similarly to ZF. The ordered pair projection predicate
symbols π1 and π2 are axiomatised in ZFP instead of being abbreviations that
use ∈ as in ZF. Ordered pairs in ZFP qualify as urelements because they contain
no members via the set membership relation ∈, but they are unusual urelements
because they can contain arbitrary sets via the π1 and π2 relations.

3.1 Definitions and Axioms of ZFP

We use the metavariables p, q, P , and Q where it might help the reader to think
‘ordered pair’, and the metavariables s, x, y, z, X, Y , and Z where it might
help the reader to think ‘set’; this convention has no formal status and all FOL
variables continue to range over all objects in the domain of discourse. We call
b a member of x iff b ∈ x. We call b a projection of q iff b π1 q or b π2 q. An
ordered pair is any object with a projection, and a set is any object that is not
an ordered pair. We use the following abbreviations where b is not free in Q and
X and q is not free in A and B:

Pair(Q) := ∃b : b π1 Q Set(X) := ¬Pair(X)
∀Pair p : ϕ := ∀p : Pair(p) → ϕ ∀Set x : ϕ := ∀x : Set(x) → ϕ
∃Pair p : ϕ := ∃p : Pair(p) ∧ ϕ ∃Set x : ϕ := ∃x : Set(x) ∧ ϕ

ι

Pair p : ϕ := ιp : Pair(p) ∧ ϕ ι

Set x : ϕ := ιx : Set(x) ∧ ϕ
(A,B) := (ιq : A π1 q ∧ B π2 q)

4 This holds even in the case of 〈a, a〉 = {{a}, {a, a}} = {{a}}.
5 The traditional construction of A × B as { p ∈ P(P(A ∪ B)) | ∃c ∈ A, d ∈ B :

p = 〈c, d〉 } is only needed if the weaker Specification is preferred over Replacement.
We avoid the traditional construction because it depends on a set representation of
ordered pairs and thus will not work for ZFP.

Adding an Abstraction Barrier to ZF Set Theory 97

We reuse the text of the abbreviation definitions for ZF for {A,B}, X ∪Y , {A},
and {A1, . . . , An} where n ≥ 3. We redefine the following abbreviations a bit
differently for ZFP, where a, b, c, p, x, y, and z are not free in A, B, X and Y :

X ⊆ Y := Set(X) ∧ Set(Y) ∧ (∀ c ∈ X : c ∈ Y)
∪X := (ι

Set y : ∀a : a ∈ y ↔ ∃z ∈ X : a ∈ z)
P(X) := (ι

Set y : ∀ z : z ∈ y ↔ z ⊆ X)
∅ := (ι

Set x : ∀a : a /∈ x)
{ b ∈ X | ϕ } := (ι

Set y : ∀b : b ∈ y ↔ (b ∈ X ∧ ϕ))
A × B := (ιx : ∀p : p ∈ x ↔ (∃c ∈ A, d ∈ B : p = (c, d)))

These abbreviations are defined if their arguments are defined due to the axioms.

Definition 3.1. The axioms of ZFP are all the instances of the following for-
mulas for every formula ϕ with free variables at most a, b, c1, c2.

– Sets
S1. Set Extensionality: ∀Set x, y : (∀a : a ∈ x ↔ a ∈ y) → x = y
S2. Union: ∀Set x : ∃y : ∀a : a ∈ y ↔ (∃z ∈ x : a ∈ z)
S3. Power Set: ∀Set x : ∃y : ∀z : z ∈ y ↔ z ⊆ x
S4. Infinity (ugly version): ∃y : (∃Set z ∈ y : ∀ b : b /∈ z) ∧ (∀x ∈ y : ∃ s ∈ y :

∀ c : c ∈ s ↔ (c ∈ x ∨ c = x)).
S5.Replacement: ∀c1, c2, x : (∀a ∈ x : ∃!b : ϕ) → (∃Set y : ∀b : b ∈ y ↔ ∃ a ∈ x : ϕ)

S6 Foundation: ∀Set x : x = ∅ ∨ (∃a ∈ x : ¬∃b ∈ x : b π1 a ∨ b π2 a ∨ b ∈ a)
– Ordered Pairs

P1. Ordered Pair Emptiness: ∀Pair p : ∀a : a /∈ p
P2. Ordered Pair Formation: ∀a, b : ∃p : a π1 p ∧ b π2 p
P3. Projection Both-Or-Neither: ∀p : (∃a : a π1 p) ↔ (∃b : b π2 p)
P4. Projection Uniqueness: ∀Pair p : (∃!a : a π1 p) ∧ (∃!b : b π2 p)
P5. Ordered Pair Extensionality:

∀Pair p, q : (∀a : (a π1 p ↔ a π1 q) ∧ (a π2 p ↔ a π2 q)) → p = q

Lemma 3.2. For every formula ϕ such that any free variable must be a, the
following hold in ZFP:

1. Unordered/Set Pairing: ∀a, b : ∃x : ∀c : c ∈ x ↔ (c = a ∨ c = b)
2. Specification: ∀Set x : ∃Set y : ∀a : a ∈ y ↔ (a ∈ x ∧ ϕ))
3. Cartesian Product Existence:

∀Set x, y : ∃Set z : ∀p : p ∈ z ↔ (∃a ∈ x, b ∈ y : a π1 p ∧ b π2 p)

For Lemma 3.2 (3), note that the cartesian product A×B can be built in ZFP
using the same construction given for ZF in Sect. 2.3, which does not depend on
any set representation of ordered pairs.

98 C. Dunne et al.

3.2 Discussion

Axioms for Sets. Each ZF axiom was transformed to make a ZFP axiom.
First, because we use abbreviations for more readable axioms, those used in
axioms needed to be modified for ZFP. The definition of ⊆ (used in Power Set)
was changed to ensure an ordered pair is neither a subset nor has a subset. The
definition of ∅ (used in Foundation) was changed to ensure a defined result.

Second, some occurrences of (∀ b : ψ) and (∃ b : ψ) needed to enforce that
ψ can be true only when b stands for a set. Where needed, such occurrences
were changed to (∀Set b : ψ) respectively (∃Set b : ψ). Each quantifier needed
individual consideration. If the sethood of b was already enforced by ψ only
being true when b has at least 1 set member, there was no need for a change but
a change might also clarify the axiom. If the truth of ψ was unaffected by any
set members of b, there was no need for a change and this generally indicated
that a change would go against the axiom’s intention. We needed to understand
the axiom’s intention and expected usage because it was not written to specify
where it is expected that ‘X is a set’ (because this always holds in ZF).

Finally, Foundation was extended to enforce a policy of no infinite descending
chains through not just ∈ but also π1 and π2, so that ZF proofs using Kuratowski
ordered pairs (having no such chains) would continue to work in ZFP.

Consider the example of Power Set which states that for any set X there
exists a set Y containing all of the subsets of X and nothing else, i.e., P(X):

∀Set x : ∃y : ∀z : (z ∈ y ↔ z ⊆ x)

We could have left ∀Set x as ∀x, because when x is an ordered pair it would
act like ∅ and this would only add another reason that P(∅) exists. However,
we thought this would be obscure. It would not hurt to change ∃y to ∃Set y but
there is no need to do so because the body forces y to contain a set member and
hence rejects y being an ordered pair. We did not change ∀z to ∀Set z because
this would allow y to contain extra junk ordered pairs that proofs expecting to
get P(x) would have to do extra work using Replacement to filter out.

Axioms for Ordered Pairs. The ZFP axioms for ordered pairs specify the
abstract properties of ordered pairs via the relations π1 and π2. These ordered
pairs have no ‘type’ restrictions, i.e., each pair projection can be either a set
or an ordered pair. Ordered Pair Emptiness (P1) ensures that no object has
both a projection (ordered pairs only) and a set member (sets only). Ordered
Pair Formation (P2) ensures that for every two objects b and c there exists an
ordered pair with b as first projection and c as second. Projection Both-Or-
Neither (P3) ensures that every object either has no projections (sets) or both
projections (ordered pairs). Projection Uniqueness (P4) ensures each ordered
pair has exactly one first projection and one second projection. Ordered Pair
Extensionality (P5) ensures that for every choice of first and second projections,
there is exactly one ordered pair.

Adding an Abstraction Barrier to ZF Set Theory 99

Comparing the Objects and Theorems of ZF and ZFP. A set is pure iff
all its members are pure sets. Each ZF object is a pure set and is also a pure
set of ZFP, but ZFP has additional impure sets which have members that are
primitive ordered pairs or impure sets, and ZFP also has primitive ordered pairs.
The set membership relation ∈ of ZF is the restriction of the relation ∈ of ZFP
to pure sets. Let Pure(x) be a formula (implemented with transfinite recursion)
that holds in ZFP when x is a pure set. For every ZF formula ϕ, let PRestrict(ϕ)
be the ZFP formula obtained from ϕ by changing each subformula (∀x : ψ) to
(∀x : Pure(x) → ψ). Then ϕ is a ZF theorem iff PRestrict(ϕ) is a ZFP theorem.
If one wants to go the other direction and take a ZFP formula ψ and find a
ZF formula ψ′ that ‘does the same thing’, one must represent as ZF sets both
(1) the primitive ordered pairs and (2) the sets of ZFP, and then one must either
prevent or somehow manage the possible confusion between the representations
of (1) and (2). Section 4.2 is an example of doing this rigorously.

Design Alternatives. We considered having the projections π1 and π2 be
unary FOL function symbols, but this would require the term π1(x) to denote
an object within the domain of discourse for every set x, so we avoided this. We
considered having the pairing operator (·, ·) be a binary FOL function symbol.
Using a binary function symbol would mean the graph model would have hyper-
edges (i.e., connecting 3 or more nodes) which is more difficult to think about.
Because we used two separate binary predicate symbols, one for each projection,
we get a fairly standard-looking directed-graph model with ordinary edges. If
we used a binary FOL function symbol (·, ·) for pairing, we could replace our
axioms P2, P3, P4, and P5 by the characteristic property of ordered pairs:

∀ a, b, c, d : (a, b) = (c, d) → (a = b ∧ c = d)

Our axioms can be seen as the result of applying a function-symbol-elimination
transformation to this alternative.

Very early on, we considered simply using ZF’s axioms as they are, adding a
binary pairing function symbol, and adding the characteristic property of ordered
pairs as an axiom. In this theory, formulas such as {b} ∈ 〈b, c〉 would be inde-
pendent, because the representation of ordered pairs would be unknown (and
need not even be definable in ZF), so some ‘junk theorems’ would no longer
hold. We avoided this alternative for many reasons. First, Extensionality would
force all but one ordered pair (which could be ∅) to have set members, so there
would be ‘junk theorems’ such as (a, b) �= (c, d) → ∃ e : e ∈ (a, b) ↔ e /∈ (c, d).
Second, we could not see how to do transfinite induction and recursion. Third,
genuine non-sets make it easier to talk about the distinction between sets and
conceptually non-set objects, e.g., to students. Fourth, we hope our approach
might help a weak form of ‘type checking’, where a prover might more quickly
solve or disprove subgoals, and if a user mistakenly requires a non-set to have a
set member, this might be detected earlier and result in a more understandable
failure message. Some further reasons are discussed in Sect. 1.

100 C. Dunne et al.

4 A Model of ZFP

We define within ZF a model for ZFP, i.e., an interpretation of the domain and
predicate symbols of ZFP. A translation from a ZFP formula ψ to a ZF formula
ψ∗ is defined to interpret ZFP formulas in the model. Terms and formulas in
this section belong to ZF except for the arguments of (·)∗. All axioms of ZFP
hold under this translation, which implies that if ZF is consistent, so is ZFP [4].
That each axiom’s translation holds has been checked in Isabelle/ZF.

4.1 The Cumulative Hierarchy W

Like the Von Neumann universe V used as the domain of a model of ZF, our
domain W is a set hierarchy indexed by ordinal numbers.

An ordinal is a transitive set that is totally ordered by ∈, which we specify
formally by Ord(x) := (∀ y ∈ x : y ⊆ x) ∧ (∀ y, z ∈ x : y = z ∨ y ∈ z ∨ z ∈ y). Let
α and β range over ordinals. Let 0 := ∅, 1 := 0+, 2 := 1+, and so on. Ordinal
β is a successor ordinal iff β = α+ for some α. Ordinal β is a limit ordinal
iff β is neither 0 nor a successor ordinal. Let λ range over limit ordinals. Let
(x < y) := (x ∈ y ∧ Ord(y)) and define related symbols (e.g., ≤) as usual.

Any model of ZFP must have some way of distinguishing between the objects
in its domain representing ZFP sets, and those that represent ZFP pairs, i.e.,
ZFP needs a domain split into two disjoint subdomains. We model this in ZF
using Kuratowski ordered pairs and cartesian products to tag all domain objects
with 0 (‘set’) or 1 (‘ordered pair’).

Definition 4.1. For ordinal α, define the set Wα via transfinite recursion thus:

W0 = ∅, Wβ+ = ({0} × P(Wβ)) ∪ ({1} × (Wβ)2), Wλ =
⋃

β∈λ

Wβ

Starting from ∅, each successor tier Wβ+ is built by taking the disjoint union
of the power set and cartesian square of the previous tier. Each limit tier Wλ is
the union of all preceding tiers. The use of disjoint union to build each successor
tier Wβ+ gives a set-theoretic universe split into two. Although our disjoint
union uses Kuratowski pairs with 0 and 1 tags, we could use instead any two
definable injective operators from a large enough class (e.g., the universe) to
disjoint classes that raise rank by at most a constant.

Let W be the proper class such that x ∈ W iff x ∈ Wα for some α. We use a
bold upright serif font to emphasize that W is not a ZF set.6 By the transfinite
recursion theorem, given x there is a definite description W(x) that evaluates to
Wα when x evaluates to α.7 We express X belonging to W as follows:

Definition 4.2. H(X) := (∃ y : Ord(y) ∧ X ∈ W(y)).

6 W is a mathematical object in some other set theories.
7 A nested definite description is used that specifies the function f such that f(β) =

Wβ for β ≤ α, i.e., f is an initial prefix of the hierarchy. Then f(α) is returned.

Adding an Abstraction Barrier to ZF Set Theory 101

Let an m-object be any member of W (i.e., a ZF set x such that H(x) holds),
an m-set be any m-object of the form 〈0, x〉, and an m-pair be any m-object of
the form 〈1, x〉. The following result says every m-object x is either an m-set or
an m-pair, and tells where in the hierarchy the contents of x are.

Lemma 4.3. Suppose H(x), so that x ∈ Wα. Then for some β < α either:

x = 〈0, x′〉 where x′ ⊆ Wβ, or x = 〈1, 〈a, b〉〉 where a, b ∈ Wβ .

It holds that W is a cumulative hierarchy:

Lemma 4.4. If α ≤ β, then Wα ⊆ Wβ.

4.2 Interpreting ZFP in ZF

As explained above, we interpret the sets and ordered pairs of ZFP as the mem-
bers of W. Lemma 4.3 says any m-object is an ordered pair whose left projection
is an integer which decides its ‘type’ and whose right projection is either a set
or an ordered pair. We define our interpretations of ZFP’s predicate symbols:

Definition 4.5. Let ∈̂, π̂1, and π̂2 be defined by these abbreviations:

a ∈̂ x := (∃ y : x = 〈0, y〉 ∧ a ∈ y)
a π̂1 p := (∃u, v : p = 〈1, 〈u, v〉〉 ∧ a = u)
a π̂2 p := (∃u, v : p = 〈1, 〈u, v〉〉 ∧ a = v)

W is downward closed under these three relations. That is:

Lemma 4.6. Suppose H(x), i.e., x ∈ Wα for some α. Suppose a ∈̂ x, a π̂1 x,
or a π̂2 x for some a. Then a ∈ Wβ for some β < α, and thus H(a).

To interpret a ZFP formula ϕ in ZF, we must show the formula holds when
quantification is restricted to the domain W, and the predicate symbols are
replaced by the interpretations defined above.

Definition 4.7. Let ϕ be a ZFP formula. Define ϕ∗ recursively as follows:

(X ∈ Y)∗ := (X∗) ∈̂ (Y ∗) (ϕ → ψ)∗ := (ϕ∗) → (ψ∗)
(X π1 Y)∗ := (X∗) π̂1 (Y ∗) (¬ϕ)∗ := ¬(ϕ∗)
(X π2 Y)∗ := (X∗) π̂2 (Y ∗) (∀x : ϕ)∗ := (∀x : H(x) → (ϕ∗))
x∗ := x (ιx : ϕ)∗ := (ιx : H(x) ∧ (ϕ∗))

Lemma 4.8. (∃x : ϕ)∗ ↔ (∃x : H(x) ∧ (ϕ∗)).

Because the translation (·)∗ inserts quite a lot of extra structure, a ZFP
user wanting to understand “the ZF formula corresponding to the ZFP formula
ψ” might be tempted to instead translate ZFP’s ∈ directly to ZF’s ∈ and ZFP’s
π1 and π2 to the ZF abbreviations for π1 and π2 defined in Sect. 2.3. However,
as discussed in Sect. 1.2, the user then would need to carefully prove that no

102 C. Dunne et al.

problems arise from the coincidences where a ZFP set x and a ZFP primitive
ordered pair p would be represented by the same ZF set y.

Observe that the ZFP abbreviations Set and Pair from Sect. 3.1 that act like
unary predicates are interpreted in ZF as follows:

Pair(x)∗ := (∃ a : H(a) ∧ a π̂1 x) Set(x)∗ := ¬(Pair(x)∗)

These predicates are clearly meaningful within the model because:

Lemma 4.9. Suppose that H(x), then we have that:

Pair(x)∗ ↔ (∃ a, b : x = 〈1, 〈a, b〉〉) Set(x)∗ ↔ (∃ y : x = 〈0, y〉)
Now we reach our main result, which implies ZFP is consistent if ZF is [4]:

Theorem 4.10. For each ZFP axiom ϕ, the translation ϕ∗ holds in ZF.

The proof of this theorem simply observes the conjunction of a number of
lemmas, each of which shows for a ZFP axiom φ that φ∗ holds in ZF. Most of
these lemmas are straightforward. Here we show a representative example:

Lemma 4.11. The translation of ZFP’s Power Set axiom holds in ZF.

Proof. First, we find the translation using Definition 4.7 and Lemma 4.8:

∀x : H(x) → (Set(x)∗ → (∃y : H(y) ∧ ∀z : H(z) → (z ∈̂ y ↔ ((z ⊆ x)∗))))

Let x be such that H(x), and suppose Set(x)∗. By Lemma 4.9, x = 〈0, x′〉 for
some set x′. Let y = 〈0, y′〉 where y′ = {0}×P(x′) be our candidate for the power
set. We must show that y has the property ∀z : H(z) → (z ∈̂ y ↔ (z ⊆ x)∗),
and also that y is indeed a member of W. Fix z and assume H(z), then:

z ∈̂ y ↔ z ∈ y′ by def of y and ∈̂
↔ z ∈ {0} × P(x′) by def of y′

↔ ∃z′ : z = 〈0, z′〉 ∧ z′ ⊆ x′ by def of × and P
↔ Set(z)∗ ∧ (∀a : a ∈̂ z → a ∈̂ x) since z = 〈0, z′〉, z′ ⊆ x′

↔ Set(z)∗ ∧ Set(x)∗ ∧ (∀a : a ∈̂ z → a ∈̂ x) since H(x), x = 〈0, x′〉
↔ (z ⊆ x)∗ because H(z)

It now remains to show that H(y). From H(x), we have that x ∈ Wα for some
ordinal α. By Lemma 4.4, x ∈ Wα+ , and by Lemma 4.3, x′ ⊆ Wα. Then:

x′ ⊆ Wα → P(x′) ⊆ P(Wα)
→ {0} × P(x′) ⊆ {0} × P(Wα)
→ y′ ⊆ {0} × P(Wα) by def of y′

→ y′ ⊆ Wα+ because {0} × P(Wα) ⊆ Wα+

→ y ∈ Wα++ by def of y = 〈0, y′〉
→ H(y) by def of H

��

Adding an Abstraction Barrier to ZF Set Theory 103

5 Conclusion

5.1 Summary of Contributions

Presenting ZF Set Theory Using Definite Descriptions. In Sect. 2, we
give a formal presentation of ZF that accounts for the technical details, whilst
also defining notation for widely used operations. Although correct formal defi-
nitions of this notation can be found in computer implementations of set theory,
we have not seen definite descriptions used for this in published articles. Defi-
nite descriptions allow defining terms in a compact and readable way without
needing to add FOL function symbols, extend the model, or otherwise appeal
to the meta-level. We show precisely how Kuratowski pairs and their operations
are defined and highlight issues arising from their set representations.

Axiomatizing ZFP. Motivated by issues with the set representation in pure
ZF set theory of conceptually non-set objects, in Sect. 3 we introduce Zermelo-
Fraenkel Set Theory with Ordered Pairs, which extends ZF with predicate sym-
bols π1 and π2 and axioms to implement primitive non-set ordered pairs. ZFP
is akin to some alternative set theories that use urelements as genuine non-set
objects in the domain, with the difference that ZFP’s urelements have meaning-
ful internal structure endowed by the axiomatisation of π1 and π2. The design of
ZFP is deliberately similar to that of ZF, so that we can better understand the
relationship between the two theories. We axiomatize ZFP, and discuss how the
axioms of ZF were modified to yield the axioms of ZFP. As a result, we gain a set
theory with two types of individuals, both of which have a notion of ‘container’,
which is unusual as urelements are usually structureless. The primitive ordered
pairs of ZFP are unlike those typical of set theory, as they are free from any
notion of representation.

Showing ZFP Consistent. In Sect. 4, we construct a transfinite hierarchy to
be the domain of a model for ZFP and we define relations on this domain to be
interpretations for ∈, π1, and π2. We show that the resulting structure satisfies
the axioms of ZFP, i.e., it is a model for ZFP. As a result, we show ZFP is
consistent if ZF is.

5.2 Future Work

Model Theoretic Status of ZF and ZFP. Axiomatisations of both ZF
and ZFP are given within this paper, and we are aware that the sets of ZFP
behave in a similar fashion to those in ZF. We suggest employing model-theoretic
techniques to give a more detailed formal account of the relationship between
the formulas of both theories, as well as the models.

104 C. Dunne et al.

Implementing ZFP. Preliminary experiments have taken place in implement-
ing ZFP as an object logic for Isabelle. Further work on this will allow comparing
mathematics formalised in ZF and in ZFP, and thus allow comparing the expres-
sivity, and automatability of both theories. Moreover, there is already a large
library of mathematics formalised in Isabelle/ZF. Once the formal relationship
between ZF and ZFP has been established, we will attempt to translate mathe-
matics between both bases.

Towards Abstract Data Types in Set Theory. In this paper we identified
a role performed by some sets in ZF, namely the role of being an ordered pair
for some representation (e.g., Kuratowski), together with the FOL abbreviations
for their relations. We axiomatised a new set theory in which this role can be
performed by non-set objects, yet maintain the same existence conditions and
abstract behaviour of this role. We will attempt to abstract and adapt this
method, to yield set theories in which the members of mathematical structures
can be genuine non-sets dedicated to their role. We believe such a framework
could be helpful when using set theory to formalise mathematics.

References

1. Aczel, P.: Generalised set theory. In: Logic, Language and Computation. CSLI
Lecture Notes, vol. 1, pp. 1–17 (1996)

2. Barwise, J.: Admissible Sets and Structures. Cambridge University Press, Cam-
bridge (2017). Originally published by Springer in 1976

3. Ebbinghaus, H.-D.: Ernst Zermelo. Springer, Heidelberg (2007)
4. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Elsevier, Ams-

terdam (2001)
5. Farmer, W.M.: Chiron: a multi-paradigm logic. Stud. Logic Gramm. Rhetor.

10(23), 1–19 (2007)
6. Harrison, J.: Let’s make set theory great again! (2018). http://aitp-conference.org/

2018/slides/JH.pdf. Accessed 27 May 2020
7. Holmes, M.R.: Alternative axiomatic set theories. In: The Stanford Encyclopedia

of Philosophy. Stanford University (2017)
8. Kanamori, A.: The empty set, the singleton, and the ordered pair. Bull. Symb.

Logic 9(3), 273–298 (2003)
9. Kubota, K.: Foundations of mathematics. Genealogy and overview (2018). https://

owlofminerva.net/files/fom 2018.pdf. Accessed 27 May 2020
10. Megill, N., Wheeler, D.A.: Metamath: A Computer Language for Mathematical

Proofs. LULU Press, Morrisville (2019)
11. Paulson, L.C.: Set theory for verification: I. From foundations to functions. J.

Autom. Reason. 11(3), 353–389 (1993)
12. Quinlan, D., Wells, J.B., Kamareddine, F.: BNF-style notation as it is actually

used. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM
2019. LNCS (LNAI), vol. 11617, pp. 187–204. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-23250-4 13

13. Wiedijk, F.: Is ZF a hack?: Comparing the complexity of some (formalist inter-
pretations of) foundational systems for mathematics. J. Appl. Logic 4(4), 622–645
(2006)

http://aitp-conference.org/2018/slides/JH.pdf
http://aitp-conference.org/2018/slides/JH.pdf
https://owlofminerva.net/files/fom_2018.pdf
https://owlofminerva.net/files/fom_2018.pdf
https://doi.org/10.1007/978-3-030-23250-4_13
https://doi.org/10.1007/978-3-030-23250-4_13

A Framework for Formal Dynamic
Dependability Analysis Using HOL

Theorem Proving

Yassmeen Elderhalli(B), Osman Hasan, and Sofiène Tahar

Electrical and Computer Engineering, Concordia University, Montréal, Canada
{y elderh,o hasan,tahar}@ece.concordia.ca

Abstract. Dependability analysis is an essential step in the design pro-
cess of safety-critical systems, where the causes of failure and some other
metrics, such as reliability, should be identified at an early design stage.
The dynamic failure characteristics of real-world systems are usually cap-
tured by various dynamic dependability models, such as continuous time
Markov chains (CTMCs), dynamic fault trees (DFTs) and dynamic reli-
ability block diagrams (DRBDs). In order to conduct the formal depend-
ability analysis of systems that exhibit dynamic failure behaviors, these
models need to be captured formally. In this paper, we describe recent
developments towards this direction along with a roadmap on how to
be able to develop a framework for formal reasoning support for DFTs,
DRBDs and CTMCs in a higher-order-logic theorem prover.

Keywords: Dynamic dependability analysis · Dynamic fault trees ·
Dynamic reliability block diagrams · Continuous time Markov chains ·
HOL theorem proving

1 Introduction

Dependability is a general concept that encompasses many attributes, such as
reliability, availability, security and safety [1]. Reliability is the ability of a sys-
tem to provide a correct service within a given period of time [1] and it is
quantified by evaluating the probability of delivering such service. On the other
hand, availability is the probability of a system or component to provide its
correct service at a given moment of time [1]. Many real-world systems exhibit
sequential failures and dependencies among system components that cannot be
captured using traditional dependability models, such as static fault trees (SFTs)
and static reliability block diagrams (SRBDs). Therefore, dynamic dependabil-
ity models are used to capture the dynamic failure behavior of these systems.
These models include Continuous time Markov chains (CTMCs) [2], dynamic
fault trees (DFTs) [3] and dynamic reliability block diagrams (DRBDs) [4].

Dynamic dependability analysis identifies the sequences of failure of system
components and their effect on the overall system behavior. This helps devising

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 105–122, 2020.
https://doi.org/10.1007/978-3-030-53518-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_7

106 Y. Elderhalli et al.

solutions to enhance the overall system dependability. Therefore, this analysis
process should be handled carefully in a sound environment to produce accurate
results. Traditionally, dependability models are analyzed using paper-and-pencil
based proof methods or using simulation. The former provides a flexible way to
model and analyze systems, but it is prone to human errors. On the other hand,
simulation provides an easy automated method to conduct the analysis, which
justifies its common use in analyzing a wide range of applications. However, due
to the high computational cost of simulation, only part of the space could be
analyzed, and thus the results cannot be termed as accurate or complete.

Formal methods, such as model checking [5] and theorem proving [6], have
been used for the analysis of dependability models, to overcome the inaccuracy
limitations of the above-mentioned techniques. For example, the STORM model
checker [7] has been successfully used in the safety analysis of a vehicle guidance
system [8] using DFTs. Although probabilistic model checkers (PMCs) provide
an automatic way to conduct the analysis of dependability models, the state
space explosion problem often limits its scope especially when analyzing complex
systems. Moreover, the reduction algorithms embedded in these tools are usually
not formally verified, which questions the accuracy of the reduced models [9].
This becomes an issue when analyzing safety-critical systems, where the smallest
error cannot be tolerated. More importantly, PMCs inherently assume the fail-
ures to be exponentially distributed for system components [10], and thus cannot
capture, for example, their aging factor. Although higher-order logic (HOL) the-
orem proving has been used in the analysis of traditional (static) dependability
models, such as SFTs [11] and SRBDs [12], these models cannot capture the
dynamic aspects of real-world systems and thus cannot fulfill the objective of
the projected work. However, using a theorem prover in the analysis allows hav-
ing verified, within a sound environment, generic expressions of dependability
that are independent of the distribution of system components. Thus, the results
are not limited to exponential distributions as with PMCs.

In this paper, we describe an ongoing project for building a complete frame-
work to formally analyze dynamic dependability models using HOL theorem
proving. The project had started at the Hardware Verification Group of Concor-
dia University in 2017 with a clear roadmap. In this regard, we formalized DFTs
in the HOL4 theorem prover [13], which allows formally verifying generic expres-
sions of the probability of failure of DFTs [14] and thus can be used to conduct
formal dynamic dependability analysis. Furthermore, we proposed a novel alge-
bra to analyze DRBDs with certain structures and verified their mathematical
foundations using the HOL4 theorem prover [15]. On the other hand, a formal-
ization for general CTMCs [16] is available in Isabelle/HOL [17]. However, this
formalization has not been used in the context of dynamic dependability anal-
ysis. Therefore, we plan to develop a CTMC formalization to be used in this
context. The present paper mainly summarizes our developed formalization and
shares our plans for the development of a complete framework for the formal
dependability analysis of real-world systems using a theorem prover.

Formal Dynamic Dependability Analysis Framework 107

The rest of the paper is structured as follows: Sect. 2 presents our proposed
framework for the formal dynamic dependability analysis. Section 3 provides a
brief description of our formalization of DFTs. In Sect. 4, we present DRBDs
and our developed DRBD algebra. Section 5 presents the required mathematical
foundations of the CTMC dependability analysis. We report the current status
of the project and the remaining milestones in Sect. 6. Finally, Sect. 7 concludes
the paper.

2 Proposed Framework

Figure 1 shows an overview of our proposed framework for formal dynamic
dependability analysis. This framework provides verified generic expressions of
dependability in the HOL4 theorem prover using DFTs, DRBDs and CTMCs.
The analysis starts by having a system description with some dependability
requirements, such as a certain expression of reliability. The dependability of
this system can be modeled using a DFT, DRBD or CTMC model according to
its description. For the case of the DFTs and DRBDs, we need, respectively, a
library of formalized DFT gates and DRBD constructs besides their simplifica-
tion theorems and verified probabilistic behavior. For the CTMC formal analysis,
it is required to have both formal transient and steady state analyses. The formal
DFT and DRBD models can be analyzed qualitatively or quantitatively. In the
former, the sources of vulnerabilities of the system are verified by identifying the
cut sets and cut sequences. In the latter, we prove generic failure and reliability
expressions of DFT and DRBD based systems, respectively. It is worth men-
tioning that unlike PMC approaches, the formally verified generic expressions of
DFT and DRBD are independent of the probability distributions of the system

Fig. 1. Overview of the formal dependability analysis framework

108 Y. Elderhalli et al.

(a) AND (b) OR (c) PAND (d) FDEP (e) SPARE

Fig. 2. DFT gates

components. For CTMC based models, the proposed framework formally ana-
lyzes availability and reliability metrics by proving generic expressions of these
dependability metrics that are independent of the failure rates of system com-
ponents. We choose HOL4 in the development of the formalization of dynamic
dependability models as this would facilitate using some of the available theories,
such as the probabilistic PIE [18], Lebesgue integral [19] and probability [20].

Our ultimate goal in this project is to develop a tool that accepts the depend-
ability model in either a graphical or simple textual format. Then, using a parser,
the tool creates the HOL formal models of these formats that can be used in
the formal analysis using a HOL theorem prover. The aim of this tool is to
reduce the user interaction with the theorem proving environment, which would
facilitate the usage of this framework by users who are not familiar with HOL
theorem proving or the underlying mathematical foundations of the dependabil-
ity models. This requires invoking several techniques, such as machine learning,
to automatically (to a certain extent) verify the required expressions. Therefore,
this proposed framework will allow conducting the dynamic dependability anal-
ysis of many real-world systems to provide generic expressions. We highlight the
details of the proposed framework in the following sections including the current
status of the formalization and provide some insights about the remaining steps.

3 Dynamic Fault Trees

Dynamic fault trees (DFTs) [3] model the failure dependencies among system
components that cannot be captured using traditional SFTs. A DFT is a graphi-
cal representation of the sources of failure of a given system. The modeling starts
by an undesired top event that represents the failure of a system or a subsystem.
DFT inputs represent basic events that contribute to the occurrence (failure) of
the top event. The relationships and dependencies among these basic events
are modeled using DFT gates (Fig. 2). For example, the output event of the
Priority-AND (PAND) gate occurs when both input events occur in sequence.

Fault tree analysis (FTA) can be generally carried out qualitatively and quan-
titatively [3]. In the qualitative analysis, the combinations and sequences of basic
events that contribute to the occurrence of the top event (failure of the system)
are identified. These combinations and sequences represent the cut sets and cut
sequences [21], respectively. In the quantitative analysis, attributes, such as the
mean-time-to-failure (MTTF) and the probability of failure, can be evaluated

Formal Dynamic Dependability Analysis Framework 109

based on the failure distribution of the basic events and their relationships.
Dynamic FTA has been commonly conducted using some sort of a DFT algebra
(e.g., [22]) or by analyzing the corresponding CTMC of the given DFT [3]. In
the former method, an algebra similar to the ordinary Boolean algebra is defined
with some temporal operators and simplification properties that allow reducing
the structure function of the top event. Based on this function, both the qualita-
tive and quantitative analyses can be carried out, where the probability of failure
of the DFT’s top event can be expressed based on the failure distribution of the
basic events. On the other hand, the given DFT can be converted into its equiv-
alent CTMC, which can then be analyzed to find the probability of failure of the
top event [3]. Complex systems can generate CTMCs with a large state space
that can be handled by applying a modulerization approach, where the DFT is
divided into static and dynamic parts. The static part can be analyzed using
one of the conventional methods, such as binary decision diagrams (BDDs) [21].
The dynamic part can then be analyzed by converting it to its corresponding
CTMC. This kind of modulerization is implemented in the Galileo tool [23].

The arithmetic foundations of the algebraic approach of [22] were not for-
mally verified, which puts a question mark on the soundness of the reported
results. In [24], we proposed to formalize this DFT algebra in higher-order logic
theorem proving and developed an integrated methodology to conduct DFT’s
qualitative analysis using the HOL4 theorem prover and quantitative analysis
using the STORM model checker. However, generic expressions of probability of
failure cannot be obtained based on this methodology as a PMC is involved in
the quantitative analysis. Moreover, our definitions in [24] could not cater for
the DFT probabilistic analysis. Therefore, in [14,25], we improved our definitions
of DFT gates to conduct both the DFT qualitative and quantitative analyses
in the form of generic expressions in a theorem prover. Next, we provide the
description of the DFT algebra and its formalization in order to have a better
understanding of the first part of our proposed framework of Fig. 1.

3.1 DFT Operators and Simplification Properties

The DFT algebraic approach of [22] deals with the inputs of a DFT based on their
time of failure. Therefore, all elements, operators and gates are defined based on
this time of failure. It is assumed that the failure of a certain component causes
the occurrence of its corresponding basic event. Moreover, it is also assumed
that the components are non-repairable [22]. The algebraic approach defines
two identity elements, which facilitate the simplification process of the structure
function of a given DFT. These are the ALWAYS and NEVER elements. The
ALWAYS element represents an event that always occurs, i.e., from time 0, while
the NEVER element is an event that can never occur, i.e., the time of failure is
+∞. In order to capture the dynamic failure in DFTs, three temporal operators
are introduced; Before (�), Simultaneous (Δ), and Inclusive Before (�) [22].
The output of the before operator fails when the first input event occurs before
the second. The output of the simultaneous operator fails when both input events
happen at the same time. Finally, the output of the inclusive before operator

110 Y. Elderhalli et al.

fails when the first input occurs before or at the same time of the second input.
We formally defined these elements and operators in HOL4 as extended-real
functions of time [14]. The purpose of choosing extended-real numbers, which
are real numbers besides ±∞, is to be able to model the NEVER event that
returns +∞ as its time of failure. Several simplification properties are introduced
in the algebraic approach [22] to simplify the structure function of DFTs (the
function of the top event). This reduced structure function can then be used in
the probabilistic analysis. We verified over 80 simplification theorems [24] that
vary from simple theorems to more complex ones. This enables having formally
verified reduced cut sets and cut sequences, i.e., formal qualitative DFT analysis.

3.2 DFT Gates

DFTs use the ordinary FT gates, i.e., AND and OR gates, besides the dynamic
gates (Fig. 2). AND (·) and OR (+) are used in the algebraic approach as oper-
ators as well as FT gates. The output of the AND gate fails when both inputs
fail. This means that the time of occurrence of the output event of the AND gate
is the maximum time of occurrence of both input events. The output of the OR
gate fails when at least one of the input events occurs. Therefore, the time of
occurrence equals the minimum time of occurrence of its inputs. The Priority-
AND (PAND) gate is similar to the AND gate, where the output fails when
both inputs fail. However, the input events should occur in a certain sequence,
conventionally, from left to right. The Functional DEPendency (FDEP) gate is
used to model a situation when the failure of one system component triggers the
failure of another. For the FDEP gate of Fig. 2, the occurrence of T triggers the
occurrence of X. Finally, the spare gate models spare parts in systems, where
the main part is replaced by the spare part after failure. In [14], we formally
defined these gates as functions of time to enable the verification of their failure
probabilistic expressions, as will be explained in the following section.

3.3 DFT Failure Analysis

In order to conduct the formal probabilistic failure analysis of DFTs, it is
required first to formally verify the probability of failure of DFT gates. It is
assumed that the basic events of DFT are independent. However, in case of the
spare gate, the input events are not independent as the failure of the main part
affects the failure behavior of the spare. In order to perform the failure analysis,
we first formally define a DFT event that represents the set of time until which
we are interested in finding the probability of failure [14].

In case of independent events, four expressions are used to determine the
probability of failure of DFT gates [22].

Formal Dynamic Dependability Analysis Framework 111

Pr{X · Y }(t) = FX(t) × FY (t) (1a)
Pr{X + Y }(t) = FX(t) + FY (t) − FX(t) × FY (t) (1b)

Pr{Y · (X � Y)}(t) =
∫ t

0

fY (y) FX(y) dy (1c)

Pr{X � Y }(t) =
∫ t

0

fX(x)(1 − FY (x)) dx (1d)

where FX and FY are the cumulative density functions of random variables X
and Y , respectively, and fX and fY are their probability density functions.

Equation (1a) represents the probability of the AND gate. In order to verify
this equation, we first verified that the event of the output of the AND gate equals
the intersection of the individual input events. Then, based on the independence
of these events, the probability of their intersection equals the multiplication
of their probabilities, i.e., their cumulative density functions [14]. Equation (1b)
represents the probability of the OR gate. We verified this equation using the
fact that the event of the OR gate equals the union of the individual input events.
Equations (1c) and (1d) represent the probability of two inputs events occurring
one after the other or one before the other, respectively. For the first case, it is
required that both events occur in sequence. Whereas the second case requires
that the first input event occurs before the second. So, it is not necessary that
the second input event occurs. Using these expressions, the probability of the
AND gate is expressed using Eq. (1a). The probabilities of failure of the OR
and FDEP gates are expressed using Eq. (1b). Moreover, Eq. (1c) represents the
probability of failure of the PAND gate for basic input events. Finally, Eq. (1d)
represents the probability of failure of the before operator.

Similarly, the probability of failure of the spare gate can be expressed, but it
requires dealing with conditional density functions as the time of failure of the
main part affects the activation time of the spare part. This means that the input
events are no longer independent. We verified these expressions in HOL4 by first
defining a conditional density function and then proving the probability of failure
of the spare gates [14]. In our verification process, we used the measure, Lebesgue
integral, Lebesgue-Borel measure and the probability theories in order to verify
a generic expression of failure of a given DFT. Based on this formalization, we
conducted the formal dependability analysis of several safety-critical systems,
such as a cardiac assist system [26] and a drive-by-wire system [27].

4 Dynamic Reliability Block Diagrams

A dynamic reliability block diagram (DRBD) models the paths of success in a
given system. System components are represented as blocks that are connected
in the traditional series, parallel, series-parallel and parallel-series structures.

112 Y. Elderhalli et al.

(a) Spare (b) State Dependency (c) Load Sharing

Fig. 3. Dynamic DRBD constructs

Additional constructs are used to model the dynamic dependencies among sys-
tem blocks. The main dynamic constructs are: spare, state-dependencies and
load sharing. The last two constructs enable modeling more realistic scenar-
ios in system reliability that include the effect of activation/deactivation of one
component on the rest of the components. This behavior cannot be captured
using DFTs [28] as they can only capture the failure without considering the
activation/deactivation effect.

Due to the dynamic nature of DRBDs, they can be analyzed by converting
them into a state-space model, i.e., a Markov chain. Then, the resultant Markov
chain can be analyzed using one of the traditional techniques, including analyt-
ical methods or simulation. Some tools, such as BlockSim [29], enable DRBD
analysis by providing a graphical user interface to model DRBDs and conduct
the analysis either analytically or using discrete event simulation. As mentioned
previously, complex systems can generate Markov chains with a large number
of states, which hinders the analysis process. Decomposition can be applied to
divide the DRBD into a dynamic part that can be solved using Markov chains
and a static part that can be analyzed using static RBD analysis techniques [30].
Although this decomposition would reduce the state space, such simulation based
analysis cannot provide accurate and complete results.

The formal semantics of DRBDs were introduced in [31] using the Object-Z
formalism [32]. Then, this DRBD is converted into a Colored Petri net (CPN),
where it can be analyzed using existing Petri net tools. However, since the given
DRBD is converted into a CPN, only state-based properties can be analyzed. In
addition, generic expressions of reliability cannot be obtained, which represents
our target in the proposed framework. HOL theorem proving has been only used
for the analysis of traditional SRBDs [12], which cannot support the scope of the
proposed framework, i.e., dynamic dependability. To the best of our knowledge,
there is no support of DRBD analysis using a HOL theorem prover that can cater
for the analysis of real-world systems that exhibit dynamic behavior. The main
challenge towards this direction is the absence of a formal DRBD algebra that
can provide similar analysis like DFTs. Therefore, we developed a novel algebra
that allows conducting both the qualitative and quantitative analyses based on
the structure function of DRBDs with spare constructs [15]. The formalization
of this algebra in HOL facilitates the analysis using a theorem prover. Below,
we provide an overview of DRBD constructs and structures.

Formal Dynamic Dependability Analysis Framework 113

4.1 DRBD Constructs and Structures

The main dynamic DRBD constructs are shown in Fig. 3 [33]. The spare
construct is used to model spare parts in systems, similar to the DFT
spare gate. The state dependencies are used to model the effect of activa-
tion(A)/deactivation(D)/failure(F) among system components. In Fig. 3(b), the
A/D/F of the trigger will cause the state dependency controller (SDEP) to signal
the A/D/F of components X1...Xn. Finally, the load sharing (LSH) construct
is used to model the effect of sharing a load on the overall system failure. For
example, the LSH in Fig. 3 models a load that is shared among n components. It
is required that at least k out of these n components to be working in order for
the successful functionality of the overall system. Therefore, the D/F of some of
these components may cause the D/F of the rest of the components.

Besides the dynamic DRBD constructs, system components are represented
as blocks that can be connected in series, parallel, series-parallel and parallel-
series fashion, as shown in Fig. 4 [34]. Each block in Fig. 4 represents either a
simple system component or one of the DRBD dynamic constructs.

4.2 DRBD Algebra

We developed a DRBD algebra to perform both qualitative and quantitative
analyses in the HOL theorem proving environment of a given DRBD. The devel-
oped algebra can model traditional DRBD structures, i.e., series and parallel,
besides the spare construct by dealing with the time-to-failure functions. In the
developed algebra, we defined DRBD operators, like the DFT algebra, to model
the various relationships among system components. These operators are: 1)
AND (·) to model a situation where two system components are required to
work for a successful system behavior (connected in series); 2) OR (+) to model
system components that are connected in parallel; 3) After operator (�) which

(a) Series (b) Parallel

(c) Series-Parallel (d) Parallel-Series

Fig. 4. DRBD structures

114 Y. Elderhalli et al.

captures the situation where one system component is required to continue work-
ing after the failure of a second one; 4) Simultaneous operator (Δ) which is sim-
ilar to the DFT simultaneous operator; and 5) Inclusive after (�) that combines
the behavior of both the after and simultaneous operators. In [15] we provided
mathematical expressions for these operators, and expressed the DRBD struc-
tures and spare construct based on their mathematical expressions.

4.3 DRBD Reliability Analysis

In our algebra, we assume that each system block is represented by a random
variable, which is the time-to-failure function of this block. We also assume
that the system components are non-repairable. Based on this time-to-failure
function, the reliability of a single block is defined as [34]:

RX(t) = Pr(X > t) = 1 − Pr(X ≤ t) = 1 − FX(t) (2)

The DRBD blocks can be connected in several ways depending on the success
paths of the modeled system. The definitions and reliability expressions of the
structures of Fig. 4 are listed in Table 1 [34]. In the series structure, it is required
that all blocks are working for the system to work. Therefore, the series structure
can be modeled as the intersection of the individual block events, as listed in
Table 1, where Xi represents the DRBD event of the ith block. This structure
can be also modeled by ANDing the functions of these blocks. The reliability of
this structure equals the multiplication of the reliability of the individual blocks.
The parallel structure requires at least one of the blocks to be working for a
successful system behavior. Hence, it is modeled as the union of the events of
the individual blocks and it can be also modeled by ORing these functions. The
series-parallel structure (Fig. 4(c)) represents a series structure of blocks each
of which is a parallel structure. Therefore, it is modeled as the intersection of
unions. The parallel-series structure (Fig. 4(d)), is a parallel structure of several
series structures. It is modeled as the union of intersection of the individual
block events. In [15], we formally verified these expressions besides the reliability
of the spare construct. We plan to extend the DRBD algebra to model the
remaining dynamic constructs, i.e., load sharing and state dependency. This
requires modeling the deactivation state of system components and may include
introducing new DRBD operators to capture such behavior.

Table 1. Mathematical and reliability expressions of DRBD structures

Structure Mathematical expression Reliability

Series ⋂n
i=1 Xi

∏n
i=1 RXi

(t)

Parallel ⋃n
i=1 Xi 1−∏n

1=1(1−RXi
(t))

Series-parallel ⋂m
i=1

⋃n
j=1 X(i,j)

∏m
i=1(1−

∏n
j=1(1−RX(i,j)

(t)))

Parallel-series ⋃n
i=1

⋂m
j=1 X(i,j) 1−(

∏n
i=1(1−

∏m
j=1(RX(i,j)

(t))))

Formal Dynamic Dependability Analysis Framework 115

5 Continuous Time Markov Chains

Continuous Time Markov Chains (CTMCs) are the most widely used stochastic
processes in dynamic dependability analysis since they can capture the failure
dependencies. A CTMC is a Markov process with discrete state space. The tran-
sition from one state to another can happen with a certain rate at any moment
of time. Formal methods have been used in the analysis of CTMC based sys-
tems. For example, the PRISM model checker is utilized in [10] to model and
analyze different case studies, such as dynamic voltage and molecular reactions.
However, generic expressions cannot be obtained using such analysis. Utilizing
the expressive nature of HOL, Markov chains are formalized in both HOL4 and
Isabelle/HOL [17]. In [35], the formalization of discrete time Markov chains
(DTMCs) is presented in HOL4 with some formalized attributes, such as steady
state probabilities and stationary distribution. In [16], CTMCs are formally
defined in Isabelle/HOL with the formalization of backward equations. Although
Markov chains have been formalized in HOL, no work has been proposed yet
regarding the dependability analysis of Markov chain based systems. Conduct-
ing the analysis of CTMCs to reason about dependability attributes, such as
reliability and availability, would provide formally verified generic expressions of
dependability, which is the scope of the third part of our proposed framework. In
the sequel, we present some mathematical notations that are required for both
CTMC transient and steady state analyses, which can be used for conducting
the reliability and availability analyses of a given system.

5.1 CTMC Definition and Attributes

A stochastic process {Xt, t ∈ T} is a collection of random variables indexed by
t ∈ T [36], where the time t can be continuous or discrete. The values that each
random variable can take are called states and the set of these states is called
the state space Ω. A Markov process is a stochastic process with the Markov
property [35]. If the state space is finite or countably infinite, then the Markov
process is called a Markov Chain (MC). The Markov property is defined as [2]:

Pr
(
X(t) = x| X(tn) = xn,X(tn−1) = xn−1, ...,X(t0) = x0

)
=

Pr
(
X(t) = x| X(tn) = xn

) (3)

If the transition can happen at any time, i.e., the time is continuous, then
the MC is called a Continuous Time Markov Chain (CTMC). In the proposed
framework, we are interested in CTMCs as they can capture the dynamic behav-
ior at any instance of time. Once the process is in a certain state, i, the time it
spends in this state is exponentially distributed with rate λi.

The probabilistic behavior of the CTMC is described by the initial state
probability vector πk(t0) [2], which is defined as Pr

(
X(t0 = k

)
, k = 0, 1, 2, ...

and the transition probabilities pij [2], where

pij(v, t) = Pr
(
X(t) = j | X(v) = i

)
, 0 ≤ v ≤ t and i, j = 0, 1, 2, ... (4)

116 Y. Elderhalli et al.

The CTMC is time non-homogeneous if the transition probabilities are func-
tions of time, while it is a time homogeneous CTMC if the transition probabilities
depend on the time difference (t − v) and not on the actual value of time [2].

pij(t) = Pr
(
X(t + v) = j | X(v) = i

)
, 0 ≤ v (5)

Each CTMC has an embedded DTMC with a probability transition matrix
P. The matrix entries are the one step probabilities from state i to state j.
This matrix specifies the behavior of the embedded DTMC, however, it does
not provide information about the transition rates. The Chapman-Kolmogorov
equation [2] provides the probability of the transition from state i to state j in
time period from v to t, where the system is taken to an intermediate state k
during the time v to u, and from the intermediate state to state j during the
time u to t. This equation can be described as [2]:

pij(v, t) =
∑
k∈Ω

pik(v, u)pkj(u, t), 0 ≤ v < u < t (6)

The state probability or the unconditional probability of being in a certain
state can be expressed using the total probability theorem as:

πj(t) =
∑
i∈Ω

pij(v, t)πi(v) (7)

If we substitute v with 0, then, only the transition probabilities and the initial
state probability vector are enough to describe the probabilistic behavior of the
CTMC [2]. The state probability vector, π(t), is a vector with an entry for each
unconditional state probability. The sum of the entries in the state probability
vector at any time is equal to 1, as the MC should be in a certain state.

∑
j∈Ω

πj(t) = 1 (8)

The infinitesimal matrix (or the generator matrix), G, is a core element in
the CTMC analysis process. It has all the information about the transition rates.
The elements of the matrix G are defined by:

gij =

{
λij , i �= j

−λi , i = j
(9)

where λij is the transition rate from state i to state j.

5.2 CTMC Dependability Analysis

A CTMC can be used to model the dependability of a certain system. For exam-
ple, a state machine can start with an initial state, where all system components
are working. Then, several states can be used to model the varying failure con-
ditions of system components. Note that it is not necessary that the failure of a

Formal Dynamic Dependability Analysis Framework 117

certain component in the system can lead to the failure of the whole system. So
the failure of components in the system will cause the transition from one state
in the CTMC to another. The transition rate depends on the failure rate of the
component that failed. A fail state is used to model the fail state of the system.
The CTMC quantitative analysis can be conducted using either the transient
analysis or steady-state analysis depending on the dependability metric that we
are interested in. These include the instantaneous availability, reliability and
steady state availability, as will be described below:

Transient Analysis. The transition probabilities and the transition rates are
related using Kolmogrov’s forward or backward equations [2]. The backward
Kolmogrov’s equations are defined as:

p′
ij(t) =

∑
k �=i

λikpki(t) − λipij(t) (10)

Equation 10 can be rewritten using the matrix form as:

P′(t) = GP(t) (11)

where P(t) is the matrix transition probability function. In a similar manner,
the generator matrix can be used to find π(t) [2]:

π′(t) = π(t)G(t) (12)

Starting from a CTMC that models the failure behavior of a given system,
we can find the probability of being available at a certain moment of time, i.e.,
instantaneous availability or the system reliability using this transient analysis.
This is achieved by finding the probability of being in a fail or a working state.

Steady State Analysis. A stationary distribution is the vector of uncondi-
tional state probabilities that satisfies the following condition [36]:

π = πP(t) (13)

This means that if the CTMC starts with this initial stationary distribu-
tion, the unconditional state probabilities vector at any time will stay the same.
The stationary distribution can be found by solving the following set of linear
equations with the condition that

∑
j∈Ω πj(t) = 1 [36]:

πG = 0 (14)

Using this stationary distribution, we can find the overall probability of sys-
tem availability by finding the probability of being in a working state. This
means that we can find the fraction of time where the system is available during
its life cycle, which represents the steady state availability.

118 Y. Elderhalli et al.

6 Current Status and Future Milestones

The final objective of the proposed project is to develop a tool that can be used
for the formal dynamic dependability analysis of DFT, DRBD and CTMC mod-
els. To achieve this goal, we had to extend the properties of the Lebesgue integral
and probability theory in HOL4. This enabled us to verify several probabilistic
expressions that are concerned with sequences of random variables. For exam-
ple, we verified Pr(X < Y), which is required to model the failure behavior of
some DFT gates and the DRBD spare construct. Furthermore, we verified several
properties for the independence of random variables and sets that are required for
verifying the probability of a nested hierarchy of union and intersection of sets.
These properties are useful in the analysis of complex DFT and DRBD models.
We encountered several challenges during the formalization process including the
lack of mathematical proofs in the literature that clearly identify the required
steps or theorems that can be utilized to verify the required properties.

We used our formalization to formally model and verify the mathematical
foundations of DFTs in the HOL4 theorem prover [14,24,25]. In particular, we
modeled the DFT gates and operators and verified several simplification theo-
rems. We illustrated the applicability of the proposed framework by conducting
the formal analysis of a cardiac assist system and a drive-by-wire system. Fur-
thermore, we proposed a roadmap [37] to use machine learning techniques to
conduct the DFT analysis, which reduces the user interaction with the theorem
proving environment. Tables 2 summarizes these accomplished tasks.

We developed a new algebra that allows the formal qualitative and quantita-
tive analyses of DRBDs with spare constructs within a theorem proving environ-
ment [15]. We illustrated the usefulness and utilization of the proposed algebra
in the formal DRBD based analysis of shuffle-exchange networks, which are used
in multiprocessor systems, and a drive-by-wire system, as listed in Table 2.

The remaining tasks of this project can be divided into two main categories:
1) the development and formalization of the mathematical models; and 2) the
development of the tool itself. For the first category, we need to extend the
DRBD algebra to model the state dependency and load sharing constructs. This
requires considering the deactivation process of system components instead of
dealing only with the activation and failure. By modeling this behavior, we can
consider, in the future, the repairing scenarios that are not currently supported
in our DRBD algebra. Furthermore, we have to mathematically model CTMCs
in HOL4. For this purpose, we need to extend the properties of conditional
density and distribution functions. Modeling exponential distributions and for-
malizing their properties are also needed as the time spent in each CTMC state
is exponentially distributed. Finally, we plan to conduct the dependability anal-
ysis using CTMCs including reliability and availability. We plan to utilize this
formalization in the dependability analysis of real-world systems, such as solid
state drives-RAID systems [38].

Regarding the second category, we plan to develop a parser that creates the
HOL dependability models based on a textual or graphical input format. Fur-
thermore, the end-user should be able to specify the type of analysis required

Formal Dynamic Dependability Analysis Framework 119

(e.g., reliability or availability) and enter some requirements in the form of
expressions. Thus, we have to develop a user friendly graphical user interface
(GUI) to obtain these inputs. Then, we intend to invoke some machine learn-
ing (ML) algorithms that help in speeding up and automating the verification
process. This includes classifying the useful theorems and choosing the proper
tactics to be used in the verification of the input model. To achieve this step, we
need to create training and test sets that can be used in developing the proper

Table 2. Roadmap

Task Description Duration

Accomplished tasks

1 HOL Formalization of DFT algebra 14 Months

- Formal definitions of DFT gates and temporal operators [14]

- Formalization of probabilistic behavior of dynamic gates [14,25]

2 DFT applications 2 Months

- Quantitative analysis of CAS [14]

- DFT qualitative and quantitative analyses of CAS and DBW [25]

3 New DRBD algebra [15] 2 Months

4 HOL formalization of DRBD algebra [15] 9 Months

- Formal definitions of DRBD structures and spare construct

- Formalization of reliability expressions

5 DRBD applications 1 Month

- Formal reliability analysis of DBW and SEN [15]

Future plan

6 More DRBD dynamic constructs 6 Months

- Formalization of state dependencies construct

- Formalization of load sharing construct

7 Formalization of CTMCs 9 Months

- Homogeneous

- Non-homogeneous

8 Formal CTMC analysis 6 Months

- Transient analysis

- Steady state analysis

9 Applications (Reliability of SSD RAID) 2 Months

10 Using machine learning to automate the analysis 6 Months

- Create training and test sets

- Develop ML models

11 Tool Development 3 Months

- Develop a GUI

- Develop a parser

- Program the core of the tool

Total time 60 Months

120 Y. Elderhalli et al.

ML models. Finally, we have to program the core of the tool that connects the
pieces of the framework together to enable the automatic dynamic dependability
analysis. As the development of this tool is an incremental process, which can
be improved with time, we plan to conduct some tutorials for end-users that
are not familiar with HOL to train them and consider their feedback. This step
is also important for verification and reliability engineers that are interested in
enriching the underlying theories of the proposed framework. This helps in the
sustainability of the proposed framework by engaging many users with differ-
ent goals and backgrounds in the development of the framework and its tool. A
summary of this roadmap is provided in Table 2.

7 Conclusions

In this paper, we proposed a comprehensive framework to conduct the formal
dynamic dependability analysis using HOL theorem proving. We provided the
details of the mathematical foundations of each part of the proposed framework.
The main contributions of this work is the development of the proposed frame-
work in the HOL4 theorem prover that includes the formalization of DFTs and
CTMCs besides the development of the DRBD algebra. These formalized models
allow the dependability analysis of many real-world system that exhibit dynamic
behavior. We described the future milestones to complete the proposed project
including the final tool that enables the (semi) automation of the analysis.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

2. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer
Science Applications. Wiley, Hoboken (2002)

3. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault Tree Handbook with Aerospace Applications. NASA Office of Safety and
Mission Assurance (2002)

4. Distefano, S., Xing, L.: A new approach to modeling the system reliability: dynamic
reliability block diagrams. In: Reliability and Maintainability Symposium, pp. 189–
195. IEEE (2006)

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Gordon, M.J., Melham, T.F.: Introduction to HOL: A Theorem Proving Environ-

ment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)
7. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-

abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

8. Ghadhab, M., Junges, S., Katoen, J.-P., Kuntz, M., Volk, M.: Model-based safety
analysis for vehicle guidance systems. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 3–19. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66266-4 1

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-66266-4_1

Formal Dynamic Dependability Analysis Framework 121

9. Elderhalli, Y., Volk, M., Hasan, O., Katoen, J.-P., Tahar, S.: Formal verification of
rewriting rules for dynamic fault trees. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM
2019. LNCS, vol. 11724, pp. 513–531. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30446-1 27

10. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the proba-
bilistic model checker PRISM. Electron. Notes Theor. Comput. Sci. 153(2), 5–31
(2006)

11. Ahmed, W., Hasan, O.: Formalization of fault trees in higher-order logic: a deep
embedding approach. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016.
LNCS, vol. 9984, pp. 264–279. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47677-3 17

12. Ahmed, W., Hasan, O., Tahar, S.: Formalization of reliability block diagrams in
higher-order logic. J. Appl. Logic 18, 19–41 (2016)

13. HOL4 (2020). https://hol-theorem-prover.org/
14. Elderhalli, Y., Ahmad, W., Hasan, O., Tahar, S.: Probabilistic analysis of dynamic

fault trees using HOL theorem proving. J. Appl. Logics 6, 467–509 (2019)
15. Elderhalli, Y., Hasan, O., Tahar, S.: A formally verified algebraic approach for

dynamic reliability block diagrams. In: Ait-Ameur, Y., Qin, S. (eds.) ICFEM 2019.
LNCS, vol. 11852, pp. 253–269. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32409-4 16

16. Hölzl, J.: Markov processes in Isabelle/HOL. In: ACM SIGPLAN Conference on
Certified Programs and Proofs, pp. 100–111 (2017)

17. Isabelle (2020). https://isabelle.in.tum.de/
18. Ahmed, W., Hasan, O.: Towards formal fault tree analysis using theorem proving.

In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS (LNAI), vol. 9150, pp. 39–54. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-20615-8 3

19. Mhamdi, T., Hasan, O., Tahar, S.: On the formalization of the lebesgue integration
theory in HOL. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol.
6172, pp. 387–402. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14052-5 27

20. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropy measures in HOL. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 233–248. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22863-6 18

21. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling. Anal. Tools Comput. Sci. Rev. 15–16, 29–62 (2015)

22. Merle, G.: Algebraic modelling of dynamic fault trees, contribution to qualitative
and quantitative analysis. Ph.D. thesis, ENS, France (2010)

23. Sullivan, K.J., Dugan, J.B., Coppit, D.: The galileo fault tree analysis tool. In:
IEEE Symposium on Fault-Tolerant Computing, pp. 232–235 (1999)

24. Elderhalli, Y., Hasan, O., Ahmad, W., Tahar, S.: Formal dynamic fault trees
analysis using an integration of theorem proving and model checking. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 139–156.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 10

25. Elderhalli, Y., Hasan, O., Tahar, S.: A methodology for the formal verification of
dynamic fault trees using HOL theorem proving. IEEE Access 7, 136176–136192
(2019)

26. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensi-
ble framework for dynamic fault tree analysis. IEEE Trans. Dependable Secure
Comput. 7, 128–143 (2010)

https://doi.org/10.1007/978-3-030-30446-1_27
https://doi.org/10.1007/978-3-030-30446-1_27
https://doi.org/10.1007/978-3-319-47677-3_17
https://doi.org/10.1007/978-3-319-47677-3_17
https://hol-theorem-prover.org/
https://doi.org/10.1007/978-3-030-32409-4_16
https://doi.org/10.1007/978-3-030-32409-4_16
https://isabelle.in.tum.de/
https://doi.org/10.1007/978-3-319-20615-8_3
https://doi.org/10.1007/978-3-319-20615-8_3
https://doi.org/10.1007/978-3-642-14052-5_27
https://doi.org/10.1007/978-3-642-14052-5_27
https://doi.org/10.1007/978-3-642-22863-6_18
https://doi.org/10.1007/978-3-642-22863-6_18
https://doi.org/10.1007/978-3-319-77935-5_10

122 Y. Elderhalli et al.

27. Altby, A., Majdandzic, D.: Design and implementation of a fault-tolerant drive-by-
wire system. Master’s thesis, Chalmers University of Technology, Sweden (2014)

28. Distefano, S., Puliafito, A.: Dynamic reliability block diagrams vs dynamic fault
trees. In: Reliability and Maintainability Symposium, pp. 71–76. IEEE (2007)

29. BlockSim (2020). https://www.reliasoft.com/products/reliability-analysis/
blocksim

30. Distefano, S.: System dependability and performances: techniques, methodologies
and tools. Ph.D. thesis, University of Messina, Italy (2005)

31. Xu, H., Xing, L.: Formal semantics and verification of dynamic reliability block
diagrams for system reliability modeling. In: International Conference on Software
Engineering and Applications, pp. 155–162 (2007)

32. Smith, G.: The Object-Z Specification Language, vol. 1. Springer, Boston (2012).
https://doi.org/10.1007/978-1-4615-5265-9

33. Xu, H., Xing, L., Robidoux, R.: Drbd: dynamic reliability block diagrams for sys-
tem reliability modelling. Int. J. Comput. Appl. 31(2), 132–141 (2009)

34. Hasan, O., Ahmed, W., Tahar, S., Hamdi, M.S.: Reliability block diagrams based
analysis: a survey. In: International Conference of Numerical Analysis and Applied
Mathematics, vol. 1648, p. 850129.1-4. AIP (2015)

35. Liu, L., Hasan, O., Tahar, S.: Formal reasoning about finite-state discrete-time
Markov chains in HOL. J. Comput. Sci. Technol. 28(2), 217–231 (2013)

36. Grimmett, G., Stirzaker, D., et al.: Probability and Random Processes. Oxford
University Press, Oxford (2001)

37. Elderhalli, Y., Hasan, O., Tahar, S.: Using machine learning to minimize user
intervention in theorem proving based dynamic fault tree analysis. In: Conference
on Artificial Intelligence and Theorem Proving, pp. 36–37 (2019)

38. Li, Y., Lee, P.P.C., Lui, J.C.S.: Stochastic analysis on RAID reliability for solid-
state drives. In: IEEE International Symposium on Reliable Distributed Systems,
pp. 71–80 (2013)

https://www.reliasoft.com/products/reliability-analysis/blocksim
https://www.reliasoft.com/products/reliability-analysis/blocksim
https://doi.org/10.1007/978-1-4615-5265-9

Induction with Generalization in
Superposition Reasoning

Márton Hajdú1, Petra Hozzová1, Laura Kovács1,2(B), Johannes Schoisswohl1,3,
and Andrei Voronkov3,4

1 TU Wien, Vienna, Austria
laura.kovacs@tuwien.ac.at

2 Chalmers University of Technology, Gothenburg, Sweden
3 University of Manchester, Manchester, UK

4 EasyChair, Manchester, UK

Abstract. We describe an extension of automating induction in
superposition-based reasoning by strengthening inductive properties and
generalizing terms over which induction should be applied. We imple-
mented our approach in the first-order theorem prover Vampire and
evaluated our work against state-of-the-art reasoners automating induc-
tion. We demonstrate the strength of our technique by showing that
many interesting mathematical properties of natural numbers and lists
can be proved automatically using this extension.

1 Introduction

Automating inductive reasoning opens up new possibilities for generating
and proving inductive properties, for example properties with inductive data
types [4,21] or inductive invariants in program analysis and verification [13,14].
Recent advances related to automating inductive reasoning, such as first-order
reasoning with inductively defined data types [16], the Avatar architecture [26],
inductive strengthening of SMT properties [22], structural induction in superpo-
sition [10] and general induction rules within saturation [19], make it possible to
re-consider the grand challenge of mechanizing mathematical induction [5]. In
this paper, we contribute to these advances by generalizing inductive reasoning
within the saturation-based proof search of first-order theorem provers using the
superposition calculus.

