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Chapter 6
Castes and Polymorphisms in Neotropical 
Social Wasps

Marjorie da Silva, Sidnei Mateus, and Fernando Barbosa Noll

Abstract Neotropical social wasps have a set of chimeric characteristics that make 
them unique and difficult to fit into current theories on the evolution of social behav-
ior (Noll and Wenzel, Biol J Linn Soc 93: 509–22, 2008). Among them, the pres-
ence of more than one functional queen (polygyny), absence of strong morphological 
differentiation, and flexibility between casts result in relaxation of ovarian control 
and breeding opportunity for workers (West-Eberhard, Science 200: 441–3, 1978; 
Noll, Sociobiology 60: 347–54, 2013). Adding to these particularities, the Polistinae 
wasps, especially those belonging to the Epiponini, reached a great radiation and 
evolutionary success in the Neotropical region due to the unique mode of social 
organization: colony foundation by a swarm (Jeanne, The swarm-founding 
Polistinae. In: Ross KG, Matthews RW (eds) The social biology of wasps. Cornell 
University Press, Ithaca, pp 191–231, 1991), where several or many reproductive 
females (queens) tolerate each other laying eggs. This chapter deals in general with 
aspects of the complex caste delimitation, the division of labor in the colony, the 
recruitment and foraging, and the lack of colony in social wasps, with emphasis on 
swarm founders.
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6.1  Castes

The origin of the morphological variation that establishes the social role (caste) is 
one of the definitive elements of the most sophisticated insect societies (Noll and 
Wenzel 2008). The study of castes differences in Epiponini species in Brazil began 
with the works of Richards (1978). Among Brazilian authors, studies of 
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Shima et  al.  (1994, 1996a, b, 1998, 2000) were the pioneers. Understanding the 
mechanisms that lead to this differentiation is therefore of great importance for 
understanding the evolution of eusociality (Jeanne and Suryanarayanan 2011). The 
degree of distinction between breeding and worker caste varieties is often used as 
part of the definition of the degree of sociality (Noll et al. 2004), with highly social 
species presenting a complex division of labor, caste morphological differentiation, 
and a large number of individuals (Bourke 1999).

In Vespidae, this degree of differentiation ranges from no difference in the sub-
family Stenogastrinae to large differences in size and morphology in Vespinae 
(Jeanne and Suryanarayanan 2011). In species presenting distinct morphological 
castes, the developmental difference between the future queens and workers should 
begin in the larval stage (Jeanne and Suryanarayanan 2011). In the independent- 
founding species of Polistinae, although the castes are morphologically identical, 
they present physiological differences that also should have origin in the larval stage 
(O’Donnell 1998a). This fact is supported by evidence that differences in mRNA 
expression and levels of hexameric storage proteins are already evident in the fifth 
and last larval instar in Polistes metricus Say (Jeanne and Suryanarayanan 2011; 
Hunt et  al. 2007; Toth et  al. 2007). In the case of Epiponini species, although 
described as highly social (Noll et al. 2004), the distinction between caste is not 
very evident and often difficult to identify (Richards and Richards 1951; Richards 
1978, cited as Polybiini, junior synonym of Epiponini, see Carpenter 1993, 1997). 
According to Jeanne (2003), the complexity in this tribe is more related to the num-
ber of behaviors exhibited by the workers than to the presence of morphological 
differences.

There is no evidence of a genetic basis for caste differentiation in wasps (Jeanne 
and Suryanarayanan 2011). Differences in size among castes appeared indepen-
dently in several taxa of this tribe, and caste evolved in different ways in the various 
lineages of Epiponini (Noll et al. 2004). A phylogenetic interpretation showed sev-
eral distinct syndromes, representing a more complex scenario than previously 
thought (Noll et al. 2004; Noll and Wenzel 2008), challenging the defined standards. 
The four syndromes are (1) absence of caste differentiation (no differences in size 
or shape associated with reproduction); (2) physiological castes (absence of mor-
phometric differences between castes, but females can be separated by degree of 
ovarian development); (3) larger queens, but with the same shape; and (4) queens 
who are different in size and shape from the workers (Noll et al. 2004; Chavarría 
2013; Fig. 6.1 and Table 6.1).

As expected for highly social insects, pre-imaginal determination, given by 
nutritional differences during larval development (Hunt et al. 1996; Sakagami et al. 
1996) or changes in the longitudinal axis of the body due to different programs in 
developmental parameters in the pre-adult stage (Jeanne et al. 1995), has been re ported 
for the genera Agelaia (Fig. 6.2), Apoica, Chartergus, Polybia, Protopolybia, and 
Pseudopolybia (Noll et  al. 2004). On the other hand, breeding females in 
Chartergellus, Metapolybia, Parachartergus, and Synoeca are morphologically 
similar to non-breeding and present no physiological discontinuities. In these cases, 
castes are flexible, and the determination is imaginal, given by the disputes between 
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adult females instead by larval manipulation (West-Eberhard 1981; Mateus et al. 
2004; Noll and Wenzel 2008; Chavarría 2013). Theoretically, in species with imagi-
nal determination, all females when emerging could develop the ovaries and reach 
the status of queen, a condition that could lead to conflicts among the individuals of 
the colony, since the workers could also lay eggs (Hart and Ratnieks 2005).

In fact, in many colonies, workers with functional ovaries (named intermediates 
by Richards and Richards 1951) have been identified. The role of intermediate is 
debatable, being considered as producers of trophic eggs, males (Richards 1971), or 
even young queens (Forsyth 1978; West-Eberhard 1978; Gastreich et al. 1993). The 
level of ovarian development is inversely proportional to the number of queens, that 
is, when a few females are present, the intermediates present more developed ova-
ries (Fig. 6.3) and vice versa (Richards 1971; West-Eberhard 1978). Nevertheless, 
intermediates are absent in many other taxa (revised in Noll et al. 2004). Anyway, 
the presence of this type of female is part of a complex scenario related to the evolu-
tion of castes (Noll 2013).

