
Chapter 4
Evenly Convex Functions

In this chapter we introduce evenly convex functions as those whose epigraphs
are evenly convex sets, and develop a duality theory for nonlinear programming
problems involving evenly convex functions, that is, evenly convex optimization
problems. In Sect. 4.1 we present the main properties of this class of convex
functions that contains the important subclass of lower semicontinuous convex
functions, whose relevance in convex analysis comes from the fact that the Fenchel
conjugacy is an involution on most of them. More precisely, any proper lower
semicontinuous convex function coincides with its biconjugate. In Sects. 4.2 and
4.3 we introduce the evenly convex hull of a function and appropriate conjugation
schemes for evenly convex functions, respectively. Finally, in Sect. 4.4, we use the
perturbational approach for developing the so-called c-conjugate duality theory,
providing closedness-type regularity conditions. These conditions will be expressed
in terms of the even convexity of the involved functions, for both strong and stable
strong duality for convex optimization problems.

4.1 Evenly Convex Functions

In the same way that convex functions are defined by the convexity of their
epigraphs, we will say that an extended real-valued function f : Rn → R is evenly
convex (in brief, e-convex) provided that its epigraph epi f is an e-convex set in
R

n+1. Obviously, any e-convex function is convex and, since any closed convex
set is e-convex, lsc convex functions constitute a subclass of e-convex functions. In
particular, any finite-valued convex function is e-convex.

The next two examples show that not every convex function is e-convex and not
every e-convex function is a lower semicontinuous convex function, respectively.

Example 4.1 (Example 3.2 Revisited) The epigraph of the function f defined in
Example 3.2, which is represented in Fig. 4.1, is obviously a convex set, but it is

© Springer Nature Switzerland AG 2020
M. D. Fajardo et al., Even Convexity and Optimization, EURO Advanced Tutorials
on Operational Research, https://doi.org/10.1007/978-3-030-53456-1_4

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53456-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-53456-1_4


124 4 Evenly Convex Functions

Fig. 4.1 epi f is not
e-convex

not e-convex. In fact, considering x = (1, 2) ∈ R
2\ (epi f ), we have that, for any

hyperplane H containing x, H ∩ (epi f ) �= ∅.

Example 4.2 One can easily check that the epigraph, represented in Fig. 4.2, of the
function f : R → R defined by

f (x) =
{

x2, if x > −1,

+∞, if x ≤ −1,

is e-convex, but it is not closed. Then, f is an e-convex function which is not lower
semicontinuous.

Recall that closedness of lower level sets characterizes the class of lower
semicontinuous functions. While lower level sets are convex for convex functions,
a function whose lower level sets are all convex needs not be convex (see, e.g., the
function f in Example 3.7). Analogously, lower level sets of e-convex functions
are all e-convex, that is, every e-convex function is e-quasiconvex as well. This fact
follows from the identity

[f ≤ r] × {r} = (epi f ) ∩ (Rn × {r}), ∀r ∈ R,

and the properties of e-convex sets studied in Chap. 1 (see Proposition 1.2(iii) and
(v)).
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Fig. 4.2 f is an e-convex function but it is not lower semicontinuous

Having these facts in mind, the following diagram shows the relations between
different types of convex and quasiconvex functions.

Convex ⇒ Quasiconvex
convex epigraph convex lower level sets

⇑⇑

Evenly convex ⇒ Evenly quasiconvex
evenly convex epigraph evenly convex lower level sets

⇑⇑

Lsc convex ⇒ Lsc quasiconvex
closed and convex epigraph closed and convex lower level sets

Diagram 4.1 Evenly convex and related functions
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Fig. 4.3 The graph of f

It is well-known that the effective domain of a convex function is a convex set,
since it is the projection on R

n of the epigraph. However, the projection of an e-
convex set is not, in general, e-convex. Then, the effective domain of an e-convex
function is convex but not necessarily e-convex, as the following example shows
Example 4.3.

Example 4.3 Let f : R2 → R be the function defined by

f (x) =

⎧⎪⎨
⎪⎩

x1 ln x1
x2

, if x ∈ E,

0, if x = 02,

+∞, otherwise,

where E = {
x ∈ R

2 : 0 < x1 ≤ 1, 0 < x2 ≤ x1
}
, whose graph is represented in

Fig. 4.3. Observe that dom f = E ∪ {02} (represented in Fig. 4.4) is not e-convex,
although, as we shall see, f is a lower semicontinuous convex function and,
therefore, it is e-convex.

Consider the function g : R2++ → R defined by g (x) = x1 ln x1
x2

, where R2++ =
(]0,+∞[)2. Since g is a twice continuously differentiable real-valued function on
the open convex set R2++ and its Hessian matrix is positive semi-definite for every
x ∈ R

2++, according to [148, Th. 4.5], we have that g is a convex function on R
2++.

On the other hand, both functions f and g coincide on the convex subset E of R2++
and, hence, f is convex on E. The convexity of f on dom f = E ∪ {02} can be



4.1 Evenly Convex Functions 127

Fig. 4.4 The domain of f is
not e-convex

easily proved showing that f (λx + (1 − λ) y) ≤ λf (x)+ (1 − λ) f (y) for x ∈ E,
y = 02 and 0 < λ < 1. So, f is a convex function.

Since every convex function is always lsc except perhaps at relative boundary
points of its domain, we only have to prove that f is lsc on rbd (dom f ).

Since g is a finite-valued convex function on R
2++, g is lsc at any x ∈ R

2++, i.e.,
for all λ < g (x), there exists a neighborhood of x, Vx , in R

2++ such that λ < g (x)

for all x ∈ Vx . Then, given x ∈ rbd (dom f ) ∩ E ⊂ R
2++, we have that, for all

λ < f (x) = g (x), there exists a neighborhood of x , Vx , in R
2++ ⊂ R

2 such
that λ < g (x) = f (x) for all x ∈ Vx ∩ E. Obviously, if x ∈ Vx ∩ (R2\E) ⊂
R

2\ (dom f ), then f (x) = +∞ > λ, so that f is lsc at x.
On the other hand, lower semicontinuity of f at 02 is a direct consequence of

f (x) ≥ 0 = f (02) for all x ∈ R
2.

Finally, for x ∈ ]0, 1] × {0}, we have f (x) = +∞ > λ for all λ ∈ R. Moreover,
since

lim
x→x
x∈E

f (x) = lim
x→x
x∈E

g (x) = +∞,

we have that, given any λ ∈ R, there exists a neighborhood of x, Vx , inR2\ {02} such
that f (x) > λ, for all x ∈ Vx ∩ E, and f (x) = +∞ > λ, for all x ∈ Vx ∩ (R2\E).
Then, f is also lsc on ]0, 1] × {0}.

The next result states conditions ensuring the even convexity of the effective
domain of an e-convex function. Recall that a function is said to be improper if it
is not proper (i.e., if it is identically +∞ or takes the value −∞ at some point).
Clearly, the improper e-convex functions identically either +∞ or −∞ have e-
convex effective domains. Precise references to all missing proofs in this chapter
are appropriately given in Sect. 4.5.



128 4 Evenly Convex Functions

Theorem 4.1 (On the Effective Domain of an e-Convex Function) Let f :
R

n → R.

(i) If f is an improper function such that f (x) = −∞ for some x ∈ R
n, then f is

e-convex if and only if dom f is e-convex and f (x) = −∞ for all x ∈ dom f .
(ii) If f is a proper e-convex function bounded from above on dom f , then dom f

is e-convex.

So, the even convexity of the effective domain is a necessary condition for the
even convexity of proper functions which are bounded from above. However, this
is not a sufficient condition, as illustrates the function considered in Example 4.1,
which is bounded on dom f = ]−1, 1] and dom f is e-convex, but f is not e-
convex.

As stated in Diagram 4.1, the class of e-convex functions is intermediate
between the class of lower semicontinuous convex functions and the class of convex
functions (that are always lower semicontinuous except perhaps at relative boundary
points of their domains). Next we provide a characterization of proper e-convex
functions in terms of lower semicontinuity.

Theorem 4.2 (Characterization of e-Convex Functions I) Let f : R
n → R

be a proper function. Then, f is e-convex if and only if f is convex and lower
semicontinuous on eco (dom f ).

Corollary 4.1 Let f : Rn → R be an e-convex function whose effective domain is
closed. Then, f is a lower semicontinuous convex function.

It is well-known that any convex function f is lsc/usc/continuous relative to
rint dom f (see [148, Th. 10.1]). Moreover, if f is a proper e-convex function,
then f is lower semicontinuous on the greater set eco dom f . When we ask
whether any proper convex function f can be assumed upper semicontinuous on
rbd (dom f ) ∩ dom f relative to dom f , the answer is negative in general (see [148,
p. 83]). However, it is easy to prove that this property holds for univariate functions.
Consequently, we consider the concept of upper semicontinuity along lines (as in
[114]).

Given a nonempty convex set A ⊂ R
n, a function f : R

n → R is said to be
upper (resp. lower) semicontinuous along lines on A ⊂ R

n if, for every x, y ∈ A,
the function fx,y : [0, 1] → R, given by

fx,y(t) := f (x + t (y − x)),

is upper semicontinuous (resp. lower semicontinuous) at t relative to [0, 1], for any
t ∈ [0, 1]. Moreover, f is said to be continuous along lines on A if f is upper and
lower semicontinuous along lines on A.

For any proper convex function f , dom f is a nonempty convex set and, for
every x, y ∈ dom f , fx,y is a univariate convex function and, therefore, it is upper
semicontinuous relative to [0, 1]. As a consequence, any proper convex function is
upper semicontinuous along lines on its domain. Furthermore, it is easy to prove that



4.1 Evenly Convex Functions 129

any proper convex function f that is lower semicontinuous on a nonempty convex
set A ⊂ dom f , is also lower semicontinuous along lines on A.

Proposition 4.1 (Necessary Conditions for Even Convexity) If f is a proper e-
convex function, then it is continuous along lines on its domain, and its image set
Im f := {f (x) : x ∈ dom f } is convex.

It is well-known that convexity and lower semicontinuity are preserved by the
most important functional operations. The following theorem shows that the same
happens with even convexity.

Theorem 4.3 (Operations with e-Convex Functions) Let f, g, fi : R
n → R,

i ∈ I .

(i) If f is an e-convex function and α > 0, then αf is e-convex.
(ii) If {fi}i∈I is a family of e-convex functions, then supi∈I fi is an e-convex

function.
(iii) If f and g are two proper e-convex functions, then f + g is e-convex.
(iv) If f and g are two e-convex functions and f is improper, then f +g is e-convex

if and only if dom(f + g) is an e-convex set.
(v) If f and g are two e-convex functions, where f is improper and g is proper

with e-convex domain, then f + g is e-convex.
(vi) If f and g are two e-convex functions, where f is improper and g is proper

and bounded on its domain, then f + g is e-convex.
(vii) If f and g are two improper e-convex functions, then f + g is e-convex.

In general, (iii) is not true whenever one of the functions is not proper.

Example 4.4 Let f, g : R2 → R, where f is the proper e-convex function defined
in Example 4.3 and g is the improper e-convex function defined by

g(x) =
{−∞, if x ∈ [0, 1]2,

+∞, otherwise.

Obviously, dom(f +g) = (dom f )∩ (dom g) = dom f , that is not an e-convex set,
and, in particular,

(f + g)(x) =
{−∞, if x ∈ dom f,

+∞, otherwise,

so, by Theorem 4.1, f + g is not an e-convex function.
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4.2 Evenly Convex Hull

Given a function f , its evenly convex hull, abbreviated as e-convex hull and denoted
by eco f , is defined to be the largest e-convex function minorizing f . Obviously,
thanks to Theorem 4.3(ii), eco f coincides with the pointwise supremum of all the
e-convex functions minorizing f . Moreover, a function f is said to be evenly convex
at a point x provided that f (x) = (eco f )(x).

With each subset A ⊂ R
n+1, we associate the so-call lower-bound function ϕA :

R
n → R (cf. [90]) defined by

ϕA(x) := inf{t ∈ R : (x, t) ∈ A}.

