
Chapter 1
Evenly Convex Sets: Linear Systems
Containing Strict Inequalities

This chapter deals with linear systems with an arbitrary (possibly infinite) number
of weak and/or strict inequalities and their solution sets, the so-called evenly convex
sets, which can be seen as the two faces of a same coin. Section 1.1 provides
different characterizations of evenly convex sets and shows that this class of sets
enjoys most of the well-known properties of the subclass of closed convex sets.
Since the intersection of evenly convex sets belongs to the same family, any set has
an evenly convex hull. Section 1.2 is focussed on the operations with evenly convex
hulls and their relationships with other hulls. Section 1.3 reviews different types of
separation theorems involving evenly convex sets. Section 1.4 provides existence
theorems for linear systems with strict inequalities and characterizations of the
linear inequalities which are consequence of consistent systems (those systems
with nonempty solution set), which allows us to tackle set containment problems
involving evenly convex sets. Section 1.5 is aimed to study the so-called evenly
linear semi-infinite programming problems (i.e., linear semi-infinite programming
problems with strict inequalities). Finally, Sect. 1.6 describes applications to polarity
(treated in a detailed way as it was the problem which inspired the concept of evenly
convex set), semi-infinite games, approximate reasoning, optimality conditions in
mathematical programming, and strict separation of families of sets.

1.1 Evenly Convex Sets

Since any equation can be replaced by two inequalities, we shall consider (linear)
systems in R

n of the form

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S} , (1.1)
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where 〈·, ·〉 denotes the standard inner product in R
n, W and S are disjoint index

sets, at ∈ R
n and bt ∈ R for all t ∈ T := W ∪ S �= ∅ (a possibly infinite set). The

solution set of σ, say

F = {x ∈ R
n : 〈at , x〉 ≤ bt, t ∈ W ; 〈at , x〉 < bt , t ∈ S

}
,

is the intersection of halfspaces and, so, it is a convex set, i.e., any segment [x, y]
determined by x, y ∈ F is contained in F. Since [x, y] is an arc joining x and y, any
convex set is arc-connected and, so, it is connected, i.e., it cannot be represented as
the union of two or more disjoint nonempty open subsets for the topology induced
by the Euclidean norm in F.

The above system σ is said to be ordinary when S = ∅, finite when T is finite
and semi-infinite otherwise. Moreover, it is said homogeneous when bt = 0 for all
t ∈ T .

The solution sets of ordinary systems are intersections of closed halfspaces and,
so, they are closed and convex. The converse holds as a consequence of the basic
separation theorem which asserts that, if ∅ �= C � R

n is a closed convex set and
y /∈ C, then, there exist a vector a �= 0n and a scalar b ∈ R such that 〈a, y〉 > b

and 〈a, x〉 ≤ b, for all x ∈ C (see, e.g., [91, Ch. A: Th. 4.1.1]). Since we can write
R

n = {x ∈ R
n : 〈0n, x〉 ≤ 0} and ∅ = {x ∈ R

n : 〈0n, x〉 ≤ −1} , any closed convex
set is the solution set of some ordinary system.

The following concept is the counterpart of closed convex set for non-ordinary
systems: a set C ⊂ R

n is evenly convex (e-convex, in brief) if it is the intersection
of some family, possibly empty, of open halfspaces. Clearly, any e-convex set is
convex, and the converse only holds for sets in R. From the definition, any e-convex
set is the solution set of a system as the one in (1.1). Conversely, since any weak
inequality 〈a, x〉 ≤ b, with a �= 0n and b ∈ R, has the same solutions as the system

of strict inequalities
{
〈a, x〉 < b + 1

k
, k ∈ N

}
, the solution set of the linear system σ

in (1.1) is an e-convex set. So, ordinary systems and closed convex sets are particular
types of linear systems and e-convex sets, respectively, as Diagram 1.1 shows:

Linear systems Ordinary linear systems
⇐

σ =
{ 〈at , x〉 ≤ bt , t ∈ W

〈at , x〉 < bt , t ∈ S

}
σ = {〈at , x〉 ≤ bt , t ∈ W }

� �

Evenly convex sets ⇐ Closed convex sets

Diagram 1.1 Linear representations of convex sets
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In this book we mainly use the standard notation of convex analysis and
optimization. So, given a set X ⊂ R

n, we denote by int X, rint X, cl X, bd X, and
rbd X the interior, the relative interior, the closure, the boundary, and the relative
boundary of X, respectively. The set X is said to be relatively open if rint X = X

(so, ∅ and R
n are relatively open). Moreover, conv X stands for the convex hull of X,

whereas cone X := R+ conv X means the convex conical hull of X∪{0n}, where 0n

denotes the null vector of Rn. Additionally, if X is a nonempty finite set, we say that
conv X is a polytope and cone X is a finitely generated cone. When ∅ �= X ⊂ R

n,

we denote by span X and aff X the linear span and the affine span of X, respectively,
and by

0+X := {d ∈ R
n : x + td ∈ X,∀t ≥ 0,∀x ∈ X}

the recession cone of X. The Minkowski sum of X, Y ⊂ R
n is the set X + Y :=

{x + y : x ∈ X, y ∈ Y }. Additionally, if C is a nonempty convex subset of R
n,

dim C denotes the dimension of C (defined as the dimension of aff C) and, for
x ∈ C, the cone of feasible directions of C at x is

D(C, x) := {v ∈ R
n : x + αv ∈ C for some α > 0

} = R+ (C − x) .

If x ∈ cl C, the tangent cone to C at x is TC (x) := cl D(cl C, x). A convex
subset D ⊂ C is said to be a face of C if, for all pairs v1 �= v2 of C such that
D ∩ ]v1, v2[ �= ∅, one has [v1, v2] ⊂ D. The extreme points and edges of C are the
zero- and one-dimensional faces of C, respectively. We say that a hyperplane H is
a supporting hyperplane of C at x ∈ C if x ∈ H and C lies in one of the closed
halfspaces determined by H . In such a case, we say that H supports C at x. The
supporting hyperplane theorem establishes that, if C is a nonempty convex set and
x ∈ C ∩ bd C, then there is a supporting hyperplane of C at x. The intersections of
C with its supporting hyperplanes are called exposed faces of C. Given X ⊂ C, the
intersection of exposed faces of C containing X is an exposed face of C. So, there
exists a minimal exposed face of C containing X.

Given a convex cone K , the lineality space of K is the greatest linear subspace
contained in K. We denote it by lin K. Obviously, lin K = K ∩ (−K) .

The next result provides eleven characterizations of e-convex sets. One of them
involves the following concept: the halfline {x + λy : λ ≥ 0} is a tangent ray for the
convex set C if x ∈ rbd C, y ∈ cl D(cl C, x), and {x + λy : λ ≥ 0} ∩ rint C = ∅.

Theorem 1.1 (Characterization of e-Convex Sets) Let C ⊂ R
n be such that

∅ �= C �= R
n. Then, the following statements are equivalent to each other:

(i) C is e-convex;
(ii) C is the result of eliminating from a closed convex set (precisely, cl C) the

union of a certain family of its exposed faces;
(iii) C is a convex set and for each x ∈ R

n\C there exists a hyperplane H such
that x ∈ H and H ∩ C = ∅;



4 1 Evenly Convex Sets: Linear Systems Containing Strict Inequalities

(iv) C is connected and through every point not in C there is some hyperplane H

such that H ∩ C = ∅;
(v) C is a convex set and x ∈ C for all x ∈ rbd C such that

{x − λy : λ ≥ 0} ∩ C �= ∅ for some tangent ray {x + λy : λ ≥ 0};
(vi) C is a convex set and (x + lin TC (x)) ∩ C = ∅, for any x ∈ (cl C) \C;
(vii) C is the intersection of a nonempty collection of nonempty open convex sets;
(viii) C is a convex set and is the intersection of a collection of complements of

hyperplanes;
(ix) C is a convex set and for any convex set D contained in (cl C) \C, there exists

a hyperplane containing D and not intersecting C;
(x) C is a convex set and for any convex set D ⊂ (cl C) \C, the minimal exposed

face (in cl C) containing D does not intersect C;
(xi) C is a convex set and for any x ∈ (cl C) \C, the minimal exposed face (in

cl C) containing x does not intersect C; and
(xii) C is a convex set and for any x ∈ (cl C) \C, there exists a supporting

hyperplane of cl C at x not intersecting C.

The equivalence of the statements (i)–(vi) has been established in different
published works (precise references can be found in Sect. 1.7), while the possibility
of enlarging this list with statements (vii)–(xii) was conjectured by J.E. Martínez-
Legaz in a private communication to one of the authors. So, we limit ourselves to
prove the equivalence of each of the statements from (vii) to (xii) with those from
(i) to (vi) by turning to the following consequence of (i) ⇐⇒ (iii): any relatively
open convex set is e-convex. In fact, according to [148, Th. 11.2], given a nonempty
relatively open convex set C and an affine manifold M such that C ∩M = ∅, there
exists a hyperplane H such that M ⊂ H and C is contained in one of the two open
halfspaces determined by H. Applying this result to the zero dimensional affine
manifolds, i.e., the singleton sets, it is easy to see that condition (iii) holds. So, any
relatively open convex set (in particular, any open convex set) is e-convex.

Partial Proof of Theorem 1.1 [(i)⇒ (vii) ⇒ (i)] By the definition, any e-convex
set C such that ∅ �= C �= R

n is the intersection of some nonempty family of open
halfspaces, so C satisfies (vii). Conversely, it is obvious that the intersection of e-
convex sets is an e-convex set and, since each nonempty open convex set is e-convex,
the intersection of a collection of nonempty open convex sets is e-convex.

[(iii) ⇒ (viii) ⇒ (i)] If C satisfies condition (iii), then, given t ∈ T := R
n\C,

there exists a hyperplane Ht such that t ∈ Ht and Ht ∩ C = ∅. Therefore,

C ⊂ ∩
t∈T

(
R

n\Ht

)
(1.2)

and

R
n\C = T ⊂ ∪

t∈T
Ht . (1.3)
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By applying De Morgan’s laws to (1.3), we obtain the equality in (1.2), so C

satisfies (viii).
Now, suppose that C satisfies (viii) and let C = ∩

t∈T
(Rn\Ht), with Ht =

{x ∈ R
n : 〈at , x〉 = bt }, at ∈ R

n\ {0n} and bt ∈ R, for all t ∈ T . Since C is a
convex set and, for each t ∈ T , C ⊂ R

n\Ht , we have that C is contained in one of
the two open halfspaces determined by Ht . Then, we can suppose, without loss of
generality, that

C ⊂ ∩
t∈T

{
x ∈ R

n : 〈at , x〉 > bt

}
. (1.4)

On the other hand, if x /∈ C, there exists s ∈ T such that x /∈ R
n\Hs or, equivalently,

〈as, x〉 = bs . Therefore, x /∈ {x ∈ R
n : 〈as, x〉 > bs} and we obtain the equality in

(1.4). So, C is e-convex.
Finally, we shall prove (ii)⇒ (ix)⇒ (x)⇒ (xi)⇒ (xii)⇒ (iii).
[(ii) ⇒ (ix)] Let {Xt , t ∈ T } be a family of exposed faces of cl C such that

C = (cl C) \
[
∪

t∈T
Xt

]
.

Let D ⊂ (cl C) \C = ∪
t∈T

Xt be a nonempty convex set (if D = ∅, any hyperplane

not intersecting C contains D) and let x ∈ rint D. Then, there exists t ∈ T such that
x ∈ Xt , so that Xt is a face of cl C intersecting rint D and, by [148, Th. 18.1],
D ⊂ Xt . Since Xt is an exposed face of cl C, there exists a hyperplane H such that
Xt = H ∩ cl C and, therefore, D ⊂ H and

H ∩ C = H ∩ [(cl C) ∩ C] = Xt ∩ C = ∅.

[(ix) ⇒ (x)] Let D ⊂ (cl C) \C be a convex set and let X be the minimal
exposed face (in cl C) such that D ⊂ X. By (ix), there exists a hyperplane H such
that D ⊂ H and H ∩ C = ∅. If we take Y := H ∩ cl C �= ∅ (since D ⊂ Y ), then Y

is an exposed face containing D such that

Y ∩ C = (H ∩ cl C) ∩ C = H ∩ C = ∅. (1.5)

Since X is the minimal exposed face containing D, we have X ⊂ Y and, by (1.5),
X ∩ C = ∅.

[(x) ⇒ (xi)] It is trivial because (xi) is a particular case of (x).
[(xi)⇒ (xii)] Let x ∈ (cl C) \C and let X be the minimal exposed face (in

cl C) containing x. Since X is an exposed face of cl C, there exists a hyperplane
H such that cl C is contained in one of the closed halfspaces determined by H and
X = H ∩cl C, so that x ∈ H and H supports cl C at x. Moreover, since X∩C = ∅,
we have

H ∩ C = H ∩ [(cl C) ∩ C] = X ∩ C = ∅.
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a b

Fig. 1.1 (a) The e-convex set C1; (b) The non e-convex set C2

[(xii) ⇒ (iii)] Let x ∈ R
n\C. We obtain a hyperplane H such that x ∈ H and

H ∩C = ∅ as a consequence of (xii), if x ∈ (cl C) \C, and as a consequence of cl C
being an e-convex set, if x /∈ cl C. ��
Example 1.1 Consider the closed convex set

C =
{
x ∈ R

2 : −tx1 + (t − 1)x2 ≤ t2 − t, t ∈ [0, 1]
}

. (1.6)

The set C1 := C\ ([1,+∞[× {0}) is e-convex, whereas C2 := C\ (]1,+∞[× {0})
is not, even though C2 is convex, and so connected (see Fig. 1.1). In fact, one has:

1. The elimination of the unique exposed face of C = cl C2 containing (2, 0) ,

[1,+∞[× {0} , yields C1 instead of C2 (so (ii) fails).
2. C2 is convex, (2, 0) /∈ C2, but H ∩ C2 �= ∅ for any hyperplane H such that

(2, 0) ∈ H , so (iii), (iv) and (ix) fail (taking D = {(2, 0)} ⊂ (cl C2) \C2 in the
latter case).

3. C2 is convex and [2,+∞[× {0} is a tangent ray emanating from (2, 0) ∈ bd C2
such that ([−∞, 2[× {0}) ∩ C2 = {(1, 0)} , but (2, 0) /∈ C2 (so (v) fails).

4. C2 is convex, x = (2, 0) ∈ (cl C2) \C2, TC2 (x) = R× [0,+∞[, x +
lin TC2 (x) = R×{0} and

(
x + lin TC2 (x)

) ∩ C2 = {(1, 0)} (so, (vi) fails).
5. C2 is convex and [1,+∞[× {0} is the minimal exposed face in cl C2 containing

(2, 0), but ([1,+∞[× {0}) ∩ C2 = {(1, 0)} (so, (x) and (xi) fail).
6. C2 is convex and the unique supporting hyperplane of cl C2 at (2, 0) is H ={

x ∈ R
2 : x2 = 0

}
, but H ∩ C2 = {(1, 0)} (so, (xii) fails).

From the comment prior to the proof of Theorem 1.1, since rint C is relatively
open, any convex set C �= ∅ can be fitted from inside by its relative interior
rint C and from outside by its closure cl C, both approximating sets being e-convex.
Analogously, any strictly convex set C (i.e., a convex set C such that its boundary,
bd C, does not contain segments) is e-convex since the exposed faces of cl C are
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the singleton sets determined by its boundary points. On the other hand, any convex
set C �= ∅ in the real line R is an interval and, by Theorem 1.1(ii), it is always an
e-convex set.

