
Chapter 3
Evenly Quasiconvex Functions

It is well-known that a real-valued function f : Rn → R is continuous if and only if
its graph, gph f := {(x, f (x)) : x ∈ R

n} , is a closed subset of Rn+1. Since gph f

can be written as the intersection of the sets epi f := {(x, λ) ∈ R
n × R : f (x) ≤ λ}

and hypo f := {(x, λ) ∈ R
n × R : f (x) ≥ λ} , called epigraph and hypograph of

f, respectively, one can split the continuity in two weaker properties: f is said to be
lower (upper) semicontinuous whenever epi f (hypof , resp.) is closed, so that f is
continuous if and only if it is lower and upper semicontinuous.

In the same vein, the modern treatment of extended real-valued functions
emphasizes the role played by the set-based approach. So, functions of the form
f : Rn → R := R ∪ {±∞} such that

f ((1 − μ) x + μy) ≤ (1 − μ) f (x) + μf (y) ,∀x, y ∈ R
n,∀μ ∈ [0, 1] ,

are called convex and are characterized by the convexity of their epigraph epi f
while the concave functions f (for which −f is convex) are those functions whose
hypograph hypo f is convex. Similarly, functions f : Rn → R such that

f ((1 − μ) x + μy) ≤ max {f (x) , f (y)} ,∀x, y ∈ R
n,∀μ ∈ [0, 1] ,

which are called quasiconvex, are those functions whose lower level sets [f ≤ r] :=
{x ∈ R

n : f (x) ≤ r} (or equivalently, their strict lower level sets, [f < r] :=
{x ∈ R

n : f (x) < r}) are convex for all r ∈ R. The opposite of the quasiconvex
functions are called quasiconcave, and they are characterized by the convexity of
their upper level sets [f ≥ r] := {x ∈ R

n : f (x) ≥ r}, r ∈ R.

One of the ways of facing the unconstrained minimization of a given function
f : R

n → R whose bad behavior does not allow the application of known
numerical methods consists in the replacement of f by a function ̂f ≤ f (that
is, a minorant of f ) enjoying desirable properties and such that the approximation
gap infx∈Rn f (x) − infx∈Rn ̂f (x) ≥ 0 is sufficiently small.
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In this sense, if F = {fi, i ∈ I } is a family of minorants of f , then the
supremum of F , supF , defined as (supF ) (x) := sup {fi (x) , i ∈ I }, is also
a minorant of f and its epigraph and lower level sets are the intersection of the
epigraphs and the lower level sets, respectively, of the family members. Since the
intersection of closed sets is closed, there exists a greatest lower semicontinuous
minorant of f , which is called lower semicontinuous hull of f, denoted by cl f
and defined as the supremum of the family of all lower semicontinuous minorants
of f . In the same way, since the intersection of convex sets is convex, one
can consider the convex (quasiconvex) hull of f, denoted by co f (qco f, resp.)
and defined as the largest convex (quasiconvex, resp.) minorant of f . Similarly,
cu f denotes the upper semicontinuous hull of f (defined as its smallest upper
semicontinuous majorant, whose hypograph is the closure of hypo f ). The reader
is referred to [59, 91, 148, 191], among many other textbooks on convex analysis,
for a comprehensive introduction on these notions.

The approximation gap decreases when one replaces the given minorant ̂f by a
greater one. In Sect. 3.1 we define a class of functions, the evenly quasiconvex ones,
which provide greater minorants than the smaller class of the lower semicontinuous
quasiconvex functions (analogously, in the next chapter, we analyze the class
of evenly convex functions, which extends the class of lower semicontinuous
convex functions). Section 3.2 studies the evenly quasiconvex hull providing the
largest evenly quasiconvex minorant of a given function. Section 3.3 analyzes
conjugates and subdifferentials for evenly quasiconvex functions, while Sect. 3.4
provides a sketch of quasiconvex duality. Finally, Sect. 3.5 describes an application
in mathematical economy.

3.1 Evenly Quasiconvex Functions

A function f : R
n → R is said to be lower semicontinuous, lsc in brief, (upper

semicontinuous, usc in brief) at a point x ∈ R
n if for any λ ∈ R, λ < f (x) (λ >

f (x), resp.), there exists a neighbourhood of x, Vx , such that λ < f (x) (λ > f (x),
resp.) for all x ∈ Vx . It is well-known that a function f is lsc at any point of Rn

if and only if epi f is closed, or equivalently, if [f ≤ r] is closed for every r ∈ R.
As a function f is usc if and only if −f is lsc, usc functions turn out to be those
functions whose strict lower level sets are open.

An extended real-valued function f : Rn → R is said to be evenly quasiconvex,
e-quasiconvex in brief, (strictly evenly quasiconvex, resp.) if the lower level set
[f ≤ r] (the strict lower level set [f < r], resp.) is e-convex for every r ∈ R.
In particular, if f : R → R is an univariate quasiconvex function, then all its
lower level sets are e-convex (since all of them are intervals) and, therefore, f

is e-quasiconvex. Since every convex set being closed or open is also e-convex,
it is obvious that every lsc quasiconvex function is e-quasiconvex and every
usc quasiconvex function is strictly e-quasiconvex. Moreover, since [f ≤ r] =
∩r<q [f < q] and the intersection of e-convex sets is e-convex, every strictly
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Fig. 3.1 The strict lower
level set [f < 1] is not
e-convex

e-quasiconvex function is e-quasiconvex. The converse is not true, as the following
example shows.

Example 3.1 Let f : R2 → R be the function defined as follows:

f (x1, x2) =
⎧

⎨

⎩

0, if x1 ≥ x2 and x2 ≤ 0,

x2/x1, if x1 > x2 > 0,

1, elsewhere.

All the lower level sets of f are closed and convex, and so e-convex, showing that
f is e-quasiconvex. However,

[f < 1] = {x ∈ R
2 : x1 > x2 > 0} ∪ {x ∈ R

2 : x1 ≥ x2, x2 ≤ 0}

is not e-convex (see Fig. 3.1).

The relationships between the different families of quasiconvex functions are
summarized in Diagram 3.1. In Example 3.2, we show a strictly e-quasiconvex (and
so, e-quasiconvex) function which is neither lsc nor usc.