If A = ∅ then ϕA(x) = +∞ for all x ∈ R
n. A set A ⊂ R

n+1 is said to be ascending
if either A = ∅ or there exists (x, t) ∈ A such that (x, t) ∈ A for all t ≥ t . Thanks
to Proposition 1.1(v), which can be equivalently written as follows: “if there exist
x ∈ C ⊂ R

n and y �= 0n such that {x + λy : λ ≥ 0} ⊂ C, then d ∈ 0+(eco C)”,
one easily gets that for a nonempty e-convex set A ⊂ R

n+1, A is ascending if and
only if (0n, 1) ∈ 0+A. This fact allows to get the following results, where the strict
epigraph of a function f is denoted by

epis f :=
{
(x, λ) ∈ R

n+1 : x ∈ dom f, f (x) < λ
}

.

Theorem 4.4 (Sufficient Conditions for Even Convexity) Let A ⊂ R
n+1 be an

e-convex set and f : Rn → R. Then

(i) If A is ascending, then ϕA is an e-convex function.
(ii) If A is such that epis f ⊂ A ⊂ epi f , then f is an e-convex function. In

particular, any function whose strict epigraph is e-convex, is e-convex as well.

Concerning statement (i) in the above theorem, it is worth saying that the
assumption that A is ascending is not superfluous in order to guarantee the even
convexity of ϕA (see the e-convex set in [101, Ex. 3.1]). This makes a difference
with a well-known result ensuring that if A ⊂ R

n × R is a closed convex set, then
ϕA is a lower semicontinuous convex function (see [148, Th. 5.3]), no matter A is
ascending or not.

Regarding statement (ii), whose proof derives from (i) , not every e-convex
function has an e-convex strict epigraph, as we can see in the following example.

Example 4.5 Let f : R → R be the function defined by

f (x) =
{−√

1 − x2, if − 1 ≤ x ≤ 1,

+∞, otherwise.

In Fig. 4.5a, we can see that the epigraph of f is e-convex (so f is an e-convex
function), whereas Fig. 4.5b shows that its strict epigraph is not.



4.2 Evenly Convex Hull 131

a b

Fig. 4.5 (a) The epigraph of f ; (b) The strict epigraph of f

Theorem 4.5 Let A ⊂ R
n+1 and f : Rn → R.

(i) If eco A is ascending, then

eco ϕA = ϕeco A.

(ii) If A is such that epis f ⊂ A ⊂ epi f , then

eco f = ϕeco A.

Consequently,

(eco f )(x) = inf {a ∈ R : (x, a) ∈ eco epi f } , ∀x ∈ R
n.

Next we summarize some basic properties regarding the domain and the epigraph
of the e-convex hull.

Theorem 4.6 (Properties of the e-Convex Hull) Let f : R
n → R be a convex

function. Then:

(i) cl f ≤ eco f ≤ f .
(ii) epis (eco f ) ⊂ eco epi f ⊂ epi(eco f ).
(iii) dom f ⊂ dom(eco f ) ⊂ dom (cl f ) ⊂ cl dom f .
(iv) dom(eco f ) ⊂ eco dom f ⊂ cl dom f .
(v) rint dom(eco f ) = rint dom f .

The inequalities in statement (i) and the inclusions in statements (ii), (iii) and
(iv) can be strict, as the following example shows.
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Example 4.6 (Example 3.2 Revisited) Consider the function f : R → R defined
in Example 3.2. Taking into account the epigraph of f , represented in Fig. 4.1, it is
easy to conclude that

(eco f ) (x) =
{

x2, if − 1 < x ≤ 1,

+∞, otherwise,

and

(cl f ) (x) =
{

x2, if − 1 ≤ x ≤ 1,

+∞, otherwise.

Thus, cl f � eco f � f and

dom f = dom (eco f ) = eco (dom f ) = ]−1, 1] � [−1, 1] = dom (cl f ) = cl dom f.

On the other hand, in Fig. 4.6, we can see that

epis (eco f ) � eco epi f � epi(eco f ).

The following result characterizes the even convexity of a function at a point.
Corresponding characterizations have been given in Chap. 3 for even quasiconvexity
of a function at a point by using lower level sets instead of epigraphs.

Theorem 4.7 (Characterization of the Even Convexity at a Point) Let f :
R

n → R and x ∈ R
n. Then:

(i) f is e-convex at x if and only if (x, a) /∈ eco epi f for every a < f (x).
(ii) f is e-convex at x if and only if, for any a < f (x), there exists q ∈ R

n+1 such
that 〈q, (x, λ) − (x, a)〉 > 0, for all (x, λ) ∈ epi f .

(iii) f is e-convex if and only if it is e-convex at every x ∈ R
n.

Fig. 4.6 The inclusions in Theorem 4.6(ii) are strict
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The even convexity of a function can also be characterized in most cases through
the set Ef of all the e-affine minorants of f , that is,

Ef :=
{
a : Rn → R : a is e-affine and a ≤ f

}
.

Here, a function a : R
n → R is said to be e-affine if there exist c, z ∈ R

n and
α, t ∈ R such that, for all x ∈ R

n,

a(x) =
{ 〈x, c〉 − α, if 〈x, z〉 < t,

+∞, if 〈x, z〉 ≥ t,

i.e., a is the restriction of an ordinary affine function to some open half-space, and it
is identically +∞ on its complement. For instance, the function a : R → R defined
by

a(x) =
{ 3x−6

5 , if x > −6
5 ,

+∞, if x ≤ −6
5 ,

is an e-affine minorant of the function f : R → R in Example 4.5, that is, a ∈ Ef

(see Fig. 4.7).

Theorem 4.8 (Characterization of e-Convex Functions II) Let f be a proper
function. Then, f is e-convex if and only if

f = supEf . (4.1)

The representation of e-convex functions as suprema of their e-affine minorants
in (4.1) also applies to improper e-convex functions identically either −∞ or +∞,
by considering Ef the empty set and the set of all e-affine functions, respectively.

Fig. 4.7 An e-affine
minorant of f

MM
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However, such a representation does not apply to those improper e-convex functions
f such that f (x) = −∞ for some and x ∈ R

n and dom f �= R
n, as in this case

Ef = ∅.

Corollary 4.2 Let f : Rn → R.

(i) If f has a proper e-convex minorant, then

eco f = supEf .

(ii) If f is a proper e-convex function, then

eco dom f =
⋂

a∈Ef

dom a.

4.3 Conjugacy and Subdifferentiability

In this section we shall adopt the generalized conjugation theory of Moreau
described in Sect. 3.3 in order to provide up to three different conjugation schemes
which are appropriate for e-convex functions, in the sense that a (proper) function
is e-convex if and only if it coincides with its biconjugate. For this purpose, we
shall recall that every lsc convex function f admitting a continuous affine minorant
coincides with its Fenchel biconjugate f ∗∗ (see, e.g., [41, Prop. 3.1]).

4.3.1 First Conjugacy Scheme

Let us consider the space W := R
n × R

n × R and the coupling function
c : Rn × W → R ∪ {+∞} defined by

c(x, (x∗, u∗, α)) :=
{ 〈x∗, x〉 , if 〈u∗, x〉 < α,

+∞, if 〈u∗, x〉 ≥ α.
(4.2)

Then, the c-conjugate of a function f : Rn → R is the function f c : W → R given,
for every (x∗, u∗, α) ∈ W , by

f c(x∗, u∗, α) = sup
x∈Rn

{
c(x, (x∗, u∗, α)) − f (x)

}

=
{

f ∗(x∗), if dom f ⊂ [u∗ < α],
+∞, otherwise.
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From this expression, one easily gets that

dom f c = dom f ∗ × {
(u∗, α) ∈ R

n × R : dom f ⊂ [u∗ < α]} .

Similarly, the c′-conjugate of a function g : W → R is the function gc′ : Rn → R

given, for every x ∈ R
n, by

gc′
(x) = sup

(x∗,u∗,α)∈W

{
c(x, (x∗, u∗, α)) − g(x∗, u∗, α)

}

=
{

g∗(x, 0n, 0), if dom g ⊂ [(0n, x,−1) < 0],
+∞, otherwise.

For this particular coupling function in (4.2), that is, for this particular conjuga-
tion scheme, we have that the class of c-elementary functions is precisely the family
of e-affine functions, and then, by Theorem 4.8, the class of Γc-convex functions
coincides with the class of e-convex functions from R

n to R∪{+∞} along with the
function identically −∞. We will say that a function g : W → R is e′-convex if it
is Γc′ -convex, and the e′-convex hull of g : W → R will be denoted by e′ co g.

The most remarkable properties of this c-conjugation scheme are summarized in
the following theorem.

Theorem 4.9 (Properties of c-Conjugation) Let f : Rn → R, g : W → R and
c : Rn × W → R ∪ {+∞} be as in (4.2). Then,

(i) f c is e′-convex, and gc′
is e-convex.

(ii) f cc′ =
{

f ∗∗ + δeco dom f , if dom f ∗ �= ∅,

−∞, otherwise.

(iii) If f is minorized by a proper e-convex function, then eco f = f cc′
.

(iv) If f does not take the value −∞, then f is e-convex if and only if f = f cc′
.

(v) e′ co g = gc′c.
(vi) g is e′-convex if and only if g = gc′c.

Consequently, f : R
n → R ∪ {+∞} is e-convex at x ∈ R

n if and only if
f (x) = f cc′

(x), and g : W → R is e′-convex at (x∗, u∗, α) ∈ W if and only if
g(x∗, u∗, α) = gc′c(x∗, u∗, α).

Statement (iv) also holds whenever f is the function identically −∞, but it fails
if f is an arbitrary function such that ∅ �= dom f �= R

n and f (x) = −∞ for some
x ∈ R

n, as in that case f cc′
is identically −∞. Furthermore, if f : Rn → R∪{+∞}

does not admit any proper e-convex minorant, then the relation eco f = f cc′
may

be false, as it is shown by the following example, which involves the so-called valley
function υC of a set C ⊂ R

n, defined as υC (x) := −∞ if x ∈ C and υC (x) := +∞
if x /∈ C.
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Example 4.7 Consider the function f defined on the real line given by

f (x) =

⎧⎪⎨
⎪⎩

0, if x = 0,

− 1
|x| , if 0 < |x| < 1,

+∞, if |x| ≥ 1.

Its effective domain is ]−1, 1[, which is an e-convex set. We have f ∗ ≡ +∞ and,
by Theorem 4.9(ii), f cc′ ≡ −∞. However, it is easy to see that eco f = v]−1,1[.
Hence, in this case the identity eco f = f cc′

fails because of the fact that f does
not have a proper e-convex minorant.

Next example illustrates how this conjugation scheme works with a well-known
function.

Example 4.8 By applying the conjugation scheme developed in this subsection to
the indicator function δC of C ⊂ R

n, for every (x∗, u∗, α) ∈ W one has

δc
C(x∗, u∗, α) =

{
σC(x∗), if C ⊂ [u∗ < α],
+∞, otherwise.

The function δc
C : W → R can be regarded as a kind of support function of C. The

second conjugate is

δcc′
C (x) =

{
δcl co C(x), if x ∈ eco C,

+∞, if x /∈ eco C.

Consequently, eco δC = δcc′
C = δeco C .

4.3.2 Second Conjugacy Scheme

Next we apply the e-quasiconvex conjugation scheme developed in Sect. 3.3 in order
to get another conjugation scheme for e-convex functions. More precisely, we will
consider a slightly modification of the coupling function in (3.7), in order to get
a conjugation scheme for e-convex functions in R

n by means of the conjugation
scheme for e-quasiconvex functions in R

n+1. Thus, consider the coupling function
c : Rn+1 × (Rn+1 × R) → R defined by

c
(
(x, t) ,

(
x∗, t∗, α

)) :=
{

0, if 〈x∗, x〉 + t t∗ ≥ α,

−∞, if 〈x∗, x〉 + t t∗ < α.
(4.3)
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With each function f : Rn → R, we associate the function f̃ : Rn+1 → R defined,
for every (x, t) ∈ R

n × R, by

f̃ (x, t) := f (x) + t .