The next result allows to compare the cone of feasible directions at x, D (C, x) ,

the set extr C of extreme points, and the recession cone 0+C of an e-convex set
C with those of its closure cl C. This comparison shows that e-convex sets enjoy
many known properties of closed convex sets (see, e.g., [148, Ths. 8.3, 8.4 and Cor.
8.4.1]).

Proposition 1.1 (Properties of e-Convex Sets) If C ⊂ R
n is a nonempty e-convex

set, then the following statements hold:

(i) D (C, x) = D (cl C, x) for all x ∈ C.
(ii) extr C = C ∩ extr cl C.

(iii) [x, y[ ⊂ C for any x ∈ C and y ∈ cl C.

(iv) 0+C = 0+ (cl C). Consequently, C is bounded if and only if 0+C = {0n}.
(v) If y �= 0n and there exists x ∈ C such that {x + λy : λ ≥ 0} ⊂ C, then

y ∈ 0+C.
(vi) If M is an affine manifold such that C ∩M is a nonempty bounded set, then

M ′ ∩ C is also bounded for each affine manifold M ′ which is parallel to M .

The convex sets satisfying property (iii) are said to be wholefaced in the sense
of Motzkin [131]. The well-known accessibility lemma asserts that, for any convex
set C, [x, y[ ⊂ rint C for any x ∈ rint C and y ∈ cl C (see, e.g., [148, Th. 6.1]).
Since cl rint C = cl C, this lemma means that the relatively open convex sets are
wholefaced and (iii) is nothing but the extension of this property from relatively
open convex sets to e-convex sets.

The next example shows that all statements of Proposition 1.1 may hold, and also
fail, simultaneously for convex sets which are not e-convex.

Example 1.2 Let C be as in Example 1.1. Neither C3 := C\ {(1, 0)} nor
C4 = C\ (]2,+∞[× {0}) is e-convex; however, C3 satisfies statements from
(i) to (vi) of Proposition 1.1; in particular, C3 is wholefaced even though it is not
e-convex. In the contrary, C4 violates the six statements in Proposition 1.1. In fact,
taking x = (2, 0) , y = (3, 0) , M = R×{0} and M ′ = R×{1} in Fig. 1.2b, we can
see that (i), (iii) and (vi) fail. Moreover, x = (2, 0) ∈ (extr C4) \ (extr cl C4)

(so, (ii) fails) and {(0, 1)+ λ (1, 0) : λ ≥ 0} ⊂ C4 with (0, 1) ∈ C4 and
(1, 0) ∈ (0+ (cl C4)

) \ (0+C4
)

(so (iv) and (v) fail).

The class of e-convex sets is closed for the same operations as the class of closed
convex sets, except for the sum. Sufficient conditions for the sum of two e-convex
sets to be e-convex will be given in Corollary 1.1.

Proposition 1.2 (Operations with e-Convex Sets) The following statements
hold:

(i) If C ⊂ R
n is an e-convex set, then αC (resp., C + v) is e-convex for all α ∈ R

(resp., v ∈ R
n).
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a b

Fig. 1.2 (a) C3 is wholefaced but not e-convex; (b) C4 violates all the statements in Proposi-
tion 1.1

(ii) If C ⊂ R
n is an e-convex set and A : Rm → R

n is a linear transformation
such that A−1C �= ∅, then A−1C is e-convex and 0+(A−1C) = A−1

(
0+C

)
.

(iii) If C1 ⊂ R
n and C2 ⊂ R

m are nonempty sets, then C1 × C2 is e-convex if and
only if C1 and C2 are e-convex.

(iv) If C1, C2 ⊂ R
n are nonempty e-convex sets such that

(
0+C1

) ∩ (−0+C2
) =

{0n} , then

0+ (C1 + C2) = 0+C1 + 0+C2. (1.7)

(v) If {Ci, i ∈ I } is a family of e-convex sets in R
n such that ∩

i∈I
Ci �= ∅, then ∩

i∈I
Ci

is e-convex and

0+
(
∩
i∈I

Ci

)
= ∩

i∈I
0+Ci.

(vi) Let C ⊂ R
n be a nonempty convex set with dim C = n, x ∈ R

n, and k ∈ Z

such that 1 ≤ k ≤ n. If C ∩ M is e-convex for each k-dimensional affine
manifold M containing x, with k ≥ 3, or x ∈ int C and k ≥ 2, then C is
e-convex.

In statement (vi), conditions over k can be weakened when we replace “e-
convex” by “open” or “closed”. So, C is open if C ∩ M is relatively open and
1 ≤ k ≤ n, and C is closed if C ∩M is closed and k ≥ 2 or x ∈ int C [101, Prop.
2.1]. However, with even convexity, statement (vi) fails when k = 2 and x /∈ int C,

as the following example shows.
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Fig. 1.3 The non e-convex set C = conv (G ∪ [0, y[ ∪ [0, z[)

Example 1.3 Consider in the plane of R3 given by x3 = 1, a closed rectangle R and
a closed half-disk D that is disjoint with rint R and whose diameter coincides with
one of the sides of R, say the segment [y, z], and let G = (R ∪D) \ {y, z}. The
set C = conv (G ∪ [0, y[ ∪ [0, z[) is not e-convex (see Fig. 1.3). However, for each
2-dimensional affine manifold M containing 03 /∈ int C, C ∩M consists of a single
point, a segment, a closed triangle, or a triangle with one or two missing vertices,
and each one of these sets is e-convex.

Concerning the sum of closed convex sets, it is well-known that the condition(
0+C1

)∩ (−0+C2
) = {0n} guarantees that C1 +C2 is closed convex too (see, e.g.,

[148, Cor. 9.1.2]). The next example shows that this is not true for e-convex sets
(even though one of the two sets is bounded).

Example 1.4 Consider the e-convex set C in (1.6). The compact convex set C5 :=
{x ∈ C : x1 + x2 ≤ 1} and the set

C6 :=
{
x ∈ R

2 : x1 ≥ 0; x2 ≥ 0; x1 + x2 > 0
}

(see Fig. 1.4) are obviously e-convex and satisfy (1.7). Nevertheless, C5 +C6 is not
e-convex (see Fig. 1.5).

Observe also that C5 + C6 = A (C5 × C6) if we define A : R2n → R
n as

A (x, z) = x + z. This shows that the image of an e-convex set through a linear
transformation may fail to be e-convex (as it happens with the closed convex sets).
In contrast, the linear transformation of a relatively open convex set is another
relatively open convex set [148, Th. 6.6].
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a b

Fig. 1.4 (a) The compact convex set C5; (b) The e-convex set C6

Fig. 1.5 C5 + C6 is not e-convex

1.2 Evenly Convex Hull

Given X ⊂ R
n, if conv X � R

n, the intersection of all open halfspaces containing
X is the minimal e-convex set which contains X, i.e., it is the e-convex hull of X,
denoted by eco X. Alternatively, if conv X = R

n (i.e., if it does not exist a halfspace
containing X), then eco X = R

n. Obviously, X is e-convex if and only if eco X = X.
This happens, for instance, if X is either a closed or a relatively open convex set.
Consequently, if X is a compact (open) set, then conv X is a compact (open) convex
set and eco X = conv X. This is the case, in particular, if |X| < ∞, where |X|
denotes the cardinality of X. From the properties of e-convex sets, for each x ∈ R

n

one has

x /∈ eco X ⇐⇒ ∃ z ∈ R
n : 〈z, x〉 < 〈z, x〉 , ∀x ∈ X. (1.8)
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For any X ⊂ R
n, since cl conv X is e-convex and eco X is convex, we have

conv X ⊂ eco X ⊂ cl conv X. (1.9)

For ∅ �= X ⊂ R
n, since aff convX = aff cl conv X [148, Th. 6.2], we also have that

aff eco X = aff conv X and dim eco X = dim conv X.
The next result establishes the existing relation between the two latter sets in

(1.9).

Proposition 1.3 (Characterization of e-Convex Hulls) For any X ⊂ R
n, eco X is

the result of eliminating from cl conv X the union of all its exposed faces which do
not intersect X.

Example 1.5 Given the set

X :=
{

x ∈ R
2 : x2 = 1

1+ x2
1

}

,

we have that conv X = (R× ]0, 1[) ∪ {(0, 1)} (see Fig. 1.6), eco X = R× ]0, 1]
and cl conv X = R× [0, 1]. Therefore, the inclusions in (1.9) are strict in this case.
Observe that eco X is obtained by eliminating from cl conv X its unique exposed
face which does not intersect X (the line R× {0}).

The next result describes how e-convex hulls behave under different operators as
closures, relative interiors and convex or conical hulls.

Proposition 1.4 (Relationships Between eco and Other Hulls) Let X ⊂ R
n.

Then, the following statements hold:

(i) cl eco X = cl conv X.
(ii) rint eco X = rint convX.
(iii) eco conv X = eco X = conv eco X.

(iv) cone eco X ⊂ eco coneX = cl cone X.
(v) If X is a nonempty bounded set, then cl eco X = eco cl X = conv cl X.

Fig. 1.6 The convex hull of X
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Statements (i) and (ii) are easily obtained by taking closures and relative
interiors, respectively, in (1.9). An immediate consequence of the equality in
statement (iv) is that a translated convex cone containing its apex is e-convex if
and only if it is closed [101, Prop. 3.3].

The inclusion in statement (iv) can be strict and the boundedness assumption in
statement (v) cannot be eliminated, as we can see in the next example.

Example 1.6 (Example 1.5 Revisited) We have that

cone eco X = cone X = (R× ]0,+∞[) ∪ {02} ,

whereas eco cone X = cl cone X = R× [0,+∞[, so that the inclusion in statement
(iv) is strict.

On the other hand, X is an unbounded set for which conv cl X = conv X and
eco cl X = eco X (since X is closed). Moreover, by statement (i), cl eco X =
cl conv X. Therefore, as we have already seen in Example 1.5,

conv cl X � eco cl X � cl eco X

and so, the boundedness assumption in statement (v) cannot be removed.

Proposition 1.5 (Operations with e-Convex Hulls) The following statements
hold:

(i) If X,Y ⊂ R
n and X ⊂ Y , then eco X ⊂ eco Y .

(ii) If X ⊂ R
n and Y ⊂ R

m, then eco (X × Y ) = (eco X)× (eco Y ) .

(iii) If X is a nonempty set in R
m and A : Rm → R

n is a linear transformation,
then A (eco X) ⊂ eco (AX).

(iv) If X,Y ⊂ R
n, then eco X + eco Y ⊂ eco (X + Y ) .

(v) If X is a nonempty set in R
n and A : R

n → R
n is a bijective linear

transformation, then A (eco X) = eco (AX).
(vi) If X is a nonempty set in R

n and A : Rm → R
n is a linear transformation

such that A−1X �= ∅, then eco(A−1X) ⊂ A−1 (eco X).
(vii) If {Xi, i ∈ I }is a family of nonempty sets in R

n, then

eco

(
∩
i∈I

Xi

)
⊂ ∩

i∈I
(eco Xi) .

As pointed out in Sect. 1.7, where the reader can find precise references, the
above statements are already known with the unique exception of statement (v) .

Partial Proof of Proposition 1.5 (v) By definition of e-convex hull, if one has
y ∈ eco (AX), then y belongs to any open halfspace containing AX. As A is
bijective, we can consider x := A−1y. We shall prove that x ∈ eco X.

If x /∈ eco X, then by (1.8), there exists z ∈ R
n\ {0n} such that 〈z, x − x〉 < 0

for all x ∈ X and, therefore,
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0 > 〈z, x − x〉 =
〈
z,A−1A (x − x)

〉
=
〈
(A−1)�z,Ax − Ax

〉
, ∀x ∈ X,

where (A−1)� represents the adjoint operator of A−1 (i.e., the unique linear
transformation such that

〈
x,A−1y

〉 = 〈
(A−1)�x, y

〉
for all x, y ∈ R

n). Taking
d := (A−1)�z and y := Ax, we have that 〈d, y − y〉 < 0 for all y ∈ AX and
so, y /∈ eco (AX). We have shown that eco (AX) ⊂ A (eco X) and the conclusion
follows from (iii). ��

Taking the e-convex sets X = C5 and Y = C6 as in Example 1.4, we have that
eco X = X and eco Y = Y whereas eco (X + Y ) �= X + Y (since X + Y is not an
e-convex set; see Fig. 1.5). So, the inclusions in statements (iii) and (iv) cannot be
replaced by equalities.

In the same way, the inclusions in statements (vi) and (vii) can be strict as we
can see in the following examples.

Example 1.7 Let X := (]0,+∞[× ]0,+∞[) ∪ {02} ⊂ R
2 and let A : R2 → R

2

be the linear transformation defined as A (x1, x2) = (x1, 0). Then, A−1X = {0}×R

is an e-convex set whereas A−1 (eco X) = R+ × R. So, eco(A−1X) = A−1X �

A−1 (eco X).

Example 1.8 Let X1 := R
2 × {0} and

X2 := conv

⎡

⎣

⎧
⎨

⎩

⎛

⎝
− cos t

− sin t

−1

⎞

⎠ , t ∈ ]0, 2π[

⎫
⎬

⎭
+ R+

⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠

⎫
⎬

⎭

⎤

⎦ ∪
⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠

⎫
⎬

⎭
,

(represented in Fig. 1.7).

Fig. 1.7 The set X2, where x = (1, 0, 1)
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Since eco X1 = X1 and eco X2 = cl X2, we have (eco X1) ∩ (eco X2) =
{(x1, x2, 0) ∈ R

3 : (x1 − 1)2 + x2
2 ≤ 1} whereas

eco (X1 ∩X2) = X1 ∩X2 =
{
(x1, x2, 0) ∈ R

3 : (x1 − 1)2 + x2
2 ≤ 1

}
\ {03} .

1.3 Separation Theorems

The standard separation theorem for convex sets asserts that any two nonempty
disjoint convex sets X,Y ⊂ R

n are weakly separated by a hyperplane, that is,
there exists a hyperplane H such that one of the closed halfspaces determined by
H contains X and the other one contains Y. This type of separation is so weak that
it does not require X and Y be disjoint. Stronger types of separation are valid for
pairs X,Y of convex sets satisfying suitable topological assumptions as openness,
closedness and compactness of some of the two sets. The separation theorems
for pairs of closed convex sets are useful tools in the study of ordinary systems
and those optimization problems whose constraint system is ordinary. Analogously,
separation theorems for pairs of e-convex sets are useful in the study of non-ordinary
systems and optimization problems with strict inequality constraints. This is the
type of separation theorems provided by Victor Klee in 1968 in his attempt to
obtain maximal separation theorems, that is, sufficient conditions for certain type
of separation of X from Y under minimal hypotheses on these sets. Following Klee
[99], given two disjoint sets X,Y ⊂ R

n, we say that a hyperplane H separates X

from Y :

• Nicely provided that H is disjoint from X or from Y (without specifying which).
• Openly provided that H is disjoint from X.
• Strictly provided that H is disjoint from both X and Y.

• Strongly provided that H is at positive distance from both X and Y.

Diagram 1.2 Types of
separation

Strong separation

⇓
Strict separation

⇓
Open separation

⇓
Nice separation

⇓
Weak separation



1.3 Separation Theorems 15

It is easy to prove that, given a closed convex set X and x ∈ R
n\X, the

hyperplane H orthogonal to the midpoint of the segment joining x with its
projection on X separates strongly X from {x} . So, a nonempty set X is closed
and convex if and only if it is strongly separated from any singleton set contained
in R

n\X. Analogously, from the equivalence (i) ⇐⇒ (iii) in Theorem 1.1, a set X

is e-convex if and only if it is openly separated from any singleton set contained in
R

n\X (cf. (1.8)).
It is easy to separate by suitable examples the concepts involved in Diagram 1.2

for any n ≥ 2. For instance, given a hyperplane H determining two open halfspaces,
H+ and H−, and two different points, x, y ∈ H, defining the disjoint convex sets
X := H+ ∪ {x} and Y := H− ∪ {y} , H separates weakly X from Y, but not nicely.
If one aggregates the condition that X and Y should be closed, the counterexample
must be built in dimension at least 3, as the following one.

