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Chapter 7
The Biology of Swarm-Founding 
Epiponine Wasp, Polybia paulista

Kazuyuki Kudô

Abstract  The tribe Epiponini belongs to the swarm-founding polistine wasps and 
has achieved a remarkable ecological success in Neotropical regions. 20 out of 26 
genera of the subfamily Polistinae are Epiponini, suggesting that these wasps have 
undergone an evolutionary radiation. Social wasps are quite common in Brazil, 
wherein 304 species in 22 genera are found. In particular, the species Polybia pau-
lista is a common wasp, being found in the states of São Paulo, Goiás, Mato Grosso, 
Paraná, and Minas Gerais. Although several earlier studies in 1980s investigated 
mortality and development of colonies in this species, studies in the last two decades 
intensively have addressed various aspects of biology in this species, especially by 
morphological, genetical, population, and chemical approaches. In this chapter, I 
will review the biology of P. paulista inclusively by gathering studies for the last 
four decades.
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The subfamily Polistinae (26 genera and 958 species; Pickett and Carpenter 2010) 
comprises species with diverse social organization and can be divided into two 
groups according to colony foundation modalities, i.e., the independent founders 
and swarm founders. Colonies of independent-founding species are initiated by one 
or several inseminated queens, independently of any workers. Dominance behavior 
and reproductive skew among founding queens have been reported for species 
belonging to all five genera (Polistes, Mischocyttarus, Belonogaster, Parapolybia, 
and several species of Ropalidia) (Gadagkar 1991, 1996). Generally, reproductive 
dominance is based on direct physical attacks by the queens (Pardi 1946), while 
egg-laying queens of R. marginata rarely dominate or interact aggressively with 
other co-founding queens (Gadagkar 2001).

In the swarm-founding species, a colony is initiated by a swarm consisting of a 
large number of workers accompanied by a smaller number of queens (Jeanne 
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1991). Swarm-founding Polistinae (the other species of Ropalidia, Polybioides, and 
the tribe Epiponini) widely occur in tropical regions, although the ranges of several 
species exceed the limits of the tropics (Jeanne 1991). Particularly, all 20 genera of 
the tribe Epiponini are very common in Neotropical regions (Jeanne 1991, 2003). 
Aggressive interactions between queens are rare, and the clear reproductive 
specialization in queens exists. Moreover, there is no evidence that queens attack, 
harass, or otherwise physically intimidate workers into action (Herman et al. 2000, 
but see Kelstrup et al. 2014a).

In the swarm-founding epiponines, several lines of studies have been done 
during the last few decades (Jeanne 2003). The first one is morphological caste dif-
ference. A striking feature is that caste dimorphism among epiponines is not as 
great, even in species with a great number of adults. In Agelaia vicina, whose colo-
nies can exceed 106 adults (Sakagami 1996), queens are only 5% larger than work-
ers (Sakagami 1996; Baio et  al. 1998). In Parachartergus smithii, Protopolybia 
exigua, Pseudopolybia vespiceps, and recently Synoeca septentrionalis, there is no 
evidence of morphological differences among castes (Mateus et  al. 1997; Shima 
et al. 1998; Santos et al. 2018). In contrast, queens are significantly smaller than 
workers in Polybia dimidiata (Shima et  al. 1996). From these evidences, Jeanne 
(2003) concluded that the degree of morphological differences correlates with col-
ony size very weakly in the swarm-founding wasps, particularly Epiponini.

The second is colony genetic structure related to the maintenance of polygyny. A 
colony alternates between polygyny and oligogyny, eventually monogyny, in the 
course of its life cycle (West-Eberhard 1978). New queens are only produced when 
the number of old queens is reduced to one or very few, and consequently new 
queens are highly related, often as full sisters. The process, called cyclical oligog-
yny, has the effect of elevating genetic relatedness between daughter offspring of 
the new queens. All analyzed species showed lower effective number of queens 
contributed to queens than to worker production, suggesting that the Epiponini 
exhibits cyclical oligogyny (see Table 7.1). On the contrary, division of labor among 
workers includes a genetic component in Polybia aequatorialis, suggesting that 
colony-level selection on variation in division of labor is a possible factor favoring 

Table 7.1  Comparison of the effective number of queens that produced queens and workers in 
epiponine wasps

Effective no. of queens 
that produced

Species Queens Workers References

Parachartergus 
colobopterus

1.2 1.2–4.3 Strassmann et al. (1991, 1998)

Polybia emaciata 1.5 3.6 Strassmann et al. (1992)
Polybia occidentalis 1.4 1.4–4.8 Queller et al. (1993a), Strassmann et al. 