Observe that dom f̃ = dom f × R. If we assume that dom f �= ∅ and consider the
coupling function c in (4.3), then the c-conjugate of f̃ is

f̃ c
(
x∗, t∗, r

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ∗
(

x∗
t∗
)

− r
t∗ , if t∗ > 0,

+∞, if t∗ < 0,

+∞, if t∗ = 0 and dom f �⊂ [
x∗ < r

]
,

−∞, if t∗ = 0 and dom f ⊂ [
x∗ < r

]
,

for every (x∗, t∗, r) ∈ R
n × R × R. From Sect. 3.3, f̃ cc′

, the biconjugate of f̃ ,
coincides with the e-quasiconvex hull of f̃ . This fact, together with the following
equivalences,

f is e-convex ⇐⇒ f̃ is e-convex ⇐⇒ f̃ is e-quasiconvex , (4.4)

allow to obtain expressions for the e-convex hulls of f̃ and f .

Theorem 4.10 (Properties of c-Conjugation) Let c : Rn+1 ×(Rn+1 ×R) → R be
as in (4.3). For any f : Rn → R and any (x, t) ∈ R

n ×R, the following statements
hold:

(i) (eco f̃ ) (x, t) = (eco f ) (x) + t .

(ii) f̃ cc′
(x, t) = f ∗∗ (x) + δeco dom f (x) + t .

(iii) (eco f̃ ) (x, t) = f ∗∗ (x) + δeco domf (x) + t .

(iv) eco f = f ∗∗ + δeco dom f .

The conjugation method described in this subsection does not apply directly on
a given function f on R

n, but on a certain extension f̃ defined on R
n+1. The results

obtained in Theorem 4.10 follow from the relationship between f and f̃ in (4.4),
and the conjugation method for e-quasiconvex functions. Among the given results,
we observe that the identity eco f = f ∗∗ +δeco domf is guaranteed for any extended
real-valued function f . However, with the method described in Sect. 4.3.1, such
equality can be just asserted for functions having an e-convex minorant (besides the
function identically −∞).



138 4 Evenly Convex Functions

4.3.3 Third Conjugacy Scheme

Now, consider the coupling function c : Rn × (Rn × R × {0, 1}) → R, defined by

c
(
x,
(
x∗, r, i

)) :=
{ 〈x, x∗〉 , if i = 0,

υ[x∗<r] (x) , if i = 1.
(4.5)

In this case, the c-conjugate of f : Rn → R is the function f c : Rn×R×{0, 1} → R

given, for every (x∗, r) ∈ R
n × R by

f c
(
x∗, r, i

) =
{

f ∗ (x∗) , if i = 0,

υ{(x∗,r)∈Rn×R : domf⊂[x∗<r]}, if i = 1.

Observe that the c-elementary functions are, on the one hand, the continuous affine
functions on R

n, and, on the other hand, the valley functions of the open halfspaces
of Rn, plus the constant functions +∞ and −∞.

The main properties of this conjugation scheme are as follows.

Theorem 4.11 (Properties of c-Conjugation) Let c : Rn × (Rn × R × {0, 1}) →
R be as in (4.5). For any function f : Rn → R, the following statements hold:

(i) f cc′ = eco f .
(ii) f is e-convex if and only if f cc′ = f .
(iii) f cc′ = max{f ∗∗, υeco dom f } = f ∗∗ + δeco dom f .
(iv) eco f coincides with the supremum of all the continuous affine functions and

all the open halfspaces valley functions that are minorants of f .

From the above theorem we get that eco f = f ∗∗ + δeco domf for any extended
real-valued function f . This identity was also obtained in Sect. 4.3.2 by using a
different approach. It required a transformation of the function f , which is not
needed here. Furthermore, we observe that the identity eco f = f cc′

holds for any
function f , while in Sect. 4.3.1 such equality was just asserted for functions having
an e-convex minorant (besides the function identically −∞). Finally, Theorem 4.11
points out that eco f = max{f ∗∗, υeco dom f }, which is another representation of
the e-convex hull of f (and of its biconjugate f cc′

) that was not obtained with
the two approaches in Sects. 4.3.1 and 4.3.2. Such representation is related with
the following geometric interpretation: the e-convex hull of a function f is the
supremum of all the continuous affine minorants and all the open halfspaces valley
functions that are minorants of f .
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4.3.4 Subdifferentials

As pointed out in Sect. 3.3, each coupling functional c defining a conjugacy has an
associated c-subdifferential ∂c. Thus, if we consider the first coupling function c in
this section, the one in (4.2), the following result provides the link between the c-
subdifferential ∂c and the Moreau–Rockafellar subdifferential ∂ . We would like to
clarify that this subsection is not related to Clark subdifferentials at all.

Proposition 4.2 Let f : Rn → R and x ∈ f −1(R). Then,

∂cf (x) = ∂f (x) × {(u∗, α) ∈ R
n × R : dom f ⊂ [u∗ < α]}.

Example 4.9 Consider the function f in Example 4.5 and x = 0. Then,

∂cf (0) = {0} × {(a, b) ∈ R
2 : ax < b is a consequence of {−x ≤ 1, x ≤ 1}}.

More precisely, the latter set is characterized in Theorem 2.3 as

{0} × proj{1,2}
3

⎛
⎝cone

⎧⎨
⎩
⎛
⎝−1

1
0

⎞
⎠ ,

⎛
⎝1

1
0

⎞
⎠ ,

⎛
⎝ 0

1
−1

⎞
⎠ ,

⎛
⎝0

0
1

⎞
⎠
⎫⎬
⎭ ∩

(
R

2 × (−R++)

)⎞⎠

= {0} × int epi |·| ,

where |·| : R → R is the absolute value function (see Fig. 4.8).

As a consequence of Proposition 4.2, f is c-subdifferentiable at x if and only
if it is subdifferentiable at this point. This motivates our focus on the (Moreau-
Rockafellar) subdifferential in the next results. Firstly, we provide a characterization
of the ε-subdifferentiability of a function at a given point in terms of the even
convexity of its strict epigraph.

Fig. 4.8 The
c-subdifferential of f at 0
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Proposition 4.3 (Non-emptiness of the ε-Subdifferential) Let ε ≥ 0, f : Rn →
R and x ∈ f −1(R). Then, the following statements are equivalent:

(i) ∂εf (x) �= ∅.
(ii) ({x} × R) ∩ eco(epis f ) ⊂ ({x} × R) ∩ epis(f − ε).
(iii) (x, f (x) − ε) /∈ eco(epis f ).

The following notion is inspired by the concept of closedness regarding to a set
(see [20, p. 56]): given two sets A and B, one says that A is e-convex regarding to
B provided that B ∩ eco A = B ∩ A.

Corollary 4.3 Let f : Rn → R and x ∈ f −1(R). Then, the following statements
are equivalent:

(i) ∂f (x) �= ∅.
(ii) epis f is e-convex regarding to {x} × R.
(iii) (x, f (x)) /∈ eco

(
epis f

)
.

Regarding the function in Example 4.5 and x = −1, we have

({−1} × R) ∩ epis f = {−1} × R++,

while ({−1} × R) ∩ eco epis f = {−1} ×R+ (see, Fig. 4.9). Since (ii) fails, (i) and
(iii) also fail. In the case x = 0, (i), (ii) and (iii) hold.

In particular, if the strict epigraph of a function f is e-convex, then f is
subdifferentiable on f −1(R).

Proposition 4.4 (Necessary Condition for Subdifferentiability) Assume that
f : Rn → R is subdifferentiable on f −1(R) and either f is e-convex or dom f is
e-convex. Then, epis f is e-convex.

a b

Fig. 4.9 (a) ({−1} × R) ∩ epis f = {−1} × R++; (b) ({−1} × R) ∩ eco
(
epis f

) = {−1} × R+
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We conclude this section by providing two additional characterizations of the
even convexity at a given point (cf. Ths. 4.5 and 4.7).

Theorem 4.12 (Characterization of the Even Convexity at a Point) Consider
f : Rn → R, x ∈ f −1(R) and A ⊂ R

n × R such that epis f ⊂ A ⊂ epi f . Then,
the following statements are equivalent:

(i) f (x) = (eco f )(x).
(ii) For all ε > 0, ∂εf (x) �= ∅.
(iii) For all ε > 0, (x, f (x) − ε) /∈ eco A.

There exits also an ε-subdifferentiability notion associated with the c-
conjugation pattern described in Sect. 4.3.1. For f : R

n → R and ε ≥ 0, it
is said that (x∗, u∗, α) ∈ W is an ε − c-subgradient of f at x0 ∈ f −1(R), if
〈u∗, x0〉 < α and

f (x) − f (x0) ≥ c
(
x,
(
x∗, u∗, α

))− c
(
x0,

(
x∗, u∗, α

))− ε,

for all x ∈ R
n. The set of all the ε − c-subgradients of f at x0 is denoted by

∂c,εf (x0), and it is called the ε − c-subdifferential of f at x0. Clearly, for ε = 0 we
obtain the c-subdifferential of f at x0.

The most important properties of ε − c-subdifferentiability, whose counterparts
for ε-subdifferentiability and Fenchel conjugation are very well known, are summa-
rized in the following theorem. Previously, we introduce a set of e-affine functions
associated to a pair of functions f, g : R

n → R, due to the lack of additivity
property in the set of e-affine functions. This new set, denoted by Ẽf+g is defined in
the following way: a ∈ Ẽf+g if and only if there exist a1 ∈ Ef , a2 ∈ Eg such that, if

a1 (x) =
{

〈x, y1〉 − β1, if 〈x, z1〉 < α1,

+∞, otherwise,
and a2 (x) =

{
〈x, y2〉 − β2, if 〈x, z2〉 < α2,

+∞, otherwise,

then

a (x) =
{ 〈x, y1 + y2〉 − (β1 + β2) ,

+∞,

if 〈x, z1 + z2〉 < α1 + α2,

otherwise.
(4.6)

Clearly Ẽf+g ⊂ Ef+g .

Theorem 4.13 (Properties of c-Subdifferentiability) Let f, g : R
n → R be

proper functions, such that dom f ∩ dom g �= ∅. Then,

(i) For x0 ∈ dom f ,

epi f c =
⋃
ε≥0

{(
x∗, u∗, α,

〈
x∗, x0

〉+ ε − f (x0)
) : (x∗, u∗, α

) ∈ ∂c,εf (x0)
}
.
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(ii) If f + g = sup{a : a ∈ Ẽf+g}, epi f c + epi gc is e′-convex if and only if

∂c,ε (f + g) (x) =
⋃

ε1+ε2=ε

∂c,ε1f (x) + ∂c,ε2g (x) .

for all ε ≥ 0 and x ∈ dom f ∩ dom g.

(iii) If f + g = sup{a : a ∈ Ẽf+g} and epi f c + epi gc is e′-convex, then

∂c (f + g) (x) = ∂cf (x) + ∂cg (x) .

for all x ∈ dom f ∩ dom g.

4.4 Duality in Evenly Convex Optimization

4.4.1 General Regularity Conditions

An important part of mathematical programming from both theoretical and com-
putational points of view is duality theory. We consider an arbitrary unconstrained
optimization problem

(GP) Min
x∈Rn

F (x), (4.7)

where F : Rn → R is a proper function, and we apply the perturbational approach
to duality as in Sect. 3.4. By taking a perturbation function Φ : Rn ×R

m → R such
that Φ(x, 0m) = F(x) for all x ∈ R

n, Rm being the space of perturbation variables,
the so-called conjugate dual problem of (GP) can be formulated as follows:

(GD) Max
y∗∈Rm

−Φ∗(0n, y
∗),

where Φ∗ : Rn × R
m → R is the Fenchel conjugate of Φ, that is,

Φ∗ (x∗, y∗) = sup
(x,y)∈Rn×Rm

{〈
x, x∗〉+ 〈

y, y∗〉− Φ (x, y)
}
.