The origin of queens that are highly tolerant of each other brings some conse-
quences. The first is that many females could aspire for a chance of reproduction, 
which would lead to the totipotency of the caste (Strassmann et  al. 2002). As a 
consequence, it would be expected to find a generalized ovarian development in 
members of polygynic societies, and, in fact, in several Epiponini species, workers 
who lay eggs are found (Noll et al. 2004). Several basal genera of Epiponini fit into 

Fig. 6.1 The four syndromes related to the determination of castes in Polistinae. In (a, b) castes 
do not present morphological differences in size or shape. However, in (b) females can be sepa-
rated by the degree of development of the ovaries (physiological caste). In (c) queens are larger in 
size, but there is no difference in the shape, and in (d) queens differ in size and shape from workers. 
The crowns identify the reproductive caste (queens)
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Table 6.1 Epiponini Differences between castes related to morphology and the presence of 
intermediates in

Species

Absence of 
morphological 
differentiation

Queens 
are larger 
in size

Castes 
differ in 
shape

Presence of 
intermediates Reference

Agelaia areata 
(Say)

X X Jeanne and Fagen 
(1974)

Agelaia flavipennis 
(Ducke)

Evans and 
West-Eberhard 
(1970)

Ag. fulvofasciata 
(DeGeer)

X Richards (1978)

Ag. lobipleura 
(Richards)

X Richards (1978)

Ag. multipicta 
(Haliday)

X X Noll et al. 
(1997a)

Ag. pallipes X X Richards (1978), 
Noll et al. 
(1997a)

Ag. vicina (de 
Saussure)

X X Sakagami et al. 
(1996), Baio 
et al. (1998)

Ag. yepocapa 
(Richards)

X Hunt et al. (2001)

Angiopolybia 
pallens 
(Lepeletier)

X X Richards (1978), 
Noll et al. (2004)

Apoica flavissima 
van der Vecht

X Shima et al. 
(1994)

Ap. gelida van der 
Vecht

X Richards (1978)

Ap. pallens 
(Fabricius)

X Richards (1978), 
Jeanne et al. 
(1995)

Asteloeca traili 
(Cameron)

X Noll et al. (2004)

As. ujhelyii 
(Ducke)

X

Brachygastra 
augusti (de 
Saussure)

X X Baio et al. 
(2003a)b

B. bilineolata 
Spinola

X X Richards (1978)

B. lecheguana 
(Latreille)

X X Shima et al. 
(2000)

B. moebiana (de 
Saussure)

X X Richards (1978)

(continued)
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Table 6.1 (continued)

Species

Absence of 
morphological 
differentiation

Queens 
are larger 
in size

Castes 
differ in 
shape

Presence of 
intermediates Reference

B. scutellaris 
(Fabricius)

X X Richards and 
Richards (1951), 
Carpenter and 
Ross (1984)

Chartergellus 
communisa 
Richards

X X Richards (1978), 
Mateus et al. 
(1999)

Charterginus 
fulvus Fox

X X Noll et al. (2004)

Chartergus artifex 
(Christ)

X Richards (1978)

C. globiventris de 
Saussure

X Noll and Zucchi 
(2002)

C. metanotalis 
Richards

X Noll et al. (2004)

Clypearia sulcata 
(de Saussure)

X Noll et al. (2004)

Epipona guerini 
(de Saussure)

X Hunt et al. (1996)

E. tatua (Cuvier) X Richards (1978), 
Noll et al. (2004)

Leipomeles 
dorsata (Fabricius)

X Noll et al. (2004)

Metapolybia 
aztecoides 
Richards

X Noll et al. (2004)

M. cingulata 
(Fabricius)

X Richards and 
Richards (1951), 
Carpenter and 
Ross (1984)

M. docilis 
Richards

X Baio et al. 
(2003b)

Nectarinella 
championi (Dover)

X X Noll et al. (2004)

Parachartergus 
colobopterus 
(Lichtenstein)

X Strassmann et al. 
(1991)

Pa. fraternus 
(Gribodo)

X X Richards (1978)

Pa. smithii (de 
Saussure)

X X Mateus et al. 
(1997)

Polybia belemensis 
Richards

X Richards (1978)

(continued)
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Table 6.1 (continued)

Species

Absence of 
morphological 
differentiation

Queens 
are larger 
in size

Castes 
differ in 
shape

Presence of 
intermediates Reference

Po. bicytarella 
Richards

X Richards and 
Richards (1951)

Po. bistriata 
(Fabricius)

X Richards and 
Richards (1951)c

Po. catillifex 
Möbius

X Richards and 
Richards (1951)

Po. chrysothorax 
(Lichtenstein)

X Richards (1978)

Po. dimidiata 
(Olivier)

X Richards (1978), 
Shima et al. 
(1996a)

Po. emaciata 
Lucas

X Richards (1978)

Po. erythrothorax 
Richards

X Richards (1978)

Po. jurinei de 
Saussure

X Richards (1978)

Po. liliacea 
(Fabricius)

X Noll et al. (2004)

Po. micans Ducke X Richards (1978)
Po. occidentalis 
(Olivier)

X Richards (1978), 
Noll et al. (2000)

Po. paulista (von 
Ihering)

X Noll and Zucchi 
(2000)

Po. platycephala 
sylvestris Richards

X Richards and 
Richards (1951)

Po. quadricincta 
de Saussure

X Richards (1978)

Po. rejecta 
(Fabricius)

X Noll et al. (2004)

Po. ruficeps 
(Schrottky)

X Richards (1978), 
Noll et al. (2004)

Po. scutellaris 
(White)

X Richards (1978), 
Noll et al. 
(1997b), Noll and 
Zucchi (2000)

Po. singularis 
Ducke

X Richards (1978)

Po. spinifex 
Richards

X Noll et al. (2004)

Po. striata 
(Fabricius)

X Richards (1978)

(continued)
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the proposed scenario for polygynic groups (West-Eberhard 1978, 1981), that is, 
caste flexibility due to the absence of morphological differences between them and 
ovarian development in all females. This condition is found mainly in Angiopolybia, 
Pseudopolybia, Parachartergus, Chartergellus, and Leipomelles (Noll et al. 2004). 
Thus, the distribution of this characteristic (presence of workers laying eggs) actu-
ally constitutes a plesiomorphic rather than an apomorphic state (Noll 2013).