(1998)
Protopolybia exigua 0.9 0.9–1.9 Gastreich et al. (1993), Strassmann 

et al. (1998)
Brachygastra mellifica 1.2 20 Hastings et al. (1998)
Polybia paulista 1.2 21 Kudô et al. (2005a, b)
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the evolutionary maintenance of high genotypic variability (though low relatedness) 
(O’Donnell 1996).

The third is organization of tasks by workers, which has been summarized in 
reviews by Jeanne (1991, 2003). Jeanne (2003) pointed out that “full task partitioning 
of all material-handling tasks in the swarm founders is what enabled clear-cut age 
polymorphism to evolve in the epiponines.” Polybia occidentalis has been best stud-
ied in this respect. In this species, the handling of all four materials (pulp, water, 
prey, and nectar) is fully partitioned into two tasks, collection and utilization. In 
addition, three team tasks can be identified in colonies, i.e., nest construction, nest 
cooling, and swarm emigration.

The last one is chemical communication among nestmates. According to a 
review by Jeanne (2003), there is evidence for existence for three chemical signals 
in the Epiponini, i.e., alarm pheromones contained in the venom, emigration trail 
pheromones, and queen pheromones (Landolt et al. 1998). Recently, in addition, a 
few studies have analyzed the correlation between cuticular hydrocarbons (CHCs) 
and fertility in epiponine wasps. Kelstrup et al. (2014a) showed in Polybia micans 
that queens and workers exhibit remarkable differences in their CHC profiles, with 
two compounds (3-methyl-pentacosane and n-pentacosane) being far more abun-
dant in queens. These compounds increase in female during ovarian development 
and with high levels of juvenile hormone. CHC profiles of queens and workers are 
also distinct in Synoeca surinama (Kelstrup et  al. 2014b) and S. septentrionalis 
(Santos et al. 2018). Furthermore, a recent study also showed that the CHC compo-
sitions of fifth instar larvae in Polybia paulista are significantly different among 
colonies, which may function as a nestmate larval discrimination (Kudô et al. 2017; 
see this chapter).

This chapter reviews the biology of an epiponine wasp, Polybia paulista 
(Fig. 7.1). P. paulista is one of the common swarm-founding wasps in Brazil, being 
found in the states of São Paulo, Goiás, Mato Grosso, Paraná, and Minas Gerais, 
also present in Paraguay and Argentina (Richards 1978). In the early 1980s, some 
Brazilian researchers have published ecological studies on mortality and develop-
ment of colonies in P. paulista (Machado 1980, 1984; Simões and Mechi 1983). 
Since then, however, any studies had not been made in P. paulista until Itô et al. 
(1997) described the initial development of colonies. After the Itô’s study, biologi-

Fig. 7.1  A mature nest of (left) and workers around the entrance of the nest (right)
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cal information in P. paulista has been accumulated in various aspects in the last 
two decades, i.e., morphological caste differences, nest materials, colony genetic 
structure, parasitism, nestmate recognition, and individual and colony mortality. 
Thus, it must be important to introduce the biology of P. paulista by gathering those 
studies for the last four decades. I hope this review will help many people who are 
interested in social wasps understand the evolution and maintenance of highly euso-
ciality in wasps.