Problem (GD) can also be expressed by means of the infimum value function
p : Rm → R,

p (y) := inf
x∈Rn

Φ (x, y) . (4.8)
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In fact, since p (0m) = infx∈Rn F (x), and p∗ (y∗) = Φ∗(0n, y
∗), one has

(GD) Max
y∗∈Rm

p∗ (y∗) .
From the so-called Fenchel–Young inequality

p∗ (y∗)+ p (y) ≥ 〈
y, y∗〉 ,∀y, y∗ ∈ R

m,

it follows that −p∗ (y∗) ≤ p (0m) and, denoting by v(GP) and v(GD) the optimal
values of the primal and the dual problems, respectively, we have v(GD) ≤ v(GP),
situation known as weak duality. The difference between the optimal values of
the primal and the dual problems is called duality gap, and it is said that there
exists strong duality when there is no duality gap and the dual problem is solvable.
Sufficient conditions for strong duality are called regularity conditions, and they
are classified, mainly, in two different groups: interiority-type and closedness-
type conditions, being the last ones used recently as a viable alternative to
their interiority-type counterparts. This well-known framework will be named the
classical setting throughout this section. In this classical framework, strong duality
is characterized through the subdifferential of the infimum value function at 0m;
[191, Th. 2.6.1] states that, if the perturbation function is convex, ∂p (0m) �= ∅ if
and only if strong duality holds.

However, from the point of view of applicability, it is also necessary to find
out conditions guaranteeing strong duality even when F is perturbed with linear
functions, situation called stable strong duality.

Since e-convex functions can be viewed as a generalization of convex lower
semicontinuous functions and, moreover, c-conjugation (with c the coupling func-
tion in (4.2)) is suitable for this kind of functions, it is natural trying the extension
of well-known results for convex duality in the classical setting to that more
general framework. In this moment we introduce the notion of e′-convexity, which
appeared firstly in [46], for the calculus of the counterpart of the classical Moreau–
Rockafellar formula (see, e.g., [24]). The idea consisted in creating a kind of hull for
the convex set epi f c+epi gc, for f, g : Rn → R, trying to link it with epi (f + g)c.
For this problem, lower semicontinuous and evenly convex hulls do not properly
work. Recall that epi f c + epi gc and epi (f + g)c are both contained in W × R,
where W = R

n × R
n × R.

A subset D ⊂ W ×R is said to be e′-convex if there exists an e′-convex function
h : W → R such that D = epi h. Clearly, the intersection of an arbitrary family
of e′-convex sets is an e′-convex set, and the e′-convex hull of a set D ⊂ W × R is
defined as the smallest e′-convex set containing D, which will be denoted by e′ co D.
Actually, it is the epigraph of the e′-convex hull of the function fD : R

n → R

defined by fD(x∗, u∗, α) := inf {a ∈ R : (x∗, u∗, α, a) ∈ D} .

Considering now the general dual problem (4.7) with F : R
n → R a proper

function, let us take a perturbation function Φ : R
n × R

m → R. Denoting by
Z = R

n×R
m, the c-conjugate of the perturbation function Φ, Φc : Z×Z×R → R,
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is

Φc
((

x∗, y∗) , (u∗, v∗) , α) = sup
(x,y)∈Z

{
c
(
(x, y) ,

((
x∗, y∗) , (u∗, v∗) , α))− Φ (x, y)

}
,

where c : Z × Z × Z × R → R is the coupling function

c
(
(x, y) ,

((
x∗, y∗) , (u∗, v∗) , α

)) =
{ 〈x, x∗〉 + 〈y, y∗〉 , if 〈x, u∗〉 + 〈y, v∗〉 < α,

+∞, otherwise.

In [46], the general problem (GP) is associated with the dual problem

(GDc) Max
y∗,v∗∈Rm,α∈R

−Φc ((0n, y
∗) , (0n, v

∗) , α)

s.t. α > 0,
(4.9)

verifying weak duality, v(GDc) ≤ v(GP). Since

Φc
((

0n, y
∗) , (0n, v

∗) , α) = pc
(
y∗, v∗, α

)
,∀y∗, v∗ ∈ R

m,∀α > 0,

(GDc) can also be expressed by means of the infimum value function p in (4.8), as
follows:

(GDc) Max
y∗,v∗∈Rm,α∈R

−pc (y∗, v∗, α)

s.t. α > 0.

We focus firstly in obtaining interior point regularity conditions for strong duality
between (GP) and (GDc). It is evident that strong duality holds if v(GP) = −∞,
hence we deal with the case v(GP) ∈ R. In first place, we will characterize strong
duality in terms of the c-subdifferential associated to the coupling c in (4.2) as
considered in Sect. 4.3.

Proposition 4.5 (General Characterization of Strong Duality) Let us assume
that v(GP) ∈ R. Then the duality pair (GP) − (GDc) verifies strong duality if
and only if ∂cp (0m) �= ∅. In this case, ∂cp (0m) is the solution set of (GDc).

We introduce an interior point condition expressed in terms of the relative interior
of a set, and a closedness-type one, expressed in terms of closures of epigraphs, as
usual in this kind of conditions.

Denoting by proj (dom Φ) the projection of dom Φ onto R
m, let us also observe

that epi Φc ⊂ Z × Z × R × R, Z = R
n × R

m, so denoting by W =
R

n × R
n × R, we refer to the projection of epi Φc onto W×R by proj (epi Φc) .

These two projections could be written more precisely as proj{n+1,...,n+m}
n+m and

proj{1,...,n,m+1,...,m+n,2n+2m+1}
2n+2m+1 , respectively, but this notation would provide cum-

bersome formulae.
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Theorem 4.14 (General Regularity Conditions) Let us consider the general
primal problem (GP) and its dual (GDc), and assume that Φ is e-convex. The
following conditions ensure ∂cp (0m) �= ∅ and, therefore, strong duality between
(GP) and (GDc):

(C1) 0m ∈ rint proj (dom Φ) .

(C2) proj (epi Φc) is e′-convex or, equivalently,

proj
(
epi Φc

) = epi Φc (·, 0m) .

Moreover, this equality can be reformulated as the fulfilment of the following
condition

Φc (·, 0m) = min
y∗,v∗∈Rm

Φc
((·, y∗) ,

(·, v∗) , ·) ,

where Φ (·, 0m) : Rn → R, Φc (·, 0m) : W → R, Φc ((·, y∗) , (·, v∗) , ·) :
W → R and W = R

n × R
n × R.

Remark 4.1 As it is shown in [47], conditions (C1) and (C2) are also sufficient
for stable strong duality. The perturbed problems with linear functionals and the
corresponding duals are

(GPx∗) Min
x∈Rn

Φ(x, 0m) + 〈
x, x∗〉 ,

(GDc,x∗) Max
y∗,v∗∈Rm,α∈R

−Φc
((−x∗, y∗) , (0n, v

∗) , α
)

s.t. α > 0,

for an arbitrary x∗ ∈ R
n.

4.4.2 Regularity Conditions for Fenchel Duality

In this subsection, we consider a particular primal problem together with a particular
perturbation function, whose c-conjugate allows us to obtain a Fenchel-type dual
problem. We analyze regularity conditions for this pair of problems and do a
comparison among them. Let us consider the following optimization problem

(P1) Min
x∈Rn

f (x) + g(x),

where f, g : Rn → R are proper functions, with dom f ∩ dom g �= ∅. The problem
(P1) is a particular case of (GP) with F = f + g.
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We will consider the perturbation function ΦF : Rn × R
n → R given by

ΦF (x, u) := f (x + u) + g (x) . (4.10)

Calculating the c-conjugate of ΦF as in (4.9) we obtain the Fenchel dual problem
of (P1):

(DF ) Max
x∗,u∗∈Rn,α1,α2∈R

{−f c (x∗, u∗, α1) − gc (−x∗,−u∗, α2)}
s.t. α1 + α2 > 0.

(4.11)

We state the next theorem which gathers all the studied regularity conditions for
Fenchel duality, being (C1F ) and (C2F ) the particularized versions of the general
conditions (C1) and (C2) in Theorem 4.14, respectively. Let us recall that for proper
convex functions f, g : Rn → R, the infimal convolution of f with g, denoted by
f�g : Rn → R, is defined by

(f�g) (x) := inf
x1+x2=x

{f (x1) + g (x2)} ,

and it is said to be exact at x ∈ R
n if (f�g) (x) = f (a) + g (x − a) for some

a ∈ R
n. Moreover, the infimal convolution is called exact when it is exact at any

x ∈ R
n.

Observe that, in this case, Z = R
n × R

n, and W = R
n × R

n × R, and when we
refer to the projection of epi Φc

F onto W×R, proj
(
epi Φc

F

)
, we mean

proj
(
epi Φc

F

) = {(
x∗, u∗, α, β

) ∈ W×R : (x∗, y∗, u∗, v∗, α, β
) ∈ epi Φc

F , y∗, v∗ ∈ R
n
}
.

Theorem 4.15 (Fenchel Regularity Conditions) Let us consider the primal prob-
lem (P1), where f, g : Rn → R are proper e-convex functions, and its Fenchel dual
(DF ). The following conditions ensure strong duality between both problems:

(C1F ) 0n ∈ rint (dom f − dom g) .

(C2F ) proj
(
epi Φc

F

)
is e′-convex, or, equivalently,

Φc
F (·, 0m) = min

y∗,v∗∈Rn
Φc

F

((·, y∗) , (·, v∗) , ·) .

(C3F ) f + g = sup Ẽf,g and epi f c + epi gc is e′-convex.

Moreover, strong duality is characterized by the following condition:

(C4F ) There exists α > 0 such that (f + g)c (0n, 0n, α) ≥ (f c�gc) (0n, 0n, α)

and the infimal convolution is exact at (0n, 0n, α) , which is equivalent to
saying that

epi (f + g)c ∩ {(0n, 0n, α) × R} ⊆ (
epi f c + epi gc

) ∩ {(0n, 0n, α) × R} .
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Comparing regularity conditions (C1F ) , (C2F ) and (C3F ) , the unique rela-
tionship among them is that (C3F ) implies (C2F ), as it is pointed out ahead in
Proposition 4.6. The following example shows that (C3F ) does not imply (C1F ) .

Example 4.10 Let us take n = 1, f = δ[0,+∞[ and g = δ]−∞,0]. Since

dom f − dom g = [0,+∞[,

0 ∈ int(dom f − dom g) and (C1F ) does not hold. We now check condition (C3F ).
We have f + g = δ{0} and let h = sup Ẽf,g. Now, an e-affine function a1 ∈ Ef if

and only if

a1 (x) =
{

α1x − β1, if γ1x < δ1,

+∞, otherwise,

with α1 ≤ 0, β1 ≥ 0, γ1 ≤ 0 and δ1 > 0. On the other hand, a2 ∈ Eg if and only if

a2 (x) =
{

α2x − β2, if γ2x < δ2,

+∞, otherwise,

with α2 ≥ 0, β2 ≥ 0, γ2 ≥ 0 and δ2 > 0. Then, a ∈ Ẽf,g if and only if

a (x) =
{

αx − β, if γ x < δ,

+∞, otherwise,

with α, γ ∈ R, β ≥ 0 and δ > 0.

We obtain h = sup Ẽf,g = δ{0} = f + g. The following step is to calculate
epi f c + epi gc. We have (α, β, γ, δ) ∈ epi f c if and only if, for all x ≥ 0, αx ≤ δ

and βx < γ, hence epi f c = R−×R−×R++×R+. Similarly, (α, β, γ, δ) ∈ epi gc

if and only if, for all x ≤ 0, αx ≤ δ and βx < γ, hence epi δc
A = R+ × R+ ×

R++ × R+. We obtain

epi f c + epi gc = R × R × R++ × R+.

This set is e′-convex, because it is the epigraph of the c′-elementary function
c′ (·, 0) , which allows us to conclude that conditions in (C3F ) fulfills.

Proposition 4.6 (Relations Between Fenchel Regularity Conditions) (C3F )

implies (C2F ). Moreover, if f + g = sup Ẽf,g, (C2F ) implies (C3F ) if and only if

f c�gc = min
y∗,v∗∈Rn

Φc
((·, y∗) , (·, v∗) , ·) .

The following example shows that in general (C2F ) does not imply (C3F ) .

Example 4.11 Let us take n = 1, g = δ[0,+∞[ and f = δ]0,+∞[.
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It is easy to see that f + g = sup Ẽf,g. The most important fact to prove is that

(
f c�gc

) (
x∗, u∗, α

)
> inf

y∗,v∗∈RΦc
((

x∗, y∗) ,
(
u∗, v∗) , α)

at some point (x∗, u∗, α) ∈ R
3, implying, by Proposition 4.6, that (C3F ) does not

hold. So, we must give (u∗, α) ∈ R
2 such that, if we have

(
v∗ − u∗) x + u∗u < α,∀x ∈ dom g,∀u ∈ dom f, (4.12)

for some v∗ ∈ R, then

(
u∗ − w∗) x < α1 and w∗u < α2 (4.13)

whatever w∗ ∈ R implies α1 + α2 > α, meaning that (f c�gc) (x∗, u∗, α) = +∞.