Example 1.9 Consider the line X := {(0, x2, 1) : x2 ∈ R} and the closed convex
cone

Y :=
{
y ∈ R

3+ : y2
3 ≤ y1y2

}
.

The hyperplane H = {
x ∈ R

3 : x1 = 0
}

contains X, while Y lies in the halfspace{
x ∈ R

3 : x1 ≥ 0
}
. In fact, H is the unique hyperplane separating weakly X from

Y , but the separation is not nice, as Fig. 1.8 shows.

Maximal strong and strict separation theorems involving closedness or openness
(among other) assumptions can be found in [99, Ths. 2 and 3]. In particular,
[99, Th. 3(d)] states that the openness of two nonempty disjoint convex sets is a
minimal condition for strict separation, so that weaker conditions as even convexity

Fig. 1.8 X is (just) weakly
separated from Y
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cannot imply this kind of separation. Before stating Klee’s (maximal) nice and open
separation theorems we must introduce some concepts.

Given a set X such that ∅ �= X � R
n, if Y ⊂ R

n\X is a j -dimensional affine
manifold such that d (X, Y ) := inf {d (x, y) : x ∈ X, y ∈ Y } = 0, then Y is called
a j -asymptote of X.

A convex set X is called continuous provided that X is closed and its support
function σX := sup {〈·, x〉 : x ∈ X} is continuous; this is equivalent to say that there
is no halfline contained in bd X and no 1-asymptote. Given a supporting hyperplane
of X, we say that X is continuous relative to H if H ∩ X is closed and convex but
it has neither ray contained in its relative boundary nor 1-asymptote relative to H .

A convex set ∅ �= X � R
n is called a strip provided that it is a union of

translates of a given hyperplane. Equivalently, a strip is a hyperplane, an open or
closed halfspace, or a set of the form S or H1 ∪ S, or H1 ∪ S ∪ H2, where H1 and
H2 are parallel hyperplanes and S is the set of all points of Rn lying between H1
and H2. All strips are e-convex.

A set X ⊂ R
n is said to be quasi-polyhedral (or boundedly polyhedral) provided

that its intersection with any polytope is a polytope and to be polyhedral at x ∈ X

provided that X contains a polytope which is a neighborhood of x relative to X. A
set is quasi-polyhedral if and only if it is closed, convex, and polyhedral at each of
its points.

The next two results collect six open and six nice separation theorems, respec-
tively.

Theorem 1.2 (Open Separation Theorems) For X,Y ⊂ R
n disjoint nonempty

convex sets, each of the following conditions implies X is openly separated
from Y .

(i) X is open; Y is arbitrary.
(ii) X is e-convex and its intersection with any supporting hyperplane is compact;

Y is closed.
(iii) X admits no asymptote in any supporting hyperplane intersecting X; Y admits

no asymptote.
(iv) X is e-convex and its intersection with any supporting hyperplane is closed; Y

is e-convex, Y admits no hyperplane asymptote, and Y is continuous relative
to every supporting hyperplane.

(v) X’s projections are all e-convex; Y admits no asymptote and is quasi-
polyhedral.

(vi) X is e-convex; Y is singleton or a closed strip.

Concerning Theorem 1.2, each statement “(i) (respectively, (ii), . . . , (vi)) implies
X is openly separated from Y ” is an open separation theorem, and all of them are
maximal in Klee’s sense [99], except that (vi) does not when n = 2.
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Theorem 1.3 (Nice Separation Theorems) For X,Y ⊂ R
n disjoint nonempty

convex sets, each of the following conditions implies X is nicely separated from Y .

(I) X is open or a strip; Y is arbitrary.
(II) X is e-convex and is continuous relative to any supporting hyperplane; Y is

e-convex and its intersection with any supporting hyperplane is closed.
(III) X admits no asymptote in any supporting hyperplane; Y admits no asymptote

in any supporting hyperplane.
(IV) X’s projections are all e-convex and X is polyhedral at each of its points; Y ’s

projections are all e-convex and Y is polyhedral at each of its points.
(V ) X’s projections are all e-convex; Y admits no asymptote in any supporting

hyperplane and Y is polyhedral at each of its points.
(VI) X is e-convex; Y is singleton or open or a strip.

Regarding Theorem 1.3, each statement “(I) (respectively, (II), . . . , (VI)) implies
X is nicely separated from Y ” is a nice separation theorem, and all of them are
maximal in Klee’s sense [99], except that (VI) does not when n = 2.

Since Klee’s paper was published before the standard terminology and notation
of convex analysis was established by Rockafellar in his celebrated book [148], the
original proofs of the two previous theorems are hardly readable for today’s readers.
Because of this, we give a sketch of them, which precludes cumbersome arguments
based on induction. The keys are Proposition 1.1(iii) and the following lemma.

Lemma 1.1 Let X,Y ⊂ R
n be disjoint nonempty convex sets. Then, X is openly

separated from Y if and only if there is no point p ∈ X which lies in every
hyperplane separating X from Y . Any such point p satisfies at least one of the
following conditions:

(a) p ∈ cl Y .
(b) There is a point w ∈ cl Y such that [p,w] ⊂ (cl X) ∩ H for every hyperplane

H separating X from Y .
(c) There are sequences

{
pk
} ⊂ R

n,
{
xk
} ⊂ X, and

{
yk
} ⊂ Y such that

yk ∈ [pk, xk
]

for all k, lim pk = p, lim xk = x, and [p, x] is contained in
some ray which lies in (cl X)∩H for every hyperplane H separating X from Y .

If X and Y are e-convex, then condition (c) is satisfied for each point p ∈ X

which lies in every hyperplane separating X from Y and each separating hyperplane
H such that X ∩H and Y ∩H are both closed and nonempty.

Sketch of the Proofs of Theorems 1.2 and 1.3. By the standard separation theo-
rem, there is a hyperplane H separating X from Y .

If X is open, then X ∩ H = ∅. If X is a strip, it can happen that H supports X

and, therefore, H ⊂ X and Y ∩H = ∅, or that H ∩ X = ∅. So, statements (i) and
(I) imply that X is openly and nicely separated from Y , respectively.

The proofs for statements (vi) and (VI) are trivial.
The separation theorems corresponding to statements (ii), (iv) and (II) are proved

by contradiction. Supposing that X is not openly separated from Y , by Lemma 1.1,
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there is a point p ∈ X which lies in every hyperplane H separating X from Y .
Therefore, p ∈ X ∩ H and H is a supporting hyperplane of X, which, under
statements (ii), (iv) or (II), implies that X is e-convex and X ∩ H is nonempty
and closed.

Regarding the set Y , if Y ∩ H �= ∅, any of the three conditions implies that Y

is e-convex and Y ∩ H is nonempty and closed, and then, by the last assertion in
Lemma 1.1, condition (c) is satisfied for p, X, Y and H .

If Y ∩ H = ∅, under (ii), conditions (a) and (b) in Lemma 1.1 are excluded
by the fact that Y is closed, so (c) is satisfied; under (iv), the fact that Y admits no
hyperplane asymptote yields to a contradiction; and finally, under (II), Y ∩ H = ∅
implies that X is nicely separated from Y and there is nothing to prove.

Condition (c) in Lemma 1.1 claims the existence of a ray

r := {p + λu : λ ≥ 0} ⊂ (cl X) ∩H

and, since p ∈ X and X is e-convex, by Proposition 1.1(iii), r ⊂ X ∩ H , which
is a contradiction under statements (ii) and (II). Finally, under (iv), [63, Lems. 1.1
and 1.2] assert the existence of a parallel ray to r which is a boundary ray or an
asymptote of Y ∩H and we obtain a contradiction again.

The remaining statements are proved by induction on n. ��
Corollary 1.1 (Even Convexity of the Sum of Convex Sets) If X and Y are
two proper convex sets in R

n, not necessarily disjoint, and they satisfy any of the
conditions of Theorems 1.2 and 1.3, then the set X + Y is e-convex.

Proof The conditions on Y in Theorems 1.2 and 1.3 are symmetric in the sense
that they hold for Y if and only if they hold for −Y and they are also preserved
under translations. If we take z /∈ X + Y , then the sets X and −Y + z are disjoint
(otherwise, there exist x ∈ X and y ∈ Y such that x = −y + z and z = x +
y ∈ X + Y ). Then, since X and −Y + z are disjoint, any of the conditions of
Theorems 1.2 and 1.3 implies the existence of a ∈ R

n\ {0n} such that 〈a, x〉 <

〈a,−y + z〉 for all x ∈ X and y ∈ Y , whence, 〈a, x + y〉 < 〈a, z〉 and we have that
H = {x ∈ R

n : 〈a, x〉 = 〈a, z〉} is a hyperplane which contains z and misses X+ Y

and, since X + Y is convex, by Proposition 1.1(iii), X + Y is e-convex. ��
Observe that X and Y are simultaneously e-convex under conditions (ii) , (iv) ,

(vi) , (II) and (IV) , so that Corollary 1.1 can be interpreted, in those cases, as
providing sufficient conditions for the sum of two e-convex sets to be e-convex.

1.4 Linear Systems Containing Strict Inequalities

This section provides characterizations of the existence of solutions of linear
systems (Sect. 1.4.1), of the linear inequalities defining half-spaces which include
their solution sets (Sect. 1.4.2), and of those pairs of systems such that the solution
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set of one of them is contained in the solution set of the other one (Sect. 1.4.3). The
common feature of all these characterizations is that they are checkable in the sense
that they involve different hulls of sets which are expressed in terms of the data (that
is, the coefficients of the inequalities).

We associate with the linear system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt, t ∈ S} (1.10)

its relaxed system

σ = {〈at, x〉 ≤ bt , t ∈ T } ,

obtained by replacing 〈at , x〉 < bt with 〈at , x〉 ≤ bt for all t ∈ S. Obviously, the
consistency of σ does not entail the consistency of σ (consider, e.g., the system
σ = {0 < x < 0} in R). The next simple result, on the relationships between the
respective solution sets, F and F, is fundamental along this section.

Proposition 1.6 (Relationships Between F and F ) Let F and F be the solution
sets of σ and σ, respectively. Then, the following statements hold:

(i) If F �= ∅, then F = cl F.

(ii) If F = ∅ and σ does not contain the trivial inequality 〈0n, x〉 ≤ 0, then either
F = ∅ or dim F < n.

1.4.1 Existence of Solutions

We recall that σ is consistent if F �= ∅ and inconsistent otherwise. We next show
that the consistency of a linear system σ as in (1.10), with strict inequalities (i.e.,
S �= ∅), can be characterized in terms of the membership, or not, of two particular
vectors to the closed convex hull and the e-convex hull of suitable sets involving the
data.

It is well known that the consistency of σ can be characterized by means of the
cones

N(σ ) := cone

{(
at

bt

)
, t ∈ T

}
and K(σ) := N(σ)+ R+

(
0n

1

)
,

which are called, in the linear semi-infinite programming literature, second order
moment cone and characteristic cone of σ, respectively. Indeed, σ is consistent if
and only if

(
0n

−1

)
/∈ cl N(σ ), (1.11)
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if and only if

(
0n

−1

)
/∈ cl K(σ). (1.12)

Analogously, we define the moment set of σ as

C(σ) :=
{(

at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
,

and the characteristic set of σ as

D(σ) := C(σ) ∪
{(

0n

1

)}
.

Observe that cone C(σ) ⊂ N(σ ) ⊂ cl cone C(σ) and, therefore, cl cone C(σ) =
cl N(σ). Similarly, cone D(σ) ⊂ K(σ) ⊂ cl cone D(σ) and cl cone D(σ) =
cl K(σ). So, conditions (1.15) and (1.17) below express the consistency of the
relaxed system σ , which is necessary but not sufficient for the consistency of σ . We
now show that, assuming the consistency of σ , the additional conditions, (1.16) and
(1.18), at statements (ii) and (iii) , are equivalent, that is, the non-trivial implication,
[⇒] , in

0n+1 /∈ eco C(σ) ⇐⇒ 0n+1 /∈ eco D(σ)

holds. Since

(
0n

−1

)
/∈ cl cone C(σ), the separation theorem for closed convex cones

allows to assert the existence of some vector

(
u

un+1

)
∈ R

n+1\ {0n+1} such that

−un+1 =
〈(

u

un+1

)
,

(
0n

−1

)〉
< 0

and
〈(

u

un+1

)
,

(
x

xn+1

)〉
≥ 0, ∀

(
x

xn+1

)
∈ C(σ). (1.13)

Assume that 0n+1 /∈ eco C(σ). Then, by Theorem 1.1(iii), there exist(
v

vn+1

)
∈ R

n+1\ {0n+1} and vn+2 ∈ R such that

vn+2 =
〈(

v

vn+1

)
,

(
0n

0

)〉
= 0
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and
〈(

v

vn+1

)
,

(
x

xn+1

)〉
> vn+2 = 0, ∀

(
x

xn+1

)
∈ C(σ). (1.14)

Since un+1 > 0, vn+1 + αun+1 > 0 for some α > 0 sufficiently large. For such
a large scalar α one has, from (1.13) and (1.14), that

〈(
v + αu

vn+1 + αun+1

)
,

(
x

xn+1

)〉
> 0, ∀

(
x

xn+1

)
∈ C(σ)

while
〈(

v + αu

vn+1 + αun+1

)
,

(
0n

1

)〉
= vn+1 + αun+1 > 0

as well. So, the hyperplane

〈(
v + αu

vn+1 + αun+1

)
,

(
x

xn+1

)〉
= 0

contains 0n+1 while D(σ) lies in one of the two open halfspaces it determines,
proving that

0n+1 /∈ eco D(σ).

Theorem 1.4 (Existence Theorem) Let σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt ,

t ∈ S} with S �= ∅. Then, the following statements are equivalent:

(i) σ is consistent.
(ii)

(
0n

−1

)
/∈ cl cone

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}]
(1.15)

and

0n+1 /∈ eco

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}]
. (1.16)

(iii)

(
0n

−1

)
/∈ cl cone

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
∪
{(

0n

1

)}]

(1.17)
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and

0n+1 /∈ eco

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
∪
{(

0n

1

)}]
. (1.18)

The equivalence [(ii) ⇐⇒ (iii)] holds because conditions (1.15) and (1.16) are
equivalent to (1.17) and (1.18), respectively. Nevertheless, it is easy to prove
that condition (1.18) implies (1.17), so that we obtain the following result as a
consequence of [(i) ⇐⇒ (iii)] in Theorem 1.4.

Corollary 1.2 Let σ be as in Theorem 1.4. Then, σ is consistent if and only if (1.18)
holds.

Proof We only prove that (1.18) implies (1.17). Suppose that (1.18) holds, that
is, 0n+1 /∈ eco D(σ). Then, by (1.8), there exists c ∈ R

n+1 such that 〈c, x〉 < 0,

for all x ∈ D(σ). So,

〈
c,

(
0n

1

)〉
< 0 or, equivalently,

〈
c,

(
0n

−1

)〉
> 0.

Denoting X := {x ∈ R
n+1 : 〈c, x〉 ≤ 0

}
, we have that X is an homogeneous closed

halfspace such that D (σ) ⊂ X and

(
0n

−1

)
/∈ X. Then, by [148, Cor. 11.7.2],

(
0n

−1

)
/∈ cl cone D(σ). ��

The next corollaries are straightforward consequences of the equivalence
(i)⇐⇒ (ii) in Theorem 1.4. Similar results could be obtained from the equivalence
(i)⇐⇒ (iii) .