7.1  �Colony Cycle

It is perhaps difficult to describe the colony cycle of P. paulista correctly, because 
swarming can occur in several contexts and, when a swarm is collected in the field, 
it is impossible to determine the context that gave rise to it (see also Jeanne 1991). 
Colony initiation occurs at any months during the year, but is observed intensively 
in rainy, nest-growing months (November to April, hereafter “summer”) in Ribeirão 
Preto (Machado 1984; Simões and Mechi 1983; Kudô et al. 2003). Swarms build 
several stacked combs in quick succession. Particularly, the first three combs and 
the envelope covering those combs are quickly completed within only few days 
(commonly, 3–4 days) after colony initiation. After colony initiation, while many 
individuals are actively engaged in nest construction, a large number of individuals 
remain tightly clustered adjacent to the incipient nest (Fig.  7.2a). Wasps that sit 
around the nests are very aggressive, especially just after colony initiation, and the 
cluster size gradually decreases with colony development. Individuals that are out-
side of the clusters orient the head toward the opposite direction from their nests 
(Fig.  7.2a). The cluster disappears within 10  days after colony initiation, as the 
wasps move inside the nest or to the envelope. Days spent until the disappearance of 
the cluster tended to be shorter in summer colonies than in winter colonies (May to 
October) (Kudô et al. 2003).

Successive nest construction is stopped within a month from colony initiation. 
Days for the initial nest development in summer colonies (12.6 days) tended to be 
shorter than those in winter colonies (24.5 days) (Kudô et al. 2003). The authors 
examined colony composition at pause of nest development in a summer colony; the 
nest consisted of five combs and had ca. 3400 cells, 577 eggs, and 320 first and/or 
second instar larvae. Presence of second instar larvae suggests that nest develop-
ment was paused after few days from larval emergence.

After the nest is built by the founding swarm, there is no addition of cells to the 
nest for weeks or even months. Jeanne (1991) mentioned that when nest expansion 
does occur in swarm-founding wasps, it is typically a discrete event, lasting only 
several days. In a winter colony of P. paulista, I observed construction of new cells 
and the envelope covering the comb that was just 3 weeks after the pause of initial 
nest development (Kudô et al. 2003).

Noll and Zucchi (2000) defined three consecutive phases in the colony cycle of 
P. paulista: (1) pre-emergence of workers, (2) emergence of workers, and (3) male 
production. According to the definition, no adult offspring had been produced in the 
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pre-emergence phase. After producing several generations of workers, the colony 
has adequate number of workers and finally starts to produce males. In P. paulista, 
I observed several “reproductive swarming” (division of the colony into two or 
more groups) that occurred after the presence of many males on the nest envelope. 
This may support the definition by Noll and Zucchi (2000). However, Forsyth 
(1978) claims that male production of P. occidentalis, a consubgeneric species of 
P. paulista, is not directly correlated with colony size or stage of development of the 
colony but occurs in colonies that have old queens. On the other hand, Jeanne (1991) 
suggested that colonies of P. occidentalis in Costa Rica appear to occupy two nests 
successively during a single colony cycle, i.e., the colony produces one cohort of 
workers in the first nest, emigrates to found a new nest, produces several cycles of 
worker brood, and then reproduces.

Fig. 7.2  Initial comb construction and workers outside of the clusters orienting the head toward 
the opposite direction from the nest (a), construction of new cells (second comb) on the envelope 
(b); precocious completion of first several combs (c); and reinforcement of primary comb(s) 
(upper part of the nest) (d)
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7.2  �Colony Size and Its Related Aspects

Colony size (number of adult females) in swarm-founding polistines varies tremen-
dously among species and genera (see Fig. 6.4 depicted by Jeanne (1991)). Colony 
size was less than 100 individuals in Marimbonda spp. (Jeanne 1991), while it was 
estimated over million individuals in a colony of Agelaia vicina (Zucchi et al. 1995). 
In this regard, notable ranges are recognized in the genus Polybia, whose colony size 
spans at least 2.5 order of magnitude: less than 100 individuals in some species while 
several thousands of individuals in other species. Noll and Zucchi (2000) reported 
colony size in 2 P. paulista nests: 4747 workers in a worker emergence colony and 
13,229 workers in a male-producing colony. Kudô et al. (2005a, b) estimated that the 
mean number of adult females in 14 summer colonies was 3457 ± 666 individuals 
(±SE). Colony population in P. paulista is likely to relate to the following two fac-
tors, i.e., (1) nesting season and (2) the phases of colony cycle. In order to know the 
worker demography and its seasonal change, I carried out mark-recapture experi-
ments for four P. paulista colonies from the middle of summer (January) to the 
middle of winter (August) in 2001 at the campus of the Universidade de São Paulo, 
Ribeirão Preto (Kudô et al. 2011a, b). The study showed that the colonies experi-
enced substantial reductions in worker number from summer to winter (Fig. 7.3). 
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This reduction may be related to lower foraging rates (Kudô et al. 2003; Canevazzi 
and Noll 2011) and a few or absence of brood in winter colonies of P. paulista. 
Actually, 60–70% colonies do not rear broods in the city during winter, and few 
nests contain nectar deposits (Kudô unpublished data). On the contrary, there is no 
study to compare the difference in colony population among the phases of colony 
cycle. However, as colony size just prior to “reproductive swarm” is large adequately, 
it is likely that there is a relation between colony size and the phase of colony cycle.