It is common in inductive theorem proving, that given a formula/goal F , to
try to prove a more general goal instead [5]. This makes no sense in saturation-
based theorem proving, which is not based on a goal-subgoal architecture. As
we aim to automate and generalize inductive reasoning within saturation-based
proof search, our work follows a different approach than the one used in induc-
tive theorem provers. Namely, our methodology in Sect. 4 picks up a formula F
(not necessarily the goal) in the search space and adds to the search space new
induction axioms with generalization, that is, instances of generalized induction
schemata, aiming at proving both ¬F and a more general formula than ¬F .
c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 123–137, 2020.
https://doi.org/10.1007/978-3-030-53518-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_8

124 M. Hajdú et al.

In Sect. 3 we give a concrete example motivating our approach, illustrating the
advantage of induction with generalization in saturation-based proof search. We
then present our main contributions, as follows:

(1) We introduce a new inference rule for first-order superposition reasoning,
called induction with generalization (Sect. 4). Our work extends [19] by prov-
ing properties with multiple occurrences of the same induction term and
by instantiating induction axioms with logically stronger versions of the
property being proved. Our approach is conceptually different from previ-
ous attempts to use induction with superposition [10,11,15], as we are not
restricted to specific clause splitting algorithms and heuristics used in [10],
nor are we limited to induction over term algebras with the subterm ordering
in [11]. As a result, we stay within the standard saturation framework and
do not have to introduce constraint clauses, additional predicates or change
the notion of redundancy as in [11].

(2) We implemented our work in the Vampire theorem prover [17] and
compared it to state-of-the-art reasoners automating induction, including
Acl2 [5], Cvc4 [2], Imandra [18], Zeno [24] and Zipperposition [10]
(Sect. 5). We also provide a set of handcrafted mathematical problems over
natural numbers and lists. We show that induction with generalization in
Vampire can solve problems that existing systems, including Vampire with-
out this rule, cannot.

(3) We provide a new digital dataset consisting of over 3,300 inductive bench-
marks, for which generalized applications of induction is needed (Sect. 5).
Our dataset is formalized within the SMT-LIB format using data types [3]
and available at: https://github.com/vprover/inductive benchmarks.

2 Preliminaries

We assume familiarity with multi-sorted first-order logic and saturation-based
superposition reasoning. For details, we refer to [17]. Throughout this paper
we denote fresh Skolem constants by σ, variables by x, y, z and terms by t, all
possibly with indices. We denote the equality predicate by = and consider = as
part of the language. Further, we write t1 �= t2 for the formula ¬(t1 = t2).

Given a set of formulas (including a negated conjecture), superposition-based
theorem provers run saturation algorithms on a set of clauses corresponding to
the clausal normal form (CNF) of the input set of formulas. We denote literals
by L and clauses by C, all possibly with indices. We use � to denote the empty
clause. In [16] we showed how superposition-based provers can be extended with
reasoning about the theory for finite term algebras.

We will denote term algebras corresponding to natural numbers by N and
lists of natural numbers by L. We refer to the elements of the signature of the
term algebras as constructors. We will use the same notations N and L for these
term algebras extended by additional function and predicate symbols shown in
Fig. 1.

https://github.com/vprover/inductive_benchmarks

Induction with Generalization in Superposition Reasoning 125

Natural numbers N Natural lists L

Constructors 0 : N s : N → N nil : L cons : N × L → L

Symbols + : N × N → N ++: L × L → L

≤: N × N → bool prefix : L × L → bool
Axioms ∀y.(0 + y = y) ∀l.(nil ++ l = l)

∀x, y.(s(x) + y = s(x + y)) ∀x, l, k.(cons(x, l) ++ k = cons(x, l ++ k))
∀x.0 ≤ x ∀l.prefix(nil, l)
∀x.¬s(x) ≤ 0 ∀x, l.¬prefix(cons(x, l), nil)
∀x, y. s(x) ≤ s(y) ∀x, l, y, k. prefix(cons(x, l), cons(y, k))

↔ x ≤ y
) ↔ (x = y ∧ prefix(l, k))

)

Fig. 1. Term algebras of N and L, together with additional symbols and axioms.

Specifically, we will deal with + and ≤ for N having their standard meaning
and ++ and prefix for L, denoting the list concatenation and the prefix relation,
respectively. These additional symbols are axiomatized by first-order formulas
corresponding to their recursive definitions, shown in Fig. 1.

While we use N and L for illustration, we however note that our approach
can be used for proving properties over any other theories with various forms of
induction.

Theorem proving of first-order properties of inductively defined data types
needs to handle the domain closure, injectivity, distinctness and acyclicity axioms
of term algebras – a detailed definition of these axioms can be found in [16,23].
The challenge we address in [16] is how to automate proving term algebras
properties given the fact that the acyclicity axiom is not finitely axiomatizable.

Throughout this paper, we will be using the structural induction axiom and
rule for N, introduced in [19], for illustrating our approach. Given a literal ¬L[t],
where t is chosen as an induction term, a structural induction axiom for N is:

(
L[0] ∧ ∀x.(L[x] → L[s(x)])

) → ∀y.(L[y]). (1)

Informally, the axiom expresses that if the base case holds, and if the induction
step holds, then the literal holds for all possible values. The structural induction
rule for N, given a clause ¬L[t] ∨ C, adds a clausified form of this axiom to the
search space:

¬L[t] ∨ C

(¬L[0] ∨ L[σ] ∨ L[y]) ∧ (¬L[0] ∨ ¬L[s(σ)] ∨ L[y])
. (2)

After using the rule, the L[y] in both resulting clauses can be resolved against
the ¬L[t] in the premise clause.

126 M. Hajdú et al.

3 Motivating Example

Let us now motivate our approach to induction with generalization, by consid-
ering the following formula expressing the associativity of addition over N:

∀x, y, z.(x + (y + z) = (x + y) + z), with x, y, z ∈ N. (3)

(C1) σ1 + (σ2 + σ3) �= (σ1 + σ2) + σ3 [input]
(C2) 0 + (σ2 + σ3) �= (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) = (σ + σ2) + σ3 [induct. C1]
(C3) 0 + (σ2 + σ3) �= (0 + σ2) + σ3 ∨ s(σ) + (σ2 + σ3) �= (s(σ) + σ2) + σ3 [induct. C1]
(C4) 0 + (σ2 + σ3) �= (0 + σ2) + σ3 ∨ s(σ + (σ2 + σ3)) �= s((σ + σ2) + σ3) [C3 + axiom]
(C5) 0 + (σ2 + σ3) �= (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) �= (σ + σ2) + σ3 [injective C4]
(C6) 0 + (σ2 + σ3) �= (0 + σ2) + σ3 [res. C2, C5]
(C7) σ2 + σ3 �= σ2 + σ3 [C6 + axiom]
(C8) � [trivial ineq. C7]

Fig. 2. Proof of associativity of + in a saturation-based theorem prover with induction

The induction approach introduced in [19] is able to prove this problem. The
main steps of such a proof are shown in Fig. 2 and discussed next. First, the
negation of formula (3) is skolemized, yielding the (unit) clause C1 of Fig. 2.
As already mentioned, the σi denote fresh Skolem constants introduced during
clausification. Next, the structural induction axiom (1) is instantiated so that its
conclusion can resolve against C1 using the constant σ1 as the induction term,
resulting in the formula:

(
0 + (σ2 + σ3) = (0 + σ2) + σ3 ∧
∀x.(x + (σ2 + σ3) = (x + σ2) + σ3 → s(x) + (σ2 + σ3) = (s(x) + σ2) + σ3)

)

→ ∀y.(y + (σ2 + σ3) = (y + σ2) + σ3).
(4)

Then, the CNF of the induction axiom (4) is added to the search space using
the following instance of the structural induction rule (2):

σ1 + (σ2 + σ3) �= (σ1 + σ2) + σ3

(0 + (σ2 + σ3) �= (0 + σ2) + σ3 ∨ σ + (σ2 + σ3) = (σ + σ2) + σ3∨
y + (σ2 + σ3) = (y + σ2) + σ3)

∧
(0 + (σ2 + σ3) �= (0 + σ2) + σ3 ∨ s(σ) + (σ2 + σ3) �= (s(σ) + σ2) + σ3∨

y + (σ2 + σ3) = (y + σ2) + σ3)

. (5)

The clauses from the inference conclusion are resolved against C1, yielding
clauses C2, C3 of Fig. 2. Clause C4 originates by repeated demodulation into C3

using the second axiom of Fig. 1 over N. Further, C5 is derived from C4 by using
the injectivity property of term algebras and C6 is a resolvent of C2 and C5.
Clause C7 is then derived by repeated demodulation into C6, using the first
axiom of Fig. 1 over N. By removing the trivial inequality from C7, we finally
derive the empty clause C8.

Induction with Generalization in Superposition Reasoning 127

Consider now the following instance of the associativity property (3):

∀x.(x + (x + x) = (x + x) + x). (6)

While (6) is an instance of (3), we cannot prove it using the same approach.
Let us explain why this is the case. By instantiating the induction axiom (1)
using (6), we get:

(
0 + (0 + 0) = (0 + 0) + 0 ∧
∀x.(x + (x + x) = (x + x) + x → s(x) + (s(x) + s(x)) = (s(x) + s(x)) + s(x))

)

→ ∀y.(y + (y + y) = (y + y) + y).
(7)

After resolving this axiom with the skolemized negation of (6), we get the fol-
lowing two clauses1:

0 + (0 + 0) �= (0 + 0) + 0 ∨ σ + (σ + σ) = (σ + σ) + σ (8)
0 + (0 + 0) �= (0 + 0) + 0 ∨ s(σ) + (s(σ) + s(σ)) �= (s(σ) + s(σ)) + s(σ) (9)

While the first literals of (8) and (9) are easily resolved using axioms of +,
not much can be done with the latter literals. We can only apply repeated
demodulations over the second literal of (9) using axioms of + and the injectivity
property of term algebras, yielding σ+s(σ+s(σ)) �= (σ+s(σ))+s(σ). No further
inference over this formula can be applied, in particular it cannot be resolved
against the second literal of (8). Hence, the approach of [19] fails proving (6).

The existing approaches to induction also suffer from the same problem.
For example [2,5,10,18,24], can prove property (3) but fail to prove its weaker
instance (6). The common recipe in inductive theorem proving [5] is to try to
prove (3) in addition to trying to prove (6).

Interestingly, in saturation-based theorem proving we can do better. If we
follow the common recipe, we would add a generalized goal and then an induction
axiom for it. Instead, we only add the induction axiom instance corresponding
to the generalized goal without adding the extra goal, which results in a smaller
number of clauses. More precisely, in addition to the instance of the induction
schema corresponding to (6), we also add instance (4) corresponding to (3). We
call this new inference rule induction with generalization.

4 Induction with Generalization

Following [19], we consider an induction axiom to be any valid formula of the
form premise → ∀y.(L[y]), in the underlying theory, such as the theory of term
algebras. An example of an induction axiom is the structural induction axiom (4).
An induction schema is a collection of induction axioms. Each induction schema
we consider is the set of first-order instances of some valid higher-order formula.
The work [19] introduces a rule of induction where a ground literal ¬L[t] appear-
ing in the proof search triggers addition of the corresponding induction axioms
premise → ∀y.(L[y]) to the search space:

¬L[t] ∨ C

CNF(premise → ∀y.(L[y]))
(induction), (10)

1 These clauses are instances of C2 and C3 from Fig. 2.

128 M. Hajdú et al.

where L[y] is obtained from L[t] by replacing all occurrences of t by y. An
example of an instance of the induction rule is (5).

While addition of a large number of such formulas may seem to blow up
the search space, in practice Vampire handles such addition with little over-
head, resulting in finding proofs containing nearly 150 induction inferences [19].
The reason why the overhead of adding structural induction axioms is small is
explained in [20]: the added clauses only contain one variable (the y in L[y]),
and the clauses containing this literal are immediately subsumed by a ground
clause. The net result is adding a small number of ground clauses, which are
especially easy to handle in the Avatar architecture implemented in Vampire.

Induction with Generalization. In a nutshell, given a goal, we add an induc-
tion axiom corresponding to a more general one. The rule can be formulated in
the same way as (10), yet with a different conclusion:

¬L[t] ∨ C

CNF(premise′ → ∀y.(L′[y]))
(IndGen), (11)

where L′[y] is obtained from L[t] by replacing some occurrences of t by y, and
premise′ is the premise corresponding to L′[y]. Both induction rules are obvi-
ously sound because their conclusions are constructed such that they are valid
in the underlying theory.

To implement IndGen, if a clause selected for inferences contains a ground
literal ¬L[t] having more than one occurrence of t, we should select a non-empty
subset of occurrences of t in L[t], select an induction axiom corresponding to
this subset, and then apply the rule.

Motivating Example, Continued. Suppose that t is σ1 and ¬L[t] is σ1 +
(σ1 + σ1) �= (σ1 + σ1) + σ1, which is obtained by negating and skolemizing (6).
Then by applying IndGen we can add the following induction axiom:

(
0 + (σ1 + σ1) = (0 + σ1) + σ1 ∧
∀x.(x + (σ1 + σ1) = (x + σ1) + σ1 → s(x) + (σ1 + σ1) = (s(x) + σ1) + σ1)

)

→ ∀y.(y + (σ1 + σ1) = (y + σ1) + σ1),
(12)

which is different from (7). When we add this formula, we can derive the empty
clause in the same way as in Fig. 2.

Saturation with Induction with Generalization. The main questions to
answer when applying induction with generalization is which occurrences of the
induction term in the induction literal we should choose.

Generally, if the subterm t occurs n times in the premise, there are 2n − 1
ways of applying the rule, all potentially resulting in formulas not implying each
other. Thus, an obvious heuristic to use all non-empty subsets may result in too
many formulas. For example, σ1 + (σ1 + σ1) �= (σ1 + σ1) + σ1 would result in
adding 63 induction formulas.

Another simple heuristic is to restrict the number of occurrences selected as
induction term to a fixed number. This strategy reduces the number of appli-
cations of induction at the cost of losing proofs that would need subsets of

Induction with Generalization in Superposition Reasoning 129

cardinality larger than the limit. Finding possible heuristics for selecting specific
subsets for common cases of literals can be subject of future work, especially
interesting in proof assistants in mathematics.

Note that some of the conclusions of (11) can, in turn, have many children
obtained by induction with generalization. Our experiments in Sect. 5 show that,
even when we generate all possible children, Vampire can still solve large exam-
ples with more than 10 occurrences of the same induction variable, again thanks
to the effect that, for each application of induction, only a small number of
ground clauses turn out to be added to the search space.

We therefore believe that our work can potentially be also useful for larger
examples, and even in cases when the inductive property to be proved is embed-
ded in a larger context.

5 Experiments

Implementation. We implemented induction with generalization in Vampire,
with two new options:

– boolean-valued option indgen, which turns on/off the application of induction
with generalization, with the default value being off, and

– integer-valued option indgenss, which sets the maximum size of the subset
of occurrences used for induction, with the default value 3. This option is
ignored if indgen is off.

Our implementation of induction with generalization is available at: https://
github.com/vprover/vampire.
In experiments described here, if indgen is off, Vampire performs induction on
all occurrences of a term in a literal as in [19]. In this section

– Vampire refers to the (default) version of Vampire with induction rule (10)
(i.e., the option -ind struct)

– Vampire* additionally uses the IndGen rule of induction with generaliza-
tion (11) (i.e., the options -ind struct -indgen on).

– Vampire** uses the same options as Vampire* plus the option -indoct on,
which applies induction to arbitrary ground terms, not just to constants as
in Vampire or in Vampire*.

SMT-LIB Experiments. We evaluated our work using the UFDT and
UFDTLIA problem sets from SMT-LIB [3], yielding all together 4854 prob-
lems. Many of these problems come from program analysis and verification and
contain large numbers of axioms, so they are different from standard mathemat-
ical examples used in many other papers on automation of induction. Given the
nature of the benchmarks, we were interested in two questions:

1. What is the overhead incurred by using induction with generalization in large
search spaces, especially when it is not used in proofs? If the new rule is
prohibitively expensive, this means it could probably only be used in smaller
examples used in interactive theorem proving.

https://github.com/vprover/vampire
https://github.com/vprover/vampire

130 M. Hajdú et al.

2. Is the new rule useful at all for this kind of benchmarks? While the new rule
can be used in principle, should it (or can it) be used in program analysis
and verification?

Our results show that the overhead is relatively small but we could not solve
problems not solvable without the use of the new rule.

Induction (10) in Vampire was already evaluated in [19] against other
solvers on these examples. Hence, we only compare how Vampire*/Vampire**
performs against Vampire, using both the default and the portfolio modes.
(In the default mode, Vampire/Vampire*/Vampire** uses default values for
all parameters except the ones specified by the user; in the portfolio mode,
Vampire/Vampire*/Vampire** sequentially tries different configurations for
parameters not specified by the user.) Together, we ran 18 instances: Vampire,
Vampire* with indgenss set to 2, 3, 4 and unlimited, and Vampire** with
the same four variants of indgenss; each of them in both default and portfolio
mode. We ran our experiments on the StarExec cluster [25].

The best Vampire*/Vampire** solved 5 problems in the portfolio mode
and 1 problem in the default mode not solved by Vampire. However, the proofs
found by them did not use induction with generalization. This is a common
problem in experiments with saturation theorem proving: new rules change the
direction of the proof search and may result in new simplifications that also
drastically affect the search space. As a result, new proofs may be found, yet
these proofs do not actually use the new rule. There were no problems solved by
Vampire that were not solved by any Vampire*/Vampire**.

The maximum number of IndGen applications in proofs was 3 and the max-
imum depth of induction was 4. Vampire*/Vampire** used generalized induc-
tion in proofs of 10 problems. However, these problems are also solvable by
Vampire (without generalized induction). Thus, we conclude that SMT-LIB
problems (probably as well as other typical program analysis and verification
benchmarks) typically do not gain from using generalization.

Experiments with Mathematical Problems. We handcrafted a number of
natural problems over natural numbers and lists and tested the new rule on
these problems. Our benchmarks are available at: https://github.com/vprover/
inductive benchmarks.

Table 1 lists 16 of such examples using the functions defined in Fig. 1. Some
examples were taken from or inspired by the TIP benchmark library [9]: e.g., the
seventh benchmark in Table 1 is adapted from the TIP library and the second
problem is inspired by a symmetric problem from the TIP library, ∀x.(s(x)+x =
s(x+x)). While they are handcrafted, we believe they are representative since no
attempt was done to exclude problems not solvable by Vampire using induction
with generalization.

We evaluated and compared several state-of-the-art reasoners supporting
standard input formats and, due to the nature of our work, either superposition-
based approaches or approaches to generalization. It was not easy to make these
experiments since provers use different input syntaxes (see Table 2). As a result,
we also had to design translations of our benchmarks.

https://github.com/vprover/inductive_benchmarks
https://github.com/vprover/inductive_benchmarks

Induction with Generalization in Superposition Reasoning 131

Table 1. Experiments with 16 handcrafted benchmarks. “�” denotes success, “–”
denotes failure.

T
he
or
y

Va
m
pi
re
*

Va
m
pi
re
**

Va
m
pi
re

C
vc
4

Zi
pp
er
po
si
ti
on

Ze
no

Im
an
dr
a

A
cl
2

C
vc
4-
G
en

Zi
pR
ew
ri
te

∀x, y.(x + y = y + x)

N

� � � � � � � – � �
∀x.(x + s(x) = s(x + x)) � � – – – – – – � �

∀x, y, z.(x + (y + z) = (x + y) + z) � � � � � � � � � �
∀x.(x + (x + x) = (x + x) + x) � � – – – � – – � �

∀x.((x+x)+((x+x)+x) = x+(x+((x+x)+x))) � � – – – � – – � �
∀x, y.(y + (x + x) = (x + y) + x) � � – – – – – – – �

∀x.(x ≤ x) � � � � � � � � � �
∀x, y.(x ≤ x + y) � � � � � � � � � �

∀x.(x ≤ x + x) � � – – – – – – – –

∀x.(x + x ≤ (x + x) + x) � � – – – � – – – –

∀l, k, j.(l ++ (k ++ j) = (l ++ k) ++ j)

L

� � � � � � � � � �
∀l.(l ++ (l ++ l) = (l ++ l) ++ l) � � – – – – – – – �

∀l, k.(l ++ (k ++ (l ++ l)) = (l ++ k) ++ (l ++ l)) � � – – – – – – – �
∀l, k.prefix(l, l ++ k) � � � � � � � � � �

∀l.prefix(l, l ++ l) � � – – – – – – – –
∀l : L, x : N.(cons(x + s(x), l) ++ (l ++ l)

= (cons(s(x) + x, l) ++ l) ++ l)
N,L � � – – – – – – – –

Except for Imandra (which is a cloud-based service), we ran our experiments
on a 2,9 GHz Quad-Core Intel Core i7 machine. We ran each solver as a single-
threaded process with a 5 s time limit. Our results are summarized in Table 1,
where Cvc4-Gen refers to the solver Cvc4 with the automatic lemma discovery
enabled. ZipRewrite refers to Zipperposition with function and predicate
definitions encoded as rewrite rules instead of ordinary logical formulas, in order
to trigger its generalization heuristics [10]. Configurations used for running all
solvers are listed in Table 2.

Table 1 shows that Vampire*/Vampire** (with indgenss=3) outperforms
all solvers, including Vampire itself. When considering solvers without fine-
tuned heuristics, such as in ZipRewrite and Cvc4-Gen, Vampire** solves
many more problems. Interestingly, ZipRewrite heuristics work well with addi-
tion and list concatenation, but not with orders. Further, Cvc4-Gen heuristics
prove associativity of addition, but not the list counterpart for concatenation.
We believe our experiments show the potential of using induction with general-
ization as a new inference rule since it outperforms heuristic-driven approaches
with no special heuristics or fine-tuning added to Vampire.

Experiments with Problems Requiring Associativity and Commuta-
tivity. The (x + x) + x = x + (x + x) is a special case of a family of problems
over natural numbers. The problems can be formulated as follows.

Let t1 and t2 be two terms built using variables, + and the successor function.
Then the equality t1 = t2 is valid over natural numbers if and only if they have
the same number of occurrences of the successor function and each variable of

132 M. Hajdú et al.

this equality has the same number of occurrences in t1 and t2. For example, the
following equality is valid over natural numbers:

s(x + (x + s(y + z))) + s(z) = (z + s(x)) + (x + s(s((z + y)))).

To prove such problems over N, one needs both induction and generalization.
Without the successor function, they can be easily proved using associativity and
commutativity of +, but associativity and commutativity are not included in the
axioms of N. When the terms are large, the problems become highly challenging.

Table 2. Configurations and input format of solvers for the mathematical problems.

Solver Configuration Input format

Vampire -ind struct SMT-LIB

Vampire* -ind struct -indgen on SMT-LIB

Vampire** -ind struct -indgen on -indoct on SMT-LIB

Cvc4 --quant-ind SMT-LIB

Cvc4-Gen --quant-ind --conjecture-gen SMT-LIB

Zipperposition default mode .zf (native input format)

ZipRewrite default mode .zf with definitions as rewrite rules

Zeno default mode functional program encoding

Imandra default mode functional program encoding

Acl2 default mode functional program encoding

We generated a set of instances of these problems (with and without the suc-
cessor function, and also other functions and predicates) by increasing term sizes.
We also generated similar problems for lists using concatenation and reverse
functions, and prefix predicate. Some of the terms were, e.g., variations of (6)
with 20 occurrences of x. Our entire dataset, containing over 3,300 examples, is
available at the previously mentioned URL.

We were again interested in evaluating and comparing various reasoners and
approaches on these problems. The interesting feature of these problems is that
they are natural yet we can generate problems of almost arbitrary complexity.

We evaluated and compared Vampire*, Vampire**, Cvc4-Gen, Zeno and
ZipRewrite, that is the best performing solvers on inductive reasoning with
generalization according to Table 1, using the same experimental setting as
already described for Table 1. Table 3 lists a partial summary of our experi-
ments, displaying results for 2,007 large instances of four simple properties with
one variable, corresponding to the fourth, ninth, twelfth and fifteenth problem
from Table 1. (Due to space constraints, we chose these problems as a represen-
tative subset of our large benchmarks, since the solvers’ performance was very
similar for the whole benchmark set.)

In Table 3, we use the following notation. By nx = nx we denote formulas
of the form x ◦ ... ◦ x = x ◦ ... ◦ x with n occurrences of x on both sides of the
equality, and parentheses on various places in the expressions, with ◦ being +, or

Induction with Generalization in Superposition Reasoning 133

++ for the datatypes N and L, respectively. By mx ≤ nx and prefix(mx, nx) we
denote formulas of the form x+...+x ≤ x+...+x and prefix(x ++ ... ++ x, x ++
... ++ x), respectively, with m occurrences of x on the left and n occurrences of
x on the right hand side of the ≤ or prefix predicates, and with parentheses on
various places in the expressions. Result N%(M) means that the solver solved
M of the problems from this category, which corresponds to N%.

From Table 3, we conclude that Vampire** scales better than Cvc4-Gen
on a large majority of benchmarks, and scales comparably to Zeno. While
ZipRewrite can solve more problems than Vampire**, Vampire** is more
consistent in solving at least some problems from each category. ZipRewrite
can solve many problems thanks to treatment of equalities as rewrite rules. We
are planning to add an option of using recursive definitions as rewrite rules in
Vampire in the future too.

6 Related Work

Research into automating induction has a long history with a number of tech-
niques developed, including for example approaches based on semi-automatic
inductive theorem proving [5,7,8,18], specialized rewriting procedures [12], SMT
reasoning [22] and superposition reasoning [10,11,15,19].

Previous works on automating induction mainly focus on inductive theorem
proving [7,8,24]: deciding when induction should be applied and what induction
axiom should be used. Further restrictions are made on the logical expressive-
ness, for example induction only over universal properties [5,24] and without
uninterpreted symbols [18], or only over term algebras [11,15]. Inductive proofs
usually rely on auxiliary lemmas to help proving an inductive property. In [8]
heuristics for finding such lemmas are introduced, for example by randomly
generating equational formulas over random inputs and using these formulas if
they hold reasonably often. The use of [8] is therefore limited to the underlin-
ing heuristics. Other approaches to automating induction circumvent the need
for auxiliary lemmas by using uncommon cut-free proof systems for inductive
reasoning, such as a restricted ω-rule [1], or cyclic reasoning [6].

The work presented in this paper automates induction by integrating it
directly in superposition-based proof search, without relying on rewrite rules
and external heuristics for generating auxiliary inductive lemmas/subgoals as
in [5,7,8,18,24]. Our new inference rule IndGen for induction with generaliza-
tion adds new formulas to the search space and can replace lemma discovery
heuristics used in [7,8,22]. Our work also extends [19] by using and instanti-
ating induction axioms with logically stronger versions of the property being
proved. Unlike [10], our methods do not necessarily depend on Avatar [26], can
be used with any (inductive) data type and target induction rules different than
structural induction. Contrarily to [11], we are not limited to induction over
term algebras with the subterm ordering and we stay in a standard saturation
framework. Moreover, compared to [5,7,8,22], one of the main advantages of our
approach is that it does not use a goal-subgoal architecture and can, as a result,
combine superposition-based equational reasoning with inductive reasoning.

134 M. Hajdú et al.

Table 3. Experiments on 2,007 arithmetical problems.

Theory Vampire* Vampire** Cvc4-Gen Zeno ZipRewrite

3x = 3x

N

100% (1) 100% (1) 100% (1) 100% (1) 100% (1)

4x = 4x 90% (9) 100% (10) 100% (10) 20% (2) 100% (10)

5x = 5x 30% (15) 50% (25) 100% (50) 12% (6) 100% (50)

6x = 6x 8% (4) 18% (9) 100% (50) 22% (11) 100% (50)

7x = 7x – 10% (5) 100% (50) 2% (1) 100% (50)

8x = 8x – 2% (1) 100% (50) 4% (2) 100% (50)

9x = 9x – 2% (1) 100% (50) 8% (4) 84% (42)

10x = 10x – – 100% (50) 8% (4) 90% (45)

3x = 3x

L

100% (1) 100% (1) – – 100% (1)

4x = 4x 70% (7) 90% (9) – – 100% (10)

5x = 5x 46% (23) 48% (24) – – 100% (50)

6x = 6x 6% (3) 26% (13) – 6% (3) 100% (50)

7x = 7x 2% (1) 6% (3) – – 100% (50)

8x = 8x – – – – 90% (45)

9x = 9x – – – – 88% (44)

10x = 10x – – – – 68% (34)

3x ≤ 3x

N

100% (2) 100% (2) 100% (2) 100% (2) 100% (2)

4x ≤ 4x – 15% (3) 100% (20) 20% (4) 100% (20)

5x ≤ 5x – 4% (2) 100% (50) 12% (6) 100% (50)

1x ≤ 2x 100% (1) 100% (1) – – –

2x ≤ 3x 50% (1) 50% (1) – 100% (2) –

3x ≤ 4x – 30% (3) – 40% (4) –

4x ≤ 5x – 8% (4) – 16% (8) –

5x ≤ 6x – 6% (3) – 10% (5) –

1x ≤ 3x 100% (2) 100% (2) – 100% (2) 100% (2)

2x ≤ 4x – 40% (2) – 40% (2) 100% (5)

3x ≤ 5x – 14% (4) – 28% (8) 100% (28)

4x ≤ 6x – 10% (5) – 18% (9) 100% (50)

5x ≤ 7x – 4% (2) – 18% (9) 100% (50)

1x ≤ 4x 100% (5) 100% (5) – 80% (4) 100% (5)

2x ≤ 5x – 35% (5) – 42% (6) 100% (14)

3x ≤ 6x – 18% (9) – 38% (19) 100% (50)

4x ≤ 7x – 6% (3) – 16% (8) 100% (50)

5x ≤ 8x – – – 6% (3) 100% (50)

1x ≤ 5x 100% (14) 100% (14) – 85% (12) 100% (14)

2x ≤ 6x – 33% (14) – 26% (11) 100% (42)

3x ≤ 7x – 14% (7) – 32% (16) 100% (50)

4x ≤ 8x – 4% (2) – 18% (9) 100% (50)

5x ≤ 9x – – – 14% (7) 100% (50)

prefix(3x, 3x)

L

100% (2) 50% (1) – – 100% (2)

prefix(4x, 4x) – 25% (5) – – 100% (20)

prefix(5x, 5x) – 2% (1) – 4% (2) 100% (50)

prefix(1x, 2x) 100% (1) 100% (1) – – –

prefix(2x, 3x) – 50% (1) – 50% (1) –

prefix(3x, 4x) – 20% (2) – 20% (2) –

prefix(4x, 5x) – 8% (4) – 8% (4) –

prefix(5x, 6x) – – – – –

prefix(1x, 3x) 100% (2) 100% (2) – 50% (1) 100% (2)

prefix(2x, 4x) 20% (1) 40% (2) – 20% (1) 100% (5)

prefix(3x, 5x) – 14% (4) – 14% (4) 100% (28)

prefix(4x, 6x) – 6% (3) – 8% (4) 100% (50)

prefix(5x, 7x) – 2% (1) – 2% (1) 100% (50)

prefix(1x, 4x) 100% (5) 100% (5) – 40% (2) 100% (5)

prefix(2x, 5x) – 35% (5) – 21% (3) 100% (14)

prefix(3x, 6x) – 14% (7) – 12% (6) 100% (50)

prefix(4x, 7x) – 4% (2) – 4% (2) 100% (50)

prefix(5x, 8x) – – – 4% (2) 100% (50)

prefix(1x, 5x) 100% (14) 100% (14) – 42% (6) 100% (14)

prefix(2x, 6x) – 33% (14) – 21% (9) 100% (42)

prefix(3x, 7x) – 16% (8) – 16% (8) 100% (50)

prefix(4x, 8x) – 10% (5) – 12% (6) 100% (50)

prefix(5x, 9x) – – – – 100% (50)

Induction with Generalization in Superposition Reasoning 135

Normally, generalization in theorem proving means that given a goal F , we
try to prove a more general goal. In logic, a statement F ′ is more general than F
if F ′ implies F . Thus, by proving F ′ we also prove F . One way to generalize is to
replace one or more occurrences of a subterm by a fresh variable, using the fact
that ∀x.(F [x]) implies F [t]. This is essentially the idea behind approaches to gen-
eralization in all systems we compared with. While our approach is superficially
similar, it does something fundamentally different. Instead of (or in addition to)
adding an instance I of the induction schema that can be used to prove F [t], we
add an instance I ′ that can be used to prove ∀x.(F [x]). An interesting observa-
tion is that, in general, neither I implies I ′, nor I ′ implies I, so neither of I and
I ′ is more general.

The second fundamental difference is that, because induction in Vampire is
not based on a goal-subgoal architecture, we can add both induction formulas
I and I ′ at the same time. While this may seem inefficient, for some induction
schemata, including structural induction, the overhead is very small (as also
confirmed by our experiments).

7 Conclusions

We introduced a new rule for induction with generalization in saturation-based
reasoning based on adding induction axioms for proving generalizations of the
goals appearing during proof-search. Our experiments show that we solve many
problems that other existing systems cannot solve. Future work includes design-
ing heuristics to guide proof search, using rewriting approaches, and performing
other kinds of generalization and induction.

Acknowledgments. We thank Giles Reger for discussions related to the work. We
acknowledge funding supporting this work, in particular the ERC starting grant 2014
SYMCAR 639270, the EPSRC grant EP/P03408X/1, the ERC proof of concept grant
2018 SYMELS 842066, the Wallenberg Academy fellowship 2014 TheProSE, the Aus-
trian FWF research project W1255-N23, and the Hungarian-Austrian project 101öu8.

References

1. Baker, S., Ireland, A., Smaill, A.: On the use of the constructive omega-rule within
automated deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp.
214–225. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013063

2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

4. Blanchette, J.C., Peltier, N., Robillard, S.: Superposition with datatypes and
codatatypes. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS
(LNAI), vol. 10900, pp. 370–387. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94205-6 25

https://doi.org/10.1007/BFb0013063
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-94205-6_25
https://doi.org/10.1007/978-3-319-94205-6_25

136 M. Hajdú et al.

5. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook, Perspectives incom-
puting, vol. 23. Academic Press, Cambridge (1979)

6. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011)

7. Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A.: Rippling: a
heuristic for guiding inductive proofs. Artif. Intell. 62(2), 185–253 (1993)

8. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: HipSpec: automating
inductive proofs of program properties. In: Proceedings of the ATx/WInG, pp.
16–25 (2012)

9. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM
2015. LNCS (LNAI), vol. 9150, pp. 333–337. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-20615-8 23

10. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172–188. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66167-4 10

11. Echenim, M., Peltier, N.: Combining induction and saturation-based theorem prov-
ing. J. Autom. Reason. 64(2), 253–294 (2019). https://doi.org/10.1007/s10817-
019-09519-x

12. Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision procedure.
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 241–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3 20

13. Gleiss, B., Kovács, L., Robillard, S.: Loop analysis by quantification over iterations.
In: Proceedings of the LPAR, pp. 381–399 (2018)

14. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: Lahiri, S.K., Wang,
C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 248–266. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 15

15. Kersani, A., Peltier, N.: Combining superposition and induction: a practical real-
ization. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 7–22. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40885-4 2

16. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning.
In: Proceedings of POPL, pp. 260–270 (2017)

17. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

18. Passmore, G., et al.: The Imandra automated reasoning system. In: Proceedings
of the IJCAR (2020, to appear)

19. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 477–494. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6 28

20. Reger, G., Voronkov, A.: Induction in Saturation-Based Proof Search. EasyChair
Smart Slide (2020). https://easychair.org/smart-slide/slide/hXmP

21. Reynolds, A., Blanchette, J.C.: A decision procedure for (Co)datatypes in SMT
solvers. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 197–213. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6 13

22. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8 5

https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1007/s10817-019-09519-x
https://doi.org/10.1007/s10817-019-09519-x
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.1007/978-3-642-40885-4_2
https://doi.org/10.1007/978-3-642-40885-4_2
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-030-29436-6_28
https://easychair.org/smart-slide/slide/hXmP
https://doi.org/10.1007/978-3-319-21401-6_13
https://doi.org/10.1007/978-3-319-21401-6_13
https://doi.org/10.1007/978-3-662-46081-8_5

Induction with Generalization in Superposition Reasoning 137

23. Rybina, T., Voronkov, A.: A decision procedure for term algebras with queues.
ACM Trans. Comput. Log. 2(2), 155–181 (2001)

24. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for prop-
erties of recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 407–421. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28756-5 28

25. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6 28

26. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9 46

https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08867-9_46

A Survey of Languages for Formalizing
Mathematics

Cezary Kaliszyk1 and Florian Rabe2(B)

1 University of Innsbruck, Innsbruck, Austria
2 University Erlangen-Nürnberg, Erlangen, Germany

florian.rabe@fau.de

Abstract. In order to work with mathematical content in computer
systems, it is necessary to represent it in formal languages. Ideally, these
are supported by tools that verify the correctness of the content, allow
computing with it, and produce human-readable documents. These goals
are challenging to combine and state-of-the-art tools typically have to
make difficult compromises.

In this paper we discuss languages that have been created for this
purpose, including logical languages of proof assistants and other formal
systems, semi-formal languages, intermediate languages for exchanging
mathematical knowledge, and language frameworks that allow building
customized languages.

We evaluate their advantages based on our experience in designing and
applying languages and tools for formalizing mathematics. We reach the
conclusion that no existing language is truly good enough yet and derive
ideas for possible future improvements.

1 Introduction

Today’s formal systems can verify advanced theorems in mathematics [Hal14],
such as the Kepler conjecture [Hal12] or the Feit–Thompson theorem [GAA+13],
as well as certify important computer systems, such as the CompCert C com-
piler [Ler09] and the seL4 microkernel [KAE+14]. All these systems and projects
use advanced logical languages that are computer-understandable but hard for
humans to write and read.

Computer science commonly defines and implements such formal languages
for mathematical content that define syntax and semantics and offer strong
automation support. However, non-trivial and expensive transformation steps
are needed to formalize human-near natural language texts in them.

This is in contrast to standard approaches to writing mathematics or specify-
ing computer systems, which use natural language with interspersed syntactically
unrestricted formulas, e.g., as written in LATEX. While interpreting this natural
language is very difficult for computers (arguably AI-complete), it is extremely

C. Kaliszyk—Supported by ERC starting grant no. 714034 SMART.
F. Rabe—Supported by DFG grant RA-1872/3-1 OAF and EU grant Horizon 2020
ERI 676541 OpenDreamKit.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 138–156, 2020.
https://doi.org/10.1007/978-3-030-53518-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_9&domain=pdf
http://orcid.org/0000-0002-8273-6059
http://orcid.org/0000-0003-3040-3655
https://doi.org/10.1007/978-3-030-53518-6_9

A Survey of Languages for Formalizing Mathematics 139

effective for humans in a way that formal languages have so far not been able
to capture. In fact, in 2007, Wiedijk claimed [Wie07], citing four representative
statements, that no existing formal system was sufficient to naturally express
basic mathematical content. Despite the progress made since then, his critique
still applies.

We give an introduction to the objectives and main approaches in Sect. 2.
Then Sects. 3 and 4 describe the main approaches: formal system and intermedi-
ate languages in more detail. Sections 5 and 6 describe closely related orthogonal
aspects: language frameworks and interchange libraries. We evaluate our findings
and conclude in Sect. 7.

2 Overview

2.1 Objectives

Thus, a big picture goal of the field is a tighter integration of (i) natural lan-
guage mathematical content such as textbooks or software specifications, and
(ii) formalization of such content in logics and theorem proving systems. We can
identify the following overarching objectives:

A Universal Formal Language for Mathematical Content that Supports Complex
Structuring Mechanisms. We want a language that combines the universality of
natural mathematical languages with the automation support of formal logics
and programming languages. It should be closer to mathematics than these for-
mal languages in regards to abstract syntax, notations, and type system. This
is critical not only for generality but also to appeal to mathematicians at all
because, as Wiedijk observes, most mathematicians do not like to read (or write)
code [Wie07]. On the other hand, it should be fully formal including automa-
tion support for type, module, and proof systems of formal languages that have
proved critical for large scale applications.

A Comprehensive Standard Library of Mathematical Concepts. The language
must allow for building a standard library of mathematical concepts. In order to
allow for semantics-aware machine support, it should be more formal than exist-
ing informal libraries such as induced by Wikipedia or PlanetMath by including
formal types, notations, and properties. On the other hand, in order to achieve
generality and support interoperability, it should not be committed to a partic-
ular logic like all the major formal libraries are. This combination of advantages
would allow it to serve as a standard library, i.e., a central community resource
to be used, e.g., to cross-link between existing libraries in a star-shaped network
or to provide a basis for projects like FAbstracts [Hal17].

Practical Workflows that Integrate Natural and Formal Languages. Such a lan-
guage and standard library would enable substantially better tool support for
working researchers in mathematical sciences: Being structurally similar to both
natural and formal languages, they could serve as an interface language for tools
of either kind. This would allow enriching existing workflows such as LATEX-based

140 C. Kaliszyk and F. Rabe

authoring or proof-assistant–based verification. For example, researchers could
easily formalize conjectures and their proof outlines in a general language as a
first and cheap formalization step, before or instead of a full verification of the
proof. This would avoid hindering practicians as today’s all-or-nothing approach
of formalization in proof assistants tends to do [KR16]. It is critical for success
here to retain existing workflows instead of trying to develop a single be-all-end-
all tool that no one would adopt. Therefore, any major project in this direction
must aim at developing concrete improvements to the current ecosystem.

2.2 Approaches

The most successful formal languages for mathematical content have been devel-
oped in the areas of formal logic where they occur most prominently as the input
languages of proof assistants as well as in computer algebra where they occur as
programming languages fitted to mathematical algorithms. These combine formal
foundations with complex structuring mechanisms, especially type, module, proof,
and computation systems, which have proved critical to achieve efficient large scale
tool support. Importantly, these fix not only the syntax but also the semantics of,
e.g., proofs and computations On the contrary, in natural language, these are not
spelled out at all, let alone explicated as a primitive feature—instead, they are
emergent features driven by conventions and flexibly adaptable to different con-
texts. Consequently, formalization is usually a non-structure-preserving transfor-
mation that is often prohibitively expensive and creates an entry barrier for casual
users. For example, the mathematician Kevin Buzzard admonishes computer sci-
entists to build more human-near languages “so users can at least read sentences
they understand and try to learn to write these sentences”.

Between the extremes of natural and formal languages, a variety of inter-
mediate languages make different trade-offs aiming at combining the universal
applicability of natural language with the advantages of formal semantics. A
central observation is that

– existing intermediate languages apply only the formal syntax and (to varying
degrees) semantics of formal languages but not their complex structuring
mechanisms, and

– this limitation is not necessarily an inherent feature of the approach but rather
a frontier of research.

The following table summarizes the resulting trichotomy and shows how each
kind of language satisfies only two out of three essential requirements:

Language properties Natural Intermediate Formal

Formal syntax and semantics – + +

Complex structuring + – +

Universal applicability + + –

A Survey of Languages for Formalizing Mathematics 141

In the subsequent sections, we discuss the state of the art for these languages
in more detail.

3 Formal Languages

Formal languages use a wide variety of foundations and complex structuring
mechanisms. This unfortunately means that it is rare for two tools to be compat-
ible with each other. Additionally, all are quite removed from natural language.
In the sequel, we discuss the most important complex structuring features.

3.1 Type Systems

Many formal systems use what we call hard type systems, which assign a unique
type to each object and are thus easiest to automate. Systems derived from
Martin-Löf type theory [ML74] or the calculus of constructions [CH88] usually
use the proofs-as-programs correspondence (Curry-Howard [CF58,How80]) that
represents mathematical properties as types and proofs as data. These include
Agda [Nor05], Coq [Coq15], Lean [dKA+15], Matita [ASTZ06] as well as Nuprl
[CAB+86]. Systems derived from Church’s higher-order logic [Chu40] usually
use the LCF architecture [Mil72] that uses an abstract type of proved theorems.
These include HOL4 [HOL], ProofPower [Art], Isabelle [NPW02], and HOL Light
[Har96].

Hard type systems are at odds with natural language as the unique-type
property precludes representing mathematical sets and subsets as types and
subtypes. In particular, the lack of expressive subtyping in hard type systems is
fundamentally at odds with every day mathematics, where sets and subsets are
used throughout: hard type system precludes a direct representation of sets as
types because they cannot represent the rich (even undecidable) subset relation
using subtyping.

Multiple systems have explored compromises. We speak of semi-soft type
systems if a hard type system is extended with variants of subtyping. For exam-
ple, PVS [ORS92] uses predicate subtypes, Lean [dKA+15] and Nurpl [CAB+86]
support predicate subtypes and quotient types, and IMPS uses [FGT93] refine-
ment types.

Both hard and semi-soft type systems force users to choose between rep-
resenting information using the type system (e.g., ∀x : N.P (x)) or the logical
system (e.g., ∀x.x ∈ N ⇒ P (x)). Problematically, this choice usually has far-
reaching consequences, e.g., the type system may be decidable but the logic
system undecidable. But from the perspective of mathematics this distinction
is artificial, and the fact that the two resulting representations may be entirely
incompatible down the road is very awkward.

These problems are avoided in untyped languages. ACL2 [KMM00] is a first-
order logic on top of the untyped λ-calculus of Lisp that strongly emphasizes
computation. Untyped set theory is used in Isabelle/ZF [PC93], Metamath
[Meg07], and the B method [Abr96]. Untyped languages are also common in

142 C. Kaliszyk and F. Rabe

virtually all computer algebra systems, such as Mathematica [Wol12] or Sage-
Math [S+13].

We speak of soft type systems if unary predicates on the untyped objects
mimic types and the type system is an emergent feature of the logical system.
These are used most prominently in Mizar [TB85] among proof assistants and
GAP [Lin07] among computer algebra systems. Both use the types-as-predicates
approach, where the semantics of a type is given by a unary predicate ranging
over untyped objects. Both allow declaring functions and dependent types (i.e.,
predicates n + 1 arguments that return a unary predicate after fixing the first
n arguments) that have type constraints on the arguments. Soft type systems
are generally hardest to automate because type-checking is reduced to undecid-
able theorem proving. Here Mizar leverages theorem proving: the type checker
is guided by user-stated typing rules (called registrations), which are specially
marked theorems about typing properties. GAP leverages computation: the typ-
ing predicates must be computable properties, which are computed and cached
at run-time for every object.

Thus, soft type systems are heuristic, which makes implementations more
difficult for the developer and their behavior less predictable for the user. But
they are the most human-friendly. A combination of hard and soft type systems,
where advanced hard type systems are emergent features built systematically on
top of a soft one, could potentially model mathematical content best but has so
far received much less systematic attention than the above approaches. But as
theorem proving technology becomes more routine, they become more and more
attractive.

An example soft type system has been recently developed on top of a hard-
typed Isabelle for the Isabelle/Mizar object logic [KP19a], which expresses the
largest softly typed proof library in a logical framework. As part of this research,
the type system of Mizar has been formalized including its intersection type con-
structions, various ways to express set-theoretic structures, and declarative proof
translations [KP19b] have been investigated. Furthermore, a common founda-
tion for proofs that allows practically combining results between HOL and set
theory has been developed [BKP19].

3.2 Module Systems

A key use of modules is to represent structures (also called records or theories);
here the abstract definition (e.g., “group”) is represented as a module, and con-
crete models (e.g., individual groups) are represented as instances of the module.
The used module systems vary widely but roughly fall into the following groups.

Firstly, ML-inspired external module systems use a two-layer language where
the module language is external to the logical language. These allow for inher-
itance, refinement, and instantiation (e.g., Coq modules, Isabelle locales, PVS
theories, SageMath categories, Axiom categories) as well as more advanced struc-
turing such as parametric modules (e.g., PVS), module expressions (e.g., Isabelle
locales, Axiom joins), or morphisms between modules (Isabelle, IMPS). Hard

A Survey of Languages for Formalizing Mathematics 143

module systems differ greatly from natural language where no two-layer lan-
guage is fixed.

Secondly, internal module systems use record types to mimic modular struc-
ture inside the type system. This is possible in all systems that support record
types (e.g., Agda, Coq, Isabelle, Lean, PVS); Mizar’s structures behave simi-
larly. Soft modules are more flexible and thus similar to natural language, but
the lack of a concise module system makes modular reasoning like inheritance
and refinement more difficult. For example, soft module systems must manu-
ally employ extra-logical conventions (e.g., [GGMR09]), and combining modules
built with different conventions quickly becomes impractical. This is even worse
in the common case where both hard and soft module systems are present in
parallel (we have initiated work in this direction in [MRK18]).

Both of the above can be seen as hard module systems in the sense that a
module encapsulates a fixed set of declarations that induce selectors that can
be applied to the module’s instances. A third group, which we call soft module
systems is somewhat hypothetical as it is used much less widely. Here, in analogy
to soft tying, modules are treated as unary predicates that range over objects.
Inheritance then becomes a special case of implication. This idea is used in
the GAP module system, whose soft types (called properties) and soft modules
(called categories) are treated very similarly: they are jointly filters, and the
run-time system tracks which object satisfies which filters. The main difference
between them is that categories can have constructors and thus allow for filters
that are satisfied by construction.

Finally, since module systems have mostly been designed as extensions of
existing logical languages, both hard and soft module systems fail to capture a
number of essential features of natural mathematical language: the identification
of isomorphic instances of the same module; the seamless extension of operations
across substructures and quotient structures (e.g., + is first defined on N, then
extended to Z); the flexibility of presence and order of fields in a structure (e.g.,
(Z,+, ∗) and (Z,+, 0,−, ∗, 1) should be the same ring); the context-sensitive
meaning of structures (e.g., Z should be a ring or a total order, depending on the
context); and in many systems also the implicit application of forgetful functors
(e.g., a group is not automatically also a monoid).

3.3 Proof Systems

Formal languages shine when using logics implemented in proof assistants to find
and check proofs automatically. Tactic-based proof systems (e.g., HOL Light) are
optimized for efficiency of proof checking but have an imperative flavor that is
very different from natural mathematical language. Declarative proof systems
(e.g. Mizar, Isabelle/Isar) were designed to be closer to natural language.

While many current tools support declarative proofs using quite similar lan-
guages, all of these are intertwined with the respective logic and therefore not
immediately reusable as a universally applicable declarative proof language. In
particular, the expressivity of these languages is limited by the strength of the
underlying logic, i.e., they can only express the kind of proof steps that can

144 C. Kaliszyk and F. Rabe

be potentially verified by the tool. Declarative proof languages are conceptually
close to natural mathematics but technically tied to specific logics. We discuss
logical languages in more detail in Sect. 5.

In computer algebra systems no formal logics are implied and automated
reasoning is restricted to computable properties. Additionally, these systems
can capture logical properties by user declaration: for example, most systems’
libraries distinguish between groups and commutative groups and allow users to
construct a group as commutative even if that property is not proved.

3.4 Computation Systems

The second major application of formal languages stems from computer algebra
systems, which use mathematics-customized variants of general purpose pro-
gramming languages for efficient computation.

Even though mathematics uses mostly pure functions, most systems are
based on Turing-complete imperative programming, mostly to reuse existing user
knowledge and fast implementations. It is common to use the same language for
pure mathematical algorithms and interspersed imperative meta-operations like
I/O, logging, memoization, or calling external tools (in particular in SageMath).

Proof assistants take a much more restricted approach to integrate pure com-
putations with a logic. Three main approaches exist. Firstly, normalization in
the type theory, in particular β-reduction is a primitive form of computation. It
becomes much stronger when combined with (co)inductive types and recursion,
and these are primitive features in most complex type theories like Coq. Systems
then usually include heuristic termination criteria to check the soundness of the
functions, which leads to a trade-off between logical and Turing-completeness.
Secondly, certain theorems such as Horn formulas about equality can be inter-
preted as conditional rewrite rules. Typically, systems require the user to choose
which theorems to use and then exhaustively rewrite expressions with them.
This is much slower but allows for a much simpler language as computation is
relegated to the meta-level. This is the main method used in systems without
primitive (co)inductive types such as Isabelle. Thirdly, computation can be sup-
plied by external tools or special kernel modules. This computation can be a
part of the, consequently rather big, trusted code base, such as in PVS decision
procedures, the usage of SAT solvers is Mizar [Nau14]. This is also the case
in Theorema: As the proof assistant is written in the Mathematica computer
algebra system, it is in principle possible to use most Mathematica’s algorithms
inside Theorema [Win14]. In some cases, a trade-off is possible where computa-
tions are run externally and their results are efficiently verified by the prover.

4 Intermediate Languages

Intermediate languages try to capture the advantages of natural languages in
a formal language. There is a rather diverse set of such approaches, which we

A Survey of Languages for Formalizing Mathematics 145

Fig. 1. Functionality for intermediate languages (left) market gap for stepwise formal-
ization support (right)

describe in groups below. However, we can identify some general effects that
motivate the design of many intermediate languages.

Firstly, an intermediate language can already provide sufficient automation
support for some tasks. Thus, it can serve as a more natural and easier-to-use
target language for (partial) formalization if the task at hand is supported. For
example, search, interactive documents, or dependency management can be real-
ized well in some intermediate languages and even benefit from structural similar-
ity to the human-near natural language formulation. The main counter-examples
are verification and computation, which requires a lot more formalization. This
is indicated in Fig. 1 (left).

Secondly, an intermediate language can serve as an interface between human-
near natural language and a verification- or computation-oriented formal lan-
guage. This enables stepwise formalization and thus a smoother transition from
the informal to the formal realm. It may also allow for a separation of concerns
where a domain experts transform content from informal to intermediate in a
first step and a formalization transforms from intermediate to formal in a second
step. The relative lack of highly successful approaches in this style is indicated
in Fig. 1 (right).

Thirdly, the intermediate representation is often not or only barely com-
mitted to a particular formal language (e.g., a particular type system, module
system, proof system or computation system). During stepwise formalization,
this means that the first step only needs to be done once and can then be reused
for different second steps targeting different formal languages. Expanding on
this, we see that an intermediate language can provide an interoperability layer
between formal languages. That can help with the notorious lack of interoper-
ability between formal systems (see also Sect. 6).

146 C. Kaliszyk and F. Rabe

4.1 Controlled Natural Language

These approaches combine formal grammars for fragments of natural language
with formal languages for formulas. Their goal is to make the surface syntax of a
formal language as close to traditional mathematics as possible while retaining
a formal grammar that allows for automated parsing. While the languages often
look similar to some semi-formal languages discussed below, we classify them
differently because they use a formal logic-near language in their kernel.

This method is applied in MathLang [KW08,KWZB14], MathNat [Hum12],
in [KN12] within the FMathL project, and Naproche [CFK+09]. Mizar [TB85]
is a logical language whose surface syntax has been carefully designed to look
like a small fragment of natural language and thus looks similar to controlled
natural language systems without being one.

These systems vary in how the semantics of the language is defined and
how much implementation support is provided. Both MathLang and Naproche
use, effectively, a soft type system on top of set theory to define the semantics.
MathLang allows for translating content into proof assistants (Isabelle, Coq)
for users to finish and check proofs, and Naproche uses automated first-order
theorem provers to discharge proof obligations automatically.

Contrary to the verification/computation-oriented formal languages, where
large libraries of formal content (up to ∼105 theorems in the biggest systems)
are developed and shared in vibrant communities, none of the controlled natu-
ral language systems provides a substantial library. This is a hen-egg problem
since large libraries often result from the practical necessities caused by verifi-
cation and computation. A critical limiting factor of existing controlled natural
languages is the lack of scalable automation support and large libraries.

4.2 Semi-formal Languages

These approaches aim at combining unrestricted natural mathematical language
and formal language in the same document. Contrary to the controlled natural
language approaches discussed above, the interpretation of the natural language
parts remains AI-complete.

Flexiformal systems use informal and formal language as alternatives, i.e.,
content may be written informally or formally. Thus, not all mathematical con-
tent is formalized, and all tool support must degrade gracefully when informal
and thus uninterpretable content is encountered. The sTeX system [Koh08] is a
LATEX package for annotating informal mathematical texts with its formal mean-
ing, which then allows for writing (parts of) formulas in formal logical syntax.
In addition to pdf, sTeX documents can be processed into OMDoc documents
[Koh06], which makes them available for further machine processing. sTeX pro-
vides no type system and only a very simple hard module system. It has been
used by the developer to write his introductory computer science lecture notes.

Literate programming [Knu84] and approaches inspired by it allow for
natural and formal language to appear in parallel. Here, content is described
twice: the formal version defines the semantics, and the informal version provides

A Survey of Languages for Formalizing Mathematics 147

documentation. Contrary to the other approaches mentioned here, this is not a
third language in between formal and natural, but a combination of the two.
Several formal systems provide mature support for writing content in literate
programming style such as Agda, Isabelle (see [Wen11]), and Axiom.

Discourse representation languages [KR93] perform an analysis of the
language used in written mathematics and design a fixed set of disambiguation
conventions. Ganesalingam [Gan13] proposes a system of types that together
with a parsing procedure and the set of disambiguation conventions could be
used to parse non-foundational mathematics. Apart from the foundational issues,
the approach also has a problem with adaptivity of mathematical texts.

4.3 Interchange Languages

These approaches apply the general principles of formal languages while avoiding
a commitment to a particular logic or implementation. A major goal is system
interoperability.

Standardized representation languages have been developed in the area
of knowledge management such as OpenMath [BCC+04], content MathML
[ABC+10], and OMDoc [Koh06]. These prioritize standardizing the syntax
using standard machine-friendly representation formats such as XML (where
the formal structure of objects is explicit). They do not specify user-friendly
surface syntaxes (where the formal structure would have to be inferred through
complex parsing and disambiguation) or rigorous semantics. This allows their
use as interchange languages (e.g., in the SCIEnce [HR09] and OpenDreamKit
[DIK+16] EU projects), as a basis for integrating mathematics with the seman-
tic web (e.g., in the MONET and HELM/MoWGLI FP6 projects), or as markup
languages for web browsers (e.g., by the integration of MathML into HTML5).

A different trade-off is made in interchange languages mostly developed
for theorem provers. They are restricted to small families of logical languages
used in theorem provers. Thus, they are more widely applicable than individual
logical languages but less widely than the truly universal standard representation
languages. The TPTP [Sut09] family of languages has played a major role in the
community: it serves the role of a common language for automated theorem
prover inputs and outputs. TPTP was originally restricted to first-order logics,
and a few extensions exist [BRS08,SSCB12], which co-evolve with the available
theorem provers, thus offering the possibility of problem exchange also between
formal proof systems. OpenTheory [Hur09] is restricted to the HOL-based proof
assistants. It offers some support for abstracting from the systems’ idiosyncrasies
in order to increase portability, and some HOL theories have been manually
refactored to make use of this abstraction. The ISO-standardized Common Logic
[edi07] has a broader ambition, aiming at interchanging between any knowledge-
based systems. But its applicability to mathematics is limited by its focus on
first-order logic and a lack of integration with mathematical software.

Overall, interchange languages focus mostly on a universal formal syntax
while sacrificing a universal semantics or restrict attention to small families of
languages. Neither provides strong support for type/module/proof/computation

148 C. Kaliszyk and F. Rabe

systems that would be critical to capture the complexity of large scale formal
libraries. A partial exception is the second author’s Mmt system, which combines
aspects of standard languages [DIK+16,KMP+17] and prover interchange lan-
guages [BRS08,HR15,KRS16] with hard type and module systems [RK13]. The
OAF project [KR16,KR20] used Mmt to represent large libraries of proof assis-
tants in a standard representation language, including those of Mizar in [IKR11],
HOL Light in [KR14], PVS in [KMOR17] (including the NASA library), Coq in
[MRS19] (including all available libraries), and Isabelle in [KRW20] (including
the Archive of Formal Proofs).

5 Language Frameworks

Language frameworks are formal languages in which the syntax and semantics
of other languages can be represented. They are superficially related to parser
frameworks but much stronger because they (i) allow specifying not only the
syntax but also the semantics of a language, (ii) often offer strong support for
context-sensitivity, which is critical in mathematics.

Logical frameworks are language frameworks for building formal language.
Examples are Isabelle [Pau94], Dedukti [BCH12], λProlog [MN86], or the LF
[HHP93] family including Twelf [PS99] and others. Frameworks also exist for
building controlled natural languages such as GF [Ran11].

Contrary to the approaches discussed above, these frameworks do not in
themselves provide languages for formalizing mathematics. But they are worth
discussing in this context for two reasons: Firstly, they allow the rapid proto-
typing of implementations, which speeds up the feedback loop between language
design and applications. Thus, users can experiment with new languages and
conduct large case studies in parallel. Secondly, they allow developing scalable
applications language-independently such that they are immediately applicable
for any language defined in the framework. That is important because evaluat-
ing formal languages often requires building (or trying to build) large libraries in
them. Such applications include at least parsing and type-checking but can also
include meta-reasoning (e.g., Twelf), interactive theorem proving (e.g., Isabelle),
or language translation (e.g., GF).

Despite many successes in representing logical languages in logical frame-
works (e.g., [CHK+11,KR14,KMOR17,MRS19]), current frameworks cover only
unrealistically simple languages compared to the needs for mathematically struc-
tured content and do not have good support for, e.g., soft type systems and soft
module systems and practical proof systems. Thus, even the representation of
the already insufficient languages discussed above is often very difficult or not
possible.

Therefore, more flexible logical frameworks were developed recently. Both
ELPI [DGST15] and Mmt [Rab17,Rab18] allow users to flexibly change critical
algorithms whenever a concrete language definition needs it. That makes them
more promising for representing languages designed for mathematical content
(and can even allow sharing some functionality across incompatible foundations).

A Survey of Languages for Formalizing Mathematics 149

Mmt [Rab13,RK13] is a logic-independent representation and management
system for formal logical content that uses logical frameworks to provide a rigor-
ous semantics for OMDoc and OpenMath. It manages all aspects of language
design in a coherent framework including language definition, rapid prototyp-
ing of tools, and library development. Fully parametric in the choice of formal
system, it maximizes the reuse of concepts, formalizations, and tool support.
It subsumes in particular logical frameworks such as the LF family [MR19].
The LATIN project [CHK+11] used an Mmt precursor language based on the
Twelf module system [RS09] to build a library of common logics of symbolic
software systems and proof checkers. It contains close to 1000 modules (theories
and morphisms between them), which can be imported into Mmt.

[KRSS20] makes the first steps towards combining the advantages of Mmt
and ELPI. [KS19] uses Mmt to extend LF-like logical frameworks with the
natural language framework GF.

6 Interchange Libraries

The quest for the best formal language for mathematics is likely to never-ending.
Therefore, it is important to investigate how to combine the existing libraries of
formalized content. Due to major incompatibilities between the various formal
systems, this is an extremely difficult problem, and it would go beyond the scope
of this paper to discuss approaches in detail. But we want to mention the idea
of interchange libraries because we consider it to be one of the most promising
ideas.

An interchange library I is a formalization of mathematics written in an inter-
mediate language with the goal of serving as an interoperability layer between
formal systems. The main idea is that all translations from source system S to
target system T are split into two steps S → I and I → T .

Both steps have characteristic difficulties. The step S → I is usually a partial
translation because every formal systems uses idiosyncratic features that cannot
be represented in I and optimizations for verification/computation that need
not be represented in I. The step I → T tends to be easier, but there is a tricky
trade-off in the design of I: the less I commits to a particular formal system, the
more systems T can be handled but the more difficult the individual translations
I → T become. In practice, a further major logistic problem is that I and the
translations via it needs to be built and maintained, which is even harder to
organize and fund than for the systems S and T themselves.

The standard content dictionaries written in OpenMath [BCC+04] were the
first concerted effort to build an interchange library. 214 dictionaries (including
contributed ones) declaring 1578 symbols are maintained by the OpenMath Soci-
ety. These focus on declaring names for mathematical symbols and describing
their semantics verbally and with formal axioms. However, the approach was
not widely adopted as little tool support existed for OpenMath itself and for
OpenMath-based interoperability. Individual formal systems were also less able
to export/import their objects at all.

150 C. Kaliszyk and F. Rabe

Recently, the idea was picked up again in the OpenDreamKit project. It uses
Mmt (whose language of theories and expressions essentially subsumes Open-
Math CDs and objects) to write a formal interchange library (dubbed MitM for
Math-in-the-middle) [DIK+16]. MitM is more formal than the OpenMath CDs,
in particular employing a hard type and module system. It was used as an inter-
operability layer for computer algebra systems [KMP+17] and mathematical
databases [WKR17,BKR19].

A complementary approach is SMGloM [GIJ+16], a multi-lingual glossary of
mathematical concepts. It retains the untyped natural of OpenMath CDs but
uses sTeX to obtain tool support for writing the library.

SMGloM and MitM serve similar purposes with different methods that recall
the distinctions described in Sect. 2: SMGloM uses mostly natural language,
and MitM uses formal language with hard type and module system. The short-
comings of these efforts seem to indicate that soft types and modules may be
the best trade-off for building an interchange library.

In order to streamline the process of building the translations S → I and
I → T , the concept of alignments was developed [KKMR16]. An alignment
between two symbols c and c′ in different libraries captures that translations
should try to translate objects with c to objects with head d. Both exact manual
efforts [MRLR17] and machine learning–based heuristic approaches were used
to find alignments across formal libraries. The latter includes alignment from six
proof assistants [GK19], showing that such alignments allow both conjecturing
and more powerful automation [GK15]. The same approach has been used to
obtain alignments between informal and formal libraries, which can be used to
automatically formalize parts of mathematical texts, both statistically [KUV17]
and using deep learning techniques [WKU18]. Similarly, [GC14] automatically
obtains alignments between informal libraries.

7 Conclusion

We have presented a survey of languages for formalizing mathematics. The var-
ious languages have been designed and implemented for different purposes and
have different features, and their many distinguishing features give them char-
acteristic advantages and disadvantages. Natural language that mathematicians
are used to lacks formal semantics (and in many cases even formal syntax). But
fully formal languages are still very far from natural language. And existing
intermediate languages lack complex structuring features and large libraries and
scalable tools that would make them directly usable for formalization.

We expect that future research in the domain must continue to experiment
with language development aiming at the formal representation of syntax and
semantics while preserving natural readability and extensibility and large-scale
structuring features. The use of language frameworks will be helpful to rapidly
experiment with these novel ideas. We see a lot of potential in the development
of a new intermediate language along those lines that could enable partial and
stepwise formalization as well as provide an interoperability layer for formal

A Survey of Languages for Formalizing Mathematics 151

languages. Concretely, we expect this future language to feature at least a com-
bination of soft type and module systems with rigorous development of their
hard analogues as emergent features.