Due to the absence of morphologically distinct castes, the social way of life in 
Epiponini has already been considered as little complex. However, Jeanne (2003) 
suggested the presumption of self-organization rather than the presence of distinct 
morphologies as a characteristic that would define complex societies. In this case, 
the presence of self-organization would remove the need for evolution in two dis-
tinct forms in Epiponini (Noll 2013). Indeed, as suggested by West-Eberhard (2003), 
the origin of morphologically distinct castes is much more a condition for colony 
stability and defense than indicative of social complexity. From this perspective, the 
complex Epiponini societies may have undergone a phase of totipotent and 

Table 6.1 (continued)

Species

Absence of 
morphological 
differentiation

Queens 
are larger 
in size

Castes 
differ in 
shape

Presence of 
intermediates Reference

Protonectarina 
sylveirae (de 
Saussure)

X X? X Shima et al. 
(1996b), Tanaka 
Jr. et al. (2010)

Protopolybia 
exigua (de 
Saussure)

X X Noll et al. (1996), 
Noll and Zucchi 
(2002)

Pr. minutíssima 
(Spinola)

X X Richards and 
Richards (1951)

Pr. sedula (de 
Saussure)

X X Richards and 
Richards (1951), 
Richards (1978)

Pseudopolybia 
compressa (de 
Saussure)

X Richards (1978)

Ps. difficillis 
(Ducke)

X Jeanne (1996)

Ps. vespiceps (de 
Saussure)

X Shima et al. 
(1998)

Synoeca chalibea 
de Saussure

X Richards (1978)

Sy. cyanea 
(Fabricius)

X Noda et al. 
(2003)

Sy. surinama 
(Linnaeus)

X Richards (1978), 
Noll et al. (2004)

Data from literature
aThe yellow coloration of the genus has a paler tone in the queens
bRichards (1978) found no differences
cCarpenter and Ross (1984) found queen slightly smaller than workers, but not significantly
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monomorphic females for several morphologically distinct queen systems in different 
lineages. Such a theory proved to be perfectly congruent when optimized in a clado-
gram of Epiponini genera (Noll et al. 2004).

Reproductive control in social wasps can be done in two ways: through physical 
aggression (primitively eusocial wasps) or through chemical control. Within the 
colonies of primitively eusocial wasps (Polistes, Mischocyttarus, Belonogaster, 
Parapolybia, and Ropalidia), there is a hierarchy of dominance, where the female 
with greater ovarian development is solely in charge of egg laying (Fletcher and 
Ross 1985). Because any female can lay eggs, the queen status is maintained within 
the colony through physical aggression and oophagy. In Polistes, dominance inter-
actions are more frequent than in Mischocyttarus (Spradbery 1991), and, in 
Ropalidia there is little or no direct interaction, with this genus presenting the least 
dominance repertoire among Polistinae wasps (Spradbery 1991; Kardile and 
Gadagkar 2002; Bhadra et al. 2010). After establishment of dominance, a reduction 
in the levels of aggression is observed (West-Eberhard 1986; Hughes et al. 1987), 

Fig. 6.2 Queen (a) and worker (b) of Agelaia pallipes (Olivier), species that presents a clear 
morphological difference between the castes

Fig. 6.3 Different degrees of ovarian development in Epiponini. Pictures of Protonectarina 
sylveirae (de Saussure). (a) Worker, (b) queen, and (c) intermediate
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suggesting that the reproductive dominance can also be maintained by chemical 
signals (West-Eberhard 1986; Dapporto et al. 2007; Bhadra et al. 2010), possibly by 
mixtures of hydrocarbons secreted by the Van der Vecht gland (Dapporto et  al. 
2007). The factors of endocrine control and oogenesis are not yet clear, however. 
Dominance behavior alone seems to be insufficient to maintain reproductive control 
(Röseler 1991). In the absence of the original queen, one of the female co-founders 
of the nest or the female presenting the highest ovarian development may assume a 
role in reproduction (Spradbery 1991). The queen monopolizes the production of 
eggs but can also forage occasionally and starts the construction of new cells 
(Chavarría 2013).

For Epiponini, physical aggression was observed only during the phase of estab-
lishment and selection of queens (Mateus 2005); however, physical aggression on 
the part of the queen against the workers, to maintain their status within the colony, 
is not common. For this reason, it is believed that reproductive control is also made 
through chemical signaling or hormonal control (Naumann 1970; Forsyth 1978; 
Fletcher and Ross 1985; West-Eberhard 1989a; Spradbery 1991), although no study 
has proven this phenomenon. In addition to chemical signals, queens use ritualized 
postures to communicate their status within the colony (West-Eberhard 1978; 
Spradbery 1991). The queens, in Epiponini, do little more than lay eggs and perform 
no other task in the colony (Herman et al. 2000).