7.3  �Nests

7.3.1  �Sites

P. paulista nests are naturally built under broad leaves such as palm trees. The nests 
are sometimes built on the small twigs (a few centimeters) of trees, but such nests 
are easily destroyed by strong wind and heavy rain. Rather than natural substances 
for nest building, P. paulista prefer to build their nests under man-made structures. 
These circumstances together with broad leaves provide rain-sheltered conditions, 
which are beneficial not only in protecting nests from direct rain but also reducing 
the amount of oral secretion for nest maintenance (Simões and Mechi 1983; Kudô 
et al. 1998).

In addition to rain-sheltered places, swarms select a particular orientation as nest 
sites. Kudô and Zucchi (2009) showed that swarms selected various orientations as 
nest sites, but there was a particular trend that swarms in the winter period preferred 
to build northward-facing nests. Northward-facing nests are warmer through the 
gain of direct solar heat during the winter period; consequently, choosing northward-
facing sites may be advantageous for swarms in terms of a shortened brood develop-
ment and shortened time need to increase metabolic rates during warm-up for flight. 
Because architecture of P. paulista nests has insulation effect from ambient tem-
perature, thermal conditions inside nests are stable even in the summer period 
(Hozumi et al. 2005; see later).

7.3.2  �Materials

Wenzel (1991) mentioned that Polybia species exhibit great diversity in nest build-
ing materials: long woody fibers, plant hairs, short vegetable chips, and mud. The 
diversity is remarkable when compared with those of Polistes (long woody fibers 
and plant hairs), the most primitive genus in Polistinae (Wenzel 1991). SEM obser-
vations supported his description, and P. paulista wasps used vegetable chips, 
which are a dominant material, plant hairs, and mud and/or inorganic particles as 
nest building materials (Fig. 7.4a, b; Kudô et al. 2001). I have seen that P. paulista 
workers collected nest materials from decayed woods, which support that the work-
ers collected short vegetable chips.

7  The Biology of Swarm-Founding Epiponine Wasp, Polybia paulista
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Polistine wasps use oral secretion, of which a major proportion consists of 
proteinaceous elements, to glue nest materials (Fig. 7.4c, d). This salivary secretion 
is also used to physically maintain their nests (Fig.  7.4e). Kudô et  al. (2001) 
showed that P. paulista used only a small amount of oral section for the construc-
tion and maintenance of their nests, compared with nests of independent-founding 
wasps. It has been first mentioned by Schwarz (1931) and later measured by Jeanne 
(1986) that the reduced role of oral secretion in Polybia species may be due in part 
to the division of labor. That is, increasing division of labor may shift the responsi-
bility of the secretion production to progressively fewer wasps.

Fig. 7.4  Scanning electron micrographs of the outer surface of the upper part of the envelope (a), 
the cell walls (b, c), the outer surface of the upper part of the envelope cysts in the nest (d), the 
nest entrance on the envelope (e). See minute vegetable chips in a, plant hairs in b, mud and/or 
inorganic particles in b, oral secretion binding nest materials in c and d, and oral secretion covering 
the nest surface in e (Kudô et al. 2001)

K. Kudô
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7.3.3  �Architecture

Nest architecture of P. paulista is characterized by a figure (14.48) of Wenzel 
(1991): (1) sessile initiation (cell walls are built directly from the substrate with no 
paper foundation) (Fig. 7.2a), (2) construction of the envelope covering the primary 
comb(s) (Fig. 7.2b), (3) construction of new cells (second comb) on the envelope 
(Fig. 7.2b), (4) precocious completion of first several combs (Fig. 7.2c), and (5) 
reinforcement of primary comb(s) (upper part of the nest) (Fig. 7.2d) (Itô 1997; 
Kudô et al. 2003). There is no variation in nest architecture within the species except 
for a case that some swarms build multiple initial combs, of which combs were 
fused into a single one within a few days (Fig. 7.2c) (Kudô et al. 2003). This archi-
tecture is called “a phragmocyttarous nest” (Richards and Richards 1951; 
Jeanne 1975).