References

[ABC+10] Ausbrooks, R., et al.: Mathematical Markup Language (MathML) Version
3.0. Technical report, World Wide Web Consortium (2010). http://www.
w3.org/TR/MathML3

[Abr96] Abrial, J.: The B-Book: Assigning Programs to Meanings. Cambridge Uni-
versity Press, Cambridge (1996)

[Art] Arthan, R.: ProofPower. http://www.lemma-one.com/ProofPower/
[ASTZ06] Asperti, A., Coen, C.S., Tassi, E., Zacchiroli, S.: Crafting a proof assis-

tant. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol.
4502, pp. 18–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74464-1 2

[BCC+04] Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase,
M.: The Open Math Standard, Version 2.0. Technical report, The Open
Math Society (2004). http://www.openmath.org/standard/om20

[BCH12] Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as
a universal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings
of PxTP2012: Proof Exchange for Theorem Proving, pp. 28–43 (2012)

[BKP19] Brown, C., Kaliszyk, C., P ↪ak, K.: Higher-order Tarski Grothendieck as
a foundation for formal proof. In: Harrison, J., O’Leary, J., Tolmach, A.
(eds.) Interactive Theorem Proving. LIPIcs, vol. 141, pp. 9:1–9:16 (2019)

[BKR19] Berčič, K., Kohlhase, M., Rabe, F.: Towards a unified mathematical data
infrastructure: database and interface generation. In: Kaliszyk, C., Brady,
E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI),
vol. 11617, pp. 28–43. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23250-4 3

[BRS08] Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 – the core of the TPTP
language for higher-order logic. In: Armando, A., Baumgartner, P., Dowek,
G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 41

[CAB+86] Constable, R., et al.: Implementing Mathematics with the Nuprl Develop-
ment System. Prentice-Hall, Upper Saddle River (1986)

[CF58] Curry, H., Feys, R.: Combinatory Logic. North-Holland, Amsterdam (1958)
[CFK+09] Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman,

J.: The Naproche project controlled natural language proof checking of
mathematical texts. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol.
5972, pp. 170–186. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14418-9 11

[CH88] Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput.
76(2/3), 95–120 (1988)

[CHK+11] Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.:
Project abstract: logic atlas and integrator (LATIN). In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol.
6824, pp. 289–291. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22673-1 24

http://www.w3.org/TR/MathML3
http://www.w3.org/TR/MathML3
http://www.lemma-one.com/ProofPower/
https://doi.org/10.1007/978-3-540-74464-1_2
https://doi.org/10.1007/978-3-540-74464-1_2
http://www.openmath.org/standard/om20
https://doi.org/10.1007/978-3-030-23250-4_3
https://doi.org/10.1007/978-3-030-23250-4_3
https://doi.org/10.1007/978-3-540-71070-7_41
https://doi.org/10.1007/978-3-642-14418-9_11
https://doi.org/10.1007/978-3-642-14418-9_11
https://doi.org/10.1007/978-3-642-22673-1_24
https://doi.org/10.1007/978-3-642-22673-1_24

152 C. Kaliszyk and F. Rabe

[Chu40] Church, A.: A formulation of the simple theory of types. J. Symb. Log.
5(1), 56–68 (1940)

[Coq15] Coq Development Team: The Coq proof assistant: reference manual. Tech-
nical report, INRIA (2015)

[DGST15] Dunchev, C., Guidi, F., Sacerdoti Coen, C., Tassi, E.: ELPI: fast,
embeddable, λprolog interpreter. In: Davis, M., Fehnker, A., McIver, A.,
Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 460–468. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7 32

[DIK+16] Dehaye, P.-O., et al.: Interoperability in the OpenDreamKit project: the
math-in-the-middle approach. In: Kohlhase, M., Johansson, M., Miller, B.,
de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791,
pp. 117–131. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42547-4 9

[dKA+15] de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The
lean theorem prover (system description). In: Felty, A.P., Middeldorp, A.
(eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 26

[edi07] Common Logic editors: Common Logic (CL) – A framework for a family
of logic-based languages. Technical Report 24707, ISO/IEC (2007)

[FGT93] Farmer, W., Guttman, J., Thayer, F.: IMPS: an interactive mathematical
proof system. J. Autom. Reason. 11(2), 213–248 (1993)

[GAA+13] Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol.
7998, pp. 163–179. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39634-2 14

[Gan13] Ganesalingam, M.: The language of mathematics. In: Ganesalingam, M.
(ed.) The Language of Mathematics. LNCS, vol. 7805, pp. 17–38. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37012-0 2

[GC14] Ginev, D., Corneli, J.: NNexus reloaded. In: Watt, S.M., Davenport, J.H.,
Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol.
8543, pp. 423–426. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-08434-3 31

[GGMR09] Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathe-
matical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M.
(eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9 23

[GIJ+16] Ginev, D., et al.: The SMGloM project and system: towards a terminology
and ontology for mathematics. In: Greuel, G.-M., Koch, T., Paule, P.,
Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 451–457. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-42432-3 58

[GK15] Gauthier, T., Kaliszyk, C.: Sharing HOL4 and HOL light proof knowledge.
In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015.
LNCS, vol. 9450, pp. 372–386. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48899-7 26

[GK19] Gauthier, T., Kaliszyk, C.: Aligning concepts across proof assistant
libraries. J. Symb. Comput. 90, 89–123 (2019)

[Hal12] Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs. London
Mathematical Society Lecture Note Series, vol. 400. Cambridge University
Press (2012)

[Hal14] Hales, T.: Developments in formal proofs. Séminaire Bourbaki, 1086, 2013–
2014. arxiv.org/abs/1408.6474

https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1007/978-3-319-42547-4_9
https://doi.org/10.1007/978-3-319-42547-4_9
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-37012-0_2
https://doi.org/10.1007/978-3-319-08434-3_31
https://doi.org/10.1007/978-3-319-08434-3_31
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-319-42432-3_58
https://doi.org/10.1007/978-3-662-48899-7_26
https://doi.org/10.1007/978-3-662-48899-7_26
http://arxiv.org/abs/org/abs/1408.6474

A Survey of Languages for Formalizing Mathematics 153

[Hal17] Hales, T.: The formal abstracts project (2017). https://formalabstracts.
github.io/

[Har96] Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri,
A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidel-
berg (1996). https://doi.org/10.1007/BFb0031814

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
Assoc. Comput. Mach. 40(1), 143–184 (1993)

[HOL] HOL4 development team. https://hol-theorem-prover.org/
[How80] Howard, W.: The formulas-as-types notion of construction. In: To, H.B.

(ed.) Curry: Essays on Combinatory Logic, Lambda-Calculus and Formal-
ism, pp. 479–490. Academic Press, Cambridge (1980)

[HR09] Horn, P., Roozemond, D.: OpenMath in SCIEnce: SCSCP and POPCORN.
In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) CICM 2009. LNCS
(LNAI), vol. 5625, pp. 474–479. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02614-0 38

[HR15] Horozal, F., Rabe, F.: Formal logic definitions for interchange languages.
In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM
2015. LNCS (LNAI), vol. 9150, pp. 171–186. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20615-8 11

[Hum12] Humayoun, M.: Developing system MathNat for automatic formalization
of mathematical texts. Ph.D. thesis, Université de Grenoble (2012)

[Hur09] Hurd, J.: OpenTheory: package management for higher order logic theories.
In: Dos Reis, G., Théry, L. (eds.) Programming Languages for Mechanized
Mathematics Systems, pp. 31–37. ACM (2009)

[IKR11] Iancu, M., Kohlhase, M., Rabe, F.: Translating the Mizar Mathematical
Library into OMDoc format. Technical Report KWARC Report-01/11,
Jacobs University Bremen (2011)

[KAE+14] Klein, G., et al.: Comprehensive formal verification of an OS microkernel.
ACM Trans. Comput. Syst. 32(1), 2 (2014)

[KKMR16] Kaliszyk, C., Kohlhase, M., Müller, D., Rabe, F.: A standard for aligning
mathematical concepts. In: Kohlhase, A., et al. (eds.) Work in Progress at
CICM 2016, pp. 229–244. CEUR-WS.org (2016)

[KMM00] Kaufmann, M., Manolios, P., Moore, J.: Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, Boston (2000)

[KMOR17] Kohlhase, M., Müller, D., Owre, S., Rabe, F.: Making PVS accessible to
generic services by interpretation in a universal format. In: Ayala-Rincón,
M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 319–335. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66107-0 21

[KMP+17] Kohlhase, M., et al.: Knowledge-based interoperability for mathemati-
cal software systems. In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos,
D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 195–210. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72453-9 14

[KN12] Kofler, K., Neumaier, A.: DynGenPar – a dynamic generalized parser
for common mathematical language. In: Jeuring, J., et al. (eds.) CICM
2012. LNCS (LNAI), vol. 7362, pp. 386–401. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31374-5 26

[Knu84] Knuth, D.: Literate programming. Comput. J. 27(2), 97–111 (1984)
[Koh06] Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Doc-

uments [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006).
https://doi.org/10.1007/11826095

https://formalabstracts.github.io/
https://formalabstracts.github.io/
https://doi.org/10.1007/BFb0031814
https://hol-theorem-prover.org/
https://doi.org/10.1007/978-3-642-02614-0_38
https://doi.org/10.1007/978-3-642-02614-0_38
https://doi.org/10.1007/978-3-319-20615-8_11
https://doi.org/10.1007/978-3-319-66107-0_21
https://doi.org/10.1007/978-3-319-72453-9_14
https://doi.org/10.1007/978-3-642-31374-5_26
https://doi.org/10.1007/11826095

154 C. Kaliszyk and F. Rabe

[Koh08] Kohlhase, M.: Using as a semantic markup format. Math. Comput.
Sci. 2(2), 279–304 (2008)

[KP19a] Kaliszyk, C., P ↪ak, K.: Semantics of Mizar as an Isabelle object logic. J.
Autom. Reason. 63(3), 557–595 (2019)

[KP19b] Kaliszyk, C., P ↪ak, K.: Declarative proof translation (short paper). In: Har-
rison, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on
Interactive Theorem Proving (ITP 2019). LIPIcs, vol. 141, pp. 35:1–35:7
(2019)

[KR93] Kamp, H., Reyle, U.: From Discourse to Logic. Introduction to Modelthe-
oretic Semantics of Natural Language, Formal Logic and Discourse Repre-
sentation Theory, Studies in Linguistics and Philosophy, vol. 42. Springer,
Heidelberg (1993). https://doi.org/10.1007/978-94-017-1616-1

[KR14] Kaliszyk, C., Rabe, F.: Towards knowledge management for HOL light.
In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS (LNAI), vol. 8543, pp. 357–372. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08434-3 26

[KR16] Kohlhase, M., Rabe, F.: QED reloaded: towards a pluralistic formal library
of mathematical knowledge. J. Form. Reason. 9(1), 201–234 (2016)

[KR20] Kohlhase, M., Rabe, F.: Experiences from Exporting Major Proof
Assistant Libraries (2020). https://kwarc.info/people/frabe/Research/
KR oafexp 20.pdf

[KRS16] Kaliszyk, C., Rabe, F., Sutcliffe, G.: TH1: the TPTP typed higher-order
form with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J.
(eds.) Workshop on Practical Aspects of Automated Reasoning, pp. 41–55
(2016)

[KRSS20] Kohlhase, M., Rabe, F., Sacerdoti Coen, C., Schaefer, J.: Logic-
independent proof search in logical frameworks (short paper). In: Peltier,
N., Sofronie-Stokkermans, V. (ed.) Automated Reasoning, vol. 12166, pp.
395–401. Springer (2020)

[KRW20] Kohlhase, M., Rabe, F., Wenzel, M.: Making Isabelle Content Accessible in
Knowledge in Representation Formats (2020). https://kwarc.info/people/
frabe/Research/KRW isabelle 19.pdf

[KS19] Kohlhase, M., Schaefer, J.: GF + MMT = GLF - from language to seman-
tics through LF. In: Miller, D., Scagnetto, I. (eds.) Logical Frameworks
and Meta-Languages: Theory and Practice, pp. 24–39. Open Publishing
Association (2019)

[KUV17] Kaliszyk, C., Urban, J., Vyskočil, J.: Automating formalization by statis-
tical and semantic parsing of mathematics. In: Ayala-Rincón, M., Muñoz,
C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 12–27. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66107-0 2

[KW08] Kamareddine, F., Wells, J.: Computerizing mathematical text with Math-
Lang. In: Ayala-Rincón, M., Haeusler, E. (eds.) Logical and Semantic
Frameworks, with Applications, pp. 5–30. ENTCS (2008)

[KWZB14] Kamareddine, F., Wells, J., Zengler, C., Barendregt, H.: Computerising
mathematical text. In: Siekmann, J. (ed.) Computational Logic. Elsevier
(2014)

[Ler09] Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7),
107–115 (2009)

[Lin07] Linton, S.: GAP: groups, algorithms, programming. ACM Commun. Com-
put. Algebr. 41(3), 108–109 (2007)

https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-3-319-08434-3_26
https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
https://kwarc.info/people/frabe/Research/KRW_isabelle_19.pdf
https://kwarc.info/people/frabe/Research/KRW_isabelle_19.pdf
https://doi.org/10.1007/978-3-319-66107-0_2

A Survey of Languages for Formalizing Mathematics 155

[Meg07] Megill, N.: Metamath: A Computer Language for Pure Mathematics. Lulu
Press, Morrisville (2007)

[Mil72] Milner, R.: Logic for computable functions: descriptions of a machine
implementation. ACM SIGPLAN Not. 7, 1–6 (1972)

[ML74] Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Pro-
ceedings of the ’73 Logic Colloquium, pp. 73–118. North-Holland (1974)

[MN86] Miller, D.A., Nadathur, G.: Higher-order logic programming. In: Shapiro,
E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 448–462. Springer, Heidelberg
(1986). https://doi.org/10.1007/3-540-16492-8 94

[MR19] Müller, D., Rabe, F.: Rapid prototyping formal systems in MMT: case
studies. In: Miller, D., Scagnetto, I. (eds.) Logical Frameworks and Meta-
languages: Theory and Practice, pp. 40–54 (2019)

[MRK18] Müller, D., Rabe, F., Kohlhase, M.: Theories as types. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900,
pp. 575–590. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 38

[MRLR17] Müller, D., Rothgang, C., Liu, Y., Rabe, F.: Alignment-based translations
across formal systems using interface theories. In: Dubois, C., Woltzenlogel
Paleo, B. (eds.) Proof eXchange for Theorem Proving, pp. 77–93. Open
Publishing Association (2017)

[MRS19] Müller, D., Rabe, F., Sacerdoti Coen, C.: The Coq library as a theory
graph. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.)
CICM 2019. LNCS (LNAI), vol. 11617, pp. 171–186. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23250-4 12

[Nau14] Naumowicz, A.: SAT-enhanced Mizar proof checking. In: Watt, S.M., Dav-
enport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS
(LNAI), vol. 8543, pp. 449–452. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08434-3 37

[Nor05] Norell, U.: The Agda WiKi (2005). http://wiki.portal.chalmers.se/agda
[NPW02] Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL—A Proof

Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45949-9

[ORS92] Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system.
In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8 217

[Pau94] Paulson, L.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer,
Heidelberg (1994). https://doi.org/10.1007/BFb0030541

[PC93] Paulson, L., Coen, M.: Zermelo-Fraenkel Set Theory. Isabelle distribution,
ZF/ZF.thy (1993)

[PS99] Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical
framework for deductive systems. In: Ganzinger, H. (ed.) Automated
Deduction, pp. 202–206 (1999)

[Rab13] Rabe, F.: A logical framework combining model and proof theory. Math.
Struct. Comput. Sci. 23(5), 945–1001 (2013)

[Rab17] Rabe, F.: How to identify, translate, and combine logics? J. Log. Comput.
27(6), 1753–1798 (2017)

[Rab18] Rabe, F.: A Modular type reconstruction algorithm. ACM Trans. Comput.
Log. 19(4), 1–43 (2018)

[Ran11] Ranta, A.: Grammatical Framework: Programming with Multilingual
Grammars. CSLI Publications, Stanford (2011)

https://doi.org/10.1007/3-540-16492-8_94
https://doi.org/10.1007/978-3-319-94205-6_38
https://doi.org/10.1007/978-3-319-94205-6_38
https://doi.org/10.1007/978-3-030-23250-4_12
https://doi.org/10.1007/978-3-319-08434-3_37
https://doi.org/10.1007/978-3-319-08434-3_37
http://wiki.portal.chalmers.se/agda
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/BFb0030541

156 C. Kaliszyk and F. Rabe

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1),
1–54 (2013)

[RS09] Rabe, F., Schürmann, C.: A practical module system for LF. In: Cheney,
J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks:
Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press (2009)

[S+13] Stein, W., et al.: Sage Mathematics Software. The Sage Development Team
(2013). http://www.sagemath.org

[SSCB12] Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed
first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR
2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28717-6 32

[Sut09] Sutcliffe, G.: The TPTP problem library and associated infrastructure: the
FOF and CNF Parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

[TB85] Trybulec, A., Blair, H.: Computer assisted reasoning with MIZAR. In:
Joshi, A. (eds.) Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pp. 26–28. Morgan Kaufmann (1985)

[Wen11] Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport,
J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI),
vol. 6824, pp. 244–259. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22673-1 17

[Wie07] Wiedijk, F.: The QED manifesto revisited. In: From Insight to Proof,
Festschrift in Honour of Andrzej Trybulec, pp. 121–133 (2007)

[Win14] Windsteiger, W.: Theorema 2.0: a system for mathematical theory explo-
ration. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 49–52.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 9

[WKR17] Wiesing, T., Kohlhase, M., Rabe, F.: Virtual theories – a uniform inter-
face to mathematical knowledge bases. In: Blömer, J., Kotsireas, I.S., Kut-
sia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 243–257.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72453-9 17

[WKU18] Wang, Q., Kaliszyk, C., Urban, J.: First experiments with neural trans-
lation of informal to formal mathematics. In: Rabe, F., Farmer, W.M.,
Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006,
pp. 255–270. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96812-4 22

[Wol12] Wolfram. Mathematica (2012)

http://www.sagemath.org
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-28717-6_32
https://doi.org/10.1007/978-3-642-22673-1_17
https://doi.org/10.1007/978-3-642-22673-1_17
https://doi.org/10.1007/978-3-662-44199-2_9
https://doi.org/10.1007/978-3-319-72453-9_17
https://doi.org/10.1007/978-3-319-96812-4_22
https://doi.org/10.1007/978-3-319-96812-4_22

OntoMathEdu: A Linguistically Grounded
Educational Mathematical Ontology

Alexander Kirillovich1,2(B) , Olga Nevzorova1 , Marina Falileeva1 ,
Evgeny Lipachev1 , and Liliana Shakirova1

1 Kazan Federal University, Kazan, Russia
2 Joint Supercomputer Center of the Russian Academy of Sciences, Kazan, Russia

alik.kirillovich@gmail.com, onevzoro@gmail.com, mmwwff@yandex.ru,

elipachev@gmail.com, liliana008@mail.ru

Abstract. We present the first release of OntoMathEdu, a new educa-
tional mathematical ontology. The ontology is intended to be used as a
Linked Open Data hub for mathematical education, a linguistic resource
for intelligent mathematical language processing and an end-user refer-
ence educational database. The ontology is organized in three layers: a
foundational ontology layer, a domain ontology layer and a linguistic
layer. The domain ontology layer contains language-independent con-
cepts, covering secondary school mathematics curriculum. The linguistic
layer provides linguistic grounding for these concepts, and the founda-
tion ontology layer provides them with meta-ontological an-notations.
The concepts are organized in two main hierarchies: the hierarchy of
objects and the hierarchy of reified relationships. For our knowledge,
OntoMathEdu is the first Linked Open Data mathematical ontology, that
respects ontological distinctions provided by a foundational ontology;
represents mathematical relationships as first-oder entities; and provides
strong linguistic grounding for the represented mathematical concepts.

Keywords: Ontology · Mathematics education · Linked Open Data ·
Natural language processing · Mathematical knowledge management ·
OntoMathEdu

1 Introduction

We present the first release of OntoMathEdu, a new educational mathematical
ontology. This ontology is intended to be:

– A Linked Open Data hub for mathematical education. In this respect, the
ontology lies at the intersection of two long-established trends of using LOD
for educational purposes [1–4] and for mathematical knowledge manage-
ment [5,6].

– A linguistic resource for common mathematical language processing. In this
respect, the ontology can complement mathematical linguistic resources, such
as SMGloM [7,8], and serve as an interface between raw natural language
texts and mathematical knowledge management applications.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 157–172, 2020.
https://doi.org/10.1007/978-3-030-53518-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_10&domain=pdf
http://orcid.org/0000-0001-9680-449X
http://orcid.org/0000-0001-8116-9446
http://orcid.org/0000-0003-2228-7551
http://orcid.org/0000-0001-7789-2332
http://orcid.org/0000-0001-5758-4076
https://doi.org/10.1007/978-3-030-53518-6_10

158 A. Kirillovich et al.

– An end-user reference educational database, and play the same role in sec-
ondary school math, that PlanetMath or MathWorld play in professional
mathematics.

This ontology is a central component of the digital educational platform
under development, which is intended for solving such tasks as: (1) automatic
questions generation; (2) automatic recommendation of educational materials
according to an individual study plan; (3) semantic annotation of educational
materials.

In the development of OntoMathEdu we would rely on our experience of the
development of OntoMathPRO (http://ontomathpro.org/) [9], an ontology of
professional mathematics. This ontology underlies a semantic publishing plat-
form [10,11], that takes as an input a collection of mathematical papers in LATEX
format and builds their ontology-based Linked Open Data representation. The
semantic publishing platform, in turn, is a central component of OntoMath digi-
tal ecosystem [12,13], an ecosystem of ontologies, text analytics tools, and appli-
cations for mathematical knowledge management, including semantic search
for mathematical formulas [14] and a recommender system for mathematical
papers [15].

Despite the fact that OntoMathPRO has proved to be effective in several
educational applications, such as assessment of the competence of students [9]
and recommendation of educational materials in Virtual Learning Communities
[16–19], its focus on professional mathematics rather than on education prevents
it to be a strong foundation for the digital educational platform. The main
differences between OntoMathPRO and a required educational ontology are the
following:

– Conceptualization. OntoMathPRO ontology specifies a conceptualization of
professional mathematics, whilst the required educational ontology must spec-
ify a conceptualization of school mathematics. These conceptualizations are
noticeably different, for example, in school conceptualization, Number is a
primitive notion, while in professional conceptualization it is defined as a
subclass of Set.

– Selection of concepts. The required educational ontology must contain con-
cepts from a school mathematics curriculum.

– Terminology. Concepts of OntoMathPRO ontology are denoted by profes-
sional terms, whilst concepts of the required educational ontology must be
denoted by school math terms. There isn’t so much difference between pro-
fessional and educational terminology in English, but this difference is more
salient in such languages as Russian or Tatar. For example, the term ‘mno-
gochlen’ (the native word for ‘polynom’) should be used instead of the pro-
fessional term ‘polinom’ (the Greek loan word with the same meaning) in
educational environment.

– Prerequisite relations. In the required educational ontology, logical relations
between concepts must be complemented with prerequisite ones. The concept
A is called a prerequisite for the concept B, if a learner must study the
concept A before approaching the concept B. For example, comprehension of

http://ontomathpro.org/

OntoMathEdu 159

the Addition concept is required to grasp the concept of Multiplication, and,
more interesting, to grasp the very concept of Function, even though, from
the logical point of view the later concept is more fundamental and is used
in the definitions of the first two.

– Points of view. In addition to universal statements, the required educational
ontology must contain statements relativized to particular points of view,
such as different educational levels. For example, a concept can be defined
differently on different educational stages; and a statement can be considered
as an axiom according to one axiomatization, and as a theorem according to
another.

Concerning to common mathematical language processing, OntoMathPRO is
suitable for extraction of separate mathematical objects, but not for extraction
facts about them. The same fact can be linguistically manifested in many dif-
ferent ways. For example, the incidence relation between point a and line l can
be represented by a transitive verb (“l contains a”), a verb with a preposition
(“a lies on l”), an adjective with a preposition (“a is incident with l”) and an
adjective with a collective subject (“a and l are incident”) [20]. So, the required
ontology should define concepts for representing mathematical facts as well as
mappings to their natural language manifestations.

With regard to the foregoing, we have lunched a project for developing a new
educational ontology OntoMathEdu. The project was presented at the work-in-
progress track of CICM 2019 cicm2019 and was recommended by PC to be
re-submitted to the main track after the release of the first stable version. In
this paper, we describe the overall project as well as the first release, consisting
in the domain ontology layer for Euclidean plane geometry domain.

2 Ontology Structure

According to the project, OntoMathEdu ontology is organized in three layers:

1. Foundational ontology layer, where a chosen foundational ontology is
UFO [22].

2. Domain ontology layer, which contains language-independent math con-
cepts from the secondary school mathematics curriculum. The concepts are
grouped into several modules, including the general concepts module and
modules for disciplines of mathematics, e.g. Arithmetic, Algebra and Plane
Geometry. The concepts will be interlinked with external LOD resources, such
as DBpedia [23], ScienceWISE [24] and OntoMathPRO. Additionally, relay-
ing on the MMT URIs scheme [25], the concepts can be aligned with MitM
ontology [26], and through it with the concepts of several computer algebra
systems.

3. Linguistic layer, containing multilingual lexicons, that provide linguistic
grounding of the concepts from the domain ontology layer. The lexicons will
be interlinked with the external lexical resources from the Linguistic Linked
Open Data (LLOD) cloud [27,28], first of all in English [29,30], Russian [31]
and Tatar [32] (Fig. 1).

160 A. Kirillovich et al.

Fig. 1. OntoMathPRO ontology structure.

3 Domain Ontology Layer

The domain ontology layer of OntoMathEdu is being developed according to the
following modelling principles:

1. Common mathematical language conceptualization. OntoMathEdu reflects
the conceptualization of the Common mathematical language (CML) [33],
not that of the language of fully formalized mathematics. These conceptu-
alizations are very different. For example, according to the fully formalized
mathematics conceptualization, the Set concept subsumes the Vector con-
cept, but in the CML conceptualization Vector is represented by Set, and is
not subsumed by it. More important, in contrast to the fully formalized math-
ematics conceptualization, according to the CML conceptualization, mathe-
matical objects are neither necessary nor timeless, and the domain of dis-
course can expand in a process of problem-solving.

2. Strict adherence to ontological distinctions provided by the foundational
ontology. For example, we explicitly mark concepts as Kinds or Roles.

3. Reification of domain relations. Mathematical relations are represented as
concepts, not as object properties. Thus, the mathematical relationships
between concepts are first-order entities, and can be a subject of a statement.

4. Multilinguality. Concepts of ontology contains labels in English, Russian and
Tatar.

5. Educational literature warrant. The ontology contains only those concepts,
that are represented in actual education literature.

Current version of OntoMathEdu contains 823 concepts from the secondary
school Euclidean plane geometry curriculum (5th–9th grades), manually devel-
oped by experts relying on mathematical textbooks. The description of a concept

OntoMathEdu 161

contains its name in English, Russian and Tatar, axioms, relations with other
concepts, and links to external resources of the LOD cloud and educational ref-
erence databases.

The concepts are organized in two main hierarchies: the hierarchy of objects
and the hierarchy of reified relationships.

3.1 Hierarchy of Objects

The top level of the hierarchy of objects consists of the following classes:

1. Plane Figure, with subclasses such as Line, Polygon, Ellipse, Angle, Median
of a Triangle or Circumscribed Circle.

2. Plane Geometry Statement, with subclasses such as Axiom of construction of
a circle with a given center and radius or Pythagorean Theorem.

3. Plane Geometry Problem with subclasses such as Problem of straightedge and
compass construction or Heron’s problem.

4. Plane Geometry Method with subclasses such as Constructing an additional
line for solving plane geometry problem.

5. Unit of Measurement, with subclasses such as Centimeter, Radian, or Square
meter.

6. Measurement and Construction Tool, with subclasses such as Protractor,
Astrolabe, T -square, Sliding T bevel, or Marking gauge.

A fragment of the hierarchy of objects is represented at the Fig. 2.
There are two meta-ontological types of the concepts: kinds and roles.
A kind is a concept that is rigid and ontologically independent [22,34]. So,

for example, the Triangle concept is a kind, because any triangle is always a
triangle, regardless of its relationship with other figures.

A role is a concept that is anti-rigid and ontologically dependent [22,34]. An
object can be an instance of a role class only by virtue of its relationship with
another object. So, for example, the Median concept is a role, since any line
segment is a median not by itself, but only in relation to a certain triangle. Any
role concept is a subclass of some kind concept. For example, the Median role
concept is a subclass of Line segment kind concept.

Figure 3 represents the Median role concept and one of its instances, namely
median AO, related to triangle ABC.

3.2 Hierarchy of Reified Relationships

Relations between concepts are represented in ontology in a reified form, i.e. as
concepts, not as object properties (such representation fits the standard ontologi-
cal pattern for representing N -ary relation with no distinguished participant [35],
but is applied to binary relations too). Thus, the relationships between concepts
are first-order entities, and can be a subject of a statement.

The top level of the hierarchy of reified relationships consists of the following
classes:

162 A. Kirillovich et al.

Fig. 2. A fragment of the hierarchy of objects.

Fig. 3. A role example.

OntoMathEdu 163

Fig. 4. A fragment of the hierarchy of reified relationships.

1. Mutual arrangement of geometric figures on a plane, with subclasses such as
Inscribed polygon or Triangle with vertices at Euler points.

2. Comparison relation between plane figures, with subclasses such as Congruent
Triangles or Similar Polygons.

3. Plane Transformation, with subclasses such as Translation or Axial Symme-
try.

4. Metric property of a plane figure, with subclasses such as Length of a circle,
Tangent of acute angle in right triangle, or Eccentricity of an ellipse.

A fragment of this hierarchy is represented at the Fig. 4.
Reified relationships are linked to their participants by has argument object

properties and their subproperties.

164 A. Kirillovich et al.

Fig. 5. An example of a reified relationship, and its instance corresponding to the
“Triangle ABC is inscribed in circle a” statement.

Figure 5 shows one of the relations, represented by the Relationship between
an inscribed triangle and a circumscribed circle concept. This relation is linked to
its participants, represented by Inscribed triangle and Circumscribed circle role
concepts. These roles, in turn, are defined as subclasses of the Triangle and the
Circle kind concepts respectively. The bottom of the figure depicts an instance
of this relation, namely the Relationship between inscribed triangle ABC and
circumscribed circle a, that binds triangle ABC and circle a.

This relationship is a representation of natural language statement “Triangle
ABC is inscribed in circle a”. The mappings between ontology concepts and
corresponding natural language statements are defined at the linguistic level of
the ontology.

3.3 Network of Points of View

Points of view are represented using the “Descriptions and Situations” design
pattern, and are based on the top-level ontology DOLCE + DnS Ultralite
[36–38]. The network of points of view is under development now and is not
included in the first release of the ontology.

3.4 Object and Annotation Properties

The ontology defines the following relations, represented by the object and anno-
tation properties as well as their subproperties:

1. Has argument relation, that binds a reified relationship and its participants.
2. Relation of Ontological dependence that binds a role concept to its dependee

concept.

OntoMathEdu 165

3. Has part relation. For example, any Vertex of a Triangle is a part of a Tri-
angle.

4. Aboutness relation that holds between a Statement and the subject matter
of this statement. For example, Heron’s formula is related to the Area of a
polygon concept.

5. Prerequisite relation. The concept A is called a prerequisite for the concept
B, if a learner must study the concept A before approaching the concept B.
In the first release of the ontology, these relations are introduced only indi-
rectly in coarse-grained manner by arrangement of the concepts by successive
educational levels.

6. Belongs to educational level, that binds a concept and an educational level
(such as an age of leaning) at which the concept is firstly introduced.

7. External resource, that interlinks a concept and an external Linked Open
Data or reference educational resource describing this concept.

3.5 External Links

Currently, OntoMathEdu ontology has been interlinked with the following exter-
nal resources:

DBpedia. The mapping was constructed semi-automatically on the base of the
method proposed in [41] and then manually verified. This mapping contains 154
connections, expressed by the skos:closeMatch properties.

External Reference Educational Resources. The mapping was constructed
manually and contains 71 connections, expressed by the ome:eduRef annotation
properties and its subproperties.

4 Linguistic Layer

The linguistic layer contains multilingual lexicons, that provide linguistic ground-
ing of the concepts from the domain ontology layer.

Currently we are developing Russian and English lexicons and are going to
develop the lexicon for Tatar.

A lexicon consists in:

– Lexical entries, denoting mathematical concepts. Examples of lexical entries
are “triangle”, “right triangle”, “side of a polygon”, “Riemann integral of f
over x from a to b”, “to intersect”, “to touch”, etc.

– Forms of lexical entries (in different numbers, cases, tenses, etc).
– Syntactic trees of multi-word lexical entries.
– Syntactic frames of lexical entries. A syntactic frame represents the syntactic

behavior of a predicate, defining the set of syntactic arguments this predicate
requires and their mappings to ontological entities. For example, a syntactic
frame of the “to touch” verb determines that in “X touches Y at Z” phrase,
subject X represents a tangent line to a curve, direct object Y represents the
curve, and prepositional adjunct Z represents the point of tangency.

166 A. Kirillovich et al.

Fig. 6. “To touch” lexical entry

OntoMathEdu 167

Fig. 6. (continued)

The lexicons are expressed in terms of Lemon [43,44], LexInfo, OLiA [45]
and PreMOn [46] ontologies.

Figure 6 represents an example of the “to touch” verb, its canonical form,
syntactic frame and lexical sense. The syntactic frame defines three arguments
of this verb: a subject, a direct object and an optional prepositional adjunct,

168 A. Kirillovich et al.

marked by the “at” preposition. The lexical sense defines a mapping of the verb
and its syntactic arguments to the corresponding ontological concepts. According
to the mapping, the verb denotes the reified relationship between a tangent
line and a curve, while the syntactic arguments express the participants of this
relationship: the subject expresses a tangent line to a curve, the direct object
expresses the curve, and the prepositional adjunct expresses the tangent point.

5 Conclusions

In this paper, we present the first release of OntoMathEdu, a new educational
mathematical ontology.

While there are many educational ontologies on the one hand, and several
mathematical ontologies on the other, to our knowledge, OntoMathEdu is the
first general-purpose educational mathematical ontology. Additionally, it is the
first Linked Open Data mathematical ontology, intended to: (1) respect ontologi-
cal distinctions provided by a foundational ontology; (2) represent mathematical
relationships as first-order entities; and (3) provide strong linguistic grounding
for the represented mathematical concepts.

Currently, our first priority is to release the linguistic layer of the ontology
that is still under development and hasn’t been published yet. After that, we will
extend the ontology to other fields of secondary school mathematics curriculum,
such as Arithmetic, Algebra and Trigonometry.

Finally, we are going to apply the modeling principles, drafted on this project,
in the development of the new revised version of the ontology of professional
mathematics OntoMathPRO.

Acknowledgements. The first part of the work, the development of the domain
ontology layer, was partially funded by RFBR, projects # 19-29-14084. The second
part of the work, the development of the linguistic layer, was funded by Russian Science
Foundation according to the research project no. 19-71-10056.

References

1. Pereira, C.K., Matsui Siqueira, S.W., Nunes, B.P., Dietze, S.: Linked data in edu-
cation: a survey and a synthesis of actual research and future challenges. IEEE
Trans. Learn. Technol. 11(3), 400–412 (2018). https://doi.org/10.1109/TLT.2017.
2787659

2. d’Aquin, M.: On the use of linked open data in education: current and future
practices. In: Mouromtsev, D., d’Aquin, M. (eds.) Open Data for Education. LNCS,
vol. 9500, pp. 3–15. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30493-9 1

3. Taibi, D., Fulantelli, G., Dietze, S., Fetahu, B.: Educational linked data on the web
- exploring and analysing the scope and coverage. In: Mouromtsev, D., d’Aquin,
M. (eds.) Open Data for Education. LNCS, vol. 9500, pp. 16–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30493-9 2

https://doi.org/10.1109/TLT.2017.2787659
https://doi.org/10.1109/TLT.2017.2787659
https://doi.org/10.1007/978-3-319-30493-9_1
https://doi.org/10.1007/978-3-319-30493-9_1
https://doi.org/10.1007/978-3-319-30493-9_2

OntoMathEdu 169

4. Nahhas, S., Bamasag, O., Khemakhem, M., Bajnaid, N.: Added values of linked
data in education: a survey and roadmap. Computers 7(3) (2018). https://doi.org/
10.3390/computers7030045

5. Lange, C.: Ontologies and languages for representing mathematical knowledge on
the Semantic Web. Semant. Web 4(2), 119–158 (2013). https://doi.org/10.3233/
SW-2012-0059

6. Elizarov, A.M., Kirillovich, A.V., Lipachev, E.K., Nevzorova, O.A., Solovyev, V.D.,
Zhiltsov, N.G.: Mathematical knowledge representation: semantic models and for-
malisms. Lobachevskii J. Math. 35(4), 348–354 (2014). https://doi.org/10.1134/
S1995080214040143

7. Ginev, D., et al.: The SMGloM project and system: towards a terminology and
ontology for mathematics. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A.
(eds.) ICMS 2016. LNCS, vol. 9725, pp. 451–457. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42432-3 58

8. Kohlhase, M.: A data model and encoding for a semantic, multilingual terminology
of mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J.
(eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 169–183. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08434-3 13

9. Nevzorova, O.A., Zhiltsov, N., Kirillovich, A., Lipachev, E.: OntoMath PRO ontol-
ogy: a linked data hub for mathematics. In: Klinov, P., Mouromtsev, D. (eds.)
KESW 2014. CCIS, vol. 468, pp. 105–119. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11716-4 9

10. Nevzorova, O., et al.: Bringing math to LOD: a semantic publishing platform
prototype for scientific collections in mathematics. In: Alani, H., et al. (eds.) ISWC
2013. LNCS, vol. 8218, pp. 379–394. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41335-3 24

11. Elizarov, A.M., Lipachev, E.K., Nevzorova, O.A., Solov’ev, V.D.: Methods and
means for semantic structuring of electronic mathematical documents. Dokl. Math.
90(1), 521–524 (2014). https://doi.org/10.1134/S1064562414050275

12. Elizarov, A., Kirillovich, A., Lipachev, E., Nevzorova, O.: Digital ecosystem
OntoMath: mathematical knowledge analytics and management. In: Kalinichenko,
L., Kuznetsov, S.O.,Manolopoulos, Y. (eds.) DAMDID/RCDL 2016. CCIS, vol. 706,
pp. 33–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57135-5 3

13. Elizarov, A.M., Zhiltsov, N.G., Kirillovich, A.V., Lipachev, E.K., Nevzorova, O.A.,
Solovyev, V.D.: The OntoMath ecosystem: ontologies and applications for math
knowledge management. In: Semantic Representation of Mathematical Knowledge
Workshop, 5 February 2016. http://www.fields.utoronto.ca/video-archive/2016/
02/2053-14698

14. Elizarov, A., Kirillovich, A., Lipachev, E., and Nevzorova, O.: Semantic formula
search in digital mathematical libraries. In: Proceedings of the 2nd Russia and
Pacific Conference on Computer Technology and Applications (RPC 2017), pp.
39–43. IEEE (2017). https://doi.org/10.1109/RPC.2017.8168063

15. Elizarov, A.M., Zhizhchenko, A.B., Zhil’tsov, N.G., Kirillovich, A.V., Lipachev,
E.K.: Mathematical knowledge ontologies and recommender systems for collections
of documents in physics and mathematics. Dokl. Math. 93(2), 231–233 (2016).
https://doi.org/10.1134/S1064562416020174

16. Barana, A., Di Caro, L., Fioravera, M., Marchisio, M., Rabellino, S.: Ontology
development for competence assessment in virtual communities of practice. In:
Penstein Rosé, C., et al. (eds.) AIED 2018, Part II. LNCS (LNAI), vol. 10948, pp.
94–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93846-2 18

https://doi.org/10.3390/computers7030045
https://doi.org/10.3390/computers7030045
https://doi.org/10.3233/SW-2012-0059
https://doi.org/10.3233/SW-2012-0059
https://doi.org/10.1134/S1995080214040143
https://doi.org/10.1134/S1995080214040143
https://doi.org/10.1007/978-3-319-42432-3_58
https://doi.org/10.1007/978-3-319-42432-3_58
https://doi.org/10.1007/978-3-319-08434-3_13
https://doi.org/10.1007/978-3-319-11716-4_9
https://doi.org/10.1007/978-3-319-11716-4_9
https://doi.org/10.1007/978-3-642-41335-3_24
https://doi.org/10.1007/978-3-642-41335-3_24
https://doi.org/10.1134/S1064562414050275
https://doi.org/10.1007/978-3-319-57135-5_3
http://www.fields.utoronto.ca/video-archive/2016/02/2053-14698
http://www.fields.utoronto.ca/video-archive/2016/02/2053-14698
https://doi.org/10.1109/RPC.2017.8168063
https://doi.org/10.1134/S1064562416020174
https://doi.org/10.1007/978-3-319-93846-2_18

170 A. Kirillovich et al.

17. Barana, A., Di Caro, L., Fioravera, M., Floris, F., Marchisio, M., Rabellino, S.:
Sharing system of learning resources for adaptive strategies of scholastic remedial
intervention. In: Proceedings of the 4th International Conference on Higher Edu-
cation Advances (HEAd 2018), pp. 1495–1503. Editorial Universitat Politècnica de
València (2018). https://doi.org/10.4995/HEAd18.2018.8232

18. Marchisio, M., Di Caro, L., Fioravera, M., Rabellino, S.: Towards adaptive sys-
tems for automatic formative assessment in virtual learning communities. In: Sorel
Reisman, et al. (eds.) Proceedings of the 42nd IEEE Annual Computer Software
and Applications Conference (COMPSAC 2018), pp. 1000–1005. IEEE (2018).
https://doi.org/10.1109/COMPSAC.2018.00176

19. Barana, A., Di Caro, L., Fioravera, M., Floris, F., Marchisio, M., Rabellino,
S.: Developing competence assessment systems in e-learning communities. In:
Volun-geviciene, A., Szücs, A. (eds.) Proceedings of the European Distance and E-
Learning Network 2018 Annual Conference: Exploring the Micro, Meso and Macro
(EDEN 2018), pp. 879–888. EDEN (2018)

20. Kirillovich, A., Nevzorova, O., Falileeva, M., Lipachev, E., Shakirova, L.:
OntoMathEdu: towards an educational mathematical ontology. In: Kaliszyk, C.,
et al. (eds.) Workshop Papers at 12th Conference on Intelligent Computer Math-
ematics (CICM-WS 2019). CEUR Workshop Proceedings (2019, forthcoming)

21. Ranta, A.: Syntactic categories in the language of mathematics. In: Dybjer, P.,
Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 162–182.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60579-7 9

22. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. CTIT,
Enschede (2005)

23. Lehmann, J., et al.: DBpedia: a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web J. 6(2), 167–195 (2015). https://doi.org/10.3233/
SW-140134

24. Astafiev, A., Prokofyev, R., Guéret, C., Boyarsky, A., Ruchayskiy, O.: Science-
WISE: a web-based interactive semantic platform for paper annotation and ontol-
ogy editing. In: Simperl, E., et al. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 392–396.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46641-4 33

25. Müller, D., Gauthier, T., Kaliszyk, C., Kohlhase, M., Rabe, F.: Classification of
alignments between concepts of formal mathematical systems. In: Geuvers, H.,
England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI),
vol. 10383, pp. 83–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
62075-6 7

26. Dehaye, P.-O., et al.: Interoperability in the OpenDreamKit project: the math-in-
the-middle approach. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura,
L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 117–131. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-42547-4 9

27. McCrae, J.P., et al.: The open linguistics working group: developing the linguistic
linked open data cloud. In: Calzolari N., et al. (eds.) Proceedings of the 10th
International Conference on Language Resources and Evaluation (LREC 2016),
pp. 2435–2441. ELRA (2016)

28. Cimiano, P., Chiarcos, C., McCrae, J.P., Gracia, J.: Linguistic linked open data
cloud. Linguistic Linked Data, pp. 29–41. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-30225-2 3

29. McCrae, J.P., Fellbaum, C., Cimiano, P.: Publishing and linking WordNet using
lemon and RDF. In: Chiarcos, C., et al. (eds.) Proceedings of the 3rd Workshop
on Linked Data in Linguistics (LDL-2014), pp. 13–16. ELRA (2014)

https://doi.org/10.4995/HEAd18.2018.8232
https://doi.org/10.1109/COMPSAC.2018.00176
https://doi.org/10.1007/3-540-60579-7_9
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.1007/978-3-662-46641-4_33
https://doi.org/10.1007/978-3-319-62075-6_7
https://doi.org/10.1007/978-3-319-62075-6_7
https://doi.org/10.1007/978-3-319-42547-4_9
https://doi.org/10.1007/978-3-030-30225-2_3
https://doi.org/10.1007/978-3-030-30225-2_3

OntoMathEdu 171

30. Ehrmann, M., Cecconi, F., Vannella, D., McCrae, J., Cimiano, P., Navigli, R.:
Representing multilingual data as linked data: the case of BabelNet 2.0. In: Calzo-
lari N., et al. (eds.) Proceedings of the 9th International Conference on Language
Resources and Evaluation (LREC 2014), pp. 401–408. ELRA (2014)

31. Kirillovich, A., Nevzorova, O., Gimadiev, E., Loukachevitch, N.: RuThes Cloud:
towards a multilevel linguistic linked open data resource for Russian. In: Różewski,
P., Lange, C. (eds.) KESW 2017. CCIS, vol. 786, pp. 38–52. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69548-8 4

32. Galieva, A., Kirillovich, A., Khakimov, B., Loukachevitch, N., Nevzorova, O.,
Suleymanov, D.: Toward domain-specific Russian-tatar thesaurus construction. In:
Proceedings of the International Conference IMS-2017, pp. 120–124. ACM (2017).
https://doi.org/10.1145/3143699.3143716

33. Ganesalingam, M.: The Language of Mathematics, vol. 7805. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37012-0

34. Guarino, N., Welty, C.A.: A formal ontology of properties. In: Dieng, R., Corby,
O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 97–112. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-39967-4 8

35. Noy, N., Rector, A.: Defining N-ary Relations on the Semantic Web. W3C Working
Group Note, 12 April 2006. https://www.w3.org/TR/swbp-n-aryRelations/

36. Borgo, S., Masolo, C.: Ontological foundations of DOLCE. In: Poli, R., Healy,
M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applica-
tions, pp. 279–295. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-
481-8847-5 13

37. Borgo, S., Masolo, C.: Foundational choices in DOLCE. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. IHIS, pp. 361–381. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92673-3 16

38. Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and
situations. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS,
vol. 2888, pp. 689–706. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39964-3 44

39. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Expressive multi-
level modeling for the semantic web. In: Groth, P., et al. (eds.) ISWC 2016, Part I.
LNCS, vol. 9981, pp. 53–69. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46523-4 4

40. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Multi-level
ontology-based conceptual modeling. In: Data & Knowledge Engineering, vol. 109,
pp. 3–24, May 2017. https://doi.org/10.1016/j.datak.2017.03.002

41. Kirillovich, A., Nevzorova, O.: Ontological analysis of the Wikipedia category sys-
tem. In: Aveiro, D., et al. (eds.) Proceedings of the 10th International Joint Con-
ference on Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement (IC3K 2018), Seville, Spain, 18–20 September 2018. KEOD, vol. 2, pp.
358–366. SCITEPRESS (2018)

42. Guarino, N., Welty, C.A.: An overview of OntoClean. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. IHIS, pp. 201–220. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92673-3 9

43. Cimiano, P., McCrae, J.P., Buitelaar, P.: Lexicon model for ontologies. Final Com-
munity Group Report, 10 May 2016. https://www.w3.org/2016/05/ontolex/

44. McCrae, J.P., Bosque-Gil, J., Gracia, J., Buitelaar, P., Cimiano, P.: The OntoLex-
Lemon model: development and applications. In: Kosem I., et al. (eds.) Proceedings
of the 5th biennial conference on Electronic Lexicography (eLex 2017), pp. 587–597.
Lexical Computing CZ (2017)

https://doi.org/10.1007/978-3-319-69548-8_4
https://doi.org/10.1145/3143699.3143716
https://doi.org/10.1007/978-3-642-37012-0
https://doi.org/10.1007/3-540-39967-4_8
https://www.w3.org/TR/swbp-n-aryRelations/
https://doi.org/10.1007/978-90-481-8847-5_13
https://doi.org/10.1007/978-90-481-8847-5_13
https://doi.org/10.1007/978-3-540-92673-3_16
https://doi.org/10.1007/978-3-540-39964-3_44
https://doi.org/10.1007/978-3-540-39964-3_44
https://doi.org/10.1007/978-3-319-46523-4_4
https://doi.org/10.1007/978-3-319-46523-4_4
https://doi.org/10.1016/j.datak.2017.03.002
https://doi.org/10.1007/978-3-540-92673-3_9
https://www.w3.org/2016/05/ontolex/

172 A. Kirillovich et al.

45. Chiarcos, C.: OLiA - ontologies of linguistic annotation. Semant. Web 6(4), 379–
386 (2015). https://doi.org/10.3233/SW-140167

46. Rospocher, M., Corcoglioniti, F., Palmero Aprosio, A.: PreMOn: LODifing linguis-
tic predicate models. Lang. Resour. Eval. 53(3), 499–524 (2018). https://doi.org/
10.1007/s10579-018-9437-8

https://doi.org/10.3233/SW-140167
https://doi.org/10.1007/s10579-018-9437-8
https://doi.org/10.1007/s10579-018-9437-8

FrameIT: Detangling Knowledge
Management from Game Design

in Serious Games

Michael Kohlhase , Benjamin Bösl, Richard Marcus(B) , Dennis Müller ,
Denis Rochau, Navid Roux , John Schihada, and Marc Stamminger

Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany
richard.marcus@fau.de

Abstract. Serious games are an attempt to leverage the inherent moti-
vation in game-like scenarios for an educational application and to trans-
pose the learning goals into real-world applications. Unfortunately, seri-
ous games are also very costly to develop and deploy. For very abstract
domains like mathematics, already the representation of the knowledge
involved becomes a problem.

We propose the Frame IT Method that uses OMDoc/Mmt theory
graphs to represent and track the underlying knowledge in serious games.
In this paper we report on an implementation and experiment that tests
the method. We obtain a simple serious game by representing a “word
problem” in OMDoc/Mmt and connecting the Mmt API with a state-
of-the-art game engine.

1 Introduction

Serious games could be a solution to the often-diagnosed problem that tradi-
tional education via personal instruction and educational documents has seri-
ous scalability, subject specificity, and motivation limitations. A serious game
is “a mental contest, played with a computer in accordance with specific rules,
that uses entertainment to further government or corporate training, education,
health, public policy, and strategic communication objectives” [Zyd05]. Beyond
educational games for students, the term “Serious Game” is used for games that
help to acquire skills in general. This includes training professionals of basically
all industry sectors.

Serious games have the power to effectively supplement technical documents
and online courses and thereby allow students to learn how to apply their knowl-
edge to real world scenarios. Moreover, serious games very elegantly solve the
motivation problem many people experience when studying technical subjects.
Through gamification [Det+11] a serious game can be very entertaining while
at the same time providing educational value to the user.

Unfortunately, serious games for complex subjects like science, technology,
engineering, and mathematics (STEM) are currently very complex, domain-
specific, and expensive even though their motivational effects could be disruptive
c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 173–189, 2020.
https://doi.org/10.1007/978-3-030-53518-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_11&domain=pdf
https://orcid.org/0000-0002-9859-6337
https://orcid.org/0000-0002-6601-6457
https://orcid.org/0000-0002-4482-4912
https://orcid.org/0000-0002-8348-2441
https://doi.org/10.1007/978-3-030-53518-6_11

174 M. Kohlhase et al.

right in these areas. Even more seriously, developers of such games need to com-
bine the skill sets of game development, pedagogy, and domain expertise, a rare
combination indeed.

To alleviate this, we propose the Frame IT Method, which – instead of
using ad-hoc methods for dealing with the underlying STEM domain knowledge
in the game – uses established mathematical knowledge management (MKM)
techniques and implementations. It loosely couples a game engine for interact-
ing with virtual worlds with the Mmt system, which performs knowledge rep-
resentation and management services, thus detangling the domain knowledge
integration from the game development process. The main mechanism involved
is the maintenance of a mapping between objects of the virtual world and their
properties (“facts”), which are formally represented in OMDoc/Mmt. On this
basis, learning objects in the form of represented theorem statements can i)
be visualized in the game world (“scrolls”) for the player to understand, ii) be
instantiated by the player by assigning a game object to every required assump-
tion, and iii) can, together with their instantiations, be represented in Mmt as
OMDoc/Mmt views. The latter enables validity checking and computation of
results which can then be transferred back into the game world bringing things
full circle.

The Frame IT Method is supposed to increase a player’s understanding of
formulae by making them apply such abstract formulae in concrete settings hap-
pening within a game world. To fulfill a formula’s assumptions, the player has to
perform a combination of selecting, moving, and generating game objects. With
the help of OMDoc/Mmt in the background and back-and-forth synchroniza-
tion, concrete outcomes of formula applications can immediately be visualized
for the user in the game world, too.

The Tree Example. At this point, we would like to introduce a running example
of an in-game word problem for a serious game. We use this problem in our seri-
ous game prototype as well throughout this document to progressively explain
the Frame IT Method.

Fig. 1. Example problem

Concretely, the player
is presented a tree in a
forested 3D world and
is asked to determine its
height using a limited set
of gadgets; each of those
providing facts about
the world, e.g. acquirable
angles and lengths from
the player’s perspective
(cf. Fig. 1). The intended
solution is to frame this
problem in the language
of trigonometry as find-
ing the length of the

Frame IT: Detangling Knowledge Management from Game Design 175

opposite side given an angle and the adjacent side. Other solutions are also
possible, e.g. choosing an isosceles 45◦-45◦-90◦ triangle, for which both legs of
the triangle then have the same length.

Didactically, the game world is rigged so that the gadgets produce only facts
acquirable from the player’s perspective. For instance, they cannot climb the
tree, and hence the provided measuring tape gadget disallows measuring the
tree’s height. Instead, the user is expected to use scrolls1 to discover new facts
about the world in alternative ways. In the problem at hand, such a scroll on
trigonometry could provide the length of the opposite side of a right-angled
triangle given an angle and the length of an adjacent side – both of which are
acquirable from the player’s perspective.

Contribution. In this paper, we present the Frame IT Method as a new approach
to knowledge management in serious games and an implementation of this, the
UFrame IT system. We have implemented all system components and developed
APIs that allow an integration of the Mmt system with Unity, a state-of-the-art
game engine. With the new framework, building a serious game should be a mat-
ter of formalizing the background knowledge in OMDoc/Mmt and providing
the necessary gadgets and scrolls. We confirm this hypothesis by instantiating
UFrame IT into a very simple serious game: FrameWorld-1. The project is avail-
able on GitHub, we provide a demo video and a playable prototype; all of these
can be found at https://uframeit.github.io/.

Related Work. We limit ourselves to describing how our primary contribution,
the Frame IT Method, fits into the spectrum of existing methods of knowledge
management in (educational) games and tools. The concerns of knowledge man-
agement and actual game realization in source code can be completely inter-
mingled. This is especially the case in games that are built from the ground up.
Going noticeably further, we can find games employing dedicated physics engines
and frameworks for handling user objects. One noteworthy library of such small-
scale yet modular games for STEM education are the PhET Interactive Simula-
tions [PhET]. Continuing on the spectrum, we can identify domain-specific lan-
guages being increasingly used. A well-known example of this is GeoGebra [GG],
a graphics calculator employing a dedicated computer algebra system. The con-
cept of explicit knowledge integration can also be found in state-of-the-art game
engines. There, various forms of dataflow programming are used, for instance,
to construct graphs to specify shader materials, visual effects, animation transi-
tions, and even gameplay interactions. Finally, instead of DSLs we can also use
a dedicated MKM system (our approach), which gives us the most flexibility in
knowledge formalization.

Overview. In the next section, we mainly recap previous work on OMDoc/Mmt.
We then continue describing our approach in a progressive, threefold way.

1 The name “scroll” is meant to evoke the fact that the knowledge contained in it is
a valuable commodity in the game.

https://uframeit.github.io/

176 M. Kohlhase et al.

In Sect. 3, we first describe the Frame IT Method from a purely conceptional
viewpoint. Then, instantiating that concept, we present and discuss our imple-
mented framework UFrame IT in Sect. 4. Finally, in Sect. 5 we show our realization
of the running example within UFrame IT. In Sect. 6, we give a short conceptual
evaluation of the Frame IT Method and conclude the paper in Sect. 7.

Acknowledgements. The development of the Frame IT Method has profited from
discussions in the KWARC group, in particular from contributions by Mihnea
Iancu and Andrea Kohlhase. The implementation reported on in this paper
completely re-implements [RKM16] and extends it significantly.

2 Preliminaries

For the concept and implementation of the Frame IT Method, we require an
MKM system capable of storing, relating, and combining knowledge items in a
structured knowledge graph. To the best of our knowledge, besides the Mmt
system, the only other systems supporting this sufficiently are Hets [MML07]
and Specware [SPEC].

2.1 Learning Object Graphs as OMDoc/MMT Theories

In this work, we choose the OMDoc/Mmt language [RK13] as a fitting theoret-
ical framework together with its reference implementation in the Mmt system
[Rab13], which is a general foundation- and logic-independent framework for
creating formal systems [MR19]. Below, we briefly recap the language in a way
suited for our applications in this paper. Nonetheless, our methods are agnostic
on the specific choice of an MKM system as long as it supports the features
elaborated on below in some way. Indeed, we reflect the loose coupling of our
approach in the structure of this paper by having Sect. 3 detailing the Frame IT
Method without assumption of any implementation details.

Storing. OMDoc/Mmt organizes knowledge into theories and relates theories
via views. A theory is essentially a list of typed constant declarations of the
form c : E [= e] [# N]. Here, c is the (theory-local) identifier, the well-typed
expressions E and e the type and definiens, and N some notation. Expressions
are well-formed terms over all previous declarations in scope. By leveraging a
suitable foundation and logic as well as the Curry-Howard correspondence, we
can represent a wide range of formal knowledge including type, function, and
predicate symbols, axioms, theorems, judgements, and inference rules. Moreover,
for structuring purposes, theories can include (import) knowledge of other the-
ories. Since inclusions are a special case of views, we suggestively write S ↪→ T
for a theory S being included in a theory T .

Frame IT: Detangling Knowledge Management from Game Design 177

Relating. In general, two theories S and T can be related by a view v : S � T ,
which is a well-typed map mapping every declaration in S to a T -expression.
Views can be thought of as refinements from some abstract theory S to a more
concrete theory T . For instance, in our running example we could represent a
theory of triangles in S, a concrete game world set up by the player in T , and
utilize a view S � T to understand the tree and the shadow cast by it as forming
a triangle. In particular, as a result of well-typedness we get truth preservation
as a metatheorem: under a view, the images of axioms/theorems and proofs in
the domain theory are again theorems and proofs in the codomain theory. In
the context of our example, this enables instantiating abstract theorems, such as
trigonometric identities, in the concrete world, e.g. to compute the tree’s height
by only knowing the shadow’s (projected) width and the enclosed angle.

A theory graph is a multigraph emerging from a collection of theories and
views together. We will use theory graphs as learning object graphs in the
Frame IT context. They form the fundamental basis for the Frame IT Method as
they allow us to relate different learning objects with each other in a machine
understandable and logical way.

R S

T P

v

s

Fig. 2. Pushout

Combining. The final feature we require from an MKM
system for our purposes is to combine knowledge. In the
OMDoc/Mmt language, we can phrase this as computing
pushouts in the category of theories and views. In this cat-
egory, pushouts along inclusions always exist; see Fig. 2 for
the general scheme. Intuitively, the pushout P is formed as
the union of S and T such that they exactly share R. In the
Frame IT Method, we make extensive use of pushouts as a way
to translate abstract conclusions in T into the context of a concrete situation
in S. This is legitimized by first constructing the upper view v in Fig. 2, which
serves to frame parts of S as the abstract preconditions stored in R; hence the
name Frame IT.

2.2 Unity: A Multi-platform Game Engine

Since our goal is the development of a knowledge-based engine for serious math
games, we encounter the need for a correspondent graphics engine twice: once,
to create a system that can interoperate with the MKM system and, once, to
actually implement a game prototype using this framework. To cope with this, we
use the Unity game engine [Uni]. As an industry standard with a big community
– providing materials, assets and tutorials – it meets all our requirements. While
it is easy to learn the basics, it is yet a powerful and flexible tool, supporting
deployment to basically every platform, including VR and AR devices. It greatly
reduces the amount of effort to create virtual worlds by largely taking care of
rendering as part of its huge API to implement game interactions and interfaces.
In particular, it also offers an interface for communicating with a RESTful API,
which we exploit in our implementation to interact with the Mmt system.

178 M. Kohlhase et al.

3 The FrameIT Method

We propose that – at least for the domain of mathematical knowledge – serious
games be implemented with a dedicated MKM system in the background lever-
aged for storing, relating, and combining knowledge. In our concept, we exploit
features provided by the MKM system and expose them to the player by means
of appropriate user interfaces such that players can easily explore, play, com-
pute, and verify solutions to in-game puzzles. From the many conceivable kinds
of applications, in this work we focus on the task of framing puzzles. Such
puzzles challenge the user to frame concrete tasks in the 3D game world, such
as measuring a tree’s height, as abstract problems, such as finding an opposite’s
length in trigonometry.

Fig. 3. The Frame IT Method as a process – initializiation

3.1 Exemplary Playflow

The main contribution of the Frame IT Method is the division of labor between
game engine and MKM system, which offers several advantages regarding devel-
opment workflows and knowledge management. To get a better intuition of the
method, we will go through the process of solving our tree example step-by-step
showing what goes on in both subsystems (on the left and right of the Figs. 3
and 5 to 7). This also allows us to introduce the pertinent concepts by way of
our running example.

Initially in the game, the user is presented our word problem together with
some initial “background knowledge” they are allowed to apply throughout solv-
ing the puzzle (cf. Fig. 3). This background knowledge encompasses facts and
scrolls: Facts are typed and arbitrarily complex knowledge items. For example,
labelled 3D points marked in the world, such as A := (1, 0, 0), can be facts. They
can originate from multiple sources including level-dependent background knowl-
edge and in-game exploration by the player themself. In our example, the user
initially gets two point facts (namely F and G) marking the tree’s endpoints. As
is the case with all facts, they are kept synchronized with the knowledge side,

Frame IT: Detangling Knowledge Management from Game Design 179

which we can observe in Fig. 3 as declarations in the situation theory. This
theory is a designated, possibly level-dependent theory encompassing the world
knowledge provided or gained so far.

Scrolls complement the concept of facts via a mechanism to obtain new facts
from existing ones – much like mathematical theorems. The game provides the
user with the OppositeLen scroll (see Fig. 4), which operationalizes the mathe-
matical theorem the game wants to teach. Namely, it requires three point facts
a, b, c, the angle �cab, and the knowledge of �abc = 90◦ as input and in return
provides an identity about |bc|.

Fig. 4. The OppositeLen scroll

This way, we see that scrolls can
serve us as learning objects
in serious games. On the knowl-
edge side, we can represent
them as Problem/Solution the-
ory pairs (cf. Fig. 5), where
the problem theory encapsu-
lates the scroll’s universal vari-
ables and preconditions, and
the solution theory contains the
desired assertions (results) in
context of the former. In the
process below, we will see that
theorem application then becomes pushout computation in our sense.

Fig. 5. The Frame IT Method as a process – step 2

In the second step, the user explores the virtual world and experiments with
the given facts and scrolls. In some serious games, this happens off-band by the
player with pen and paper. By contrast, the Frame IT Method actively encourages
in-game exploration and even requires it to solve puzzles. World exploration can
involve marking new points and lines within the world, possibly guided by scrolls
like the OppositeLen scroll our player has been presented. Concretely, we imagine
they use the pointer gadget in the game UI to mark a point E on the ground
and the line gadget to mark a triangle through E and the tree’s endpoints.

180 M. Kohlhase et al.

Moreover, they measure �GEF = 45◦ and �EFG = 90◦ using some protractor
gadget. On the side of the MKM system in Fig. 5, we see that the collected facts
are communicated to the MKM system as soon as they are created: the situation
theory grows.

Fig. 6. The Frame IT Method as a process – step 3

In the third step, the player frames the in-game word problem in terms of
the OppositeLen scroll by mapping every scroll input to a game world object.
Here, the inputs for the point facts a, b, c, the enclosed angle �cab, and the right
angle �abc are mapped to the facts E, F , G, �GEF = 45◦, and �EFG = 90◦,
respectively. This assignment is communicated to the MKM system which estab-
lishes that it constitutes a view – we call it the application view (cf. Fig. 6).
Critically for our serious game use case, it establishes the precondition that �abc
is a right-angled triangle which justifies the application of the OppositeLen scroll.
If the player frames the game problem with an assignment that does not lead
to a view – e.g. if the ground the tree stands on is sloped and thus the angle
�EFG is different from 90◦ – the MKM system will reject the framing and can
pinpoint exactly where the error lies.

In the final step (cf. Fig. 7), the MKM system computes the pushout of the
application view over the inclusion of the problem into the solution theory. More-
over, it simplifies terms, computes values, and reports to the game engine that
the user has solved the puzzle. Concretely, success was determined by checking
whether the fact |FG| simplifies to a numeric value in context of the pushout
theory. This formal notion corresponds to the intuitive puzzle objective of finding
that length.

Having solved the puzzle, the player can now proceed to choose a new puzzle
to play. Importantly, the knowledge gained so far is not thrown away, but kept
for future use by the player. For example, in subsequent puzzles the player can
use the tree’s height as input for other scrolls. This effect is easily achieved by
updating the pointer to the situation theory to the computed pushout theory in
the course of the last step.

Frame IT: Detangling Knowledge Management from Game Design 181

Fig. 7. The Frame IT Method as a process – step 4

Playing in Practice. Note that we presented an idealistic chronological order for
simplicity only. In general, players might do several steps simultaneously, make
mistakes in framing, and repeat previous steps. Moreover, levels might come
bundled with multiple scroll libraries for the user to apply and choose from. All
in all, much in the spirit of a working mathematician, the tasks of exploration,
scroll application, and success are blurred in practice. See Sect. 5 for a realization
of a game that allows to do all of these.

3.2 Acquiring Facts and Using Scrolls

Facts are a central part of the Frame IT Method. In our running example, we
have so far only seen facts being acquired by marking/measuring things in the
3D world and by scroll application. Below, we give an extended, though non-
exhaustive, compilation of ways to acquire facts.

– Exploration of the 3D World: Players can explore the 3D world by means
of gadgets, which are a mechanism in the game UI to mark or measure
things of interest in the game world. Our implementation includes gadgets to
mark points, lines, angles, and distances among others. Upon usage, all these
gadgets generate facts.

– Scroll Application: Successful scroll application leads to one or more facts
being output.

– Discovery, Awards, and Trade: Serious games could be designed such
that a player can stumble upon and discover facts within the world, e.g. by
“talking” to non-player characters. Moreover, in more elaborate story designs,
levels may come with a prize fact to earn upon success, which is then required
for subsequent levels. Finally, assuming some kind of multiplayer mode, we
might also allow players to share and trade facts.

Common to all ways of obtaining facts is that upon acquisition they are syn-
chronized with the MKM system. Namely, it is supposed to serve as a single
source of truth for all knowledge items. We will discuss the implementation of
an appropriate framework next.

182 M. Kohlhase et al.

4 The UFrameIT Framework (Implementation)

We have implemented the Frame IT Method as a prototypical serious game frame-
work we call UFrame IT. Concretely, we extend the existing Mmt system with an
interface for incremental fact synchronization and implement a general infras-
tructure for fact management, gadgets, scrolls, and framing in the C#-based API
of the Unity game engine.

We have also instantiated the UFrame IT framework with a simple proof-of-
concept game FrameWorld-1, which we describe in the next section. We separate
the two concerns – even though they were developed together – to give an intu-
ition of the relative efforts.

Figure 8 shows the main parts of the UFrame IT framework: the environment,
the first-person player, the problem definition, as well as facts and scrolls at
work in FrameWorld-1. It also shows the Framing UI, which allows framing
and tool selection. We describe this in detail below. Lastly, in the middle we can
see the laser angle finder gadget at work after it has been selected from the
gadget bar at the bottom of the screen.

Fig. 8. Measuring facts about the world

4.1 Extending Unity with Facts, Scrolls, Gadgets, and Framing.

To incorporate the Frame IT Method we mainly need two things: gadgets and an
interactive user interface.

Frame IT: Detangling Knowledge Management from Game Design 183

Gadgets and Facts. On a technical level, gadgets consist of the following parts:

– To identify tools within the game, they need graphical representations.
Currently, we only use a planar icon for the UI, but in the future, we plan to
have 3D objects to show the gadgets in the virtual world.