If the queens in Epiponini do not exercise a strong reproductive control, the 
workers do. The workers test and remove queens from the colony (West-Eberhard 
1978, 1981; Herman et al. 2000; Platt et al. 2004) and favor the production of queens 
in colonies where there is a low number of queens and the production of males in 
colonies with high number of queens (Queller et al. 1993). Moreover, workers favor 
production of males by queens because they are more genetically related to the 
“sons” of the queens than to the “sons” of other workers (Hastings et  al. 1998), 
which seems good to maintain the “workers’ interest” (Strassmann et  al. 1997, 
1998). This type of control is probably done in species with imaginal determination, 
although other control mechanisms may be related (Chavarría 2013). Studies in 
colonies of Protopolybia sedula (de Saussure) (Naumann 1970, still as P. pumila in 
his works), Metapolybia aztecoides Richards (West-Eberhard 1973, 1978), 
Parachartergus colobopterus (Lichtenstein) (Herman et al. 2000), Asteloeca ujhel-
yii (Ducke) (Nascimento et al. 2004), Parachartergus fraternus (Gribodo) (Mateus 
2005), and Metapolybia docilis Richards (Chavarría 2009) demonstrated that 
worker behavior may be an important component in the mechanism of delimitation 
of functions in the colony.

A peculiar feature that occurs in Polistinae is the presence of polygyny (presence 
of several queens coexisting in the same nest). This characteristic appeared three 
times within the subfamily – in the genera Polybioides and Ropalidia, and in the 
tribe Epiponini (Carpenter 1991) – and is associated with the colony’s foundation 
mode by swarming (the colony is constructed by a large number of workers accom-
panied by more than one queen) and complex social organization (Carpenter 1991; 
Jeanne 1991; Fig. 6.4). Epiponini species may exhibit permanent polygyny or varia-
tion in queen numbers (decrease) during the colony cycle, resulting in monogyny 
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Fig. 6.4 Evolution of polygyny in Epiponini. (a) In a plesiomorphic society with short-term 
monogyny, the dominant female is intolerant of the reproduction of other females. The queen 
performs policing, while the workers are tolerant to the reproduction of other females. Occasionally, 
the workers reproduce. (b) In Epiponini no intolerant queens are present; instead, reproduction is 
performed by several tolerant females. The role of policing is adopted by workers, who suppress 
each other, as well as select among breeders. (Modified from Noll 2013)
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(West-Eberhard 1978; Richards 1978; Jeanne 1991). The presence of polygyny in 
the most basal clades indicates that the presence of multiple functional queens was 
already present in the common ancestor of the tribe (Carpenter 1991; Noll 2013).

It is not difficult to imagine that the origin of polygyny was molded by the same 
factors as swarm foundation and nest architecture and that ant predation was an 
important factor (Jeanne 1979). There is a consensus that eusociality of wasps origi-
nated in the tropics (Evans and West-Eberhard 1970), where ants are the most 
important predators of the colonies (Richards and Richards 1951). From this point 
of view, it is appropriate to state that the most peculiar characteristics of the 
Epiponini lifestyle are the result of the improvement of defense against ants 
(Richards 1971, 1978; Jeanne 1975, 1991; Starr 1990; Simões et al. 1996). Thus, 
the rapid abandonment of the nest through the migratory behavior (swarming) 
would be an important strategy, assured by polygyny, that led to the selection of 
queens morphologically undifferentiated (less body mass, easier to fly) and numeri-
cally more abundant (greater opportunity for reestablishment of the colony in a new 
place) (Mateus 2005). Considering that the loss of a single queen could be fatal, the 
presence of several queens could be advantageous for the colony in terms of sur-
vival (Noll 2013).

The presence of several queens laying eggs could represent a problem regarding 
“conflict of interest” occurring in the colonies of social insects (Noll 2013). Although 
degrees of relatedness may be low in colonies of the independent-founding wasps 
Polistes (Pickett et al. 2006), an additional problem arises in Epiponini: the division 
of reproduction among several queens would result in an even lower degree of kin-
ship among the females of one colony (Hastings et  al. 1998), which would not 
reinforce the sterility of the workers. However, kinship analyses for Epiponini colo-
nies have indicated that the degree of relationship between females is relatively high 
(Queller et al. 1988, 1993; Strassmann et al. 1992; Gastreich et al. 1993; Hughes 
et al. 1993; Hastings et al. 1998). These results are in line with what West-Eberhard 
(1978, 1981) observed in colonies of Metapolybia aztecoides. After the swarm, at 
the beginning of the cycle, several queens and workers are present. Throughout the 
development of the colony, some of the queens disappear or begin to display worker 
functions, and, later, the number of queens is reduced until there remains a few or 
only one. Queen production and swarms occur predominantly after the establish-
ment of monogyny or oligogyny, restricting the production of future queens to only 
a few individuals. This pattern is observed in several other species, such as Polybia 
occidentalis (Olivier) (West-Eberhard 1978; Queller et al. 1993), Parachartergus 
colobopterus (Strassmann et al. 1991), Polybia emaciata Lucas (Strassmann et al. 
1992), Protopolybia exigua (de Saussure) (Gastreich et  al. 1993), Brachygastra 
mellifica (Say) (Hastings et  al. 1998), and Agelaia multipicta (Haliday) (West- 
Eberhard 1990). The term cyclic oligogyny was coined to define the decrease in the 
number of queens and the production of new ones during the period when there are 
few of them in the colony. That way, the relationship between the queen and daugh-
ters is increased, as predicted by the kinship selection theory (Hamilton 1964a, b, 
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1972). The high kinship is also maintained by the fact that queens in Epiponini are 
inseminated only once (Goodnight et al. 1996). The possibility that the wasps of this 
tribe are inflexible in terms of loss of these elements of sociality should not be ruled 
out either (Noll 2013).