Corollary 1.3 Let σ be as in Theorem 1.4. Then:

(i) If σ is consistent, then

(
0n

−1

)
/∈ cl cone C(σ) and

0n+1 /∈ conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}
. (1.19)

(ii) If σ is consistent, (1.19) holds and the set in (1.19) is closed, then σ is
consistent.

In [78, Lem. 2.1], it is proved that conv (A+ R+B) = conv A+ cone B for any
nonempty sets A and B in R

n, so that, taking into account the definition of C(σ),
we have

conv C(σ) = conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}
. (1.20)
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Since eco C(σ) = eco conv C(σ), one has

eco C(σ) = eco

[
conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}]
, (1.21)

so (1.19) is an immediate consequence of (1.16). On the other hand, if the set
in (1.19) is closed, then eco C(σ) = conv C(σ) and conditions (1.19) and (1.16)
coincide.

The following example shows that the closedness assumption in statement (ii)
of Corollary 1.3 is not superfluous. It also illustrates the use of Theorem 1.4 in the
dubious case that the mentioned closedness fails.

Example 1.10 Let σ := {−tx1 − x2 < t2, t ∈ [−1, 1] \ {0} ; x2 < 0
}
. The set in

Fig. 1.9a,

⎧
⎨

⎩

⎛

⎝
−t

−1
t2

⎞

⎠ , t ∈ [−1, 1] \ {0}
⎫
⎬

⎭
∪
⎧
⎨

⎩

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠

⎫
⎬

⎭
,

generates the (non-closed) characteristic cone

K(σ) =
(
R

2 × ]0,+∞[
)
∪ R+

⎛

⎝
0
1
0

⎞

⎠ .

JJ J'J'

a b

Fig. 1.9 (a) Generators of K(σ); (b) The set Y
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Since (1.15) holds, σ is consistent. The set in (1.19) is

Y := conv

⎛

⎝

⎧
⎨

⎩

⎛

⎝
−t

−1
t2

⎞

⎠ , t ∈ [−1, 1] \ {0}
⎫
⎬

⎭
∪
⎧
⎨

⎩

⎛

⎝
0
1
0

⎞

⎠

⎫
⎬

⎭

⎞

⎠

= conv

⎧
⎨

⎩

⎛

⎝
−t

−1
t2

⎞

⎠ , t ∈ [−1, 1] ;
⎛

⎝
0
1
0

⎞

⎠

⎫
⎬

⎭
\({0} × [−1, 1[×{0})

which does not contain 03. So, σ satisfies the necessary condition (i) in Corol-
lary 1.3 but not the sufficient one, (ii). We finally observe that eco C(σ) is the
closure of the set Y in Fig. 1.9b as all its exposed faces contain points of Y. Hence,

03 ∈ eco C(σ) = cl Y = conv

⎛

⎝

⎧
⎨

⎩

⎛

⎝
−t

−1
t2

⎞

⎠ , t ∈ [−1, 1]

⎫
⎬

⎭
∪
⎧
⎨

⎩

⎛

⎝
0
1
0

⎞

⎠

⎫
⎬

⎭

⎞

⎠ ,

and σ turns out to be inconsistent by Theorem 1.4.

Corollary 1.4 (Motzkin-Like Existence Theorem) Let

σ = {〈at , x〉 < 0, t ∈ S; 〈at , x〉 ≤ 0, t ∈ W ; 〈at , x〉 = 0, t ∈ E} (1.22)

be an homogeneous system such that the index sets are pairwise disjoint and S �= ∅.
Then, σ is consistent if and only if

0n /∈ eco [{at , t ∈ S} + R+ {at , t ∈ W } + R {at , t ∈ E}] . (1.23)

In the particular case that the set

conv {at , t ∈ S} + cone {at , t ∈ W } + span {at , t ∈ E}
is closed, σ is consistent if and only if

0n /∈ conv {at , t ∈ S} + cone {at , t ∈ W } + span {at , t ∈ E} .

It is customary in mathematical programming to express the existence theorems
in the equivalent form of alternative theorems asserting that exactly one of two
statements holds, being one of them relative to the consistency of some system, and
the other relative to the membership of certain vector in a suitable set. For instance,
the reformulation of Corollary 1.4 as an alternative theorem asserts that either σ in
(1.22) is consistent or

0n ∈ eco [{at , t ∈ S} + R+ {at , t ∈ W } + R {at, t ∈ E}] ,

but not both.
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Corollary 1.5 (Gordan-Like Existence Theorem) An homogeneous system σ =
{〈at , x〉 < 0, t ∈ S} is consistent if and only if

0n /∈ eco {at , t ∈ S} . (1.24)

In the particular case that conv {at , t ∈ S} is closed, σ is consistent if and only if
0n /∈ conv {at , t ∈ S}.

Obviously, Corollary 1.5 can be expressed as an alternative theorem by saying
that either σ = {〈at , x〉 < 0, t ∈ S} is consistent or 0n ∈ eco {at, t ∈ S} , but not
both.

The next alternative theorem is another immediate consequence of Theorem 1.4.
There, R(T ) denotes the space of generalized finite sequences, that is, the linear
space of those functions λ : T → R whose support, supp λ := {t ∈ T : λt �= 0} ,
is finite. We denote by R

(T )
+ the positive cone in R

(T ). This notation allows us
to characterize the existence of solutions in terms of the inexistence of certain
multipliers.

Corollary 1.6 (Rockafellar-Like Alternative Theorem) Let σ be as in Theo-
rem 1.4. Assume that {〈at , x〉 ≤ bt , t ∈ W } is consistent and that

cone

{(
at

bt

)
, t ∈ T

}
and conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}

are closed sets. Then one and only one of the following alternatives holds:

(i) σ is consistent.
(ii) There exists λ ∈ R

(T )
+ such that at least one of the numbers λt , t ∈ S, is

nonzero, and

∑

t∈T

λtat = 0n and
∑

t∈T

λtbt ≤ 0.

If

{(
at

bt

)
, t ∈ S

}
is compact and cone

{(
at

bt

)
, t ∈ W

}
is closed, the closedness

assumptions in Corollary 1.6 hold. In particular, if S and W are finite, then
Proposition 1.6 becomes [148, Th. 22.2] (see Corollary 2.4).

The following alternative theorem is an immediate consequence of Corollary 1.6
for systems of strict linear inequalities.

Corollary 1.7 (Carver-Like Alternative Theorem) Let σ = {〈at , x〉 < bt , t ∈ S}
be such that conv

{(
at

bt

)
, t ∈ S

}
is closed. Then one and only one of the following

alternatives holds:

(i) σ is consistent.
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(ii) There exists λ ∈ R
(T )
+ such that at least one of the numbers λt ,t ∈ S, is nonzero,

and

∑

t∈S

λtat = 0n and
∑

t∈S

λtbt ≤ 0.

We finish this section showing the natural way to decide whether σ is consistent
or not, and to compute a solution of σ in the first case. To do this we associate with
σ the ordinary linear semi-infinite programming (LSIP in short) problem

(Pσ ) Min
(x,xn+1)∈Rn+1

xn+1

s.t. 〈at , x〉 − xn+1 ≤ bt , t ∈ S,

〈at , x〉 ≤ bt , t ∈ W,

whose optimal value is denoted by v(Pσ ).

Proposition 1.7 (Checking the Consistency of σ via LSIP) The following state-
ments hold:

(i) If v(Pσ ) < 0, then σ is consistent.
(ii) If v(Pσ ) > 0 , then σ is inconsistent.
(iii) If v(Pσ ) = 0 and (Pσ ) is not solvable, then σ is inconsistent.

If v(Pσ ) = 0 and (Pσ ) is solvable, there exists an optimal solution of (Pσ ) which

can be written as

(
x

0

)
. Then x is solution of σ . Nevertheless, σ is not necessarily

consistent as the next example shows.

Example 1.11 Consider the inconsistent system in Example 1.10. We claim that
v(Pσ ) = 0 with (Pσ ) solvable. In fact, taking limits as t → 0 in−tx1−x2−x3 ≤ t2,
t �= 0, gives−x2 − x3 ≤ 0. The remaining constraint is x2 − x3 ≤ 0, so that x3 ≥ 0
for all feasible solution of (Pσ ). Since 03 is a feasible solution, v (Pσ ) = 0 and 03
is an optimal solution of (Pσ ).

Observe that, given ε < 0, if

(
x

xn+1

)
is a solution of

σε := {〈at , x〉 + btxn+1 ≤ ε, t ∈ S; xn+1 ≤ ε; 〈at , x〉 + btxn+1 ≤ 0, t ∈ W } ,

then (−xn+1)
−1
(

x

ε

)
is a feasible solution of (Pσ ), so that (as observed in [42])

the consistency of σε entails the consistency of σ , according to Proposition 1.7.

The converse statement holds if |S| < ∞ (since, given x ∈ F , then εδ−1
(

x

−1

)
is

solution of σε for δ := max {−1; 〈at , x〉 − bt , t ∈ S}), but it may fail for infinite
systems. In fact, for the system in R σ = {−tx < t2, t �= 0

}
, F = {0} whereas σε

is inconsistent for all ε < 0.
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1.4.2 Consequent Inequalities

An inequality 〈a, x〉 ≤ b (respectively, 〈a, x〉 < b) is consequence of

σ = {〈at , x〉 < bt , t ∈ S; 〈at , x〉 ≤ bt , t ∈ W }

if 〈a, x〉 ≤ b (respectively, 〈a, x〉 < b) holds for every x ∈ R
n solution of σ . If

σ is inconsistent, then any linear inequality is consequence of σ . So we assume
throughout this section that σ is consistent.

One way of generating consequent weak inequalities of the ordinary system σ =
{〈at , x〉 ≤ bt , t ∈ T } consists in picking some λ ∈ R

(T )
+ , multiplying the inequality

〈at , x〉 ≤ bt by λt for each t ∈ supp λ and summing up these inequalities. The
resulting inequality,

〈
∑

t∈T

λtat , x

〉

≤
∑

t∈T

λtbt , (1.25)

is of course a consequence of σ, as well as those obtained by strengthening the
constant term in (1.25), i.e., the inequalities of the form

〈
∑

t∈T

λtat , x

〉

≤
∑

t∈T

λtbt + μ, with μ ≥ 0.

In other words, if

(
a

b

)
∈ cone

{(
at

bt

)
, t ∈ T ;

(
0n

1

)}
= K(σ),

then 〈a, x〉 ≤ b is a consequence of σ . These are all the consequences of σ when
T is finite, by the non-homogeneous Farkas lemma proved by Minkowski in 1911,
but we can use limits to get more consequences whenever T is infinite. Indeed, if{(

ak

bk

)}
is a sequence in R

n+1 converging to

(
a

b

)
such that

(
ak

bk

)
∈ K(σ), k = 1, 2, . . .

then 〈a, x〉 ≤ b is consequence of σ . Even more, the weak inequalities which are
consequence of σ are characterized by the generalized non-homogeneous Farkas
lemma for ordinary systems [72, Th. 3.1] as follows:

〈a, x〉 ≤ b,∀x ∈ F ⇐⇒
(

a

b

)
∈ cl K(σ). (1.26)
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Regarding σ , where we now assume that S �= ∅, one can obtain a strict
consequent inequality 〈a, x〉 < b by picking some λ ∈ R

(T )
+ such that λt > 0

for at least one index t ∈ S, in which case

〈
∑

t∈T

λtat , x

〉

<
∑

t∈T

λtbt (1.27)

is a consequence of σ . A given λ ∈ R
(T )
+ is said to be legal if λt > 0 for at least one

index t ∈ S, while its corresponding strict inequality (1.27) is called a legal linear
combination of σ. Obviously,

〈
∑

t∈T

λtat , x

〉

<
∑

t∈T

λtbt + μ, with μ ≥ 0,

is also consequence of σ, but the limiting process mentioned above provides
consequent inequalities of the form 〈a, x〉 ≤ b, with

(
a

b

)
∈ cl K(σ) = cl cone D(σ),

whose corresponding strict inequality 〈a, x〉 < b is not necessarily a consequence
of σ. The next result replaces this limiting process by a stronger dual condition
involving its characteristic and moment sets and legal linear combinations.

Theorem 1.5 (Characterization of Consequent Inequalities) For any consistent
system σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S} the following statements
hold:

(i) 〈a, x〉 ≤ b is consequence of σ if and only if

(
a

b

)
∈ cl cone

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
∪
{(

0n

1

)}]
.

(ii) 〈a, x〉 < b is consequence of σ if and only if either

(
0n

−1

)
∈ cl cone

({(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
− R+

(
a

b

))

(1.28)

or

0n+1 ∈ eco

({(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
− R+

(
a

b

))
. (1.29)
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(iii) If 〈a, x〉 < b is a legal linear combination of the system
{〈at , x〉 ≤ bt , t ∈ W ∪ S; 〈0n, x〉 < 1}, then (1.28) holds and 〈a, x〉 < b

is consequence of σ . The converse holds whenever the cone

cone

({(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
− R+

(
a

b

))

is closed.
(iv) If 〈a, x〉 < b is a legal linear combination of σ , then (1.29) holds and the

inequality 〈a, x〉 < b is consequence of σ . The converse holds whenever the
convex set

conv

{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
− R+

(
a

b

)
(1.30)

is e-convex.

Statement (i) above means that 〈a, x〉 ≤ b is consequence of σ if and only if it
is consequence of σ . Regarding (ii) and (iii), taking into account that

cone

(
C(σ)− R+

(
a

b

))
⊂ N(σ )− R+

(
a

b

)
⊂ cl cone

(
C(σ)− R+

(
a

b

))
,

condition (1.28) is equivalent to

(
0n

−1

)
∈ cl

(
N(σ )− R+

(
a

b

))

and, whenever cone

(
C(σ)− R+

(
a

b

))
is closed, we have

cone

(
C(σ)− R+

(
a

b

))
= N(σ )− R+

(
a

b

)
.

In that case, condition (1.28) obviously yields 〈a, x〉 < b is a legal linear
combination of σ ∪ {〈0n, x〉 < 1}.

Regarding (iv), by (1.20), we have

conv

(
C(σ)− R+

(
a

b

))
= conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W ; −

(
a

b

)}

= conv C(σ)− R+
(

a

b

)
,

so that

eco

(
C(σ)− R+

(
a

b

))
= eco

(
conv C(σ)− R+

(
a

b

))
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and, whenever conv C(σ)− R+
(

a

b

)
is e-convex, we have

eco

(
C(σ)− R+

(
a

b

))
= conv C(σ)− R+

(
a

b

)
.

The closedness assumption at (iii) and even convexity at (iv) are not superfluous
for the validity of the converse statements, as the next example shows.

Example 1.12 The inequality−x2 < 0, in R
2, is a consequence of

σ :=
{

2tx1 − x2 < t2, t ∈ U ; x1 − x2 < 0
}

,

where U = ]−1, 0[, as far as the solution set F of σ is the interior of the convex
hull of the graph of the function f : R→ R defined by

f (x1) =
⎧
⎨

⎩

−2x1 − 1, if x1 < −1,

x2
1 , if − 1 ≤ x1 ≤ 0,

x1, if x1 > 0,

(see Fig. 1.10). Nevertheless, −x2 < 0 fails to be a legal linear combination of
σ ∪ {〈0n, x〉 < 1} or σ , since the following two systems are inconsistent:

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
0
−1
0

⎞

⎠ = ∑

t∈U

λt

⎛

⎝
2t

−1
t2

⎞

⎠+ γ

⎛

⎝
1
−1
0

⎞

⎠+ μ

⎛

⎝
0
0
1

⎞

⎠

λ ∈ R
(U)
+ , γ ≥ 0, μ > 0

⎫
⎪⎪⎬

⎪⎪⎭

a b

Fig. 1.10 (a) The closure of F ; (b) The solution set F
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Fig. 1.11 The set conv C(σ)− R+
(

a

b

)

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
0
−1
0

⎞

⎠ = ∑

t∈U

λt

⎛

⎝
2t

−1
t2

⎞

⎠+ γ

⎛

⎝
1
−1
0

⎞

⎠

∑

t∈U

λt + γ > 0

λ ∈ R
(U)
+ , γ ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Actually, (1.29) holds, but conv C(σ)− R+
(

a

b

)
is not e-convex (see Fig. 1.11).