– The activation of a gadget triggers gadget events that initialize or update
its internal state. These events are used for communication between the player
and the gadget.

– Gadgets give feedback to the player via gadget visual effects, e.g. for show-
ing assisting previews during fact creation.

– Finally, gadgets trigger fact events to initiate the creation of the appropriate
facts.

Facts are managed by Mmt but, just as gadgets, they have graphical compo-
nents: a Unity GameObject for interaction in the virtual world and an icon for
interaction in the UI.

In order to develop a new gadget, there are three main modules which have to
be extended: FactManager, FactSpawner and VisualEffectsManager. These mod-
ules cope with the different gadget parts described above. The FactManager is
aware of the currently active gadget and handles the gadget-specific inputs made
by the player. If necessary, it delegates work to the other modules. For instance,
when a gadget was used successfully, it updates the global fact list (by addi-
tion or removal) and triggers the FactSpawner to arrange for the facts’ in-game
visualization. Moreover, for visualizing assisting previews in the course of using
a gadget, the FactManager delegates and transmits the necessary data to the
VisualEffectsManager. All of the modules assume that suitable fact types and
gadgets producing instances of them have previously been established. Addi-
tionally, every fact type needs to be given a formalized counterpart on the Mmt
side. Hence, if a new gadget exceeds the current range of functionality, these
parts may also need adaptation.

Framing UI. On the lower edge of the screen, players can find the Gadget Tool-
bar, which allows access and activation of the respective gadgets. To interact
with the measured facts, the user can activate an overlay that freezes the under-
lying game and gives access to framing (cf. Fig. 8). Facts are depicted as small
tiles and are collected in the fact inventory on the top left. Complementarily,
available scrolls are shown on the right edge, of which the currently active scroll
is shown beneath the fact inventory. Players can then fill the scrolls with facts via
drag & drop. When the player clicks the “Magic” button, UFrame IT constructs
and transfers the application view to Mmt, which computes the pushout and,
after successful verification, hands back the resulting facts.

4.2 Communication

To allow Mmt to process information and give feedback according to the
Frame IT Method, we use a very fine-grained communication approach. The back-
end server provides a RESTful-interface with endpoints to add facts (one end-
point per fact type), generate views, request pushout computations, and to list

184 M. Kohlhase et al.

available scrolls. The corresponding payloads are transmitted in the JSON data
format. There are three different types of events that trigger communication
with the server:

– Game World Triggers: These automatically send requests during interac-
tion with the game world but are not used for our simple example.

– Fact List Modification: We report all changes to the fact list to the server.
Most prominently, these changes are triggered by gadgets. Each gadget-
generated fact entails sending an HTTP request including the fact details
to the server. On the Mmt side, the putative fact is first checked for validity,
then, upon success, stored as corresponding declaration(s) in the situation
theory, and lastly, its generated declaration identifier is sent back to Unity.

– Attempt of Scroll Application: When the player tries to apply a scroll,
a test for applicability is started: The mappings of the filled scroll are sent
to the server and packaged into a putative view by Mmt. The latter is then
run through the type checker, whose outcome is reported back to the game
engine. Upon success, the game engine requests the pushout computation wrt.
the Problem/Solution theory pair representing the current scroll and updates
the UI with the results.

5 FrameWorld-1: A Simple Serious Game in UFrameIT

FrameWorld-1 is a simple game instantiating the UFrame IT framework into a
proof-of-concept game that is inspired by our running example and the playflow
from Sect. 3.1. As most of the infrastructure comes from UFrame IT, the only
“game contents” we had to develop for FrameWorld-1 were the game world,
the problem-specific gadgets, a formalization of the background theory of 3D
geometry and trigonometry, and appropriate scrolls.

5.1 A Simple Virtual World

To build a game, we require a world for the player to explore. With Unity, we
simply added an object serving as ground together with the default first-person
camera asset for navigation. To simplify the process of applying basic geometry,
we kept the ground of the world completely flat for our first game. To bring the
scene to life, we populated the scene with assets that are freely available at the
Unity asset store.

Gadgets and Facts in FrameWorld-1 . Gadgets are the core way of interact-
ing with the world; for FrameWorld-1 we created three gadgets. The pointer
gadget marks a point in the game world and produces a new fact that
declares a labeled point. Upon gadget activation, objects in the environment
that shouldn’t be markable, e.g. the sky or existing points, are set to be
ignored. Moreover, snap zones are activated. Placing a point within these
zones positions it exactly at the center of the zone, which is necessary to
accurately mark the root and the top of the tree. The user can then relate

Frame IT: Detangling Knowledge Management from Game Design 185

two or three different points by measuring the distance between them with a
measuring tape gadget or the angle between them with the laser angle
finder. An angle is defined by the selection of three existing point objects.

Fig. 9. Measuring angles

Every single selection triggers an event that
updates the internal state of the gadget. After
the second point is selected, we preview the angle
by following the mouse pointer until the third
point has been fixed (cf. Fig. 9). Distance mea-
suring is implemented analogously, in this case,
with a preview line following the cursor. Impor-
tantly, we let the line only follow the cursor up to
the height of the player and prevent connection
with points which are higher than that. Even
though these three gadgets were developed for
FrameWorld-1, it is clear that they are generally useful for problems based on 3D
geometry and can thus be shared with subsequent games.

Fig. 10. Success

Playing the Game. The player automatically
obtains a set of scrolls by starting FrameWorld-1.
They learn about the puzzle they need to solve
by talking to the non-player character and by
subsequent exploration of the world by the
means of the Frame IT Method. Delivering the
height of the tree to the character talked to com-
pletes the game and triggers some visual feed-
back indicating success – the fireworks in Fig. 10.

5.2 Domain Knowledge and Scrolls

For FrameWorld-1, we have extended the MitM
Ontology [MitM] by seven theories for 3D geom-
etry and trigonometry, which can be found
in [UFM]. We decided on 3D instead of planar
geometry as the virtual world is 3D and a map-

ping to its 2D variant would engender an additional transformation step that
we would have to communicate to the player. Additionally, this allows us to
implement more advanced 3D geometry scrolls in the future.

For the scroll in the running example, we use the Problem/Solution theory
pair shown in Fig. 11. The problem theory defines the required abstract situation
of the scroll: a right-angled triangle, an angle, and the adjacent’s length must all
be known. In this context, the solution theory describes the scroll’s output: the
length of the opposite calculated via the tangent function. In the implementation
we recognize and identify this pair by means of the meta annotations present in
the problem theory.

186 M. Kohlhase et al.

Fig. 11. Mmt Problem/Solution theory pair (modified for readability)

Formalization in Detail. Recall that scrolls may represent theorems and in those
cases they should only be applicable on situations fulfilling the theorem’s precon-
ditions. Fortunately, we can leverage Mmt as an MKM system to enforce such
conditions. For example, our background theory provides us a separate distance
type for every real value of distance and two points. Using such a distance type
for distBC in the problem theory allows us to enforce that only correct distance
facts get mapped to it. For instance, a putative view mapping a distance fact for
|AC| or even |CB| to distBC would lead to a typing error. We follow a similar
approach for angle facts (cf. angleABC and angleBCA). Note that for angleBCA
we fix the only correct angle of 90.0◦ directly in the type. In contrast, for the
previous distance fact distBC and for angleABC, we used extra (unconstrained)
declarations that make the actual value being mapped as the distance and the
angle freely selectable. After all, these values are universally quantified over in
the theorem statement.

Taking a step back from these practical experiences, we return to a conceptual
level in the next section and evaluate the Frame IT Method.

6 Conceptual Evaluation

In the introduction, we have already given an account on how our approach fits
on the spectrum of knowledge management in serious games. Now we evaluate
it relative to two aspects in which we deviate from the other approaches.

First,we employ adedicatedmechanism for knowledgemanagement instead
of handling knowledge within source code. This is similar to GeoGebra, and in

Frame IT: Detangling Knowledge Management from Game Design 187

contrast to PhET Interactive Simulations which implements this concern in its
JavaScript source code. The key benefits of doing so are:

– Development Workflow Separation: Traditionally, the game developer
has to model complex problems within the game world, relying on frequent
communication with experts to ensure that all aspects are implemented cor-
rectly. By encapsulating the knowledge integration, we can reduce the proba-
bility of mistakes during the knowledge transfer between domain experts and
developers.

– Reusing Knowledge: As the (mathematical) background knowledge is inde-
pendent from the game implementation itself, it does not rely on any specific
programming language or game engine. This means that the knowledge for-
malization process only needs to happen once and different games can make
use of it. Indeed OMDoc/Mmt has been designed to support knowledge
re-use in practice.

– Reusing Game Design: This is dual to the point above. Given a sufficiently
declarative implementation API of the game engine side, the Frame IT Method
allows the game to be updated by simply adapting the theory graph.

Further advantages stem from using a very modular and expressive sys-
tem like an MKM system. Again, GeoGebra which uses a computer algebra
system heads into a similar direction as we do. On the other hand, approaches
reimplementing such business logic in source code, such as PhET simulations, are
arguably more flexible, but not necessarily modularly so. The following features
can profitably be imported from an MKM system:

– Dependency Handling: The MKM system can be used to track formalized
dependencies of game world objects that have been given a suitable coun-
terpart on that side. Thus, after knowledge integration, developers can often
avoid to reimplement these kinds of relation handling.

– Feedback: The MKM system can detect at which point a player’s solution
fails and to some extent also why. This allows to give feedback helping players
to spot and rectify problems while solving puzzles.

– Multiple Solutions: With careful implementation of puzzle objectives in
the MKM system, the game can be made agnostic to solution paths. Thus,
if there are multiple ways to complete the game, the user is free to do so by
default.

– Compound Problems/Solutions: By treating facts and puzzle objectives
in a uniform way, we can naturally construct compound problems asking for
facts to be obtained by subproblems. We have presented a simple example,
but it is not difficult to think of more advanced examples that require multiple
scroll applications.

Nonetheless, employing a separate MKM system also introduces potential
issues. In more complex games the sheer number of communication requests
might impact game performance. Additionally, explicit modeling of background
knowledge entails accounting for edge cases, which can be worked around in
traditional (code-the-behavior) approaches.

188 M. Kohlhase et al.

7 Conclusion

We have presented a novel application of MKM technology: knowledge manage-
ment in serious games, which we call the Frame IT Method. This principle alle-
viates the creation of games which, for instance, teach the application of simple
mathematical models in geometry by instantiating them in virtual worlds. To
realize the Frame IT Method, we have created an interface between the Mmt
system and Unity. This prototype implementation shows that combining a game
engine with an MKM system is not only possible but indeed useful: The explicit
representation of the underlying domain knowledge and the game world’s sit-
uation in the MKM system allow for checking the applicability of the model
on the MKM side. Consequently, our approach creates separated workflows and
encourages reuse of content.

We have instantiated the UFrame IT framework to obtain FrameWorld-1, a
simple serious game which challenges players to solve basic geometric problems
using “scrolls” derived from 3D geometry and trigonometry. In accordance with
our goals, our framework allowed to formalize knowledge in Mmt largely inde-
pendently from the remaining game development. Dually, we were also able to
implement the game itself generically by building user-interface “gadgets”, with-
out necessitating domain expertise in geometry.

References

[Det+11] Sebastian, D., et al.: From game design elements to gamefulness: defin-
ing “Gamification”. In: Proceedings of the 15th International Academic
MindTrek Conference. MindTrek 2011, pp. 9–15. ACM, New York (2011).
https://doi.org/10.1145/2181037.2181040

[GG] International GeoGebra Institute. Graphing Calculator - GeoGebra, 27 May
2020. https://www.geogebra.org

[MitM] MitM/core, 18 Jan 2020. https://gl.mathhub.info/MitM/core
[MML07] Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.

In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–
522. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 40

[MR19] Müller, D., Rabe, F.: Rapid prototyping formal systems in MMT: 5 case
studies. In: LFMTP 2019. Electronic Proceedings in Theoretical Computer
Science (EPTCS) (2019). https://kwarc.info/people/frabe/Research/MR
prototyping 19.pdf

[PhET] University of Colorado. PhET Interactive Simulations, 27 May 2020. https://
phet.colorado.edu

[Rab13] Rabe, F.: The MMT API: a generic MKM system. In: Carette, J., et al. (eds.)
Intelligent Computer Mathematics. Lecture Notes in Computer Science, vol.
7961, pp. 339-343. Springer, Heidelberg(2013). https://doi.org/10.1007/978-
3-642-39320-4

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. In: Information & Com-
putation 0.230, pp. 1–54 (2013). https://kwarc.info/frabe/Research/mmt.
pdf

https://doi.org/10.1145/2181037.2181040
https://www.geogebra.org
https://gl.mathhub.info/MitM/core
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10.1007/978-3-540-71209-1_40
https://kwarc.info/people/frabe/Research/MR_prototyping_19.pdf
https://kwarc.info/people/frabe/Research/MR_prototyping_19.pdf
https://phet.colorado.edu
https://phet.colorado.edu
https://doi.org/10.1007/978-3-642-39320-4
https://doi.org/10.1007/978-3-642-39320-4
https://kwarc.info/frabe/Research/mmt.pdf
https://kwarc.info/frabe/Research/mmt.pdf

Frame IT: Detangling Knowledge Management from Game Design 189

[RKM16] Rochau, D., Kohlhase, M., Müller, D.: FrameIT reloaded: serious math
games from modular math ontologies. In: Kohlhase, M., et al. (ed.) Intelli-
gent Computer Mathematics - Work in Progress Papers (2016). http://ceur-
ws.org/Vol-1785/W50.pdf

[SPEC] Kestrel Institute. The Specware System, 27 May 2020. https://www.kestrel.
edu/home/projects/specware/index.html

[UFM] Formalizations for UFrameIT FrameWorld, 19 March 2020. https://gl.
mathhub.info/FrameIT/FrameWorld

[Uni] Unity Technologies. Unity Realtime Development Platform. Version
2019.3.6, 19 March 2020. https://unity.com/

[Zyd05] Zyda, M.: From visual simulation to virtual reality to games. Computer
38(9), 25–32 (2005). https://doi.org/10.1109/MC.2005.297

http://ceur-ws.org/Vol-1785/W50.pdf
http://ceur-ws.org/Vol-1785/W50.pdf
https://www.kestrel.edu/home/projects/specware/index.html
https://www.kestrel.edu/home/projects/specware/index.html
https://gl.mathhub.info/FrameIT/FrameWorld
https://gl.mathhub.info/FrameIT/FrameWorld
https://unity.com/
https://doi.org/10.1109/MC.2005.297

Formalizing Graph Trail Properties in
Isabelle/HOL

Laura Kovács, Hanna Lachnitt(B), and Stefan Szeider

TU Wien, Vienna, Austria
{laura.kovacs,hanna.lachnitt,stefan.szeider}@tuwien.ac.at

Abstract. We describe a dataset expressing and proving properties
of graph trails, using Isabelle/HOL. We formalize the reasoning about
strictly increasing and decreasing trails, using weights over edges, and
prove lower bounds over the length of trails in weighted graphs. We do
so by extending the graph theory library of Isabelle/HOL with an algo-
rithm computing the length of a longest strictly decreasing graph trail
starting from a vertex for a given weight distribution, and prove that
any decreasing trail is also an increasing one.

Keywords: Weighted graph · Increasing/decreasing trails ·
Isabelle/HOL · Verified theory formalization

1 Introduction

The problem of finding a longest trail with strictly increasing or strictly decreas-
ing weights in an edge-weighted graph is an interesting graph theoretic prob-
lem [3,7,8,14], with potential applications to scheduling and cost distribution
in traffic planning and routing [5]. In this paper, we formalize and automate
the reasoning about strictly increasing and strictly decreasing trail properties by
developing an extendable flexible library in the proof assistant Isabelle/HOL [11].

As a motivating example consider the following (undirected) graph K4, where
each edge is annotated with a different integer-valued weight ranging from
1, . . . , 6:

v1 v2

v3 v4

1

3

6 5
4

2

Fig. 1. Example graph K4

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 190–205, 2020.
https://doi.org/10.1007/978-3-030-53518-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_12

Formalizing Graph Trail Properties in Isabelle/HOL 191

When considering K4, the question we address in this paper is whether K4

has a strictly decreasing trail of length k ≥ 1. A trail is a sequence of distinct
edges (e1, . . . , ek), ei ∈ E such that there exists a corresponding sequence of
vertices (v0, ..., vk) where ei = vi−1vi. A strictly-ordered trail is a trail where the
edge weights of (e1, . . . , ek) are either strictly increasing or strictly decreasing.
Our work provides a formally verified algorithm computing such strictly-ordered
trails. Note that there is a decreasing trail in K4 starting at vertex v3, with
trail length 3; namely (v3v2; v2v4; v4v3) is such a trail, with each edge in the
trail having a higher weight than its consecutive edge in the trail. Similarly,
K4 has decreasing trails of length 3 starting from v1, v2, and v4 respectively.
A natural question to ask, which we address in this paper, is whether it is
possible to construct a graph such that the constructed graph has 4 vertices and
5 edges, and no vertex is the starting node of a trail of length 3? We answer
this question negatively, in an even more general setting, not restricted to 4
vertices and 5 edges. Similarly to the theoretical results of [8], we show that,
given a graph G with n vertices and q edges, there is always a strictly decreasing
trail of length at least 2 · � q

n�. While such a graph theoretical result has already
been announced [8], in this paper we formalize the results in Isabelle/HOL and
construct a Isabelle/HOL-verified algorithm computing strictly decreasing trails
of length k, whenever such trails exist.

Let us note that proving that a graph G with n vertices and q edges has/does
not have decreasing trails is possible for small n, using automated reasoning
engines such as Vampire [9] and Z3 [6]. One can restrict the weights to the
integers 1, ..., q and since q ≤ (

n
2

)
there is a finite number of possibilities for

each n. Nevertheless, the limit of such an undertaking is reached soon. On our
machine1 even for n = 7, both Vampire and Z3 fail proving the existence of
strictly decreasing trails, using a 1 hour time limit. This is due to the fact
that every combination of edge weights and starting nodes is tested to be a
solution. Thus, the provers are not able to contribute to the process of finding
an effective proof of the statement. Even for relatively small numbers n, our
experiments show that state-of-the-art automated provers are not able to prove
whether weighted graphs have a strictly decreasing trail of a certain length.

We also note that this limitation goes beyond automated provers. In the
Isabelle proof assistant, proving that a complete graph with 3 vertices, i.e. K3,
will always contain a strictly decreasing trail of length 3 is quite exhaustive,
as it requires reasoning about 3! = 6 possibilities for a distribution of a weight
function w and then manually constructing concrete trails:

w(v1, v2) = 2 ∧ w(v2, v3) = 1 ∧ w(v3, v1) = 3
−→ incTrail K3 w[(v3, v2), (v2, v1), (v1, v3)]

Based on such limitations of automative and interactive provers, in this paper
we aim at formalizing and proving existence of trails of length n, where n ≥ 1 is a
symbolic constant. As such, proving for example that graphs have trails of length
4, for a concrete n, become instances of our approach. To this end, we build upon

1 Standard laptop with 1.7 GHz Dual-Core Intel Core i5 and 8 GB 1600 MHz memory.

192 L. Kovács et al.

existing works in this area. In particular, the first to raise the question of the
minimum length of strictly increasing trails of arbitrary graphs were Chvátal
and Komlós [4]. Subsequently, Graham and Kletman [8] proved that the lower
bound of the length of increasing trails is given by 2 · � q

n�, as also mentioned
above. In our work, we formalize and verify such results in Isabelle/HOL. Yet,
our work is not a straightforward adaptation and formalization of Graham and
Kletman’s proof [8]. Rather, we focus on decreasing trails instead of increasing
trails and give an algorithm computing longest decreasing trails of a given graph
(Algorithm 1). By formalizing Algorithm 1 in Isabelle/HOL, we also formally
verify the correctness of the trails computed by our approach. Moreover, we prove
that any strictly decreasing trail is also an strictly increasing one, allowing this
way to use our formalization in Isabelle/HOL also to formalize results of Graham
and Kletman [8].

Contributions. This paper brings the following contributions.

(1) We formalize strictly increasing trails and provide basic lemmas about their
properties. We improve results of [8] by giving a precise bound on the
increase of trail length.

(2) We formalize strictly decreasing trails, in addition to the increasing trail
setting of [8]. We prove the duality between strictly increasing and strictly
decreasing trails, that is, any such decreasing trail is an increasing one, and
vice versa. Thanks to these extensions, unlike [8], we give a constructive
proof of the existence of strictly ordered trails (Lemma 1).

(3) We design an algorithm computing longest ordered trails (Algorithm 1), and
formally verify its correctness in Isabelle/HOL. We extract our algorithm
to Haskell program code using Isabelle’s program extraction tool. Thus, we
obtain a fully verified algorithm to compute the length of strictly-ordered
trails in any given graph and weight distribution.

(4) We verify the lower bound on the minimum length of strictly decreasing
trails of arbitrary graphs, and of complete graphs in particular.

(5) We build upon the Graph-Theory library by Noschinski [12], that is part of
the Archive of Formal Proofs (AFP) and already includes many results on
walks and general properties of graphs. We introduce the digital dataset v
formalizing properties of graph trails. Our dataset consists of ∼2000 lines of
Isabelle code and it took about one month for one person to finish. As far as
we know this is the first formalization of ordered trails in a proof assistant.

This paper was generated from Isabelle/HOL source code using Isabelle’s
document preparation tool and is therefore fully verified. The source code is
available online at https://github.com/Lachnitt/Ordered Trail. The rest of the
paper is organized as follows. Section 2 recalls basic terminology and properties
from graph theory. We prove lower bounds on strictly increasing/decreasing
trails in Sect. 3. We describe our Isabelle/HOL formalization in Isabelle/HOL
in Sect. 4. We discuss further directions in Sect. 5 and conclude our paper with
Sect. 6.

https://github.com/Lachnitt/Ordered_Trail

Formalizing Graph Trail Properties in Isabelle/HOL 193

2 Preliminaries

We briefly recapitulate the basic notions of graph theory. A graph G = (V,E)
consists of a set V of vertices and a set E ⊆ V ×V of edges. A graph is undirected
if (v1, v2) ∈ E implies that also (v2, v1) ∈ E. A graph is complete if every pair
of vertices is connected by an edge. A graph is loopfree or simple if there are no
edges (x, x) ∈ E and finite if the number of vertices |V | is finite. Finally, we call
a graph G′ = (V ′, E′) a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

If a graph is equipped with a weight function w : E → R that maps edges
to real numbers, it is called an edge-weighted graph. In the following, whenever
a graph is mentioned it is implicitly assumed that this graph comes equipped
with a weight function. A vertex labelling is a function L : V → N.

A trail of length k in a graph G = (V,E) is a sequence (e1, . . . , ek), ei ∈ E,
of distinct edges such that there exists a corresponding sequence of vertices
(v0, ..., vk) where ei = vi−1vi. A strictly decreasing trail in an edge-weighted
graph G = (V,E) with weight function w is a trail such that w(ei) > w(ei+1).
Likewise, a strictly increasing trail is a trail such that w(ei) < w(ei+1). A trail
is strictly-ordered if it is strictly increasing or strictly decreasing.

We will denote the length of a longest strictly increasing trail with Pi(w,G).
Likewise we will denote the length of a longest strictly decreasing trail with
Pd(w,G). In any undirected graph, it holds that Pi(w,G) = Pd(w,G), a result
that we will formally verify in Sect. 4.2.

Let fi(n) = minn Pi(w,Kn) denote the minimum length of an strictly
increasing trail that must exist in the complete graph with n vertices. Like-
wise, fd(n) = minn Pd(w,Kn) in the case that we consider strictly decreasing
trails.

3 Lower Bounds on Increasing and Decreasing Trails in
Weighted Graphs

The proof introduced in the following is based on similar ideas as in [8]. However,
we diverge from [8] in several aspects. Firstly, we consider strictly decreasing
instead of strictly increasing trails, reducing the complexity of the automated
proof (see Sect. 4). Moreover, we add tighter bounds than necessary to give a
fully constructive proof in terms of an algorithm for computing the length of
these trails (see Sect. 4.3). We discuss this further at the end of the section.

We start by introducing the notion of a weighted subgraph and then we built
on that by specifying a family of labelling functions:

Definition 1 (Weighted Subgraph). Let G = (V,E) be a graph with weight
function w : E → {1, . . . , q} where |E| = q. For each i ∈ {0, ..., q} define a
weighted subgraph Gi = (V,Ei) such that e ∈ Ei iff w(e) ∈ {1, ..., i}. That is, Gi

contains only edges labelled with weights ≤ i.

Definition 2 (Labelling Function). For each Gi = (V,Ei), n = |V | we
define Li : V {1, . . . , n(n−1)

2 } a labelling function such that Li(v) is the length of
a longest strictly decreasing trail starting at vertex v using only edges in Ei.

194 L. Kovács et al.

In Fig. 2 the example graph from Fig. 1 is revisited to illustrate these definitions.
We need to prove the following property.

v1 v2

v3 v4

1

3 4
5

2

Decreasing trails from v3 are:
v3 − v4,

v3 − v1 − v2,
v3 − v2 − v1,

v3 − v2 − v4 − v3
Therefore, L5(v3) = 3.

Decreasing trails from v1 are:
v1 − v2

v1 − v3 − v4
Therefore, L5(v1) = 2.

Fig. 2. Graph G5 with labelling function L5

Lemma 1. If i < q, then
∑

v∈V Li+1(v) ≥ ∑
v∈V Li(v) + 2.

Proof. Let e be the edge labelled with i + 1 and denote its endpoints with u1

and u2. It holds that Ei ∪ {e} = Ei+1, therefore the graph Gi+1 is Gi with the
additional edge e. As w(e′) < w(e), for all e′ ∈ Ei we have Li+1(v) = Li(v) for all
v ∈ V with u1 �= v, u2 �= v. It also holds that Li+1(u1) = max(Li(u2)+1, Li(u1))
because either that longest trail from u1 can be prolonged with edge e (i + 1
will be greater than the weight of the first edge in this trail by construction of
Li+1) or there is already a longer trail starting from u1 not using e. We derive
Li+1(u2) = max(Li(u1) + 1, Li(u2)) based on a similar reasoning. See Fig. 3 for
an illustration.

Note that Li+1(v) = Li(v) for v ∈ V \ {u1, u2}, because no edge incident
to these vertices was added and a trail starting from them cannot be prolonged
since the new edge has bigger weight than any edge in such a trail.

If L(u1) = L(u2), then Li+1(u1) = Li(u1) + 1 and Li+1(u2) = Li(u2) + 1
and thus the sum increases exactly by 2. If L(u1) > L(u2) then Li+1(u2) =
Li(u1) + 1 ≥ Li(u2) + 2, otherwise Li+1(u1) = Li(u2) + 1 ≥ Li(u1) + 2. Thus,

∑

v∈V

Li+1(v) =
∑

v∈(V −{u1,u2})
Li+1(v) + Li+1(u1) + Li+1(u2)

≥
∑

v∈(V −{u1,u2})
Li+1(v) + Li(u1) + Li(u2) + 2

=
∑

v∈V

Li(v) + 2.

�

Formalizing Graph Trail Properties in Isabelle/HOL 195

Situation before adding edge e:
Li(u1) Li(u2)

Case 1: Li(u1) = Li(u2):
Li+1(u1) + 1 Li+1(u2) + 1

i+ 1

Case 2: Li(u1) > Li(u2):
Li+1(u2) + 1 Li+1(u2)

i+ 1

Case 3: Li(u1) < Li(u2):
Li+1(u1) Li+1(u1) + 1

i+ 1

Fig. 3. Case distinction when adding edge e in Lemma 1

Note that the proof of Lemma 1 is constructive, yielding the Algorithm 1 for
computing longest strictly decreasing trails. Function findEndpoints searches
for an edge in a graph G by its weight i and returns both endpoints. Function
findMax returns the maximum value of the array L.

Algorithm 1: Find Longest Strictly Decreasing Trail
for v ∈ V do

L(v) := 0
end
for i = 1; i < |E|; i + + do

(u, v) = findEndpoints(G, i);
temp = L(u);
L(u) = max(L(v) + 1, L(u)) ;
L(v) = max(temp + 1, L(v)) ;

end
return findMax(L);

Lemma 2.
∑

v∈V Lq(v) ≥ 2q.

Proof. We proceed by induction, using the property
∑

v∈V Li+1(v) ≥∑
v∈V Li(v)+2 from Lemma 1. For the induction base note that

∑
v∈V L0(v) = 0

because G0 does not contain any edges and thus no vertex has a strictly decreas-
ing trail of length greater than 0. �
We next prove the lower bound on the length of longest strictly decreasing trails.

196 L. Kovács et al.

Theorem 1. Let G = (V,E) be an undirected edge-weighted graph such that
|V | = n and |E| = q. Let w : E → {1, . . . , q} be a weight function assuming
different weights are mapped to to different edges. Then, Pd(w,G) ≥ 2 · � q

n� i.e.,
there exists a strictly decreasing trail of length 2 · � q

n�.
Proof. Assume that no vertex is a starting point of a trail of length at least 2·� q

n�,
that is Lq(v) < 2 · � q

n�, for all v ∈ V . Then,
∑

v∈V Lq(v) < 2 · � q
n�n ≤ 2 · q. But

this is a contradiction to Lemma 2 that postulates that the sum of the length
of all longest strictly decreasing trails

∑
v∈V Lq(v) is greater than 2 · q. Hence,

there has to be at least one vertex with a strictly decreasing trail that is longer
than 2 · � q

n� in Gq. This trail contains a subtrail of length 2 · � q
n�. Since Eq = E

it follows that Gq = G, which concludes the proof. �
Based on Theorem 1, we get the following results.

Corollary 1. It holds that Pi(w,G) ≥ 2 · � q
n� since when reversing a strictly

decreasing trail one obtains a strictly increasing one. In this case, define Li(v)
as the length of a longest strictly increasing trail ending at v in Gi. �
Corollary 2. Let G be as in Theorem 1 and additionally assume that G is
complete. Then, there exists a trail of length at least n − 1, i.e., fi(n) = fd(n) ≥
n − 1. �

In [8] the authors present a non-constructive proof. As in Lemma 1 they
argue that the sum of the lengths of all increasing trails is at least 2. Thus, they
overestimate the increase. We however, use the exact increase therefore making
the proof constructive and obtaining Algorithm 1.

4 Formalization of Trail Properties in Isabelle/HOL

4.1 Graph Theory in the Archive of Formal Proofs

To increase the reusability of our library we build upon the Graph-Theory library
by Noschinski [12]. Graphs are represented as records consisting of vertices and
edges that can be accessed using the selectors pverts and parcs. We recall the
definition of the type pair-pre-digraph:

record ′a pair-pre-digraph = pverts :: ′a set parcs :: ′a rel

Now restrictions upon the two sets and new features can be introduced using
locales. Locales are Isabelle’s way to deal with parameterized theories [1]. Con-
sider for example pair-wf-digraph. The endpoints of an edge can be accessed
using the functions fst and snd. Therefore, conditions arc-fst-in-verts and arc-
snd-in-verts assert that both endpoints of an edge are vertices. Using so-called
sublocales a variety of other graphs are defined.

Formalizing Graph Trail Properties in Isabelle/HOL 197

locale pair-wf -digraph = pair-pre-digraph +
assumes arc-fst-in-verts :

∧
e. e ∈ parcs G =⇒ fst e ∈ pverts G

assumes arc-snd-in-verts :
∧

e. e ∈ parcs G =⇒ snd e ∈ pverts G

An object of type ′b awalk is defined in Graph-Theory.Arc-Walk as a list of
edges. Additionally, the definition awalk imposes that both endpoints of a walk
are vertices of the graph, all elements of the walk are edges and two subsequent
edges share a common vertex.

type-synonym ′b awalk = ′b list

definition awalk :: ′a ⇒ ′b awalk ⇒ ′a ⇒ bool
awalk u p v ≡ u ∈ verts G ∧ set p ⊆ arcs G ∧ cas u p v

We also reuse the type synonym weight-fun introduced in Weighted-Graph.

type-synonym ′b weight-fun = ′b ⇒ real

Finally, there is an useful definition capturing the notion of a complete graph,
namely complete-digraph.

4.2 Increasing and Decreasing Trails in Weighted Graphs

In our work we extend the graph theory framework from Sect. 4.1 with new
features enabling reasoning about ordered trails. To this end, a trail is defined
as a list of edges. We will only consider strictly increasing trails on graphs without
parallel edges. For this we require the graph to be of type pair-pre-digraph, as
introduced in Sect. 4.1.

Two different definitions are given in our formalization. Function incTrail
can be used without specifying the first and last vertex of the trail whereas
incTrail2 uses more of Graph-Theory ′s predefined features. Moreover, making
use of monotonicity incTrail only requires to check if one edge’s weight is smaller
than its successors’ while incTrail2 checks if the weight is smaller than the one
of all subsequent edges in the sequence, i.e. if the list is sorted. The equivalence
between the two notions is shown in the following.

fun incTrail :: ′a pair-pre-digraph ⇒ (′a × ′a) weight-fun ⇒ (′a × ′a) list ⇒ bool
where
incTrail g w [] = True |
incTrail g w [e1] = (e1 ∈ parcs g) |
incTrail g w (e1#e2#es) = (if w e1 < w e2 ∧ e1 ∈ parcs g ∧ snd e1 = fst e2

then incTrail g w (e2#es) else False)

definition (in pair-pre-digraph) incTrail2 where
incTrail2 w es u v ≡ sorted-wrt (λ e1 e2. w e1 < w e2) es ∧ (es = [] ∨ awalk u es v)

fun decTrail :: ′a pair-pre-digraph ⇒ (′a × ′a) weight-fun ⇒ (′a × ′a) list ⇒ bool
where
decTrail g w [] = True |

198 L. Kovács et al.

decTrail g w [e1] = (e1 ∈ parcs g) |
decTrail g w (e1#e2#es) = (if w e1 > w e2 ∧ e1 ∈ parcs g ∧ snd e1 = fst e2

then decTrail g w (e2#es) else False)

definition (in pair-pre-digraph) decTrail2 where
decTrail2 w es u v ≡ sorted-wrt (λ e1 e2. w e1 > w e2) es ∧ (es = [] ∨ awalk u es v)

Defining trails as lists in Isabelle has many advantages including using pre-
defined list operators, e.g., drop. Thus, we can show one result that will be
constantly needed in the following, that is, that any subtrail of an ordered trail
is an ordered trail itself.

lemma incTrail-subtrail:
assumes incTrail g w es
shows incTrail g w (drop k es)

lemma decTrail-subtrail:
assumes decTrail g w es
shows decTrail g w (drop k es)

In Isabelle we then show the equivalence between the two definitions decTrail
and decTrail2 of strictly decreasing trails. Similarly, we also show the equivalence
between the definition incTrail and incTrail2 of strictly increasing trails.

lemma (in pair-wf -digraph) decTrail-is-dec-walk:
shows decTrail G w es ←→ decTrail2 w es (fst (hd es)) (snd (last es))

lemma (in pair-wf -digraph) incTrail-is-inc-walk:
shows incTrail G w es ←→ incTrail2 w es (fst (hd es)) (snd (last es))

Any strictly decreasing trail (e1, . . . , en) can also be seen as a strictly increas-
ing trail (en, ..., e1) if the graph considered is undirected. To this end, we make
use of the locale pair-sym-digraph that captures the idea of symmetric arcs.
However, it is also necessary to assume that the weight function assigns the
same weight to edge (vi, vj) as to (vj , vi). This assumption is therefore added to
decTrail-eq-rev-incTrail and incTrail-eq-rev-decTrail.

lemma (in pair-sym-digraph) decTrail-eq-rev-incTrail:
assumes ∀ v1 v2. w (v1, v2) = w(v2, v1)
shows decTrail G w es ←→ incTrail G w (rev (map (λ(v1, v2). (v2, v1)) es))

lemma (in pair-sym-digraph) incTrail-eq-rev-decTrail:
assumes ∀ v1 v2. w (v1, v2) = w(v2, v1)
shows incTrail G w es ←→ decTrail G w (rev (map (λ(v1, v2). (v2, v1)) es))

4.3 Weighted Graphs

We add the locale weighted-pair-graph on top of the locale pair-graph introduced
in Graph-Theory. A pair-graph is a finite, loop free and symmetric graph. We do

Formalizing Graph Trail Properties in Isabelle/HOL 199

not restrict the types of vertices and edges but impose the condition that they
have to be a linear order.

Furthermore, all weights have to be integers between 0 and � q
2� where 0 is

used as a special value to indicate that there is no edge at that position. Since the
range of the weight function is in the reals, the set of natural numbers {1,..,card
(parcs G) div 2} has to be casted into a set of reals. This is realized by taking
the image of the function real that casts a natural number to a real.

locale weighted-pair-graph = pair-graph (G:: (′a::linorder) pair-pre-digraph) forG +
fixes w :: (′a × ′a) weight-fun
assumes dom : e ∈ parcs G −→ w e ∈ real ‘ {1..card (parcs G) div 2}

and vert-ge : card (pverts G) ≥ 1

We introduce some useful abbreviations, according to the ones in Sect. 2

abbreviation (in weighted-pair-graph) q ≡ card (parcs G)
abbreviation (in weighted-pair-graph) n ≡ card (pverts G)
abbreviation (in weighted-pair-graph) W ≡ {1..q div 2}

Note an important difference between Sect. 3 and our formalization. Although
a weighted-pair-graph is symmetric, the edge set contains both “directions” of an
edge, i.e., (v1, v2) and (v2, v1) are both in parcs G. Thus, the maximum number
of edges (in the case that the graph is complete) is n · (n − 1) and not n·(n−1)

2 .
Another consequence is that the number q of edges is always even.

lemma (in weighted-pair-graph) max-arcs:
shows card (parcs G) ≤ n ∗ (n − 1)

lemma (in weighted-pair-graph) even-arcs:
shows even q

The below sublocale distinct-weighted-pair-graph refines weighted-pair-graph.
The condition zero fixes the meaning of 0. The weight function is defined on the
set of all vertices but since self loops are not allowed; we use 0 as a special value
to indicate the unavailability of the edge. The second condition distinct enforces
that no two edges can have the same weight. There are some exceptions however
captured in the statement (v1 = u2 ∧ v2 = u1)∨(v1 = u1 ∧ v2 = u2). Firstly,
(v1, v2) should have the same weight as (v2, v1). Secondly, w(v1, v2) has the same
value as w(v1, v2). Note that both edges being self loops resulting in them both
having weight 0 is prohibited by condition zero. Our decision to separate these
two conditions from the ones in weighted-pair-graph instead of making one locale
of its own is two-fold: On the one hand, there are scenarios where distinctiveness
is not wished for. On the other hand, 0 might not be available as a special value.
locale distinct-weighted-pair-graph = weighted-pair-graph +
assumes zero : ∀ v1 v2. (v1, v2) /∈ parcs G ←→ w (v1, v2) = 0

and distinct : ∀ (v1, v2) ∈ parcs G. ∀ (u1, u2) ∈ parcs G.
((v1 = u2 ∧ v2 = u1) ∨ (v1 = u1 ∧ v2 = u2)) ←→ w (v1, v2) = w (u1, u2)

200 L. Kovács et al.

One important step in our formalization is to show that the weight function
is surjective. However, having two elements of the domain (edges) being mapped
to the same element of the codomain (weight) makes the proof complicated. We
therefore first prove that the weight function is surjective on a restricted set
of edges. Here we use the fact that there is a linear order on vertices by only
considering edges were the first endpoint is bigger than the second.

Then, the surjectivity of w is relatively simple to show. Note that we could
also have assumed surjectivity in distinct-weighted-pair-graph and shown that
distinctiveness follows from it. However, distinctiveness is the more natural
assumption that is more likely to appear in any application of ordered trails.

lemma (in distinct-weighted-pair-graph) restricted-weight-fun-surjective:

∀k ∈ W. ∃(v1, v2) ∈ {(p1, p2). (p1, p2) ∈ parcs G ∧ p2 < p1}. w (v1, v2) = k

lemma (in distinct-weighted-pair-graph) weight-fun-surjective:

shows ∀k ∈ W. ∃(v1, v2) ∈ parcs G. w (v1, v2) = k

4.4 Computing a Longest Ordered Trail

We next formally verify Algorithm 1 and compute longest ordered trails. To this
end, we introduce the function findEdge to find an edge in a list of edges by its
weight.

fun findEdge :: (′a × ′a) weight-fun ⇒ (′a × ′a) list ⇒ real ⇒ (′a × ′a) where

findEdge f [] k = undefined |
findEdge f (e#es) k = (if f e = k then e else findEdge f es k)

Function findEdge will correctly return the edge whose weight is k. We do
not care in which order the endpoints are found, i.e. whether (v1, v2) or (v2, v1)
is returned.

lemma (in distinct-weighted-pair-graph) findEdge-success:
assumes k ∈ W and w (v1, v2) = k and (parcs G) �= {}
shows (findEdge w (set-to-list (parcs G)) k) = (v1, v2)

∨ (findEdge w (set-to-list (parcs G)) k) = (v2, v1)

We translate the notion of a labelling function Li(v) (see Definition 2) into
Isabelle. Function getL G w, in short for get label, returns the length of the
longest strictly decreasing path starting at vertex v. In contrast to Definition 2
subgraphs are treated here implicitly. Intuitively, this can be seen as adding
edges to an empty graph in order of their weight.

fun getL :: (′a::linorder) pair-pre-digraph ⇒ (′a × ′a) weight-fun

⇒ nat ⇒ ′a ⇒ nat where

getL g w 0 v = 0 |
getL g w (Suc i) v = (let (v1, v2) = (findEdge w (set-to-list (arcs g)) (Suc i)) in

(if v = v1 then max ((getL g w i v2) + 1) (getL g w i v) else

(if v = v2 then max ((getL g w i v1) + 1) (getL g w i v) else getL g w i v)))

Formalizing Graph Trail Properties in Isabelle/HOL 201

To add all edges to the graph, set i = |E|. Recall that card (parcs g) = 2∗|E|,
as every edge appears twice. Then, iterate over all vertices and give back the
maximum length which is found by using getL G w. Since getL G w can also be
used to get a longest strictly increasing trail ending at vertex v the algorithm is
not restricted to strictly decreasing trails.

definition getLongestTrail ::

(′a::linorder) pair-pre-digraph ⇒ (′a × ′a) weight-fun ⇒ nat where

getLongestTrail g w =

Max (set [(getL g w (card (parcs g) div 2) v) . v < − sorted-list-of -set (pverts g)])

Exporting the algorithm into Haskell code results in a fully verified program
to find a longest strictly decreasing or strictly increasing trail.

export-code getLongestTrail in Haskell module-name LongestTrail

Using an induction proof and extensive case distinction, the correctness
of Algorithm 1 is then shown in our formalization, by proving the following
theorem:

theorem (in distinct-weighted-pair-graph) correctness:
assumes ∃ v ∈ (pverts G). getL G w (q div 2) v = k
shows ∃ xs. decTrail G w xs ∧ length xs = k

4.5 Minimum Length of Ordered Trails

The algorithm introduced in Sect. 4.4 is already useful on its own. Additionally,
it can be used to verify the lower bound on the minimum length of a strictly
decreasing trail Pd(w,G) ≥ 2 · � q

n�.
To this end, Lemma 1 from Sect. 3 is translated into Isabelle as the lemma

minimal-increase-one-step. The proof is similar to its counterpart, also using a
case distinction. Lemma 2 is subsequently proved, here named minimal-increase-
total.

lemma (in distinct-weighted-pair-graph) minimal-increase-one-step:
assumes k + 1 ∈ W
shows

(
∑

v ∈ pverts G. getL G w (k+1) v) ≥ (
∑

v ∈ pverts G. getL G w k v) + 2

lemma (in distinct-weighted-pair-graph) minimal-increase-total:
shows (

∑
v ∈ pverts G. getL G w (q div 2) v) ≥ q

From minimal-increase-total we have that the sum of all labels after q div
2 steps is greater than q. Now assume that all labels are smaller than q div
n. Because we have n vertices, this leads to a contradiction, which proves
algo-result-min.

202 L. Kovács et al.

lemma (in distinct-weighted-pair-graph) algo-result-min:
shows (∃ v ∈ pverts G. getL G w (q div 2) v ≥ q div n)

Finally, using lemma algo-result-min together with the correctness theorem
of Sect. 4.4, we prove the lower bound of 2 · � q

n� over the length of a longest
strictly decreasing trail. This general approach could also be used to extend our
formalization and prove existence of other trails. For example, assume that some
restrictions on the graph give raise to the existence of a trail of length m ≥ 2·� q

n�.
Then, it is only necessary to show that our algorithm can find this trail.

theorem (in distinct-weighted-pair-graph) dec-trail-exists:
shows ∃ es. decTrail G w es ∧ length es = q div n

theorem (in distinct-weighted-pair-graph) inc-trail-exists:
shows ∃ es. incTrail G w es ∧ length es = q div n

Corollary 1 is translated into dec-trail-exists-complete. The proof first argues
that the number of edges is n · (n − 1) by restricting its domain as done already
in Sect. 4.3.

lemma (in distinct-weighted-pair-graph) dec-trail-exists-complete:
assumes complete-digraph n G
shows ∃ es. decTrail G w es ∧ length es = n − 1

4.6 Example Graph K4

We return to the example graph from Fig. 1 and show that our results from
Sects. 4.2–4.5 can be used to prove existence of trails of length k, in particular
k = 3 in K4. Defining the graph and the weight function separately, we use
natural numbers as vertices.

abbreviation ExampleGraph:: nat pair-pre-digraph where

ExampleGraph ≡ (|
pverts = {1, 2, 3, (4::nat)},

parcs = {(v1, v2). v1 ∈ {1, 2, 3, (4::nat)} ∧ v2 ∈ {1, 2, 3, (4::nat)} ∧ v1 �= v2}
|)

abbreviation ExampleGraphWeightFunction :: (nat × nat) weight-fun where

ExampleGraphWeightFunction ≡ (λ(v1, v2).

(if (v1 = 1 ∧ v2 = 2) ∨ (v1 = 2 ∧ v2 = 1) then 1 else

(if (v1 = 1 ∧ v2 = 3) ∨ (v1 = 3 ∧ v2 = 1) then 3 else

(if (v1 = 1 ∧ v2 = 4) ∨ (v1 = 4 ∧ v2 = 1) then 6 else

(if (v1 = 2 ∧ v2 = 3) ∨ (v1 = 3 ∧ v2 = 2) then 5 else

(if (v1 = 2 ∧ v2 = 4) ∨ (v1 = 4 ∧ v2 = 2) then 4 else

(if (v1 = 3 ∧ v2 = 4) ∨ (v1 = 4 ∧ v2 = 3) then 2 else 0)))))))

We show that the graph K4 of Fig. 1 satisfies the conditions that were imposed
in distinct-weighted-pair-graph and its parent locale, including for example no

Formalizing Graph Trail Properties in Isabelle/HOL 203

self loops and distinctiveness. Of course there is still some effort required for
this. However, it is necessary to manually construct trails or list all possible
weight distributions. Additionally, instead of q! statements there are at most 3q

2
statements needed.

interpretation example:

distinct-weighted-pair-graph ExampleGraph ExampleGraphWeightFunction

Now it is an easy task to prove that there is a trail of length 3. We only
add the fact that ExampleGraph is a distinct-weighted-pair-graph and lemma
dec-trail-exists.
lemma ExampleGraph-decTrail:
∃ xs. decTrail ExampleGraph ExampleGraphWeightFunction xs ∧

length xs = 3

5 Discussion and Related Work

Our theory Ordered-Trail builds on top of the Graph-Theory library presented
in [12]. However, this library does not formalize strictly ordered trails, nor the
special weighted graphs we introduced in the locale distinct-weighted-pair-graph.
Furthermore, our formalization extends [12] with definitions on strictly decreas-
ing and increasing trails and provides many basic lemmas on them. Some of
the main challenges in this context were the reasoning on the surjectivity of the
weight function as well the correctness proof of the algorithm.

Our formalization can be easily extended and could therefore serve as a
basis for further work in this field. The definitions incTrail and decTrail and
the respective properties that are proven in Sect. 4.2 are the key to many other
variants of trail properties.

Graham et al. [8] also showed upper bounds for trails in complete graphs by
decomposing them into either into cycles or 1-factors. We are currently working
on formalizing and certifying the result that

fd(n) = fi(n) =

{
n if n ∈ {3, 5},

n − 1 otherwise,

that is, for complete graphs with n = 3 or n = 5 vertices there always has to be
a trail of length at least n whereas for any other number n of vertices there only
has to be a trail of length n − 1. Therefore, the lower bound that we showed in
this paper is equal to the exact length with exception of two special cases. We
believe that formalizing this result would be a valuable extension to the theory
Ordered-Trail.

Another direction for further investigation are monotone paths. Graham et al.
[8] show that in a complete graph with n vertices there has to be an increasing
path of length at least 1

2 (
√

4n − 3 − 1) and at most 3n
4 . The upper bound was

afterwards improved by Calderbank, Chung and Sturtevant [3], Milans [10] and
Bucić et al. [2].

Recently, other classes of graphs have been considered, e.g., trees and planar
graphs [13], on random edge-ordering [14] or on hypercubes [7].

204 L. Kovács et al.

6 Conclusion

In this work we formalized strictly increasing and strictly decreasing trails in
the proof assistant Isabelle/HOL. Furthermore, we showed correctness of an
algorithm to find such trails. We provided a verified algorithm and program to
compute monotone trails. We used this algorithm to prove the result that every
graph with n vertices and q edges has a strictly decreasing trail of length at least
2 · � q

n�. For further work we plan to show that this is a tight bound for every n
except for n = 3 and 5.

Our results are built on the already existing Isabelle Graph-theory from
the Archive of Formal Proofs. Thus, our results can be used by any theory
using graphs that are specified as in this library. Therefore, our theory is highly
reusable and might be the basis for further work in this field.

Acknowledgements. We thank Prof. Byron Cook (AWS) for interesting discussions
on reasoning challenges with ordered trails. This work was funded by the ERC Starting
Grant 2014 SYMCAR 639270, the ERC Proof of Concept Grant 2018 SYMELS 842066,
the Wallenberg Academy Fellowship 2014 TheProSE, the Austrian FWF research
project W1255-N23 and P32441, the Vienna Science and Technology Fund ICT19-065
and the Austrian-Hungarian collaborative project 101öu8.

References

1. Ballarin, C.: Tutorial to locales and locale interpretation. In: Contribuciones
cient́ıficas en honor de Mirian Andrés Gómez, pp. 123–140. Universidad de La
Rioja (2010)

2. Bucic, M., Kwan, M., Pokrovskiy, A., Sudakov, B., Tran, T., Wagner, A.Z.: Nearly-
linear monotone paths in edge-ordered graphs. arXiv preprint arXiv:1809.01468
(2018)

3. Calderbank, A.R., Chung, F.R., Sturtevant, D.G.: Increasing sequences with
nonzero block sums and increasing paths in edge-ordered graphs. Discret. Math.
50, 15–28 (1984)

4. Chavtal, V., Komlos, J.: Some combinatorial theorems on monocity. In: Notices
of the American Mathematical Society, vol. 17, p. 943. American Mathematical
Society, 201 Charles St, Providence, RI 02940-2213 (1970)

5. Cook, B., Kovács, L., Lachnitt, H.: Personal Communications on Automated Rea-
soning at AWS (2019)

6. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. De Silva, J., Molla, T., Pfender, F., Retter, T., Tait, M.: Increasing paths
in edge-ordered graphs: the hypercube and random graphs. arXiv preprint
arXiv:1502.03146 (2015)

8. Graham, R., Kleitman, D.: Increasing paths in edge ordered graphs. Periodica
Math. Hung. 3(1–2), 141–148 (1973)

9. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Proceed-
ings of CAV, pp. 1–35 (2013)

10. Milans, K.G.: Monotone paths in dense edge-ordered graphs (2015)

http://arxiv.org/abs/1809.01468
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1502.03146

Formalizing Graph Trail Properties in Isabelle/HOL 205

11. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

12. Noschinski, L.: Graph theory. Archive of Formal Proofs, April 2013. http://isa-
afp.org/entries/Graph Theory.html. Formal proof development

13. Roditty, Y., Shoham, B., Yuster, R.: Monotone paths in edge-ordered sparse
graphs. Discret. Math. 226(1–3), 411–417 (2001)

14. Yuster, R.: Large monotone paths in graphs with bounded degree. Graphs Comb.
17(3), 579–587 (2001). https://doi.org/10.1007/s003730170031

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/Graph_Theory.html
http://isa-afp.org/entries/Graph_Theory.html
https://doi.org/10.1007/s003730170031

Representing Structural Language
Features in Formal Meta-languages

Dennis Müller1,2(B) , Florian Rabe1 , Colin Rothgang3,
and Michael Kohlhase1

1 Computer Science, University Erlangen-Nuremberg, Erlangen, Germany
d.mueller@kwarc.info

2 Computational Logic, University of Innsbruck, Innsbruck, Austria
3 Mathematics, TU Berlin, Berlin, Germany

Abstract. Structural language features are those that introduce new
kinds of declarations as opposed to those that only add expressions.
They pose a significant challenge when representing languages in meta-
languages such as standard formats like OMDoc or logical frameworks
like LF. It is desirable to use shallow representations where a structural
language feature is represented by the analogous feature of the meta-
language, but the richness of structural language features in practical
languages makes this difficult. Therefore, the current state of the art is
to encode unrepresentable structural language features in terms of more
elementary ones, but that makes the representations difficult to reuse
and verify. This challenge is exacerbated by the fact that many languages
allow users to add new structural language features that are elaborated
into a small trusted kernel, which allows for a large and growing set of
features.

In this paper we extend the Mmt representation framework with a
generic concept of structural features. This allows defining exactly the
language features needed for elegant shallow embeddings of object lan-
guages. The key achievement here is to make this concept expressive
enough to cover complex practical features while retaining the simplic-
ity of existing meta-languages. We exemplify our framework with rep-
resentations of various important structural features including datatype
definitions and theory instantiations.

1 Introduction and Related Work

Motivation. Language design is generally subject to the expressivity-simplicity
trade-off. In particular, designing a representation language for mathemat-
ics involves adequately capturing the ways how mathematical knowledge is
expressed in practice. On the other hand, the language must be as simple as

The authors were supported by DFG grant RA-1872/3-1, KO 2428/13-1 OAF and EU
grant Horizon 2020 ERI 676541 OpenDreamKit.
D. Müller—The author was supported by a postdoc fellowship of the German Academic
Exchange Service (DAAD).

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 206–221, 2020.
https://doi.org/10.1007/978-3-030-53518-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_13&domain=pdf
http://orcid.org/0000-0002-4482-4912
http://orcid.org/0000-0003-3040-3655
http://orcid.org/0000-0002-9859-6337
https://doi.org/10.1007/978-3-030-53518-6_13

Representing Structural Language Features in Formal Meta-languages 207

possible to allow establishing meta-theoretical properties and obtaining (and
maintaining!) scalable implementations. This problem is exacerbated by the fact
that the language features needed in the long run are often not apparent at
the beginning of a project. Moreover, depending on the availability of resources
and the interests of the user community, languages and systems may be used in
applications not foreseen by the developers.

Because retroactive changes become increasingly costly once meta-theory or
implementation have been developed, adding new language features is often not
feasible. In a curse-of-success effect, language developers may find themselves
overwhelmed by feature requests from users, which they cannot add easily or at
all without breaking developments by other users. Therefore, it becomes impor-
tant to design languages with extensibility in mind. This is particularly diffi-
cult for structural features, and especially challenging for meta-languages such
as standardized representation formats like OMDoc [Koh06] or logical frame-
works like LF [HHP93]: These languages partially derive their value from being
simple and elegant and cannot afford constantly adding features. On the other
hand, they cannot afford fixing the set of structural features either: That would
require encoding all other features via complex, often non-compositional trans-
lations, which are difficult to verify and preclude interoperability.

A particularly successful model used in many proof assistants has been a two-
component design: firstly, a small, fixed, and carefully-designed kernel is used
as the ultimate arbiter of correctness; secondly, a higher-level and more flexible
component reads user input and translates it into the kernel syntax, a process
we call elaboration. For example, major proof assistants like Coq [Coq15] and
Isabelle [Pau94] have over time arrived at this model, and attention is increas-
ingly shifting towards the elaboration component. Pure LCF systems like HOL
Light [Har96] can be seen as an extreme case with the host programming lan-
guage as the (Turing-complete) higher-level language.

Elaboration is typically implemented programmatically, i.e., via arbitrary
code in the tool’s underlying programming language. In the simplest case, a
new kind of declaration could be introduced as a type N <∶D where N holds the
declarations and D is an abstract interface for arbitrary declarations, together
with a function N → List(D) that elaborates an instance of N into other decla-
rations. If the logic is sufficiently strong, tools may use reflection to define pro-
grammatic elaboration inside the logic as done for Idris in [CB16] and Lean in
[EUR+17]. Concrete examples of high-level language features with elaboration-
based semantics include

– HOL-style subtype definitions [Gor88], elaborated into an axiomatic specifi-
cation of a new type,

– Mizar’s many different definition principles, elaborated into axiomatic speci-
fications of new function symbols,

– Isabelle’s so-called derived specification elements including inductive, record,
and quotient types, elaborated subtype definitions of some appropriately large
type, see e.g., [BHL+14],

208 D. Müller et al.

– PVS’s inductive types, elaborated into an axiomatic specification of the induc-
tion properties,

– Coq’s record types, elaborated into inductive types with a single constructor,
– Coq’s sections, elaborated into kernel declarations that abstract over all vari-

ables declared in the section.

As the examples already indicate, elaboration is recursive, e.g., the elaboration
of an Isabelle inductive type definition may lead to a subtype definition, which
is then elaborated further. It may also be nested, e.g., the elaboration of a
nested Coq section first generates declarations in its parent section, which is
then elaborated later.

But the elaboration-based approach has two major difficulties. Firstly, elab-
oration necessarily destroys the high-level structure. If only the kernel represen-
tation is effectively available to other applications (as we found is often the case,
see [KR20]), it becomes harder to transfer and reuse developments. Secondly,
programmatic elaboration offers a high degree of flexibility but also makes it
harder to analyze or implement high-level declarations generically.

In a response to these issues, we introduced declaration patterns in [HKR12]
and [Hor14]. They allowed describing elaboration declaratively inside the logic
rather than programmatically. Declaration patterns were successful in many
cases including typical logical declarations [HR15], Mizar’s definition principles
[IKRU13], and HOL type definitions [KR14]. But, being fully declarative, they
expectedly could not cover many practically important examples. For example,
to elaborate an inductive data type definition, one has to generate an inequality
axiom for every pair of constructors—something that quickly becomes awkward
to describe without a general purpose programming language.

Contribution. We expand on the declarative approach of [HKR12,Hor14] by
extending the Mmt framework with a generic extension mechanism based on
programmatic elaboration. Critically, despite being very general, the declarations
introduced by structural features share the same simple syntactic shape, which
allows for simple specifications and uniform implementations.

Because Mmt allows implementing logical frameworks such as LF, this imme-
diately yields corresponding extensions of these. Our design was strongly moti-
vated by and evaluated in our work on exporting proof assistant libraries [KR20],
where we had to model many high-level language features of proof assistants. For
example, we have already used our design to represent PVS includes [KMOR17]
or Coq-style sections [MRSC19] (see Subsect. 4.2).

Overview. This paper is organized as follows. In Sect. 2, we recap the parts of
OMDoc/Mmt, which we use as the underlying core language. Section 3 intro-
duces the infrastructure for structural language extensions. We look at concrete
instances and develop a varied array of Mmt structural features in Sect. 4 and
Sect. 5. Finally, Sect. 6 concludes the paper and discusses future work.

Representing Structural Language Features in Formal Meta-languages 209

2 Preliminaries

OMDoc is a rich representation language for mathematical knowledge with a
large set of primitives motivated by expressivity and user familiarity. The Mmt
[RK13] language is a complete redesign of the formal core of OMDoc focusing
on foundation-independence, scalability, modularity and minimality.

In Fig. 1, we show a fragment of the Mmt grammar that we need in the
remainder of this paper. Meta-symbols of the BNF format are given in color.

Fig. 1. Mmt grammar

The central notion in Mmt is that
of a diagram consisting of a list of
modules. For our purposes, theories
are the only modules we need. Mmt
theories are named sets of statements
and are used to represent formal con-
structs such as logical frameworks,
logics, and theories. At the decla-
ration level Mmt has includes and
constants. Constants are meant to
represent a variety of OMDoc dec-
larations and are simply named sym-
bols with an optional type and defi-
nition. The types and definitions are
Mmt expressions, which are based
on OpenMath. Expressions are ref-
erences to bound variables x and constants c, bound variable declarations x ∶ E,
and complex expressions c(E∗) (which include variable binding by using x ∶ E
as a child).

The semantics of Mmt provides an inference systems that includes in partic-
ular two judgments for typing and equality of expressions. Via Curry-Howard,
the former includes provability, e.g., a theorem F is represented as a constant
with type F , whose definiens is the proof. We have to omit the details here
for brevity. We only emphasize that Mmt is foundation-independent: The syn-
tax does not assume any special constants (e.g., λ), and the semantics does
not assume any special typing rules (e.g., functional extensionality). Instead,
any such foundation-specific aspects are supplied by special Mmt theories
called foundations. For example, the foundation for the logical framework LF
[HHP93] declares constants for type, λ, Π, and @ (for application) as well as
the necessary typing rules. Thus, the Mmt module system governs, e.g., which
typing rules are available in which theory. The details can be found in [Rab17].

3 Structural Features

Before we come to a formal definition, let us consider record types as an
example for a structural feature.

A record type R is a collection of typed (in our case, optionally additionally
defined) fields x ∶ T . A record term r is a collection of assignments x ∶= d for

210 D. Müller et al.

each field, such that if R contains x ∶ T , then d has type T . In dependent
record types, T may additionally refer to previous fields.

For any such record term r ∶ R, we then have a projection operator “.” such
that r.x has type T and (if r is not primitive) r.x = d. As such, a record type
R = ⟦ x1 ∶ T1 . . . xn ∶ Tn ⟧ can be implemented as a high-level structure that
elaborates into

– A single constructor ConR ∶ T1 → . . .→ Tn → R,
– for each field x ∶ T in R, a projection function ⋅.x of type R → T , and
– Axioms asserting injectivity and surjectivity of the constructor, as well as

appropriate equalities implying that constructor and projection functions
commute appropriately.

We will return to this example in more detail in Subsect. 4.1.
There is a notable correspondance between record type declarations and the-

ories, in that both consist (primarily) of declarations of the form x ∶ T . It thus
seems attractive to reuse the grammar of theories to allow for declaring record
types as a high-level feature, motivating the following:

Definition 1. We extend the Mmt grammar by a new production rule:

Dec ∶∶= d ∶ f (E∗) = {Dec∗}

We call this a derived declaration of the structural feature f. d is the name
of the derived declaration, the E are its parameters and the Decs its internal
declarations.

Definition 2. A structural feature is a triple (f, v, ε), where:

1. f is the name of the feature,
2. v is a validity predicate on derived declarations

D ∶= d ∶ f (F1 . . . Fn) = {S1 . . . Sm}

If v(D) holds, we call D a (well-formed) derived declaration of f.
3. ε is called an elaboration function, mapping a derived declaration D of

f to its elaboration: a set of declarations, which we also call the external
declarations of D.

Once a derived declaration is declared, we will (almost) never care about
its internal declarations anymore. The corresponding structural feature checks
whether a derived declaration D conforms to some specific pattern, checking its
components and internal declarations separately (possibly generating errors),
and elaborates D into a set of external declarations based on its con-
stituents. Since checking often requires elaboration (and vice versa), the Mmt
implementation unifies ε and v into a single method. The external declarations
specify the intended semantics of the derived declaration.

Representing Structural Language Features in Formal Meta-languages 211

The structural feature itself is written in Scala using the Mmt-API, which
provides dedicated abstractions, and acts as a rule similarly to the typing rules
mentioned in Sect. 2. Just like typing rules, structural features (or rather, their
derived declarations) can thus be made available in precisely those theories where
they are deemed valid.

For the rest of this paper, we will assume various extensions of LF as our
foundations. If our external declarations contain axioms, we assume some fixed
logic declared in the foundation, providing a type prop, an operator ⊢ of type
prop→ type, a typed equality operator ≐ ∶ ∏A∶type A→ A→ prop and the usual
logical connectives.

However, it should be noted that the structural features presented herein can
be easily adapted to any logic sufficiently strong to allow for defining (equivalents
to) their external declarations.

4 Examples

We will now show the practical utility of these relatively abstract definitions in
some paradigmatic cases at the declaration and module levels.

4.1 Datatypes

Inductive Types. Structural features can provide a convenient syntax for
declaring inductive types. Consider for example a (parametric) type of lists
List(A) of type A, which can be defined as the inductive type generated by the
two constructors nil ∶ List(A) and cons ∶ A → List(A) → List(A). We devise
two structural features with names induct and indef, allowing us to declare
inductive types and inductive definitions respectively, as in Fig. 21. Naturally,
parametric inductive types require a logic with (at least) shallow polymorphism.

Fig. 2. Lists as an inductive type and concatenation as an inductive definition

If the underlying logic L provides primitive typing features that subsume
inductive types, such as W-Types, induct and indef can elaborate into their
(usually syntactically cumbersome) L-correspondents. A structural feature elab-
orating into W-types is described in [Mül19].

1 These listings show our actual formalizations in concrete syntax and use a few seman-
tically inessential features that go beyond the syntax introduced in Fig. 1. Most
notably, # introduces a notation and ∣∣ separates declaration components.

212 D. Müller et al.

In the absence of such a typing feature, we can instead elaborate into the
corresponding constructors and axioms (expressed in some logic declared in our
foundation) asserting their collective injectivity and surjectivity, in the manner
which we will describe shortly. Importantly, we can use the same validity predi-
cate and feature name for both variants, preserving the syntax of the structural
features across logics. This ensures that whenever L′ extends L by an inductive
typing feature, any L-theory using induct and indef remains a valid L′-theory,
but the elaboration in the stronger logic will consist of defined constants.

Elaborating. induct A derived declaration

Dind ∶ induct (t1 ∶ T1 . . . tn ∶ Tn) = {S1 . . . Sm}

is elaborated as follows:

1. Any type-level declaration Si ∶ type is elaborated into

Dind/Si ∶ ∏

t1∶T1,...,tn∶Tn

type.

This allows for mutually inductive and parametric types.

Let I1 . . . Ik be the type-level declarations of Dind. The remaining declarations
need to either i) have type Ii, or ii) have type T ′1 → . . . → T ′k → Ii for some
types T ′1 . . . T ′k, and are thus assumed to be constructors.

2. For each remaining Si ∶ T → Ii
2, we extend the elaboration by the constructor

Dind/Si ∶ ∏

t1∶T1,...,tn∶Tn

T → Ii

3. (No-confusion). For each constructor Si, we add
– an axiom that Si is injective in each argument, and
– an axiom, that Sj(a) ≠ Si(b) for any other constructor Si ≠ Sj and

sequences or arguments (a) (b) of adequate arity and types.
4. (No-junk). Several axioms that guarantee that the inductively defined types

in the elaboration are initial models of their respective model category. This
is the trickiest part of the construction and treated in detail in [Rot20].

Elaborating. indef Having an inductive type TI elaborated from Dind, we can
design indef to allow for conveniently specifying inductive definitions and con-
sequently (using judgments-as-types) proofs by induction.3

A derived declaration Ddef ∶ indef (Dind, t1 ∶ T1 . . . tn ∶ Tn) = {S1 . . . Sm}

has to satisfy the following properties (which collectively constitute the validity
predicate) in order to be considered well-formed:

2 For notational simplicity, we only consider the case of unary constructors; the gen-
eralization to n-ary constructors is clear.