Take (u∗, α) = (−1, 0) . For any −1 ≤ v∗ < 0, (4.12) holds. However for any
w∗ ∈ R verifying (4.13) it must be α1 + α2 > 0, since α1 > 0 and α2 ≥ 0
necessarily.

On the other hand, if x∗ ≤ 0,

inf
y∗,v∗∈RΦc

((
x∗, y∗) , (−1, v∗) , 0

) = inf
y∗∈R

{
sup
x≥0

(
x∗ − y∗) x + sup

z>0
y∗z

}
= 0.

Now we are going to check that

sup
x∈R

{
c
(
x,
(
x∗, u∗, α

))− Φ (x, 0)
} = min

y∗,v∗∈R
Φc

((
x∗, y∗) ,

(
u∗, v∗) , α

)
,

(4.14)

for all (x∗, u∗, α) ∈ R
3, which means that (C2F ) holds.

In the case supx∈R {c (x, (x∗, u∗, α)) − Φ (x, 0)} = +∞, (4.14) holds trivially.
Hence, let us assume that supx∈R {c (x, (x∗, u∗, α)) − Φ (x, 0)} < +∞. It is
equivalent to saying that (x∗, u∗, α) ∈ R− × (R− × R+\ {02}) and then

sup
x∈R

{
c
(
x,
(
x∗, u∗, α

))− Φ (x, 0)
} = 0.

We now compute Φc ((x∗, y∗) , (u∗, v∗) , α), for any points (x∗, u∗, α)

∈ R− × (R− × R+\ {02}) and y∗, v∗ ∈ R :

Φc
((

x∗, y∗) , (u∗, v∗) , α)
= sup

x,z∈R
{
c
(
(x, y) ,

(
x∗ − y∗, y∗) , (u∗ − v∗, v∗) , α) − f (y) − g (x)

}

= sup
x≥0,y>0

{
c
(
(x, y) ,

(
x∗ − y∗, y∗) , (u∗ − v∗, v∗) , α

)}
.
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Since we are interested in those suprema which are finite, if u∗ < 0 and α ≥ 0, take
any v∗ ∈ [

u∗, 0
[

and, if u∗ = 0 and α > 0, take v∗ = 0. Then

inf
y∗,v∗∈R sup

x≥0,y>0

{
c
(
(x, y) ,

(
x∗ − y∗, y∗) , (u∗ − v∗, v∗) , α)}

= inf
y∗≤x∗ sup

x≥0,y>0

{(
x∗ − y∗) x + y∗z

} = 0,

and this infimum is a minimum.

We finish the comparison with an example showing that (C1F ) does not imply
(C2F ).

Example 4.12 Let us take n = 1, g = δ[0,+∞[ and f = δ]1,+∞[. At the point

(x∗,−1,−1) ∈ R
3, x∗ ≤ 0, we obtain

sup
x∈R

{c (x, (−1,−1,−1)) − Φ (x, 0)} = sup
x>1

{
c
(
x,
(
x∗,−1,−1

))} = x∗.

On the other hand,

inf
y∗,v∗∈RΦc

((
x∗, y∗) ,

(−1, v∗) ,−1
)

= inf
y∗,v∗∈R sup

z>1,x≥0

{
c
(
(x, y) ,

(
x∗ − y∗, y∗) , (−1 − v∗, v∗) ,−1

)}
.

Let us observe that a necessary condition (depending on v∗ ∈ R) for these suprema
to be finite is that, for all x ≥ 0 and y > 1,

(−1 − v∗) x + v∗y < −1.

In particular for x = 0 and y > 1, it must be v∗ < −1, but this implies that
(−1 − v∗) > 0 and hence (−1 − v∗) x cannot be bounded from above, since x ≥ 0.
We conclude that

c
(
(x, y) ,

(
x∗ − y∗, y∗) ,

(−1 − v∗, v∗) ,−1
) = +∞,

for all y∗, v∗ ∈ R and

min
y∗,v∗∈RΦc

((
x∗, y∗) , (−1, v∗) ,−1

) = +∞.

Hence (C2F ) does not hold despite (C1F ) being fulfilled, because of the fact that
dom f − dom g = R.
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Remark 4.2 As it is shown in [47], (C3F ) is a sufficient condition for stable strong
Fenchel duality, i.e., for strong duality between the pair of problems

(P1,x∗) Min
x∈Rn

f (x) + g(x) + 〈
x, x∗〉

(DF,x∗) Max
y∗,u∗∈Rn,α1,α2∈R

{−f c
(
y∗ − x∗, u∗, α1

)− gc
(−y∗,−u∗, α2

)}

s.t. α1 + α2 > 0,

for all x∗ ∈ R
n.

4.4.3 Regularity Conditions for Lagrange Duality

In this subsection, we consider the following primal problem

(P2) Min
x∈Rn

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . ,m,
(4.15)

where f, gi : Rn → R, for all i = 1, . . . ,m, are proper functions. Let us suppose
that the feasible set A = {x ∈ R

n : gi (x) ≤ 0, i = 1, . . . ,m} is nonempty. The
problem (P2) is a particular case of (GP) with F = f + δA. We also consider
the following perturbation function ΦL : Rn × R

m → R,

ΦL (x, b) =
{

f (x) , if gi (x) ≤ bi, i = 1, . . . ,m,

+∞, otherwise.
(4.16)

In this case, the perturbation variable is b ∈ R
m. We can describe A as the set

{x ∈ R
n : g (x) ∈ −R

m+}, where g (x) = (g1 (x) , . . . , gm (x)) , for all x ∈ R
n, and

the perturbation function ΦL reads

ΦL (x, b) =
{

f (x) , if g (x) − b ∈ −R
m+,

+∞, otherwise.

Calculating the c-conjugate of ΦL makes it possible to associate to (P2) a dual
problem verifying weak duality. In [45] it was obtained the following Lagrange
dual problem

(DL) Max
λ∈Rm+

inf
x∈Rn

{f (x) + 〈λ, g (x)〉} (4.17)

which is the classical Lagrange dual problem actually.
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This subsection is devoted to study strong duality between (P2) and (DL).
Trivially, if v(P2) = −∞ strong duality holds. The function 〈λ, g (·)〉 : Rn → R

defined as 〈λ, g (·)〉 (x) := 〈λ, g (x)〉, for any λ ∈ R
m+, will be denoted by λg.

We will say that (P2) verifies the e-convex cone constraint qualification (ECCQ)

if the cone
⋃

λ∈Rm+
epi (λg)c is an e′-convex set. It can be viewed as the counterpart of

the Farkas-Minkowski CQ in [69], and can be reformulated in the following way, if
the e′-convex hull of

⋃
λ∈Rm+

epi (λg)c is computed:

(ECCQ)
⋃

λ∈Rm+
epi (λg)c = epi δc

A. (4.18)

The next theorem shows the main regularity conditions for Lagrange duality.
Again, as in Fenchel case, conditions (C1L) and (C2L) are the particularized
versions of the general conditions (C1) and (C2) in Theorem 4.14, respectively.

In this context, epi Φc
L ⊂ Z × Z × R × R, Z = R

n × R
m, W = R

n × R
n × R,

and when we refer to the projection of epi Φc
L onto W×R, proj

(
epi Φc

L

)
, we mean

proj
(
epi Φc

L

) = {(
x∗, u∗, α, β

) ∈ W×R : (x∗, λ, u∗, δ, α, β
) ∈ epi Φc

L, λ, δ ∈ R
m
}
.

Theorem 4.16 (Lagrange Regularity Conditions) Let us consider the primal
problem (P2), where f, gt : R

n → R are proper e-convex functions, and its
Lagrange dual (DL). If f + δA = sup Ẽf,δA and epi f c + epi δc

A is e′-convex, any of
the following conditions ensures strong duality between (P2) − (DL).

(C1L) 0m ∈ rint
(
g (dom f ) + R

m+
)
.

(C2L) proj
(
epi Φc

L

)
is e′-convex, or, equivalently,

ΦL (·, 0m)c = min
λ,β∈Rm

Φc
L (·, (λ, β)) .

(C3L) (P2) verifies (ECCQ).
(C4L) For all (x∗, y∗, α) ∈ W such that A ⊂ {x ∈ R

n : 〈x, y∗〉 < α} it holds

inf
x∈A

c
(
x,
(
x∗, y∗, α

)) = max
R

m+

{
inf

x∈Rn

{
c
(
x,
(
x∗, y∗, α

))+ λg (x)
}}

.

(4.19)

and there exists a solution λ of (4.19) which, in addition, verifies

inf
x∈A

c
(
x,
(
x∗, y∗, α

)) = inf
x∈domλg

{−c
(
x,
(−x∗, y∗, α

))+ λg (x)
}
.

Actually, (C3L) and (C4L) are equivalent.
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Next we compare the regularity conditions (C1L) , (C2L) and (C3L) . As we
shall see, the unique relationship between them is that (C3L) implies (C2L) .

Proposition 4.7 (Relation Between Lagrange Regularity Conditions) Regular-
ity condition (C3L) implies (C2L).

The following example shows that (C2L) does not imply (C3L) .

Example 4.13 Let us take n = 1, f = δ[0,+∞[, m = 1 and g1 (x) = x. We have
A = ]−∞, 0] .

It was shown, in Example 4.10, that f + δA = sup Ẽf,δA and

epi f c + epi δc
A = R × R × R++ × R+,

which is e′-convex. We shall see that (ECCQ) does not hold, i.e.,

⋃
λ≥0

epi (λg)c � epi δc
A.

Since epi δc
A = R+ × R+ × R++ × R+ (see again Example 4.10), a point

(α, β, γ, δ) ∈ epi δc
A verifies α ≥ 0, β ≥ 0, γ > 0 and δ ≥ 0. This point will be in

epi (λg)c for some λ ≥ 0 if c (x, (α, β, γ )) − λx ≤ δ, for all x ∈ dom (λg) = R,
which implies that βx < γ, for all x ∈ R, and this is impossible if β �= 0. Hence
(C3L) does not fulfill.

We now prove that (C2L) holds. The set proj
(
epi Φc

L

)
is e′-convex if and only if

epi ΦL (·, 0)c ⊂ proj
(
epi Φc

L

)
,

according to the equivalent formulation of (C2L). Since (dom f )∩A �= ∅, f +δA =
hf,δA and epi f c + epi δc

A is e′-convex, applying Theorem 4.16, we have

epi ΦL (·, 0)c = epi (f + δA)c = epi f c + epi δc
A,

hence we will see that

R × R × R++ × R+ = epi f c + epi δc
A ⊂ proj

(
epi Φc

L

)
.

Take a point (α, β, γ, δ) ∈ epi f c + epi δc
A. Hence α ∈ R, β ∈ R, γ > 0 and δ ≥ 0.

This point will be in proj
(
epi Φc

L

)
if and only if there exist λ1, λ2 ∈ R such that

Φc
L ((α, λ1) , (β, λ2) , γ ) ≤ δ, meaning that, for all (x, b) ∈ dom ΦL,

c1 ((x, b) , (α, λ1) , (β, λ2) , γ ) ≤ δ;

equivalently,

βx + λ2b < γ and αx + λ1b ≤ δ. (4.20)
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Since dom ΦL = {(x, b) ∈ R × R : 0 ≤ x ≤ b} , taking in particular x = 0 and
b ≥ 0, from (4.20) we deduce that λ1, λ2 ≤ 0. Now, for x > 0 and b ≥ x,

βx + λ2b ≤ x (β + λ2) .

Taking λ2 ≤ 0 satisfying (β + λ2) ≤ 0, we have βx + λ2b < γ, If we now take the
second inequality in (4.20), we also deduce that the choice of λ1 only depends of
the chosen α, which is fixed, and again clearly λ1 ≤ 0 can be found. We conclude
that (α, β, γ, δ) ∈ proj

(
epi Φc

L

)
.