Example 3.2 Consider the function f : R → R defined by

f (x) =
⎧

⎨

⎩

x2, if − 1 < x < 1,

3, if x = 1,

+∞, otherwise,
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Diagram 3.1 Evenly
quasiconvex and related
functions

usc quasiconvex

⇓
strictly e-quasiconvex

⇓
e-quasiconvex

⇑
lsc quasiconvex

Fig. 3.2 Strictly
e-quasiconvex function which
is neither usc nor lsc 3

EE

whose graph is represented in Fig. 3.2. It is easy to see that all the strict lower level
sets are e-convex. However, [f < 4] = [f ≤ 4] = ]−1, 1] is neither open nor
closed, so that f is a strictly e-quasiconvex function which is not usc and it is also
an e-quasiconvex function which is not lsc.

As a straightforward consequence of the definitions given in this section, we
observe that the solution set of a system of the form
{gt (x) ≤ 0, t ∈ W ; gt (x) < 0, t ∈ S} with W ∩ S = ∅, gt e-quasiconvex (in
particular, lsc quasiconvex) for all t ∈ W and gt strictly e-quasiconvex for all
t ∈ S, is e-convex.

Proposition 3.1 (Operations with e-Quasiconvex Functions) The following
statements hold:

(i) If f : R
n → R is an e-quasiconvex function and α > 0, then αf is

e-quasiconvex.
(ii) If {fi : Rn → R, i ∈ I } is a family of e-quasiconvex functions, then supi∈I fi

is an e-quasiconvex function.
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Proof

(i) It is a direct consequence of the equalities

[αf ≤ r] = {

x ∈ R
n : (αf ) (x) ≤ r

} =
{

x ∈ R
n : f (x) ≤ r

α

}

=
[

f ≤ r

α

]

.

(ii) As
[(

supi∈I fi

) ≤ r
] = ∩i∈I [fi ≤ r] and even convexity is preserved under

intersections, we have that the family of e-quasiconvex functions is closed under
pointwise suprema.

�
The sum of e-quasiconvex functions is not, in general, e-quasiconvex as we can

see in the following example.

Example 3.3 Let f, g : R → R be the functions defined by f (x) = x, for all
x ∈ R and

g (x) =
{

x2, if − 1 ≤ x ≤ 1,

1, otherwise.

It is easy to see that f and g are e-quasiconvex functions, whereas the function
f + g, whose graph is represented in Fig. 3.3, is not e-quasiconvex.

Fig. 3.3 Graphical
representation of f + g
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3.2 Evenly Quasiconvex Hull

As a consequence of Proposition 3.1(ii), every function f : Rn → R has a largest
e-quasiconvex minorant, which is called its evenly quasiconvex hull (e-quasiconvex
hull, in short) and denoted by eqco f . Obviously,

cl qco f ≤ eqco f ≤ qco f ≤ f (3.1)

and, therefore, cl eqco f = cl qco f . We shall say that a function f is e-quasiconvex
at x ∈ R

n if f (x) = (eqco f )(x). Clearly, f is e-quasiconvex if and only if it is
e-quasiconvex at every x ∈ R

n.
The following examples show that the inequalities in (3.1) can be strict.

Example 3.4 Let f : R → R be the function defined by

f (x) =
⎧

⎨

⎩

x + 1, if x ≤ −1,

x2 + x, if − 1 < x < 1,

x + 2, otherwise,

whose graph is represented in Fig. 3.4. Obviously, f is not a quasiconvex function.
Figure 3.5 represents the graphs of qco f and cl qco f and, as we can see, one has:

cl qco f � qco f � f.

In this case, as qco f is an univariate quasiconvex function, it is also
e-quasiconvex and we have that eqco f = qco f .

Fig. 3.4 The function f is
not quasiconvex
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RR

a b

Fig. 3.5 (a) The graph of qco f ; (b) The graph of cl qco f

a b

Fig. 3.6 (a) convex hull of C; (b) e-convex hull of C

Example 3.5 Consider the set C = {x ∈ R
2 : 0 ≤ x1 < 1, x2 = 0}∪{(1, 1)} and its

indicator function δC : R2 → R defined by δC(x) = 0 if x ∈ C and δC(x) = +∞
if x ∈ R

2\C. Since C � conv C � eco C (see Fig. 3.6), one gets

eqco δC = δeco C � qco δC = δconv C � δC.

It is easy to see that, for every function f : Rn → R and for all r, r ′ ∈ R with
r ≤ r ′, the following inclusion holds,

[f ≤ r] ⊂ [

f ≤ r ′] .

In general, we say that the family A := {At }t∈R of (possibly empty) subsets of Rn

is an ascending family if At ⊂ At ′ for all t, t ′ ∈ R with t ≤ t ′. We also associate
to the ascending family A the function ψA : Rn → R, which we call the extended
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gauge of A , defined by

ψA (x) := inf{t ∈ R : x ∈ At }, ∀x ∈ R
n, (3.2)

with the convention inf ∅ = +∞. It is easy to prove that, for every r ∈ R,

Ar ⊂ [ψA ≤ r] = ∩
t>r

At . (3.3)

The motivation of the name given to the function ψA relies on the following fact.
For a convex set A ⊂ R

n such that 0n ∈ int A, the family A = {At }t∈R, defined by
At = ∅ if t < 0 and At = tA if t ≥ 0, is ascending and the function

ψA (x) = inf{t ≥ 0 : x ∈ At }, ∀x ∈ R
n,

is nothing else but the gauge (or Minkowski functional) of A.

Example 3.6 Consider the ascending family A = {At }t∈R given by At =] − ∞, t[
if t < 0, At =] − ∞, 1[ if t = 0 and At =] − ∞, et [ if t > 0. The gauge function
of A is

ψA (x) =
⎧

⎨

⎩

x, if x < 0,

0, if 0 ≤ x < 1,

ln(x), if x ≥ 1.