Regarding the fulfilment of the additional assumption for the converse statement

in (iv), i.e., the even convexity of convC(σ) − R+
(

a

b

)
, this set is open whenever

conv C(σ) is open, and it is closed whenever

{(
at

bt

)
, t ∈ S

}
is compact and W = ∅

(and so e-convex in both cases). Moreover, according to Corollary 1.1, conv C(σ)−
R+
(

a

b

)
is e-convex if the pair of sets X := conv C(σ) and Y := R+

(
a

b

)
satisfies

any of the conditions of Theorems 1.2 and 1.3, for instance, at least one of the
conditions (ii), (iii), (v), and (I), which here collapse to:

• conv C(σ) is e-convex and its intersection with any supporting hyperplane is
compact.

• conv C(σ) admits no asymptote in any supporting hyperplane.
• The projections of conv C(σ) are all e-convex.
• conv C(σ) is a strip.



32 1 Evenly Convex Sets: Linear Systems Containing Strict Inequalities

1.4.3 Set Containment of Evenly Convex Sets

One of the basic tools in machine learning are the so-called linear classifiers,
which are affine functions allowing to incorporate prior knowledge obtained from
sets (the so-called learning sets), which are usually formed by individuals which
have been previously classified (e.g., as either healthy or ill in medical tests).
Mangasarian considered infinite learning sets, starting with the simple ones, the
polyhedral sets [117, 118]. The main question was how to model the condition that a
given polyhedral knowledge set F satisfies F ⊂ {x ∈ R

n : 〈a, x〉 − b ≤ 0} , where
a ∈ R

n\ {0n} and b ∈ R are the decision variables determining the best linear
classifier 〈a, ·〉 − b for certain criterion.

Since, by the separation theorem, any closed convex set F is the intersection of
all closed halfspaces containing F, we associate with F the so-called weak dual
cone of F,

K
≤
F :=

{(
a

b

)
∈ R

n+1 : 〈a, x〉 ≤ b,∀x ∈ F

}
. (1.31)

Then,

F ⊂ {x ∈ R
n : 〈a, x〉 ≤ b

}⇐⇒
(

a

b

)
∈ K

≤
F . (1.32)

If F is expressed as the solution set of a finite system {〈at , x〉 ≤ bt , t ∈ W } , the
classical non-homogeneous Farkas lemma asserts that

K
≤
F := cone

{(
at

bt

)
, t ∈ W ;

(
0n

1

)}
,

providing the aimed characterization,

F ⊂ {x ∈ R
n : 〈a, x〉 ≤ b

}⇐⇒
(

a

b

)
∈ cone

{(
at

bt

)
, t ∈ W ;

(
0n

1

)}
,

for the containment of F in a halfspace in terms of the data.
More generally, the containment problem, which consists of deciding, for a given

couple of subsets of Rn, the inbody F and the circumbody G, whether F ⊂ G or
not, was first posed in 2000 by Mangasarian [117]. The sets F and G are usually
given as solution sets of inequality systems, and the aim is the characterization of
the inclusion F ⊂ G in terms of the data (usually, the constraints describing these
sets). Mangasarian [117] solved the containment problem for polyhedral convex
sets (the situation illustrated by Fig. 1.12) via linear programming, by exploiting the
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Fig. 1.12 Inclusion of a
polyhedron F in another
one G

following consequence of (1.32): given two polyhedra F and G,

F ⊂ G ⇐⇒ K
≤
G ⊂ K

≤
F , (1.33)

where K
≤
F and K

≤
G are the weak dual cones of F and G defined as in (1.31).

Consequently,

F = G ⇐⇒ K
≤
F = K

≤
G.

If F is the solution set of {〈at , x〉 ≤ bt , t ∈ W } , from the definition of K
≤
F

and the non-homogeneous Farkas lemma for linear semi-infinite systems [72, Cor.
3.1.2], one gets

K
≤
F = cl cone

{(
at

bt

)
, t ∈ W ;

(
0n

1

)}
.

As shown in [68, Prop. 4.1], if F and G are the sets of solutions of two given
systems of weak inequalities, the preservation of the inclusion F ⊂ G under
sufficiently small perturbations of the respective linear representations is related
with the condition that F ⊂ int G. Here, both sets F and int G are e-convex as the
inbody F is a closed convex set while the circumbody int G is an open convex set.
In order to extend (1.33) to e-convex sets we must associate with F the cone which
results of replacing “≤” with “<” in (1.31).
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One can define the weak dual cone K
≤
F of an arbitrary set F by (1.31). Then,

given a couple F and G of proper subsets of Rn, one has cl conv F ⊂ cl conv G if
and only if K

≤
G ⊂ K

≤
F and cl conv F = cl conv G if and only if K

≤
G = K

≤
F .

The strict dual cone of a set F such that ∅ �= F ⊂ R
n is

K<
F :=

{(
a

b

)
∈ R

n+1 : 〈a, x〉 < b,∀x ∈ F

}
.

Observe that K<
F and K

≤
F can be seen as solution sets of homogeneous linear

systems of strict and weak inequalities in R
n+1 indexed by F, respectively. So, they

are an e-convex cone not containing 0n+1 and a closed convex cone, respectively.
From their definitions, we have that cl K<

F ⊂ K
≤
F . Moreover, the reverse inclusion

holds as any

(
a

b

)
∈ K

≤
F is the limit of the sequence

{(
a

b + 1
k

)}
contained in K<

F .

So,

(
0n

1

)
∈ cl K<

F = K
≤
F .

Proposition 1.8 (Characterization of the Strict Dual Cone) Let F be the solution
set of σ = {〈at , x〉 < bt , t ∈ S; 〈at , x〉 ≤ bt , t ∈ W } . Then the following state-
ments hold:

(i) K<
F is formed by all vectors

(
a

b

)
such that 〈a, x〉 < b is a legal linear

combination of σ provided the set

C(σ) =
{(

at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}

satisfies at least one of the following conditions:

(a) conv C(σ) is open.

(b)

{(
at

bt

)
, t ∈ S

}
is compact and W = ∅.

(c) conv C(σ) is e-convex and its intersection with any supporting hyperplane
is compact.

(d) conv C(σ) admits no asymptote in any supporting hyperplane.
(e) The projections of conv C(σ) are all e-convex.
(f ) conv C(σ) is a strip.

(ii) If W = ∅, then

K<
F = ecoR++

{(
at

bt

)
, t ∈ S;

(
0n

1

)}
. (1.34)
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Partial Proof Since statement (ii) is known, we only prove here statement (i). Any

of the conditions from (i.a) to (i.f ) guarantees that conv C(σ)−R+
(

a

b

)
is e-convex

for all

(
a

b

)
∈ R

n+1 by Corollary 1.1. The conclusion follows from Theorem 1.5(iv).

��
The strict dual cone of F, K<

F , gathers useful geometric information on F ; for
instance, the recession cone of F is

0+F =
{
y ∈ R

n : 〈a, y〉 ≤ 0, ∀
(

a

b

)
∈ K<

F

}
,

and F is bounded if and only if

(
0n

1

)
∈ int K<

F .

Proposition 1.9 (Dual Characterization of the Containment of e-Convex Sets)
Given two proper subsets of Rn, F and G, one has

eco F ⊂ eco G ⇐⇒ K<
G ⊂ K<

F .

Moreover, if both sets are e-convex, then

F ⊂ G ⇐⇒ K<
G ⊂ K<

F .

Consequently,

F = G ⇐⇒ K<
F = K<

G.

Proof The first statement comes from the definitions of strict dual cone and e-
convex hull, and the second from the obvious equations eco F = F and eco G = G

when these two sets are e-convex. ��
The next result suggests the existence of an intriguing topological duality

between e-convex sets and their strict dual cones.

Proposition 1.10 (On the Topology of e-Convex Sets and Their Dual Cones)
Let F �= ∅ be an e-convex set. Then the following statements hold:

(i) F is open if and only if K<
F ∪ {0n+1} is closed.

(ii) If K<
F is relatively open, then F is closed.

(iii) If F is compact, then K<
F is open.

Example 1.13 Consider the closed convex set F = R
2+. From the definition of strict

dual cone one gets K<
F = (−R+)2 × R++ (it can also be obtained from (1.34) by

observing that F = {
x ∈ R

2 : −xi < α, α ∈ R++, i = 1, 2
}
). Since K<

F is neither
closed nor open, the converse statement of Proposition 1.10(ii) does not hold, and
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one cannot replace “compact” with “closed” in Proposition 1.10(iii). Finally, let us

observe that

(
02

1

)
∈ bd K<

F as F is unbounded.

1.5 Evenly Linear Semi-Infinite Programming

Strict inequality constraints naturally arise in many real situations, even though
they are usually replaced in optimization models by their corresponding weak
inequalities. For instance, in production planning problems, where the decision
variable xj represents the production level of the j -th good (or commodity), j ∈ J,

sign constraints of the type xj > 0 are usually replaced by their relaxation xj ≥ 0,

which provides relaxed optimization problems of the accurate ones. In the same
context, when the j -th good contains a percentage pj of some obnoxious component
and the percentage of this component at the whole production is required to be less
or equal than some given percentage threshold P , this condition can be formulated

as
∑

j∈J pj xj∑
j∈J xj

≤ P provided that xj > 0 for some j ∈ J, that is, the following pair

of linear constraints hold:

∑

j∈J

(
pj − P

)
xj ≤ 0 and

∑

j∈J
xj > 0.

In this section we obtain information on the accurate model from its relaxation.
To this aim, we associate with the given linear semi-infinite programming

problem with strict inequalities (in short, e-LSIP problem)

(P ) Min
x∈Rn

〈c, x〉
s.t. 〈at, x〉 ≤ bt , t ∈ W,

〈at, x〉 < bt , t ∈ S �= ∅,
(1.35)

where c �= 0n and W and S are arbitrary disjoint index sets, its relaxed problem

(P ) Min
x∈Rn

〈c, x〉
s.t. 〈at , x〉 ≤ bt, t ∈ T = W ∪ S.

(1.36)

We denote by σ and σ the linear systems given by the constraints of (P ) and(
P
)
, respectively, and by F and F their corresponding solution sets, which are

the feasible sets of (P ) and
(
P
)
, respectively. Observe that, since σ corresponds

to the relaxed system of σ , by Proposition 1.6, we have that F = cl F when (P ) is
consistent (that is, F �= ∅).

In order to obtain geometrical information on the feasible set F and to decide
whether a given x∗ ∈ F is an optimal solution of (P ) by means of a condition
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involving the data (that is, the coefficients of the constraints), we must introduce
assumptions on σ which are generically called constraint qualifications.

1.5.1 Constraint Qualifications

We first introduce five global constraint qualifications. We say that σ is continuous
if T is a compact topological space and the coefficient function t �−→ (at , bt ) is
continuous on T . In particular, σ is said to be analytical (respectively, polynomial)
if T is a compact interval in R and the n+1 projections of the vector-valued function
t �−→ (at , bt ) are analytical (respectively, polynomial). We say that σ satisfies the
Slater constraint qualification (SCQ in short) if there exists some x̂ ∈ R

n such that
〈at , x̂〉 < bt for all t ∈ T . Finally, we say that σ satisfies the Farkas-Minkowski
constraint qualification (FMCQ in brief) if it is consistent and each weak inequality
〈a, x〉 ≤ b which is consequence of σ is also consequence of a finite subsystem
of σ.

Assume that FMCQ holds and 〈a, x〉 ≤ b is consequence of σ. Then there exist
two finite sets W1 ⊂ W and S1 ⊂ S such that 〈a, x〉 ≤ b is consequence of σ1 =
{〈at , x〉 ≤ bt , t ∈ W1; 〈at , x〉 < bt , t ∈ S1} and, according to Theorem 1.5,

(
a

b

)
∈ cl cone

({(
at

bt

)
, t ∈ S1

}
+ R+

{(
at

bt

)
, t ∈ W1

}
∪
(

0n

1

))
.

Since the convex cone generated by the union of finitely many halflines together
with one element of the vertical axis is not necessarily closed, we cannot assert that

(
a

b

)
∈ cone

({(
at

bt

)
, t ∈ S1

}
+ R+

{(
at

bt

)
, t ∈ W1

}
∪
(

0n

1

))
.

Thus, the closedness of cone D(σ) is a sufficient, but not necessary, condition for
the fulfillment of FMCQ. Actually, σ satisfies FMCQ if and only if the characteristic
cone of the relaxed system σ ,

K(σ) = cone

{(
at

bt

)
, t ∈ T ;

(
0n

1

)}
,

is closed [72, Th. 5.3(i)]. The definition of the next two constraint qualifications
involves σ .

We say that σ satisfies the locally Farkas-Minkowski constraint qualification
(LFMCQ in short) at x ∈ F (not necessarily in F ) if it is consistent and each
inequality 〈a, x〉 ≤ b which is consequence of σ and binding at x (i.e., 〈a, x〉 = b)

is also consequence of a finite subsystem of σ. Obviously, FMCQ implies LFMCQ
at any x ∈ F , but the converse statement does not hold (see Example 1.14).



38 1 Evenly Convex Sets: Linear Systems Containing Strict Inequalities

Finally, we say that σ satisfies the locally polyhedral constraint qualification
(LOPCQ) at x ∈ F if A(x)◦ = D(F ; x), where

A(x) := cone {at : 〈at , x〉 = bt , t ∈ T }

is the so-called active cone at x and A(x)◦ denotes its (negative) polar cone, i.e.,

A(x)◦ = {y ∈ R
n : 〈at, y〉 ≤ 0,∀t ∈ T such that 〈at , x〉 = bt }

(see Sect. 1.6.1). A necessary condition for LOPCQ is F be quasipolyhedral and
its set of extreme points be isolated [72, Th. 5.6(ii)]. Any consistent finite system
satisfies LOPCQ at any point of F , which in turn implies LFMCQ at any point of
F . Diagram 1.3, where x denotes an arbitrary element of F, shows the relationships
between the above constraint qualifications.

When σ satisfies one of the above constraint qualifications, its corresponding
relaxed system σ also satisfies the same condition (recall that, according to
Theorem 1.5(i), an inequality 〈a, x〉 ≤ b is consequence of σ if and only if it is
consequence of σ ). This allows us to adapt the known results on ordinary semi-
infinite linear systems and ordinary semi-infinite linear programming to systems
and linear problems containing strict inequalities.

Example 1.14 Let σ := {−x1 − t2x2 < −2t, t ∈ R++
}
. It satisfies LFMCQ at

any x ∈ bd F = bd F as each inequality of σ describes the halfplane determined by
a different supporting hyperplane to F (the convex hull of the graph of the function
x �−→ 1

x
restricted to R++). However, FMCQ fails as −x1 ≤ 0 and −x2 ≤ 0

are linear consequences of σ which are not consequences of finite subsystems of
σ (Fig. 1.13 shows that the halfplanes −x1 ≤ 0 and −x2 ≤ 0 do not contain the
solution set of the subsystem obtained by replacing T by {t1, t2, t3} in σ ).