6.2  Communication

6.2.1  Alarm Pheromone

Swarm-founding wasps and their populous colonies are engaged in sophisticated 
communication systems to coordinate the activities of all members of the colony 
(Jeanne 1991). The defense behavior in Polybia occidentalis involves two steps. 
First, in response to a sudden movement or mechanical disturbance to the nest, a 
large number of individuals are quickly recruited to the outer surface of the envelop. 
Second, a number of these individuals immediately fly and attack the intruder or 
predator. Alarm recruitment has been demonstrated experimentally in Polybia occi-
dentalis (Jeanne 1981, 1991). The workers’ venom contains a pheromone that 
immediately recruits a large number of adults, which move to the surface of the 
envelope. Outside the nest, the attack occurs immediately against dark-colored 
objects that move close to the nest. The chemical alarm communication certainly 
occurs in most of the swarming wasps, but it is still necessary to investigate whether 
it occurs in colonies with low numbers of individuals (Jeanne 1981, 1991). The 
alarm and defense behavior of the nest in Synoeca surinama (Linnaeus) is coordi-
nated by visual factors and by odors, which are recognized by the individuals of the 
same colony. In the presence of intruders, these factors together incite and produce 
the wasp attack (Castellón 1981).

6.2.2  Chemical Communication During Migration

Communication during migration depends on the chemical signals left by the scout 
workers on different substrates indicating a direction to follow (Naumann 1975; 
Jeanne 1975; Forsyth 1978; West-Eberhard 1982; Mateus 2005; Mateus 2011). For 
migration to occur, three major challenges need to be overcome. First, the scouts 
select a location for the construction of the new nest. Second, these workers create 
a “trail” of chemical signals, left on prominent objects (such as leaves) along the 
way to the new site. Finally, the rest of the colony follows the chemical trail to reach 
the site of the new nest (Sonnentag and Jeanne 2009; Mateus 2011).

The chemical communication during swarming in Epiponini seems to be related 
to a gland present in the fifth gastral sternite. Reports of the presence of this gland 
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were made by Richards (1971) and later studied by Jeanne and Post (1982) and 
Jeanne et al. (1983). The “dragging behavior”, which consists of rubbing the gaster 
on a substrate to make the chemical pathway that is followed by the rest of the col-
ony during migration, was first described by Naumann (1975) and observed in spe-
cies of the genera Agelaia, Angiopolybia, Leipomeles, and Polybia. Jeanne (1975, 
1981) experimentally confirmed the findings of Naumann (1975) observing the 
wasps followed an artificial trail made with substances removed from the gland of 
the fifth gastral sternite. However, this seems not to be the only strategy used. 
Studies with Apoica pallens (Fabricius) (Howard et al. 2002) showed a different 
strategy of chemical communication during the swarm. This species does not make 
a chemical trail on a substrate and does not previously select the location of the new 
nest. After leaving the old nest, the population forms clusters in leaves of plants, and 
the recruitment is done when the wasps elevated the abdomen and exposes the base 
of the fifth and sixth sternites. This behavior suggests that the wasps are emitting a 
pheromone in the air (“calling display”) to group the population and lead it to a site 
to build the new nest (Howard et al. 2002).

In Parachartergus fraternus, although the presence of scouts doing “dragging 
behavior” during migration has been observed by some authors (Jeanne et al. 1983; 
Smith et al. 2002), no evidence of external glands was found in the gastral sternites 
(Jeanne et  al. 1983). In this species, the communication of the end point of the 
chemical pathway was established by dozens of scouts, creating an area of easy 
recognition due to the strong odor of the substance applied to the substrate. In the 
moments that preceded the migration, it was observed that the number of scouts 
sprinkling venom on the substrate of the new nest site is high. Simultaneously, in the 
old nest, the scouts who returned there make lateral movements with the abdomen 
(“dragging behavior”) in the substrate and oral contacts to signal and stimulate the 
population to migrate. The strategy of marking the place of the new nest by sprin-
kling venom possibly prevents the action of possible predators until the colony is 
established (Mateus 2005, 2011). Venom spraying is well known in the 
Parachartergus (Jeanne et al. 1995; West-Eberhard 1982), which has specialized 
muscles in the venom reservoir (Maschwitz and Kloft 1971). Chemical communica-
tion during migration in the Epiponini has been described as very efficient, since the 
loss of individuals during the process has been reported as low. The main causes of 
loss are related to predation or to the fact that individuals are newly emerged and not 
fully capable (Bouwma et al. 2003; Mateus 2011).

There are two distinct types of migration in Epiponini, “diffuse swarms” and 
“clumped swarms”. For both types, use of chemical communication as a signal of 
the path to the new nest was observed for all species studied (West-Eberhard 1982). 
In diffuse swarms, observed in Agelaia areata (Say) (Jeanne 1975), Synoeca suri-
nama (West-Eberhard 1982), and Parachartergus fraternus (Mateus 2011), the 
wasps spread over an area of more than 100 m in length by 20–50 m in width, in 
search of the chemical track. In the clumped swarm, several clusters are formed on 
a migration route, and, as the population advances along the migration path using 
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the chemical trail, the clusters disintegrate behind the advance (West-Eberhard 
1982). This type of migration was observed in Parachartegus apicalis (Fabricius), 
Polybia ignobilis (Haliday), Polybia raui Bequaert, Polybia occidentalis (Forsyth 
1981), and Polybia sericea (Olivier) (Jeanne 1981).

6.2.3  Recruitment for Food Forage

Wasps can be considered as the great flying hunters and gatherers of the world of 
social insects. As far as we know, all social wasps are omnivorous, feeding on both 
animal proteins and sugar-rich carbohydrate sources. The sources of foraged pro-
teins are predominantly living arthropods, which provide nutrients for immature 
growth. Carbohydrate sources serve primarily as an energy source for adults (Jeanne 
and Taylor 2009). Unlike other social Hymenoptera, bees and ants, in wasps there is 
no sophisticated communication system to inform nest mates of location of the 
source or when and where to forage for food. Thus, the foragers of social wasps 
seem to act individually (Jeanne and Taylor 2009).