Obviously, the family of all lower level sets of a function f : Rn → R, Af :=
{[f ≤ t]}t∈R, is an ascending family whose extended gauge is the function f . In
fact, by (3.3), one has

[f ≤ r] ⊂ [

ψAf
≤ r

] = ∩
t>r

[f ≤ t] = [f ≤ r] , ∀r ∈ R,

so
[

ψAf
≤ r

] = [f ≤ r] for all r ∈ R, which implies that ψAf
= f .

Proposition 3.2 (Even Quasiconvexity of the Extended Gauge) Let A =
{At }t∈R be an ascending family of e-convex sets of Rn. Then, the extended gauge
ψA is e-quasiconvex.

Proof Taking into account (3.3) and that the intersection of a family of e-convex
sets is an e-convex set, we have that [ψA ≤ r] is e-convex for all r ∈ R. �

Next, for a family of sets A = {At}t∈R, we shall denote ecoA := {eco At}t∈R.
Observe that ecoA is an ascending family of e-convex sets whenever A is an
ascending family.
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Proposition 3.3 (Evenly Quasiconvex Hull of the Extended Gauge) Let A =
{At }t∈R be an ascending family of sets in R

n. Then,

eqco ψA = ψecoA .

Proof Since At ⊂ eco At for every t ∈ R, one has ψecoA ≤ ψA , with ψecoA
being an e-quasiconvex function due to Proposition 3.2. Now, by the definition of
the e-quasiconvex hull of ψA , we obtain

ψecoA ≤ eqco ψA ≤ ψA .

On the other hand, since At ⊂ [ψA ≤ t] ⊂ [

eqco ψA ≤ t
]

for every t ∈ R, then

eco At ⊂ eco [ψA ≤ t] ⊂ eco
[

eqco ψA ≤ t
] = [

eqco ψA ≤ t
]

, ∀ t ∈ R.

Therefore,

[ψecoA ≤ r] = ∩
t>r

eco At ⊂ ∩
t>r

[

eqco ψA ≤ t
] = [

eqco ψA ≤ r
]

, ∀r ∈ R,

which implies ψecoA ≥ eqco ψA . �
Corollary 3.1 (Characterization of the e-Quasiconvex Hull) Let f : Rn → R

and A = {At }t∈R be an ascending family such that [f < t] ⊂ At ⊂ [f ≤ t] for
every t ∈ R. Then,

eqco f = ψecoA .

Proof From the hypothesis, one obtains

[f ≤ r] = ∩
t>r

[f < t] ⊂ ∩
t>r

At ⊂ ∩
t>r

[f ≤ t] = [f ≤ r] .

Hence, [ψA ≤ r] = [f ≤ r] for every r ∈ R, and so ψA = f . Now, by
Proposition 3.3, we have that eqco f = eqco ψA = ψecoA . �

In the previous result, we can consider the ascending family Af = {[f ≤ t]}t∈R,
(equivalently, A = {[f < t]}t∈R). Then, one obtains the following representation
for the e-quasiconvex hull of f :

(eqco f )(x) = inf{r ∈ R : x ∈ eco [f ≤ r]}, x ∈ R
n (3.4)

(equivalently, (eqco f )(x) = inf{r ∈ R : x ∈ eco [f < r]}, for every x ∈ R
n).

Proposition 3.4 (A Sufficient Condition for e-Quasiconvexity) For a function
f : R

n → R, if there is an ascending family A = {At }t∈R of e-convex sets in
R

n such that [f < t] ⊂ At ⊂ [f ≤ t] for all t ∈ R, then f is e-quasiconvex.
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Proof As f = ψA and A is an ascending family of e-convex sets, due to
Proposition 3.2, one has that f is e-quasiconvex. �

A direct consequence of Proposition 3.4 is that any function whose strict lower
level sets are e-convex (that is, any strictly e-quasiconvex function), is e-quasiconvex
as well (as pointed out in Diagram 3.1).

Next result gathers together four characterizations of e-quasiconvexity at a point
given in the literature. For illustrative purposes, we give a proof of (i) ⇐⇒ (iii)

based on the notion of ascending family, whereas precise references for the complete
proof can be found in Sect. 3.6. The latter also applies to all the missing proofs in
this chapter.

Theorem 3.1 (Characterizations of e-Quasiconvexity at a Point) Consider
f : Rn → R and x ∈ R

n. The following statements are equivalent:

(i) f is e-quasiconvex at x.
(ii) f (x) = inf{t ∈ R : x ∈ eco [f ≤ t]}.
(iii) x /∈ eco [f ≤ r] for all r < f (x).
(iv) For every r < f (x), there exists q ∈ R

n such that 〈q, x − x〉 < 0 for all
x ∈ [f ≤ r].

(v) f is quasiconvex and for every y ∈ R
n such that f (y) < f (x), every sequence

yk ⊂ R
n such that

{

yk
} → y, and every {μk} ⊂ (0,+∞), one has

f (x) ≤ lim inf
k→+∞ f (x + μk(x − yk)).

Partial Proof Consider the ascending family ecoAf := {eco [f ≤ t]}t∈R.
[(i) ⇒ (iii)] Let r ∈ R be such that x ∈ eco [f ≤ r] ⊂ [

ψecoAf
≤ r

]

. By
applying (i) and Corollary 3.1, one has

f (x) = (eqco f )(x) = ψecoAf
(x) ≤ r.

[(iii) ⇒ (i)] Suppose that (iii) holds. Then, f (x) ≤ r , for every r ∈ R such that
x ∈ eco [f ≤ r], so that, by applying Corollary 3.1, we have

(eqco f )(x) = ψecoAf
(x) = inf{t ∈ R : x ∈ eco [f ≤ t]}

≥ inf{t ∈ R : x ∈ [f ≤ t]} = f (x). �

3.3 Conjugacy and Subdifferentiability

Duality theory plays an essential role in convex optimization. Its construction is
based on Fenchel conjugation, an important tool in convex analysis. Recall that
the Fenchel conjugate of a function f : R

n → R is f ∗ : R
n → R defined by

f ∗(·) := sup{〈·, x〉−f (x) : x ∈ dom f }, where dom f := {x ∈ R
n : f (x) < +∞}
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is the effective domain of f . If f is a proper function (that is, dom f �= ∅ and
f (x) > −∞ for all x ∈ R

n), then f ∗ is a proper lsc convex function (since it is the
pointwise supremum of a collection of affine functions). In particular, the second
conjugate of f , f ∗∗, is the largest proper lsc convex minorant of f . Therefore, a
proper function f is lsc and convex if and only if f = f ∗∗, result that turns out to
be crucial for convex duality (see, e.g., [148, Th. 12.2]).