We continue with an example showing that (C3L) does not imply (C1L) .

Example 4.14 Consider n = 1, f = δ[0,+∞[, m = 2 and gi (x) = (i − 1) x +
δ]−∞,i−1] (x) , i = 1, 2. We have A = ]−∞, 0] . Then, as in the previous example,

f + δA = hf,δA and epi f c + epi δc
A is e′-convex. For the fulfilment of (C3L) we

only need to show that (ECCQ) holds, i.e.,

epi δc
A = R+ × R+ × R++ × R+ ⊂

⋃
λ∈R2+

epi (λg)c .

Take any point (α, β, γ, δ) ∈ epi δc
A, with α ≥ 0, β ≥ 0, γ > 0 and δ ≥ 0. Then

(α, β, γ, δ) ∈ epi (λg)c for some λ ∈ R
2+ if c (x, (α, β, γ )) − λg (x) ≤ δ, for all

x ∈ R, i.e.,

dom (λg) ⊂ {x ∈ R :βx < γ } and αx − λg (x) ≤ δ, ∀x ∈ dom (λg) .

We distinguish two cases.

Case 1: If β = 0, it is enough to take λ = (λ1, λ2) = (0, α). Then dom (λg) =
dom g2 = ]−∞, 1] ⊂ {x ∈ R :βx < γ } = R. Moreover, αx − λg (x) =
(α − α) x = 0 ≤ δ, for all x ≤ 1, since δ ≥ 0.

Case 2: If β > 0, take λ = (λ1, λ2) = (1, 0) . Then dom (λg) = dom g1 =
]−∞, 0] ⊂ {x ∈ R |βx < γ } . Moreover, αx − λg (x) = αx ≤ δ, for all
x ∈ dom (λg) , since α ≥ 0 and δ ≥ 0.

Then, we conclude that epi δc
A ⊂ ⋃

λ∈R2+
epi (λg)c .

It remains to prove that 0 /∈ rint
(
g(dom f ) + +R

2+
)
, meaning that (C1L) does

not hold. Since dom f = [0,+∞[ , x = 0 is the only point verifying g (0) ∈ R
2.

Hence

g (dom f ) + R
2+ = R

2+,

and (C1L) does not fulfill.

We finish with an example showing that (C1L) does not imply (C2L) .
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Example 4.15 Let us take n = 2, m = 2, g1 (x) = x1 + x2 and g2 (x) = x1 − x2,

and consider the function f : R2 → R such that

f (x1, x2) =

⎧⎪⎨
⎪⎩

x2
2

x1
, if x1 > 0,

0, if x1 = x2 = 0,

+∞, otherwise.

It was shown, in Example 4.3, that f is a proper e-convex function. We have

A =
{
(x1, x2) ∈ R

2 : x1 ≤ 0, x1 ≤ x2

}
.

It is clear that (C1L) holds, since dom f = (]0,+∞[ × R) ∪ {02}], and we obtain
in this case that g (dom f ) + R

2+ = R
2.

Now, we use the equivalent condition to (C2L), and we will see that there exists
at least a point (x∗, y∗, α) ∈ W such that

ΦL (·, 0)c
(
x∗, y∗, α

)
< min

λ,β∈R2
Φc

L

((
x∗, λ

)
,
(
y∗, β

)
, α
)
.

Let y∗ = (0, 1), any x∗ ∈ R
2 and α = 1. Then,

ΦL (·, 0)c
(
x∗, y∗, α

) = sup
x∈A∩domf

{
c
(
x,
(
x∗, y∗, α

))− ΦL (x, 0)
}

= sup
x=02

{〈
x, x∗〉} = 0.

Now, take any λ, β ∈ R
2. Then,

Φc
L

((
x∗, λ

)
,
(
y∗, β

)
, α
) = sup

x∈domf

g(x)−b∈−R
2+

{
c1
(
(x, b) ,

(
x∗, λ

)
,
(
y∗, β

)
, α
) − f (x)

}
.

It is clear that c1 ((x, b) , (x∗, λ) , (y∗, β) , α) < +∞ only if

〈
x, y∗〉+ 〈β, b〉 < α, (4.21)

for all (x, b) such that x ∈ dom f and g (x) − b ∈ −R
2+. Since the sequence{(

x0
k , b0

k

)}
, where x0

k = (1, k) and b0
k = (1 + k, 1 − k) for k ∈ N is contained

in the set D := {
(x, b) : x ∈ dom f, g (x) − b ∈ −R

2+
}
, the fulfilment of (4.21)

implies that, denoting β = (β1, β2) ,

1 + β1 − β2 ≤ 0.
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On the other hand, taking the sequence
{(

x1
k , b1

k

)}
, where x1

k = (1,−k) and b1
k =

(1 − k, 1 + k) for k ∈ N, also contained in D, (4.21) forces

1 + β1 − β2 ≥ 0,

and we conclude that 1+β1−β2 = 0. Finally, considering the sequence
{(

x2
k , b2

k

)}
,

where x2
k =

(
1
k
, k
)

and b2
k =

(
1
k

+ k, 1
k

− k
)

for k ∈ N, again contained in D, we

obtain, if (4.21) holds and taking into account that 1 + β1 = β2,

k + 2

k
β1 < 1,

for k ∈ N, which is impossible. Hence c1 ((x, b) , (x∗, λ) , (y∗, β) , α) = +∞, for
all λ, β ∈ R

2, and

min
λ,β∈R2

Φc
L

((
x∗, λ

)
,
(
y∗, β

)
, α
) = +∞.

Remark 4.3 (C3L) is a sufficient condition for stable strong duality for (P2)−(DL).
Here the extended primal and dual problems are

(P2,x∗) Min
x∈Rn

f (x) + 〈
x, x∗〉

s.t. gi (x) ≤ 0, i = 1, . . . ,m,

(DL,x∗) Max
λ∈Rm+

{
inf

x∈Rn

{
f (x) + 〈

x, x∗〉+ λg (x)
}}

,

for all x∗ ∈ R
n, as it is shown in [47, Prop. 5.1]. Moreover, in that work, it was

introduced another sufficient condition which has its counterpart in the classical
setting, where f and gi , for all i = 1, . . . ,m, are proper convex and lsc functions.
As it is proved in [22], stable strong Lagrange duality in the classical setting is
equivalent to the closedness of the set

⋃
λ∈Rm+

epi (f + λg)∗ .

Then, Proposition 5.3 and Corollary 5.4 in [47] show that condition

(C′
L)

⋃
λ∈Rm+

epi (f + λg)c is an e′-convex set

is sufficient for stable strong Lagrange duality, however not necessary, as we can see
in the following example, since (C3L) does not imply

(
C′

L

)
.
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Example 4.16 Let us take n = 1, f = δ[0,+∞[, m = 2 and gi (x) = (i − 1) x +
δ]−∞,i−1] (x) , i = 1, 2. We have A = ]−∞, 0] . From Example 4.14, it is
shown that (C3L) holds, so f + δA = sup Ẽf,δA and the sets epi f c + epi δc

A and⋃
λ∈R2+ epi(λg)c are e′-convex in R

4. Furthermore,

epi f c + epi δc
A = R × R × R++ × R+.

We are going to see that

⋃
λ∈R2+

epi (f + λg)c � e′ co

⎛
⎜⎝ ⋃

λ∈R2+

epi (f + λg)c

⎞
⎟⎠

being, in this case,

e′ co

⎛
⎜⎝ ⋃

λ∈R2+

epi (f + λg)c

⎞
⎟⎠ = epi (f + δA)c = epi f c + epi δc

A.

Let us take any λ ∈ R
2+. Then (y∗, z∗, α, β) ∈ epi (f + λg)c if and only if

c
(
x,
(
y∗, z∗, α

))− f (x) − λg (x) ≤ β,∀x ∈ R.

This is equivalent to the fulfilment of

〈
x, y∗〉− λ1

(
δ]−∞,0] (x)

)− λ2
(
x + δ−∞,1 (x)

) ≤ β and
〈
x, z∗〉 < α,∀x ≥ 0.

It implies, in particular, that z∗ ≤ 0, and it happens for any λ ∈ R
2+. Then

⋃
λ∈R2+

epi (f + λg)c � R × R × R++ × R+.

4.4.4 Regularity Conditions for Fenchel–Lagrange Duality

The primal optimization problem treated in this subsection will be again (4.15)

(P2) Min
x∈Rn

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . ,m,
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where f, gi : Rn → R , i = 1, . . . ,m, are proper functions and the feasible set A =
{x ∈ R

n : gi (x) ≤ 0, i = 1, . . . ,m} is nonempty. In [48], using the c-conjugation
scheme and the perturbation function ΦFL : Rn × (Rn × R

m) → R defined as

ΦFL(x, (u, b)) :=
{

f (x + u), gi (x) ≤ 0, i = 1, . . . ,m,

+∞, otherwise,
(4.22)

the Fenchel–Lagrange dual problem for (P2) was obtained:

(DFL) Max
λ∈Rm+,y∗,v∗∈Rn,α1,α2∈R

{−f c(x∗, u∗, α1) − (λg)c(−x∗,−u∗, α2)}
s.t. α1 + α2 > 0,

(4.23)
where λg = 〈λ, g (·)〉 : R

n → R is defined as 〈λ, g (·)〉 (x) := 〈λ, g (x)〉, for
any λ ∈ R

m+. Observe that the perturbation function (4.22) is a combination of the
perturbation functions (4.10) and (4.16) to build the Fenchel and the Lagrange dual
problems, respectively. It is natural, then, to try to connect the regularity conditions
for both dualities presented in the previous subsections in order to obtain regularity
conditions for Fenchel–Lagrange duality.

We state, in the next theorem, all the studied regularity conditions for Fenchel–
Lagrange duality, where (C1FL) and (C2FL) are the particularized versions
of the general regularity conditions (C1) and (C2) in Theorem 4.14, respec-
tively. Moreover, two of them are characterizations. In this result, we use the set
gph (−g) = {(x,−g (x))} ⊂ R

n × R
m. For the definition of Ẽf,g in (C3F ), we

recall (4.6).
In this setting, epi Φc

FL ⊂ Z × Z × R × R and the spaces Z = R
n × R

n × R
m,

W = R
n × R

n × R, and when we refer to the projection of epi Φc
FL onto W×R,

proj
(
epi Φc

FL

)
, we mean

proj
(
epi Φc

FL

) =
{

(x∗, u∗, α, β) ∈ W×R : (x∗, y∗, λ, u∗, v∗, δ, α, β) ∈ epi Φc
L,

λ, δ ∈ R
m, y∗, v∗ ∈ R

n

}
.

Theorem 4.17 (Fenchel–Lagrange Regularity Conditions) Let us consider the
primal problem (P2), where f, gi (i = 1, . . . ,m) : Rn → R are proper e-convex
functions, and its Fenchel–Lagrange dual (DFL). Any of the following conditions
ensure strong duality between both problems:

(C1FL) 0n+m ∈ rint
((

dom f × R
m+
)− gph (−g)

)
.

(C2FL) proj
(
epi Φc

FL

) = epi(f + δA)c, or, equivalently,

Φc
FL(·, 0n, 0m) = min

y∗,v∗∈Rn

λ,β∈Rm

ΦFL((·, y∗, λ), (·, v∗, β), ·).
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(C3FL) f + λg = sup Ẽf,λg for all λ ∈ R
m+ and the set

epi f c +
⋃

λ∈Rm+

epi(λg)c

is e′-convex, which is equivalent to saying that epi f c+⋃
λ∈Rm+ epi(λg)c =

epi(f + δA)c.

Moreover, strong duality is characterized by the followings conditions:

(C4FL) For some α > 0, it holds

epi(f +δA)c
⋂

{(0n, 0n, α) × R} ⊆
⎛
⎝epi f c +

⋃
λ∈Rm+

epi(λg)c

⎞
⎠⋂

{(0n, 0n, α) × R} ,

where {(0n, 0n, α) × R} := {(0n, 0n, α, β) : β ∈ R}.
(C5FL) For some λ ∈ R

m+ and α > 0, it holds

(f c�(λg)c)(0n, 0n, α) ≤ (f + δA)c(0n, 0n, α)

and f c�(λg)c is exact at (0n, 0n, α).