3 For simplicity, we restrict ourselves to the case where Dind elaborates into a single
inductive type (ignoring mutual induction).

Representing Structural Language Features in Formal Meta-languages 213

1. The first declaration S1 has to have function type TI → A for some type A.
2. For every constructor con ∶ T ′1 → . . . → T ′k → TI , there has to be an Si with

the same name, being a defined constant

con ∶ T ′1 → . . .→ T ′k → A ∶= λa1 ∶ T
′

1, . . . , ak ∶ T
′

k. t

The elaboration then consists of the following external declarations:

1. A constant Ddef /S1 ∶ ∏t1∶T1,...,tn∶Tn
TI → A,

2. For every constructor con ∶ T ′1 → . . . → T ′k → TI and corresponding internal
declaration con ∶ T ′1 → . . .→ T ′k → A ∶= λa1 ∶ T

′

1, . . . , ak ∶ T
′

k. t, an axiom

Ddef /con ∶ ∏
t1 ∶T1,...,tn ∶Tn

∏
a1 ∶T

′

1,...,ak ∶T
′

k

⊢ Ddef /S1(t1, . . . , tn,con(a1, . . . , ak)) ≐ t

Records. In [MRK18,Mül19], we describe an operator Mod, which takes as
argument a (reference to a) theory T and returns a (dependent) record type
with manifest fields whose fields correspond to the declarations in T – effectively
yielding a type of models of T . This assumes a background logic L with record
types as a typing feature.

For the common case that we want to have the Mod-type be i) a named
record type and ii) only need T in order to define Mod T , we can introduce a
structural feature rectp with the same functionality as Mod. In this case, the
validity predicate accepts any theory and the elaboration simply consists of a
named record with the inner declarations as fields. If a derived declaration of
rectp has additional parameters ti ∶ Ti, these are λ-bound to the corresponding
external declaration; i.e. a derived declaration

Drectp ∶ rectp (R, t1 ∶ T1, . . . tn ∶ Tn) = {s1 ∶ T ′1[∶= d1] . . . sm ∶ T ′m[∶= dm]}

elaborates to

R ∶ ∏
t1 ∶T1,...,tn ∶Tn

type ∶= λt1 ∶ T1, . . . , tn ∶ Tn. ⟦ s1 ∶ T ′1[∶= d1] . . . sm ∶ T ′m[∶= dm] ⟧ .

Analogously, we can introduce a structural feature rectm with derived dec-
larations Drectm ∶ rectm (r, Drectp F1 . . . Fn) = {S1 . . . Sm}, where each Si is
a defined constant whose name corresponds to an (undefined) field of R. Addi-
tional parameters ti ∶ Ti are again λ-bound; i.e. a derived declaration

Drectm ∶ rectm (Drectp, t1 ∶ T1 . . . tn ∶ Tn R) = {s1 ∶= d1 . . . sm ∶= dm}

elaborates to the named record term

r ∶ ∏

t1∶T1,...,tn∶Tn

R ∶= λt1 ∶ T1, . . . , tn ∶ Tn. s1 ∶= d1 . . . sm ∶= dm � .

214 D. Müller et al.

One big advantage of this approach in Mmt surface syntax is that each field
in a rectm-declaration can be checked separately against the corresponding field
in the record type, whereas the elaborated expression s1 ∶= d1 . . . sm ∶= dm �
is treated as a single term and checked as a whole. While this does not make a
difference semantically, it allows for much better localization of errors and more
helpful error messages.

In a logic L without a notion of record types, the structural feature rectp
can instead elaborate a derived declaration in the manner described in Sect. 3.

4.2 Module System

MMT Structures. are an Mmt primitive kind of theory morphisms, that
essentially behave like named includes with modification: A structure S ∶ T1 → T2
makes all declarations in T1 accessible in T2, but allows for

– supplying additional names (aliases) to constants via @-annotations,
– changing notations of constants and
– supplying definientia for previously undefined constants.

In particular, unlike includes, multiple structures with the same domain are
not idempotent. A typical example for structures is given in Fig. 3: A theory
of rings is constructed using two structures for addition (from AbelianGroup)
and multiplication (from Monoid) whose universes are defined to be the same
type R and whose operations and units are renamed and provided with adequate
notations. The axioms in the domain theories are thus automatically imported
into Ring.

As mentioned, structures are Mmt primitives. However, they can be easily
defined using structural features: A derived declaration S ∶ structure (T1) =
{S1 . . . Sm} satisfies the validity predicate iff:

1. T1 is a valid theory,
2. any constant Si shares a name with a constant in T1 and
3. for any defined constant Si = (c ∶= d) with c ∶ T in T1, we demand that

d type checks against T ′, where T ′ is T with constant references from T1
appropriately substituted by their S-counterparts.

The elaboration then consists simply of the appropriately modified copies of the
declarations in T1 with their names prefixed by S/.

Coq-Style Sections. In [MRSC19], we present an import of the Coq Library
into the MMT system. In order to preserve the original syntax of the library as
closely as possible, this necessitated mirroring Coq’s module system (Sections,
Modules, Module Types) within MMT, which was done using structural features.
Exemplary, we will look at Coq Sections.

A Coq Section is a named theory, in which it is allowed to introduce variables
via declarations. After a section ends, its contents are accessible with all variables
becoming Π-bound to all subsequent declarations.

Representing Structural Language Features in Formal Meta-languages 215

Fig. 3. Theories for Monoids, Abelian groups and rings using structures

Fig. 4. A Coq section and its MMT counterpart

Figure 4 shows an
example of a Coq
section. A and f are
declared as variables
and used like con-
stants in the remain-
der of the section.
The defined constant
ltof within the section
hence takes two arguments a, b. After the section is closed however, ltof is used
as a quaternary function, with its arguments being the type A, the function f
and the two arguments a, b.

The right side of Fig. 4 shows the same Section, but expressed in MMT syn-
tax using a new structural features Section. Variables are marked with the
role Variable flag. The validity predicate accepts any theory. A derived decla-
ration D = Sec ∶ Section () = {S1 . . . Sn} is elaborated as follows:

1. Any constant with the role Variable flag is not elaborated,
2. for any other constant Si = c ∶ T [∶= d], let v1 ∶ T1 . . . vn ∶ Tn be all

variables declared in D prior to Si. Then extend the elaboration of D by

Sec/c ∶ ∏

v1∶T1,...,vn∶Tn

T [∶= λv1 ∶ T1, . . . , vn ∶ Tn. d]

216 D. Müller et al.

PVS-Style Includes. In [KMOR17,Mül19], we present an import of the PVS
Prelude and NASA Libraries into the MMT system. One of the peculiarities
of the PVS language is their prevalent use of parametric theories. These are
commonly used whenever results involving multiple models of the same theory
are needed; e.g. a theory of groups in PVS would be parametric in the sig-
nature of groups (i.e. Group(U, ○, e, −1)), such that whenever a result relating
two groups would be needed, the containing theory would simply import two
instances of the theory of groups with different parameters. Additionally, para-
metric theories can be included “as is”, in which case the parameters can be
provided individually each time a symbol from the included theory is used (e.g.
Group?associativity[Z,+,0,−]). Effectively this makes each constant in the
included theory take additional arguments for the theory parameters.

While MMT supports parametric theories, they are treated quite differently
than in PVS. Theory parameters need to be supplied whenever a parametric
theory is included, and by the definitional property of implicit morphisms
(which includes are, see [RM18]), at most one theory morphism between two
theories may be implicit. This means that a parametric theory can only be
included in another theory once with one fixed set of parameters supplied.

As with Coq sections, we hence opted for using a structural feature
ParInclude whose derived declarations take a single parameter T for the
included theory and no inner declarations. The elaboration of such a derived
declaration then consists of the constants in T with the theory parameters of T
being Π-bound analogously to our treatment of Variables in Coq sections above.
This treatment subsumes all possible use cases of includes in PVS.

Notably, this comes at the cost of blowing up theories massively, since any
use of the feature copies all declarations of the included theory in its elaboration,
slowing down various MMT services noticeably. However, since the declarations
can be elaborated individually, this allows for future improvements by potentially
treating the elaborations lazily.

While the grammar presented in this paper requires derived declarations to
be named – as the actual abstract syntax of Mmt does – the actual concrete
syntax allows specific features (such as ParInclude) to omit names. This way,
include-like features do not have to be named by a user, and internal names are
generated instead.

4.3 Declaration Patterns

Now we recover the declarative special case introduced in [HKR12,Hor14] as a
special case of our structural features.

Specification. A declaration pattern is a structural features whose elaboration is
so simple that it can be specified declaratively in the meta-language. We recap
the definition of [HKR12].

A declaration pattern is a declaration of the form pattern P (Γ) = {Δ}
where P is the name of the pattern, Γ = x1 ∶ E1, . . . , xm ∶ Em is a context declar-
ing parameters that are bound in Δ = D1, . . . ,Dn, and the Di are declarations.

Representing Structural Language Features in Formal Meta-languages 217

The Di can be arbitrary declarations, and we assume they can be elaborated
into constant declarations c1 ∶ F1, . . . , cn ∶ Fn.

Thus, a declaration pattern is essentially the same as a theory with some
parameters. It is also similar to a parametric record type—except that it does
not introduce a type, i.e., P (e1, . . . , em) cannot be used as a type. The latter
ensures that any declaration (including type declarations) that can be used in
theories can also be used in patterns.

An instance of the pattern P (assumed to be declared as above) is a declara-
tion of the form instance p ∶ P (e1, . . . , em) where p is the name of the instance
and the ei satisfy ei ∶ E

′

i where E′ arises from E by substituting each preced-
ing xi with ei. The semantics of such an instance declaration is that it induces
the declarations p/c1 ∶ F

′

1, . . . , p/cn ∶ F
′

n, where the p/ci are qualified names and
the F ′i arise as above. Thus, Δ can be seen as the declarative definition of the
elaboration of the instance p.

Implementation. Declaration patterns introduce two new kinds of declarations
(patterns and instances), and we capture them with two structural features.

Firstly, the structural feature for patterns uses the name f = pattern. A
derived declaration P ∶ pattern (A1, . . . ,Am) = {Δ} is valid iff each Ai is
of the form xi ∶ Ei and concatenating those yields a valid context, and if the
declarations in Δ are valid relative to that context. It elaborates to nothing.

Secondly, the structural feature for instances uses the name f = instance.
A derived declaration p ∶ instance (A) = {} is valid iff A is of the form
P (e1, . . . , em) for a pattern P that was declared in the current scope and the ei
satisfy the respective type constraints. Defining the elaboration of such a derived
declaration is straightforward and proceeds exactly as specified above.

We do not touch on the issues of concrete syntax in this paper, it is straight-
forward to see that only simple notational rules are needed to make these derived
declarations mimic the concrete syntax of [HKR12] entirely. This is already sup-
ported by our implementation.

Notably, the resulting implementation of declaration patterns is significantly
simpler and easier to read, understand, and verify than the existing prototype
implementation that had been built as a part of [Hor14]. This is because all the
bureaucracy of elaboration is now covered uniformly by the framework so that
the code can focus on the semantically relevant details. But more importantly,
the prototype implementation was developed as an extension of Mmt in a PhD
thesis and was never well-integrated with the rest of the code. Such a deep
integration would have gone beyond the resources and purpose of that PhD
thesis. Because structural features are now deeply integrated with Mmt out of
the box, our new implementation is not only simpler but also better than the
old prototype.

5 Module-Level Features

Definition. To simplify the presentation, we have so far only considered struc-
tural features that extend the syntax inside theories. But it is natural to also

218 D. Müller et al.

consider extending the module-level syntax. We specify and implement this in
essentially the same way. The key step is to allow derived declarations as mod-
ules, i.e., we add a production to the Mmt grammar and speak of derived
modules:

Mod ∶∶=m ∶ f (E∗) = {Dec∗}

Module-level structural features are defined and used in the same way as
above except for two subtleties. Firstly, the elaboration of a derived module
may only produce other modules. This makes sense as toplevel declaration must
elaborate to other toplevel declarations.

Secondly, it is difficult how to specify where a module-level structural feature
may be used. For derived declaration, which occur inside a theory, this is easy:
the declaration may be used if the respective structural feature rule is visible
to the containing theory. But derived modules, which may occur on toplevel,
do not have a containing theory. It is not desirable to introduce a global scope
that would define which module-level features are in scope as that would pre-
clude restricting a module-level feature to specific object-languages. We are still
experimenting with different designs for this issue. For now we use the containing
file as the scope.

Diagram Definitions. In [SR19], we added diagram expressions and diagram
definitions in Mmt. The former are expressions that use special constants to
capture the syntax of Mmt diagrams (i.e., the non-terminal γ). The latter are
modules of the form diagram d = E. Their semantics is that i) E is evaluated
into a diagram expression, say declaring theories Ti = {Δi} and ii) new modules
d/Ti = {Δi} are created.

It is straightforward to realize this as a module-level structural feature. In
fact, the implementation of structural features reported in this paper predates
the work in [SR19], which already used them to implement diagram definitions.

Theory Morphisms and Logical Relations. In Sect. 2, we mentioned that Mmt
supports other modules than theories. Two such features have been realized so
far.

Firstly, views are modules of the form v ∶ S → T = {Dec∗}. These have
been a primitive feature of Mmt from the beginning. We can easily realize the
syntax of views as derived modules. This is tempting because it would allow
significantly simplifying the language. However, a currently unsolved problem is
that the semantics cannot be reduced to elaboration: A view cannot in general
be elaborated into anything simpler.

Secondly, [RS13] introduced logical relations as a module-level declaration.
Rabe never implemented them in Mmt because they, like views, are syntactically
a special case of derived modules so that it made sense to defer their implemen-
tation until a general solution for derived modules is available. We intend to
revisit them in future work.

Representing Structural Language Features in Formal Meta-languages 219

6 Conclusion

We have presented a meta-language-based infrastructure of structural features
in the Mmt system and some paradigmatic examples that show its power. Struc-
tural features allow flexibly extending formal mathematical languages with new
kinds of declarations without having to enlarge the trusted core of the system. In
a meta-logical system, structural features are especially interesting because we
need them to represent object languages and because the module system itself
can restrict their availability to particular object logics.

The work presented here was to a large extent motivated by and developed
for building exports of theorem prover libraries. In these, structural features
allowed defining derived language features of theorem prover languages so that
exports could stay shallow, i.e., structure-preserving, while also capturing the
deep elaboration into kernel features that is needed for verification. Without
the infrastructure presented in this paper, only deep implementations would
have been possible and we would have been restricted to much less structured—
and thus less searchable and reusable—exports. Moreover, it will prove critical
for interoperability and library translations between theorem provers: even if
target and source system have the exact same structural feature, a translation is
practically very difficult if the intermediate representation is based on only the
elaborated declarations.

In future work, we plan to represent more advanced features of theorem
prover languages, starting with Isabelle and Coq. An open theoretical question
is how to translate derived declarations along views in such a way that translation
commutes with elaboration—this does not hold for every structural feature, and
establishing sufficient criteria would be very valuable for modular reasoning in
large libraries. Finally, we will improve Mmt’s abilities to represent the concrete
syntax of derived declarations in order to mimic even more closely arbitrary
object language syntax; this will allow for prototyping domain-specific languages
in a way that entirely hides the logical framework from the user.

References

[BHL+14] Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel,
D.: Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa,
R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08970-6 7

[CB16] Christiansen, D., Brady, E.: Elaborator reflection: extending idris in idris.
In: Garrigue, J., Keller, G., Sumii, E. (eds.) International Conference on
Functional Programming, pp. 284–297. ACM (2016)

[Coq15] Coq Development Team: The Coq Proof Assistant: Reference Manual.
Technical report, INRIA (2015)

[EUR+17] Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metapro-
gramming framework for formal verification. In: Proceedings of the ACM
on Programming Languages, vol. 1, no. ICFP, pp. 34:1–34:29 (2017)

https://doi.org/10.1007/978-3-319-08970-6_7

220 D. Müller et al.

[Gor88] Gordon,M.: HOL: a proof generating system for higher-order logic. In:
Birtwistle, G., Subrahmanyam, P. (eds.) VLSI Specification, Verification
and Synthesis, pp. 73–128. Kluwer-Academic Publishers (1988)

[Har96] Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri,
A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidel-
berg (1996). https://doi.org/10.1007/BFb0031814

[HHP93] Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J.
Assoc. Comput. Mach. 40(1), 143–184 (1993)

[HKR12] Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM formats at the state-
ment level. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol.
7362, pp. 65–80. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31374-5 5

[Hor14] Horozal, F.: A framework for defining declarative languages. Ph.D. thesis,
Jacobs University Bremen (2014)

[HR15] Horozal, F., Rabe, F.: Formal logic definitions for interchange languages.
In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM
2015. LNCS (LNAI), vol. 9150, pp. 171–186. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20615-8 11

[IKRU13] Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar mathematical
library in OMDoc: translation and applications. J. Autom. Reason. 50(2),
191–202 (2013)

[KMOR17] Kohlhase, M., Müller, D., Owre, S., Rabe, F.: Making PVS accessible to
generic services by interpretation in a universal format. In: Ayala-Rincón,
M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 319–335. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66107-0 21

[Koh06] Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Doc-
uments (Version.12). Lecture Notes in Artificial Intelligence, vol. 4180.
Springer, Heidelberg (2006). https://doi.org/10.1007/11826095

[KR14] Kaliszyk, C., Rabe, F.: Towards knowledge management for HOL light.
In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS (LNAI), vol. 8543, pp. 357–372. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08434-3 26

[KR20] Kohlhase, M., Rabe, F.: Experiences from exporting major proof assistant
libraries (2020, submitted). https://kwarc.info/people/frabe/Research/
KR oafexp 20.pdf

[MRK18] Müller, D., Rabe, F., Kohlhase, M.: Theories as types. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900,
pp. 575–590. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 38

[MRSC19] Müller, D., Rabe, F., Sacerdoti Coen, C.: The Coq library as a theory
graph. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.)
CICM 2019. LNCS (LNAI), vol. 11617, pp. 171–186. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23250-4 12

[Mül19] Müller, D.: Mathematical knowledge management across formal libraries.
Ph.D. thesis, Informatics, FAU Erlangen-Nürnberg, October 2019. https://
kwarc.info/people/dmueller/pubs/thesis.pdf

[Pau94] Paulson, L.: Isabelle: A Generic Theorem Prover. Lecture Notes in Com-
puter Science, vol. 828. Springer, Heidelberg (1994). https://doi.org/10.
1007/BFb0030541

[Rab17] Rabe, F.: How to identify, translate, and combine logics? J. Log. Comput.
27(6), 1753–1798 (2017)

https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/978-3-642-31374-5_5
https://doi.org/10.1007/978-3-642-31374-5_5
https://doi.org/10.1007/978-3-319-20615-8_11
https://doi.org/10.1007/978-3-319-66107-0_21
https://doi.org/10.1007/11826095
https://doi.org/10.1007/978-3-319-08434-3_26
https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf
https://doi.org/10.1007/978-3-319-94205-6_38
https://doi.org/10.1007/978-3-319-94205-6_38
https://doi.org/10.1007/978-3-030-23250-4_12
https://kwarc.info/people/dmueller/pubs/thesis.pdf
https://kwarc.info/people/dmueller/pubs/thesis.pdf
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/BFb0030541

Representing Structural Language Features in Formal Meta-languages 221

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. (230),
1–54 (2013). http://kwarc.info/frabe/Research/mmt.pdf

[RM18] Rabe, F., Müller, D.: Structuring theories with implicit morphisms (2018).
http://wadt18.cs.rhul.ac.uk/submissions/WADT18A43.pdf

[Rot20] Rothgang, C.: Theories as inductive types, 05 2020. B.Sc. Thesis, expected
May 2020

[RS13] Rabe, F., Sojakova, K.: Logical relations for a logical framework.
ACM Trans. Comput. Log. (2013). http://kwarc.info/frabe/Research/RS
logrels 12.pdf

[SR19] Rabe, F., Sharoda, Y.: Diagram combinators in MMT. In: Kaliszyk, C.,
Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS
(LNAI), vol. 11617, pp. 211–226. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-23250-4 15

http://kwarc.info/frabe/Research/mmt.pdf
http://wadt18.cs.rhul.ac.uk/submissions/WADT18A43.pdf
http://kwarc.info/frabe/Research/RS_logrels_12.pdf
http://kwarc.info/frabe/Research/RS_logrels_12.pdf
https://doi.org/10.1007/978-3-030-23250-4_15
https://doi.org/10.1007/978-3-030-23250-4_15

Formally Verifying Proofs for Algebraic
Identities of Matrices

Leonard Schmitz(B) and Viktor Levandovskyy(B)

Lehrstuhl D für Mathematik, RWTH Aachen University, Aachen, Germany
leonard.schmitz@rwth-aachen.de, viktor.levandovskyy@math.rwth-aachen.de

Abstract. We consider proof certificates for identities of rectangular
matrices. To automate their construction, we introduce an algebraic
framework and supply explicit algorithms relying on non-commutative
Gröbner bases. We address not only verification, but also exploration and
reasoning towards establishing new identities and even proving mathe-
matical properties. Especially Gröbner-driven elimination theory navi-
gates us to insightful conclusions. We present several applications, that
is efficiently formalized proofs for important identities of matrices: cancel-
lation properties of triple products with Moore–Penrose pseudoinverses,
a generalized Sherman–Morrison–Woodbury formula and an automated
derivation of feedback loops in the famous Youla controller parametriza-
tion from control theory.

For actual computations we employ the open source computer alge-
bra system Singular which is used as a backend by systems like SAGE
and OSCAR. The non-commutative extension Letterplace provides
users with all the required functionality. Singular has numerous con-
version tools and supports various standards. Therefore, it can facilitate
the integration with existing theorem provers.

Keywords: Matrix identities · Gröbner bases · Word problems · Proof
certificates · Elimination theory · Proof assistant

1 Introduction

Matrices are fundamental objects in science and technology. We use symbolic
computation techniques to formally prove conditional equalities between matri-
ces. In algebras over fields, a classical approach is to reduce questions about
algebraic identities to ideal membership problems, e.g. [6]. Identities of matrices,
however, have a slightly different algebraic structure since rectangular matrices
can only be added and multiplied with other matrices of an appropriate format.
To the best of our knowledge, a systematic treatment of identities with methods
of associative ring theory was initiated by [7,10,18]. Very recently in [2,8,16]
a new approach extends the setting to linear operators. We show that solving

Supported by DFG TRR 195 “Symbolic Tools in Mathematics and their applications”.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 222–236, 2020.
https://doi.org/10.1007/978-3-030-53518-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_14

Formally Verifying Proofs for Algebraic Identities of Matrices 223

ideal membership problems with methods from associative ring theory is feasi-
ble. For this, we formulate a new algebraic framework with elementary proofs
to handle rectangular matrices of various sizes. Furthermore, we illustrate how
elimination orderings can be used for establishing new identities. We propose
easy-to-handle black box tools which do not require a full understanding of the
underlying algebraic framework. These tools are then applied to prove a num-
ber of relevant matrix identities. The verifications are traditional pen-and-paper
proofs that use the presented automation approach as the central proof step.
We employ the non-commutative extension Letterplace of the open source
computer algebra system Singular.

2 General Design

Every matrix with entries in some fixed field K has a size, that is two natural
numbers encoding the number of rows and columns of this matrix. Equality of
matrices and the arithmetic operations addition, subtraction and multiplication
are all partial due to those sizes. Instead of starting with a tedious description of a
syntax for valid matrix expressions, we shorten this process and encode matrices
as polynomials with non-commuting variables. Every reasonable semantics of
matrix expressions should respect the algebraic structure of polynomials. For
matrices M1, . . . , Mn and M we consider the problem

M1 = 0 ∧ · · · ∧ Mn = 0 =⇒ M = 0

which can be reduced to well-known questions about ideals in non-commutative
algebras. Before introducing a formal setting, we begin the discussion with an
illustrative model problem.

Lemma 1. For arbitrary matrices A ∈ Kn×n, U ∈ Kn×� and V ∈ K�×n,
AUV = A3 implies V A(UV)2 = V A2UV A.

To address this sort of problem, we interpret matrices as symbols in the free
associative algebra K〈X〉 and use the tools from non-commutative Gröbner basis
theory, e.g. [1,12,14]. The process begins with the choice of assumptions, encoded
as a set F of non-commutative polynomials in which all elements of F vanish
as matrices. The following black box tool provides for a suitable choice of F a
proof for q being equal to a as a matrix.

Proof Machine for Algebraic Identities of Matrices

Assumptions F ⊆ K〈X〉 (every f ∈ F must vanish as a matrix)�

Gröbner basis G (with non-commutative Buchberger’s algorithm)

Question q ∈ K〈X〉�

Answer a = NF(q, G) (with non-commutative division algorithm)

=⇒ q is equal to a as a matrix

224 L. Schmitz and V. Levandovskyy

Let us discuss each step in detail. To prove that two matrices are equal, we
encode them as non-commutative polynomials q1, q2 ∈ K〈X〉 and choose a set
of assumptions F ⊆ K〈X〉. We use the proof machine and show that q1 and q2
have the same normal form modulo two-sided ideal 〈F〉. One way of doing this
is to compute a Gröbner basis G of 〈F〉 and to apply the division algorithm with
divisors G, input q1 − q2 and output zero. With this we obtain a proof certificate

q1 − q2 =
∑

f∈F

k(f)∑

t=1

�ft · f · rft

expressing the statement q1 − q2 in a direct dependence on F and where verifi-
cation is the matter of elementary arithmetics. Evaluating the right hand side
of the above expression implies that q1 − q2 vanishes as a matrix. Moreover,
the right hand side provides a symbolic proof of the statement. We pick up the
model problem from the beginning of this section and apply the proof machine
from above.

Proof (of Lemma 1). In the notation of the proof machine let X = {A, U, V }
denote a set of symbols and f := AUV −A3 ∈ K〈X〉 a polynomial such that every
element in F = {f} vanishes as a matrix. We run Buchberger’s algorithm on F
with respect to the degree lexicographic ordering and linear preorder U > V > A.
It turns out that G = F is a Gröbner basis of the two-sided ideal 〈F〉. With the
division algorithm, we successively subtract multiples of f until we reach zero.
In the end, we find an expression via f as follows:

q := V A(UV)2 − V A2UV A = V · f · UV − V A · f · A + V A2 · f.

Evaluating the right hand side of the above expression implies that q vanishes
as a matrix. �	
Remark 1. Generally in the free associative algebra, the ideal membership prob-
lem is semi-decidable, e.g. [13,15], meaning that there is a suitable procedure
which terminates if and only if the ideal membership takes place, or runs forever
otherwise.

3 Technical Details

We introduce an algebraic framework and show that solving ideal membership
problems with methods originating from associative ring theory is feasible. In
particular, this involves case studies and an evaluation to handle rectangular
matrices of various sizes.

3.1 Encoding Matrices via Free Algebras

Given a finite set of matrices with entries in a field K, we consider its elements
as a set of symbols X. We equip this set with functions row, col : X → N.

Formally Verifying Proofs for Algebraic Identities of Matrices 225

Every M ∈ X stands for a matrix and the values row(M) and col(M) correspond
to the number of rows and columns of this matrix. Let K〈X〉 denote the free
associative algebra over the free monoid 〈X〉 with string concatenation as its
operation and empty word (identified with 1 ∈ K) as its neutral element. As
a preimage of matrix products with i rows and j columns, for fixed natural
numbers i and j we define a subset of 〈X〉 by

Ui, j :=

⎧
⎨

⎩

�∏

k=1

Mk

Mk ∈ X, � ≥ 1
row(M1) = i, col(M�) = j
col(Mk) = row(Mk+1)

⎫
⎬

⎭ .

Let SpanK(Ui, j) denote a K-vector subspace of K〈X〉 which is spanned by the
elements of Ui, j from above. For arbitrary matrices we define the set of valid
relations UX by the set-theoretic union of subspaces

UX :=
⋃

i, j∈N

SpanK(Ui, j) ⊆ K〈X〉.

We recognize that SpanK(Ui, i) is a K-subalgebra of K〈X〉 and furthermore,
that SpanK(Ui, j) is a (SpanK(Ui, i), SpanK(Uj, j))-bimodule. However, the whole
set UX cannot be equipped with a common algebraic structure. We define an
evaluation which is a family of homomorphisms of vector spaces

ψi, j : SpanK(Ui, j) −→ Ki×j ,

uniquely determined by K-basis Ui, j being mapped to corresponding products of
matrices. The latter is well-defined due to the construction of Ui, j . For u ∈ Ui, k

and v ∈ Uk, j one verifies that ψi, j(u · v) = ψi, k(u) · ψk, j(v). Consequently,
if a product of polynomials is itself contained in UX , the evaluation respects
multiplication in K〈X〉 on the one side, and matrices of arbitrary sizes on the
other. We say that polynomials q, a ∈ SpanK(Ui, j) are equal as matrices if
ψi, j(q) = ψi, j(a) and that q vanishes as matrix if ψi, j(q) is the i × j zero
matrix.

3.2 Gröbner Bases in Free Relations of Matrices

Let us recapitulate fundamental concepts of non-commutative Gröbner basis
theory. We call a total well-ordering on 〈X〉 a monomial ordering if it is com-
patible with multiplication, i.e., for all w, w′, u, v ∈ 〈X〉 with w < w′ we have
uwv < uw′v. For nonzero f ∈ K〈X〉 and fixed monomial ordering let lm(f) and
lc(f) denote the leading monomial and leading coefficient of f . Lemma 2 ensures
that the set of valid relations UX is invariant under the important concepts
division and overlapping.

Lemma 2. Let f ∈ SpanK(Ui, j) and g ∈ SpanK(Uk, �) denote two arbitrary but
nonzero polynomials from the set of valid relations UX .

226 L. Schmitz and V. Levandovskyy

(i) If leading monomial lm(f) divides lm(g), that is

∃u, v ∈ 〈X〉 : u · lm(f) · v = lm(g),

then the remainder g − lc(g)
lc(f) u · f · v ∈ SpanK(Uk, �) is valid.

(ii) If lm(f) and lm(g) overlap, that is

∃ v, w, o ∈ 〈X〉 : lm(f) = vo, lm(g) = ow, o = 1, lm(f) � w and lm(g) � v,

then the overlap relation 1
lc(f) f · w − 1

lc(g) v · g ∈ SpanK(Ui, �) is valid.

For two polynomials f and g as above, there can be several (but finitely many)
overlaps between lm(f) and lm(g). Let O(f, g) denote the set of all overlap
relations of f and g. Given an input r0 ∈ K〈X〉 and a set of divisors F ⊆ K〈X〉
the division algorithm is performed as follows:

1. Set i = 0
2. If ri = 0 or lm(f) does not divide lm(ri) for all nonzero f ∈ F , return ri

3. Find u, v ∈ 〈X〉 and f ∈ F such that u · lm(f) · v = lm(ri), define

ri+1 := ri − lc(ri)
lc(f)

u · f · v, i �→ i + 1 and go to step 2.

Since < is a well-ordering and r0 = 0, ri+1 = 0 or lm(ri+1) < lm(ri) for all
i, the above procedure terminates at some rn which is called a normal form of
r0 modulo F . A set G ⊆ K〈X〉 is a Gröbner basis of the two-sided ideal 〈G〉
with respect to a monomial ordering, if for every f ∈ 〈G〉 \ {0} there exists
g ∈ G such that lm(g) divides lm(f). Buchberger’s criterion asserts that G is a
Gröbner basis if and only if for every pair (f, g) ∈ G ×G the elements in O(f, g)
have normal form zero modulo G. Buchberger’s algorithm is the essential tool of
computing for input F ⊆ K〈X〉 a Gröbner bases G of two-sided ideal 〈F〉. It has
the following steps:

1. Set G0 := F and i = 0
2. Construct Pi :=

⋃
f, g∈Gi

O(f, g) of all overlap relations in Gi

3. Set Gi+1 := Gi ∪ {r | r is a nonzero normal form of p ∈ Pi modulo Gi }
4. If Gi+1 = Gi then i �→ i + 1 and go to step 2
5. Return G :=

⋃
j≥0 Gj .

Note that the algorithm involves two operations, namely division and overlapping
from above. In the following, we make use of this observation and show that a and
q are equal as matrices if F contains as matrix vanishing polynomials exclusively.

Theorem 1. Let F be a finite subset of UX and G be a Gröbner basis of two-
sided ideal 〈F〉 as an output of Buchberger’s algorithm. If the division algorithm
with input q ∈ SpanK(Ui, j) and G as a set of divisors returns a ∈ K〈X〉, it
follows that for every polynomial f ∈ F there exists a natural number k(f) ∈ N

and polynomials �ft, rft ∈ K〈X〉 such that

q = a +
∑

f∈F

k(f)∑

t=1

�ft · f · rft ∈ SpanK(Ui, j).

Formally Verifying Proofs for Algebraic Identities of Matrices 227

Proof. With iterated application of Lemma 2, for every gu ∈ G and f ∈ F there
exist k(f, u), i(u), j(u) ∈ N and �ftu, rftu ∈ K〈X〉 such that

gu =
∑

f∈F

k(f, u)∑

t=1

�ftu · f · rftu ∈ SpanK(Ui(u), j(u))

is valid. The division algorithm finds n ∈ N, gu ∈ G and bu, cu ∈ K〈X〉 such that

q = a +
n∑

u=1

bu · gu · cu = a +
∑

f∈F

n∑

u=1

k(f, u)∑

t=1

bu · �ftu · f · rftu · cu ∈ SpanK(Ui, j)

where the second equality results from substituting gu into the representation
from above. This implies that a ∈ SpanK(Ui, j) is valid. �	

3.3 Black Box Tool for Gröbner-Driven Elimination

A monomial ordering is called an elimination ordering for a subset Xe ⊆ X if for
every nonzero f ∈ K〈X〉 with lm(f) ∈ K〈X \Xe〉 it follows that f ∈ K〈X \Xe〉.
We call Xe ⊆ X the set of eliminated matrices. One of the most important abil-
ities of Gröbner bases is reflected in the Elimination Lemma: if G is a Gröbner
basis of an ideal I ∈ K〈X〉 with respect to an elimination ordering for Xe then
G∩K〈X \Xe〉 is a Gröbner basis of I ∩ K〈X \Xe〉. The following is our principal
tool for exploration and reasoning towards establishing new identities. It finds a
representation of input q in terms of output a containing no symbols Xr which
are removable with respect to F . The notions of eliminated matrices and remov-
able matrices are introduced since we cannot expect to eliminate every symbol
in an arbitrary polynomial q without specification on F .

Elimination Machine for Removable Matrices

Eliminated matrices Xe ⊆ X (monomial ordering which eliminates Xe)

Assumptions F ⊆ UX�

Gröbner basis G�

Removable matrices Xr := {M ∈ Xe | NF (M, G) ∈ K〈X \ Xe〉}
Question q ∈ UX�

Answer a = NF (q, G)

=⇒ a ∈ K〈X \ Xr〉

Let us discuss each step in detail. For a given two-sided ideal 〈F〉 we compute
a Gröbner basis G with respect to a monomial ordering which eliminates Xe.
We compute the subset Xr ⊂ Xe containing all symbols in Xe whose normal
form contains no symbols in Xe. Together with the proof machine, this leads to

228 L. Schmitz and V. Levandovskyy

polynomial q and a being equal as matrices. That is, the matrix considered by
q has a representation in terms of matrices encoded by X \ Xr exclusively. For
every symbol M ∈ Xr and monomial � · M · r ∈ 〈X〉 in q there exists a specific
chain of reductions such that � · M · r is reduced to � · NF(M, G) · r ∈ K〈X〉
before further reductions result in the normal form, hence a ∈ K〈X \ Xr〉. We
will work with elimination orderings in the proof of Lemma 3 and Theorem 5
where more details are provided.

Remark 2. Unlike the situation described in Remark 1, we are not aware of an
algorithm performing elimination. It is generally impossible to disprove that an
element is contained in Xr since normal forms are not computable in all cases.
The major reason is that a Gröbner basis with respect to an elimination ordering
is rather infinite and not positively graded. Nevertheless, we have observed in
practice that with some luck in the choice of ordering one gets finite Gröbner
bases and thus solves the elimination problem completely. In other cases, where
only truncated Gröbner bases are available, one obtains only a subset of the
removable matrices.

3.4 Example with Singular:Letterplace

We employ the open source computer algebra system Singular [4], more pre-
cisely its non-commutative extension Letterplace [11]. Singular is used as a
backend by systems like SAGE [17] and OSCAR [9], supports various standards
and has numerous tools for prospective integration with other systems.
The proof of Lemma 3 consists of two phases and illustrates automated explo-
ration with elimination orderings and a straightforward verification by an ideal
membership problem. Putting this together, we show invertibility of a matrix by
first searching for its inverse and by verifying the defining axiomatics afterwards.

Lemma 3. Let A ∈ Km×� and B ∈ K�×m be rectangular matrices with entries
in a field K of characteristic zero.

(i) If AB + Im ∈ GLm(K) and BA + I� ∈ GL�(K) then there exists a repre-
sentation of (AB + Im)−1 in terms of A, B, Im, I� and (BA + I�)

−1. Via
symmetry the same holds for (BA + I�)

−1 by exchanging A and B.
(ii) The existence of one inverse implies the other, that is

AB + Im ∈ GLm(K) ⇐⇒ BA + I� ∈ GL�(K).

Proof. For (i) we have to construct the required representation. In the notation
of the elimination machine let

X = {(AB + Im)−1
, (BA + I�)

−1
, A, B, I�, Im}

denote a set of symbols with subset of eliminated matrices Xe = {(AB + Im)−1}.
To encode the invertibility of BA + I� and to describe the identity matrices Im

Formally Verifying Proofs for Algebraic Identities of Matrices 229

and I� we define

F1 = {ImIm − Im, I�I� − I�, AI� − A, ImA − A, BIm − B, I�B − B,

(BA + I�)
−1 (BA + I�) − I�, (BA + I�) (BA + I�)

−1 − I�,

(BA + I�)
−1

I� − (BA + I�)
−1

, I�(BA + I�)
−1 − (BA + I�)

−1}.

For encoding the invertibility of AB + Im we use F2 defined by

F1 ∪ {(AB + Im)−1 (AB + Im) − Im, (AB + Im) (AB + Im)−1 − Im,

(AB + Im)−1
Im − (AB + Im)−1

, Im(AB + Im)−1 − (AB + Im)−1}.

Executing the computation with the code below we obtain a Gröbner basis G2

of two-sided ideal 〈F2〉 with respect to an ordering which eliminates Xe. The
corresponding normal form of (AB + Im)−1 is given by

a = NF((AB + Im)−1
, G2) = −A(BA + I�)

−1
B + Im.

This provides the required representation with Theorem 1.

(ii) We show that BA + I� ∈ GL�(K) implies AB + Im ∈ GLm(K). The other
implication is analogous. In F1 we have postulated the invertibility of BA + I�,
so the same applies to a Gröbner basis G1. The expression for a obtained in (i)
is the same as the inverse of AB + Im modulo G2. Hence, it suffices to show that
a is a left and a right inverse of AB + Im modulo G1, that is

NF (a (AB + Im) − Im, G1) = 0 = NF ((AB + Im) a − Im, G1) .

�	
The following source code for Singular realizes all computations and gives
explanations for each command being used.

LIB "freegb.lib";
ring r = 0,(ABpIi,BApIi,A,B,Il,Im),lp; // field of char 0,
//names of variables (like ABpIi) and monomial ordering (lp)
ring R = freeAlgebra(r,11); // free algebra up to length 11
option(redSB); option(redTail); // min reduced GBs option
poly ABpI = A*B + Im; poly BApI = B*A + Il;
ideal F1 = Im*Im - Im, Il*Il - Il, A*Il - A, Im*A - A,
B*Im - B, Il*B - B, BApI*BApIi - Il, BApIi*BApI - Il,
BApIi*Il - BApIi, Il*BApIi - BApIi;
ideal F2 = F1, ABpI*ABpIi - Im, ABpIi*ABpI - Im,
ABpIi*Im - ABpIi, Im*ABpIi - ABpIi;
ideal G1 = twostd(F1); ideal G2 = twostd(F2); // truncated GBs
poly a = NF(ABpIi, G2); // division by G2 with remainder a
a; // synonymous to print(a);
> -A*BApIi*B+Im // output of the previous command

230 L. Schmitz and V. Levandovskyy

NF(a*(A*B+Im)-Im, G1);
> 0
NF((A*B+Im)*a-Im, G1);
> 0

Remark 3. Both Gröbner bases G1 and G2 in the proof are finite. Notably, we
can prove that the restriction to the field of characteristic zero is not essential for
this theorem. Also, for each of the three constructive statements in the Lemma
we can provide a symbolic proof in terms of the original assumptions Fi by
hiding the Gröbner component Gi. For instance, let G2[11] denote the eleventh
element of G2 considered in the code. In (i) the reduction of (AB + Im)−1 with
divisors G2 requires subtraction by the element

G2[11] = (AB + Im)−1 + A(BA + I�)−1B − Im.

The latter is expressed via F2 as

G2[11] = A(BA + I�)
−1 · F2[5] · (AB + Im)−1 − A(BA + I�)

−1 · F2[5] − F2[14]

− A(BA + I�)
−1 · F2[6] · (AB + Im)−1 + A · F2[6] · (AB + Im)−1

+ A · F2[8] · B(AB + Im)−1 − A(BA + I�)
−1

B · F2[11] + F2[11].

In (ii) polynomial b := a(AB +Im)−Im is reduced to zero modulo G1 as follows:

b = −A · G1[10] · B − A(BA + I�)
−1 · G1[3] − G1[6] · B + G1[5] · B + G1[1].

By expressing the elements G1[i] via F1 as above, we can algorithmically con-
struct a lengthy expression for b which involves only F1. Both constructions
belong to the lifting mechanism.

4 Applications

We present several illustrations of concrete mathematical investigations where
the tools from above have been applied successfully. These reach from various
practically relevant identities concerning Moore–Penrose pseudoinverses to an
automated derivation of feedback loops in the Youla controller parametrization.

4.1 The Moore–Penrose Pseudoinverse

Various generalizations of matrix inverses play an important role in science.
Especially the Moore–Penrose pseudoinverse has been in the center of investiga-
tion over the last decades, e.g. [3,5]. Indeed, there are countless applications in
linear least squares approximation and minimal Euclidean norm solutions. As an
immediate consequence of Gauss elimination, one obtains generalized inverses as
a first step towards Moore–Penrose pseudoinverses.

Formally Verifying Proofs for Algebraic Identities of Matrices 231

Lemma 4. For a matrix A ∈ Km×� over a field K there exists B ∈ K�×m with
ABA = A and BAB = B. Every such B is called a generalized inverse of A.

Proof. Let us consider the non-trivial case rankK(A) = r < min{m, �} such that
there are matrices

[
C
D

]
,

[
F G

]
=

[
C
D

]−1

∈ Km×m and
[
P Q

]
,

[
R
T

]
=

[
P Q

]−1 ∈ K�×�

which transform A to block matrix
[
C
D

]
A

[
P Q

]
=

[
CAP CAQ
DAP DAQ

]
=

[
Ir 0
0 0

]
∈ Km×�.

Every polynomial in

F = {ImIm − Im, FC + GD − Im, ImG − G, GIm−r − G, ImF − F,

FIr − F, ImA − A, AI� − A, Im−rD − D, DIm − D, TQ − I�−r,

DG − Im−r, DF, DAP, DAQ, IrC − C, CIm − C, CG, IrIr − Ir,

CF − Ir, RP − Ir, CAP − Ir, IrR − R, RI� − R, CAQ, RQ,

I�P − P, PIr − P, I�I� − I�, PR + QT − I�, I�Q − Q, QI�−r − Q,

TP, I�−rT − T, TI� − T, I�−rI�−r − I�−r, Im−rIm−r − Im−r }

vanishes as a matrix. A Gröbner basis of the two-sided ideal 〈F〉 with respect
to the degree reverse lexicographic ordering is finite and given by

F ∪ {AP − F, FR − A, AQ, DA, CA − R}.

For instance, this provides a factorization A = FR of A into matrices of full
rank. With b := PCAPC the division algorithm reduces both AbA − A and
bAb − b to zero. Therefore PCAPC is a generalized inverse of A. �	

For the remaining of this subsection we restrict ourselves to the field C of
complex numbers. All of the following statements also hold under less restrictive
assumptions on the field, but this is a topic of a forthcoming article.

Definition 1. For a matrix A ∈ C
m×� let A∗ = A

T ∈ C
�×m denote its adjoint

matrix. Every matrix A+ ∈ C
�×m which satisfies

AA+A = A, A+AA+ = A+, (A+)∗
A∗ = AA+ and A∗(A+)∗ = A+A

is called a Moore–Penrose pseudoinverse of A.

Theorem 2. Let A ∈ C
m×�. If a Moore–Penrose pseudoinverse A+ ∈ C

�×m

exists, then it is unique.

232 L. Schmitz and V. Levandovskyy

Proof. We prove uniqueness by showing that any two Moore–Penrose pseudoin-
verses are already equal to each other, that is for Moore–Penrose pseudoinverses
B1, B2 ∈ C

�×m we use the set of symbols

X = {A, B1, B2, A∗, B∗
1 , B∗

2}

such that every relation in

Fi = {ABiA − A, BiABi − Bi, ABi − B∗
i A∗, BiA − A∗B∗

i }

with i ∈ {1, 2} vanishes as a matrix by the axiomatics. We compute a Gröbner
basis of 〈F1 ∪F2 〉 with respect to the degree reverse lexicographic ordering and
obtain the following finite set:

G = {B2 − B1, A∗B∗
2 − A∗B∗

1 , AB1B
∗
1B1 − B∗

1B1, B1B
∗
2 − B1B

∗
1 ,

B∗
1A∗ − AB1, B∗

2A∗ − AB1, B∗
2B1 − B∗

1B1, AA∗B∗
1 − A,

A∗B∗
1B1 − B1, AA∗AB1 − AA∗, B1A − A∗B∗

1 , A∗AB1B
∗
1 − A∗B∗

1}.

Since every polynomial in Fi vanishes as a matrix it follows that B2 − B1 ∈ G
vanishes. This implies the uniqueness of Moore–Penrose pseudoinverses. �	

Cancellation properties of triple products with Moore–Penrose pseudoin-
verses have been investigated in [3]. Illustrating the abilities of our methods,
we address the first of many equivalences established in the paper. Note that the
original proof requires a tedious verification. In order to accomplish it, a spe-
cial language is developed. On the contrary, our approach delivers an efficiently
formalized proof without using any additional theory.

Theorem 3. For all B ∈ C
m×�, Y ∈ C

�×k and C ∈ C
k×o the following proper-

ties hold:

C(BY C)+B = Y + ⇐⇒ (BY)+B = Y + and C(Y C)+ = Y +.

Proof. For encoding the underlying axiomatics we use symbols X given by

{B, Y, C, B∗, Y ∗, C∗, (BY)∗
, (Y C)∗

, (BY C)∗
, B+, Y +, C+,

(BY)+, (Y C)+, (BY C)+, B+∗
, Y +∗

, C+∗
, (BY)+

∗
, (Y C)+

∗
, (BY C)+

∗}

and for every x ∈ {B, C, Y, BY, Y C, BY C} we define

Fx = {xx+x − x, x+xx+ − x+, x∗x+∗
x∗ − x∗,

x+∗
x∗x+∗ − x+∗

, xx+ − x+∗
x∗, x+x − x∗x+∗}.

Together with relations reflecting the multiplication of adjoints we set

F =
⋃

x

Fx ∪ {(BY)∗ − Y ∗B∗, (BY C)∗ − C∗Y ∗B∗, (Y C)∗ − C∗Y ∗}

Formally Verifying Proofs for Algebraic Identities of Matrices 233

and F ′ = F ∪ {C(BY C)+B − Y +}. We fix the degree lexicographic ordering
such that the first implication is proved by

NF((BY)+B − Y +, 〈F ′〉) = 0 = NF(C(Y C)+ − Y +, 〈F ′〉)
whereas the latter implication follows from

NF(C(BY C)+B − Y +,
〈

F ∪
{

(BY)+B − Y +, C(Y C)+ − Y +
}〉

) = 0.

�	
The Sherman–Morrison–Woodbury formula provides a cheap way to com-

pute the inverse of a matrix numerically. It has found application in Broyden’s
method. Recently, this formula has been generalized by [5] with all inverse matri-
ces replaced by Moore-Penrose pseudoinverses. A computer-supported proof fol-
lows in a straightforward fashion and without additional insight.

Theorem 4. Let A ∈ C
m×�, U ∈ C

m×k, C ∈ C
k×o and V ∈ C

o×� be matrices
such that V = V A+A, U = US+S, V = C+CV , U = UCC+, V = SS+V and
U = AA+U . This implies the Sherman–Morrison–Woodbury formula

(A + UCV)+ = A+ − A+U(C+ + V A+U)+V A+

for Moore–Penrose pseudoinverses.

4.2 Youla Controller Parametrization

The Youla controller parametrization, e.g. [19,20], is a famous result from control
theory. For a field K and a given matrix P := C(s · In − A)−1

B + D ∈ Rp×m
0

with entries in a subring R0 of the field of rational functions K = K(s) one is
interested in finding such a matrix K ∈ Km×p, that the block matrix

W =
[

Im −K
−P Ip

]
∈ K(m+p)×(m+p)

becomes invertible. Additionally, one is looking for such K, that the entries
from the inverse of W lie in a subring R of R0. Traditionally in control theory,
R0 contains all proper fractions and R is the ring of all ϕ ∈ R0 which induce
complex functions with all their poles having negative real part, i.e. satisfying

a ≥ 0 =⇒ lim
t→a+bi

ϕ(t) ∈ C.

However, the statement can be formulated and proved independently of tradi-
tional choices in the following purely algebraic setting.

Theorem 5. For an arbitrary field K let R and R0 denote rings such that
K ⊆ R ⊆ R0 ⊆ K := K(s). Furthermore, let

A ∈ K
n×n, B ∈ K

n×m, C ∈ K
p×n,

F ∈ K
m×n, L ∈ K

n×p and D ∈ K
p×m

234 L. Schmitz and V. Levandovskyy

denote matrices with

P := C(s · In − A)−1
B + D ∈ Rp×m

0

and
(s · In − A − BF)−1

, (s · In − A − LC)−1 ∈ Rn×n.

Let M , U0, V0 and N be blocks in the expression
[
M U0

N V0

]
:=

[
F

C + DF

]
(s · In − A − BF)−1 [

B −L
]
+

[
Im 0
D Ip

]
.

(i) One has V0 ∈ GLp(K) and

Ṽ0 := −F (s · In − A − LC)−1 (B + LD) + Im ∈ GLm(K).

(ii) Let Qy ∈ Km×p such that V0 + NQy ∈ GLp(K). The choice

K := (U0 + MQy) (V0 + NQy)−1 ∈ Km×p

implies that [
Im −K
−P Ip

]
∈ GLm+p(K)

with its inverse given by

H =
[
H11 H12

H21 H22

]
∈ K(m+p)×(m+p),

and where the Hij have explicit representations in terms of A, B, C, F , L,
D, Qy, Im, Ip, In, (s · In − A − BF)−1 and (s · In − A − LC)−1.

(iii) If the entries of Qy are in R, then the same holds for the entries of H.

Proof. (i) We show the invertibility of V0 and Ṽ0. Since K = K(s), the matrix

s · In − A − BF − LC − LDF ∈ Kn×n

is invertible over the field K. Adding this fact to the other assumptions
which describe invertibility, the elimination machine finds representations

V −1
0 = (C + DF) (s · In − A − BF − LC − LDF)−1

L + Ip

and Ṽ −1
0 = −U0V

−1
0 N + M .

(ii) By choosing the elimination ordering to be lp (see Singular [4] user’s
manual for its description) the elimination machine produces the represen-
tation

H11 = F (s · In − A − BF)−1
BQyC(s · In − A − LC)−1

B

+ F (s · In − A − BF)−1
BQyC(s · In − A − LC)−1

LD

+ QyC(s · In − A − LC)−1
B + F (s · In − A − BF)−1

BQyD

+ QyC(s · In − A − LC)−1
LD + QyD

− F (s · In − A − BF)−1
LC(s · In − A − LC)−1

B

− F (s · In − A − BF)−1
LC(s · In − A − LC)−1

LD

− F (s · In − A − BF)−1
LD + Im.

Formally Verifying Proofs for Algebraic Identities of Matrices 235

The representations for H12, H21 and H22 follow in an analogous way, look
similar and are therefore omitted.

(iii) Follows from the explicit presentations of Hij in (ii) since all involved matri-
ces have entries in R.

�	
Remark 4. Note that the additional assumption in the proof of (i) does not
follow from the setup in an obvious way, and has to be inserted manually. On
the other hand, this assumption is not required in the proof of (ii) and (iii).

5 Conclusion

We have supplied not only theoretic results but concrete tools for formal verifi-
cation of algebraic identities. These tools provide an error-free and fast base for
mathematicians, engineers and all others who need computer-supported inves-
tigation with matrices in their daily work. A collection of known identities can
be put in form of an online database, similar to the well-known DLMF, OEIS
and DDMF. Our computational tools can be integrated into other projects, like
theorem provers.

Acknowledgements. We are grateful to Eva Zerz (Aachen) and Bernd Sturmfels
(Leipzig) for fruitful discussions. We also thank Mariia Anapolska and Sven Gross for
carefully reading preliminary versions of this article. The authors have been supported
by Project II.6 of SFB-TRR 195 “Symbolic Tools in Mathematics and their Applica-
tions” of the German Research Foundation (DFG).

References

1. Bergman, G.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)
2. Chenavier, C., Hofstadler, C., Raab, C.G., Regensburger, G.: Compatible rewriting

of noncommutative polynomials for proving operator identities. https://arxiv.org/
abs/2002.03626 (2020)

3. Damm, T., Wimmer, H.K.: A cancellation property of the Moore-Penrose inverse
of triple products. J. Aust. Math. Soc. 86(1), 33–44 (2009)

4. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-1-3 – A com-
puter algebra system for polynomial computations (2020). http://www.singular.
uni-kl.de

5. Deng, C.Y.: A generalization of the Sherman-Morrison-Woodbury formula. Appl.
Math. Lett. 24(9), 1561–1564 (2011)

6. Grégoire, B., Pottier, L., Théry, L.: Proof certificates for algebra and their applica-
tion to automatic geometry theorem proving. In: Sturm, T., Zengler, C. (eds.) ADG
2008. LNCS (LNAI), vol. 6301, pp. 42–59. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21046-4 3

7. Helton, J., Kronewitter, F.: Computer algebra in the control of singularly per-
turbed dynamical systems (1999). http://math.ucsd.edu/∼ncalg/DELL/SingPert/
singpertcdc99.pdf

https://arxiv.org/abs/2002.03626
https://arxiv.org/abs/2002.03626
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://doi.org/10.1007/978-3-642-21046-4_3
https://doi.org/10.1007/978-3-642-21046-4_3
http://math.ucsd.edu/~ncalg/DELL/SingPert/singpertcdc99.pdf
http://math.ucsd.edu/~ncalg/DELL/SingPert/singpertcdc99.pdf

236 L. Schmitz and V. Levandovskyy

8. Hofstadler, C., Raab, C.G., Regensburger, G.: Certifying operator identities via
noncommutative Gröbner bases. ACM Commun. Comput. Algebra 53, 49–52
(2019)

9. Joswig, M., Fieker, C., Horn, M., et al.: The oscar project (2020). https://oscar.
computeralgebra.de

10. Kronewitter, F.D.: Using noncommutative Gröbner bases in solving partially pre-
scribed matrix inverse completion problems. Linear Algebra Appl. 338(1–3), 171–
199 (2001)

11. Levandovskyy, V., Abou Zeid, K., Schönemann, H.: Singular: Letterplace – A
singular 4-1-3 subsystem for non-commutative finitely presented algebras (2020).
http://www.singular.uni-kl.de

12. Mora, T.: Groebner bases in non-commutative algebras. In: Gianni, P. (ed.) ISSAC
1988. LNCS, vol. 358, pp. 150–161. Springer, Heidelberg (1989). https://doi.org/
10.1007/3-540-51084-2 14

13. Mora, T.: An introduction to commutative and non-commutative Gröbner bases.
Theor. Comput. Sci. 134, 131–173 (1994)

14. Mora, T.: Solving Polynomial Equation Systems IV: vol. 4. Buchberger Theory
and Beyond. Cambridge University Press, Cambridge (2016)

15. Pritchard, F.L.: The ideal membership problem in non-commutative polynomial
rings. J. Symb. Comput. 22(1), 27–48 (1996)

16. Raab, C.G., Regensburger, G., Poor, J.H.: Formal proofs of operator identities by
a single formal computation. https://arxiv.org/abs/1910.06165 (2019)

17. Stein, W., et al.: Sage Mathematics Software. The Sage Development Team (2020)
18. Wavrik, J.J.: Rewrite rules and simplification of matrix expressions. Comput. Sci.

J. Moldova 4(3), 360–398 (1996)
19. Youla, D.C., Jabr, H.A., Bongiorno, J.J.: Modern Wiener-Hopf design of optimal

controllers. II: the multivariable case. IEEE Trans. Autom. Control 21 319–338
(1976)

20. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall,
Upper Saddle River (1996)

https://oscar.computeralgebra.de
https://oscar.computeralgebra.de
http://www.singular.uni-kl.de
https://doi.org/10.1007/3-540-51084-2_14
https://doi.org/10.1007/3-540-51084-2_14
https://arxiv.org/abs/1910.06165

AutoMSC: Automatic Assignment of
Mathematics Subject Classification Labels

Moritz Schubotz1,2(B), Philipp Scharpf3, Olaf Teschke1, Andreas Kühnemund1,
Corinna Breitinger2,3, and Bela Gipp2,3

1 FIZ-Karlsruhe, Berlin, Germany
{moritz.schubotz,olaf.teschke,andreas.kuhnemund}@fiz-karlsruhe.de

2 Bergische Universität Wuppertal, Wuppertal, Germany
{schubotz,breitinger,gipp}@uni-wuppertal.de

3 University of Konstanz, Konstanz, Germany
{philipp.scharpf,corinna.breitinger,bela.gipp}@uni-konstanz.de

Abstract. Authors of research papers in the fields of mathematics, and
other math-heavy disciplines commonly employ the Mathematics Subject
Classification (MSC) scheme to search for relevant literature. The MSC
is a hierarchical alphanumerical classification scheme that allows librari-
ans to specify one or multiple codes for publications. Digital Libraries in
Mathematics, as well as reviewing services, such as zbMATH and Math-
ematical Reviews (MR) rely on these MSC labels in their workflows to
organize the abstracting and reviewing process. Especially, the coarse-
grained classification determines the subject editor who is responsible for
the actual reviewing process.

In this paper, we investigate the feasibility of automatically assigning
a coarse-grained primary classification using the MSC scheme, by regard-
ing the problem as a multi class classification machine learning task. We
find that the our method achieves an F1-score of over 77%, which is
remarkably close to the agreement of zbMATH and MR (F1-score of
81%). Moreover, we find that the method’s confidence score allows for
reducing the effort by 86% compared to the manual coarse-grained clas-
sification effort while maintaining a precision of 81% for automatically
classified articles.

Keywords: Document classification · Applications of machine
learning · Mathematical Subject Classification · Digital mathematical
libraries · Mathematical information retrieval

1 Introduction

zbMATH1 has classified more than 135k articles in 2019 using the Mathematics
Subject Classification (MSC) scheme [6]. With more than 6,600 MSC codes, this
classification task requires significant in-depth knowledge of various sub-fields of

1 https://zbmath.org/.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 237–250, 2020.
https://doi.org/10.1007/978-3-030-53518-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_15&domain=pdf
https://zbmath.org/classification/
https://zbmath.org/
https://doi.org/10.1007/978-3-030-53518-6_15

238 M. Schubotz et al.

mathematics to determine the fitting MSC codes for each article. In summary,
the classification procedure of zbMATH and MR is two-fold. First, all articles
are pre-classified into one of 63 primary subjects spanning from general topics
in mathematics (00), to integral equations (45), to mathematics education (97).
In a second step, subject editors assign fine-grained MSC codes in their area of
expertise, i.a. with the aim to match potential reviewers.

The automated assignments of MSC labels has been analyzed by Rehurek
and Sojka [9] in 2008 on the DML-CZ [13] and NUMDAM [3] full-text cor-
pus. They report a micro-averaged F1 score of 81% for their public corpus. In
2013 Barthel, Tönnies, and Balke performed automated subject classification for
parts of the zbMATH corpus [2]. They criticized the micro averaged F1 measure,
especially, if the average is applied only to the best performing classes. However,
they report a micro-averaged F1 score of 67.1% for the zbMATH corpus. They
suggested training classifiers for a precision of 95% and assigning MSC class
labels in a semi-automated recommendation setup. Moreover, they suggested to
measure the human baseline (inter-annotator agreement) for the classification
tasks. Moreover, they found that the combination of mathematical expressions
and textual features improves the F1 score for certain MSC classes substantially.
In 2014, Schöneberg and Sperber [11] implement a method that combined for-
mulae and text using an adapted Part of Speech Tagging approach. Their paper
reported a sufficient precision of >.75, however, it did not state the recall. The
proposed method was implemented and is currently being used especially to
pre-classify general journals [7] with additional information, like references. For
a majority of journals, coarse- and fine-grained codes can be found by statisti-
cally analyzing the MSC codes from referenced documents matched within the
zbMATH corpus. The editor of zbMATH hypothesizes that the reference method
outperforms the algorithm developed by Schöneberg and Sperber. To confirm or
reject this hypothesis was one motivation for this project.

The positive effect of mathematical features is confirmed by Suzuki and
Fujii [15], who measured the classification performance based on an arXiv and
mathoverflow dataset. In contrast, Scharpf et al. [10] could not measure a sig-
nificant improvement of classification accuracy for the arxiv dataset when incor-
porating mathematical identifiers. In their experiments Scharpf et al. evaluated
numerous machine learning methods, which extended [4,14] in terms of accuracy
and run-time performance, and found that complex compute-intensive neural
networks do not significantly improve the classification performance.

In this paper, we focus on the coarse-grained classification of the pri-
mary MSC subject number (pMSCn) and explore how current machine learning
approaches can be employed to automate this process. In particular, we compare
the current state of the art technology [10] with a part of speech (POS) prepro-
cessing based system customized for the application in zbMATH from 2014 [11].

https://msc2020.org

Automatic Assignment of Mathematics Subject Classification Labels 239

We define the following research questions:

1. Which evaluation metrics are most useful to assess the classifications?
2. Do mathematical formulae as part of the text improve the classifications?
3. Does POS preprocessing [11] improve the accuracy of classifications?
4. Which features are most important for accurate classification?
5. How well do automated methods perform in comparison to a human

baseline?

Fig. 1. Workflow overview.

2 Method

To investigate the given set of problems, we first created test and training
datasets. We then investigated the different pMSCn encodings, trained our mod-
els and evaluated the results, cf Fig. 1.

2.1 Generation of a Test and Training Dataset

Filter Current High Quality Articles: The zbMATH database has assigned MSC
codes to more than 3.6 M articles. However, the way in which mathematical
articles are written has changed over the last century, and the classification of
historic articles is not something we aim to investigate in this article. The first
MSC was created in 1990, and has since been updated every ten years (2000,
2010, and 2020) [5]. With each update, automated rewrite rules are applied to
map the codes from the old MSC to the next MSC version, which is connected
with a loss of accuracy of the class labels. To obtain a coherent and high quality
dataset for training and testing, we focused on the more recent articles from
2000 to 2019, which were classified using the MCS version 2010, and we only

https://zbmath.org/?q=cc%3A*

240 M. Schubotz et al.

considered selected journals2. Additionally, we restricted our selection to English
articles and limited ourselves to abstracts rather than reviews of articles. To
be able to compare methods that are based on references and methods using
text and title, we only selected articles with at least one reference that could
be matched to another article. In addition, we excluded articles that were not
yet published and processed. The list of articles is available from our website:
https://automsceval.formulasearchengine.com.

Splitting to Test and Training Set: After applying the filter criteria as mentioned
above, we split the resulting list of 442,382 articles into test and training sets.
For the test set, we aimed to measure the bias of our zbMATH classification
labels. Therefore, we used the articles for which we knew the classification labels
by the MR service as the training set from a previous research project [1]. The
resulting test set consisted of n = 32, 230 articles, and the training set contained
410,152 articles. To ensure that this selection did not introduce additional bias,
we also computed the standard ten-fold cross validation, cf. Sect. 3.

Definition of Article Data Format: To allow for reproducibility, we created a
dedicated dataset from our article selection, which we aim to share with other
researchers. However, currently, legal restrictions apply and the dataset can not
yet be provided for anonymous download at this date. However, we can grant
access for research purposes as done in the past [2]. Each of the 442,382 articles
in the dataset contained the following fields:

de. An eight-digit ID of the document3.
labels. The actual MSC codes (see Footnote 3).
title. The English title of the document, with LaTeX macros for mathematical

language [12].
text. The text of the abstract with LaTeX macros.
mscs. A comma separated list of MSC codes generated from the references.

These 5 fields were provided as CSV files to the algorithms. The mscs field
was generated as follows: For each reference in the document, we looked up the
MSC codes of the reference. For example, if a certain document contained the
references A,B,C that are also in the documents in zbMATH and the MSC
codes of A,B,C are a1 and a2, b1, and c1 − c3, respectively, then the field mscs
will read a1a2, b1, c1c2c3.

After training, we required each of our tested algorithms to return the fol-
lowing fields in CSV format for the test sets:

de (integer). Eight-digit ID of the document.
method (char(5)). Five-letter ID of the run.
pos (integer). Position in the result list.

2 The list of selected journals is available from https://zbmath.org/?q=dt%3Aj+st
%3Aj+py%3A2000-2019.

3 The fields de and labels must not be used as input to the classification algorithm.

https://automsceval.formulasearchengine.com
https://zbmath.org/?q=dt%3Aj+st%3Aj+py%3A2000-2019.
https://zbmath.org/?q=dt%3Aj+st%3Aj+py%3A2000-2019.

Automatic Assignment of Mathematics Subject Classification Labels 241

coarse (integer). Coarse-grained MSC subject number.
fine (char(5), optional). Fine-grained MSC code.
score (numeric, optional). Self-confidence of the algorithm about the result.

We ensured that the fields de, method and pos form a primary key, i.e., no two
entries in the result can have the same combination of values. Note that for the
current multi-class classification problem, pos is always 1, since only the primary
MSC subject number is considered.

2.2 Definition of Evaluation Metrics

While the assignment of all MSC codes to each article is a multi-label classi-
fication task, the assignment of the primary MSC subject, which we investi-
gate in this paper, is only a multi-class classification problem. With k = 63
classes, the probability of randomly choosing the correct class of size ci is rather
low Pi = ci

n . Moreover, the dataset is not balanced. In particular, the entropy
H = −∑k

i=1 Pi log Pi, can be used to measure the imbalance Ĥ = H
log k by

normalizing it to the maximum entropy log k.
To take into account the imbalance of the dataset, we used weighted versions

of precision p, recall r, and the F1 measure f . In particular, the precision p =
∑k

i=1 cipi

n with the class precision pi. r and F1 are defined analogously.
In the test set, no entries for the pMSCn 97 (Mathematics education) were

included, thus

Ĥ =
H

log k
=

3.44
log 62

= .83

Moreover, we eliminate the effect of classes with only few samples by disre-
garding all classes with less than 200 entries. While pMSCn with few samples
have little effect on the average metrics, the individual values are distracting
in plots and data tables. Choosing 200 as the minimum evaluation class size
reduces the number of effective classes to k = 37, which only has a minor effect
on the normalized entropy as it is raised to Ĥ = .85. The chosen value of 200
can be interactively adjusted in the dynamic result figures we made available
online4. Additionally, the individual values for Pi that were used to calculate H
are given in the column p in the table on that page. As one can experience in
the online version of the figures, the impact on the choice of the minimum class
size is insignificant.