Another essential tool in duality theory is the notion of subdifferential due to
Moreau and Rockafellar [129, 148]. Given ε ≥ 0, a function f : Rn → R is said to
be ε-subdifferentiable at a point x ∈ f −1(R) if there exists u ∈ R

n such that

f (x) ≥ f (x) + 〈u, x − x〉 − ε, ∀x ∈ R
n. (3.5)

The set of those points u ∈ R
n satisfying (3.5) is the ε-subdifferential of f at x,

denoted by ∂εf (x). If f (x) /∈ R, it is assumed to be empty. When ε = 0, we just
write ∂f (x) and it is called the subdifferential of f at x. The function f is said to
be ε-subdifferentiable on a subset A of Rn if it is ε-subdifferentiable at each point
of A.

Subdifferentiability is used to obtain optimality conditions in both convex and
nonconvex optimization (see, e.g., [89]). Thus, given a proper convex function f :
R

n → R and x ∈ R
n, [148, Th. 23.5] establishes that x ∈ argminf := {x ∈ R

n :
f (x) ≤ f (y) , ∀y ∈ R

n} if and only if 0n ∈ ∂f (x).
However, convex duality is not adequate for nonconvex problems. With the aim

of providing a basis for duality theory in the e-quasiconvex case, some conjugation
and subdifferentiability notions were developed in the literature. Next we show some
of them.

3.3.1 H -Conjugation

Let H be a family of univariate extended real-valued functions, closed under
pointwise supremum. A function f : R

n → R is said to be H -convex if it can
be expressed as the supremum of those minorants obtained by composing some
h ∈ H with some linear function, that is, if for each x ∈ R

n one has

f (x) = sup{h(〈y, x〉) : h ∈ H , y ∈ R
n, h(〈y, x〉) ≤ f (x), ∀x ∈ R

n}.

The supremum of H -convex functions is again an H -convex function, and the
greatest H -convex function majorized by a given function f : Rn → R is called
the H -convex hull of f .

For f : Rn → R, its H -conjugate is fH : Rn → H given by

fH (y) := sup{h : h ∈ H , h(〈y, x〉) ≤ f (x) ∀x ∈ R
n}.
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Conversely, given g : R
n → H , its H ′-conjugate function gH

′ : R
n → R is

defined by

gH
′
(x) := sup

y∈Rn

g(y)(〈y, x〉). (3.6)

As a consequence of these definitions the following statements hold.

Proposition 3.5 (Properties of H -Conjugation) Let f : R
n → R. Then, the

following statements hold:

(i) fH (y)(〈y, x〉) ≤ f (x), for all y, x ∈ R
n.

(ii) fH H ′
is H -convex.

(iii) The H -convex hull of f is equal to the second conjugate fH H ′
.

(iv) f is H -convex if and only if f = fH H ′
.

This generalized concept of conjugation encompasses the classical Fenchel
conjugation method by considering H the family of functions hb(t) = t − b, with
b ∈ R, in which case the H -convex functions are the lsc convex functions. It also
includes conjugation schemes which are suitable both for lsc quasiconvex functions
and e-quasiconvex functions.

Now we give the details of the conjugation for the family of e-quasiconvex
functions. For that purpose, recall that an e-quasiaffine function is a function which
is both e-quasiconvex and quasiconcave. If H is assumed to be the family of all
nondecreasing univariate extended real-valued functions, then the H -conjugation
method introduced above provides a characterization of the family of e-quasiconvex
functions. More precisely, one gets the following results.

Proposition 3.6 (Characterization of e-Quasiaffine Functions) Let q : Rn → R.
Then, the following statements are equivalent:

(i) q is e-quasiaffine.
(ii) q(x) = h(〈y, x〉) for all x ∈ R

n, for some y ∈ R
n and h : R → R

nondecreasing.
(iii) For each r ∈ R, [q ≤ r] is either a closed or open halfspace or ∅ or Rn.

Proposition 3.7 (Conjugation for e-Quasiconvex Functions) For a function
f : R

n → R, if H is the family of all nondecreasing univariate extended real-
valued functions, then the following statements hold:

(i) fH (y)(t) = inf{f (x) : 〈y, x〉 ≥ t} for all y ∈ R
n and t ∈ R.

(ii) fH H ′ = eqco f .
(iii) f is e-quasiconvex if and only if f = fH H ′

.

The conjugation theory described above (called H -conjugation) is not symmet-
ric, since the conjugate of an extended real-valued function is a function whose
values are taken in a family of functions H instead of R. However, it provides a
good geometric interpretation of e-quasiconvexity, since any e-quasiconvex function
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f is the supremum of e-quasiaffine minorants. Recall from (3.6) that

fH H ′
(·) := sup

y∈Rn

fH (y)(〈y, ·〉),

where fH (y)(〈y, ·〉), for each y ∈ R
n, is an e-quasiaffine minorant of f in virtue

of Propositions 3.5 and 3.6.

3.3.2 Moreau’s Generalized Conjugation Theory

Next we show how the conjugacy for e-quasiconvex functions can be derived from
the generalized conjugation theory that was developed by Moreau [130] in an
abstract framework. We begin by recalling the essentials of Moreau’s conjugation
theory (see, for instance, [124]). Let X and Y be two arbitrary sets and let
c : X × Y → R be a function, called the coupling function. For any function
f : X → R, its c-conjugate f c : Y → R is defined by

f c(y) = sup
x∈X

{c(x, y) − f (x)}, ∀y ∈ Y,

where the conventions +∞ + (−∞) = −∞ + (+∞) = +∞ − (+∞) = −∞ −
(−∞) = −∞ are assumed. In the same way, for every g : Y → R, its c′-conjugate
is the function gc′ : X → R defined by

gc′
(x) = sup

y∈Y

{c(x, y) − g(y)}, ∀x ∈ X.