We study the relationships between the regularity conditions (C2FL) and
(C3FL). The only relation between them is stated in the next result.

Proposition 4.8 (Relation Between Fenchel–Lagrange Regularity Conditions)
If the functions f, gi , i = 1, . . . ,m, are e-convex and f + λg = sup Ẽf,λg for all
λ ∈ R

m+, then (C3FL) implies (C2FL).

The following example shows that the converse of the above proposition does not
hold in general. From this example and Theorem 4.17 we deduce that (C3FL) is not
necessary for strong Fenchel–Lagrange duality because otherwise, (C2FL) would
imply (C3FL).

Example 4.17 Let n = 1, f = δ]0,+∞[, m = 1 and g(x) = −x + δ]−1,+∞[(x).
Since f and g are e-convex functions, first of all we will check that f + λg =
sup Ẽf,λg for any λ ≥ 0. In that case, we have (f + λg)(x) = −λx + δ]0,+∞[(x).
Identifying any e-affine function

a (x) =
{

αx − β, if γ x < δ,

+∞, otherwise,
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with a = (α, β, γ, δ) ∈ R
4, we see that Ef = R− × R+ × (R− × R+\ {02}) and,

since λg(x) = −λx + δ]−1,+∞[(x), we have Eλg = {−λ}×R+ ×{0}×R++. Then,

Ẽf,λg =] − ∞,−λ] × R+ × (R− × R+\ {02}),

and sup Ẽf,λg = f + λg.
In order to show that (C2FL) holds, and taking into account that epi(f + δA)c =

epi f c = R− × (R− × R+\ {02}) × R+, it will be enough to show that

R− × (R− × R+\ {02}) × R+ ⊆ proj
(
epi Φc

FL

)
.

Let us fix (α, β, γ, δ) ∈ R− × (R− ×R+\ {02}) ×R+ arbitrarily. The key is to find
κ, ν ∈ R and λ,μ ∈ R such that, for all (x, u, b) ∈ dom ΦFL

βx + νu + μb < γ and αx + κu + λb ≤ δ. (4.24)

Now, dom ΦFL = {(x, u, b) : x + u > 0, x > −1, b ≥ −x}, and if we consider
any sequence {uk} ⊆ R++ converging to zero, and any b ≥ 0, {(0, uk, b)} ⊆
dom ΦFL. Then, from (4.24), taking limits when k tends to +∞, it follows that,
necessarily, λ,μ ≥ 0. For every (x, u, b) ∈ dom ΦFL, if ν ∈ R and μ ≥ 0,
βx + νu + μb ≤ (β − μ)x + νu. In the case β = 0 (let us observe that γ > 0),
take μ = 0 (ν = 0), and if β < 0, take μ ≥ 0 such that β − μ < 0, and name
ν = β − μ. We would have, in both cases, βx + νu + μb < γ . Proceeding in the
same way with the second inequality in (4.24), we can also find κ and λ verifying it.
Hence, (α, β, γ, δ) ∈ proj

(
epi Φc

FL

)
and (C2FL) is fulfilled. Finally, let us check

that (C3FL) does not hold, i.e., epi f c +⋃
λ≥0 epi(λg)c � epi(f + δA)c. Let λ ≥ 0

be arbitrary. Then, epi(λg)c = {(α, β, γ, δ) : α ≤ λ, β ≤ 0, γ > −β, δ ≥ λ − α}
and ∪λ≥0 epi(λg)c = R− × R− × R++ × R+, so that (C3FL) is not fulfilled.

To close this subsection, let us show that (C2FL) is not necessary for strong
Fenchel–Lagrange duality either.

Example 4.18 (Example 4.15 Revisited) Let n = 2, m = 2, g1 (x) = x1 + x2,

g2 (x) = x1 − x2, and f : R2 → R such that

f (x1, x2) =

⎧⎪⎨
⎪⎩

x2
2

x1
, if x1 > 0,

0, if x1 = x2 = 0,

+∞, otherwise.

The feasible set is A = {
(x1, x2) ∈ R

2 : x1 ≤ 0, x1 ≤ x2
}

and we obtain
v(P2) = 0. On the other hand, taking λ = 0 and α1, α2 > 0, one has

v(DFL) ≥ −f c(0, 0, α1) − (0g)c(0, 0, α2) = inf
x∈R2

{f (x)} = 0.
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Hence, we have shown that v(DFL) ≥ v(P2). Due to the weak duality, it follows that
strong Fenchel–Lagrange duality holds. Now, let us see that (C2FL) is not fulfilled.
We will use its equivalent formulation which is stated in Theorem 4.17 and we will
see that there exists, at least a point (x∗, u∗, α), such that

ΦFL(·, 0, 0)c(x∗, u∗, α) < min
y∗,v∗∈R
λ,β∈R2

ΦFL((x∗, y∗, λ), (u∗, v∗, β), α).

Let any x∗ ∈ R
2, u∗ = (0, 1) and α = 1. Then, it is not difficult to see that

ΦFL(·, 0, 0)c(x∗, u∗, α) = sup
x=02

{〈
x, x∗〉} = 0,

and following an analogous argument to the one of Example 4.15, it follows

min
y∗,v∗∈R
λ,β∈R2

Φc
FL((x∗, y∗, λ), (u∗, v∗, β), α) = +∞.

Remark 4.4 It is easy to check that if f + λg = sup Ẽf,λg for all λ ∈ R
m+, (C3FL)

assures stable strong duality between (P2) − (DFL). Here the extended primal and
dual problems are

(P2,x∗) Min
x∈Rn

f (x) + 〈
x, x∗〉

s.t. gi (x) ≤ 0, i = 1, . . . , m,

(DFL) Max
λ∈Rm+, y∗,v∗∈Rn,α1,α2∈R

{− (
f + 〈·, x∗〉)c (y∗, u∗, α1) − (λg)c(−y∗, −u∗, α2)

}

s.t. α1 + α2 > 0,

for all x∗ ∈ R
n.

4.4.5 A Comparison Between Optimal Values and Optimal
Solutions

We devote this subsection to make a comparison of the optimal values of
Fenchel, Lagrange and Fenchel–Lagrange dual problems for the primal problem
(P2) in (4.15). We point out that in the case of the Fenchel dual, since the
objective function in (P2) is F = f + δA, being the feasible set A =
{x ∈ R

n : gi (x) ≤ 0, i = 1, . . . ,m} , we obtain

(DF ) Min
x∗,u∗∈Rn,α1,α2∈R

{−f c (x∗, u∗, α1) − δc
A (−x∗,−u∗, α2)

}
s.t. α1 + α2 > 0.

(4.25)
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Recall that f, gi : R
n → R for all i = 1, . . . ,m are proper functions. We

assume also that the feasible set is nonempty. We will provide sufficient conditions
under which the optimal value of Fenchel–Lagrange dual problem is equal, on the
one hand, to the one of Fenchel dual problem and, on the other hand, to the optimal
value of Lagrange dual problem. Finally, we study the relations between the optimal
solutions of these three dual problems and their solvability.

First of all, we will establish the main inequalities that their optimal values satisfy
as well as some examples where the inequalities are strictly fulfilled. Recall that the
space W = R

n × R
n × R.

Theorem 4.18 (Optimal Values Relationships) Let (DF ), (DL) and (DFL) be
the dual problems defined in (4.25), (4.17) and (4.23), respectively. The following
statements hold:

(i) v(DL) ≥ v(DFL).
(ii) v(DF ) ≥ v(DFL).
(iii) If f, gi : Rn → R are convex, for all i = 1, . . . ,m, then v(DL) = v(DFL).
(iv) If there exist α > 0 and (

(
y∗, v∗, α1

)
, α2, λ) ∈ W × R × R

m+ such that
α1 + α2 = α and

f c(y∗, v∗, α1) + (λg)c(−y∗,−v∗, α2) ≤ inf
λ∈Rm+

{
(f + λg)c(0n, 0n, α)

}
,

then v(DL) = v(DFL).
(v) If (ECCQ) (4.18) holds, and gi, for all i = 1, . . . ,m, are e-convex functions,

then v(DF ) = v(DFL).
(vi) If there exist λ ∈ R

(T )
+ and α > 0 such that (f + δA)c(0n, 0n, α) =

(f c�(λg)c)(0n, 0n, α) and the infimal convolution is exact at (0n, 0n, α), then

v(P2) = v(DL) = v(DF ) = v(DFL).

Remark 4.5 In statement (iii), the convexity assumption on the involved functions
in the primal problem cannot be removed.

Example 4.19 Let us take n = 1, f (x) = −x2, m = 1 and g1 (x) = x2. Clearly
A = {0} and

v(DL) = sup
λ≥0

{
inf
x∈R

{
−x2 + λx2

}}
= 0.



162 4 Evenly Convex Functions

On the other hand,

v(DFL) = sup
y∗,v∗∈R,
α1+α2>0,

λ≥0

{
− sup

x∈R

{
c
(
x,
(
y∗, v∗, α1

))+ x2
}

− sup
x∈R

{
c
(
x,
(−y∗,−v∗, α2

))− λx2
}}

.

It is clear that we can restrict ourselves to v∗ = 0 and α1, α2 > 0, and we get

(DFL) = sup
y∗,∈R,
λ≥0

{
inf
x∈R

{
−xy∗ − x2

}
+ inf

x∈R

{
xy∗ + λx2

}}
= −∞.

In the following example it is shown that condition (ECCQ) is necessary in
Theorem 4.18(v), even when the involved functions in (P2) are e-convex.

Example 4.20 Let us take n = 2, m = 2, g1 (x) = −x2, g2 (x) = x1 − x2 and

f (x) =
{

x2 if x1 ≤ 0, x2 ∈ R,

+∞ otherwise.

Firstly, let us see that f is e-convex. Naming H = {
(x1, x2, x3) ∈ R

3 : x3 ≥ x2
}
,

it is easy to calculate epi f = H ∩ (dom f × R). This set is clearly convex and
closed, so f is e-convex. The feasible set A is

A =
{
(x1, x2) ∈ R

2 : x2 ≥ 0, x2 ≥ x1

}
.

Hence, since A ∩ dom f = {
(x1, x2) ∈ R

2 : x1 ≤ 0, x2 ≥ 0
}
, a simple calculation

shows that v(P2) = 0. Now, we calculate the optimal value of the Lagrange dual
problem

v(DL) = sup
λ1,λ2≥0

inf
x∈domf

{λ1x1 + (1 − λ1 − λ2) x2} = −∞.

Since the involved functions are convex, from Theorem 4.18, we get that v(DFL) =
v(DL) = −∞. If we compute the optimal value of the Fenchel dual problem, we
have

v(DF ) = sup
y∗,v∗∈R2,
α1+α2>0

{−f c(y∗, v∗, α1) − (δA)c(−y∗,−v∗, α2)
}
.
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It is not difficult to see that, at least, one of these c-conjugate functions equals +∞
whenever v∗ �= 02. Analyzing the trivial case where v∗ = 02 and α1, α2 > 0, we
get that f c(y∗, v∗, α1) and (δA)c(−y∗,−v∗, α2) are finite, and

v(DF ) = sup
y∗∈R2

{
− sup

x∈domf

{
x1y

∗
1 + x2y

∗
2 − x2

}− sup
x∈A

{−x1y
∗
1 − x2y

∗
2

}}

≥ − sup
x∈domf

{x1 · 0 + x2 · 1 − x2} + inf
x∈A

{x1 · 0 + x2 · 1} = inf
x∈A

x2 = 0.

We have just shown that v(DF ) ≥ 0 and, by the weak duality, v(DF ) ≤ 0, so
v(DF ) = 0. To conclude this example, it remains to see that

epi δc
A �

⋃
λ∈R2+

epi(λg)c. (4.26)

Clearly, ((0,−1), (0,−1), 1, 0) ∈ epi δc
A. However, this element does not belong to

any epi(λg)c with λ ∈ R
2+ since this fact would imply the fulfilment of

c((x1, x2), ((0,−1), (0,−1), 1)) − (λg)(x1, x2) ≤ 0,

for all (x1, x2) ∈ dom λg = R
2, or, equivalently, 〈(x1, x2), (0,−1)〉 < 1, for all

(x1, x2) ∈ dom(λg) = R
2, which is not true. Therefore, (4.26) holds.