7.3.4  �Thermoregulation

Hozumi et  al. (2005) measured diel changes of a field nest of P. paulista. They 
showed that nest temperature followed the ambient temperature, but during the day 
the nest temperatures were lower than the ambient temperature, and this relation-
ship was reversed during the night. The authors also showed a virtual lack of ther-
mal effects from the presence of adult wasps. From these results, insulation effect of 
phragmocyttarous nests (narrow compartments between combs and the presence of 
envelope) makes stable thermal conditions of P. paulista nests.

7.4  �Morphological Differences of Female Wasps Within 
a Colony

Because swarm-founding polistine wasps are highly eusocial, morphological caste 
differences exist. Commonly, queens are larger than workers in these wasps, but the 
degree varies among species. According to Jeanne (1991), colony size and caste 
dimorphism in swarm-founding polistines seem to be directly related. Richards 
(1978) noted that caste differences in P. paulista are indistinct. Noll and Zucchi 
(2000) made morphological analyses of female wasps between the castes in this 
species and showed that caste differences progressively increase because larger 
queens appeared in more abundance in later stages of the colony cycles.

Parasitism affects worker size in P. paulista (Kudô et al. 2004). Two kinds of 
parasites have been recognized in the gaster of female wasps, i.e., a strepsipteran 
possibly Xenos myrapetrus and an undescribed gregarine (Kudô et al. 2004, 2018, 
2019) (Fig. 7.5). Kudô et al. (2004) compared differences in worker size between 
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uninfected workers and workers infected by strepsipterans or gregarines. Uninfected 
workers were larger than workers infected by strepsipterans, but smaller than work-
ers infected by gregarines. Regarding the latter result, the authors suggested that 
larvae infected by gregarines, for which developmental time is extended (shown in 
Polybia occidentalis; Haward and Jeanne 2004), solicit more food from adults. The 
effect of parasitism on worker size was also shown in consubgeneric species, 
P. occidentalis (Kudô et al. 2011b).

Fig. 7.5  External view of a gaster of stylopyzed workers (upper left), a worker parasitized by a 
single strepsipteran (possibly Xenos myrapetrus) (upper right), and a worker parasitized by multiple 
strepsipterans (bottom left), and the gametocysts of an undescribed gregarine (bottom right). 
Thanks to W. Goi for the photos

K. Kudô
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7.5  �Colony Genetic Structure

The evolution of eusociality in insects is understood in terms of kin selection, where 
workers gain inclusive fitness from rearing sexuals related to them (Hamilton 1964a, 
b; Hamilton 1972). In polygynous species, however, several or many queens repro-
duce in a colony, thus decreasing the relatedness of workers to brood. In this respect, 
epiponine wasps have attracted special attention, because all of the species have 
tens or even hundreds of queens. It has been empirically or genetically confirmed in 
polygynous polistines that relatedness within nestmates can be elevated by a mecha-
nism known as cyclical monogyny, under which new queens are produced only after 
the number of old queens is reduced to one (West-Eberhard 1978; Hughes et al. 
1993; Queller et  al. 1993a; Strassmann et  al. 1997, 1998; Hastings et  al. 1998; 
Tsuchida et al. 2000) (Fig. 7.6). By using microsatellite markers, Kudô et al. (2005a, 
b) estimated effective queen number (the number of queens actively producing 
female offspring in a nest) that produced queens and workers. Queens were pro-
duced mostly by a single mother (effective number of queens = 1.2), while workers 
were produced by many queens (21) (Fig. 7.7). Such a lower effective number of 
queens contributed to queens than to worker production, suggesting that P. paulista 
also exhibits cyclical oligogyny. Regarding abundance of larger queens in later 
stages of the colony cycles, Noll and Zucchi (2000) suggested that queen elimina-
tion by a mechanism of cyclical oligogyny occurred in P. paulista. Kudô et  al. 