This notation is consistent with considering the coupling function c′ : Y × X → R

given by c′(y, x) = c(x, y). Functions of the form x ∈ X �→ c(x, y) − β ∈ R, with
y ∈ Y and β ∈ R, are called c-elementary. Similarly, c′-elementary functions are
those of the form y ∈ Y �→ c′(y, x) − β ∈ R, with x ∈ X and β ∈ R. We denote
by Γc and Γc′ the sets of c-elementary and c′-elementary functions, respectively.
A function f : X → R is said to be Γc-convex if it is the pointwise supremum
of a subset of Γc. Hence, every function f : X → R has a largest Γc-convex
minorant, which is called its Γc-convex hull. Similarly, a function g : Y → R is
said to be Γc′-convex if it is the pointwise supremum of a subset of Γc′ , being the
largest Γc′ -convex minorant of g its Γc′ -convex hull. We summarize in the following
proposition the main properties of this conjugation theory.

Proposition 3.8 Let f : X → R and g : Y → R. Then,

(i) f c(y) ≤ c(x, y) − f (x) and gc′
(x) ≤ c(x, y) − g(y), for all x ∈ X, y ∈ Y .

(ii) f c and gc′
are Γc′ -convex and Γc-convex, respectively.

(iii) f = f cc′
if and only if f is Γc-convex, and g = gc′c if and only if g is

Γc′-convex.
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Following this generalized conjugation theory in order to get an appropriate
conjugation scheme for the family of e-quasiconvex functions, we shall consider
the coupling function c : Rn × (Rn × R) → R defined by

c(x, (y, α)) =
{

0, if 〈y, x〉 ≥ α,

−∞, otherwise.
(3.7)

The conjugation formulas are then

f c(y, α) = − inf{f (x) : 〈y, x〉 ≥ α} (3.8)

for f : Rn → R and (y, α) ∈ R
n × R, and

gc′
(x) = − inf{g(y, α) : 〈y, x〉 ≥ α}

for g : Rn × R → R and x ∈ R
n. The second c-conjugate of f : Rn → R is, for

every x ∈ R
n,

f cc′
(x) = sup

y∈Rn

inf{f (x) : 〈y, x〉 ≥ 〈y, x〉}. (3.9)

We illustrate these formulas with an example.

Example 3.7 Consider the function f : R → R defined by f (x) = x3. By (3.8), its
c-conjugate (with c the coupling function in (3.7)) is, for every (y, α) ∈ R

2,

f c(y, α) =
⎧

⎨

⎩

−∞, if y = 0, α > 0,

−(α/y)3, if y > 0,

+∞, otherwise.

Now, given x ∈ R, we observe that if y > 0 then inf{f (x) : 〈y, x〉 ≥ 〈y, x〉} = x3,
and if y ≤ 0 then inf{f (x) : 〈y, x〉 ≥ 〈y, x〉} = −∞. Hence, in virtue of (3.9) we
get

f cc′
(x) = sup

y∈Rn

inf{f (x) : 〈y, x〉 ≥ 〈y, x〉} = x3 = f (x).

Therefore, as a straightforward consequence of the general theory of conjugation,
one has that eqco f = f cc′

for any f : Rn → R, getting a further characterization
of the even quasiconvexity at a point besides the ones given in Theorem 3.1.
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Theorem 3.2 (Characterization of e-Quasiconvexity at a Point) Let f : Rn →
R and x ∈ R

n. The following statements are equivalent:

(i) f is e-quasiconvex at x.
(ii) f (x) = sup

y∈Rn

inf{f (x) : 〈y, x〉 ≥ 〈y, x〉}.

The above result shows that every e-quasiconvex function can be expressed
as a supremum of a family of e-quasiaffine functions. More precisely, if f is
e-quasiconvex, then

f = sup
y∈Rn

fy,

with fy = inf{f (x) : 〈y, x〉 ≥ 〈y, ·〉}.

3.3.3 Subdifferentials

Quasiconvex functions are not (Moreau-Rockafellar) subdifferentiable in general.
Because of that, several subdifferential notions have been proposed for quasiconvex
functions in the literature, being the Greenberg–Pierskalla subdifferential [82]
the first to be proposed and the key for subgradient methods in quasiconvex
optimization problems. Next we aim to link e-quasiconvexity of a function and
subdifferentiability (in the sense of Greenberg–Pierskalla) via its strict lower level
sets.

Given ε ≥ 0, a function f : Rn → R is said to be ε-GP-subdifferentiable at a
point x ∈ f −1(R) if there exists u ∈ R

n such that

〈u, x − x〉 ≥ 0 ⇒ f (x) ≥ f (x) − ε, ∀x ∈ R
n. (3.10)

We define the ε -GP-subdifferential of f at x, denoted by (∂GP
ε f )(x) as the set

of those points u ∈ R
n satisfying (3.10). If f (x) /∈ R, it is assumed to be empty.

When ε = 0, we just write (∂GP f )(x) and it is called the GP-subdifferential of f

at x. The function f is said to be ε-GP-subdifferentiable on a subset A of Rn if it is
ε-GP-subdifferentiable at each point of A.

Next result characterizes the ε-GP-subdifferentiability of a function at a given
point in terms of the even convexity of a given strict lower level set.

Proposition 3.9 (Non-emptiness of the ε-GP-Subdifferential) Consider ε ≥ 0,
f : Rn → R and x ∈ f −1(R). Then, the following statements are equivalent:

(i) (∂GP
ε f )(x) �= ∅.

(ii) x /∈ eco [f < f (x) − ε] .
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Proof It follows from the definition of ε-GP-subdifferential since (3.10) is equiva-
lent to

〈u, x〉 < 〈u, x〉 , ∀x : f (x) < f (x) − ε,

and this is equivalent to (ii) according to (1.8). �
Corollary 3.2 Let f : Rn → R and x ∈ f −1(R). Then:

(i) (∂GP f )(x) �= ∅ if and only if x /∈ eco [f < f (x)].
(ii) If [f < f (x)] is e-convex, then f is GP-subdifferentiable at x.