Example 1.15 The system σ1 :=
{−tx1+ (t − 1)x2 < t2− t, t ∈ [0, 1]

}
is poly-

nomial and satisfies SCQ as x̂ = (1, 1) is a Slater point. Thus, σ1 satisfies FMCQ
(Fig. 1.14 shows K(σ1)) and, so, LFMCQ everywhere. However, LFMCQ is lost
by the elimination of at least one of the redundant inequalities corresponding to
the indices t = 0, 1. For instance, σ2 =

{−tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1[
}

Diagram 1.3 Types of
ordinary linear systems

σ polynomial

⇓
σ analytical

⇓
σ continuous and SCQ

⇑ ⇓
σ finite �⇒ FMCQ

⇓
LFMCQ at x ⇐� LOPCQ at x
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Fig. 1.13 σ satisfies
LFMCQ everywhere but not
FMCQ

Fig. 1.14 Characteristic cone
of σ 1

does not satisfy LFMCQ at (1, 0) and (0, 1) as −x1 ≤ 0 and −x2 ≤ 0 are linear
consequences of σ 2 defining supporting halfspace to its feasible set F 2 = F 1, but
they are not consequences of any finite subsystems of σ 2. Figure 1.15 shows that the
halfplanes −x1 ≤ 0 and −x2 ≤ 0 do not contain the solution set of the subsystem
corresponding to the index set {t1, t2, t3}. Observe that F 1 = int F 2 is the result of
eliminating from F 2 its two facets.
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Fig. 1.15 σ2 does not satisfy
LFMCQ at two points

1.5.2 Feasible Set

Since we are assuming that F �= ∅ and its closure is cl F = F, by [148, Ths.
6.2 and 6.3], F and F have the same relative interiors and, so, the same relative
boundaries, affine hulls, and dimensions. Moreover, if int F �= ∅, the interiors and
the boundaries of F and F are also the same.

The next result is an immediate consequence of [72, Th. 9.3] taking into account
that

0+F = 0+F = {x ∈ R
n : 〈at , x〉 ≤ 0, t ∈ T

}
.

Proposition 1.11 (Boundedness of the Solution Set) The following statements are
equivalent:

(i) F is bounded.
(ii) 0n is the unique solution of {〈at , x〉 ≤ 0, t ∈ T } .
(iii)

(
0n

1

)
∈ int K (σ) .

(iv) cone {at , t ∈ T } = R
n.

To get a formula for dim F in terms of the data we must introduce another
concept. Since

〈at , x〉 = bt ,∀x ∈ F ⇐⇒ 〈at , x〉 = bt ,∀x ∈ F,
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the set of carrier indices of σ, defined as

T = := {t ∈ T : 〈at, x〉 = bt,∀x ∈ F } ⊂ W,

coincides with the set of carrier indices of σ (as defined in [72, p. 101] for ordinary
systems), SCQ holds if and only if T = = ∅ [72, Cor. 5.1.1] and, by [72, Th. 5.1],

rint F ⊂ {x ∈ R
n : 〈at, x〉 < bt, t ∈ T \T =; 〈at , x〉 = bt , t ∈ T =

}
.

The next result involves the lineality of a convex cone K (recall that lin K =
K ∩ (−K)).

Proposition 1.12 (Dimension Formulas) The following statements hold true:

(i) dim F = n− dim lin cl K(σ). Moreover, if LFMCQ holds at each x ∈ F (e.g.,
if FMCQ holds), then

dim F = n− dim span {at : t ∈ T =}

and

aff F = {x ∈ R
n : 〈at, x〉 = bt, t ∈ T =

}
.

(ii) dim 0+F = n− dim lin cl cone {at : t ∈ T } .
(iii) dim lin 0+F = n− dim cone {at : t ∈ T } .
Proof (i) comes from [72, Ths. 5.8 and 5.9], as dim F = dim F, while (ii) and (iii)
follow from [72, Remark after Th. 5.8] recalling that 0+F = 0+F . ��

To get information on the boundary points of F we denote by

Ft :=
{
x ∈ F : 〈at , x〉 = bt

}

the (possibly empty) exposed face of F associated with index t ∈ T . Obviously,
F = F\ ⋃

t∈S

Ft .

If σ is analytical, we associate with each x ∈ F a linear subspace L(x) of
R

n defined as the linear span of the union of the sets of successive derivatives{
at , a

(1)
t , . . . , a

(d(t))
t

}
of the slack function at x, t �−→ 〈at , x〉 − bt at those indices

t ∈ T which are roots (with order of multiplicity d(t)+ 1).
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Proposition 1.13 (Boundary and Extreme Points) The following statements hold
true:

(i) If LFMCQ holds at each x ∈ F (e.g., if FMCQ holds), then

rint F = {x ∈ R
n : 〈at , x〉 = bt , t ∈ T =; 〈at , x〉 < bt , t ∈ T \T =} ,

rbd F = ∪{Ft : t ∈ T \T =}

and

bd F = ∪{Ft : at �= 0n, t ∈ T } .

(ii) Given x ∈ F, if dim A(x) = n, then x is an extreme point of F . The converse
statement holds under LOPCQ at x.

(iii) Let σ be an analytical system and let x ∈ F be such that the slack function at
x is not the null function on T . Then, x is an extreme point of F if and only if
dim L(x) = n.

Proof (i) comes from [72, Th. 5.9], as rint F = rint F, and (ii) and (iii) follow
from [72, Th. 9.1], recalling that extr F = F ∩ extr F by Proposition 1.1(ii). ��
Example 1.16 (Example 1.15 Revisited) The solution set F2 of the system

σ2 :=
{
−tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1[

}
(1.37)

is the result of eliminating from the set F 1 in Fig. 1.15 the points of the arc
√

x1 +√
x2 = 1, −x1 < 0, −x2 < 0 (see [72, Ex 1.1]). Since

cone {at , t ∈ ]0, 1[} = cone

{( −t

t − 1

)
, t ∈ ]0, 1[

}
�= R

2,

by Proposition 1.11, F is unbounded. Moreover, aff F2 = R
2 and dim F2 = 2, as

prescribed by Proposition 1.12(i) even though the additional assumption does not
hold. Regarding Proposition 1.13, since T = = ∅, the three equations in (i) fail,
showing the necessity of LFMCQ. Regarding statement (ii), observe that A(x) =
{02} for all x ∈ F2, even at the extreme points of F2, (1, 0) and (0, 1) , which shows
that LOPCQ is not superfluous for the converse. Finally, regarding (iii), if we take
the analytical system

σ3 :=
{
−tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1] ; −tx1 + (t − 1)x2 ≤ t2 − t, t = 0

}
,

whose solution set F3 is the result of eliminating from F2 the exposed face {0} ×
[1,+∞[, the slack function at x = (1, 0) ∈ F3 is t �−→ −t2, whose unique zero
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is 0, with multiplicity 2 = d (0) + 1, i.e., d (0) = 1. Since at =
( −t

t − 1

)
and

a
(1)
t =

(−1
1

)
,

L(x) = span

{(
0
−1

)
,

(−1
1

)}

and dim L(x) = 2, as expected.

1.5.3 Optimality and Duality

Now, we consider the e-LSIP problem (P ) and its relaxed problem (P ), defined in
(1.35) and (1.36), respectively. We adopt the standard convention that the optimal
value of a minimization problem is +∞ (respectively, −∞) when the problem is
inconsistent (respectively, unbounded). We denote by v(P ), F, and F ∗ the optimal
value, the feasible set, and the optimal set of (P ), and by v(P ), F , and F

∗
the

optimal value, the feasible set, and the optimal set of (P ).
Observe that F ∗ is the intersection of the e-convex set F with the hyperplane

{x ∈ R
n : 〈c, x〉 = v (P )} , so it is an e-convex set too. Moreover, since F ⊂ F,

v(P ) ≤ v(P ) (even in the case that F = ∅ due to the above convention). Observe
also that, for the e-LSIP problem given by

(P ) Min
x∈R x

s.t. zx < 0, z ∈ Z\ {0} ,

one has F = F ∗ = ∅ and v(P ) = +∞ while F = F
∗ = {0} and v(P ) = 0. So, if

F = ∅, we may have v(P ) < v(P ) = +∞ and F ∩ F
∗
� F ∗.

Proposition 1.14 (Optimal Value and Optimal Set in e-LSIP) If the e-LSIP
problem (P ) is consistent, then v(P ) = v(P ) and F ∗ = F ∩ F

∗
.

Proof On the one hand, since ∅ �= F ⊂ F, there exists a sequence
{
xk
}

contained
in F such that

lim
k→∞〈c, x

k〉 = v(P ). (1.38)

On the other hand, since F = cl F, for each k ∈ N there exists zk ∈ F such that

∥
∥
∥zk − xk

∥
∥
∥ <

1

k
,∀k ∈ N. (1.39)
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From (1.38) and (1.39) one gets

v(P ) ≤ lim
k→∞〈c, z

k〉 = lim
k→∞〈c, x

k〉 = v(P ),

which combined with v(P ) ≤ v(P ) yields v(P ) = v(P ).
It remains to prove the non-trivial inclusion F ∗ ⊂ F ∩ F

∗
. Take an arbitrary

x∗ ∈ F ∗ ⊂ F. Then 〈c, x∗〉 ≤ 〈c, x〉 for all x ∈ F. Given x ∈ F there exists a
sequence

{
xk
}

contained in F such that limk xk = x. Then,

〈c, x〉 = lim
k→∞〈c, x

k〉 ≥ 〈c, x∗〉 ,

showing that x∗ ∈ F ∩ F
∗
. ��

From Proposition 1.14, any outer approximation method for (P ), as grid and
cutting plane discretization methods, is also an outer approximation method for
(P ). Similarly, any inner approximation method for (P ), like, for instance, feasible
directions methods (in particular, simplex-like methods) and interior-point methods,
provides a sequence of feasible solutions for (P ) approaching v(P ) even though (P )

is usually unsolvable.
We now discuss how to associate a suitable dual problem for (P ) when F �=

∅. To this aim we must construct lower bounds for {〈c, x〉 : x ∈ F } . Since we are
assuming F �= ∅, by Proposition 1.14,

v(P ) = inf {〈c, x〉 : x ∈ F } = inf
{〈c, x〉 : x ∈ F

} = v(P ),

which means that we can replace the strict inequalities with weak ones in order
to get lower bounds. If −c ∈ cone {at : t ∈ T } there exists λ ∈ R

(T )
+ such that∑

t∈T λtat = −c. Then, for any x ∈ F, one has

〈c, x〉 = −
∑

t∈T
λt 〈at , x〉 ≥ −

∑

t∈T
λtbt . (1.40)

Observe that, if λ is a legal element of R
(T )
+ , there exists a t ∈ T such that

λt (〈at , x〉 − bt ) < 0 and the inequality in (1.40) is strict, but this is not an advantage
when one looks for conditions guaranteeing a zero duality gap. So, we associate with
(P ) the Haar dual problem of (P ), which consists in maximizing the lower bound
for 〈c, x〉 provided by (1.40), that is

(D) Max
λ∈R(T )

+
−∑

t∈T

λtbt

s.t. −∑
t∈T

λtat = c.
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Defining the Lagrange function of (P ) as

L (x, λ) := 〈c, x〉 +
∑

t∈T

λt (〈at , x〉 − bt ), (1.41)

one has

infx∈Rn L (x, λ) = infx∈Rn

(−∑t∈T λtbt +
〈
c +∑t∈T λtat , x

〉)

=
{
−∑t∈T λtbt , if λ ∈ R

(T )
+ and

∑
t∈T λtat = −c,

−∞, otherwise,

so that (D) can be reformulated as the classical Lagrangian dual problem of (P ):

Max
λ∈R(T )

+
inf

x∈Rn
L (x, λ) .

Theorem 1.6 (Duality in e-LSIP) Let (P ) and (D) be consistent. If either FMCQ
holds or −c ∈ rint cone {at : t ∈ T } , then v(P ) = v(D) ∈ R. In the first case, (D)

is solvable.

Proof From the LSIP duality theorems in [72, Th. 8.4] and [155] (see also [72,
Ths. 8.1 and 8.2]) one gets that v(P ) = v(D) ∈ R, with (D) being solvable under
FMCQ, and that v(P ) = v(D) ∈ R with F

∗
being the sum of a nonempty compact

convex set with a linear subspace (see [75, Remark 4.16] for this last statement),
respectively. We get the conclusion observing that v(P ) coincides with v(P ). ��

The assumptions of Theorem 1.6 do not guarantee, however, the solvability of
(P ). Proposition 1.14 also allows us to obtain optimality conditions in e-LSIP.

Theorem 1.7 (Optimality and Strong Uniqueness in e-LSIP) Each one of the
following statements is sufficient for the optimality of x∗ ∈ F regarding (P ) , and
they are also necessary when LFMCQ holds at x∗:

(i) −c ∈ cl A(x∗).
(ii) −c ∈ A(x∗) (KKT condition).
(iii) There exists a feasible solution λ of (D) such that λt (bt − 〈at , x

∗〉) = 0 for
all t ∈ T (complementarity condition).

(iv) There exists λ ∈ R
(T )
+ such that L(x∗, λ) ≤ L(x∗, λ) ≤ L(x, λ) for all x ∈

R
n, with L(·, ·) defined as in (1.41), and for all λ ∈ R

(T )
+ (Lagrange saddle

point condition).

If, additionally, −c ∈ int A(x∗), then x∗ is a strongly unique optimal solution of
(P ), i.e., there exists κ > 0 such that

〈c, x〉 ≥ 〈c, x∗〉+ κ
∥
∥x − x∗

∥
∥ for all x ∈ F. (1.42)

The converse also holds under LFMCQ at x∗.
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Proof According to [72, Th. 7.1], any of the conditions from (i) to (iv) implies that
x∗ ∈ F

∗
. So, x∗ ∈ F ∩ F

∗ = F ∗, by Proposition 1.14. Under the LFMCQ at x∗
these conditions are also sufficient, again by [72, Th. 7.1].

Regarding the strong uniqueness, −c ∈ int A(x∗) guarantees [72, Th. 10.6] the
existence of κ > 0 such that

〈c, x〉 ≥ 〈c, x∗〉+ κ
∥
∥x − x∗

∥
∥ for all x ∈ F, (1.43)

which obviously entails (1.42). Since F = cl F, (1.42) is actually equivalent to
(1.43) and one can apply the converse statement in [72, Th. 10.6] thanks to the
LFMCQ assumption. ��
Example 1.17 (Example 1.16 Revisited) Consider the e-LSIP problem

(P1) Min
x∈R2

〈c1, x〉 := x1

s.t. −tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1[ .

We have

A1(x) = {02} ,∀x ∈ F ∗1 = F
∗
1 =

{(
0
x2

)
: x2 ≥ 1

}
,

which shows the necessity of LFMCQ at Theorem 1.7 (see Fig. 1.16). Moreover,
since

−c1 =
(−1

0

)
/∈ cone {at , t ∈ ]0, 1[} = cone

{( −t

t − 1

)
, t ∈ ]0, 1[

}
,

Fig. 1.16 The sets F1 and
F ∗1
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its dual problem (D1) is inconsistent and v(D1) = −∞ < v(P1) = 0, abnormality
due to the violation of three conditions of Theorem 1.6, namely, the consistency of
(D), FMCQ, and −c ∈ rint cone {at : t ∈ T } .

In contrast with this abnormality, for the problem

(P2) Min
x∈R2

〈c2, x〉 := x1 + x2

s.t. −tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1[ ,

we have F ∗2 = ∅ while F
∗
2 =

{(
1
4 , 1

4

)}
, v(P2) = v(P 2) = 1

2 , and −c2 ∈
rint cone {at : t ∈ T } , so that we must have v(P2) = v(D2) ∈ R by Theorem 1.6.
In fact, for λ∗ ∈ R

(]0,1[)
+ such that

λ∗t =
{

2, t = 1
2 ,

0, otherwise,

one has −∑t∈]0,1[ λ
∗
t bt = 1

2 = v(P2), so λ∗ is an optimal solution of (D2) and

v(D2) = 1
2 too.