2.3 Selection of Methods to Evaluate

In this paper, we compare 12 different methods for (automatically) determining
the primary MSC subject in the test dataset:

zb1 Reference MSC subject numbers from zbMATH.
4 https://autoMSCeval.formulasearchengine.com.

https://autoMSCeval.formulasearchengine.com

242 M. Schubotz et al.

mr1 Reference MSC subject numbers from MR.
titer According to recent research performed on the arXiv dataset [10], we chose

a machine learning method with a good trade-off between speed and perfor-
mance. We combined the title, abstract text, and reference mscs of the
articles via string concatenation. We encoded these string sources using the
TfidfVectorizer of the Scikit-learn5 python package. We did not alter the utf-8
encoding, and did not perform accent striping, or other character normaliza-
tion methods, with the exception of lower-casing. Furthermore, we used the
word analyzer without a custom stop word list, selecting tokens of two or
more alphanumeric characters, processing unigrams, and ignoring punctu-
ation. The resulting vectors consisted of float64 entries with l2 norm unit
output rows. This data was passed to Our encoder. The encoder was trained
on the training set to subsequently transform or vectorize the sources from the
test set. We chose a lightweight LogisticRegression classifier from the python
package Scikit-learn. We employed the l2 penalty norm with a 10−4 tolerance
stopping criterion and a 1.0 regularization. Furthermore, we allowed intercept
constant addition and scaling, but no class weight or custom random state
seed. We fitted the classifier using the lbfgs (Limited-memory BFGS) solver
for 100 convergence iterations. These choices were made based on a previous
study in which we clustered arXiv articles.

refs Same as titer, but using only the mscs as input6.
titls Same as titer, but using only the title as input (see Footnote 6).
texts Same as titer, but using only the text as input (see Footnote 6).
tite Same as titer, but without using the mscs as input (see Footnote 6).
tiref : Same as titer, but without using the abstract text as input (see

Footnote 6).
teref : Same as titer, but without using the title as input (see Footnote 6).
ref1 We used a simple SQL script to suggest the most frequent primary MSC

subject based on the mscs input. This method is currently used in production
to estimate the primary MSC subject.

uT1 We adjusted the JAVA program posLingue [11] to read from the new train-
ing and test sets. However, we did not perform a new training and instead
reused the model that was trained in 2014. However, for this run, we removed
all mathematical formulae from the title and the abstract text to generate
a baseline.

uM1 The same as uT1 but in this instance, we included the formulae. We slightly
adjusted the formula detection mechanism, since the way in which formulae
are written in zbMATH had changed [12]. This method is currently used in
production for articles that do not have references with resolvable mscs.

3 Evaluation and Discussion

After executing each of the methods described in the previous section, we cal-
culated the precision p, recall r, and F1 score f for each method, cf. Table 1.
5 https://swmath.org/software/8058 [8].
6 Each of these sources was encoded and classified separately.

https://swmath.org/software/8058

Automatic Assignment of Mathematics Subject Classification Labels 243

Overall, we find that results are similar whether we used zbMATH or MR as a
baseline in our evaluation. Therefore, we will use zbMATH as the reference for
the remainder of the paper. All data, including the test results using MR as the
baseline is available from: https://automsceval.formulasearchengine.com.

Table 1. Precision p, recall r and F1-measure f with regard to the baseline zb1 (left)
and mr1 (right).

p r f

zb1 1 1 1
mr1 0.814 0.814 0.812
titer 0.772 0.778 0.773
refs 0.748 0.753 0.746
titls 0.637 0.627 0.623
texts 0.699 0.709 0.699
ref1 0.693 0.648 0.652
uT1 0.656 0.642 0.645
uM1 0.655 0.639 0.644
tiref 0.76 0.764 0.76
teref 0.769 0.774 0.77
tite 0.713 0.722 0.713

p r f

zb1 0.817 0.807 0.81
mr1 1 1 1
titer 0.776 0.775 0.772
refs 0.743 0.743 0.737
titls 0.644 0.632 0.627
texts 0.704 0.709 0.699
ref1 0.693 0.646 0.652
uT1 0.653 0.636 0.639
uM1 0.652 0.632 0.636
tiref 0.762 0.761 0.758
teref 0.771 0.77 0.767
tite 0.72 0.724 0.715

Effect of Mathematical Expressions and Part-of-Speech Tags: By filtering out all
mathematical expressions in the current production method uT1 in contrast to
uM1 we could receive information on the impact of mathematical expressions on
classification quality. We found that the overall F1 score without mathematical
expressions fuT1 = 64.5% is slightly higher than the score with mathematical
expressions fuM1 = 64.4%. Here, the main effect is an increase in recall from
63.9% to 64.2%. Additionally, a class-wise investigation showed that for most
classes, uT1 outperformed uM1, cf. Fig. 2. Exceptions are pMSCn 46 (Functional
analysis) and 17 (Nonassociative rings and algebras) where the inclusion of math
tags raised the F1-score slightly.

Fig. 2. Mathematical symbols in title and abstract text do not improve the classifi-
cation quality. Method uT1 = left bar; method uM1 = right bar

https://automsceval.formulasearchengine.com

244 M. Schubotz et al.

We evaluated the effect of part of speech tagging (POS), by comparing tite
with uM1. ftite = .713 clearly outperformed fuM1 = .64. This held true for all
MSC subjects, cf. Fig. 3. We modified posLingo to output the POS tagged text
and used this text as input and retrained scikit learn classifier tite2. However,
this method did not lead to better results than tite.

Fig. 3. Part-of-speech tagging for mathematics does not improve the classification qual-
ity. Method uM1 = left bar, method tite = right bar.

Effect of Features and Human Baseline: The newly developed method combined
method [10] works best in a combined approach that uses title, abstract text,
and references titer ftiter = 77.3%. This method performs significantly better
than methods that omit either one of these features. The best performing single
feature method was refs frefs = 74.6%) followed by text ftext = 69.9% and
titls ftitls = 62.3%. Thus, automatically generating the MSC subject while
including the references appears to be a very valuable strategy. This becomes
evident also when comparing the scores of approaches that only considered two
features. For the approaches that excluded title (i.e. teref ftext = 77%) or
abstract text (i.e. tiref ftext = 76%), the performance remained notably higher
than when the approach excluded the reference mscs (tite ftext = 71.3%) How-
ever, it is also worth pointing out that the naive reference-based method, ref1
ftext = 65.2%, which is currently being used in production still performs more
poorly than just using tite despite this approach ignoring references. In con-
clusion, we can say that training a machine learning algorithm that weights all
information from the fine grained MSC codes is clearly better than the majority
vote of the references, cf. Fig. 4.

Even the best performing machine learning algorithm, titer with ftiter =
77.3%, is worth than using the classification by human experts from MR, the
other mathematics publication reviewing service, resulted in a baseline of mr1
fmr1 = 81.2%. However, there is no foundation that could allow us to determine
which of the primary MSC subjects, either from MR or zbMATH, are truly cor-
rect. Assigning a two-digit label to mathematical research papers – which often
cover overlapping themes and topics within mathematics – remains a challenge
even to humans, who struggle to conclusively label publications as belonging

Automatic Assignment of Mathematics Subject Classification Labels 245

Fig. 4. Machine learning method (refs, left) clearly outperforms current production
(ref1, right) method using references as only source for classification.

Fig. 5. For many pMSCn the best automatic method (titer, right) gets close to the
performance of the human baseline (mr1 left)

to only a single class. While for some classes, expert agreement is very high,
e.g. for class 20 agreement is 89.1%, for other classes, such as 82, agreement is
only at 47.6% regarding the F1 score, cf., Fig. 5. These discrepancies reflect the
intrinsic problem that mathematics cannot be fully reflected by a hierarchical
system. The differences in classifications made among the two reviewing services
are likely also a reflection of emphasizing different facets of evolving research,
which often derive from differences in the reviewing culture.

We also investigated the bias introduced by the non-random selection of the
training set. Performing ten fold cross validation on the entire dataset yielded
an accuracy of ftiter,10 = .776 with a standard deviation σtiter,10 = .002. Thus,
test set selection does not introduce a significant bias.

After having discussed the strengths and weaknesses of the individual meth-
ods tested, we now discuss how the currently best-performing method, titer,
can be improved. One standard tool to analyze misclassifications is a confusion

246 M. Schubotz et al.

Fig. 6. Confusion matrix titer

Fig. 7. Precision recall curve titer.

Automatic Assignment of Mathematics Subject Classification Labels 247

matrix, cf., Fig. 6. In this matrix, off-diagonal elements of the matrix indicate
that two sets of classes are often mixed by the classification algorithm. The x
axis shows the true labels, while the y axis shows the predicted labels. The most
frequent error of titer was that 68 (Computer science) was classified as 5 (Combi-
natorics). Moreover, 81 (Quantum theory) and 83 (Relativity and gravitational
theory) were often mixed up.

However, in general the number of misclassifications were small and there was
no immediate action that one could take to avoid special cases of misclassification
that do not involve a human expert.

Since titer outperforms both the text-based and reference based methods
currently used in zbMATH, we decided to develop a restful API that wraps our
trained model into a service. We use pythons fastAPI under unicorn to handle
higher loads. Our system is available as a docker container and can thus be
scaled on demand. To simplify development and testing, we provide a static
HTML page as a micro UI, which we call AutoMSC. This UI displays not only
lists/suggests the most likely primary MSC subjects but also the less likely MSC
subjects. We expect that our UI can support human experts, especially whenever
the most likely MSC subject seems unsuitable. The result is displayed as a
pie-chart, cf., Fig. 8 from https://automscbackend.formulasearchengine.com. To
use the system in practice, an interface to the citation matching component of
zbMATH would be desired to paste the actual references rather than the MSC
subjects extracted from the references. Moreover, looking at the precision-recall
curve (Fig. 7) for titer, suggests that one can also select a threshold for falling
back to manual classification. For instance, if one requires a precision that is
as high as the precision of the other human classifications by MR, one would
need to only consider suggestions with a score >0.5. This would automatically
classify 86.2% of the 135k articles being annually classified by subject experts at
zbMATH/MR and thus significantly reduce the number of articles that humans
must manually examine without a loss of classification quality. This is something
we might develop in the future.

4 Conclusion and Future Work

Returning to our research questions, we summarize our findings as follows: First,
we asked which metrics are best suited to assess classification quality. We demon-
strated that the classification quality for the primary MSC subject can be eval-
uated with classical information retrieval methods such as precision, recall and
F1-score. We share the observation Barthel, Tönnies, and Balke [2] that the aver-
ages do not reflect the performance of outliers, cf. Fig. 1, 2, 3 and 4. However,
for our methods the difference between the best and worst performing class was
significantly smaller than reported by [2].

Second, we wanted to find out whether taking into account the mathematical
formulae contained in publications could improve the accuracy of classifications.
In accordance with [10], we did not find evidence that mathematical expres-
sions improved pMSCn classification. However, we did not evaluate advanced

https://automscbackend.formulasearchengine.com

248 M. Schubotz et al.

encodings of mathematical formulae. This is will be a subject of future work, cf.
Fig. 1.

Third we evaluated the effect of POS-preprocessing [11] and found that mod-
ern machine learning methods do not benefit from the POS tagging based model
developed by [11], cf. Fig. 2.

Fourth we evaluated which features are most important for an accurate classi-
fication. We conclude that references have the highest prediction power, followed
by the abstract text and title.

Finally, we evaluated the performance of automatic methods in comparison
to a human baseline. We found that our best performing method has an F1

score of 77.2%. The manual classification is significantly better for most classes,
cf. Fig. 4. However, the self-reported score can be used to reduce the manual
classification effort by 86.2%, without a loss in classification quality.

In the future, we plan to extend our automated methods to predict full MSC
codes. Moreover, we would like to be able to assign pMSCn to document sec-
tions, since we realize that some research just does not fit into one of the classes.
We also plan to extend the application domain to other mathematical research
artifacts, such as blog posts, software, or dataset descriptions. As a next step,
we plan to generate pMSCn from authors using the same methods we applied
for references. We speculate that authors will have a high impact on the clas-
sification, since authors often publish in the same field. For this purpose, we
are leveraging our prior research on affiliation disambiguation, which could be
used as fallback method for junior authors, who have not yet established a track
record. Another extension is a better combination of the different features. Espe-
cially when performing research on the full MSC code-generation, we will need
to use a different encoding for the MSC from references and authors. However,
this new encoding requires more main memory for the training of the model
and cannot be done on a standard laptop. Thereafter, we will re-investigate the
impact of mathematical formulae since the inherently combined representation
of text and formulae was not successful.

Fig. 8. Classification frontend

Automatic Assignment of Mathematics Subject Classification Labels 249

Our work represents a further step in the automation of Mathematics Subject
Classification and can thus support reviewing services, such as zbMATH or Math-
ematical Reviews. For accessible exploration, we have made the best-performing
approaches available in our AutoMSC implementation and have shared our code
on our website. We envision that other application domains requiring an accurate
labeling of publications into their respective Mathematics Subject Classification,
for example, research paper recommendation systems, or reviewer recommenda-
tion systems, will also be able to benefit from this work. AutoMSC delivers
comparable results to human experts in the first stage of MSC labeling, all with-
out requiring manual labor or trained experts. In the future, zbMATH will use
our new method for all journals that used to employ the method by Schöneberg
and Sperber [11] introduced in 2014.

Acknowledgments. This work was supported by the German Research Founda-
tion (DFG grant GI 1259-1). The authors would like to express their gratitude to
Felix Hamborg, and Terry Ruas for their advice in the most recent machine learning
technology.

References

1. Bannister, A., et al.: Editorial: on the road to MSC 2020. EMS Newslett. 2018–
6(108), 3–4 (2018). https://doi.org/10.4171/news/108/1

2. Barthel, S., Tönnies, S., Balke, W.-T.: Large-scale experiments for mathematical
document classification. In: Urs, S.R., Na, J.-C., Buchanan, G. (eds.) ICADL 2013.
LNCS, vol. 8279, pp. 83–92. Springer, Cham (2013). https://doi.org/10.1007/978-
3-319-03599-4 10

3. Bouche, T., Labbe, O.: The new numdam platform. In: Geuvers, H., England, M.,
Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383,
pp. 70–82. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6 6

4. Evans, I.: Semi-supervised topic models applied to mathematical document classi-
fication. Ph.D. thesis, University of Bath, Somerset, UK (2017)

5. Ion, P., Sperber, W.: MSC 2010 in SKOS – the transition of the MSC to the
semantic web. Eur. Math. Soc. Newsl. 84(2012), 55–57 (2010)

6. Kühnemund, A.: The role of applications within the reviewing service zbMATH.
PAMM 16(1), 961–962 (2016). https://doi.org/10.1002/pamm.201610459

7. Mihaljević-Brandt, H., Teschke, O.: “Journal profiles and beyond: what makes a
mathematics journal “general”?” English. Eur. Math. Soc. Newsl. 91, 55–56 (2014)

8. Pedregosa, F., et al.: “Scikit-learn: machine learning in Python”. English. J. Mach.
Learn. Res. 12, 2825–2830 (2011)

9. Řeh̊uřek, R., Sojka, P.: Automated classification and categorization of mathemat-
ical knowledge. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M.,
Wiedijk, F. (eds.) CICM 2008. LNCS (LNAI), vol. 5144, pp. 543–557. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85110-3 44

10. Scharpf, P., et al.: Classification and clustering of arXiv documents, sections, and
abstracts comparing encodings of natural and mathematical language. In: Proceed-
ings of ACM/IEEE JCDL (2020)

https://doi.org/10.4171/news/108/1
https://doi.org/10.1007/978-3-319-03599-4_10
https://doi.org/10.1007/978-3-319-03599-4_10
https://doi.org/10.1007/978-3-319-62075-6_6
https://doi.org/10.1002/pamm.201610459
https://doi.org/10.1007/978-3-540-85110-3_44

250 M. Schubotz et al.

11. Schöneberg, U., Sperber, W.: POS tagging and its applications for mathematics
-Text Analysis in Mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 213–223.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3 16

12. Schubotz, M., Teschke, O.: “Four decades of TeX at zbMATH”. English. Eur.
Math. Soc. Newslett. 112, 50–52 (2019)

13. Sojka, P., Rehurek, R.: Classification of multilingual mathematical papers in DML-
CZ. In: Proceedings of the 1st Workshop on Recent Advances in Slavonic Natural
Languages Processing, RASLAN 2007, pp. 89–96. Masaryk University (2007)

14. Sojka, P., et al.: Quo vadis, math information retrieval. In: Horák, A., Rychlý, P.,
Rambousek, A., Tribun, E.U. (eds.) The 13th Workshop on Recent Advances in
Slavonic Natural Languages Processing, RASLAN 2019, Karlova Studanka, Czech
Republic, 6–8 December 2019, pp. 117–128 (2019)

15. Suzuki, T., Fujii, A.: Mathematical document categorization with structure of
mathematical expressions. In: 2017 ACM/IEEE Joint Conference on Digital
Libraries, JCDL 2017, Toronto, ON, Canada, 19-23 June 2017, pp. 119–128. IEEE
Computer Society (2017). https://doi.org/10.1109/JCDL.2017.7991566

https://doi.org/10.1007/978-3-319-08434-3_16
https://doi.org/10.1109/JCDL.2017.7991566

Maintaining a Library of Formal
Mathematics

Floris van Doorn1 , Gabriel Ebner2 , and Robert Y. Lewis2(B)

1 University of Pittsburgh, Pittsburgh, PA 15260, USA
fpvdoorn@gmail.com

2 Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
gebner@gebner.org, r.y.lewis@vu.nl

Abstract. The Lean mathematical library mathlib is developed by a
community of users with very different backgrounds and levels of expe-
rience. To lower the barrier of entry for contributors and to lessen the
burden of reviewing contributions, we have developed a number of tools
for the library which check proof developments for subtle mistakes in the
code and generate documentation suited for our varied audience.

Keywords: Formal mathematics · Library development · Linting

1 Introduction

As a tool for managing mathematical knowledge, a proof assistant offers many
assurances. Once a result has been formalized, readers can confidently believe
that the relevant definitions are fully specified, the theorem is stated correctly,
and there are no logical gaps in the proof. A body of mathematical knowledge,
represented by formal definitions and proofs in a single theorem proving envi-
ronment, can be trusted to be coherent.

Logical coherence, however, is only one of many properties that one could
wish of a mathematical corpus. The ideal corpus can be modified, extended, and
queried by users who do not have expert knowledge of the entire corpus or the
underlying system. Proof assistant libraries do not always fare so well in this
respect. Most of the large mathematical libraries in existence are maintained
by expert users with a significant time cost. While external contributions are
easily checked for logical consistency, it typically takes manual review to check
that contributions cohere with the system in other ways—e.g., that lemmas
are correctly marked for use with a simplification tactic. It can be difficult or
impossible for outsiders to understand the library well enough to contribute
themselves.

The first author is supported by the Sloan Foundation (grant G-2018-10067). The
second and third authors receive support from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant
agreement No. 713999, Matryoshka) and from the Dutch Research Council (NWO)
under the Vidi program (project No. 016.Vidi.189.037, Lean Forward).

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 251–267, 2020.
https://doi.org/10.1007/978-3-030-53518-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_16&domain=pdf
http://orcid.org/0000-0003-2899-8565
http://orcid.org/0000-0003-4057-9574
http://orcid.org/0000-0002-5266-1121
https://doi.org/10.1007/978-3-030-53518-6_16

252 F. van Doorn et al.

The mathlib library [15] is a corpus of formal mathematics, programming,
and tactics in the Lean proof assistant [16] that is managed and cultivated by a
community of users. The community encourages contributions from novice users,
and the rapid growth of the library has threatened to overwhelm its appointed
maintainers. The maintenance difficulty is compounded by the library’s extensive
use of type classes and context-dependent tactics. Misuse of these features is not
always easy to spot, but can lead to headaches in later developments.

To ease the burdens on new users and maintainers alike, we have incorpo-
rated into mathlib tools for checking meta-logical properties of declarations and
collecting, generating, and displaying documentation in an accessible way. The
use of these tools has already had a large impact on the community. We aim here
to explain the goals and design principles of these tools. While some details are
specific to Lean and mathlib, we believe that these considerations apply broadly
to libraries of formal mathematical knowledge.

2 Lean and mathlib

Lean offers a powerful metaprogramming framework that allows Lean programs
to access the system’s syntax and core components [8]. All of the linting tools
described in Sect. 3 are implemented in Lean, without the need for external
plugins or dependencies. They are distributed as part of the mathlib library.

Lean metaprograms are frequently used to implement tactics, which trans-
form the proof state of a declaration in progress. They can also implement top-
level commands, which interact with an environment outside the context of a
proof. Examples include #find, which searches for declarations matching a pat-
tern, and mk_simp_attribute, which defines a new collection of simplification
lemmas. Transient commands like #find, which do not modify the environment,
customarily start with #. Tactics and commands interact with the Lean environ-
ment and proof state through the tactic monad, which handles side effects and
failure conditions in a purely functional way. Finally, Lean supports tagging dec-
larations with attributes as a way to store metadata. Within the tactic monad,
metaprograms can access the list of declarations tagged with a certain attribute.

The mathlib project is run by a community of users and encourages contri-
butions from people with various backgrounds. The community includes many
domain experts, people with expert knowledge of the mathematics being formal-
ized but who are less familiar with the intricacies of the proof assistant. Linting
and documentation are useful for every user of every programming language, but
are especially helpful for such domain experts, since they often work on deep and
intricate implementations without a broad view of the library.

An example of this is seen in mathlib’s structure hierarchy [15, Sect. 4]. The
library extensively uses type classes to allow definitions and proofs to be stated
at the appropriate level of generality without duplication. Type classes are a
powerful tool, but seemingly innocent anti-patterns in their use can lead to
unstable and unusable developments. Even experienced users find it difficult to
avoid these patterns, and they easily slip through manual code review.

Maintaining a Library of Formal Mathematics 253

The mathlib library and community are growing at a fast pace. As of May 15,
2020, the library contains over 170,000 lines of non-whitespace, non-comment
code, representing a 25% increase over five months, and 42,000 declarations,
excluding internal and automatically generated ones, a 23% increase. Contribu-
tions have been made by 85 people, a 16% increase over the same time period.
264 commits were made to the mathlib git repository in April 2020; while a
small number were automatically generated, each commit typically corresponds
to a single approved pull request. We display more statistics about the project’s
growth on the community website.1 The library covers a wide range of subject
matter, enough to serve as a base for numerous projects that have formalized
complex and recent mathematical topics [5,7,11].

3 Semantic Linting

Static program analysis, the act of analyzing computer code without running
the code, is widely used in many programming languages. An example of this is
linting, where source code is analyzed to flag faulty or suspicious code. Linters
warn the user about various issues, such as syntax errors, the use of undeclared
variables, calls to deprecated functions, spacing and formatting conventions, and
dangerous language features.

In typed languages like Lean, some of these errors are caught by the elabo-
rator or type checker. The system will raise an error if a proof or program has a
different type than the declared type or if a variable is used that has not been
introduced. However, other problems can still be present in developments that
have been accepted by Lean. It is also possible that there are problems with
the metadata of a declaration, such as its attributes or documentation. These
mistakes are often not obvious at the time of writing a declaration, but will
manifest at a later time. For example, an instance might be declared that will
never fire, or is likely to cause the type class inference procedure to loop.

We have implemented a package of semantic linters in mathlib to flag these
kinds of mistakes. These linters are semantic in the sense that they take as input
a fully elaborated declaration and its metadata. This is in contrast to a syntactic
linter, which takes as input the source code as plain text. The use of semantic
linters allows us to automatically check for many commonly made mistakes,
using the abstract syntax tree (the elaborated term in Lean’s type theory) for
the type or value of a declaration. Syntactic linters would allow for testing of e.g.
the formatting of the source code, but would not help with many of the tests we
want to perform.

The linters can be used to check one particular file or all files in mathlib.
Running the command #lint at any point in a file prints all the linter errors
up to that line. The command #lint_mathlib tests all imported declarations
in mathlib. Occasionally a declaration may be permitted to fail a lint test, for
example, if it takes an unused argument to satisfy a more general interface. Such
lemmas are tagged with the attribute @[nolint], which takes a list of tests that
1 https://leanprover-community.github.io/mathlib stats.html.

https://leanprover-community.github.io/mathlib_stats.html

254 F. van Doorn et al.

/-- Reports definitions and constants that are missing doc strings -/
meta def doc_blame_report_defn : declaration → tactic (option string)
| (declaration.defn n _ _ _ _ _) := doc_string n >> return none <|>

return "def missing doc string"
| (declaration.cnst n _ _ _) := doc_string n >> return none <|> return

"constant missing doc string"
| _ := return none

/-- A linter for checking definition doc strings -/
@[linter, priority 1450] meta def linter.doc_blame : linter :=

{ test := λ d, mcond (bnot <$> has_attribute′ �instance d.to_name)
(doc_blame_report_defn d) (return none),

no_errors_found := "No definitions are missing documentation.",
errors_found := "DEFINITIONS ARE MISSING DOCUMENTATION STRINGS" }

Fig. 1. A linter that tests whether a declaration has a documentation string.

the declaration is allowed to fail. The continuous integration (CI) workflow of
mathlib automatically runs the linters on all of mathlib for every pull request
made to the library.

For some of the mistakes detected by our linters, it is reasonable to ask
whether they should even be allowed by the system in the first place. The core
Lean tool aims to be small, permissive, and customizable; enforcing our linter
rules at the system level would cut against this philosophy. Projects other than
mathlib may choose to follow different conventions, or may be small enough
to ignore problems that hinder scalability. Stricter rules, of course, can create
obstacles to finishing a project. By incorporating our checks into our library
instead of the core Lean system, we make them available to all projects that
depend on mathlib without forcing users to comply with them.

3.1 Linter Interface

A linter is a wrapper around a metaprogram with type declaration → tactic

(option string). Given an input declaration d, the test function returns none if
d passes the test and some error_msg if it fails. These test functions work within
the tactic monad in order to access the elaborator and environment, although
some are purely functional and none modify the environment. The type linter

bundles such a test function with formatting strings.
The package of linters is easily extended: a user simply defines and tags a

declaration of type linter. In Fig. 1 one sees the full definition of the doc_blame

linter, described in Sect. 3.2.
We have focused on implementing these linters with actionable warning mes-

sages. Since the errors they detect are often subtle and can seem mysterious to
novice users, we try to report as clearly as possible what should change in a
declaration in order to fix the warning.

Maintaining a Library of Formal Mathematics 255

3.2 Simple Linters

A first selection of mathlib linters checks for simple mistakes commonly made
when declaring definition and theorems.

Duplicated Namespaces. Declaration names in Lean are hierarchical, and it is
typical to build an interface for a declaration in its corresponding namespace.
For example, functions about the type list have names such as list.reverse

and list.sort. Lean’s namespace sectioning command inserts these prefixes auto-
matically. However, users often write a lemma with a full name and then copy
it inside the namespace. This creates identifiers like list.list.reverse; it can
be difficult to notice the duplication without careful review. The dup_namespace

linter flags declarations whose names contain repeated components.

Definitions vs. Theorems. Lean has separate declaration kinds for definitions
and theorems. The subtle differences relate to byte code generation and parallel
elaboration. It is nearly always the case that a declaration should be declared
as a theorem if and only if its type is a proposition. Because there are rare
exceptions to this, the system does not enforce it. The def_lemma linter checks
for this correspondence, so that the user must explicitly approve any exceptions.

Illegal Constants. The Lean core library defines a > b to be b < a, and similarly
for a ≥ b. These statements are convertible, but some automation, including the
simplifier, operates only with respect to syntactic equality. For this reason, it is
convenient to pick a normal form for equivalent expressions. In mathlib, we prefer
theorems to be stated in terms of < instead of >. The ge_or_gt linter checks that
the disfavored constants do not appear in the types of declarations.

Unused Arguments. A very common beginner mistake is to declare unneces-
sary arguments to a definition or theorem. Lean’s useful mechanisms for auto-
inserting parameters in namespaces and sections can unfortunately contribute
to this. The unused_arguments linter checks that each argument to a declaration
appears in either a subsequent argument or the declaration type or body.

Missing Documentation. The mathlib documentation guidelines require every
definition to have a doc string (Sect. 4). Since doc strings are accessible by
metaprograms, we are able to enforce this property with a linter, called doc_blame

(Fig. 1). Missing doc strings are the most common linter error caught in CI.

3.3 Type Class Linters

Lean and mathlib make extensive use of type classes [21] for polymorphic dec-
larations. Of the 42,000 declarations in mathlib, 465 are type classes and 4600
are type class instances. In particular, type classes are used to manage the hier-
archy of mathematical structures. Their use allows definitions and theorems to

256 F. van Doorn et al.

be stated at high levels of generality and then applied in specific cases with-
out extra effort. Arguments to a declaration are marked as instance implicit by
surrounding them with square brackets. When this declaration is applied, Lean
runs a depth-first backward search through its database of instances to satisfy
the argument. Type classes are a powerful tool, but users often find the under-
lying algorithms opaque, and their misuse can lead to performance issues [20].
A collection of linters aims to warn users about this misuse.

Guiding Type Class Resolution. Instances can be assigned a positive integer
priority. During type class resolution the instances with a higher priority are
tried first. Priorities are optional, and in mathlib most instances are given the
default priority. Assigning priorities optimally is difficult. On the one hand, we
want to try instances that are used more frequently first, since they are most
likely to be applicable. On the other hand, we want to try instances that fail more
quickly first, so that the depth-first search does not waste time on unnecessary
searches.

While we cannot automatically determine the optimal priority of instances,
there is one class of instances we want to apply last, namely the forgetful
instances. A forgetful instance is an instance that applies to every goal, like the
instance comm_group α → group α, which forgets that a commutative group is
commutative. Read backward as in the type class inference search, this instance
says that to inhabit group α it suffices to inhabit comm_group α.

Forgetful instances contrast with structural instances such as comm_group α

→ comm_group β → comm_group (α × β). We want to apply structural instances
before forgetful instances, because if the conclusion of a structural instance uni-
fies with the goal, it is almost always the desired instance. This is not the case
for forgetful instances, which are always applicable, even if the extra structure or
properties are not available for the type in question. In this case, the type class
inference algorithm will do an exhaustive search of the new instance problem,
which can take a long time to fail. The instance_priority linter enforces that
all forgetful instances have priority below the default.

Another potential problem with type class inference is the introduction of
metavariables in the instance search. Consider the following definition of an R-
module type class.

class module (R : Type u) (M : Type v) :=
(to_ring : ring R)
(to_add_comm_group : add_comm_group M)
(to_has_scalar : has_scalar R M)
/- some propositional fields omitted -/

If we make the projection module.to_ring an instance, we have an instance of
the form module R M → ring R. This means that during type class inference,
whenever we search for the instance ring α, we will apply module.to_ring and
then search for the instance module α ?m, where ?m is a metavariable. This type
class problem is likely to loop, since most module instances will apply in the case
that the second argument is a variable.

Maintaining a Library of Formal Mathematics 257

To avoid this, in mathlib the type of module actually takes as arguments the
ring structure on R and the group structure on M. The declaration of module
looks more like this:

class module (R : Type u) (M : Type v) [ring R] [add_comm_group M] :=
(to_has_scalar : has_scalar R M)
/- some propositional fields omitted -/

Using this definition, there is no instance from modules to rings. Instead, the
ring structure of R is carried as an argument to the module structure on M. The
dangerous_instance raises a warning whenever an instance causes a new type
class problem that has a metavariable argument.

Misused Instances and Arguments. Misunderstanding the details of type class
inference can cause users to write instances that can never be applied. As an
example, consider the theorem which says that given a continuous ring homomor-
phism f between uniform spaces, the lift of f to the completion of its domain
is also a ring homomorphism. The predicate is_ring_hom f is a type class in
mathlib, and this theorem was originally written as a type class instance:

is_ring_hom f → continuous f → is_ring_hom (completion.map f)

However, continuous f is not a type class, and this argument does not appear
in the codomain is_ring_hom (completion.map f). There is no way for the type
class resolution mechanism to infer this argument and thus this instance will
never be applied. The impossible_instance linter checks declarations for this
pattern, warning if a non-type class argument does not appear elsewhere in the
type of the declaration.

A dual mistake to the one above is to mark an argument as instance
implicit even though its type is not a type class. Since there will be no type
class instances of this type, such an argument will never be inferable. The
incorrect_type_class_argument linter checks for this. While the linter is very
simple, it checks for a mistake that is difficult to catch in manual review, since
it requires complete knowledge of the mathlib instance database.

Missing and Incorrect Instances. Most theorems in mathlib are type-
polymorphic, but many hold only on inhabited types. (Readers used to HOL-
based systems should note that Lean’s type theory permits empty types, e.g.
an inductive type with no constructors.) Inhabitedness is given by a type class
argument, so in order to apply these theorems, the library must contain many
instances of the inhabited type class. The has_inhabited_instance linter checks,
for each concrete Type-valued declaration, that conditions are given to derive
that the type is inhabited.

The inhabited type class is itself Type-valued. One can computably obtain
a witness t : T from an instance of inhabited T; it is possible to have multiple
distinct (nonconvertible) instances of inhabited T. Sometimes the former prop-
erty is not necessary, and sometimes the latter property can create problems. For
instance, instances deriving inhabited T from has_zero T and has_one T would

258 F. van Doorn et al.

@[simp] lemma zero_add (x : N) : 0 + x = x := /- . . . -/

example (x : N) : 0 + (0 + x) = x := by simp

Fig. 2. Example usage of the simplifier.

lead to non-commuting diamonds in the type class hierarchy. To avoid this, math-
lib defines a weaker type class, nonempty, which is Prop-valued. Lean propositions
are proof-irrelevant, meaning that any two terms of the same Prop-valued type
are indistinguishable. Thus nonempty does not lead to non-commuting diamonds,
and is safe to use in situations where inhabited instances would cause trouble.

The inhabited_nonempty linter checks for declarations with inhabited argu-
ments that can be weakened to nonempty. Suppose that a Prop-valued declaration
takes an argument h : inhabited T. Since Lean uses dependent types, h may
appear elsewhere in the type of the declaration. If it doesn’t, it can be weakened
to nonempty T, since the elimination principles are equivalent for Prop-valued tar-
gets. Weakening this argument makes the declaration more widely applicable.

3.4 Linters for Simplification Lemmas

Lean contains a simp tactic for (conditional) term rewriting. Similar tactics,
such as Isabelle’s simp [17], are found in other proof assistants. Users can tag
theorems using the @[simp] attribute. The theorems tagged with this attribute
are collectively called the simp set. The simp tactic uses lemmas from the simp
set, optionally with extra user-provided lemmas, to rewrite until it can no longer
progress. We say that such a fully simplified expression is in simp-normal form
with respect to the given simp set.

The simplifier is used widely: mathlib contains over 7000 simp lemmas, and
the string by simp occurs almost 5000 times, counting only a small fraction of its
invocations. However, care needs to be taken when formulating simp lemmas. For
example, if both a = b and b = a are added as simp lemmas, then the simplifier
will loop. Other mistakes are more subtle. We have integrated several linters
that aid in declaring effective simp lemmas.

Redundant Simplification Lemmas. We call a simp lemma redundant if the sim-
plifier will never use it for rewriting. This redundancy property depends on the
whole simp set: a simp lemma is not redundant by itself, but due to other simp
lemmas that break or subsume it. One way a simp lemma can be redundant is
if its left-hand side is not in simp-normal form.

Simplification proceeds from the inside out, starting with the arguments of a
function before simplifying the enclosing term. Given a term f (0 + a), Lean will
first simplify a, then it will simplify 0 + a to a using the simp lemma zero_add

(Fig. 2), and then finally simplify f a.

Maintaining a Library of Formal Mathematics 259

A lemma stating f (0 + x) = g x will never be used by the simplifier: the
left-hand side f (0 + x) contains the subterm 0 + x which is not in simp-normal
form. Whenever the simplifier tries to use this lemma to rewrite a term, the
arguments to + have already been simplified, so this subterm can never match.

It is often not immediately clear whether a term is in simp-normal form. The
first version of the simp_nf linter only checked that the arguments of the left-
hand side of a simp lemma are in simp-normal form. This first version identified
more than one hundred lemmas across mathlib violating this condition. In some
cases, the lemma satisfied this condition in the file where it was declared, but
later files contained simp lemmas that simplified the left-hand side.

Simp lemmas can also be redundant if one simp lemma generalizes another
simp lemma. The simplifier always picks the last simp lemma that matches
the current term. (It is possible to override this order using the @[priority]

attribute.) If a simp lemma is followed by a more general version, then the first
lemma will never be used, such as length_singleton in the following example. It
is easy to miss this issue at first glance since [x] and x::xs look very different,
but [x] is actually parsed as x::[].

@[simp] lemma length_singleton : length [x] = 1 := rfl
@[simp] lemma length_cons : length (x::xs) = length xs + 1 := rfl

Both of these issues are checked by the simp_nf linter. It runs the simplifier
on the left-hand side of the simp lemma, and examines the proof term returned
by the simplifier. If the proof of the simplification of the left-hand side uses the
simp lemma itself, then the simp lemma is not redundant. In addition, we also
assume that the simp lemma is not redundant if the left-hand side does not
simplify at all, as is the case for conditional simp lemmas. Otherwise the linter
outputs a warning including the list of the simp lemmas that were used.

Commutativity Lemmas. Beyond conditional term rewriting, Lean’s simplifier
also has limited support for ordered rewriting with commutativity lemmas
such as x + y = y + x. Naively applying such lemmas clearly leads to non-
termination, so the simplifier only uses these lemmas if the result is smaller
as measured by a total order on Lean terms. Rewriting with commutativity
lemmas results in nice normal forms for expressions without nested applications
of the commutative operation. For example, it reliably solves the goal f (m +

n) = f (n + m). However, in the presence of nested applications, the results are
unpredictable:

example (a b : Z) : (a + b) + -a = b := by simp /- works -/
example (a b : Z) : a + (b + -a) = b := by simp /- fails -/

The simp_comm linter checks that the simp set contains no commutativity lemmas.

Variables as Head Symbols. Due to the implementation of Lean’s simplifier, there
are some restrictions on simp lemmas. One restriction is that the head symbol
of the left hand side of a simp lemma must not be a variable. For example, in
the hypothetical (conditional) lemma

260 F. van Doorn et al.

∀ f, is_homomorphism f → f (x + y) = f x + f y

the left-hand side has head symbol f, which is a bound variable, and therefore
the simplifier will not rewrite with this lemma. The simp_var_head linter ensures
that no such lemmas are accidentally added to the simp set.

4 Documentation

Programming language documentation serves very different purposes for differ-
ent audiences, and proof assistant library documentation is no different. When
creating documentation for Lean and mathlib, we must address users who

– are new to Lean and unfamiliar with its syntax and paradigms;
– would like an overview of the contents of the library;
– would like to understand the design choices made in an existing theory;
– would like a quick reference to the interface for an existing theory;
– need to update existing theories to adjust to refactorings or updates;
– would like to learn to design and implement tactics or metaprograms; and
– would like a quick reference to the metaprogramming interface.

Many of these goals are best served with user manuals or tutorials [2]. Such
documents are invaluable, but there is a high cost to maintaining and updat-
ing them. They are most appropriate for material that does not often change,
such as the core system syntax and logical foundations. From the perspective
of library maintenance, we are particularly interested in internal documenta-
tion, that is, documentation which is directly written in the mathlib source files.
Since the library evolves very quickly, it is essential to automatically generate
as much of the reference material as possible. Furthermore, human-written text
should be close to what it describes, to make it harder for the description and
implementation to diverge.

We focus here on a few forms of this internal documentation. Module docu-
mentation, written at the top of a mathlib source file, is intended to describe the
theory developed in that file, justify its design decisions, and explain how to use
it in further developments. (A Lean source file is also called a module.) Declara-
tion doc strings are written immediately before definitions and theorems. They
describe the behavior or content of their subject declarations. In supported edi-
tors, these doc strings are automatically displayed when the cursor hovers over
a reference to the declaration. Decentralized documentation is not localized to a
particular line or file of the library, although it may originate in a certain place;
it is expected to be collected and displayed post hoc. An example of this is tactic
documentation: mathlib defines hundreds of interactive tactics in dozens of files,
but users expect to browse them all on a single manual page.

Some features of proof assistants (and of Lean and mathlib in particular)
encourage a different style of documentation from traditional programming lan-
guages. Since Lean propositions are proof-irrelevant, only the statement of a
theorem, not its proof term, can affect future declarations. Thus theorems are

Maintaining a Library of Formal Mathematics 261

self-documenting in a certain sense: the statement of a theorem gives a complete
account of its content, in contrast to a definition of type N → N, for example. We
require doc strings on all mathlib definitions but allow them to be omitted from
theorems. While it is often helpful to have the theorem restated or explained in
natural language, the manual burden of writing and maintaining these strings
for the large amount of simple lemmas in mathlib outweighs the gain of the nat-
ural language restatement. Nonetheless, doc strings are strongly encouraged on
important theorems and results with nonstandard statements or names.

4.1 Generation Pipeline

In the style of many popular programming languages, we generate and publish
HTML documentation covering the contents of mathlib. The generation is part
of mathlib’s continuous integration setup.

Perhaps unusually for this kind of tool, our generator does not examine the
mathlib source files. Instead, it builds a Lean environment that imports the entire
library and traverses it using a metaprogram. The metaprogramming interface
allows access to the file name, line number, and doc string for any particular dec-
laration, along with module doc strings. By processing a complete environment
we can display terms using notation declared later in the library, and include
automatically generated declarations that do not appear in the source. We can
also associate global information with declarations: for example, we can display
a list of instances for each type class.

The generation metaprogram produces a JSON file that contains all informa-
tion needed to print the module, declaration, and decentralized documentation.
A separate script processes this database into a searchable HTML website.2

4.2 Declaration Display

The majority of the documentation is oriented around modules. For each Lean
source file in mathlib, we create a single HTML page displaying the module
documentation and information for each declaration in that file. Declarations
appear in the same order as in the source, with an alphabetical index in a side
panel. For each declaration, we print various pieces of information (Fig. 3).

The declaration name is printed including its full namespace prefix. Lean
declarations have four possible kinds: theorem, definition, axiom, and constant.
We print the declaration kind and use it to color the border of the entry for a
visual cue. The type of the declaration is printed with implicit arguments hidden
by default. This gives an easy reference as to how the declaration can be applied.
Each type can be expanded to display all arguments. When a declaration has a
doc string, it is displayed beneath the type.

Lean represents the type former and constructors of an inductive type as
separate constants. We display them together, mirroring the Lean syntax for an

2 https://leanprover-community.github.io/mathlib docs/.

https://leanprover-community.github.io/mathlib_docs/

262 F. van Doorn et al.

Fig. 3. The generated documentation entry for the normed_space type class. The
implicit arguments can be expanded by clicking on {. . .}.

inductive definition. Similarly, we print the constructor and fields of a structure
mirroring the input syntax.

We do not display all of the attributes applied to a declaration, but show those
in a predefined list, including simp and class. For declarations tagged as type
classes, we display a collapsible list of instances of this class that appear elsewhere
in the library. For definitions, we display a collapsible list of the equational
lemmas that describe their associated reduction rules. We also link to the exact
location where the declaration is defined in the source code.

We believe that this display achieves many of our design goals. The module
documentation provides an overview of a particular theory for newcomers and
general implementation details for experts. The declaration display serves as
an API reference, displaying information concisely with more details readily
available. The same framework works to document both the formalization and
the metaprogramming components of mathlib.

4.3 Tactic Database

Lean proofs are often developed using tactics. Custom tactics can be written
in the language of Lean as metaprograms, and mathlib includes many such tac-
tics [15, Sect. 6]. It is essential for us to provide an index of the available tools
explaining when and how to use them. Tactic explanations are an example of
decentralized documentation. Their implementations appear in many different
files, interspersed with many other declarations, but users must see a single uni-
fied list. These same concerns apply to the commands defined in mathlib, as well
as to attributes and hole commands, which we do not discuss in this paper.

It is inconvenient to maintain a database of tactics separate from the library.
Since mathlib changes rapidly, such a database would likely diverge from the

Maintaining a Library of Formal Mathematics 263

structure tactic_doc_entry :=
(entry_name : string)
(category : doc_category)
(decl_names : list name)
(tags : list string := [])
(description : string := "")
(inherit_description_from : option name := none)

add_tactic_doc
{ entry_name := "linarith",

category := doc_cagetory.tactic,
tags := ["arithmetic", "decision procedure"],

decl_names := [�tactic.interactive.linarith] }

Fig. 4. The information stored in a tactic documentation entry, and the standard way
to register an entry. The text associated with this entry will be the declaration doc
string of tactic.interactive.linarith.

library before long. In addition, the doc strings for tactics—which appear as
tooltips in supported editors—often contain the same text as a tactic database
entry. To avoid these issues, we provide a command add_tactic_doc that registers
a new tactic documentation entry. Another command retrieves all tactic doc
entries that exist in the current environment.

A tactic doc entry (Fig. 4) contains six fields. The command add_tactic_doc

takes this information as input. To avoid duplicating information, the
description field is optional, as this string has often already been written as
a declaration doc string. When description is empty, the command will source
it from the declaration named in inherit_description_from (if provided) or the
declaration named in decl_names (if this list has exactly one element). The HTML
generation tool links each description to its associated declarations.

The entry_name field titles the entry. This is typically the name of the tactic or
command, and is used as the header of the doc entry. The category field is either
tactic, command, hole_command, or attribute. These categories are displayed on
separate pages. The decl_names field lists the declarations associated with this
doc entry. Many entries document only a single tactic, in which case this list will
contain one entry, the implementation of this tactic.

The tags field contains an optional list of tags. They can be used to filter
entries in the generated display. The command can be called at any point in any
Lean file, but is typically used immediately after a new tactic is defined, to keep
the documentation close to the implementation in the source code. The HTML
display allows the user to filter declarations by tags—e.g. to view only tactics
related to arithmetic.

4.4 Library Notes

The interface surrounding a definition is often developed in the same file as that
definition. We typically explain the design decisions of a given module in the

264 F. van Doorn et al.

-- declare a library note about instance priority
/-- Certain instances always apply during type class resolution. . . -/
library_note "lower instance priority"

-- reference a library note in a declaration doc string
/-- see Note [lower instance priority] -/
@[priority 100]
instance t2_space.t1_space [t2_space α] : t1_space α := . . .

-- print all existing library notes
run_cmd get_library_notes >>= trace

Fig. 5. Library notes can be declared, referenced, and collected anywhere in mathlib.

file-level documentation. However, some design features have a more distributed
flavor. An example is the priority of type class instances (Sect. 3.3). There are
guidelines for choosing a priority for a new instance, and an explanation why
these guidelines make sense, but this explanation is not associated with any
particular module: it justifies design decisions made across dozens of files.

We use a mechanism that we call library notes (Fig. 5), inspired by a tech-
nique used in the Glasgow Haskell Compiler [14] project to document these dis-
tributed design decisions. A library note is similar to a module doc string, but
it is identified by a name rather than a file and line. As with tactic doc entries,
we provide commands in mathlib to declare new library notes and retrieve all
existing notes.

The documentation processing tool generates an HTML page that displays
every library note in mathlib. When these notes are referenced in other docu-
mentation entries with the syntax Note [note name], they are linked to the entry
on the notes page. Library notes are also often referenced in standard comments
that are not displayed in documentation. These references are useful for library
developers to justify design decisions in places that do not face the public.

5 Conclusion

Although there are a growing number of large libraries of formal proofs, both
mathematical and otherwise, little has been written about best practices for
maintaining and documenting these libraries. Ringer et al. [18] note the gap
between proof engineering and software engineering in this respect. Andronick [1]
describes the large-scale deployment of the seL4 verified microkernel, focusing on
the social factors that have led to its success; Bourke et al. [4] describe technical
aspects of maintaining this project. Other discussions of large libraries [3,10]
touch on similar topics. Wenzel [22] explains the infrastructure underlying the
Isabelle Archive of Formal Proofs (AFP), including progress toward building the
AFP with semantic document markup.

Maintaining a Library of Formal Mathematics 265

Sakaguchi [19] describes a tool for checking and validating the hierarchy of
mathematical structures in the Coq Mathematical Components library [13], a
task in the same spirit as our type class linters. Cohen et al. [6] implement a
related tool which greatly simplifies changing this hierarchy.

It is hard to quantify the effect that our linters and documentation have had
on the mathlib community. Fixing issues identified by the instance_priority and
dangerous_instance linters led to performance boosts in the library. Removing
unusable instances and simplification lemmas has also improved performance
and decluttered trace output. More noticeable is the effect on the workload of
maintainers, who can now spend more review time on the deeper parts of library
submissions. Similarly, inexperienced contributors worry less about introducing
subtle mistakes into the library. Users at all levels report frequent use of the
HTML documentation, especially to find information that is not easily available
in an interactive Lean session, such as the list of instances of a given type class.

So far we have only implemented the very basic sanity checks on simp lemmas
described in Sect. 3.4. There are also other properties of term rewriting systems
that we want for the simp set, such as confluence and termination. Kaliszyk and
Sternagel [12] have used completion of term rewriting systems to automatically
derive a simp set for the HOL Light standard library. We plan to implement a
more manual approach, where a linter detects the lack of local confluence and
prints a list of equations for the non-joinable critical pairs. It is then up to the
user to decide how to name, orient, and generalize these new equations.

The current linter framework considers each declaration locally, but we antic-
ipate the need for global tests. The simp_nf linter already goes beyond strictly
local checking: it considers the entire simp set. Another global linter could check
the termination of the simp set. This is a much harder challenge, since checking
termination is undecidable in general. We plan to investigate the integration of
external termination checkers such as AProVE [9].

While many of the features we present are specific to Lean, we believe that
the general considerations apply more broadly: automated validation and docu-
mentation seem essential for a sustainable and scalable library of formal proofs.
Especially in regard to documentation, there is a definite path for coordination
between libraries and systems, possibly aided by tools from the mathematical
knowledge management community.

Acknowledgments. We thank Jeremy Avigad and Jasmin Blanchette for comments
on a draft of this paper, and Bryan Gin-ge Chen for many contributions to the mathlib
documentation effort.

References

1. Andronick, J.: Successes in deployed verified software (and insights on key social
factors). In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 11–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30942-8 2

https://doi.org/10.1007/978-3-030-30942-8_2
https://doi.org/10.1007/978-3-030-30942-8_2

266 F. van Doorn et al.

2. Avigad, J., de Moura, L., Kong, S.: Theorem Proving in Lean. Carnegie Mellon
University (2014)

3. Bancerek, G., et al.: The role of the Mizar Mathematical Library for interactive
proof development in Mizar. J. Autom. Reasoning 61(1–4), 9–32 (2018). https://
doi.org/10.1007/s10817-017-9440-6

4. Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in
managing large-scale proofs. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI),
vol. 7362, pp. 32–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31374-5 3

5. Buzzard, K., Commelin, J., Massot, P.: Formalising perfectoid spaces. In: Proceed-
ings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, pp. 299–312. Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3372885.3373830

6. Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy Builder: algebraic hierarchies made
easy in Coq with Elpi, February 2020. https://hal.inria.fr/hal-02478907

7. Dahmen, S.R., Hölzl, J., Lewis, R.Y.: Formalizing the solution to the cap set prob-
lem. In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference
on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 141, pp. 15:1–15:19. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ITP.
2019.15

8. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. PACMPL 1(ICFP), 34:1–34:29 (2017). https://
doi.org/10.1145/3110278

9. Giesl, J., et al.: Analyzing program termination and complexity automatically
with AProVE. J. Autom. Reasoning 58(1), 3–31 (2017). https://doi.org/10.1007/
s10817-016-9388-y

10. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: ITP
2013, pp. 163–179 (2013). https://doi.org/10.1007/978-3-642-39634-2 14

11. Han, J.M., van Doorn, F.: A formal proof of the independence of the continuum
hypothesis. In: Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2020, pp. 353–366. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3372885.3373826

12. Kaliszyk, C., Sternagel, T.: Initial experiments on deriving a complete HOL sim-
plification set. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC Series in
Computing, vol. 14, pp. 77–86. EasyChair (2013)

13. Mahboubi, A., Tassi, E.: Mathematical Components (2017)
14. Marlow, S., Peyton-Jones, S.: The Glasgow Haskell Compiler. In: Brown, A., Wil-

son, G. (eds.) The Architecture of Open Source Applications, Volume II (2012)
15. The mathlib Community: The Lean mathematical library. In: CPP, pp. 367–381.

ACM, New York(2020). https://doi.org/10.1145/3372885.3373824
16. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean

theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6 26

17. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

18. Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., Tatlock, Z.: QED at large: a sur-
vey of engineering of formally verified software. Found. Trends R© Program. Lang.
5(2–3), 102–281 (2019). https://doi.org/10.1561/2500000045

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/978-3-642-31374-5_3
https://doi.org/10.1007/978-3-642-31374-5_3
https://doi.org/10.1145/3372885.3373830
https://hal.inria.fr/hal-02478907
https://doi.org/10.4230/LIPIcs.ITP.2019.15
https://doi.org/10.4230/LIPIcs.ITP.2019.15
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3110278
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1145/3372885.3373826
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1561/2500000045

Maintaining a Library of Formal Mathematics 267

19. Sakaguchi, K.: Validating mathematical structures. arXiv (2020). https://arxiv.
org/abs/2002.00620

20. Selsam, D., Ullrich, S., de Moura, L.: Tabled typeclass resolution (2020). https://
arxiv.org/abs/2001.04301

21. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: Proceed-
ings of POPL 1989, pp. 60–76 (1989). https://doi.org/10.1145/75277.75283

22. Wenzel, M.: Isabelle technology for the Archive of Formal Proofs with application
to MMT (2019). https://arxiv.org/abs/1905.07244

https://arxiv.org/abs/2002.00620
https://arxiv.org/abs/2002.00620
https://arxiv.org/abs/2001.04301
https://arxiv.org/abs/2001.04301
https://doi.org/10.1145/75277.75283
https://arxiv.org/abs/1905.07244

System Descriptions and Datasets

The Tactician
A Seamless, Interactive Tactic Learner and Prover for Coq

Lasse Blaauwbroek1,2(B), Josef Urban1, and Herman Geuvers2

1 Czech Technical University, Prague, Czech Republic
lasse@blaauwbroek.eu,josef.urban@gmail.com

2 Radboud University, Nijmegen, The Netherlands
herman@cs.ru.nl

Abstract. We present Tactician, a tactic learner and prover for the
Coq Proof Assistant. Tactician helps users make tactical proof decisions
while they retain control over the general proof strategy. To this end,
Tactician learns from previously written tactic scripts and gives users
either suggestions about the next tactic to be executed or altogether
takes over the burden of proof synthesis. Tactician’s goal is to provide
users with a seamless, interactive, and intuitive experience together with
robust and adaptive proof automation.

1 Introduction

The Coq Proof Assistant [3] is an Interactive Theorem Prover in which one
proves lemmas using tactic scripts. Individual tactics in these scripts represent
actions that transform the proof state of the lemma currently being proved. A
wide range of tactics exist, with a wide range of sophistication, from simple
inference steps to entire decision procedures and heuristic search procedures.

When proving a lemma, the user’s challenge is to observe the current proof
state and select the appropriate tactic and its arguments to be used. Often the
user makes this decision based on experience with previous proofs. If the current
proof state is similar to a previously encountered situation, then one can expect
that an effective tactic in that situation might also be effective now. Hence, the
user is continuously matching patterns of proof states in their mind and selects
the correct tactic based on these matches.

That is not the only task the user performs, however. When working on a
mathematical development, the user generally has two roles: (1) As a strategist,
the user comes up with appropriate lemmas and sometimes decides on the main
structure of complicated proofs. (2) As a tactician, the user performs the long
and somewhat mindless process of mental pattern matching on proof states,
applying corresponding tactics until the lemma is proved. Many of the steps
in the tactician’s role will be considered as “obvious” by a mathematician. Our

This work was supported by the European Regional Development Fund under
the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466) and by the
AI4REASON ERC Consolidator grant nr. 649043.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 271–277, 2020.
https://doi.org/10.1007/978-3-030-53518-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_17

272 L. Blaauwbroek et al.

system is meant to replicate the pattern matching process performed in this role,
alleviating the user from this burden. Hence, we have aptly named it Tactician.

To perform its job, Tactician can learn from existing proofs, by looking at
how tactics modify the proof state. Then, when proving a new lemma, the user
can ask the system to recommend previously used tactics based on the current
proof state and even to complete the whole proof using a search procedure based
on these tactic recommendations.

In our previous publication, we describe technical details on the machine learn-
ing techniques employed by Tactician and measure its current automation against
Coq’s standard library [1]. This paper instead gives a quick introduction to Tacti-
cian from the user perspective. Details on installation and usage of Tactician can
be found on the project’s website http://coq-tactician.github.io. There, we also
explain how Tactician can be used on large projects with complex dependencies.

2 Design Principles

For our system, we start with the principal goal of learning from previous proofs
to aid the user with proving new lemmas. In Coq, there are essentially two
notions of proof: (1) proof terms expressed in the Gallina language (Coq’s version
of CIC [9]); (2) tactic proof scripts written by the user that can then generate
a Gallina term. Although it is possible to employ machine learning on both
notions, we choose to learn from tactic scripts for two reasons. (1) Tactic scripts
are more high-level and forgiving, which is more suitable for machine learning.
(2) Working on the tactic level allows the user to introduce domain-specific
information to aid the system by writing new tactics. One can teach Tactician
about such tactics merely by using them in hand-written proofs a couple of
times, after which the system will automatically start to use them.

Apart from the principal goal described above, Tactician’s most important
objective is to be usable and remain usable by actual Coq users. To achieve
this usability, Tactician needs to be pleasant to all parties involved, which we
express in four basic “friendliness” tenets: user-friendly, installation-friendly,
integration-friendly, and maintenance-friendly. More concretely, it should be
usable in any editor, with minimal configuration and no time spent training
a ML model. Instead, the system should learn on the fly. Tactician should be
tightly integrated with Coq, implemented as a plugin in OCaml without requiring
external toolkits. To ensure ease of installation and to prevent it from becoming
abandonware, it should be entered into the Coq Package Index [2].

The tight integration with Coq make Tactician function both in Coq’s inter-
active mode and compilation mode. In the next two sections, we describe how
the system is integrated with these modes.

3 Interactive Mode of Operation

We illustrate the interactive mode of operation of Tactician using the schematic
in Fig. 1. When the user starts a new Coq development file—say X.v—the first

http://coq-tactician.github.io

The Tactician 273

tactica1.
tactica2.

tactican.

Qed.

Lemma a : σ

tacticb1.
tacticb2.

tacticbn.

Qed.

Lemma b : τ

tacticz1.
tacticz2.

suggest.

search.

Qed.

Lemma z : ω

Coq Document X.v

〈Γa1 � σ1, tactica1, Γa2 � σ2〉
〈Γa2 � σ2, tactica2, Γa3 � σ3〉

〈Γan � σn, tactican, · � · 〉

〈Γb1 � τ1, tacticb1, Γb2 � τ2〉
〈Γb2 � τ2, tacticb2, Γb3 � τ3〉

〈Γbn � τn, tacticbn, · � · 〉

〈Γz1 � ω1, tacticz1, Γz2 � ω2〉
〈Γz2 � ω2, tacticz2, Γz2 � ω3〉

Tactic Database X

Pattern Matching
A : γ1, B : γ2, . . . , Z : γn � ω3

tacticf2.

tacticu12.
tacticp6.
Suggestions:

Messages

ω3

Z : γn

B : γ2

A : γ1

Proof State

suggest
t11,t12,. . . ,t1nt11,t12,. . . ,t1n

Φ1 � ρ1

suggest
t31,t32,. . . ,t3nt31,t32,. . . ,t3n

Φ3 � ρ2

suggest
t21,t22,. . . ,t2nt21,t22,. . . ,t2n

Φ2 � ρ2

suggest
tm1,tm2,. . . ,tmntm1,tm2,. . . ,tmn

Φm � ρm

· � ·

Reconstruction tactic: search failing 〈t12, t32, . . .〉.

Fig. 1. A schematic overview of Tactician in its interactive mode of operation.

274 L. Blaauwbroek et al.

thing Tactician does is create an (in-memory) empty tactic database X corre-
sponding to this file. The user then starts to prove lemmas as usual. Behind the
scenes, every executed tactic, e.g. tactica1, is saved into the database accom-
panied by the proof states before and after tactic execution, in this case,
〈Γa1 � σ1, tactica1, Γa2 � σ2〉. The difference between these two states represents
the action performed by the tactic, while the state before the tactic represents
the context in which it was useful. By recording many such triples for a tac-
tic, we create a dataset representing an approximation of that tactic’s semantic
meaning. The database is kept synchronized with the user’s movement within
the document throughout the entire interactive session.

After proving a few lemmas by hand, the user can start to reap the fruits
of the database. For this, the tactics suggest and search are available. We
illustrate their use in the schematic when “Lemma z : ω” is being proven. The
user first executes two normal tactics. After that, Coq’s proof state window
displays a state for which the user is unsure what tactic to use. Here Tactician’s
tactics come in.

suggest. This tactic can be executed to ask Tactician for a list of recommen-
dations. The current proof state A : γ1, B : γ2, . . . , Z : γn � ω3 is fed into the
pattern matching engine, which will perform a comparison with the states in
the tactic database. From this, an ordered list of recommendations is generated
and displayed in Coq’s messages window, where the user can select a tactic to
execute.
search. Alternatively, the system can be asked to search for a complete proof.
We start with the current proof state, which we rename to Φ1 � ρ1 for clarity.
Then a search tree is formed by repeatedly running suggest on the proof state
and executing the suggested tactics. This tree can be traversed in various ways,
finishing only when a complete proof has been found.
If a proof is found, two things happen. (1) The Gallina proof term that is
found is immediately submitted to Coq’s proof engine, after which the proof
can be closed with Qed. (2) Tactician generates a reconstruction tactic search
failing 〈t12, t32, ...〉 which is displayed to the user (see the bottom of the
figure). The purpose of this tactic is to provide a modification resilient proof
cache that also functions when Tactician is not installed. Normally, the lemma
can be reproved using the list of tactics 〈t12, t32, ...〉. “Failing” that (due to
definitional changes), a new search is initiated to recover the proof. To use the
cache, the user should copy it and replace the original search invocation with
it in the source file.

4 Compilation Mode of Operation

This mode is visualized in Fig. 2. After the file X.v has been finished, one might
want to depend on it in other files. This requires the file to be compiled into a
binary X.vo file. The compilation is performed using the command coqc X.v. Tac-
tician is integrated into this process. During compilation, the tactic database is
rebuilt in the same way as in interactive mode and then included in the .vo file.

The Tactician 275

Inherits Database X

Database Y

Require X.

Document Y.v

X.vo
binary file

coqc X.v
compilation

Document X.v

Database X

rebuild include

Fig. 2. A schematic overview of Tactician in its compilation mode of operation.

When development X.v is then Required by another development file Y.v, the tac-
tic database of X.v is automatically inherited.

5 A Concrete Example

We now give a simple example use-case based on lists. Starting with an empty
file, Tactician is immediately ready for action. We proceed as usual by giving a
standard inductive definition of lists of numbers with their corresponding nota-
tion and a function for concatenation.

Inductive list := Fixpoint concat ls1 ls2 :=

slhctamtsil:lin| 1 with

| cons : nat -> list -> list. | [] => ls2
Notation "[]" := nil. | x::ls1' => x::(ls1' ++ ls2)

Notation "x::ls" := (cons x ls). end where "ls1++ls2":=(concat ls1 ls2).

We wish to prove some standard properties of concatenation. The first is a
lemma stating that the empty list [] is the right identity of concatenation (the
left identity is trivial).

Lemma concat_nil_r ls : ls ++ [] = ls.

With Tactician installed, we immediately have access to the new tactics suggest
and search. Neither tactic will produce a result when used now since the system
has not had a chance to learn from proofs yet. Therefore, we will have to prove
this lemma by hand.

Proof. induction ls.
- simpl. reflexivity.
- simpl. f_equal. apply IHls.
Qed.

The system has immediately learned from this proof (it was even learning during
the proof) and is now ready to help us with a proof of the associativity of
concatenation.
Lemma concat_assoc ls1 ls2 ls3 : (ls1 ++ ls2) ++ ls3 = ls1 ++ (ls2 ++ ls3).

276 L. Blaauwbroek et al.

Now, if we execute suggest, it outputs the ordered list induction ls1, simpl,
f equal,... Indeed, using induction as our next tactic is not unreasonable. We
can repeatedly ask suggest for a recommendation after every tactic we input,
which sometimes gives us good tactics and sometimes bad tactics. However,
we can also eliminate the middle-man and execute the search tactic, which
immediately finds a proof.

Proof. search. Qed.

To cache the proof that is found for the future, we can copy-paste the recon-
struction tactic that Tactician prints into the source file. This example shows
how the system can quickly learn from very little data and with minimal effort
from the user. Of course, this also scales to much bigger developments.

6 Related Work

Tactician takes its main inspiration from the TacticToe [5] system for HOL4.
Our work is similar to TacticToe in principle, but diverges significantly in the
implementation details due to the large differences between HOL4 and Coq, both
their logical system and practical implementation, see [1].

The most significant distinguishing factor of Tactician to other systems for
Coq is its user-friendliness. There are many other interesting ML systems for
Coq, such as ML4PG [8], SEPIA [6], GamePad [7], CoqGym [11], and Prover-
Bot9001 [10]. However, all of these systems are either difficult to install, can only
be used with one editor, need a long time to train their models or do not have
an end-user interface at all. Many such systems are geared towards the AI com-
munity rather than towards the Theorem Proving community. CoqHammer [4]
is the only other system we know of for Coq that has tight integration with Coq
and is directly usable for end-users. For more detailed related work, see [1].

References

1. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the Coq
proof assistant. In: LPAR23. EPiC Series in Computing, vol. 73, pp. 138–150.
EasyChair (2020)

2. Coq Development Team: Coq package index. https://coq.inria.fr/opam/www
3. Coq Development Team: The Coq proof assistant, version 8.11.0, October 2019
4. Czajka, L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory.

J. Aut. Reasoning 61(1–4), 423–453 (2018)
5. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: Learning to reason with HOL4

tactics. In: LPAR. EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair
(2017)

6. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred
automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 246–255. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6 16

https://coq.inria.fr/opam/www
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16

The Tactician 277

7. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: Gamepad: a learning environment
for theorem proving. In: ICLR (Poster). OpenReview.net (2019)

8. Komendantskaya, E., Heras, J., Grov, G.: Machine learning in proof general: inter-
facing interfaces. UITP. EPTCS 118, 15–41 (2012)

9. Paulin-Mohring, C.: Inductive definitions in the system Coq rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

10. Sanchez-Stern, A., Alhessi, Y., Saul, L.K., Lerner, S.: Generating correctness proofs
with neural networks. In: arXiv/CoRR. abs/1907.07794 (2019)

11. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: ICML, Proceedings of Machine Learning Research, vol. 97, pp. 6984–6994
(2019)

https://doi.org/10.1007/BFb0037116

Tree Neural Networks in HOL4

Thibault Gauthier(B)

Czech Technical University in Prague, Prague, Czech Republic
email@thibaultgauthier.fr

Abstract. We present an implementation of tree neural networks within
the proof assistant HOL4. Their architecture makes them naturally
suited for approximating functions whose domain is a set of formulas.
We measure the performance of our implementation and compare it with
other machine learning predictors on the tasks of evaluating arithmetical
expressions and estimating the truth of propositional formulas.