Corollary 3.2(ii) provides a sufficient condition for GP-subdifferentiability based
on the even convexity of an strict lower level set. The next result shows that,
under certain even convexity assumptions on either the function or its domain,
the even convexity of all strict lower level sets is a necessary condition for the
subdifferentiability. The results in this section are in line with the fact that a given
e-quasiconvex function at a point is not necessarily GP-subdifferentiable at that
point (cf. [183]).

Proposition 3.10 (Necessary Condition for GP-Subdifferentiability) Assume
that a function f : R

n → R is GP-subdifferentiable on f −1(R) and either f is
e-quasiconvex or dom f is e-convex. Then, [f < r] is e-convex for every r ∈ R

(i.e., f is strictly e-quasiconvex).

Proof Let r ∈ R and x /∈ [f < r], that is, f (x) ≥ r .
Firstly, assume that f (x) < +∞ and so, f (x) ∈ R. As f is GP-subdifferentiable

on f −1(R), there exists u ∈ (∂GP f )(x) such that if 〈u, x − x〉 ≥ 0, then f (x) ≥
f (x) ≥ r . Hence, x /∈ eco [f < r] and so, [f < r] is e-convex.

Now, if f (x) = +∞ and dom f is e-convex, there exists u ∈ R
n such that

〈u, x〉 > 〈u, x〉 for all x ∈ dom f . Since [f < r] ⊂ dom f , then x /∈ eco [f < r]
and, so, [f < r] is e-convex.

Finally, assume that f (x) = +∞ and f is e-quasiconvex. If x ∈ eco [f < r],
then x ∈ [f ≤ r] = eco [f ≤ r], but this is impossible as f (x) = +∞.
Consequently, x /∈ eco [f < r] and the conclusion follows. �

Following Moreau’s generalized conjugation theory described in
Sect. 3.3.2, it is possible to define alternative notions of subdifferentials based
on the coupling function employed for the conjugacy. Thus, f : X → R is said to
be c-subdifferentiable at x ∈ X if f (x) ∈ R and there exists y ∈ Y such that

c(x, y) ∈ R and f (x) − f (x) ≥ c(x, y) − c(x, y), ∀x ∈ X. (3.11)

The set of those points y ∈ Y satisfying (3.11) is called the c-subdifferential of f

at x, denoted by ∂cf (x). If f (x) /∈ R, ∂cf (x) = ∅ by definition. The following
properties hold.
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Proposition 3.11 (Properties of the c-Subdifferential) Let f : X → R, x ∈ X

and y ∈ Y . If c(x, y) ∈ R, then:

(i) y ∈ ∂cf (x) if and only if f (x) + f c(y) = c(x, y).
(ii) y ∈ ∂cf

cc′
(x) if and only if x ∈ ∂c′f c(y).

(iii) If ∂cf (x) �= ∅, then f is Γc-convex at x.
(iv) If f is Γc-convex at x, then ∂cf

cc′
(x) = ∂cf (x).

In particular, if we consider again the coupling function c : Rn × (Rn ×R) → R

introduced in (3.7) for the appropriate conjugation scheme of the e-quasiconvex
functions, one gets a corresponding notion of c-subdifferential, say ∂c. The rela-
tionship between this coupling-based subdifferential and the GP-subdifferential is
as follows: for f : Rn → R and x ∈ f −1(R), one has

y ∈ ∂GP f (x) ⇐⇒ (y, 〈y, x〉) ∈ ∂cf (x).

Finally, taking into account the H -conjugation method described in
Sect. 3.3.2, we can define further notions of subdifferentials based on the family
H of univariate extended real-valued functions. Thus, f : Rn → R is said to be
H -subdifferentiable at x ∈ R

n if f (x) ∈ R and there exist h ∈ H and y ∈ R
n

such that

h(〈y, x〉) = f (x) and h(〈y, x〉) ≤ f (x), ∀x ∈ R
n. (3.12)

The set of those points y ∈ R
n satisfying (3.12) is called the H -subdifferential of

f at x, denoted by ∂H f (x). If f (x) /∈ R, ∂H f (x) = ∅ by definition. When H is
the family of all nondecreasing functions, then ∂H f (·) = ∂GP f (·).

3.4 Duality in Quasiconvex Optimization

Consider an arbitrary unconstrained optimization problem

(GP) Min
x∈Rn

F (x),

where F : R
n → R is a proper function. We now recall (see, e.g., [41, 149])

the well-known perturbational approach to duality, whose key is the use of a
perturbation function Φ : R

n × R
m → R, such that Φ(x, 0m) = F(x) for all

x ∈ R
n, Rm being the space of perturbation variables. Thus, for each y ∈ R

m, we
have the perturbed optimization problem

(GPy) Min
x∈Rn

Φ(x, y),
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and we associate to the family of perturbed problems, the infimum value function
p : R

m → R defined by p(y) := infx∈Rn Φ(x, y). It is obvious that p (0m) =
infx∈Rn F (x). In order to apply the conjugation scheme for e-quasiconvex functions,
we consider the coupling function c : Rm × (Rm × R) → R introduced in (3.7) as

c(y, (y∗, α)) =
{

0, if 〈y∗, y〉 ≥ α,

−∞, otherwise,

for all y ∈ R
m and (y∗, α) ∈ R

m ×R, and the c-conjugate of p, pc : Rm ×R → R,
defined by

pc(y∗, α) = sup
y∈Rm

{c(y, (y∗, α)) − p(y)}, ∀(y∗, α) ∈ R
m × R. (3.13)

From (3.1), it is easy to obtain

p(0m) ≥ c(0m, (y∗, α)) − pc(y∗, α), ∀(y∗, α) ∈ R
m × R,

so that we define the dual problem of (GP) as

(GD) Max
y∗∈Rm,α∈R

c(0m, (y∗, α)) − pc(y∗, α),

which can be equivalently written as

(GD) Max
y∗∈Rm,α∈R

inf{Φ(x, y) : x ∈ R
n, 〈y∗, y〉 ≥ α}

s.t. α ≤ 0.

Proposition 3.12 (Duality Theorem) The following statements hold:

(i) v(GD) ≤ v(GP).
(ii) v(GD) = (eqco p)(0m). If it is finite, the optimal solution set is

∂c(eqco p)(0m).
(iii) v(GD) = v(GP) if and only if p is e-quasiconvex at 0m. In this case, if the

optimal value is finite, then the optimal solution set to (GD) is ∂cp(0m).