1.6 Selected Applications

Semi-infinite systems containing strict inequalities (i.e., with S �= ∅) naturally arise
in polarity, strict separation of sets, stability analysis, linear optimization, and other
fields.

1.6.1 Polarity

H. Minkowski [128] defined in 1911 the (negative) polar of a closed convex set X

such that 0n ∈ X as

X◦ := {y ∈ R
n : 〈y, x〉 ≤ 1, ∀x ∈ X}.

Of course, X◦ enjoys the same properties as X.

This definition was later extended by H. Rådström [13] to any set X (not
necessarily closed and convex), with X◦ being still closed and convex with 0n ∈ X◦
and

(cl X)◦ = X◦. (1.44)
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Moreover, X ⊂ X◦◦ holds as any y ∈ X◦ satisfies 〈y, x〉 ≤ 1, for all x ∈ X, so
cl conv X ⊂ X◦◦. To prove the reverse inclusion, take y /∈ cl conv X. By the strict
separation theorem, there exist a ∈ R

n, a �= 0n, and b ∈ R such that 〈a, x〉 < b for
all x ∈ X and 〈a, y〉 > b. Since 0n ∈ X, b > 0. Then, a

b
∈ X◦ with

〈
a
b
, y
〉
> 1,

showing that y /∈ X◦◦. Hence, X◦◦ = cl conv X and the unique sets X containing
0n and satisfying X◦◦ = X are the closed convex ones.

A straightforward consequence of the last statement is the extended Farkas
lemma for cones asserting that the involution formula X◦◦ = X holds true for closed
convex cones, for which, as observed by E. Steinitz [168],

X◦ = {y ∈ R
n : 〈y, x〉 ≤ 0,∀x ∈ X}. (1.45)

In fact, if X is a cone, given y ∈ X◦, one has 〈λy, x〉 = 〈y, λx〉 ≤ 1, for all x ∈ X

and λ > 0. Since 〈y, x〉 ≤ 1
λ

for all x ∈ X, taking limits when λ → +∞ one
gets 〈y, x〉 ≤ 0, so that X◦ ⊂ {y ∈ R

n : 〈y, x〉 ≤ 0,∀x ∈ X}, while the reverse
inclusion holds trivially by observing that 〈y, x〉 ≤ 0 entails 〈y, x〉 ≤ 1.

W. Fenchel wondered in 1952 whether it was possible to define a wider class
of convex sets than that of closed cones which is reproduced by a suitably defined
polarity. Actually, he showed [55] that the answer is affirmative if one considers e-
convex sets (concept introduced in that seminal paper) and defined the e-polar of a
set X as

Xe := {y ∈ R
n : 〈y, x〉 < 1,∀x ∈ X},

which is, obviously, an e-convex set which contains 0n. Since Xe ⊂ X◦ and X◦ is
closed, cl Xe ⊂ X◦. Conversely, given y ∈ X◦, by the definitions of X◦ and Xe,(

1− 1
k

)
y ∈ Xe for all k ∈ N, so that y = limk→∞

(
1− 1

k

)
y ∈ cl Xe. Thus, one

has

cl Xe = X◦. (1.46)

We now prove that Xee = X characterizes the e-convex sets which contain 0n

from the characterization of the evenly convex hull in Sect. 1.2. It is obvious that
if Xee = X, then X is an e-convex set containing 0n. Assume now that X is an
e-convex set containing 0n. The inclusion eco X = X ⊂ Xee holds as any y ∈ Xe

satisfies 〈y, x〉 < 1 for all x ∈ X. To prove the reverse inclusion, let x /∈ eco X.
According to (1.8), there exists z ∈ R

n such that 〈z, x〉 < 〈z, x〉 for all x ∈ X. Since
0n ∈ X, then z �= 0n and b := 〈z, x〉 > 0. Letting z̃ := z

b
one has 〈̃z, x〉 < 1 =

〈̃z, x〉 for all x ∈ X. Thus, z̃ ∈ Xe and 〈̃z, x〉 = 1, which shows that x /∈ Xee.
This involutory formula for the e-polars of e-convex sets implies Minkowski’s

one, X◦◦ = X, for the polars of closed convex sets. In fact, given an arbitrary closed
convex set X containing 0n, since X is e-convex, we get the nontrivial inclusion
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X◦◦ ⊂ X from (1.44) and from the fact that Xe ⊂ X◦ implies X◦e ⊂ Xee as
follows:

X◦◦ = cl X◦e ⊂ cl Xee = cl X = X.

The term e-polar was first used to refer to Xe in [101]. In this paper, Klee and
his coauthors consider the following binary operations for X,Y ⊂ R

n:

X ∧1 Y = (int X) ∩ (int Y )

X ∧2 Y = X ∩ Y

X ∧3 Y = (cl X) ∩ (cl Y )

X ∧4 Y = (X ∩ cl Y ) ∪ (Y ∩ cl X)

X ∨1 Y = cl conv (X ∪ Y )

X ∨2 Y = eco (X ∪ Y )

X ∨3 Y = conv ((int X) ∪ (int Y ))

X ∨4 Y = eco (X ∪ int Y ) ∩ eco (Y ∪ int X) .

It is obvious that, if X and Y are e-convex sets, X∧i Y and X∨i Y are also e-convex
for 1 ≤ i ≤ 3. The even convexity of X∧4Y and X∨4Y is proved in [101, Prop. 4.1].
Moreover, in [101, Prop. 4.3], it is showed that, for 1 ≤ i ≤ 4, the operations ∧i

and ∨i are dual in the sense that (X ∧i Y )e = Xe ∨i Y e and (X ∨i Y )e = Xe ∧i Y e,
whenever X and Y are e-convex sets with 0n ∈ X ∩ Y .

1.6.2 Semi-Infinite Zero-Sum Two Person Games

A semi-infinite game is a two-person zero-sum game determined by a real matrix
with finitely many columns and infinitely many rows. The first papers on semi-
infinite games [74, 167, 180] considered countable many rows. They assumed that
the only admissible strategies of player I are those which have a finite support so that
the reward can be expressed as a finite sum. If the mentioned matrix is {at , t ∈ T },
with T countable, the mixed strategies of players I and II are

Λ :=
{

λ ∈ R
(T )
+ :

∑

t∈T

λt = 1

}

and Y :=
{

y ∈ R
n+ :

n∑

i=1

yi = 1

}

,

respectively, whose elements are discrete probability distributions over the corre-
sponding sets of pure strategies. The payoff function is P (λ, y) =∑t∈T λt 〈at , y〉 ,
which represents the expected outcome of player II when players I and II choose the
mixed strategies λ and y, respectively. The maximin and minimax values are

vI := sup
λ∈Λ

min
j=1,...,n

P
(
λ, ej

)
and vII := inf

y∈Y
sup
t∈T

〈at, y〉 ,
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respectively. Obviously,−∞ < vI ≤ vII . The duality gap is vII − vI ≥ 0. Denote
by Λ̃ and Ỹ the sets of optimal strategies of players I and II, respectively.

A.L. Soyster proved [167] that, if either player’s problem is consistent and
bounded, so is that of his adversary, and the minimax theorem (vII = vI ) holds.
Moreover, Λ̃ �= ∅while player II needs not have an optimal strategy. S.H. Tijs [180],
in turn, provided sufficient conditions guaranteeing that vII = vI and gave also a
new proof that Λ̃ �= ∅. Few years later, in [74], falling back on alternative theorems
for ordinary semi-infinite systems, it was shown that vII = vI and Ỹ �= ∅; the main
novelty in this paper was the consideration of semi-infinite games with an arbitrary
set T (not necessarily countable) and the analysis of an important type of strategies.
A pure strategy t of player I is called essential if, assuming Λ̃ �= ∅, there exists some
λ̃ ∈ Λ̃ such that λ̃t > 0. Similarly, a pure strategy ej of player II is called essential
if, assuming Ỹ �= ∅, there exists some ỹ ∈ Ỹ such that ỹj > 0. Theorems 2.4 and
2.6 in [74] provide sufficient conditions for the existence of essential strategies of
player II and I, respectively, whose proofs are based on Corollary 1.4. A similar
methodology was used in [111] to study more general semi-infinite games, where
either the pure strategies for player I are picked, instead of homogeneous linear
functions, from an infinite family of convex functions, or the set of mixed strategies
available to player II, instead of being the unit simplex is a given closed convex set.

The above results were used in [110, 157, 158] to analyze the so-called semi-
infinite transportation and assignment games. In transportation games, an economic
agent aims at maximizing her/his profit from transporting an infinitely divisible
good from a finite number of suppliers to an infinite number of demanders. The
assignment games arise when a finite set of agents of one type is assigned to a
countably infinite set of agents of another type; this has to be done in such a way
that the total profit arising from these assignments is as large as possible. Finally,
it is worth mentioning that nonzero-sum semi-infinite games with arbitrary sets of
pure strategies and bounded payoffs have been studied in [143].

1.6.3 Approximate Reasoning

Approximate reasoning is a subdiscipline of artificial intelligence which is focused
on the treatment of imprecision and uncertainty. It covers both the foundations
of uncertainty theories and the design of intelligent systems for scientific and
engineering applications. The generic term imprecise probabilities encompasses
several mathematical models to deal with ignorance and uncertainty such as upper
and lower probabilities, upper and lower previsions, classes of additive probability
measures and partial preference orderings, among other qualitative models (see
[187]). Methods of approximate reasoning and statistical inference using imprecise
probabilities are based on a behavioral interpretation of probability and principles of
coherence. We now introduce some basic notions in approximate reasoning theory.

Assume that the set of outcomes of an experiment is finite, say Ω =
{ω1, . . . , ωn}. A gamble is a function x : Ω → R that can be viewed as a
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vector in R
n. A preference ordering  is a strict partial order over pairs of gambles

(i.e., a binary relation on R
n that is irreflexive and transitive). A gamble x ∈ R

n is
called desirable if x  0. The preference ordering  is monotone whenever, for all
x, y ∈ R

n,

[xi > yi, ∀i = 1, . . . , n] �⇒ x  y,

and it satisfies the cancellation rule whenever, for any x, y, z ∈ R
n, α ∈ ]0, 1], one

has

x  y ⇐⇒ αx + (1− α) z  αy + (1− α) z.

The literature on sets of desirable gambles employs cones of gambles to model
preferences. More precisely, a preference ordering can be captured by focusing
on preferences with respect to the zero gamble, or, equivalently, by focusing on a
convex cone of gambles. In this sense, the representation in [33, Prop. 2] establishes
that, if a preference ordering  satisfies monotonicity and cancellation, then there
exists a convex cone D of gambles, not containing the origin but containing the
interior of the positive orthant, such that, for every x, y ∈ R

n,

x  y ⇐⇒ x − y ∈ D. (1.47)

In spite of its simplicity, the theory of desirable gambles encompasses not only
the Bayesian theory of probability, but also other important mathematical models
like credal sets of probabilities. Credal sets is the term used in Bayesian approximate
reasoning for the probability distributions which allow to express uncertainty or
doubt about the probability model that should be used, or to convey the beliefs of a
Bayesian agent about the possible states of the world. They are usually assumed to
be compact and convex in order to express them as the closure of the convex hull of
their extreme points by the Krein–Milman theorem. More precisely, a credal set is
any closed convex subset of the unit simplex

Pn :=
{

p ∈ R
n :

n∑

i=1

pi = 1, 0 ≤ pi ≤ 1, ∀i = 1, . . . , n

}

,

the set of all probability measures over Ω , where pi stands for the probability of ωi

for each i = 1, . . . , n. The duality between credal sets and (coherent) sets of almost
desirable gambles (sets of gambles satisfying specific properties and representing
rational choices) is well-known in the literature. Given a vector p ∈ Pn inducing
a probability measure, and a gamble x ∈ R

n, the expected value of x, denoted by
EP[x], is simply the inner product 〈p, x〉.

Similarly to (1.47), F. Cozman [33] considered recently preference orderings that
can be represented by evenly convex sets of desirable gambles, which indeed can
also be represented by evenly convex credal sets. An evenly convex credal set can
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for instance encode preference judgements through strict and weak inequalities. By
introducing the property of even continuity of a preference ordering whenever, for
any y ∈ R

n, sequence of gambles {xk}, and sequence of positive scalars {λk} such
that {λky − xk} is convergent, one has

xk  0 ∀k ∈ N, and y ! 0 is false �⇒ lim
k→∞

(
λky − xk

)
 0 is false,

and calling  coherent if it is monotone, satisfies the cancellation rule, and it is
even continuous, the representation in [33, Prop. 7] establishes that, if a preference
ordering  is coherent, then there exists an evenly convex cone D of gambles, not
containing the origin but containing the interior of the positive orthant, such that,
for every x, y ∈ R

n, (1.47) holds.
In addition to that, evenly convex sets of desirable gambles can be represented

by evenly convex sets of probability measures. This is shown in the representation
theorem [33, Th. 9] which asserts that, if  is a coherent preference ordering, then
there exists a unique maximal evenly convex credal set C such that

x  y ⇐⇒ EP[x] > EP[y]

for all probability measure p ∈ C. Moreover, according to [33, Th. 10], if  is
a coherent preference ordering and C is the set built in the proof of the above
representation theorem, then a subset C′ of the unit simplex of R

n represents  
if and only if C = eco C′. Thus, different evenly convex sets represent different
preference orderings. Finally, the rest of the paper [33] analyzes the duality between
preference orderings and credal sets and discusses regular conditioning, a concept
which is also closely related to evenly convex sets.

1.6.4 Slater Condition in Mathematical Programming

In almost any branch of optimization there exists a so-called Slater condition
allowing to get necessary optimality conditions, duality theorems, and stability
results guaranteeing the continuity, in some sense, of the feasible set, the optimal set,
and the optimal value under perturbations of the data. These Slater-type conditions
can frequently be formulated in terms of the existence of solutions, called Slater
points, for suitable non-ordinary systems. We just mention three cases.

1. Consider a continuous linear semi-infinite programming problem of the form

(PLSIP ) Min
x∈Rn

〈c, x〉
s.t. 〈at , x〉 ≤ bt , t ∈ W,

(1.48)
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where W is a compact topological space and the functions t �−→ at and t �−→ bt

are continuous on W. The Slater elements of (PLSIP ) are the solutions of the
non-ordinary continuous semi-infinite system {〈at , x〉 < bt , t ∈ W } , so the set
of Slater elements is e-convex. The Haar dual problem of (PLSIP ) is

(D1
LSIP ) Max

λ∈R(W)
+
− ∑

t∈W

λtbt

s.t. − ∑

t∈W

λtat = c,

which is equivalent to the Lagrangian dual problem of (PLSIP ) , that is, the
unconstrained optimization problem

(D2
LSIP ) Max

λ∈R(W)
+

inf
x∈Rn

L (x, λ) .

A third dual problem for (PLSIP ) is the so-called continuous dual problem

(D3
LSIP ) Max

μ∈C ′+(W)
− ∫W bt dμ(t)

s.t. − ∫
W

atdμ(t) = c,

where C ′+ (W) represents the cone of non-negative regular Borel measures on W.

The optimal value v(D
j

LSIP ) of (D
j

LSIP ), j = 1, 2, 3, is not greater than the one
of (PLSIP ) , say v (PLSIP ) , i.e., weak duality always holds. Characterizations
of optimality, strong duality theorems guaranteeing zero duality gap with dual
solvability for the three dual pairs (PLSIP )− (D

j
LSIP ), j = 1, 2, 3, and stability

theorems, all of them under the Slater condition can be found in [73, Ths. 1 and 3]
and [72, Ths. 6.9 and 10.4], respectively (recall that SCQ implies, for continuous
problems, the FMCQ and, so, the weaker LFMCQ at any point).