Some hypotheses have been suggested by Jeanne et al. (1995). One is that wasps 
do not have sufficient genetic variability to give rise to structures or behavior to 
inform nest mates about the location of resources, which seems unlikely. Swarm- 
founding wasps exhibited sufficient genetic variability for the evolution of trail 
pheromones, which guide swarms to new nests (Jeanne 1981, 1991), a mechanism 
that should probably be able to function in the recruitment of nest mates to food 
sources. The lack of a signal-based recruitment system may be due also to a social 
constraint. A critical colony size may be necessary for the benefits of recruitment to 
outweigh the costs (Beckers et al. 1989), and it can be argued that the number of 
foragers in most social wasp species is too low to effectively defend food sources 
against competitors such as some species of ants and stingless bees. A third possi-
bility is that ecological factors may make recruitment an unproductive strategy in 
social wasps. For recruitment to be worth it, the resources need to be clustered in 
space and persist for considerable periods of time. However, according to Jeanne 
and Taylor (2009), it may be premature to generalize that all social wasps do not 
recruit for food sources, since only a few species have been studied carefully and 
there are many other species to be studied.

6.2.4  Division of Labor

The division of labor is a central theme in the study of social insects (Garcia and 
Noll 2013). The ecological success of these groups can be credited to their ability to 
coordinate their colonies for feeding, breeding, cleaning, and nesting (Beshers and 
Fewell 2001; Wilson 1979; Wilson and Hölldobler 2005). In ants and termites, the 
division of labor among castes is regulated by ontogenetic and physiological 
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mechanisms (Miura 2005). In Epiponini, as in bees, the division of labor is associ-
ated with age polyethism1 and specialization of tasks (Chavarría and Noll 2013; 
Garcia and Noll 2013).

Workers of independent foundation species begin to forage at the age of several 
days and combine foraging activities with activities within the nest throughout their 
lives. Foragers bring food (nectar and prey) and material (vegetable matter and 
water) to build the nest, and division of labor among them may occur by preference 
for a particular type of activity (polyethism) and in the way of processing the load 
(division of tasks). The forager can perform all the necessary handling alone or 
divide its load of material totally or partially with other members of the colony. The 
frequency of load partitioning increases with colony growth (Post et  al. 1988; 
Rusina 2006), and the food division is often more frequent than the construction 
material division (Rusina et al. 2011). In Polistes fuscatus (Fabricius), for example, 
three functional groups are present: (1) workers who prefer to hunt than to build and 
tend to pass protein to other individuals, (2) workers who deliver construction mate-
rial and do not pass prey to other workers, and (3) non-forage workers who engage 
exclusively in activities within the nest (Post et  al. 1988). A similar pattern was 
found for P. dominula (Christ), P. nimpha (Christ), and P. gallicus (Linnaeus). In the 
latter two species, however, the constructors were involved in establishing and 
maintaining the dominance structure of the workers (Rusina 1999, 2006). Dominant 
workers in Mischocyttarus mastigophorus Richards collect building material and 
obtain protein food from prey forage more frequently than subordinate individuals 
(O’Donnell 1998b).

In Epiponini, the high level of social organization resulted in the presence of age- 
related polyethism and in the specialization of foragers. Handling of the delivered 
material (building material, water, prey, and nectar) is divided into two sub-tasks: 
collection and use. Foragers of the two functional groups bring food (prey and nec-
tar) and construction material (wood pulp and water) to the nest and pass to other 
workers. A forager can deliver a specific type or both types of material throughout 
its active period. If a forager changes to a different type of load, the change usually 
occurs within the same group (food or nest material) (Rusina et  al. 2011). 
Construction activity in these wasps is not only subdivided into delivery of pulp and 
construction but also involves the transportation of water by specialized workers. In 
addition, pulp delivered by foragers is generally too large to be used directly in the 
construction, so they have to pass at least part of the material to the workers in the 
nest who then distribute the material among themselves (Jeanne 1986; O’Donnell 
and Jeanne 1990; Karsai and Wenzel 1998). According to Jeanne (2003), the main 
difference between the independent and swarm-founding species is in the way of 
dealing with the material collected and in the fact that the foragers transfer the mate-
rial to another worker (and continue to forage), allowing the development of the age 

1 The phenomenon whereby an animal shows different forms of behavior at different ages. In social 
insects, certain members of the colony may perform different tasks as they get older. In Epiponini 
genera Polybia, Protopolybia, and Agelaia, for example, young and middle-aged workers perform 
nest tasks (building, brood care, nest maintenance, defense), while old workers forage.
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polyethism and a more complex organization of the colony. In general, young work-
ers perform tasks within the nest, such as cleaning and caring for the offspring. 
Meanwhile, the middle-aged workers are concerned with the construction and repair 
of the nest. Older workers, in turn, act as foragers, carrying material for construction 
and water and food for the colony, in addition to defending the nest (O’Donnell 
2001). Studies with Polybia, Protopolybia, and Agelaia found that young and 
middle- aged workers perform tasks in the nest such as construction, care of the 
offspring, nest maintenance, and defense, while older workers forage (Simões 1977; 
Forsyth 1978; Jeanne et al. 1988, 1992). Chavarría and Noll (2013) observed a simi-
lar number of young and old female workers performing tasks such as cell inspec-
tion, construction, and foraging in Metapolybia miltoni Andena and Carpenter 
colonies. However, younger workers tend to forage less than the older ones 
(Chavarría and Noll 2013).