3.5 An Application to Consumer Theory

In economics it is rather common the following duality framework (see, e.g., [141,
142]). Given a real-valued, non-decreasing function u on the non-negative orthant of
R

n, a dual function v is defined by the relation v(y) = supx∈Rn+ {u(x) : 〈x, y〉 ≤ 1}.
It is easy to see that v is non-increasing and quasiconvex. If u is quasiconcave,
some additional assumptions allow to obtain a complete duality between the primal
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function u and the dual function v in the sense that u can be obtained from v through
the relation u(x) = infy∈Rn+ {v(y) : 〈x, y〉 ≤ 1}. A case in which this scheme is
applied is the one of the duality between direct and indirect utility functions in
consumer theory.

In an economy in which n different type of commodities are available, each
vector x = (x1, . . . , xn) ∈ R

n+, with xi denoting the quantity of i-commodity,
represents a consumption option. The preferences of a consumer in the set of
commodity bundles, Rn+, are usually represented by a so-called utility function u :
R

n+ → R, that is, for any x, y ∈ R
n+, x is preferred to y if and only if u (x) > u (y).

If M > 0 is the maximal amount of money that the consumer can spend and p ∈ R
n+

is the vector of commodity prices, the consumer chooses a commodity bundle x by
maximizing u (x) subject to the budget constraint 〈p, x〉 ≤ M . As M > 0, one
can consider the vector of normalized prices y = p/M and the consumer’s utility
problem may be written as

(P (y)) sup
{

u (x) : 〈y, x〉 ≤ 1, x ∈ R
n+
}

.

The function v that associates to y the optimal value of the parameterized problem
P (y), v (y) = sup

{

u (x) : 〈y, x〉 ≤ 1, x ∈ R
n+
}

, is called the indirect utility
function associated with u and it gives the maximum utility level that the consumer
can attain when he or she faces the vector y of normalized prices. A complete
duality between u (x) and v (y) allows to obtain u from v through the relation
u (x) = inf

{

v (y) : 〈x, y〉 ≤ 1, y ∈ R
n+
}

, which implies that the behavior of the
consumer can be equivalently described through the indirect utility function, whose
variables are the prices.

The duality between the utility function of a consumer and the corresponding
indirect utility function has been studied extensively. In 1977, Crouzeix established
quite symmetric conditions for the utility functions when they are continuous [34]
and, later, in 1983, for the differentiable case [36]. In 1991, Martínez-Legaz [122]
obtained a symmetric duality under the weakest possible assumptions.

Proposition 3.13 Let v : Rn+ → R. There exists a utility function u : Rn+ → R

having v as its associated indirect utility function if and only if v is non-increasing,
evenly quasiconvex and satisfies

v (y) ≤ lim
α→1− (cl v) (αy) , ∀y ∈ bdRn+. (3.14)

In this case, one can take u non-decreasing, evenly quasiconcave and satisfying

u (x) ≥ lim
α→1− cu u (αx) , ∀x ∈ bdRn+. (3.15)

Under these conditions, u is unique, namely,

u (x) = inf
{

v (y) : 〈x, y〉 ≤ 1, y ∈ R
n+
}

, ∀x ∈ R
n+.
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According to this theorem, any non-increasing e-quasiconvex function
v : R

n+ → R satisfying (3.14) is the indirect utility function associated with a
unique non-decreasing e-quasiconcave function u : Rn+ → R satisfying (3.15).

3.6 Bibliographic Notes

The concept of e-quasiconvex function first appeared in the PhD thesis of J.E.
Martínez-Legaz [119] (see also [120]) on generalized conjugation under the name
of “normal quasiconvex function”. The term “evenly quasiconvex function” was
introduced by Passy and Prisman in [138], a work on conjugacy in quasiconvex
programming which was followed by a sequel on the same subject [139]. After
that, Martínez-Legaz [121] presented a survey on quasiconvex duality theory based
on generalized conjugation methods and showed that e-quasiconvex functions
constitute the class of regular functions in most of the conjugation schemes.

This chapter is based on [37, 79, 121, 123, 138]. More precisely, the con-
cept of strictly e-quasiconvex function and the relationships reflected in Dia-
gram 3.1 appeared in [138]. Although Passy and Prisman provide an example of
an e-quasiconvex function which is not strictly e-quasiconvex, our Example 3.1 has
been taken from [37, p. 64]. The e-quasiconvex hull of a function is introduced
in [138, Def. 2.5] and its representation as in (3.4) is [138, Th. 2.1]. The notions
regarding ascending families were previously considered in [35, Sec. 2]. The
equivalences in Theorem 3.1 appear in [37] in the more general context of separable
Banach spaces. In particular, (i) ⇐⇒ (ii) is [37, Prop. 8], (i) ⇐⇒ (iii) is [37, Prop.
10], (i) ⇐⇒ (iv) is [37, Prop. 11] and (i) ⇐⇒ (v) is [37, Prop. 12].

Several generalizations and particularizations of e-quasiconvex functions have
been studied in the literature. Next we review two of them.

• According to Thach [179], a convex set C ⊂ R
n is R-convex if λx ∈ C for all

x ∈ C and λ ≥ 1. Thus, in the same way that quasiconvex functions are defined
by the convexity of its lower level sets, a function f is said to be R-quasiconvex
when its lower level sets are R-convex, and it is R-evenly quasiconvex when
these lower level sets are R-evenly convex, i.e., intersection of a family of open
halfspaces whose closures do not contain 0n. Martínez-Legaz [123] characterized
the R-evenly quasiconvex functions as those evenly quasiconvex functions f that
satisfy a certain simple relation with their lower semicontinuous hull cl f .