Fig. 7.6  Schematic drawing of cyclical monogyny where new queens are only produced when the 
number of old queens is reduced to one, while males are produced in colonies with a higher queen 
number. Redrawn from Tsuchida (2011)

7  The Biology of Swarm-Founding Epiponine Wasp, Polybia paulista
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(2005a, b) also tested another likely factor that can increase relatedness within 
nestmates under polygyny, i.e., comb partitioning by queens in P. paulista. If queens 
concentrate their egg laying on one or a subset of the available combs, then workers 
may be able to rear closer relatives by focusing their work on the comb where they 
emerged. In P. occidentalis, pupae within combs are significantly more closely 
related to each other than they are to pupae in other combs (Queller et al. 1993b). 
However, comb partitioning by queens was not supported in P. paulista.

In addition to female wasps, genetic relatedness among males was estimated in 
P. paulista. Kudô et  al. (2013) reported that relatedness within males averaged 
0.431 ± 0.050, which did not differ significantly from 0.5 (a possibility that a single 
mother contributes to male production). However, there were several alleles at least 
in one locus, suggesting that more than one queen produced males in each colony, 
as the cyclical monogyny predicts.

7.6  �Nestmate Recognition

Nestmate recognition is well developed in many social insect species. However, 
social insect recognition systems can be dynamic and modulated in response to 
context-specific cues. In ants, for example, nestmate recognition can vary with 
colony-specific factors, such as colony size (Stuart 1991), stage (Balas and Adams 
1996), and queen number (Starks et al. 1998; Vander Meer and Alonso 2002), in 
addition to environmental factors, such as proximity to other colonies (Heinze et al. 
1996), experience with the intruding colony (Sanada-Morimura et al. 2003), and the 
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time of year (D’Ettorre et al. 2004; Brandt et al. 2005). In social wasps, the effect of 
queen number on nestmate recognition has been investigated in an epiponine wasp, 
Parachartergus colobopterus, for the first time (Gastreich et al. 1990). Gastreich 
et al. (1990) conducted both laboratory and field recognition bioassays of this spe-
cies and found no evidence that females had the ability to discriminate nestmates 
from non-nestmates. The authors proposed that if recognition cues are genetic, nest-
mate discrimination would be harder to achieve when relatedness is low. In P. pau-
lista, Kudô et  al. (2007) conducted a field study to examine whether workers 
discriminate between nestmate and alien workers. Most workers were accepted 
from their own colony, while all of alien workers were aggressively chased, bitten, 
stung, and ultimately rejected by recipients. Therefore, it was concluded that P. pau-
lista workers are able to discriminate nestmates from non-nestmates.

Kudô and Zucchi (2008) examined whether P. paulista workers exhibit seasonal-
ity on tolerance of alien workers. There are growing evidences that social insect 
colonies change the acceptance rate of alien-conspecific individuals over the sea-
sons, possibly due to the reduced costs of defense from intraspecific and social para-
sitism (honeybee, Bell et al. 1974, Downs and Ratnieks 2000; ants, Brunner et al. 
2002, D’Ettorre et al. 2004, Brandt et al. 2005; wasp, Gamboa et al. 1991). However, 
the results by Kudô and Zucchi (2008) did not support it; P. paulista colonies did not 
accept any workers from alien colonies during winter as well as summer (Fig. 7.8).

In P. paulista, it has been examined whether young wasps acquire the colony-
specific odor shortly after their emergence. Nestmates are characterized by a dis-
tinct chemical label (colony odor), which is determined by the interaction of genetic 
and environmental cues (Downs and Ratnieks 1999). Early in adult life, each colony 
member must learn these chemical labels and act to determine the colonial member-
ship of other individuals encountered (Gamboa et  al. 1986). Kudô and Zucchi 
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(2006) and Kudô et al. (2007) tested the possibility whether newly emerged indi-
viduals are accepted from alien colonies in P. paulista. As expected, the percent 
acceptance of young male and female wasps into alien colonies decreased as a func-
tion of their age (Fig. 7.9). These studies suggest that newly emerged individuals of 
P. paulista express colony-specific chemical odors shortly after emergence, as dem-
onstrated by chemical analyses in independent-founding wasps (Paneck et al. 2001; 
Lorenzi et al. 2004). However, there is a result that the acceptance rate of newly 
emerged female wasps by alien colonies was pretty lower by male-producing colo-
nies than worker-producing colonies (Kudô et al. 2010). Kudô et al. (2010) men-
tioned that the male-producing colonies abandoned soon after the field experiments, 
suggesting that those recipient workers rejected the introduced female wasps due to 
the absence of colony expansion.