Specialization, that is, the presence of workers who perform a single type of 
task, is rare in most social wasps (Robinson 1992; Sendova-Franks and Franks 
1999; O’Donnell 1998c; Karsai and Wenzel 2000; Beshers and Fewell 2001; 
Johnson 2003). Karsai and Wenzel (2000) did not find specialization in colonies of 
Metapolybia aztecoides and M. mesoamerica Smethurst and Carpenter. The same 
was observed by Chavarría and Noll (2013) for Metapolybia miltoni. Mateus 
(2005) also found flexibility in performing tasks in Parachartergus fraternus, 
where a worker who acted as a scout during the pre-swarm was subsequently 
observed laying eggs and, when dissected, the presence of ovaries developed with 
mature oocytes was found. Other scouts of the same nest performed construction 
tasks after nest establishment (Mateus 2005). In Polybia occidentalis and 
Metapolybia sp., there was greater stability in the preference for collection of a 
type of material when colonies were large (Jeanne 1986; Karsai and Wenzel 1998, 
2000). Data obtained for Polybia aequatorialis (Zavattari) indicate that workers 
with specialization for the same activity have a close genetic relationship 
(O’Donnell 1996, 1998c). When there is little variation of age in the population, 
the workers should be allocated to tasks according to the needs of the colony, not 
being very relevant to the age of the individuals (Chavarría and Noll 2013). On the 
other hand, in colonies with individuals of different ages, polyethism seems to be 
more important in the delimitation of tasks, as demonstrated in the works of Jeanne 
et al. (1988, 1992). In short, the workers’ choice of task depends on the circum-
stances of the colony, and the workers can be allocated to this or that task according 
to need (Karsai and Wenzel 2000).

Workers in any insect society retain some degree of behavioral flexibility, which 
is decisive for the survival of the colony in changing situations (Robinson 1992). 
Likewise, caste flexibility is an important factor for colony survival in the swarm- 
founding wasps, allowing these insects to respond efficiently to changes that may 
occur (Chavarría and Noll 2013). As evidenced by Noll and Wenzel (2008), cast 
dimorphism evolved at least eight times in Epiponini, and social organization 
derives directly from an ancestor with incipient caste dimorphism in most taxa. 
Given this fact, general patterns are insufficient to explain the different strategies 
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adopted by the species of this tribe (Beshers and Fewell 2001; Chavarría and 
Noll 2013).

6.2.5  Colony Defense

“I suspect that social wasps pay much more attention to ants in their environment 
than we think”. The phrase by Jeanne (1991) reinforces the idea that in the tropics, 
the ants represent the most important predators of the colonies of social wasps 
(Richards and Richards 1951). Predation by these insects may have strongly influ-
enced the evolution of these wasps (Jeanne 1979). The rapid abandonment of the 
nest and swarm, the complex architecture of nests, and the presence of breeds with-
out clear morphological differences suggest evolutionary adaptations against ant 
predation as well as optimization of work (Jeanne 1975; Wenzel 1998). While 
independent- founding species (Polistes and Mischocyttarus) rely heavily on 
secreted chemical repellents to keep ants away from their offspring, the swarming 
wasps depend primarily on the envelope surrounding the combs, coupled with the 
presence of workers guarding the nest entrance (Jeanne 1975). In addition, in the 
face of an ant attack, abandoning the nest by the rapid migration of the adult popula-
tion is certainly an important and unique strategy in Epiponini (Mateus 2005).

In addition to envelope protection, workers actively guard the nest (Jeanne 1975, 
1991). When the ants get too close, the wasps can resort to a series of behaviors to 
drive away the invaders. Protopolybia exigua and Polybia occidentalis, for example, 
exhibit “wing buzzing” and “burst” behaviors, where female workers swing their 
bodies up and backward by buzzing their wings rapidly and producing a snap 
(Chadab 1979). In P. exigua, this behavior is shown when visual or olfactory stim-
uli, as well as the odor of formic acid, are detected by the wasps and act as a warning 
signal to the companions who can quickly evacuate the nest if the ants reach this one 
(Chadab 1979). When an ant reaches a P. occidentalis nest, it can be stung by a 
worker who immediately uses the jaws to trap and carry the ant away from the nest 
(Jeanne 1991). As described by Chadab (1979), buzzing and burst behaviors cause 
small bursts of air directed at the ants whose antennae curve at each flight wrist. 
These pulses paralyze the ants momentarily, and the display of these behaviors per-
sistently by the wasps results in the retreat of the ants (Jeanne 1991). Workers of 
Clypearia sulcata (de Saussure), Metapolybia aztecoides, and Polybia occidentalis 
use the jaws to scrape the substrate of the nest where the ants passed in order to 
remove the pheromone trail left by them (Chadab 1979; West-Eberhard 1989b; 
Jeanne 1991). Thus, the chances of ants reaching the nest in the future are reduced 
(Jeanne 1991).

Although most species bet on the active defense of the nest against invasive ants, 
a different strategy has evolved in some species. Nectarinella xavantinensis Mateus 
and Noll, N. championi (Dover), and Leipomelles dorsata (Fabricius) protect access 
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to the nest with the placement of “sticky pillars” in areas near the entrance of the 
nest, apparently produced from an oral secretion (Jeanne 1991; Wenzel 1991; 
Mateus and Noll 1997; Carpenter and Marques 2001). Wasps of these species are 
quite small, and defending the nest actively against many ant species would be 
impossible (Jeanne 1991). Envelope protection, active defense, and building sticky 
traps can be very effective against small ants, but they are not enough against a 
group of ants, in particular the army ants. The majority of social wasps seem to have 
no effective defense against army ants, and the tactic against their arrival is the 
immediate abandonment of the nest by the entire adult population so that they do 
not end up as prey of the invaders, which will occur with the abandoned larvae and 
pupae (Jeanne 1991). In some species of Polistinae, however, ways of escaping of 
predation by these ants have evolved. One of them is to build very high nests in the 
canopy, as do Agelaia areata, Epipona tatua (Cuvier), and Chartergus metanotalis 
Richards (Jeanne 1991; Carpenter and Marques 2001). Other species with more 
resistant envelopes like Synoeca septentrionalis Richards, S. chalibea de Saussure, 
Polybia emaciata, and P. jurinei de Saussure prevent the entry of army ants using 
the body itself to block the entrance of the nest.