1 Introduction

Applying machine learning to improve proof automation has been an essential
topic in the theorem proving community and contributed to the rise of powerful
automation such as hammers [2]. In these systems, the current machine learning
predictors learn the premise selection task with relative success. However, these
predictors typically rely on a set of syntactic features, and thus, they can hardly
discover semantic patterns. To solve this issue, we propose in this work to rely
on deep learning models to automatically infer appropriate features that better
approximates object semantics. The success of this approach depends heavily
on how the design of the neural network architecture encodes and processes the
input objects. For example, the space invariance of convolutional neural networks
makes them successful at interpreting images. Moreover, recurrent networks can
process arbitrarily long sequences of tokens, which is necessary for learning text-
based tasks. In the case of formulas, tree neural networks(TNNs) [8] capture the
compositional nature of the underlying functions as their structure dynamically
imitates the tree structure of the formula considered.

That is why we implement TNNs in HOL4 [9] and evaluate their pattern
recognition abilities on two tasks related to theorem proving. The first task is
to estimate the value of an expression. It is an example of evaluating a formula
in a Tarski-style model, which can be in general useful for conjecturing and
approximate reasoning. The second task is to estimate the truth of a formula.
Acquiring this ability is important for discarding false conjectures and flawed
derivations. These two tasks are only a sample of the many theorem proving
tasks that could be learned. We believe that deep learning models such as TNNs
could be useful to guide automated theorem provers. In practice, the existence

This work has been supported by the European Research Council (ERC) grant
AI4REASON no. 649043 under the EU-H2020 programme. We would like to thank
Josef Urban for his contributions to the final version of this paper.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 278–283, 2020.
https://doi.org/10.1007/978-3-030-53518-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_18

Tree Neural Networks in HOL4 279

of an implementation of a deep learning predictor in HOL4 is a valuable tool
for improving proof automation methods in this proof assistant. Experiments on
the implemented TNNs presented in this paper can be replicated by following
the instructions in the file1 from the HOL4 repository2 after switching to this
commit3.

2 Tree Neural Networks

Let O be a set of operators (functions and constants) and TO be all terms built
from operators in O. A TNN is to approximate a function from TO to R

n. A
TNN consists of a head network Nhead and a mapping that associates to each
operator f ∈ O a neural network Nf . If the operator f has arity a, it is to learn
a function from R

a×d to R
d. And the head network Nhead is to approximate a

function from R
d to R

n. The natural number d is called the dimension of the
embedding space. For a TNN, an embedding function E : TO �→ R

d can be
recursively defined by:

E(f(t1, . . . , ta)) =def Nf (E(t1), . . . , E(ta))

The head network “decodes” the embedding of the term considered in R
d into

an element of the output space R
n. Figure 1 shows how the computation follows

the tree structure of the input term.

0 0 0

× s

s(0)0× 0

+

0× 0 + s(0)

head

Fig. 1. Computation flow of a tree neural network on the arithmetical expression 0×0+
s(0). The operator s stands for the successor function. Rectangles represent embeddings
(in R

d) and rounded squares represent neural networks.

In both experiments, the TNNs have neural network operators (including the
head network) with one hidden layer and with a embedding dimension d = 12.
we follow a training schedule over 200 epochs using a fixed learning rate of 0.02
and we double the batch size after every 50 epochs from 8 to 64.
1 https://github.com/HOL/examples/AI TNN/README.md.
2 https://github.com/HOL-Theorem-Prover/HOL.
3 c679f0c69b397bede9fefef82197f33ec495dd8a.

https://github.com/HOL/examples/AI_TNN/README.md
https://github.com/HOL-Theorem-Prover/HOL

280 T. Gauthier

3 Arithmetical Expression Evaluation

The aim of this task is to compute the value x of a given arithmetical expression.
Since the output of the TNN is a fixed vector in R

n, we restrict the objective
to predicting the four binary digits of x modulo 16. We say that a prediction
is accurate if the four predicted real numbers rounded to the nearest integer
corresponds to the four binary digits.

The bottom-up architecture of the TNN is ideally suited for this task as
it is a natural way to evaluate an expression. And since the knowledge of the
structure of the formula is hard-coded in the tree structure, we expect the TNN
to generalize well. The experiments rely on a training set of 11990 arithmetical
expressions and a testing set of 10180 arithmetical expressions. These expres-
sions are constructed using the four operators 0, s,+ and ×. The deepest sub-
terms of the expressions are made of unary numbers between 0 and 10 (e.g.
s8(0)+s(s3(0)×s2(0))). For further inspection, the datasets are available in this
repository4.

Table 1. Percentage of accurate predictions on different test sets

Predictors Train Test

NearestNeighbor [5] 100.0 11.7

LibLinear [7] 84.4 18.3

XGBoost [3] 99.5 16.8

NMT [1] 100.0 77.2

TreeHOL4 97.7 90.1

In Table 1, we compare the accuracy of our TNN predictor (TreeHOL4) with
feature-based predictors. These predictors are quite successful in the premise
selection task in ITP Hammers [2]. We experiment with these predictors using
a standard set of syntactical features, which consists of all the subterms of the
arithmetical expressions. This requires almost no engineering. The accuracy of
these predictors on the test set is only slightly better than random (6.25%). The
obvious reason is that it is challenging to compute the value of an expression
by merely comparing its subterms with features of terms in the training set.
This highlights the need for some feature engineering using these predictors. As
a final comparison, we test the deep learning recurrent neural model NMT with
parameters taken from those shown as best in the informal-to-formal task [10].
This is a sequence-to-sequence model with attention, typically used for machine
translation. We use prefix notation for representing the terms as sequences for
NMT and used one class per output modulo 16 instead of the 4-bit encoding
as NMT performed better with those. Despite the perfect training accuracy, the
testing accuracy of NMT is below the TNN.
4 https://github.com/barakeel/arithmetic datasets.

https://github.com/barakeel/arithmetic_datasets

Tree Neural Networks in HOL4 281

4 Propositional Truth Estimation

The aim of this task is to teach a TNN to estimate if a propositional formula
is true or not. For this propositional task, we re-use the benchmark created by
the authors of [6] which can be downloaded from this repository5. There, each
problem is of the form A �?B. To re-use the implication operator, we instead
solve the equivalent task of determining if A ⇒ B is universally true or not.

Moreover, the propositional formulas contain boolean variables and a direct
representation in our TNN would create one neural network operator for each
named variables (up to 25 in the dataset). Our solution is to encode all variables
using two operators x and prime. First, we index the variables according to their
order of appearance in the formula. Second, each variable xi is replaced by the
term primei(x). Thus, the input formulas are now represented by terms built
from the set of operators {x, prime,⇒,¬,∨,∧}.

Table 2 compares the results of our TNNs (TreeHOL4) on the truth estima-
tion task with the best neural network architectures for this task. The first three
architectures are the best extracted from the table of results in [6]. The first
one is a tree neural network similar to ours, which also indexes the variables. A
significant difference is that we use the prime operator to encode variables while
they instead rely on data augmentation by permuting the indices of variables.
The second one replaces feedforward networks by LSTMs. The third architec-
ture bases its decision on simultaneously using multiple embeddings for boolean
variables. That is why this architecture is named PossibleWorld. In contrast,
the TopDown architecture [4] inverts the structure of the TNNs, and combines
the embedding of boolean variables (that are now outputs) using recurrent net-
works. The results on the test set demonstrate that our implementation of TNN
is at least as good as the one in [6] as it beats it on every test set. Overall,
the more carefully designed architectures for this task (PossibleWorld and Top-
Down) outperform it. One thing to note is that these architectures typically
rely on a much larger embedding dimension (up to d = 1024 for the TopDown
architecture). Our TNN implementation rivals with the best architectures on
the exam dataset, which consists of 100 examples extracted from textbooks.

Table 2. Percentage of accurate predictions

Architecture easy hard big mass exam

Tree 72.2 69.7 67.9 56.6 85.0

TreeLSTM 77.8 74.2 74.2 59.3 75.0

PossibleWorld 98.6 96.7 93.9 73.4 96.0

TopDown 95.9 83.2 81.6 83.6 96.0

TreeHOL4 86.5 77.8 79.2 61.2 98.0

5 https://github.com/deepmind/logical-entailment-dataset.

https://github.com/deepmind/logical-entailment-dataset

282 T. Gauthier

5 Usage

Our deep learning modules allow HOL4 users to train a TNN on a chosen super-
vised learning task with little development overhead. The function train tnn
from the module mlTreeNeuralNetwork is available for such purpose. Its three
arguments are a schedule, an initial TNN, and a couple consisting of training
examples and testing examples.

Examples. Given the objective functions o1, . . . , on, an example for a term t is:

[(h1(t), l1), (h2(t), l2), . . . , (hn(t), ln)]

where li is the list of real numbers between 0 and 1 returned by oi(t) and hi is
the head operator with objective oi. The term t is expected to be lambda-free
with each operator appearing with a unique arity. Each task in our experiments
is defined by a single objective on a set of training examples.

Initial TNN. To create an initial TNN, the user first needs to gather all operators
appearing in the examples. Then, given an embedding dimension d, for each
operator f with arity a the list of dimensions of Nf is to be defined as:

[a × d, u1, . . . , uk, d]

The natural numbers u1, . . . , uk are sizes of the intermediate layers that can be
freely chosen by the user. In the case of a head operator hi, the input dimension
is to be d and the output dimension is to be the length of the list li. From
the operators (including heads) and the associated dimensions, the user can
randomly initialize the weights of the TNN by calling random tnn.

Schedule. The schedule argument is a list of records containing hyperparameters
for the training such as the number of threads, the number of epochs, the learning
rate and the size of the batches. Here is a typical training schedule:

[{batch size = 16, learning rate = 0.02, ncore = 4, nepoch = 50, ... },
{batch size = 32, learning rate = 0.02, ncore = 4, nepoch = 100, ... }]

In this schedule, training is performed with a batch size of 16 for 50 epochs which
is then increased to 32 for the next 100 epochs.

6 Conclusion

In this paper, we presented an implementation of tree neural networks(TNNs)
in HOL4 that can be used to learn a function on HOL4 formulas from examples.
Compared to the other machine learning predictors, it excels on the arithmetical
evaluation task as the TNN architecture reflects perfectly the implied bottom-up
computation. It also exhibits excellent performance on propositional formulas.
It yields a better accuracy than an existing implementation of TNNs but comes
short of more involved architectures tailored for this particular task. As a way
forward, we would like to see if the observed TNNs pattern recognition abilities
(understanding) transfer to other tasks such as premise selection or high-order
unification, which could have a more direct benefit for proof automation.

Tree Neural Networks in HOL4 283

References

1. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp.
5998–6008 (2017). http://papers.nips.cc/paper/7181-attention-is-all-you-need

2. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-
5787/4593

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 13–17 August 2016, San Francisco, CA, USA, pp. 785–794 (2016).
https://doi.org/10.1145/2939672.2939785

4. Chvalovský, K.: Top-down neural model for formulae. In: 7th International Con-
ference on Learning Representations, ICLR 2019, 6–9 May 2019, New Orleans, LA,
USA (2019). https://openreview.net/forum?id=Byg5QhR5FQ

5. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory 13(1), 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964

6. Evans, R., Saxton, D., Amos, D., Kohli, P., Grefenstette, E.: Can neural networks
understand logical entailment? In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018, Conference
Track Proceedings (2018). https://openreview.net/forum?id=SkZxCk-0Z

7. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large
linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008). https://dl.acm.org/
citation.cfm?id=1442794

8. Kiperwasser, E., Goldberg, Y.: Easy-first dependency parsing with hierarchical tree
LSTMs. TACL 4, 445–461 (2016)

9. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

10. Wang, Q., Kaliszyk, C., Urban, J.: First experiments with neural translation of
informal to formal mathematics. In: Rabe, F., Farmer, W.M., Passmore, G.O.,
Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006, pp. 255–270. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96812-4 22

http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1145/2939672.2939785
https://openreview.net/forum?id=Byg5QhR5FQ
https://doi.org/10.1109/TIT.1967.1053964
https://openreview.net/forum?id=SkZxCk-0Z
https://dl.acm.org/citation.cfm?id=1442794
https://dl.acm.org/citation.cfm?id=1442794
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-319-96812-4_22

Interpreting Mathematical Texts
in Naproche-SAD

Adrian De Lon, Peter Koepke(B), and Anton Lorenzen

Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
koepke@math.uni-bonn.de

Abstract. Naproche-SAD is a natural proof assistant based on the con-
trolled natural input language ForTheL. Integrating ForTheL into LATEX
allows to leverage type setting commands for the disambiguation and
structuring of mathematical texts, with high-quality mathematical type-
setting coming for free. A new generic parsing mechanism allows the
translation of texts into other formal languages besides the original first-
order internal format of Naproche-SAD. We can generate correct Lean
code from ForTheL statements which may be useful for writing readable
fabstracts.

1 Natural Proof Assistants

Leading proof assistants have enabled spectacular successes like fully formal
and certified proofs of the four-color theorem or of the Kepler conjecture. On
the other hand proof assistants have so far not been widely adopted in mathe-
matical practice since their input languages look like conventional programming
languages, use unfamiliar foundations and require a lot of detail that seem to be
mathematically irrelevant (see also [15]).

To facilitate the use of formal methods in the mathematical community at
large proof assistants should employ:

1. input languages which are close to the mathematical vernacular, including
symbolic expressions;

2. familiar text structurings that support, e.g., the axiomatic definition-theorem-
proof approach;

3. underlying logics that correspond to strong foundations in set theory or type
theory;

4. automatic handling of tedious formalization details that are usually left
implicit;

5. strong automatic proof checking to approximate proof granularities found in
the mathematical literature.

In principle, these points were already addressed in the early years of inter-
active theorem proving, e.g., in the Mizar project [7], see also [4]. Other proof
assistants have implemented Mizar-like proof languages with declarative proof
c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 284–289, 2020.
https://doi.org/10.1007/978-3-030-53518-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_19

Interpreting Mathematical Texts in Naproche-SAD 285

structures [14]. Note, however, that the Mizar language is a restricted formal
language that is not part of commonly used mathematical English.

To reach an even higher degree of naturality, a small number of experimental
proof assistants accept proofs in controlled natural languages (CNL) which are
fully formal subsets of common natural English (with symbolic mathematical
terms). Moreover, input texts may be structured just like proof texts in the
published mathematical literature. This development should eventually lead to
systems that one may term natural proof assistants. In this paper we highlight
some aspects of points 1–3 in view of recent improvements [12] to the previous
Naproche-SAD release [3]. More technical details are contained in an informal
system description that we are also submitting to this conference.

2 Naproche-SAD and ForTheL

The Evidence Algorithm project (EA) which was started by V. Glushkov was
inspired by the idea of a system to assist actual mathematical work [13]. It was
centered around the development of a controlled natural language for mathemat-
ics called ForTheL (Formula Theory Language). The project culminated in the
implementation of the proof assistant SAD (System for Automated Deduction)
in the PhD work of Andrei Paskevich [11].

Independently, the Naproche (Natural Proof Checking) initiative [10] devel-
oped a controlled natural language on top of classical first-order logic, with
an emphasis on techniques from formal linguistics. The PhD thesis of Marcos
Cramer demonstrated that formal grammars and discourse representation theory
could deal adequately and efficiently with mathematical proof texts [1].

A few years ago Naproche has adopted and extended the ideas and algorithms
of SAD (see [2], [5]) because of SAD’s superior logical setup and performance.
Naproche-SAD accepts and proof-checks texts like

Definition 1. A natural number p is prime iff p �= 0, 1 and for every k such
that k | p, we have k = p or k = 1.

Theorem 1 (Euclid’s lemma). If p is prime and p | m ·n then p | m or p | n.

By stripping away pretty-printing commands in the LATEX source of this text
fragment one obtains a valid text in the ForTheL proof language for Naproche-
SAD. This can be done by a simple filter or by hand. The stripped text proof-
checks in Naproche-SAD within the context of a larger file that formalizes a suf-
ficient amount of arithmetic and contains a standard proof of the theorem. Such
formalizations are representative of a growing library of proof-checked ForTheL
texts from various fields of mathematics [9].

ForTheL, the proof language of Naproche-SAD, is a controlled natural lan-
guage (CNL). Its design goes back to the 1980s and was based on extensive
studies of published mathematical texts. It was found that a large part of math-
ematical language can be simply built up from fixed patterns which consist of
(multiple) words and symbols. Formal production rules of the ForTheL grammar

286 A. De Lon et al.

are based on patterns without further analysis of its constituent tokens. On the
other hand ForTheL gives a lot of freedom for the creation of patterns, allowing
rather arbitrary ASCII sequences as tokens.

For the above sample text, the pattern “natural number (−)” with a slot (−)
for some other term can be introduced by a language extension of the form

Signature. A natural number is a notion.

Internally this generates a unary predicate aNaturalNumber() which can be
addressed by phrases like “x is a natural number” or “for all natural numbers”.
Note that after “natural number” is parsed there is no attempt to break this
down into “natural” and “number”. This corresponds to the mathematical prac-
tice of taking “natural number” as an “atomic” notion whose meaning cannot
be derived from meanings of “natural” and “number”.

3 ForTheL and LATEX

Mathematical typography and typesetting is a prominent part of mathematical
culture. An iconic formula like eiπ = −1 uses non-Latin letters (π) and a two-
dimensional arrangement of letters to denote certain constants and operations.
Typography and typesetting carry semantic information that is utilizable in
mathematical text processing.

These days mathematicians routinely do their own typesetting using LATEX
or related software. LATEX has become the universal format for editing and
exchanging mathematics. It provides fonts and symbols to distinguish many
mathematical objects and notions. Environments like \begin{theorem} ...
\end{theorem} mark statements to be proved and define scopes for assump-
tions and variable declarations. The original ForTheL language has only primi-
tive theorem and proof environments. Special symbols have to be simulated by
“ASCII-art”.

Therefore we are integrating ForTheL into LATEX, extending features of the
original Naproche input language. This work uses some previous experiences
with the Naproche input language. A grammatically correct ForTheL text is
supposed to be a valid LATEX file in the context of appropriate document classes
and packages. Further benefits will be achieved by semantically enriched versions
of LATEX.

The previous version of Naproche-SAD [3] used a parser which employed an
internal parser combinator library. We are replacing the ASCII syntax with a
LATEX-based syntax. The old parser had some logical transformations interwoven
with the parsing process, assuming that the target would only be first-order logic.
We have now separated the parser module from further logical processing. This
required a change of internal representations. Whereas the old parser produced
blocks of tagged first-order formulas, we replaced this with a higher-level abstract
syntax tree, which is not committed to any particular foundational framework
and is also amenable to type-theoretic semantics.

Interpreting Mathematical Texts in Naproche-SAD 287

Text Mode and Math Mode. A characteristic feature of ordinary mathe-
matical language is the intuitive distinction between ordinary text and specific
mathematical terms and phrases. In LATEX, this is reflected by commands for
switching between text mode and math mode. This distinction is often crucial
for disambiguations like between the article “a” and the mathematical variable
“a”, recognizable by different typesettings. In the old parser, patterns definitions
such as “the closure of X as a metric space” resulted either in the unintended
pattern “the closure of (−) as (−) metric space” or gave a nondescript parser
error.

Another example is that the phrase “vector space” may be parsed as the
structure vector space or as a vector named space, provided that both vectors
and vector spaces have been defined previously. This led to surprising errors,
requiring awkward rephrasings to fix. With the new syntax, variables only occur
within math environments which removes many ambiguities.

Ease of Learning and Compatibility. A significant advantage of the new
syntax is that most mathematicians are already comfortable with using LATEX,
which eases the learning curve for the CNL. We can also re-use some of the exist-
ing tooling around LATEX: editors, syntax-highlighters, bibliography managers,
metadata extractors, etc.

Generating Documents. We provide a custom LATEX package that makes a
CNL text a valid LATEX document. This way we get prettyprinted documents
for free! Furthermore we allow patterns to contain LATEX commands. The above
sample text is prettyprinted from the following ForTheL source:

\begin{definition}
A natural number p is prime iff $p \neq 0, 1$
and for every k such that $k \divides p$,
we have $k = p$ or $k = 1$.

\end{definition}
\begin{theorem}[Euclid’s lemma]

If p is prime and $p \divides m\mul n$
then $p \divides m$ or $p \divides n$.

\end{theorem}

Expression Parsing. The old syntax made no distinction between symbolic
expressions and word patterns, both were parsed as patterns. This approach was
flexible, allowing free mixing of words and symbols in patterns. The downside
was that parsing of symbolic expressions was complicated and had no mecha-
nism for operator precedences. With the new distinction between math and text
content, it seems natural to investigate alternative approaches. We are currently
experimenting with more traditional precedence-based expression parsers.

Expression parsing is complicated by allowing relator chaining, as in “a <
b < c = d”. Some operators (e.g. logical connectives) should have lower prece-
dence than relators, and some should have higher precedence (e.g. arithmetic

288 A. De Lon et al.

operations). We address this by maintaining two operator tables, along with the
list of relators, and parsing expressions in three steps.

Introduction of Grammatical Number. Naproche-SAD used to have no
concept of grammatical number, treating singular and plural forms completely
synonymously. This can lead to ambiguities. For example, treating “is”/“are”
synonymously in “the maximum of x and y is/are smaller than z” creates an
ambiguity; with the first interpretation being “(the maximum of x and y) is
smaller than z” and the second interpretation being “(the maximum of x) and
y are smaller than z”, where the maximum is understood as an operation on a
list or set. This ambiguity can be resolved with grammatical number.

4 ForTheL and Types

ForTheL is a language with soft types which are called notions. One can intro-
duce notions like integer and modify them with adjectives like positive. In the
current Naproche-SAD system dependent notions in n parameters are translated
into (n + 1)-ary relation symbols and processed in classical first-order logic.

Since many established interactive theorem provers are based on type the-
ories, it appears natural to translate ForTheL into (dependent) type theory.
Parsing of ForTheL texts should yield an internal representation that can be
translated alternatively into FOL or type theory.

Translating to Lean. Lean [8] is a proof assistant with a growing library
of mathematical texts [6] from a wide variety of undergraduate courses up to
some formalizations of research mathematics. We have implemented a translation
from the new syntax to Lean definitions. We include some predefined commands
mapping to basic definitions from Leans stdlib and mathlib, such as \naturals,
\rationals, \divides, etc.

The above sample text renders as the correct and idiomatic Lean fragment:

def prime (p : N) : Prop :=
p �= 0 ∧ p �= 1 ∧ (∀ k, has_dvd.dvd k p -> k = p ∨ k = 1)

theorem euclids_lemma {p} {n} {m} : prime p ∧ has_dvd.dvd p (m * n)
-> has_dvd.dvd p m ∨ has_dvd.dvd p n := omitted

The Transformation. We translate pattern definitions to definitions of propo-
sitions, and theorems to Lean-theorems. Premises become arguments and the
statement the result type of the theorem. Patterns inside the premises and
statement will not be unrolled, but rather refer to the Lean definitions defined
previously (like prime above). We use the optional argument of the amsthm
environments (in this case Euclid’s lemma) to pick an appropriate Lean name,
with a fallback to thm0, thm1, etc.

5 Future Work

The naturalness of an interactive system is the result of a large number of small
natural features. We shall continue to enhance Naproche-SAD in this direction.

Interpreting Mathematical Texts in Naproche-SAD 289

One important example is the handling of common type coercions: Given a
rational number q and a natural number n, the expression q = n type-checks in
Lean thanks to implicit coercions, while n = q does not, as Lean cannot “undo”
the specialization of = to the natural numbers. Having coercions depend on the
order of arguments is undesirable for natural language texts. While it is of course
possible for users to supply coercions manually, we plan on addressing this issue
by adding a system that manages subtyping relations. We are also evaluating
the possibility of translating ForTheL proofs to Lean tactics.

References

1. Cramer, M.: Proof-checking mathematical texts in controlled natural language.
Ph.D. thesis, University of Bonn (2013)

2. Frerix, S., Koepke, P.: Automatic proof-checking of ordinary mathematical texts.
In: CICM Informal Proceedings (2018). http://ceur-ws.org/Vol-2307/paper13.pdf

3. Frerix, S., Wenzel, M., Koepke, P.: Isabelle/Naproche (2019). https://sketis.net/
2019/isabelle-naproche-for-automatic-proof-checking-of-ordinary-mathematical-
texts

4. Harrison, J., Urban, J., Wiedijk, F.: Interactive theorem proving. In: Gabbay, D.M.,
Siekmann, J., Woods, J. (eds.) Computational Logic of the Handbook of the His-
tory of Logic, vol. 9, pp. 266–290. Elsevier, Amsterdam (2014)

5. Koepke, P.: Textbook Mathematics in the Naproche-SAD System. In: CICM Infor-
mal Proceedings (2019). http://cl-informatik.uibk.ac.at/cek/cicm-wip-tentative/
FMM4.pdf

6. Lean community: The Lean mathematical library. https://github.com/leanprover-
community/mathlib

7. Mizar. http://mizar.org/
8. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean

theorem prover. In: Automated Deduction - CADE-25 (2015)
9. Naproche community: A ForTheL Library. https://github.com/naproche-

community/FLib
10. Naproche. https://korpora-exp.zim.uni-duisburg-essen.de/naproche/
11. Paskevich, A.: Méthodes de formalisation des connaissances et des raisonnements

mathématiques: aspects appliqués et théoriques. Ph.D. thesis, Université Paris 12
(2007)

12. Prototype CNL. https://github.com/adelon/nave
13. Glushkov, V.M.: Some problems in the theories of automata and artificial intelli-

gence. Cybern. Syst. Anal. 6, 17–27 (1970). https://doi.org/10.1007/BF01070496
14. Wenzel, M.: Isabelle/Isar - a versatile environment for human-readable formal proof

documents. Ph.D. thesis, TU Munich (2002)
15. Wiedijk, F.: The QED manifesto revisited. In: From Insight to Proof, Festschrift

in Honour of Andrzej Trybulec, pp. 121–133 (2007)

http://ceur-ws.org/Vol-2307/paper13.pdf
https://sketis.net/2019/isabelle-naproche-for-automatic-proof-checking-of-ordinary-mathematical-texts
https://sketis.net/2019/isabelle-naproche-for-automatic-proof-checking-of-ordinary-mathematical-texts
https://sketis.net/2019/isabelle-naproche-for-automatic-proof-checking-of-ordinary-mathematical-texts
http://cl-informatik.uibk.ac.at/cek/cicm-wip-tentative/FMM4.pdf
http://cl-informatik.uibk.ac.at/cek/cicm-wip-tentative/FMM4.pdf
https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/naproche-community/FLib
https://github.com/naproche-community/FLib
https://korpora-exp.zim.uni-duisburg-essen.de/naproche/
https://github.com/adelon/nave
https://doi.org/10.1007/BF01070496

TGView3D: A System for 3-Dimensional
Visualization of Theory Graphs

Richard Marcus(B) , Michael Kohlhase , and Florian Rabe

Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany
richard.marcus@fau.de

Abstract. We describe the TGView3D system, an interactive graph
viewer optimized for exploring mathematical knowledge as 3D graphs. To
exploit all three spatial dimensions, it extends the commonly-used force-
directed layout algorithms with hierarchical components that are more
suitable for the typical structure of mathematical knowledge. TGView3D
can also communicate with OMDoc-based knowledge management tools
in order to offer semantic, mathematics-specific interaction with the
graphs.

1 Introduction

Digital libraries of both informal and formal mathematics have reached enormous
sizes. For instance, at least half a dozen theorem prover libraries exceed 105

statements. Thus, it is getting more and more difficult to organize this knowledge
in a way that humans can understand and access it. While library sources,
generated presentations, and IDEs such as PIDE [Wen19] give good access to
local knowledge structures, global properties of the induced knowledge spaces
are very difficult to assess.

Theory graphs provide a good representation for these global properties: the
nodes are theories and their edges theory morphisms that define interrela-
tions between theories. Concretely, we use OMDoc/MMT [Koh06,RK13], which
distinguishes multiple kinds of morphisms for theory graphs: Most importantly,
inclusions represent the inheritance relation, and views represent translations
and interpretations.

However, standard graph visualization techniques are not ideal for theory
graphs. Inclusions are highly prevalent and induce a directed acyclic subgraph,
which captures the primary structure of the graph, in particular the inheritance
hierarchy; therefore, they must be prioritized in the layout. Views may introduce
cycles or connect very distant theories; therefore, they must be layouted with
care to avoid intersecting edges, which can lead to a messy layout, especially in

The authors were supported by DFG grant RA-1872/3-1, KO 2428/13-1 OAF and EU
grant Horizon 2020 ERI 676541 OpenDreamKit. They are also grateful for hardware
support from and very helpful discussions about layout algorithms with Roberto Grosso
and Marc Stamminger as well as Jonas Müller.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 290–296, 2020.
https://doi.org/10.1007/978-3-030-53518-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_20&domain=pdf
http://orcid.org/0000-0002-6601-6457
http://orcid.org/0000-0002-9859-6337
http://orcid.org/0000-0003-3040-3655
https://doi.org/10.1007/978-3-030-53518-6_20

TGView3D: A System for 3-Dimensional Visualization of Theory Graphs 291

the 2-dimensional case. For example, we have never been satisfied with the visu-
alization and user interaction features that state-of-the-art tools could provide
for our own graph of logic formalizations (LATIN; see [Cod+11]), containing
(only) a few hundred nodes and many includes representing the modular design
of logics and views representing logic translations. We will use this LATIN theory
graph as a running example.

Superseding our previous two-dimensional theory graph viewer [RKM17],
TGView3D is a three-dimensional theory graph visualization tool that adapts
traditional force-directed layout algorithms to make use of hierarchies and clus-
ters in theory graphs, using an approach similar to [DKM06] except extended to
three dimensions.

TGView3D is based on the Unity game engine [UGE]. While there are dedi-
cated tools for interactive 3D graph visualization such as Gephi [BHJ09] or web
applications and frameworks (e.g., based on WebGL), we opted for Unity as it
allows fast implementation of typical 3D interactions and flexible platform sup-
port as well as efficient rendering of large graphs. Unity also allows building two
versions of TGView3D: a WebGL version that we can embed into browser-based
interfaces for casual users, and executables for VR hardware that offer better
performance for power users.

While Unity is proprietary, all of our code is licensed under GPLv3 and
is available at https://github.com/UniFormal/TGView3D. The web application
runs at https://tgview3d.mathhub.info and a demo video for the VR executable
is available at https://youtube.com/watch?v=Mx7HSWD5dwg.

2 Layouting and Interaction

3D Layouting. To compute the layout for large graphs, force-directed graph
drawing is the typical choice. It introduces forces so that nodes repel each other
in general but that connected ones attract each other, aiming at a layout of
connected groups of nodes and short edges. However, this approach does not
offer special treatment for directed edges, and in theory graphs the directed
acyclic inheritance hierarchy is a central cognitive aspect. To better visualize
this, layered graph drawing can be used instead. This 2D approach first places
the nodes on a minimal number of layers with all edges pointing in the same
direction and then minimizes edge crossings by reordering the nodes within their
layers. While successful for the inclusion hierarchy, the restriction to layers makes
it difficult to incorporate arbitrary additional edges. The latter is needed all the
time for theory graphs, where edges relating distant nodes are among the most
interesting. A key benefit of the 3D approach is that we can utilize the third
spatial dimensions to devise layout algorithms that cater to the structure of
mathematical knowledge. Concretely, we can map the hierarchy to the graph
vertically and still get the advantages of force-directed layout algorithms.

However, static layers in the style of layered graph drawing (cf. Fig. 1) are
still problematic in this combination: it prevents nodes from forming groups
vertically, which can lead to inefficient use of space, e.g. all nodes could end

https://github.com/UniFormal/TGView3D
https://tgview3d.mathhub.info
https://youtube.com/watch?v=Mx7HSWD5dwg

292 R. Marcus et al.

Fig. 1. LATIN graph with static layers

Fig. 2. LATIN graph with hierarchic forces

up on a single layer. Therefore, we use a less restrictive relative hierarchy
instead, i.e., we aim at a consistent edge direction going from bottom to top.
We accomplish this by adding a force that pushes nodes connected by inclusions
either downwards or upwards without statically fixing a set of layers. In many
cases, this hierarchic force already influences the layout sufficiently to yield good
visualizations. But we also added a way to force every node that includes N to
appear above N : we first position the nodes in any way that conforms to the
hierarchy (e.g., placing them all on the same layer) and then restrict the force-
directed node movement so that nodes may only “overtake” each other in the
correct direction. This achieves our goals to preserve the relative hierarchy while
allowing the force-directed algorithm to work relatively freely (cf. Fig. 2).

Now, the layout algorithm can organize the theory graph efficiently: hierar-
chic relations create a vertical ordering, and minimizing the length of other edges
creates node groups. Adding the view edges to the layout in Fig. 2 would then
reorganize the positions of node clusters but keep the relative hierarchy intact.

TGView3D: A System for 3-Dimensional Visualization of Theory Graphs 293

Fig. 3. TGView3D user interface: theory FOL within LATIN

Interaction. Figure 3 gives an example of the TGView3D user interface. It shows
the node for the FOL theory in the LATIN graphs with its attributes. Nodes and
edges may be typed, and colors are used to differentiate the types visually. Users
explore the theory graph by moving through the 3-dimensional visualization
and using interaction features that can be accessed within the UI. Additionally,
we provide graph editing features for advanced users like developers or library
maintainers, e.g., adding and removing nodes and edges.

Compared to 2D, the nodes have more space to form recognizable clusters,
but a problem of the 3D-visualization is the visual overlap induced by the place-
ment of nodes along the third dimensions. To cope with this, TGView3D pro-
vides the option to hide parts in the distance, thus presenting the user a vertical
slice of the graph. Even so, showing all types of edges at once can still result
in cluttered layouts, but, since users often want to focus on certain aspects of
the theory graph, the main interaction concepts in TGView3D revolve around
giving users control over the layout composition. Accordingly, TGView3D allows
the user to hide currently not required edge types and, optionally, recalculate
the layout based on this selection. The latter, in particular, can be used to ana-
lyze how the types of theory morphisms affect the graph layout and thus to get
insights about different dependencies in the theory graph.

Another core feature is following the inheritance hierarchy of inclusions. In
practice, this means that we need to support the transition between inspect-
ing the graph globally and exploring local structures. Both are important for
mathematical knowledge: looking at the whole graph at once reveals groups of
theories and dependencies between these groups, whereas the relation between
individual nodes give insights about the respective theories and theory mor-
phisms. Given the limitations of space, separating groups visually by packing
nodes closely together will eventually result in too much local overlap, while a
more even spread makes it harder to recognize clusters. Therefore, TGView3D
gives the user direct control over the node spacing in addition to the possibility

294 R. Marcus et al.

of moving through the graph. To allow crawling through the graph and focus-
ing on the local neighborhood of nodes, we give users the option to hide all
edges except those of selected nodes. Last, to bridge the gap between local and
global exploration, TGView3D can also compute node bicones, which show the
transitive inclusions of a node, i.e., the two trees of nodes that can be reached
by following the inclusion relation forwards and backwards. This gives the user
information about the role of an individual node in relation to the full graph.

Hierarchical Clustering. In Mmt theory graphs, all nodes and edges are
labeled in two orthogonal ways: with their logical URI, which follows
the namespace structure chosen by the user, and their physical source
URL, which follows the project and folder structure of the source files.
TGView3D uses this information to define clusters, which are visualized
by using the same color for the respective nodes and adding a cluster
label. Beyond that, TGView3D permits collapsing these clusters into a sin-
gle bigger node to reduce graph complexity and enable step-wise graph

Fig. 4. LATIN graph: hier-
archic clustering

exploration. In that case, all edges of the original
nodes are propagated to the cluster node. This also
allows for nested clusters, which is important to effi-
ciently reduce the graph to a size where humans can
recognize clear structures and computers can handle
the computational load better. With this method, we
can compress the graph shown in Fig. 2 drastically
(cf. Fig. 4) and still show all edge types at the same
time.

Indeed, mathematical libraries often yield large
theory graphs with a single connected component,
and theory graphs visualizations should not always
be self-contained. As an complementary approach to
clustering, TGView3D can also be opened with a sub-
graph built for a particular theory, containing some

neighborhood of that theory. The key difference is that instead of collapsing
nodes into clusters, the user preselects a certain cluster to reduce the size of
the loaded graph. In that case, TGView3D reveals the origin of external nodes
and gives users the option to load the respective subgraphs to add them to the
current one, thus gradually increasing the size of the visible subgraph.

Integration with Other Systems. While TGView3D is a standalone system, one

Fig. 5. Source view in MathHub

of its key motivations is to serve as a compo-
nent of our larger MathHub system (hosted at
https://MathHub.info), a web portal for for-
mal mathematical libraries in OMDoc/MMT
format. In particular, the access of subgraphs
via namespaces is enabled by the MMT sys-
tem. For integration with other systems in
general, the TGView3D web application is

https://MathHub.info

TGView3D: A System for 3-Dimensional Visualization of Theory Graphs 295

called by URL parameters that govern which graph to load. It can call other
systems by opening URLs attached to the nodes and edges, e.g., in response
to user interaction. Thus, every library, namespace, and theory viewed in Math-
Hub allows opening a corresponding subgraph in TGView3D in a new page. Vice
versa, the Mmt URI of every node or edge in TGView3D can be used to view
the sources of the respective object in MathHub (cf. Fig. 5). It is also straight-
forward to add the functionality of opening nodes and edges in a locally running
version of Mmt’s source editor instead.

3 Conclusion and Future Work

TGView3D is an interactive 3D graph viewer that can handle hierarchical rela-
tions and clusters efficiently. While it can handle arbitrary graphs, it is designed
to particularly support theory graphs as they occur in mathematical libraries.
Therefore, it allows for hierarchical clustering and filtering methods and our lay-
out algorithm makes use of the third spatial dimension to visualize hierarchies
and optimize the node organization in a force-directed manner.

In addition to continuous improvements to the graph viewer itself, future
work will be to create an ecosystem that simplifies the process of importing
different kinds of graphs into TGView3D. Extending this, we want to allow
more customizability and offer preconfigured builds that are tailored towards
domain-specific use cases.

References

[BHJ09] Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software
for exploring and manipulating networks. In: Third International AAAI
Conference on Weblogs and Social Media (2009)

[Cod+11] Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.:
Project abstract: logic atlas and integrator (LATIN). In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS, vol. 6824, pp.
289–291. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22673-1 24. https://kwarc.info/people/frabe/Research/CHKMR latinabs
11.pdf

[DKM06] Dwyer, T., Koren, Y., Marriott, K.: Drawing directed graphs using
quadratic programming. IEEE Trans. Visual Comput. Graph. 12(4), 536–
548 (2006)

[Koh06] Kohlhase, M.: OMDoc - An Open Markup Format for Mathematical Docu-
ments [Version 12]. LNAI, vol. 4180. Springer, Heidelberg (2006). https://
doi.org/10.1007/11826095. http://omdoc.org/pubs/omdoc1.2.pdf

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54
(2013). http://kwarc.info/frabe/Research/mmt.pdf

[RKM17] Rupprecht, M., Kohlhase, M., Müller, D.: A flexible, interactive theory-
graph viewer. In: Kohlhase, A., Pollanen, M. (eds.) MathUI 2017: The
12th Workshop on Mathematical User Interfaces (2017). http://kwarc.
info/kohlhase/papers/mathui17-tgview.pdf

https://doi.org/10.1007/978-3-642-22673-1_24
https://doi.org/10.1007/978-3-642-22673-1_24
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
https://doi.org/10.1007/11826095
https://doi.org/10.1007/11826095
http://omdoc.org/pubs/omdoc1.2.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf
http://kwarc.info/kohlhase/papers/mathui17-tgview.pdf

296 R. Marcus et al.

[UGE] Unity Game Engine. https://unity3d.com. Accessed 03 July 2019
[Wen19] Wenzel, M.: Interaction with formal mathematical documents in

Isabelle/PIDE. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen,
C. (eds.) CICM 2019. LNCS, vol. 11617. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-23250-4 1

https://unity3d.com
https://doi.org/10.1007/978-3-030-23250-4_1
https://doi.org/10.1007/978-3-030-23250-4_1

Simple Dataset for Proof Method
Recommendation in Isabelle/HOL

Yutaka Nagashima1,2(B)

1 Czech Technical University in Prague, Prague, Czech Republic
Yutaka.Nagashima@cvut.cz

2 University of Innsbruck, Innsbruck, Austria

Abstract. Recently, a growing number of researchers have applied
machine learning to assist users of interactive theorem provers. How-
ever, the expressive nature of underlying logics and esoteric structures
of proof documents impede machine learning practitioners, who often do
not have much expertise in formal logic, let alone Isabelle/HOL, from
achieving a large scale success in this field. In this data description, we
present a simple dataset that contains data on over 400k proof method
applications along with over 100 extracted features for each in a for-
mat that can be processed easily without any knowledge about formal
logic. Our simple data format allows machine learning practitioners to
try machine learning tools to predict proof methods in Isabelle/HOL
without requiring domain expertise in logic.

1 Introduction

As our society relies heavily on software systems, it has become essential to
ensure that our software systems are trustworthy. Interactive theorem provers
(ITPs), such as Isabelle/HOL [20], allow users to specify desirable functionalities
of a system and prove that the corresponding implementation is correct in terms
of the specification.

A crucial step in developing proof documents in ITPs is to choose the right
tool for a proof goal at hand. Isabelle/HOL, for example, comes with more than
100 proof methods. Proof methods are sub-tools inside Isabelle/HOL. Some of
these are general purpose methods, such as auto and simp. Others are spe-
cial purpose methods, such as intro classes and intro locales. The Isabelle
community provides various documentations [20] and on-line supports to help
new Isabelle users learn when to use which proof methods.

Previously, we developed PaMpeR [17], a proof method recommendation tool
for Isabelle/HOL. Given a proof goal specified in a proof context, PaMpeR rec-
ommends a list of proof methods likely to be suitable for the goal. PaMpeR learns

This work was supported by the European Regional Development Fund under the
project AI & Reasoning (reg. no.CZ.02.1.01/0.0/0.0/15 003/0000466) and by NII under
NII-Internship Program 2019-2nd call.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 297–302, 2020.
https://doi.org/10.1007/978-3-030-53518-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_21&domain=pdf
http://orcid.org/0000-0001-6693-5325
https://doi.org/10.1007/978-3-030-53518-6_21

298 Y. Nagashima

which proof method to recommend to what kind of proof goal from proof docu-
ments in Isabelle’s standard library and the Archive of Formal Proofs [10].

The key component of PaMpeR is its elaborate feature extractor. Instead of
applying machine learning algorithms to Isabelle’s proof documents directly,
PaMpeR first applies 113 assertions to the pair of a proof goal and its underlying
context. Each assertion checks a certain property about the pair and returns a
boolean value. Some assertions check if a proof goal involves certain constants or
types defined in the standard library. Others check the meta-data of constants
and types appearing in a goal. For example, one assertion checks if the goal has
a term of a type defined with the codatatype keyword.

When developing PaMpeR, we applied these 113 assertions to the proof
method invocations appearing in the proof documents and constructed a dataset
consisting of 425,334 unique data points.

Note that this number is strictly smaller than all the available proof method
invocations in Isabelle2020 and the Archive of Formal Proofs in May 2020, from
which we can find more than 900k proof method invocations. One obvious rea-
son for this gap is the ever growing size of the available proof documents. The
other reason is that we are intentionally ignoring compound proof methods while
producing data points. We decided to ignore them because they may pollute the
database by introducing proof method invocations that are eventually back-
tracked by Isabelle. Such backtracking compound methods may reduce the size
of proof documents at the cost of introducing backtracked proof steps, which
are not necessary to complete proofs. Since we are trying to recommend proof
methods appropriate to complete a proof search, we should not include data
points produced by such backtracked steps.

We trained PaMpeR by constructing regression trees [3] from this dataset.
Even though our tree construction is based on a fixed height and we did not
take advantage of modern development of machine learning research, our cross
evaluation showed PaMpeR can correctly predict experts’ choice of proof methods
for many cases. However, decision tree construction based on a fixed height is an
old technique that tends to cause overfitting and underfitting. We expect that
one can achieve better performance by applying other algorithms to this dataset.

In the following we present the simple dataset we used to train PaMpeR.
Our aim is to provide a dataset that is publicly available at Zenodo [15] and
easily usable for machine learning practitioners without backgrounds in theorem
proving, so that they can exploit the latest development of machine learning
research without being hampered by technicalities of theorem proving.

2 The PaMpeR Dataset

Each data point in the dataset consists of the following three entries:

– the location of a proof method invocation,
– the name of the proof method used there,
– an array of 0s and 1s expressing the proof goal and its context.

Simple Dataset for Proof Method Recommendation in Isabelle/HOL 299

The following is an example data point:

Functors.thy119 simp 1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,...

This data point describes that in the theory file named Functors.thy, a proof
author applied the simp method in line 119 to a proof goal represented by the
sequence of 1s and 0s where 1 indicates the corresponding assertion returns true
while 0 indicates the otherwise.

This dataset has important characteristics worth mentioning. Firstly, this
dataset is heavily imbalanced in terms of occurrences of proof methods. Some
general purpose methods, such as auto and simp, appear far more often than
other lesser known methods: each of auto and simp accounts more than 25% of
all proof method invocations in the dataset, whereas no proof methods account
for more than 1% of invocations except for the 15 most popular methods.

Secondly, this dataset only serves to learn what proof methods to apply, but
it does not describe how to apply a proof method. None of our 113 assertions
examines arguments passed to proof methods. For some proof methods, notably
the induct method, the choice of arguments is the hardest problem to tackle,
whereas some methods rarely take arguments at all. We hope that users can learn
what arguments to pass to proof methods from the use case of these methods in
existing proof documents once they learn which methods to apply to their goal.

Thirdly, it is certainly possible that PaMpeR’s feature extractor misses out cer-
tain information essential to accurately recommend some methods. This dataset
was not built to preserve the information in the original proof documents: we
built the dataset, so that we can effectively apply machine learning algorithms
to produce recommendations.

Finally, this dataset shows only one way to prove a given goal, ignoring
alternative possible approaches to prove the same goal. Consider the following
goal: "True ∨ False". Both auto or simp can prove this goal equally well;
however, if this goal appeared in our dataset our dataset would show only the
choice of the proof author, say auto, ignoring alternative proofs, say simp.

One might guess that we could build a larger dataset that also includes
alternative proofs by trying to complete a proof using various methods, thus
converting this problem into a multi-label problem. That approach would suffer
from two problems. Firstly, there are infinitely many ways to apply methods
since we often have to apply multiple proof methods in a sequence to prove a
conjecture. Secondly, some combinations of methods are not appropriate even
though they can finish a proof in Isabelle. For example, the following is an
alternative proof for the aforementioned proposition:

lemma "True ∨ False" apply(rule disjI1) apply auto done

This is a valid proof script, with which Isabelle can check the correctness of the
conjecture; however, the application of the rule method is hardly appropriate
since the subsequent application of the auto method can discharge the proof
without the preceding rule. For these reasons we take the proof methods chosen
by human proof authors as the correct choice while ignoring other possibilities.

300 Y. Nagashima

3 Overview of 113 Assertions

The 113 assertions we used to build the dataset roughly fall into the following
two categories:

1. assertions that check terms and types appearing in the first sub-goal, and
2. assertions that check how such terms and types are defined in the underlying

proof context.

The first kind of assertions directly check the presence of constructs defined
in the standard library. For example, the 56th assertion checks if the first sub-
goal contains Filter.eventually, which is a constant defined in the standard
library since the presence of this constant may be a good indicator to recommend
the special purpose proof method called eventually elim. A possible limitation
of these assertions is that these assertions cannot directly check the presence of
user-defined constructs because such constructs may not even exist when we
develop the feature extractor.

The second kind of assertions address this issue by checking how constructs
appearing in the first sub-goal are defined in the proof context. For example, the
13th assertion checks if the first sub-goal involves a constant that has one of the
following related rules: the code rule, the ctr rule, and the sel rule.

These related rules are derived by Isabelle when human engineers define
new constants using the primcorec keyword, which is used to define primitively
corecursive functions. Since this assertion checks how constants are defined in
the background context, it can tell that the proof goal at hand is a coinductive
problem. Therefore, if this assertion returns true, maybe the special purpose
method called coinduct would be useful, since it is developed for coinductive
problems. The advantage of this assertions is that it can guess if a problem is a
coinductive problem or not, even though we did not have that problem at hand
when developing the assertion.

Due to the page limit, we expound the further details of the 113 assertions
in our accompanying Appendix [14].

4 The Task for Machine Learning Algorithms

The task for machine learning algorithms is to predict the name of a promising
proof method from the corresponding array of boolean values. Since we often
have multiple equivalently suitable methods for a given proof goal, this learning
task should be seen as a multi-output problem: given an array of boolean values
machine learning algorithms should return multiple candidate proof methods
rather than only one method. Furthermore, this problem should be treated as
a regression problem rather than a classification problem, so that users can see
numerical estimates about how likely each method is suitable for a given goal.

Simple Dataset for Proof Method Recommendation in Isabelle/HOL 301

5 Conclusion and Related Work

We presented our dataset for proof method recommendation in Isabelle/HOL.
Its simple data format allows machine learning practitioners to try out various
algorithms to improve the performance of proof method recommendation.

Kaliszyk et al. presented HolStep [9], a dataset based on proofs for HOL
Light [7]. They developed the dataset from a multivariate analysis library [8]
and the proof of the Kepler conjecture [6]. They built HolStep for various tasks,
which does not include proof method prediction. While their dataset explicitly
describes the text representations of conjectures and dependencies of theorems
and constants, our dataset presents only the essential information about proof
documents as an array of boolean values.

Blanchette et al. mined the Archive of Formal Proofs [2] and investigated
the nature of proof developments, such as the size and complexity of proofs [12].
Matichuk et al. also studied the Archive of Formal Proofs to understand leading
indicators of proof size [12]. Neither of their projects aimed at suggesting how
to write proof documents: to the best of our knowledge we are the first to mine
a large repository of ITP proofs using hand crafted feature extractors.

Our dataset does not contain information useful to predict what arguments
to pass to each method. Previously we developed, smart induct [16], to address
this problem for the induct method in Isabelle/HOL, using a domain-specific
language for logical feature extraction [13].

Recently a number of researchers have developed meta-tools that exploit
existing proof methods and tactics and brought stronger proof automation to
ITPs [1,4,5,11,18,19]. We hope that our dataset helps them improve the per-
formance of such meta-tools for Isabelle/HOL.

References

1. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: an environ-
ment for machine learning of higher order logic theorem proving. In: Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, Long Beach,
California, USA (2019). http://proceedings.mlr.press/v97/bansal19a.html

2. Blanchette, J.C., Haslbeck, M.W., Matichuk, D., Nipkow, T.: Mining the archive of
formal proofs. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS, vol. 9150, pp. 3–17. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-319-20615-8 1

3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984)

4. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4 tac-
tics. In: LPAR-21, 21st International Conference on Logic for Programming, Arti-
ficial Intelligence and Reasoning, Maun, Botswana (2017). http://www.easychair.
org/publications/paper/340355

5. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred
automata. In: Felty, A., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp.
246–255. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6 16

http://proceedings.mlr.press/v97/bansal19a.html
https://doi.org/10.1007/978-3-319-20615-8_1
https://doi.org/10.1007/978-3-319-20615-8_1
http://www.easychair.org/publications/paper/340355
http://www.easychair.org/publications/paper/340355
https://doi.org/10.1007/978-3-319-21401-6_16

302 Y. Nagashima

6. Hales, T.C., et al.: a formal proof of the Kepler conjecture. CoRR abs/1501.02155
(2015). http://arxiv.org/abs/1501.02155

7. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–289. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

8. Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reason. 50(2),
173–190 (2013). https://doi.org/10.1007/s10817-012-9250-9

9. Kaliszyk, C., Chollet, F., Szegedy, C.: HolStep: A machine learning dataset for
higher-order logic theorem proving. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, Conference Track Proceedings (2017)

10. Klein, G., Nipkow, T., Paulson, L., Thiemann, R.: The archive of formal proofs
(2004). https://www.isa-afp.org/

11. Komendantskaya, E., Heras, J.: Proof mining with dependent types. In: Geuvers,
H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS, vol.
10383, pp. 303–318. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
62075-6 21

12. Matichuk, D., Murray, T.C., Andronick, J., Jeffery, D.R., Klein, G., Staples, M.:
Empirical study towards a leading indicator for cost of formal software verifica-
tion. In: 37th IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, vol. 1 (2015). https://doi.org/10.1109/ICSE.2015.85

13. Nagashima, Y.: LiFtEr: language to encode induction heuristics for Isabelle/HOL.
In: Lin, A. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 266–287. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34175-6 14

14. Nagashima, Y.: Appendix to “simple dataset for proof method recommendation in
Isabelle/HOL (dataset description)”, May 2020. https://doi.org/10.5281/zenodo.
3839417

15. Nagashima, Y.: Simple dataset for proof method recommendation in Isabelle/HOL,
May 2020. https://doi.org/10.5281/zenodo.3819026

16. Nagashima, Y.: Smart induction for Isabelle/HOL (tool paper). CoRR
abs/2001.10834 (2020). https://arxiv.org/abs/2001.10834

17. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation system for
Isabelle/HOL. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, 3–7 September
2018, pp. 362–372 (2018). https://doi.org/10.1145/3238147.3238210

18. Nagashima, Y., Kumar, R.: A proof strategy language and proof script generation
for Isabelle/HOL. In: de Moura, L. (ed.) CADE 2017. LNCS, vol. 10395, pp. 528–
545. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 32

19. Nagashima, Y., Parsert, J.: Goal-oriented conjecturing for Isabelle/HOL. In: Rabe,
F., Farmer, W., Passmore, G., Youssef, A. (eds.) CICM 2018. LNCS, vol. 11006, pp.
225–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96812-4 19

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45949-9

http://arxiv.org/abs/1501.02155
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/s10817-012-9250-9
https://www.isa-afp.org/
https://doi.org/10.1007/978-3-319-62075-6_21
https://doi.org/10.1007/978-3-319-62075-6_21
https://doi.org/10.1109/ICSE.2015.85
https://doi.org/10.1007/978-3-030-34175-6_14
https://doi.org/10.5281/zenodo.3839417
https://doi.org/10.5281/zenodo.3839417
https://doi.org/10.5281/zenodo.3819026
https://arxiv.org/abs/2001.10834
https://doi.org/10.1145/3238147.3238210
https://doi.org/10.1007/978-3-319-63046-5_32
https://doi.org/10.1007/978-3-319-96812-4_19
https://doi.org/10.1007/3-540-45949-9

Dataset Description: Formalization
of Elementary Number Theory in Mizar

Adam Naumowicz(B)

Institute of Informatics, University of Bialystok,
Ciolkowskiego 1M, 15-245 Bialystok, Poland

adamn@mizar.org

Abstract. In this paper we present a dataset based on the Mizar for-
malization of selected problems related to elementary number theory.
The dataset comprises proofs of problems on several levels of difficulty.
They are available in the form of full proofs, proof sketches, as well
as bare statements equipped with suitable environments importing nec-
essary notions from the Mizar Mathematical Library. The elementary
character of the underlying theory makes the data particularly suitable
as a starting point for developing courses in interactive theorem proving
based mathematics education and recreational mathematics activities.

Keywords: Mizar formalization · Number theory · Mathematics
education · Recreational mathematics

1 Introduction

The centrally maintained library of formalizations developed using Mizar [3],
the Mizar Mathematical Library (MML [2]), contains over 60, 000 theorems and
12, 000 definitions. The data is organized into more than 1, 300 files representing
articles on various topics. As such, the huge and somewhat eclectic library does
not appear to be the best resource for introducing the Mizar way of formalizing
mathematics to new users or facilitating introductory Mizar-based courses for
math students. For this reason we have started developing a set of easy to com-
prehend Mizar data files which can provide a better starting point for educational
activities. The set is based on examples from elementary number theory which
has an initially relatively steep learning curve, few prerequisites and provides a
great selection of self-contained proofs. Number theory proofs very often carry
an extra recreational component – statements can amuse the audience by sim-
plicity and elegance of their form, references to specific occasions, years or dates
and so on. Such tasks are in line with the educational entertainment approach
to learning which helps perceive the formalization as a challenging but reward-
ing activity. We believe that thanks to mastering the elementary techniques and
familiarizing with the theory’s basic methods one can be prepared to approach
the study and/or formalization of further, more advanced problems.

The Mizar processing has been performed using the infrastructure of the University of
Bialystok High Performance Computing Center.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 303–308, 2020.
https://doi.org/10.1007/978-3-030-53518-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_22&domain=pdf
http://orcid.org/0000-0003-4224-9798
https://doi.org/10.1007/978-3-030-53518-6_22

304 A. Naumowicz

2 Underlying Informal Data

Our dataset is intended to gradually formalize the content of the book “250
Problems in Elementary Number Theory” [14] by Waclaw Sierpinski. Sierpinski
had numerous contributions to many fields of mathematics, but number theory
was his first main area of interest. The above-mentioned book was published
by Elsevier and Polish National Publishers in the series Modern Analytic and
Computational Methods in Science and Mathematics exactly half a century ago
- in 1970. Thus, our paper is a humble tribute to Sierpinski, whose prolific and
diverse research resulted in over 700 papers and 50 books. The content of the
book covers the following chapters: I. Divisibility of Numbers, II. Relatively
Prime Numbers, III. Arithmetic Progressions, IV. Prime and Composite Num-
bers, V. Diophantine Equations, VI. Miscellanea.

Our initial dataset uses data corresponding to ten first problems from the
first chapter. Unlike other sources used in many Mizar formalization projects
(handbooks [4], whole theories [5], particular theorems [9], research papers [10],
etc.) this material comprises self-contained and relatively short proofs, so the
work on the formalization can easily be split, given necessary formal environment
and necessary hints. They can form a number of similar yet slightly different
tasks which can be solved/formalized independently by individuals or in groups.

3 Dataset Characteristics

Similarly to the informal original, the dataset comprises Mizar proofs of prob-
lems on several levels of difficulty. They are available in the form of full proofs,
proof sketches, as well as bare statements equipped with suitable environments
[12] importing necessary notions from the MML. Some ideas were drawn from
F. Wiedijk’s notion of formal proof sketches [18] and J. Alama’s mizar-items [1]
(developed as a means to do reverse mathematics over MML). The generation
of respective files was achieved by means of standard Mizar tools for extracting
article abstracts [6], and optimizing formalization environments [11]. Building
a suitable formalization environment of notions to be imported from the MML
is sometimes a non-trivial task itself, since many number theory facts are scat-
tered around the current library and take care of their various dependencies
– apart from proper number theory files, users also need to look for relevant
information in formalizations concerning cryptography (e.g. article PEPIN) or
set theory (article ABIAN), etc. Although the material contained in the prob-
lems is elementary, the collected proofs allow learning also more advanced Mizar
proof methods, like schemes or using Mizar flexary logical connectives [8] (see
references in Table 1).

3.1 Dataset Organization

The dataset is available for download as a compressed number.zip archive1. All
the files are compatible with the current official Mizar ver. 8.1.09 bundled with
1 http://mizar.uwb.edu.pl/∼softadm/number/.

http://mizar.uwb.edu.pl/~softadm/number/

Formalization of Elementary Number Theory in Mizar 305

MML ver. 5.57.1355 (04 June 2019)2. The underlying Mizar article is now also
available in the MML as article NUMBER01 [13].

The data is located in directories: nump001 – nump010 corresponding to ten
initial problems from Sierpinski’s book. Each directory contains subdirectories
with:

– a bare statement (statement/nump0XYt.miz)
– a proof sketch (sketch/nump0XYs.miz)
– a full proof (proof/nump0XYp.miz)

and an extra file references (extracted theorems and schemes) to consult
before attempting the proof. Each *.miz file contains its environment. In case
of bare statements, environment not only lacks theorems and schemes, but also
other notions imported in proofs (to allow creating alternative proofs, which are
shorter, more elegant, etc.). The sketches are proof skeletons which, apart from
the problem statement, contain a working proof structure which can be filled in
as is, or modified by hand within the restriction of a given environment. Having
the proof environment right is sometimes not trivial [12], and so the proof sketch
form allows the less experienced users to start developing the proofs immedi-
ately and getting to know the Mizar’s notion of obviousness by observing which
inferences are accepted. Proof sketches have all references removed (including
references to local labels, but the labels are left in the source). Moreover, then
linking is preserved to keep the proof flow resembling the informal original.

In some cases, following Sierpinski’s proofs directly requires introducing a few
lemmas (not readily available in the current MML) in order not to complicate the
proof itself. Some users may find it useful to try the ::$V- and ::$V+ pragmas
to skip proof checking over certain parts of the file.

The proof sketches could also be fed into ATP-based MizAR [7,17] automa-
tion within the Emacs mode [16] to automate proof search. Moreover, the files
can be HTML-ized [15] once they get processed by the Mizar verifier.

3.2 Some Technical Issues

Beginner Mizar users working with this dataset should be aware of some technical
issues.

E.g., a simple glitch can be seen in the statement of the very first problem:
Sierpinski refers to positive integers, whereas a preferred Mizar way is to use
natural numbers with their built-in automation. The literal encoding of state-
ments with positive integers is of course possible, but requires a technical and
superfluous (as far as the integrity of the MML is concerned) registration (see
e.g. the nump001t file).

We also face numerous differences in the writing style if we intend to mimic
natural language reasoning. E.g., in Mizar we use a lot of then linking to previ-
ous statements instead of using handy congruence chains ubiquitous in informal

2 http://mizar.uwb.edu.pl/system/index.html#download.

http://mizar.uwb.edu.pl/system/index.html#download

306 A. Naumowicz

divisibility proofs. It would be useful to have the Mizar language understand
some sort of iterative congruence similar to the iterative equality feature.

Less trivially, at first it might not be that easy to see a clear connection
between the elegant informal statement of problem:

9. Prove that for every positive integer n the number 3(15 + 25 +
... + n5) is divisible by 13 + 23 + ... + n3.
and its corresponding (somewhat ugly and technical looking) rendering in Mizar:

for s1 , s2 being XFinSequence of NAT, n being Nat st

(l en s1=n+1 & for i being Nat st i in dom s1 holds s1 . i=i |ˆ5) &

(l en s2=n+1 & for i being Nat st i in dom s2 holds s2 . i=i |ˆ3)
holds Sum s2 d i v i d e s 3∗Sum s1 ;

which employs 0-based finite sequences to represent the ellipses available in tra-
ditional mathematics. However, one may note here that this Mizar encoding is
slightly more general than the original statement, because it also covers the triv-
ial case of n = 0 (so n does not have to be strictly positive) since 03 divides 05

according to the definition of the reflexive ‘divides’ predicate.
Table 1 shows more information about the data corresponding to particular

problems, the estimation of their size and the number of references extracted to
form the sketches. One can also see e.g. which problem can be used to illustrate
the use of natural induction, or which proof is based on Fermat’s little theorem.
Moreover, some proofs make use of either 0- or 1-based finite sequences to encode
informal ellipses – because of already available MML theories one or the other
approach can be preferable.

Table 1. Characteristics of dataset problems.

Problem # Size (in

lines)

References

extracted

Lemmas

required

Schemes

used

Other comments

1 39 6 – – –

2 105 10 2 – –

3 80 17 – Infinite sequence

existence

–

4 58 14 – – –

5 77 30 – – Fermat’s little theorem

6 54 19 – – Fermat’s little theorem

(due to Kraichik)

7 93 27 – – Fermat’s little theorem

8 163 31 2 Induction 0-based finite sequences

9 69 12 – Infinite sequence

existence

0-based finite sequences

10 159 32 2 – 1-based finite sequences

Formalization of Elementary Number Theory in Mizar 307

4 Conclusion and Future Work

The described dataset was created to serve the following main purposes: facil-
itating theorem proving education (including self-education), promoting proof
methodology based on gap filing proof development/refinement, providing sim-
ple data for proof exchange and comparison of different formalization environ-
ments and frameworks, and being a starting point for further, more advanced
number theory developments.

In its current form the data can already be used as a basis for an elemen-
tary theorem proving course for students with only rudimentary number theory
background. Naturally, there are several ways we can make this data grow and
become more generally useful: either continue completing the proofs from the
divisibility of numbers chapter, start the formalization work (in parallel) on other
chapters, or just formulate a number of next theorems in each chapter to boost
development by others/students.

Furthermore, as it usually happens when starting the formalization of a less-
developed branch of mathematics, especially if there is a possibility to compare
the data developed in various systems, the work may help identify weaker points
of a given proof system and streamline further research to devise better solutions
or improve the current implementations.

References

1. Alama, J.: mizar-items: exploring fine-grained dependencies in the Mizar math-
ematical library. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.)
CICM 2011. LNCS, vol. 6824, pp. 276–277. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22673-1 19

2. Bancerek, G., et al.: The role of the Mizar mathematical library for interactive
proof development in Mizar. J. Autom. Reason. 61(1–4), 9–32 (2018)

3. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette,
J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150,
pp. 261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8
17

4. Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in MIZAR. J.
Autom. Reasoning 29(3–4), 189–224 (2002)

5. Grabowski, A.: Tarski’s geometry modelled in Mizar computerized proof assistant.
In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2016
Federated Conference on Computer Science and Information Systems, FedCSIS
2016, Gdańsk, Poland, 11–14 September 2016. Annals of Computer Science and
Information Systems, vol. 8, pp. 373–381. IEEE (2016)

6. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reason. 3(2), 153–245 (2010)

7. Kaliszyk, C., Urban, J.: Mizar 40 for mizar 40. J. Autom. Reason. 55(3), 245–256
(2015)

8. Kornilowicz, A.: Flexary connectives in Mizar. Comput. Lang. Syst. Struct. 44,
238–250 (2015)

9. Kornilowicz, A., Naumowicz, A.: Niven’s theorem. Formalized Math. 24(4), 301–
308 (2016)

https://doi.org/10.1007/978-3-642-22673-1_19
https://doi.org/10.1007/978-3-642-22673-1_19
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-319-20615-8_17

308 A. Naumowicz

10. Naumowicz, A.: An example of formalizing recent mathematical results in Mizar.
J. Appl. Log. 4(4), 396–413 (2006)

11. Naumowicz, A.: Tools for MML environment analysis. In: Kerber, M., Carette, J.,
Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp.
348–352. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8 26

12. Naumowicz, A.: Towards standardized Mizar environments. In: Światek, J.,
Borzemski, L., Wilimowska, Z. (eds.) ISAT 2017. AISC, vol. 656, pp. 166–175.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67229-8 15

13. Naumowicz, A.: Elementary number theory problems. Part I. Formalized Math.
28(1), 115–120 (2020)

14. Sierpiński, W.: 250 Problems in Elementary Number Theory. Elsevier, Amsterdam
(1970)

15. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML
easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.
Springer, Heidelberg (2006). https://doi.org/10.1007/11618027 23

16. Urban, J.: Mizarmode - an integrated proof assistance tool for the Mizar way of
formalizing mathematics. J. Appl. Log. 4(4), 414–427 (2006)

17. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

18. Wiedijk, F.: Formal proof sketches. https://www.cs.ru.nl/∼freek/pubs/sketches2.
pdf

https://doi.org/10.1007/978-3-319-20615-8_26
https://doi.org/10.1007/978-3-319-67229-8_15
https://doi.org/10.1007/11618027_23
https://www.cs.ru.nl/~freek/pubs/sketches2.pdf
https://www.cs.ru.nl/~freek/pubs/sketches2.pdf

Guiding Inferences in Connection Tableau
by Recurrent Neural Networks

Bartosz Piotrowski1,2(B) and Josef Urban1

1 Czech Institute of Informatics, Robotics and Cybernetics, Prague, Czech Republic
2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,

Warsaw, Poland
bartoszpiotrowski@post.pl

Abstract. We present a dataset and experiments on applying recurrent
neural networks (RNNs) for guiding clause selection in the connection
tableau proof calculus. The RNN encodes a sequence of literals from the
current branch of the partial proof tree to a hidden vector state; using
it, the system selects a clause for extending the proof tree. The training
data and learning setup are described, and the results are discussed and
compared with state of the art using gradient boosted trees. Additionally,
we perform a conjecturing experiment in which the RNN does not just
select an existing clause, but completely constructs the next tableau goal.