Recently, whether the workers of P. paulista recognized their own larvae when 
presented outside the nest comb was investigated (Kudô et al. 2017). Behavioral 
tests showed that workers did not bite non-nestmate larvae more frequently than 
their nestmate larvae. However, they spent significantly more time licking with their 
nestmate larvae than with non-nestmate larvae. Kudô et al. (2017) also compared 
the cuticular chemical profiles of fifth instar larvae from different colonies. Analyses 
of the cuticular extracts of fifth instar larvae from the experimental colonies signifi-
cantly allocated (100%) in their predicted groups, suggesting that discrimination of 
own larvae by the workers may be mediated by colony-specific, larval-borne cues. 
This was the first study that nestmate larval recognition could be evolved not only 
in independent-founding wasps (Paneck and Gamboa 2000; Cotoneschi et al. 2007) 
but also in colonies with many matrilines, as P. paulista colonies have.

7.7  �Conclusions and Perspectives

P. paulista exhibits seasonal changes in colony population, which is tightly linked 
with foraging activities of workers. In summer between November and April, col-
onies produce lots of adults quickly, which is ensured by high foraging rates by 

Fig. 7.9  Comparisons in frequencies of acceptance into alien recipient colonies for two age 
cohorts of donor males (left) and females (right) (Kudô and Zucchi 2006; Kudô and Zucchi 2008)
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workers. However, such activities may be sometimes limited because high rates of 
parasitism by gregarines during summer may make a part of workers idleness, as 
shown in P. occidentalis. In contrast, great proportion of colonies does not rear any 
brood during winter. Although it has been supported that colonies of P. paulista 
exhibit cyclical monogyny, it is unknown that changes in queen number are associ-
ated with the seasonality. Reducing to a single queen will impose some potential 
costs to the colony, such as the sudden loss of the remaining queens and/or loss of 
colony productivity. If this is the case in P. paulista, the reduction of queen number 
may not occur in the colony’s growing season, i.e., summer. However, my unpub-
lished work shows that there is no association between relatedness among workers 
(queen number) and seasonality.

Nestmate recognition by workers of P. paulista is stable throughout the year. 
Reeve (1989) developed the optimal acceptance threshold model to describe nest-
mate recognition plasticity, whereby the acceptance threshold varies according to 
context, to balance the fitness costs of accepting non-nestmates and rejecting nest-
mates. For example, in the independent-founding wasp Polistes fuscatus, female 
wasps were the most aggressive toward both nestmates and non-nestmates late in 
the colony cycle, possibly so as to defend nectar in the nest from conspecific intrud-
ers (Gamboa et al. 1991). In swarm-founding wasps, it has been not known that 
intruders enter to conspecific alien colonies to steal nectar and/or brood in the nest. 
It should be investigated whether CHC compositions of workers in P. paulista 
change among different seasons or colony development. Moreover, the correlation 
between CHCs and fertility should be needed in future works.

In the Neotropical regions, 70% of the species of social wasps (mostly Polistinae) 
are endemic (Noll et al. 2018). The most important threats to social wasps are the 
loss of their biodiversity in response to anthropogenic activities. Habitat loss due to 
landscape fragmentation, pesticides, and invasive species is related to reasons impli-
cating in the species decline. Until just only 10 years ago, there had been so many 
diverse social wasp colonies not only in downtown area in Ribeirão Preto city but 
also in the campus of the Universidade de São Paulo, which is relatively conserved 
area. Since then, however, diversification and abundance of social wasps including 
Polybia paulista are seriously reduced. In fact, a journal Neotropical Entomology 
had a special section in 2018 (“Social insects in the Neotropics”), which informs us 
the importance of diversity of social insects in the Neotropics. As well as other 
social wasps, Polybia paulista should be conserved and understood in their unknown 
biology.
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