Curiously, despite the antagonistic relations between the ants and the social 
wasps, some species developed interspecific associations. Polybia rejecta 
(Fabricius), a very aggressive social wasp, often builds its nest in association with 
colonies of the ant Azteca (Richards 1978; Somavilla et al. 2012). This association 
may be one of the few defenses that tropical wasps have against invasions by ants of 
the army ants (Richards and Richards 1951). Similarly, wasps exhibit aggressive 
behavior when the ant colony is disturbed, protecting the ants primarily against 
predatory mammals such as anteaters (Virgínio et al. 2015). Synoeca chalybea can 
also construct nests in association with ants of the genus Azteca (Souza et al. 2013).

In addition to barring the ants, the presence of the envelope also seems to be an 
effective defense against parasites. When these are found, they are far less numerous 
when compared to the large infestations that may occur in non-enveloped nests of 
independent-founding species. Forsyth (1978) analyzed 141 colonies of Metapolybia 
azteca and Polybia occidentalis finding parasites in only 7% of them and less than 
1% of offspring infestation. On the other hand, Nelson (1968) observed that about 
60% of the colonies of Polistes metricus analyzed by him were parasitized by the 
moth Chalcoela iphitalis, with some nests reaching 90–95% infestation of the 
offspring.

The most famous defense mechanism of social wasps is undoubtedly the painful 
sting. In spite of the bad reputation, the sting apparatus in its origin has as primary 
function the capture of prey (Macalintal and Starr 1996). However, they assumed an 
important defense role against bigger enemies, especially in social lineages 
(Macalintal and Starr 1996). The behavior of stinging would have evolved due to the 
predation pressure exerted by vertebrates attracted by the increase in colony size, 
particularly in the tropics, in open and seasonally dry forests (Starr 1985; Carpenter 
and Marques 2001). This form of defense is undoubtedly quite effective in discour-
aging potential predators, although, it is not uncommon for wasp colonies to be 
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attacked by vertebrates such as birds, bats, and primates (Jeanne 1975, 1991). 
Nevertheless, different mechanisms were adopted by other species in an attempt to 
minimize the risk of being attacked by these animals. Species with small colonies 
construct nests camouflaged for the purpose of hindering the visualization by verte-
brates and parasites. Leipomeles dorsata, for example, constructs its nest at the 
bottom of a broad leaf and covers the envelope with green details in order to mimic 
plant venation (Williams 1928; Richards 1978; Jeanne 1991). Other species build 
large and sturdy nests, inaccessible to most vertebrates.

In Apis mellifera Linnaeus, defense and foraging activities are carried out by dif-
ferent groups of workers (Breed et al. 1990), that is, the workers who act in the 
defense of the colony are specialized in this task. In Epiponini, Jeanne et al. (1992) 
analyzing colonies of Polybia occidentalis did not find a subgroup of specialized 
workers in this task, concluding that the wasps that defended the nest also per-
formed other activities inside the nest and of foraging, for example (Fig. 6.5a). In 
fact, there is a positive correlation since forager workers are more likely to act in 
defense than non-forager ones (Jeanne et  al. 1992). Still for P. occidentalis, the 
likelihood of a wasp displaying defense response increases significantly among 
workers aged between 8 and 12 days, stabilizing after the 13th day (Jeanne et al. 
1992; Fig. 6.5b). During a mechanical stimulus, young wasps also leave the nest in 
response to the attack signal, but only the older workers effectively attack the 
intruder. This fact makes it clear that the behaviors of “leaving the nest” and “attack-
ing” represent different responses (Jeanne et al. 1992) and that the participation of 
a large number of individuals in the exit response suggests that this behavior func-
tions as an aposematic sign to the predator (Jeanne et al. 1992).

Thanks to its defensive potential, the sting apparatus is considered a key factor 
that favored the origin of social behavior several times within Aculeata. Added to 
this is the fact that only females act as workers in the societies of wasps, bees, and 
ants (Silveira and Silveira 1994). An evolutionary analysis of the sting apparatus in 
Vespidae showed that some variations in the characteristics of this structure are 
related to the highly social way of life (Silva et al. 2014). In addition to the defense 
function, the use of the sting apparatus in a phylogenetic reconstruction supports the 
unique origin of eusociality, which would have occurred in the ancestor of Vespinae 
+ Polistinae (Silva et al. 2014).

6.3  General Conclusion

The peculiar features presented by Neotropical social wasps, specially the swarm- 
founding Epiponini, resulted in a great diversity of species. Among the representa-
tives of this tribe, all stages of caste differentiation are present, from castes 
morphologically very distinct to forms in which there are no external differences. 
Physiological differentiation also follows this rule, giving rise, in some species, to 
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Fig. 6.5 Defense behavior according to age. (a) Frequency of task performance according to the 
age of the worker. Number of tasks related to nest maintenance, foraging trips, and defensive 
responses. (b) Frequency of task performance as a function of relative age (age is relative to the 
transition of each individual from the work in the nest to the foraging). (Modified from Jeanne 
et al. 1992)
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females with ovary developed but not fertilized, so-called intermediates. Because of 
polygyny, many females are able to lay eggs, tolerating each other, and the egg lay-
ers are tested and occasionally removed by sterile workers. Chemical communica-
tion guides the swarms and defense of the nest, and the tasks performed inside and 
outside the nest are divided according to the age of the wasps.
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