Keywords: Connection tableau · Neural networks · Internal guidance

1 Introduction

There is a class of machine learning sequence-to-sequence architectures based on
recurrent neural networks (RNNs) which are successfully used in the domain of
natural language processing, in particular for translation between languages [2].
Recently, such architectures proved useful also in various tasks in the domain of
symbolic computation [6,10,14,16]. The models encode the source sequence to
a hidden vector state and decode from it the target sequence.

In this work, we employ such neural methods to choose among the non-
deterministic steps in connection-style theorem proving. In more detail, we want
to learn the hidden proving states that correspond to the evolving proof trees
and condition the next prover steps based on them. I.e., from a set of connection
tableau proofs we create a dataset (Sect. 2) of source-target training examples
of the form (partial proof state, decision) that we then use to train the neural
models (Sect. 3). The results are reported in Sect. 4. Section 5 shows an additional
experiment with predicting (conjecturing) tableau goals.

B. Piotrowski—Supported by the grant 2018/29/N/ST6/02903 of National Science
Center, Poland.
J. Urban—Supported by the AI4REASON ERC Consolidator grant nr. 649043 and by
the Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15 003/0000466 and the Euro-
pean Regional Development Fund.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 309–314, 2020.
https://doi.org/10.1007/978-3-030-53518-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-53518-6_23

310 B. Piotrowski and J. Urban

The connection tableau seems suitable for such methods. The connection
proofs grow as branches of a tree rooted in a starting clause. The number of
options (clauses) to choose from is relatively small compared to saturation-style
provers, where the number of clauses grows quickly to millions during the search.
The tableau branches representing the proof states can be the sequential input to
the RNNs, which can then decode one or more decisions, i.e., choices of clauses.

Clauses:
c1 : P (x)

c2 : R(x, y) ∨ ¬P (x) ∨ Q(y)

c3 : S(x) ∨ ¬Q(b)

c4 : ¬S(x) ∨ ¬Q(x)

c5 : ¬Q(x) ∨ ¬R(a, x)

c6 : ¬R(a, x) ∨ Q(x)

Tableau: P (a)

R(a, b)

¬R(a, b) Q(b)

¬Q(b) ¬R(a, b)

¬P (a) Q(b)

S(b)

¬S(b) ¬Q(b)

¬Q(b)

Fig. 1. Closed connection tableau for a set of clauses.

2 A Dataset for Connection-Style Internal Guidance

The experimental data originate from the Mizar Mathematical Library (MML)
[7] translated [15] to the TPTP language. We have used the leanCoP connection
prover [13] to produce 13822 connection proofs from the Mizar problems.

The connection tableau calculus searches for refutational proofs, i.e., proofs
showing that a set of first-order clauses is unsatisfiable. Figure 1 (adapted from
Letz et al. [11]) shows a set of clauses and a closed connection tableau constructed
from them, proving their unsatisfiability. A closed tableau is a tree with nodes
labeled by literals where each branch is closed. A closed branch contains a pair of
complementary literals (identical but with opposite polarities). An open branch
can be extended with descendant nodes by applying one of the input clauses.
This extension step can often be performed with several different clauses – this
is the main non-determinism point. Choosing the correct clause advances the
proof, whereas choosing wrongly leads to redundant exploration followed by
backtracking.

The training data for choosing good clauses were extracted from the proofs
as follows. First, formulas in the proofs were made more uniform by substituting
for each universal variable the token VAR and for each Skolem function the token
SKLM. For each non-root and non-leaf node n in each proof tree, we exported two
types of paths, which form two kinds of input data for the neural architecture:

(1) Plits(r → n) – the literals leading from the root r to the node n,
(2) Pcls(r → n) – the clauses that were chosen on the way from the root r to n.

The output data are created as follows. For each node n we record the decision
(i.e., the clause) that led to the proof. Let clause(n) be the clause selected at
node n. For instance, if n is the node labeled by R(a, b) in Fig. 1, clause(n) = c6.

Guiding Inferences in Connection Tableau by Recurrent Neural Networks 311

The pairs
(
Plits(r → n), clause(n)

)
and

(
Pcls(r → n), clause(n)

)
constitute

two different sets of training examples for learning clause selection. Each of these
sets contains 567273 pairs. Additionally, we have constructed similar data in
which the output contains not only the choice of the next clause, but a sequence
of two or three such consecutive choices. All these data sets1 were split into
training, validation and testing sets – the split was induced by an initial split of
the proofs in proportions 0.6, 0.1 and 0.3, respectively.

3 Neural Modelling and Evaluation Metric

As a suitable sequence-to-sequence recurrent neural model we used an imple-
mentation of a neural machine translation (NMT) architecture by Luong et al.
[12], which was already successfully used for symbolic tasks in [16] and [14]. All
the hyperparameters used for training were inherited from [16].

Let subsequent clausesi(Plits/cls(r → n)) be a set of i-long sequences of
clauses found in the provided proofs, following a given path of literals/clauses
from the root to a node n.2 Let clauses from model ik(Plits/cls(r → n)) be a
set of k i-long sequences of clauses decoded from the NMT model (we decoded
for k = 1 or k = 10 most probable sequences using the beam search tech-
nique [5]). We consider the prediction from the model for a given path of lit-
erals/clauses as successful if the sets subsequent clausesi(Plits/cls(r → n)) and
clauses from model ik(Plits/cls(r → n)) intersect. The metric of predictive accu-
racy of the model is the proportion of successful predictions on the test set.

4 Results

Table 1. Predictive accuracy of the
NMT system trained on two types
of source paths (literals or clauses),
decoding 1–3 consecutive clauses. 1
or 10 best outputs were decoded and
assessed.

Paths of literals Paths of clauses

clauses

to decode

1 best

output

10 best

outputs

1 best

output

10 best

outputs

1 0.64 0.72 0.17 0.36

2 0.11 0.19 0.03 0.07

3 0.05 0.07 0.01 0.02

The average results for the above met-
ric are shown in Table 1. We can see
that predicting the next clause is much
more precise than predicting multiple
clauses. The accuracy of predicting the
next clause(s) from a sequence of clauses
is lower than predicting the next clause(s)
from a sequence of literals, which means
the literals give more precise information
for making the correct decision.

We have also investigated how the per-
formance of NMT depends on the length
of the input sequences. The results for the

1 The tableau proofs and the sequential training data extracted from it are available
at https://github.com/BartoszPiotrowski/guiding-connection-tableau-by-RNNs.

2 E.g., for the proof from Fig. 1, we have (c4) ∈ subsequent clauses1(Plits(P (a) →
S(b)), (c6, c5) ∈ subsequent clauses2(Plits(P (a) → R(a, b)), (c6) ∈
subsequent clauses1(Pcls(c1 → c2), or (c3, c4) ∈ subsequent clauses1(Pcls(c1 → c2).

https://github.com/BartoszPiotrowski/guiding-connection-tableau-by-RNNs

312 B. Piotrowski and J. Urban

neural model trained on the paths of literals as the input are shown in the sec-
ond row of Table 2. As expected, the longer the input sequence, the better is the
prediction. The neural model was capable of taking advantage of a more complex
context. This differs significantly with the path-characterization methods using
manual features (as in [9]) that just average (possibly with some decay factor)
over the features of all literals on the path.

To compare with such methods, we trained a classifier based on gradient
boosted trees for this task using the XGBoost system [1], which was used for
learning feature-based guidance in [9]. To make the task comparable to the neural
methods, we trained XGBoost in a multilabel setting, i.e., for each partial proof
state (a path of literals) it learns to score all the available clauses, treated as
labels. Due to limited resources, we restrict this comparison to the MPTP2078
subset of MML which has 1383 different labels (the clause names).

The average performance of XGBoost on predicting the next clause from the
(featurized) path of literals was 0.43. This is lower than the performance of the
neural model, also using literals on the path as the input (0.64). The XGBoost
performance conditioned on the length of the input path is shown in the third row
of Table 2. XGBoost is outperforming NMT on shorter input sequences of literals,
but on longer paths, XGBoost gets significantly worse. The performance of the
recurrent neural model grows with the length of the input sequence, reaching
0.85 for input length 8. This means that providing more context significantly
helps the recurrent neural methods, where the hidden state much more precisely
represents (encodes) the whole path. The feature-based representation used by
XGBoost cannot reach such precision, which is likely the main reason for its
performance flattening early and reaching at most 0.51.

Table 2. Predictive accuracy of the NMT
and XGBoost systems for different lengths
of input sequences consisting of literals.

Length 1 2 3 4 5 6 7 8

NMT 0.19 0.48 0.64 0.70 0.68 0.72 0.79 0.85

XGB 0.43 0.35 0.42 0.39 0.47 0.41 0.51 0.46

Table 3. Predictive accuracy of
conjecturing literals by the NMT
system for input sequences of dif-
ferent lengths.

Length 1 2 3 4 5 6 7 all

NMT 0.04 0.05 0.08 0.11 0.14 0.16 0.34 0.08

5 Conjecturing New Literals

As an additional experiment demonstrating the power of the recurrent neural
methods we constructed a data set for conjecturing new literals on the paths in
the tableau proofs. The goal here is not to select a proper literal, but to construct
it from the available symbols (the number of them for the MML-based data set
is 6442). This task is impossible to achieve with the previous methods that can
only rank or classify the available options. Recurrent neural networks are, on
the other hand, well-suited for such tasks – e.g., in machine translation, they
can learn how to compose grammatically correct and meaningful sentences.

Guiding Inferences in Connection Tableau by Recurrent Neural Networks 313

It turns out that this more difficult task is to some extent feasible with NMT.
Table 3 shows that NMT could propose the right next literal on the path in a
significant number of cases. Again, there is a positive dependence between the
length of the input sequence and the predictive performance. Most of the times
the correct predictions involve short literals, whereas predicting longer literals is
harder. The proposed longer literals often not only do not match the right ones
but have an improper structure (see Table 4 for examples of the NMT outputs).

Table 4. Literals conjectured by NMT vs. the correct ones. (1) is an example of a
correctly predicted output; in (2) NMT was wrong but proposed a literal which is
similar to the proper one; (3) shows a syntactically incorrect literal produced by NMT.

NMT prediction Correct output

(1) m1 subset 1(np 1,k4 ordinal1) m1 subset 1(np 1,k4 ordinal1)

(2) m1 subset 1(SKLM,k1 zfmisc 1(SKLM)) m1 subset 1(SKLM,SKLM)

(3) k2 tarski(SKLM,SKLM)=k2 tarski(SKLM k2 tarski(SKLM,SKLM)=k2 tarski(SKLM,SKLM)

6 Conclusion and Future Work

In this work, we proposed RNN-based encoding and decoding as a suitable repre-
sentation and approach for learning clause selection in connection tableau. This
differs from previous approaches – both neural and non-neural – by emphasizing
the importance of the evolving proof state and its accurate encoding. The app-
roach and the constructed datasets also allow us to meaningfully try completely
new tasks, such as automatically conjecturing the next literal on the path. The
experimental evaluation is encouraging. In particular, it shows that the longer
the context, the more precise the recurrent methods are in choosing the next
steps, unlike the previous methods. The evaluation and data sets have focused
(as similar research studies [4,8]) on the machine learning performance, which is
known to underlie the theorem proving performance. Future work includes inte-
grating such methods into ATP systems and ATP evaluation similar to [3,9].

References

1. Chen, T., Guestrin, C.: XGboost: a scalable tree boosting system. ACM SIGKDD
2016, 785–794 (2016)

2. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. EMNLP 2014, 1724–1734 (2014)

3. Chvalovský, K., Jakubuv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. CADE 27, 197–215 (2019)

4. Evans, R., Saxton, D., Amos, D., Kohli, P., Grefenstette, E.: Can neural networks
understand logical entailment? In: ICLR 2018 (2018)

5. Freitag, M., Al-Onaizan, Y.: Beam search strategies for neural machine translation.
In: NMT@ACL 2017, pp. 56–60 (2017)

314 B. Piotrowski and J. Urban

6. Gauthier, T.: Deep reinforcement learning for synthesizing functions in higher-
order logic. CoRR (2019). http://arxiv.org/abs/1910.11797

7. Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reasoning 3(2), 153–245 (2010)

8. Kaliszyk, C., Chollet, F., Szegedy, C.: Holstep: a machine learning dataset for
higher-order logic theorem proving. In: ICLR 2017 (2017)

9. Kaliszyk, C., Urban, J., Michalewski, H., Olsák, M.: Reinforcement learning of
theorem proving. NeurIPS 2018, 8836–8847 (2018)

10. Lample, G., Charton, F.: Deep learning for symbolic mathematics. CoRR (2019).
http://arxiv.org/abs/1912.01412

11. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection
tableau calculi. J. Autom. Reasoning 13, 297–337 (1994)

12. Luong, M., Brevdo, E., Zhao, R.: Neural machine translation (seq2seq) tutorial
(2017). https://github.com/tensorflow/nmt

13. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1–2), 139–161 (2003)

14. Piotrowski, B., Urban, J., Brown, C.E., Kaliszyk, C.: Can neural networks learn
symbolic rewriting? CoRR (2019). https://arxiv.org/pdf/1911.04873.pdf

15. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom.
Reasoning 37(1–2), 21–43 (2006)

16. Wang, Q., Kaliszyk, C., Urban, J.: First experiments with neural translation of
informal to formal mathematics. In: Rabe, F., Farmer, W.M., Passmore, G.O.,
Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006, pp. 255–270. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96812-4 22

http://arxiv.org/abs/1910.11797
http://arxiv.org/abs/1912.01412
https://github.com/tensorflow/nmt
https://arxiv.org/pdf/1911.04873.pdf
https://doi.org/10.1007/978-3-319-96812-4_22

First Neural Conjecturing Datasets
and Experiments

Josef Urban(B) and Jan Jakub̊uv

Czech Institute of Informatics, Robotics and Cybernetics, Prague, Czech Republic
Josef.Urban@gmail.com

Abstract. We describe several datasets and first experiments with cre-
ating conjectures by neural methods. The datasets are based on the
Mizar Mathematical Library processed in several forms and the problems
extracted from it by the MPTP system and proved by the E prover using
the ENIGMA guidance. The conjecturing experiments use the Trans-
former architecture and in particular its GPT-2 implementation.

1 Introduction and Related Work

Automated creation of suitable conjectures is one of the hard problems in auto-
mated reasoning over large mathematical corpora. This includes tasks such as
(i) conjecturing suitable intermediate lemmas (cuts) when proving a harder con-
jecture, and (ii) unrestricted creation of interesting conjectures based on the
previous theory (i.e., theory exploration). Starting with Lenat’s AM [10], several
systems such as the more specialized Graffitti by Fajtlowicz [4], and Colton’s
HR [3] have been developed, typically using heuristics for theory exploration or
limited brute-force enumeration, controlled e.g. by the type system [7].

Our motivation is the work of Karpathy1 with recurrent neural networks
(RNNs). One of his experiments used the Stacks project, generating LaTeX-
style pseudo-mathematics that looked quite credible to non-experts. We have
repeated these experiments over the Mizar library using Karpathy’s RNNs in
2016, but the results did not seem convincing. The neural methods have however
improved since, coming up with stronger methods and systems such as attention,
transformer and GPT-2 [12]. The experiments described here started by testing
GPT-2 on the Mizar library, gradually producing several more datasets.

Related work includes research on the informal-to-formal grammar-based
and neural translation [8,9,16,17]. There it was found that PCFGs and RNNs
with attention work well on some informal-to-formal datasets, can learn analo-
gies from the data, and can be used to produce multiple formal outputs of
which some are new provable conjectures. In [16] we use this together with
type checking to set up a data-augmentation loop between the neural learner
and the type-checker. Such learning-reasoning loops are also planned for the
datasets presented here. Similar experiments are done in [6] and by Chvalovský2.
1 http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
2 http://aitp-conference.org/2019/abstract/AITP 2019 paper 27.pdf, http://aitp-

conference.org/2020/abstract/paper 21.pdf.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 315–323, 2020.
https://doi.org/10.1007/978-3-030-53518-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_24&domain=pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://aitp-conference.org/2019/abstract/AITP_2019_paper_27.pdf
http://aitp-conference.org/2020/abstract/paper_21.pdf
http://aitp-conference.org/2020/abstract/paper_21.pdf
https://doi.org/10.1007/978-3-030-53518-6_24

316 J. Urban and J. Jakub̊uv

Gauthier has been working on term synthesis using Monte-Carlo Tree Search and
reinforcement learning with semantic feedback [1,5].

2 Datasets

The datasets for neural conjecturing are available from our web page3. We have
so far experimented with the following data:

1. All Mizar articles (MML version 1147), stripped of comments and concate-
nated together4. This is 78M of uncompressed text.

2. Text version of the HTML export [14] of the MML articles5. This unpacks to
156 MB. It additionally contains disambiguation features such as full types of
variables, full names of theorems and the thesis is printed after every natural
deduction step. This seems useful for neural conjecturing because the context
is repeated more often.

3. Tokenized TPTP proofs6 of 28271 Mizar theorems translated by the MPTP
system [15]. The proofs are produced by the E prover [13] equipped with
recent ENIGMA guidance [2]. This unpacks to 658 MB.

4. A subselection of theusedMizar premises fromthe 28271proofs printed inprefix
notation7. These files always start with the conjecture, and the premises are
printed in the order in which E used them in its proof. This unpacks to 53 MB.

Below we show short examples of the four kinds of data, all for the theorem
ZMODUL01:103:

theorem

for W being strict Submodule of V holds W /\ W = W

proof

let W be strict Submodule of V;

the carrier of W = (the carrier of W) /\ (the carrier of W);

hence thesis by Def15;

end;

theorem :: ZMODUL01:103

for V being Z_Module

for W being strict Submodule of V holds W /\ W = W

proof

let V be Z_Module; ::_thesis: for W being strict Submodule of V holds W /\ W = W

let W be strict Submodule of V; ::_thesis: W /\ W = W

the carrier of W = the carrier of W /\ the carrier of W ;

hence W /\ W = W by Def15; ::_thesis: verum

end;

fof (d15_zmodul01 , axiom , ! [X1] : ((((((((((~ (v2_struct_0 (X1)) & ...

fof (idempotence_k3_xboole_0 , axiom , ! [X1 , X2] : k3_xboole_0 (X1 , X1) = X1 ...

fof (t103_zmodul01 , conjecture , ! [X1] : ((((((((((~ (v2_struct_0 (X1)) ...

fof (c_0_3 , plain , ! [X118 , X119 , X120 , X121] : ((X121 ! = k7_zmodul01 (X118 , ...

cnf (c_0_6 , plain , (X1 = k7_zmodul01 (X4 , X2 , X3) | v2_struct_0 (X4) | ...

3 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/.
4 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/datasets/mmlall.txt2.
5 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/datasets/html2.tar.gz.
6 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/datasets/prf2.tar.gz.
7 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/datasets/prf7.tar.gz.

http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/datasets/mmlall.txt2
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/datasets/html2.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/datasets/prf2.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/datasets/prf7.tar.gz

First Neural Conjecturing Datasets and Experiments 317

c! b0 c=> c& c~ cv2_struct_0 b0 c& cv13_algstr_0 b0 c& cv2_rlvect_1 b0 c& cv3_rlvect_1 ...

c! b0 c=> c& c~ cv2_struct_0 b0 c& cv13_algstr_0 b0 c& cv2_rlvect_1 b0 c& cv3_rlvect_1 ...

c! b0 c! b1 c= ck3_xboole_0 b0 b0 b0

3 Experiments

The basic experiment for each dataset consists of training the smallest (117 M
parameters) version of GPT-2 on a NVIDIA GeForce GTX 1080 GPU with 12 GB
RAM, producing random unconditioned samples during the training. The pro-
duced samples and the most recent trained models are available from our web
page8. The published models can be used for conditional and unconditional gen-
eration of Mizar-like texts, proofs and premise completion. The samples contain
megabytes of examples of what can be generated and how the generated texts
improve during the training. The training on the third dataset was stopped early.
The large number of redundant tokens such as brackets and commas led us to pro-
duce the fourth dataset that uses the punctuation-free prefix notation and much
shorter summary of the E proof (just the premises in their order). The training
for datasets 1, 2 and 4 has been running for several weeks, with the performance
still slowly improving. See Fig. 1 in Appendix A for a sample training and loss on
dataset 2. There are many interesting conjectures generated during the uncondi-
tioned sampling. The trained models can be directly used by Mizar users for auto-
completion of their texts. Some examples compared to real theorems are shown
below. More semantic evaluation on the textual datasets (1 and 2) could be done in
various ways. We imagine that a proper Mizar environment will have to be guessed,
some assumptions may be automatically added, etc.
real MML theorem
theorem :: YELLOW10:61
for S, T being non empty up-complete Poset
for X being Subset of S
for Y being Subset of T st X is property(S) & Y is property(S) holds
[:X,Y:] is property(S)

generated similar "theorem"
theorem :: WAYBEL30:56
for R being complete Lattice
for X being Subset of [:R,R:] st X is upper & X is property(S) holds
[:X,X:] is property(S)

real MML theorem
theorem :: SEQ_4:47
for X being non empty real-membered set
for Y being real-membered set st X c= Y & Y is bounded_below holds
lower_bound Y <= lower_bound X

generated similar "theorem"
theorem Th33: :: SEQ_4:33
for X being real-membered set
for Y being real-membered set st Y is bounded_below & X c= Y holds
lower_bound Y <= lower_bound X

generated "theorem" with "proof"
theorem Th23: :: STIRL2_1:23
for X, Y being finite set st not X is empty & X c= Y & card X = card Y holds X = Y

8 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/samples/, http://grid01.ciirc.cvut.cz/
∼mptp/nn conj20/models/.

http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/models/
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/models/

318 J. Urban and J. Jakub̊uv

proof
let X, Y be finite set ; ::_thesis: (not X is empty & X c= Y & card X = card Y implies X = Y)
assume that
A1: not X is empty and A2: X c= Y and A3: card X = card Y ; ::_thesis: X = Y
card (Y \ X) = (card Y) - (card X) by A1, A3, CARD_2:44;

then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X = Y \ X by A2, A3, Th22;

hence X = Y by A4, XBOOLE_0:def_10; ::_thesis: verum
end;

3.1 Conditioned Completion

We have also done two initial experiments with proof and formula completion.
The data and results for them are available from our web page9. In the first
experiment, we use a model trained on Dataset 4 (premises), and ask the model
to auto-complete 369 theorems from the CARD series of Mizar. For each conjec-
ture we produce 10 premise selections using beam search, and we use different
temperatures and beam search parameters. An interesting phenomenon is that
with low temperatures, practically all conjectured premises are known Mizar
theorems. I.e., the task reduces to standard premise selection. With higher tem-
peratures, GPT-2 starts producing premises (lemmas) that are not among the
existing Mizar theorems, but are still well-typed. Even higher temperatures lead
to non-well-typed or even unparsable lemmas. The next section provides a more
involved ATP evaluation done on a larger dataset.

The second experiment was done over Dataset 2 and a set of 462 partial
formulas from the CARD articles. The model trained on Dataset 2 is then (again
using beam search) asked to auto-complete these formulas. Mizar users can also
play with such autocompletion via a web server10 using this model. For example,

for M, N being Cardinal holds

results in the following (selected) auto-completions (more are available online11):

(M = N iff M,N are_equipotent)
(M = N iff not 0 in M) by ORDINAL3:8;
M *‘ N = N *‘ M
(M in N iff not M c= N)
the_rank_of M = the_rank_of N by Th77;
nextcard (Sum M) = M *‘ N

3.2 Initial ATP Evaluation

The first larger ATP (semantic) evaluation uses the fourth dataset following the
setting introduced for such evaluations in [6]. After training GPT-2 on the 28271
ENIGMA proofs, we produce (using beam search) 12 GPT-2 premise predic-
tions for a set of 31792 theorems of which 6639 are not among the training ones.

9 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/samples/premises/, http://grid01.
ciirc.cvut.cz/∼mptp/nn conj20/samples/html2/.

10 http://grid01.ciirc.cvut.cz:8000/.
11 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/samples/html2/00cardmizout1 t1.

http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/premises/
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/html2/
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/html2/
http://grid01.ciirc.cvut.cz:8000/
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/html2/00cardmizout1_t1

First Neural Conjecturing Datasets and Experiments 319

This yields 381432 predictions,12 deduplicated to 193320 unique predictions. The
predictions are converted back to TPTP from the polish notation, creating ATP
problems. We distinguish between the premises that already exist as Mizar theo-
rems and definitions, and the new formulas (conjectures) introduced by GPT-2.
10856413 of the created problems contain no new conjectures, i.e., GPT-2 works
there as a standard premise selector similar to [11].

Most (86899) of these ATP problems14 can be quickly shown to be coun-
tersatisfiable by E prover.15 This shows the first difference between syntactic
loss as used by the ML/NLP community and semantic usefulness. GPT-2’s loss
is geared towards mimicking the length of the original texts with a small num-
ber of syntactic mistakes. In premise selection, the underlying task is to generate
premises that have sufficient logical power. Overshooting is better than making a
mistake and observing the usual length of the text. 11866 of the problems can be
proved in 6 s, resulting in proofs of 8105 theorems. This is not yet an interesting
number, because GPT-2 does not observe the chronological order of premises.
E.g., 4350 of the proofs use only a single premise – typically GPT-2 suggested
the proved theorem itself as a premise. Still, some predictions are chronologically
correct and lead to correct new proofs. E.g. for theorem XXREAL 1:48,16 which
is not in the training set, the fifth GPT-2 sample proposed 7 premises17 of which
5 were used in a quickly found new E proof18 (see Appendix A for details).

Next we evaluate19 the 44524 problems20 that do use at least one newly
proposed premise. We have not strictly enforced the chronology, but remove
the theorem itself from axioms if proposed. 34675 of the problems are then
found countersatisfiable by E in 1 s and for 1515 a proof is found. The con-
jectures may be interesting, even though hard to prove automatically: E.g. for
GROUPP 1:T1021 a valid, though not quite trivial strengthening from finite to
general groups is proposed, see Appendix A for details.

In total, GPT-2 proposed in this experiment 52515 new syntactically correct
formulas22 that deduplicate to 33100. Some are clearly false, yet quite natural
to ask: e.g. for dozens of theorems like SINCOS10:1723 – “sec is increasing
on [0, π/2)” – GPT-2 makes the conjecture that every differentiable function is
increasing.24 In this particular case we can likely disprove the conjecture since
there are counterexamples in the MML. Similarly, in FUNCTOR1:925, to prove

12 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/preds3.tar.gz.
13 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/preds5.tar.gz.
14 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/preds6.tar.gz.
15 We used E with 6 s time limit and its auto-schedule mode for this initial check.
16 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/xxreal 1.html#T48.
17 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/t48 xxreal 1 5.
18 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/t48 xxreal 1 5.out.
19 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/preddatagpt1.out.tar.gz.
20 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/preddatagpt1.tar.gz.
21 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/groupp 1.html#T10.
22 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/out4.tar.gz.
23 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/sincos10.html#T17.
24 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/t17 sincos10 1.
25 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/functor1.html#T9.

http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preds3.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preds5.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preds6.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/xxreal_1.html#T48
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/t48_xxreal_1___5
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/t48_xxreal_1___5.out
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preddatagpt1.out.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preddatagpt1.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/groupp_1.html#T10
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/out4.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/sincos10.html#T17
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/t17_sincos10___1
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/functor1.html#T9

320 J. Urban and J. Jakub̊uv

that the composition of full functors is full, GPT-2 proposes to reduce fullness
to faithfulness, likely because a previous theorem26 says that faithfulness is pre-
served under composition. See Appendix A for details.

Finally we use standard premise selection (although we could recurse and
use GPT-2) and E with the ENIGMA guidance to try to prove the 52515 new
formulas.27 This yields 9000–10000 proofs,28 depending on how we run premise
selection and E. While some proofs are long, it seems that we are not yet capa-
ble of proving the more interesting conjectures and we still need more ATP
strengths. E.g., the longest ATP proof shows that -infty is non empty, where
-infty is defined as [0,REAL]. A slightly more useful conjecture which is also
hard to prove29 is the strengthening of the symmetry of the are homeomorphic
predicate30 from non-empty to arbitrary spaces.

Funding. Funded by the AI4REASON ERC Consolidator grant nr. 649043 and by the

Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15 003/0000466 and the European

Regional Development Fund. We thank K. Chvalovský and T. Gauthier for discussions.

A Additional Data From the Experiments

Fig. 1. Dataset 2 training and loss.

26 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/functor1.html#T7.
27 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/preddata128.tar.gz.
28 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/preddata128.out.tar.gz.
29 http://grid01.ciirc.cvut.cz/∼mptp/nn conj20/results/t20 borsuk 3 7 1.
30 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/borsuk 3.html#R2.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/functor1.html#T7
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preddata128.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preddata128.out.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/t20_borsuk_3___7__1
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/borsuk_3.html#R2

First Neural Conjecturing Datasets and Experiments 321

A.1 XXREAL 1:48 and its GPT-2 predictions

theorem Th48 : : : XXREAL 1:48
for p , r , s , q being ext−r e a l number st p < r & s <= q holds
[. r , s . [c=] . p , q . [

Following are the Mizar premises in the order proposed by GPT-2. The fifth and
sixth were not needed for the ATP proof.

theorem Th3 : : : XXREAL 1:3

for t , r , s being ext−r e a l number holds t in [. r , s . [i f f r <= t & t < s

l et X be ext−r ea l−membered s e t ; l et Y be s e t ;

pred X c= Y means : Def8 : : : MEMBERED: def 8

for e being ext−r e a l number st e in X holds e in Y;

l et r , s be ext−r e a l number ;

cluster [. r , s . [→ ext−r ea l−membered ;

theorem Th2 : : : XXREAL 0:2

for a , b , c being ext−r e a l number st a <= b & b <= c holds a <= c

l et X be ext−r ea l−membered s e t ; cluster → ext−r e a l for Element of X;

theorem : : SUBSET:1

for a , b being s e t st a in b holds a i s Element of b ;

theorem Th4 : : : XXREAL 1:4

for t , r , s being ext−r e a l number holds t in] . r , s . [i f f r < t & t < s

A.2 GROUPP 1:10 and its generalization conjectured by GPT-2

theorem Th10 : : : GROUPP 1:10
for G being f i n i t e Group for N being normal Subgroup of G st
N i s Subgroup of cente r G & G . / . N i s c y c l i c holds G i s commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N i s Subgroup of cente r G & G . / . N i s c y c l i c holds G i s commutative

We don’t have an ATP proof of the generalization yet. We thank algebraists
Michael Kinyon and David Stanovský for confirming that this generalization
is provable. Based on this example Stanovský commented that related Mizar
theorems can be similarly generalized.

A.3 SINCOS10:17 and a false conjecture by GPT-2

theorem Th17 : : : SINCOS10 :17
sec | [. 0 , (PI / 2) . [i s i n c r e a s i n g

GPT-2 generated the following conjecture, which is false. Along with another
GPT-2 conjecture about the differentiability of sec on the interval, this results
in an ATP proof of SINCOS10:17.

322 J. Urban and J. Jakub̊uv

for X being s e t for f being Function of REAL, REAL holds
f i s d i f f e r e n t i a b l e o n X implies f | X i s i n c r e a s i n g

A.4 FUNCTOR1:9 and a GPT-2 conjecture reducing it to FUNCTOR1:7

theorem Th9 : : : FUNCTOR1:9

for C1 being non empty AltGraph for C2 , C3 being non empty r e f l e x i v e AltGraph

for F being f e a s i b l e FunctorStr over C1 ,C2 for G being FunctorStr over C2 ,C3

st F i s f u l l & G i s f u l l holds G ∗ F i s f u l l

for C1 , C2 being AltGraph for F being FunctorStr over C1 ,C2 holds

F i s f u l l i f f F i s f a i t h f u l & F i s f e a s i b l e

theorem Th7 : : : FUNCTOR1:7

for C1 being non empty AltGraph for C2 , C3 being non empty r e f l e x i v e AltGraph

for F being f e a s i b l e FunctorStr over C1 ,C2 for G being FunctorStr over C2 ,C3

st F i s f a i t h f u l & G i s f a i t h f u l holds G ∗ F i s f a i t h f u l

References

1. Brown, C.E., Gauthier, T.: Self-learned formula synthesis in set theory. CoRR,
abs/1912.01525 (2019)

2. Chvalovský, K., Jakub̊uv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 197–215. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6 12

3. Colton, S.: Automated Theory Formation in Pure Mathematics. Distinguished Dis-
sertations. Springer, London (2012). https://doi.org/10.1007/978-1-4471-0147-5

4. Fajtlowicz, S.: On conjectures of Graffiti. Ann. Discrete Math. 72(1–3), 113–118
(1988)

5. Gauthier, T.: Deep reinforcement learning in HOL4. CoRR, abs/1910.11797 (2019)
6. Gauthier, T., Kaliszyk, C., Urban, J.: Initial experiments with statistical conjec-

turing over large formal corpora. In: CICM 2016 WiP Proceedings, pp. 219–228
(2016)

7. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory
exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108–122.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3 9

8. Kaliszyk, C., Urban, J., Vyskočil, J.: Automating formalization by statistical and
semantic parsing of mathematics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 12–27. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66107-0 2

9. Kaliszyk, C., Urban, J., Vyskočil, J.: Learning to parse on aligned corpora (Rough
Diamond). In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 227–233.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1 15

10. Lenat, D.B.: AM: an artificial intelligence approach to discovery in mathematics
as heuristic search. Ph.D thesis, Stanford (1976)

11. Piotrowski, B., Urban, J.: Stateful Premise Selection by Recurrent Neural Networks
(2020)

12. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI
Blog 1(8), 9 (2019)

13. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 49

https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-3-030-29436-6_12
https://doi.org/10.1007/978-1-4471-0147-5
https://doi.org/10.1007/978-3-319-08434-3_9
https://doi.org/10.1007/978-3-319-66107-0_2
https://doi.org/10.1007/978-3-319-66107-0_2
https://doi.org/10.1007/978-3-319-22102-1_15
https://doi.org/10.1007/978-3-642-45221-5_49

First Neural Conjecturing Datasets and Experiments 323

14. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML
easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.
Springer, Heidelberg (2006). https://doi.org/10.1007/11618027 23

15. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reasoning 37(1–2), 21–43 (2006)

16. Wang, Q., Brown, C.E., Kaliszyk, C., Urban, J.: Exploration of neural machine
translation in autoformalization of mathematics in Mizar. In: CPP, pp. 85–98
(2020)

17. Wang, Q., Kaliszyk, C., Urban, J.: First experiments with neural translation of
informal to formal mathematics. In: Rabe, F., Farmer, W.M., Passmore, G.O.,
Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006, pp. 255–270. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96812-4 22

https://doi.org/10.1007/11618027_23
https://doi.org/10.1007/978-3-319-96812-4_22

A Contextual and Labeled Math-Dataset
Derived from NIST’s DLMF

Abdou Youssef1,2(B) and Bruce R. Miller2

1 The George Washington University, Washington DC, WA, USA
ayoussef@gwu.edu

2 NIST, Gaithersburg, USA
{youssef,bruce.miller}@nist.gov

Abstract. Machine Learning (ML) and Natural Language Processing
(NLP) have started to be applied to math language processing and math
knowledge discovery. To fully utilize ML in those areas, there is a press-
ing need for Math labeled datasets. This paper presents a new dataset
that we have derived from the widely used Digital Library of Mathemat-
ical Functions (DLMF) of NIST. The dataset is structured and labeled
in a specific way. For each math equation and expression in the DLMF,
there is a record that provides annotational and contextual elements.
An accompanying dataset is also generated from the DLMF. It con-
sists of “Simple XML” files, each organized as marked-up sentences
within a marked-up hierarchy of paragraphs/subsections/sections. The
math in each sentence is marked up in a way that enables users to
extract the actual context of math elements, at various levels of granular-
ity, for contextualized processing. This context-rich, sentence-oriented,
equation/expression-centered, symbol-labeled dataset is motivated by
the fact that much of ML-based NLP algorithms are sentence oriented.

1 Introduction

Machine Learning (ML) and ML-based Natural Language Processing (NLP)
have started to be applied to math language processing (MLP), math knowledge
discovery (MKD), and document processing in STEM fields [1,3,5–7]. This holds
great promise for advancement in those areas, but to accomplish that, we need
labeled math-datasets to train and test ML models, such as classifiers, part-of-
math taggers, summarizers, translators, question-answering systems, and word
embedding models. Unlike in traditional ML-NLP applications, there is a dearth
of labeled datasets for MLP and MKD. Ginev and Miller introduced recently a
large dataset labeled at a coarse granularity [2], but no math dataset labeled at
fine granularity is available at this time.

In this paper, we present a new dataset1 that we have derived from the widely
used Digital Library of Mathematical Functions (DLMF) of NIST [4]. For reasons
stated in Sect. 3, the dataset consists of two twin datasets: the per-expression
dataset, and the Simple-XML dataset.
1 For now, the dataset is at https://github.com/abdouyoussef/math-dlmf-dataset/.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 324–330, 2020.
https://doi.org/10.1007/978-3-030-53518-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53518-6_25&domain=pdf
https://github.com/abdouyoussef/math-dlmf-dataset/
https://doi.org/10.1007/978-3-030-53518-6_25

A Contextual and Labeled Math-Dataset Derived from NIST’s DLMF 325

Table 1. Names, values and explanations of the fields of equation records.

Field name Field value and its explanation

Equation-number The unique equation number of the equation in
DLMF

Permalink A unique URL of the equation

Xml-id A unique XML ID of the equation within the DLMF

Tex LATEX encoding of the equation, surrounded by dollar
signs

Content-tex LATEX encoding of the equation, but using
DLMF-defined semantic Latex macros

Constraints A number of name:value fields encoding the
constraints of the equation, if any, in both LATEX and
content-tex

Symbols-defined A number of name:value fields where the name is
“symbol”, and the value is in turn a number of
name:value fields encoding and describing a math
symbol in the equation, where the description gives
the meaning of the symbol, which can be viewed as a
symbol label in the ML sense

Symbols-used Similar to the symbols-defined values above, except
that each symbol has an additional idref:value field
where the latter value provides the ID where the
original definition of that symbol is located in the
DLMF

Meaning The meaning or role of the symbol in questiona

Idref A unqiue ID reference to the location where a
symbol is initially defined in the DLMF

Context-references A number of name:value fields that provide
context-identifying references and titles of the
textual units containing the equation, such as
subsection and section titles, as detailed in Table 2

a The meanings of symbols are provided by the DLMF, and were determined
by the DLMF authors and editors. As those labels were meant for human
readers rather than for any machine learning/NLP applications, no formalized
“levels” of meaning were provided. We decided to keep those meaning labels
as currently provided, pending future elaborations.

The per-expression dataset is structured and labeled at fine granularity. For
each math equation or expression in the DLMF, there is a record that provides a
number of related elements, both contextual and annotational. The Simple-XML
dataset consists of “Simple XML” files, where the contents of each Simple-XML
file are organized as marked-up sentences within the marked-up hierarchy of
paragraphs/subsections/sections inherited form the original DLMF files. Each
sentence consists of its text and math XML-elements with their own unique IDs.
The details of those twin datasets are in Sect. 2.

326 A. Youssef and B. R. Miller

Insert 1. An equation record in the per-expression dataset
Equation:

equation-number: 5.2.2
permalink: http://dlmf.nist.gov/5.2.E2
xml-id: C5.S2.E2
tex: $\psi\left(z\right)=\Gamma’\left(z\right)/\Gamma\left(z\right)$
content-tex: $\digamma@{z}=\EulerGamma’@{z}/\EulerGamma@{z}$
constraints:

tex: $z\neq 0,-1,-2,\dots$

symbols-defined:
symbol:

tex: $\psi\left(\NVar{z}\right)$
content-tex: $\digamma@{\NVar{z}}$
meaning: psi (or digamma) function

symbols-used:
symbol:

tex: $\Gamma\left(\NVar{z}\right)$
content-tex: $\EulerGamma@{\NVar{z}}$
idref: C5.S2.E1
meaning: gamma function

symbol:
tex: z
idref: C5.S1.p2.t1.r4
meaning: complex variable

context-references:
sentence-xmlid: C5.S2.Px1.p1.s6
sentence-num-in-section: 6
sentence-num-in-chapter: 27
sentence-num-in-corpus: 4550
para-xmlid: C5.S2.Px1.p1
para-num-of-sentences: 7
paragraph-xmlid: C5.S2.Px1
paragraph-title: Euler’s Integral
subsection-xmlid: C5.S2.SS1
subsection-title: Gamma and Psi Functions
section-xmlid: C5.S2
section-title: Definitions
chapter-xmlid: C5
chapter-title: Gamma Function

End-equation

Insert 2. A sentence element in the Simple-XML dataset
<sentence sentence-num-in-para="6" sentence-num-in-section="6"

xml:id="C5.S2.Px1.p1.s6">

<Math equation-number="5.2.2" mode="display" xml:id="C5.S2.E2">

\psi\left(z\right) =

\Gamma’\left(z\right)/\Gamma\left(z\right), if \neq 0,-1,-2,\dots

</Math>.

</sentence>

A Contextual and Labeled Math-Dataset Derived from NIST’s DLMF 327

The full context of each equation or expression is easily and quickly derivable
from the twin datasets, which enables users to identify and fully extract the
sentence containing a given equation/expression, as well as neighboring sentences
or full paragraphs, for contextualized processing needed in many MLP tasks.

Table 2. Names, values and explanations of the context fields of equation records.

Field name Field value and its explanation

Sentence-xmlid A unique sentence ID within the Simple-XML files of
the DLMF

Sentence-num-in-section The in-section number of the sentence containing the
equation

Sentence-num-in-chapter The in-chapter number of the sentence containing
the equation

Sentence-num-in-corpus The in-corpus number of the sentence containing the
equation

Para-xmlid A unique ID of the physical paragraph of the
equation

Para-num-of-sentences The number of sentences in the physical paragraph
of the equation

Paragraph-xmlid A unique XML ID of the logical paragraph of the
equation

Paragraph-title The title of the logical paragraph of the equation

Subsection-xmlid A unique XML ID of the subsection containing the
equation

Subsection-title The title of the subsection containing the equation

Section-xmlid A unique XML ID of the section containing the
equation

Section-title The title of the section containing the equation

Chapter-xmlid A unique XML ID of the chapter containing the
equation

Chapter-title The title of the chapter containing the equation

2 Description of the Datasets

We produced the datasets by writing Java software to process the DLMF XML
source files and to extract from them the twin datasets, including the JSON
version of the per-expression dataset. This section describes the details and sizes
of the datasets.

328 A. Youssef and B. R. Miller

2.1 The Per-Expression Dataset

The per-expression dataset, represented in both a textual format and the JSON
format, is organized by records, one per equation and one per math expression.
Each equation-record starts and ends with the keywords Equation: and End-
equation on separate lines, and has fields of name:value pairs. The name of each
field is a meaningful string, and the value is a text string that can be a LATEX
encoding, an ID, or a sequence of name:value fields. Insert 1 gives an example
of such a record, and Tables 1 and 2 specify the fields. Note that expression-
records are similar to equation-records except that they start and end with the
keywords Expression: and End-expression, and do not have the following fields:
equation-number, permalink, constraints, symbols-used, and symbols-defined.

2.2 The Simple-XML Dataset

In the Simple-XML dataset, each section of the DLMF is a lean XML file, struc-
tured as a tree of section and subsections. Each subsection consists of para-
graphs, and each paragraph is a sequence of marked-up sentences that contain
text and/or marked-up math elements. Each sentence element has valuable XML
attributes, including the xml-id attribute of the sentence (see Insert 2 for an illus-
tration). That way, from a given equation record in the per-expression dataset,
one can retrieve the sentence-xmlid field value and use it to retrieve the actual
sentence from the right file in Simple-XML dataset, and indeed retrieve the
contents of even broader contexts (e.g., paragraph).

2.3 Dataset Size

The whole dataset has 20,040 sentences; 25,930 math elements; and 8,494 num-
bered equations. The uncompressed size of the per-expression dataset in textual
format is 26.5 MB, and in JSON format is 83.5 MB. The uncompressed size of
the Simple-XML dataset is 15.7 MB. Thus the total size is 125.7 MB.

3 Justification of the Data Model of the Datasets

The data model of our twin datasets is justified by the following considerations:

– Much of deep learning in NLP, and by extension in MLP/MKD, works on
the sentence (occasionally paragraph) level, such as in word embedding, and
classification at the micro level (e.g., part-of-math (POM) tagging) and macro
level (e.g., classifying paragraphs [2] as definitions, assertions, proofs, etc.).

– The datasets are envisioned to have multiple uses that require different kinds
of features. For example, training and testing classifiers for POM tagging of
symbols require not only math symbols and their tags, but also the textual
context, local and distant. Similarly, harvesting definitions and distributed
(i.e., non-local) constraints of equations requires textual contexts, local and
distant. Thus, besides symbols and their labels, a math dataset must provide
math/text context(e.g., full equation and full sentence).

A Contextual and Labeled Math-Dataset Derived from NIST’s DLMF 329

– As the application of ML to MLP and MKD is in a nascent stage, users do not
yet fully know what features to define and use. Therefore, it is advisable at
this time to provide adequate contextual information from which potentially
useful features can be defined and readily extracted.

– Why split the dataset into two separate ones? The first two applications in
the next section provide some justification for the separation of the two twin
datasets, and illustrate the “interaction” between the two of them.

4 A Sample of Potential Uses of the Datasets

The following is but a short list of applications that can make use of the datasets:

Harvesting non-local constraints/conditions: The constraints of some
equations are not directly attached to the equations, but are embedded in
local (i.e., nearby) text or distant text, i.e., in local or distant context. The
equation information in the per-expression dataset tells us whether or not
there are explicit constraints provided therein; if not provided, then the
context-references portion in the per-expression dataset tells us where to
locate the (layers of) textual context in the Simple-XML dataset where search
can be conducted for constraints and conditions pertaining to that equation.

Harvesting non-local definitions: While the DLMF provides in-situ meta-
data (meaning, definitions, and/or references to definitions) about the sym-
bols of a numbered equation, it does not do so for expressions. This necessitates
harvesting the definitions of in-expression symbols in local/distant contexts.
To find a definition of a target symbol occurring in a given expression, we
can first look inside the per-expression dataset for the symbol definition in
the blocks of the equations surrounding the expression. If none is found, we
turn to the Simple-XML dataset to locate the textual context where search
for definitions of the target symbol can be conducted. It is customary for
authors to put definitions of math symbols a few sentences before or after
the actual use of those symbols; therefore, searching for symbol definitions in
surrounding sentences is therefore an often fruitful endeavor.

POM tagging of math symbols: The per-expression dataset with its in-situ
definitions can serve as a training and testing dataset (in 80–20 split) for
training POM tagging classifiers.

Scoping: Scoping of multi-symbol math constructs, such as functions applied
at variables, functions with superscripts and/or subscripts, determinant of
a matrix, the arguments of sums (

∑
), and so on, presents challenging but

promising disambiguation applications of the twin datasets.

References

1. Gao, L., et al.: Preliminary exploration of formula embedding for mathematical
information retrieval: can mathematical formulae be embedded like a natural lan-
guage? arXiv:1707.05154 (2017)

http://arxiv.org/abs/1707.05154

330 A. Youssef and B. R. Miller

2. Ginev, D., Miller, B.: Scientific statement classification over arXiv:1908.10993,
August 2019

3. Kstovski, K., Blei, D.M.: Equation embeddings. arXiv:1803.09123, March 2018
4. Olver, F.W.J., et al. (eds.): NIST Digital Library of Mathematical Functions.

https://dlmf.nist.gov/, Release 1.0.20 of 1 September 2018
5. Youssef, A.: Part-of-math tagging and applications. In: Geuvers, H., England, M.,

Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp.
356–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6 25

6. Youssef, A., Miller, B.R.: Deep learning for math knowledge processing. In: Rabe,
F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI),
vol. 11006, pp. 271–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96812-4 23

7. Youssef, A., Miller, B.R.: Explorations into the use of word embedding in math
search and math semantics. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti
Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp. 291–305. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23250-4 20

http://arxiv.org/abs/1908.10993
http://arxiv.org/abs/1803.09123
https://dlmf.nist.gov/
https://doi.org/10.1007/978-3-319-62075-6_25
https://doi.org/10.1007/978-3-319-96812-4_23
https://doi.org/10.1007/978-3-319-96812-4_23
https://doi.org/10.1007/978-3-030-23250-4_20

Abstracts of Invited Talks

Formalizing Undergraduate Mathematics

Kevin Buzzard(B)

Imperial College, London, UK
k.buzzard@imperial.ac.uk

Abstract. Most research pure mathematicians do not use computer
theorem provers. One of the reasons for this: computer theorem provers
cannot currently prove new theorems at research level in any of the main-
stream areas of pure mathematical research, and proofs are the currency
of pure mathematics. Note however that most research pure mathemati-
cians did an undergraduate degree in mathematics, and in fact no com-
puter theorem prover can prove—or even state—all the theorems in an
undergraduate pure maths degree. These systems have been around for
decades, and that is how far we have got – one would struggle to for-
malise the questions on most final year undergraduate pure mathematics
courses, in any of the modern ITP systems.

We have to start somewhere if we want to get research mathemati-
cians interested in these new technologies. I will talk about my vision
for Lean’s mathematics library mathlib, currently over 50 percent of the
way through formalising the proofs in the pure mathematics courses in
Imperial College’s undergraduate mathematics degree.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, p. 333, 2020.
https://doi.org/10.1007/978-3-030-53518-6

https://doi.org/10.1007/978-3-030-53518-6

Formally Verified Constraints Solvers:
A Guided Tour

Catherine Dubois(B)

École Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise,
Samovar Évry Courcouronnes, Paris, France

catherine.dubois@ensiie.fr

Abstract. Constraint solvers are complex tools implementing tricky
algorithms and heuristics manipulating intricate data structures. It is
well-known that they have bugs. Certifying the output of such tools is
extremely important in particular when they are used for critical systems
or in verification tools. There are mainly two ways for having confidence
in the computed results: making the solver produce not only the output
but also proof logs that can be easily verified by an external checker
or proving the correctness of the solver itself. The former approach is
widespread in the Boolean satisfiability community through formats such
as DRAT [11] which can be considered as a standard. The latter app-
roach has been followed for example for developing Compcert [8] and
sel4 [6] respectively a C compiler developed and formally verified with
the help of the Coq proof assistant Coq and a micro-kernel developed
and formally verified with the proof assistant Isabelle/HOL.

This talk focusses on Constraint Programming (CP) solvers on finite
domains (FD) [2] and explores the work developed for some years by the
author and some other researchers around the Coq formalization of such
CP(FD) solvers. The starting point is the development, in 2012, of a
formally verified CP(FD) solver limited to binary constraints [3] imple-
menting a classical filtering algorithm, AC3 [9] and one of its extension
AC2001 [4], both looking for arc consistency. It is proved sound and
complete. A variant implementing bound consistency has also been for-
malized and proved sound and complete. Recent work1 concerns the Coq
formalization of a pre-processor that transforms a constraint satisfaction
problem containing non-binary constraints into an equivalent binary con-
straint satisfaction problem, allowing for resolution of more complex CP
programs. Different representations of domains are investigated, simple
ordered lists or lists of intervals [7]. The Coq formalization of Regin’s fil-
tering algorithm [10] for the global constraint alldifferent that enforces
some variables to be assigned to distinct values is under progress. But
here, contrary to the previous formalizations, a large amount of results
from graph theory (maximal matching, augmenting path, etc) is needed
and requires an intensive proof effort because there is no corresponding
off-the-shelf Coq library.

1 The work presented in [5] concerns ternary constraints but has been recently
extended to n-ary constraints.

c© Springer Nature Switzerland AG 2020
C. Benzmüller and B. Miller (Eds.): CICM 2020, LNAI 12236, pp. 334–335, 2020.
https://doi.org/10.1007/978-3-030-53518-6

https://doi.org/10.1007/978-3-030-53518-6

Formally Verified Constraints Solvers: A Guided Tour 335

Many ingredients are thus present to build a reference implementation
that could be used as a second shot verifier in some critical cases or to
validate existing solvers.

The talk discusses the main challenges of such a research work: effi-
ciency, genericity, development of mathematical theorems or reuse of
such theorems formalized in other proof assistants (like Berge’s theorem
recently formalized by Abdulaziz and al in [1] in Isabelle/HOL, required
in the alldifferent context), etc. A last, but not least, important chal-
lenge is to convince the CP community to use such formal tools (The
work presented in [5] concerns ternary constraints but has been recently
extended to n-ary constraints.).

Thanks. The work presented here is joint work with A. Butant, M. Carlier,
V. Clément, S. Elloumi, A. Gotlieb, A. Ledein and H. Mlodecki. I am very
grateful to them.

References

1. Abdulaziz, M., Mehlhorn, K., Nipkow, T.: Trustworthy graph algorithms (invited
talk). In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International Sym-
posium on Mathematical Foundations of Computer Science, MFCS 2019, Aachen,
Germany, 26–30 August 2019, volume 138 of LIPIcs, pp. 1:1–1:22. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2019)

2. Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming,
chapter 3. Elsevier, Amsterdam (2006)

3. Carlier, M., Dubois, C., Gotlieb, A.: A certified constraint solver over finite
domains. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
116–131. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-
9 12

4. Christian Bessiere, R.Y., Régin, J.-C., Zhang, Y.: An optimal coarse-grained arc
consistency algorithm. Artif. Intell. 165, 165–185 (2005)

5. Dubois, C.: Formally verified decomposition of non-binary constraints into equiv-
alent binary constraints. In: Journées Francophones des Langages Applicatifs, Les
Rousses, France (2019)

6. Klein, G., et al.: sel4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

7. Ledein, A., Dubois, C.: Facile en coq : vérification formelle des listes d’intervalles.
In: Journées Francophones des Langages Applicatifs, Gruissan, France (2020)

8. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52, 107–115
(2009)

9. Mackworth, A.: Consistency in networks of relations. Art. Intel. 8(1), 99–118 (1977)
10. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: 12th

National Conference on Artificial Intelligence (AAAI 1994), pp. 362–367 (1994)
11. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-

ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3 31

https://doi.org/10.1007/978-3-642-32759-9_12
https://doi.org/10.1007/978-3-642-32759-9_12
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31

Author Index

Affeldt, Reynald 23

Berčič, Katja 39
Blaauwbroek, Lasse 271
Bösl, Benjamin 173
Breitinger, Corinna 237
Buzzard, Kevin 333

Carette, Jacques 55
Carneiro, Mario 71

De Lon, Adrian 284
Dubois, Catherine 334
Dunne, Ciarán 89

Ebner, Gabriel 251
Elderhalli, Yassmeen 105

Falileeva, Marina 157
Farmer, William M. 55

Garrigue, Jacques 23
Gauthier, Thibault 278
Geuvers, Herman 271
Gipp, Bela 237

Hajdú, Márton 123
Hasan, Osman 105
Hozzová, Petra 123

Jakubův, Jan 315

Kaliszyk, Cezary 138
Kamareddine, Fairouz 89
Kirillovich, Alexander 157
Koepke, Peter 284
Kohlhase, Michael 39, 173, 206, 290
Kovács, Laura 123, 190
Kühnemund, Andreas 237

Lachnitt, Hanna 190
Levandovskyy, Viktor 222

Lewis, Robert Y. 251
Lipachev, Evgeny 157
Lorenzen, Anton 284

Marcus, Richard 173, 290
Miller, Bruce R. 324
Müller, Dennis 173, 206

Nagashima, Yutaka 297
Naumowicz, Adam 303
Nevzorova, Olga 157

Piotrowski, Bartosz 309

Rabe, Florian 39, 138, 206, 290
Rochau, Denis 173
Rothgang, Colin 206
Roux, Navid 173

Saikawa, Takafumi 23
Scharpf, Philipp 237
Schihada, John 173
Schmitz, Leonard 222
Schoisswohl, Johannes 123
Schubotz, Moritz 237
Shakirova, Liliana 157
Sharoda, Yasmine 55
Stamminger, Marc 173
Szegedy, Christian 3
Szeider, Stefan 190

Tahar, Sofiène 105
Teschke, Olaf 237

Urban, Josef 271, 309, 315
van Doorn, Floris 251

Voronkov, Andrei 123

Wells, J. B. 89

Youssef, Abdou 324

	Preface
	Organization
	Contents
	I Invited Talks
	A Promising Path Towards Autoformalization and General Artificial Intelligence
	1 Introduction
	2 What is (Auto-)formalization?
	3 Why is Autoformalization Essential?
	4 Potential Implications of Successful Autoformalization
	5 Hurdles of Autoformalization
	6 A Proposed Path to Autoformalization
	7 Further Ideas and Considerations
	7.1 Choice of Foundation and Framework
	7.2 Unsupervised Pretraining Tasks
	7.3 Additional Technical Considerations

	8 Short History of Autoformalization
	9 Indications of Feasibility
	9.1 Search and Reasoning
	9.2 Natural Language Processing and Understanding
	9.3 Overview

	10 General Summary and Conclusions
	References

	I Full Papers
	Formal Adventures in Convex and Conical Spaces
	1 Introduction
	2 Convex Spaces
	3 Multiary Convex Combination
	3.1 Axiomatization
	3.2 Equivalence of Axiomatizations

	4 Conical Spaces and Embedded Convex Spaces
	5 Formalization of Convex Sets and Hulls
	6 Formalization of Convex Functions
	6.1 Ordered Convex Spaces and Convex Functions
	6.2 Examples of Convex Functions

	7 Related Work
	8 Conclusion
	References

	Towards a Heterogeneous Query Language for Mathematical Knowledge
	1 Introduction and Related Work
	2 Aspects of Math Resources and Information Needs
	3 Heterogeneous Indexing of Mathematical Libraries
	4 Indexing Concrete Values
	5 A Heterogeneous Query Language
	6 Conclusion and Future Work
	References

	Leveraging the Information Contained in Theory Presentations
	1 Introduction
	2 Algebra in Current Libraries
	2.1 Homomorphism
	2.2 Term Language
	2.3 Product
	2.4 More Monoid-Based Examples

	3 Constructions for Free!
	3.1 Signature
	3.2 Product Algebra
	3.3 Term Language
	3.4 Homomorphism
	3.5 Discussion

	4 Related Work
	5 Conclusion and Future Work
	References

	Metamath Zero: Designing a Theorem Prover Prover
	1 Introduction
	1.1 Who Verifies the Verifiers?
	1.2 Efficiency Matters
	1.3 The Metamath Zero Architecture

	2 The Metamath Zero Logic
	2.1 The .mm0 Specification Format

	3 The .mmb Binary Proof File
	4 The .mm1 Proof Authoring File
	5 MM0 as an Interchange Format
	6 Bootstrapping
	7 Related Work
	8 Conclusion
	References

	Adding an Abstraction Barrier to ZF Set Theory
	1 Introduction
	1.1 Background: Set Theory and Type Theory as Foundations
	1.2 The Issue of Representation and the Case of the Ordered Pair
	1.3 ZFP: Extending ZF Set Theory with Primitive Ordered Pairs
	1.4 Related Work
	1.5 Outline

	2 Formal Machinery
	2.1 First-Order Logic with Equality
	2.2 Zermelo-Fraenkel Set Theory
	2.3 Ordered Pairs in ZF

	3 Extending ZF to ZFP
	3.1 Definitions and Axioms of ZFP
	3.2 Discussion

	4 A Model of ZFP
	4.1 The Cumulative Hierarchy W
	4.2 Interpreting ZFP in ZF

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Future Work

	References

	A Framework for Formal Dynamic Dependability Analysis Using HOL Theorem Proving
	1 Introduction
	2 Proposed Framework
	3 Dynamic Fault Trees
	3.1 DFT Operators and Simplification Properties
	3.2 DFT Gates
	3.3 DFT Failure Analysis

	4 Dynamic Reliability Block Diagrams
	4.1 DRBD Constructs and Structures
	4.2 DRBD Algebra
	4.3 DRBD Reliability Analysis

	5 Continuous Time Markov Chains
	5.1 CTMC Definition and Attributes
	5.2 CTMC Dependability Analysis

	6 Current Status and Future Milestones
	7 Conclusions
	References

	Induction with Generalization in Superposition Reasoning
	1 Introduction
	2 Preliminaries
	3 Motivating Example
	4 Induction with Generalization
	5 Experiments
	6 Related Work
	7 Conclusions
	References

	A Survey of Languages for Formalizing Mathematics
	1 Introduction
	2 Overview
	2.1 Objectives
	2.2 Approaches

	3 Formal Languages
	3.1 Type Systems
	3.2 Module Systems
	3.3 Proof Systems
	3.4 Computation Systems

	4 Intermediate Languages
	4.1 Controlled Natural Language
	4.2 Semi-formal Languages
	4.3 Interchange Languages

	5 Language Frameworks
	6 Interchange Libraries
	7 Conclusion
	References

	OntoMathEdu: A Linguistically Grounded Educational Mathematical Ontology
	1 Introduction
	2 Ontology Structure
	3 Domain Ontology Layer
	3.1 Hierarchy of Objects
	3.2 Hierarchy of Reified Relationships
	3.3 Network of Points of View
	3.4 Object and Annotation Properties
	3.5 External Links

	4 Linguistic Layer
	5 Conclusions
	References

	FrameIT: Detangling Knowledge Management from Game Design in Serious Games
	1 Introduction
	2 Preliminaries
	2.1 Learning Object Graphs as OMDoc/MMT Theories
	2.2 Unity: A Multi-platform Game Engine

	3 The FrameIT Method
	3.1 Exemplary Playflow
	3.2 Acquiring Facts and Using Scrolls

	4 The UFrameIT Framework (Implementation)
	4.1 Extending Unity with Facts, Scrolls, Gadgets, and Framing.
	4.2 Communication

	5 FrameWorld-1: A Simple Serious Game in UFrameIT
	5.1 A Simple Virtual World
	5.2 Domain Knowledge and Scrolls

	6 Conceptual Evaluation
	7 Conclusion
	References

	Formalizing Graph Trail Properties in Isabelle/HOL
	1 Introduction
	2 Preliminaries
	3 Lower Bounds on Increasing and Decreasing Trails in Weighted Graphs
	4 Formalization of Trail Properties in Isabelle/HOL
	4.1 Graph Theory in the Archive of Formal Proofs
	4.2 Increasing and Decreasing Trails in Weighted Graphs
	4.3 Weighted Graphs
	4.4 Computing a Longest Ordered Trail
	4.5 Minimum Length of Ordered Trails
	4.6 Example Graph K4

	5 Discussion and Related Work
	6 Conclusion
	References

	Representing Structural Language Features in Formal Meta-languages
	1 Introduction and Related Work
	2 Preliminaries
	3 Structural Features
	4 Examples
	4.1 Datatypes
	4.2 Module System
	4.3 Declaration Patterns

	5 Module-Level Features
	6 Conclusion
	References

	Formally Verifying Proofs for Algebraic Identities of Matrices
	1 Introduction
	2 General Design
	3 Technical Details
	3.1 Encoding Matrices via Free Algebras
	3.2 Gröbner Bases in Free Relations of Matrices
	3.3 Black Box Tool for Gröbner-Driven Elimination
	3.4 Example with Singular:Letterplace

	4 Applications
	4.1 The Moore–Penrose Pseudoinverse
	4.2 Youla Controller Parametrization

	5 Conclusion
	References

	AutoMSC: Automatic Assignment of Mathematics Subject Classification Labels
	1 Introduction
	2 Method
	2.1 Generation of a Test and Training Dataset
	2.2 Definition of Evaluation Metrics
	2.3 Selection of Methods to Evaluate

	3 Evaluation and Discussion
	4 Conclusion and Future Work
	References

	Maintaining a Library of Formal Mathematics
	1 Introduction
	2 Lean and mathlib
	3 Semantic Linting
	3.1 Linter Interface
	3.2 Simple Linters
	3.3 Type Class Linters
	3.4 Linters for Simplification Lemmas

	4 Documentation
	4.1 Generation Pipeline
	4.2 Declaration Display
	4.3 Tactic Database
	4.4 Library Notes

	5 Conclusion
	References

	I System Descriptions and Datasets
	The Tactician
	1 Introduction
	2 Design Principles
	3 Interactive Mode of Operation
	4 Compilation Mode of Operation
	5 A Concrete Example
	6 Related Work
	References

	Tree Neural Networks in HOL4
	1 Introduction
	2 Tree Neural Networks
	3 Arithmetical Expression Evaluation
	4 Propositional Truth Estimation
	5 Usage
	6 Conclusion
	References

	Interpreting Mathematical Texts in Naproche-SAD
	1 Natural Proof Assistants
	2 Naproche-SAD and ForTheL
	3 ForTheL and LaTeX
	4 ForTheL and Types
	5 Future Work
	References

	TGView3D: A System for 3-Dimensional Visualization of Theory Graphs
	1 Introduction
	2 Layouting and Interaction
	3 Conclusion and Future Work
	References

	Simple Dataset for Proof Method Recommendation in Isabelle/HOL
	1 Introduction
	2 The PaMpeR Dataset
	3 Overview of 113 Assertions
	4 The Task for Machine Learning Algorithms
	5 Conclusion and Related Work
	References

	Dataset Description: Formalization of Elementary Number Theory in Mizar
	1 Introduction
	2 Underlying Informal Data
	3 Dataset Characteristics
	3.1 Dataset Organization
	3.2 Some Technical Issues

	4 Conclusion and Future Work
	References

	Guiding Inferences in Connection Tableau by Recurrent Neural Networks
	1 Introduction
	2 A Dataset for Connection-Style Internal Guidance
	3 Neural Modelling and Evaluation Metric
	4 Results
	5 Conjecturing New Literals
	6 Conclusion and Future Work
	References

	First Neural Conjecturing Datasets and Experiments
	1 Introduction and Related Work
	2 Datasets
	3 Experiments
	3.1 Conditioned Completion
	3.2 Initial ATP Evaluation

	A Additional Data From the Experiments
	A.1 XXREAL 1:48 and its GPT-2 predictions
	A.2 GROUPP_1:10 and its generalization conjectured by GPT-2
	A.3 SINCOS10:17 and a false conjecture by GPT-2
	A.4 FUNCTOR1:9 and a GPT-2 conjecture reducing it to FUNCTOR1:7

	References

	A Contextual and Labeled Math-Dataset Derived from NIST's DLMF
	1 Introduction
	2 Description of the Datasets
	2.1 The Per-Expression Dataset
	2.2 The Simple-XML Dataset
	2.3 Dataset Size

	3 Justification of the Data Model of the Datasets
	4 A Sample of Potential Uses of the Datasets
	References

	496175_1_En_26_Chapter_OnlinePDF
	Formalizing Undergraduate Mathematics

	496175_1_En_27_Chapter_OnlinePDF
	Formally Verified Constraints Solvers: A Guided Tour
	References

	496175_1_En_BookBackmatter_OnlinePDF
	Abstracts of Invited Talks
	Author Index