• Rubinov and Glover [153] defined, for a given pair of sets (X, V ) with a coupling
function [, ] : V ×X → R, the so-called evenly-(X, V )-convex sets as those sets
Z ⊂ X such that, for each x ∈ X\Z there exists v ∈ V such that [v, x] > [v, z]
for all z ∈ Z. Then, they define the evenly-(X, V )-quasiconvex functions as those
whose lower level sets are evenly-(X, V )-convex.
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Regarding the conjugation schemes, the H -conjugation method described in
Sect. 3.3.1 was introduced by Martínez-Legaz in [119, 120], whereas the alternative
conjugation method in Sect. 3.3.2 was pointed out in [124] and obtained as a
particular case from the generalized conjugation theory developed by Moreau [130].
More precisely, Proposition 3.5 is [120, Prop. 1], [120, Prop. 2] and [120, Cor. 3]
for statements (i) , (iii) and (iv), respectively, Proposition 3.6 is [120, Prop. 23’],
Proposition 3.7 is [120, Props. 24’–26’], Proposition 3.8 is [124, Props. 6.1 and
6.2] and the result in Theorem 3.2 is given in [124, p. 258]. Finally, the proofs of
Propositions 3.11 and 3.12 can be found in [124, Secs. 6.3 and 6.5].

Independently to the above methods, a related symmetric conjugation scheme
for quasiconvex functions was introduced by Passy and Prisman in [138]. In this
case, however, the biconjugate function coincides with the proper homogeneous
e-quasiconvex hull instead of just the e-quasiconvex hull. The motivation of this
result is as follows. For f : R

n → R, its perspective function of order 0 (the
perspective function in [90] can be understood as the one of order 1) gf : Rn×R →
R is defined by

gf (x, λ) :=
{

f (x/λ), if λ > 0,

sup f, otherwise.

By construction, gf is a positively homogeneous function of degree zero (that
is, gf (tx, tλ) = gf (x, λ) for all t > 0), and f is recoverable from gf in
the sense that f (·) = gf (·, 1). It holds that f is e-quasiconvex if and only
if gf is e-quasiconvex. Only quasiconvex positively homogeneous of degree
zero functions (those functions whose lower level sets are convex cones) are
considered in [138]. In this case, if f is quasiconvex, then gf is proper in the
sense that if α < sup gf , then one has 0n+1 /∈ [gf ≤ α] (which implies
gf (0n+1) = sup gf (x, λ)). Hence, for any function g : R

n → R, its quasi-
conjugate function g� : Rn → R is given by

g�(y) = − inf{g(x) : 〈y, x〉 ≥ 0}, ∀y ∈ R
n,

having that g� is a proper homogeneous e-quasiconvex function, and g = g�� if
and only if g is a proper homogeneous e-quasiconvex function (cf. [138, Th. 3.1]).
Consequently, the quasi-conjugate � induces a one-to-one mapping on the family of
proper homogeneous e-quasiconvex functions. The study of those functions whose
lower level sets are e-convex cones allows us to recover, with some improvements,
some results of Passy and Prisman, and Martínez-Legaz. For instance, a function
that attains its maximum at the origin is e-quasiconvex and homogeneous if and
only if all its lower level sets are evenly convex cones (cf. [182, Th. III.1.2]).

The notion of λ-quasiconjugate (λ ∈ R) of a function f : Rn → R, defined by
f ∗

λ (y) = λ − inf{f (x) : 〈y, x〉 ≥ λ} for all y ∈ R, was introduced by Greenberg
and Pierskalla [82] and plays an important role in quasiconvex optimization and in
the theory of surrogate duality (as well as the Fenchel conjugate does in convex
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conjugation and Lagrangian duality). Thach [178, 179] established two dualities
for a general quasiconvex optimization problem, restricting himself to particular
classes of quasiconvex functions. For that purpose, he introduced the notions of
H -quasiconjugate and R-quasiconjugate. On the one hand, the H -quasiconjugate
of f is defined by f H (y) = − inf{f (x) : 〈y, x〉 ≥ 1} if y �= 0n, and
f H (0n) = − sup{f (x) : x ∈ R

n}. The fundamental theorem says that f is
H -evenly quasiconvex (i.e., all its lower level sets are evenly convex containing
0n) and f (0n) = inf{f (x) : x ∈ R

n\{0n}} if and only if f = f HH . On the other
hand, the R-quasiconjugate of f is defined by f R(y) = − inf {f (x) : 〈y, x〉 ≥ −1}
for all y ∈ R

n. In this case, the fundamental theorem says that a function f

is R-evenly quasiconvex if and only if f = f RR . These concepts have been
applied by Suzuki and Kuroiwa [171, 172, 174, 175] to provide duality theorems
and set containment characterizations for quasiconvex programming. Furthermore,
the paper [179] provides an application to a decentralization by prices for the von
Neumann equilibrium problem.

Rubinov and Dutta [154] obtained a Hadamard type inequality for non-negative
evenly quasiconvex functions that attain their minimum. The asymptotically sharp
constant associated with the inequality over the unit square in the two-dimensional
plane is explicitly calculated. An extension of this Hadamard type inequality to non-
negative quasiconvex functions was obtained a year later by Hadjisavvas [84].

Quasiconvex analysis has always been deeply related with economic theory.
Thus, the seminal work of de Finetti [57] was motivated by problems in Paretian
ordinal utility and, later, research in quasiconvex duality was motivated by the
dual description of preferences and technologies in microeconomics (see, e.g.,
[38]). The application of duality theory to problems arising in economics, provides
dual problems which usually have nice interpretations that give new perspectives
for analyzing the associated primal problems. That is the case of the application
to consumer theory described in Sect. 3.5. Proposition 3.13, which establishes a
symmetric duality between direct and indirect utility functions under the weakest
possible assumptions, is [124, Th. 6.16], although the original result appeared in
[122, Th. 2.2] in the more general framework of locally convex topological vector
spaces.

Other similar duality schemes, involving suitable extensions of the concept of e-
convex set, enjoy a number of applications in finance and economics, particularly, in
the context of decision theory [29] and risk measures [30, 60]. For instance, Frittelli
and Maggis [60, 115] introduced a generalization of the concept of e-convex set in
the conditional framework, providing also the corresponding generalized version of
the bipolar theorem. Then, they applied this notion to obtain the dual representation
of conditionally evenly quasiconvex maps, which turns out to be a key tool in the
study of quasiconvex dynamic risk measures.
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