Remark 4.6 If the involved functions are proper and convex, applying Theo-
rem 4.18, it always holds

v(DL) = v(DFL) ≤ v(DF ),

but without any assumption over the primal problem, v(DL) and v(DF ) cannot be
related.

It is worth studying conditions under which the solvability of one of these dual
problems implies the solvability of the others.

Theorem 4.19 (Optimal Solutions Relationships) Let (DF ), (DL) and (DFL) be
the dual problems defined in (4.25), (4.17) and (4.23), respectively. The following
statements hold:

(i) If v(P ) = v(DFL) and (y∗
0 , v∗

0 , α1, α2, λ) ∈ W × R × R
m+ is an optimal

solution of (DFL) with α1 +α2 > 0, then λ is optimal to (DL), (y∗
0 , v∗

0 , α1, α2)

is optimal to (DF ), and

v(P ) = v(DL) = v(DF ) = v(DFL).
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Then if there exists strong Fenchel–Lagrange duality, there also exist Fenchel
and Lagrange strong dualities.

(ii) If v(DL) = v(DF ) = v(DFL) and either (DL) or (DF ) is not solvable, then
(DFL) is not solvable.

We finish by showing that the converse statement of Theorem 4.19(i) does not
hold in general.

Example 4.21 Let us take n = 1, f = δ[0,+∞[, m = 1 and g1(x) = x. Then,
A =] − ∞, 0] and trivially v(P ) = 0. On the other hand,

v(DL) = sup
λ≥0

{
inf
x≥0

{λg(x)}
}

= 0,

so every λ ≥ 0 is an optimal solution of (DL). Since f c(y∗, v∗, α1) < +∞ if and
only if (y∗, v∗, α1) ∈ R− ×R− ×R++ and its value is 0, and δc

A(−y∗,−v∗, α2) <

+∞ if and only if (y∗, v∗, α2) ∈ R− × R− × R++ being its value, again, 0, it
follows that v(DF ) = 0 and the solution set of (DF ) is R− × R− × R++ × R++.

Now, taking in particular y∗ = v∗ = 0, α1, α2 > 0 and λ = 1, which are optimal
solutions of (DF ) and (DL), respectively, we get that f c(0, 0, α1) = 0, but

(λg)c(0, 0, α2) = sup
x∈R

{−x} = +∞.

Then, (0, 0, α1, α2, λ) is not optimal to (DFL) since, according to Theorem 4.18,
v(DFL) = v(DL) = 0.

4.5 Bibliographic Notes

Convex and lower semicontinuous functions represent a crucial ingredient in
variational analysis (see, e.g., [41]), subdifferential calculus [90, 147], conjugate
duality theory and optimization [20, 149]. The Fenchel-Moreau Theorem, or the
biconjugation Theorem, gives necessary and sufficient conditions for a real extended
valued function to be equal to its biconjugate. This happens, in particular, if
the function is proper, convex and lower semicontinuous (see [191, Th. 2.3.3]).
This theorem represents a fundamental tool when we deal with duality in convex
optimization, where a convex optimization problem is embedded in a family of
perturbed problems, and by using Fenchel conjugation, a dual problem is associated
with the primal one.

In the literature we can find good references concerning the perturbational
approach to conjugate duality theory. It has been well-described in the monographs
from Rockafellar [149] in the finite-dimensional context, from Ekeland and Temam
[41] in Banach spaces, and from Zălinescu [191] in locally convex spaces. There
exist two main classes of regularity conditions, named generalized interior-point
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and closedness-type conditions. In [21] it is provided an overview on some classical
interior-point regularity conditions as well as several new ones, which are indeed
generalized interior-point ones. In [24–27, 94, 95] the reader can find closedness-
type regularity conditions for particular cases of primal and dual problems, see for
instance [20] as a presentation of the state of art in this field. The mechanisms behind
the closedness-type regularity conditions can be seen in [81]. Also in the general
case, sufficient interior-point-type conditions for stable strong duality can be found
in [191], while it is characterized by a much more general closedness-type condition
in [27].

Evenly convex functions, introduced in [151], extend in a natural way the concept
of evenly convex set to functions, and also allow a generalization of the convex
and lower semicontinuous functions class. Although Fenchel conjugation theory is
not suitable for evenly convex functions, in the sense that different evenly convex
functions may have the same lower semicontinuous hull and hence identical second
conjugates, we have described in this chapter different conjugation schemes fulfill-
ing that, in the case of an evenly convex function, the second conjugate is identical
to the original function. Thus, invoking to the c-conjugation scheme in particular,
a perturbational duality theory for evenly convex optimization problems has been
developed by Fajardo and her co-authors [45–49], while regularity conditions for
strong duality based on even convexity are given in [43, 45, 46, 48, 49, 181].

This chapter is based on [43, 45, 48, 49, 126, 151, 181, 184]. Evenly convex
functions definition, properties and examples in Sect. 4.1 can be found almost
entirely in [151]: statements (i) and (ii) of Theorem 4.1 are [151, Th. 2.6] and [151,
Prop. 2.7], respectively, Theorem 4.2 and Corollary 4.1 correspond to [151, Th. 2.9]
and [151, Cor. 2.10], respectively. For Proposition 4.1 see [151, Prop. 2.12], while
operations with evenly convex functions in Theorem 4.3 are stated in [151, Sec. 3].

Results in Sect. 4.2 on the e-convex hull of a given function can be found in
[126, 151, 181]. The representation for the e-convex hull of a function f in (4.5)
was proved for the first time in [151, Prop. 3.10] and it still remains true if the set
epi f is replaced by epis f , or even by any set A such that epis f ⊂ A ⊂ epi f .
More precisely, Theorem 4.4 is [181, Prop. 2.3 and Cor. 2.4], Theorem 4.5 is [181,
Prop. 2.6 and Cor. 2.7], Theorems 4.6 and 4.7 are taken from [151], Theorem 4.8 is
[126, Th. 16], and finally, Corollary 4.2 encompasses [126, Cors. 18 and 19].

Section 4.3 is devoted to three possible conjugation schemes for evenly convex
functions, depending on the chosen coupling functions, and the notion of subdif-
ferentibility associated to one of these schemes. It is based on [46, 126, 184]. On
the one hand, regarding the conjugation patterns, the first approach is taken from
[46, 126], whereas the details to the second and the third approaches can be found
in [184]. On the other hand, c-subdifferentiability is described in [126]. Regarding
the precise references for the given results in this section, Theorem 4.9 is [46, Prop.
2], Theorem 4.10 encompasses [184, Props. 4.2, 5.2 and Cor. 5.1] while the key tool
(4.4) is proved in [184, Prop. 4.1], and Theorem 4.11 is [184, Th. 6.1 and Cor. 6.1].
In addition to that, Proposition 4.2 is [126, Prop. 45], Proposition 4.3 is [181, Th.
3.1], Corollary 4.3 is [181, Cor. 3.2], Proposition 4.4 is [181, Prop. 3.4], and finally,
Theorem 4.12 is [181, Th. 4.1]. Readers who are familiar with the classical concept
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of subdifferentiability and its relationship with Fenchel conjugation will find that the
three statements given in Theorem 4.13 are generalizations of well-known formulas
(see, e.g., [20]). Statement (i) in that theorem is [46, Lem. 9], while (ii) is [46, Th.
11] and (iii) is [46, Cor. 12].

Section 4.4 is divided into five subsections, corresponding to the following
objectives. Section 4.4.1 is devoted to regularity conditions for general optimization
problems and duals obtained via perturbational approach and by means of c-
conjugation, and is based mostly on [43], where the general optimization problem
framework does not have any restrictions about dimensionality, and the involved
spaces are Hausdorff locally convex. Actually the Fenchel dual problem and the
regularity conditions were obtained in the particular case of g being an indicator
function of any subset, but all the results can be generalized easily to any function
g. It is necessary to point out that the regularity condition (C1) in Theorem 4.5 is
expressed in terms of the relative algebraic interior of certain projection of dom Φ.
Theorem 4.5 is proved in [43, Prop. 4.3]. This result can be derived as a particular
case in [124, Prop. 6.4, Th. 6.7 and Cor. 6.2], because the dual problem with u0 = 0
suggested by Martínez-Legaz is equivalent to (GDc), as it is shown in [46]. The
general regularity conditions in Theorem 4.14 are stated in [43, Prop. 4.5] and [43,
Props. 5.4 and 5.5], respectively.

The topic in Sect. 4.4.2 is Fenchel duality, obtaining regularity conditions and
comparing them. Most results there can be found in [43, Section 6]. Condition
(C3F ) in Theorem 4.15 is studied in detail in [46, Section 5], and strong duality
characterization (C4F ) is discussed in [47, Lem. 4.3]. This characterization was
motivated by [109], where, in the classical setting, strong Fenchel duality is
equivalent to the following inequality, which is called (FRC)A,

(f + g ◦ A)∗ (0) ≥ (
f ∗�A∗g∗) (0) ,

together with the exactness of the infimal convolution at the point 0. In that paper,
X and Y are assumed to be Hausdorff locally convex spaces, A : X → Y is a linear
operator and f : X → R and g : Y → R are proper convex functions such that
A(dom f ) ∩ dom g �= ∅. Finally, the relationships between regularity conditions in
Proposition 4.6 are established in [43, Props. 6.3 and 6.5].

Section 4.4.3 develops an analogous study for Lagrange duality, with a similar
structure than in the previous subsection. It is based mostly on [45], where the
primal problem is stated in an infinite-dimensional framework and the number
of constraints is arbitrary. The calculus of the e′-convex hull of

⋃
λ∈Rm+ (λg)c is

computed in [45, Prop. 4.1], which allows formula (4.18). The general regularity
condition (C1L) in Lagrange duality Theorem 4.16 is provided in [45, Prop. 5.1],
while (C3L) , (C4L) and their equivalence can be found in [45, Prop. 4.2 and Th.
4.1]. The comparison between regularity conditions in Proposition 4.7 is stated in
[45, Prop. 5.2].

Regarding Fenchel–Lagrange duality, Sect. 4.4.4 follows the same scheme as
Sects. 4.4.2 and 4.4.3. All the results can be found in [49], in a more general
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framework with infinite dimensional spaces and an arbitrary number of constraints
in the primal problem. The regularity condition (C3FL) from Theorem 4.17 is
proved in [49, Prop. 3.4], and it was motivated by the regularity condition (ECCQ)

in (4.18). Actually, it is a direct generalization of a regularity condition from
the closed convex case; see

(
CQFL

)
in [22]. On the other hand, strong duality

characterizations (C4FL) and (C5FL) can be found in [49, Prop. 3.1], and the
comparison between regularity conditions in Proposition 4.8 is provided in [49,
Prop. 4.1]. It is worth to remark that in the infinite dimensional case, (i) in
Proposition 4.8 is not enough for the equality between optimal values v(DL) and
v(DFL). We also need that int(epi f ) �= ∅, as it is pointed out in [49, Rem. 4.2 and
Ex. 4.3].

The last subsection within Sect. 4.4 extends what Boţ and Wanka obtained in
[23], where they compared the three dual problems on finite-dimensional spaces
having a finite number of constraints and dealing with the classical Fenchel
conjugation scheme. In our setting we also deal with a finite number of inequalities,
but work with the c-conjugation pattern. The relations between optimal values in
Theorem 4.18 can be found, in a more general setting, with an arbitrary number of
constraints and within Hausdorff locally convex spaces, in the following references
from [48]: (i), (iii) and (iv) in Proposition 4.1, (ii) in Proposition 4.5, (v) in
Proposition 4.6 and (vi) in Proposition 5.1. Finally, Theorem 4.19 is stated in
Theorems 5.3 and 5.5.

For readers who could be interested in evenly convex optimization, a very recent
work [44] deals with converse and total duality, situations where, in the first case,
there is no duality gap and the primal problem is solvable, and, in the second case,
strong and converse duality hold together. Total duality is characterized by means of
the saddle-point theory approach. Furthermore, one can find there formulae for the
c-subdifferential and biconjugate of the objective function in a general optimization
problem.
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