2. We now consider a linear conic optimization problem of the form

(PK) Min
x∈Rn

〈c, x〉
s.t. Ax + b ∈ K,

where c ∈ R
n, A is an m × n matrix, b ∈ R

m, and K is a pointed closed
convex cone in R

m such that int K �= ∅. The assumptions on K guarantee that
K◦ satisfies the same properties and the existence of a compact base of K◦, that
is, a compact convex set W such that 0m /∈ W and K = cone W [65, p. 447]. For
instance, a compact base of

(
R

m+
)◦ = −Rm+ is W = − conv {e1, . . . , em} , where

{e1, . . . , em} is the canonical basis of Rm. Since K◦ = coneW,

Ax + b ∈ K ⇐⇒ 〈t, (Ax + b)〉 ≤ 0,∀t ∈ W. (1.49)
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Thus, (PK) is equivalent to the continuous linear semi-infinite problem (PLSIP )

in (1.48) just taking at = A�t and bt = −〈t, b〉 for all t ∈ W. As shown in
[40, Rem. 2], the dual problem for (PK) in the sense of conic optimization is
equivalent to the Haar dual problem (D1

LSIP ). Hence, the strong duality holds,

for the corresponding versions of the dual problems (D
j
LSIP ), j = 1, 2, 3, under

the Slater condition that the non-ordinary system
{〈

A�t, x
〉
< −〈t, b〉 , t ∈ W

}

is consistent.
3. We finally consider a convex (possibly semi-infinite) problem

(PCSIP ) Min
x∈Rn

f (x)

s.t. ft (x) ≤ 0, t ∈ W,

where f, ft : R
n → R are continuous for all t ∈ W. The problem

(PCSIP ) satisfies the Slater condition when the non-ordinary convex system
{ft (x) < 0, t ∈ W } is consistent (this condition implies strong duality and allows
to obtain optimality conditions). For any t ∈ W, as ft is a convex real-
valued function, it is subdifferentiable on R

n. Thus, the set of Slater points of
{ft (x) ≤ 0, t ∈ W } is the solution set of the non-ordinary semi-infinite system

{ft (y)+ 〈u, (x − y)〉 < 0, (y, u) ∈ gph ∂ft , t ∈ W } , (1.50)

where

gph ∂ft :=
{
(u, y) ∈ R

2n : u ∈ ∂ft (y)
}

is the graph of the subdifferential mapping ∂ft : Rn ⇒ R
n defined by

∂ft (y) = {u ∈ R
n : ft (x) ≥ ft (y)+ 〈u, (x − y)〉 , x ∈ R

n
}
.

In the particular case of convex quadratic systems, we can write ft (x) =
1
2 〈x,Qtx〉 + 〈ct , x〉 + dt , where Qt is a symmetric n × n positive semidefinite
matrix, ct ∈ R

n and dt ∈ R, for all t ∈ W . Then, (1.50) becomes

{
〈(Qty + ct ) , x〉 <

1

2
〈y,Qty〉 − dt , (y, t) ∈ R

n ×W

}
.

1.6.5 Strict Separation of Finite Families of Sets

The search of a hyperplane separating strictly a pair of disjoint sets in R
n, say Y and

Z, can be formulated as the feasibility problem for the non-ordinary system of strict
inequalities (with W = ∅)

{〈y, x〉 < xn+1, y ∈ Y ; − 〈z, x〉 < −xn+1, z ∈ Z} , (1.51)
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where the unknown

(
x

xn+1

)
∈ R

n+1 determines the vector of coefficients of the

separating hyperplane. Observe that x �= 0n for any solution

(
x

xn+1

)
of the system

in (1.51).
The concept of strict separation of sets was extended in [12] to families of more

than two sets as follows. A family of m ≥ 2 nonempty sets in R
n, A1, . . . , Am is

said to be strictly separable if there exist m closed halfspaces S1, . . . , Sm such that

Aj ⊂ int Sj , j = 1, . . . ,m, and
m∩

j=1
int Sj = ∅, i.e., if, for each j = 1, . . . ,m,

there exists a solution

(
cj

dj

)
∈ R

n+1 of σj :=
{〈a, x〉 − xn+1 < 0, a ∈ Aj

}
, with

cj �= 0n, such that the system σ0 :=
{〈

cj , x
〉
< dj, j = 1, . . . ,m

}
is inconsistent.

According to [12, Th. 2], if
m∩

k=1
k �=j

Ak �= ∅, j = 1, . . . ,m, then the inconsistency of

σ0 can be replaced by the simple condition that
m∑

j=1

(
cj

dj

)
= 0n+1.

1.7 Bibliographic Notes

Many mathematicians have contributed to the convexity theory in finite dimensional
spaces, but the most influential of them, thanks to the popularity attained by their
respective books on the subject, have been, in chronological order:

• Hermann Minkowski: His celebrated book [128], published in 1911 (even though
the first 240 pages were a reprint of his 1896 monograph [127]), introduced
the concepts of extreme point, convex hull, convex body (i.e., fully dimensional
compact convex set), supporting hyperplane, support function, sum of two sets,
etc. Minkowski provided a conjoint theory of ordinary linear inequality systems
and polyhedra, including the proof of the finiteness of the set of extreme points
of the latter sets and the characterization of the linear inequalities which are the
consequence of a given consistent linear inequality system (i.e., the so-called
non-homogeneous Farkas lemma).

• Werner Fenchel: His book [54], where he collected his lectures at Princeton
University during his sabbatical academic year 1950/51, introduced the key
concept of conjugate function, the notion of strict polar of a closed convex set,
etc. A year later, in 1952, he introduced the evenly convex sets in order to extend
the polarity theory to nonclosed convex sets [55].

• Ralph Tyrrell Rockafellar: The preface of his classical book [148], published
in 1970, where he virtually fixed the present notation and basic results of
modern convex analysis, recognizes the influence of Fenchel’s view of convexity
(not by chance, [148] was dedicated to Fenchel “as honorary coauthor”), in
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particular the crucial role played by the notion of conjugate function. Before
that, Rockafellar introduced in 1963, together with Jean-Jacques Moreau, the
concepts of subgradient and subdifferential and provided results involving linear
systems containing strict inequalities. Victor Klee recognized that his work
[99] on maximal separation theorems for e-convex sets was inspired by the
mentioned paper by Fenchel on polarity together with an unpublished separation
theorem, proved by Rockafellar [146], for the so-called partially polyhedral sets
(a particular class of e-convex sets defined in [150, p. 510]).

After the above mentioned seminal contributions to the theory of evenly convex
sets, this type of convex sets appeared sporadically in the literature for almost 30
years. Thus, in 1970 and 1972, Schröder used evenly convex sets to obtain his linear
range-domain implications [161, 162]. In the eighties and early nineties, the evenly
convex sets were applied in quasiconvex programming [120, 121, 138–140] and
mathematical economy [122]. Linear systems containing strict inequalities, in turn,
naturally arose in convex optimization [150, 190], separation problems [12, 99, 100],
and stability analysis [72, Th. 6.9], among other fields of mathematics and computer
sciences.

The resurgence of the even convexity theory in the 2000s is also motivated by
the mentioned stream of new applications of linear strict inequality systems and
the potential applications of evenly convex and quasiconvex functions in economy.
New characterizations of e-convex sets have been obtained by Daniilidis and
Martínez-Legaz [37] and by Goberna, Jornet and Rodríguez [71] (in infinite and
finite dimensions, respectively), showing that the class of e-convex sets enjoys
most of the well-known properties of the subclasses of open and closed convex
sets. Even convexity has been used to characterize the consistency of linear semi-
infinite systems containing strict inequalities in [78], whose results remain valid
in Banach spaces [133], and to obtain dual characterizations of set containments
with strict convex inequalities [68] (results which have been extended to systems
of strict cone-convex inequalities [39] and to systems of quasiconvex inequalities,
see [171, 174]). Furthermore, Klee, Maluta and Zanco have studied the behavior of
e-convex sets under sections and projections [101], which unfortunately became the
last publication in the fruitful research career of the first author. A suitable extension
of the concept of e-convex set is used in [60] to study quasi-convex dynamic risk
measures.

This chapter is mostly based on [37, 55, 68, 71, 78, 99]. More precisely,
concerning Sect. 1.1, recently reviewed in [79], the proof of the equivalence between
the first six conditions in Theorem 1.1 can be found in [71, Prop. 3.1], for (i) ⇐⇒
(ii) ⇐⇒ (iii), [55, Items 3.2 and 3.4], for (i) ⇐⇒ (iv) ⇐⇒ (v), and [37, Th.
5], for (i) ⇐⇒ (vi). The properties of e-convex sets gathered in Proposition 1.1
come from [55, Item 3.5], for (iii), [71, Cor. 3.2], for (vi), and [71, Prop. 3.2-3.4],
for the remaining properties. The statements on operations with e-convex sets in
Proposition 1.2 have been proved in [71, Prop. 3.5], for (ii), [71, Prop. 3.6], for the
“if” part of (iii), [151, Prop. 1.2], for the “only if” part of (iii), [71, Prop. 3.7], for
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(iv), [71, Prop. 3.8], for (v) and [101, Cor. 2.3], for (vi). Example 1.3 appeared in
[101, Ex. 2.5].

Section 1.2, also reviewed in [79], provides the notion of evenly convex hull
that was introduced by W. Fenchel in [55, Items 4.1 and 4.2]. Its characterization
in Proposition 1.3 is proved in [78, Prop. 2.1]. The relationships between eco and
other hulls in Proposition 1.4 are [78, (2.2) and (2.4)], for (iii) and (iv), respectively,
and [78, Prop. 2.7], for (v). The results involving operations with e-convex hulls
in Proposition 1.5 are proved in [78, Props. 2.3-2.6], for (ii), (iii), (vi), and (vii),
respectively, and [78, Cor. 2.1], for (iv).

Section 1.3 presents a selection of the separation theorems for convex sets
collected in Klee’s paper [99], which was published only 2 years before the
coining of the basic concepts and notations of convex analysis in the celebrated
Rockafellar’s book [148]. So, we have adapted here most Klee’s separation theorems
involving e-convex sets to the modern convex analysis language, the main difficulty
being the intuitive style of some arguments and the misleading use of different
concepts of supporting hyperplane in [99]. Example 1.9 is attributed to T.A. Botts
by the same Klee [99, p. 134], Theorems 1.2 and 1.3 are based on [99, Th. 4] and
[99, Th. 5], respectively, Lemma 1.1 is [99, Lemma 1] and Corollary 1.1 is [99, Cor.
p. 138].

The e-convex sets are the solution sets of the linear inequality systems possibly
containing strict inequalities whose study is the objective of Sect. 1.4. The rela-
tionships between the solution sets of a system σ containing strict inequalities and
its relaxed system σ (Proposition 1.6) appeared in [71, Prop. 1.1]. The rest of this
section is devoted, firstly, to existence theorems, secondly, to Farkas-type lemmas,
and, thirdly, to the containment problem for e-convex sets.

Section 1.4.1 starts recalling the known characterizations of the consistent
relaxed system. We summarize in Table 1.1 the relevant information on the most
outstanding existence theorems, most of them expressed as alternative theorems,
i.e., theorems which have the following form: exactly one of the two formulated
propositions holds true. The 11 sources in Column 1 appear chronologically

Table 1.1 Existence
theorems

Ref. Year S W E b· Cond.

[80] 1873 fin. ∅ ∅ 0 Not

[28] 1921–1922 fin. ∅ ∅ arb. Not

[131] 1936 fin. fin. fin. 0 Not

[62] 1960 ∅ fin. ∅ arb. Not

[193] 1966 ∅ arb. ∅ arb. Not

[50] 1968

[170] 1970 fin. fin. fin. arb. Not

[74] 1984 arb. arb. arb. 0 Yes

[74] 1984 arb. ∅ ∅ 0 Yes

[176] 1999 fin. fin. fin. arb. Not

[71] 2003 arb. arb. ∅ arb. Yes
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ordered, as Column 2 shows. The Columns 3, 4 and 5, in turn, inform on the
cardinality of the index sets, which can be empty, finite or arbitrary (abbreviated
as “∅”, “fin.” and “arb.”, respectively). Column 6 informs about the kind of right-
hand side scalars bt the theorems deal with (0, in the case of homogeneous systems,
and arbitrary, otherwise). Finally, Column 7 informs about the full generality or not
of the corresponding existence theorem, i.e., whether the result always holds or it
does just under certain assumptions.

Observe that all the known existence theorems for systems containing an arbi-
trary number of strict inequalities are only valid provided that a suitable closedness
assumption holds. Cor. 3.1.1 and Th. 3.1 in [72] provide simple proofs of the
characterization of the consistency of σ by means of conditions (1.11) and (1.12),
results which also follow from existence theorems due to K. Fan [50, Th. 1] and
Y. J. Zhu [193, Th. 1], respectively. These authors considered linear systems of weak
inequalities of the form σ = {〈a∗t , x

〉 ≤ bt , t ∈ T
}
, where x lives in a given locally

convex separated (i.e., Hausdorff) topological vector space X with topological dual
X∗, a∗t ∈ X∗ and bt ∈ R for all t ∈ T . The mentioned characterizations of the
consistency of σ, (1.11) and (1.12), are still valid in the infinite-dimensional setting
by replacing 0n with the null linear functional of 0X∗ . In this infinite-dimensional
setting, N(σ), K(σ) ⊂ X∗ × R, so that conditions (1.11) and (1.12) can be seen
as dual characterizations of the consistency of σ . Consequently, the same adjective,
dual, applies to any condition involving subsets of either X∗ or X∗ ×R, which have
the advantage of being expressed in terms of the data (the coefficients of σ ). The
existence Theorem 1.4 for linear systems involving strict inequalities was proved in
[78, Th. 3.1], Corollary 1.3 in [71, Prop. 2.1], and Corollary 1.6 in [78, Cor. 3.2],
while Corollaries 1.4 (proved in [78, Cor. 3.3]) and 1.5 are improved versions of the
Generalized Gordan’s alternative theorem [72, Th. 3.2] and the Extended Motzkin’s
alternative theorem [72, Th. 3.5], respectively. The “like” in the names given to these
results means that they extend to semi-infinite systems the corresponding results for
finite systems. Proposition 1.7 is [71, Prop. 2.2].

Section 1.4.2 deals with the extension to systems of an arbitrary number of con-
straints possibly containing strict inequalities of the generalized non-homogeneous
Farkas lemma (1.26) characterizing the weak linear inequalities which are con-
sequence of a finite consistent system of inequalities of the same type [72, Th.
3.1], which remains valid in locally convex spaces [193, Th. 2]. The concept of
legal linear combination was introduced by H.V. Kuhn [108] and by J. Stoer and
C. Witzgall [170] for ordinary finite linear systems. The term legal for the non-
null elements of R

(T )
+ and for the corresponding linear combinations of σ were

introduced by the same Kuhn [108]. The main result of this subsection, Theorem 1.5,
subsumes [78, Props. 4.1 and 4.2].

Regarding Sect. 1.4.3, Proposition 1.10 comes from [68, Props. 5.1-5.3] and
Proposition 1.8 from [68, Prop. 5.4]. The containment problem has been solved
for different pairs of sets usually represented by inequality systems. The simplest
and most studied version is the polytope containment problem, as it has important
applications such as computational geometry [64], machine learning [61], and
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control theory [87]. Computational issues on this problem are discussed in [156].
The polyhedral containment problem was posed by Mangasarian [117], who
also introduced non-polyhedral extensions. In fact, he characterized in [118], via
nonlinear programing, the containment of a polyhedral convex set F in a reverse
convex set (i.e., the complement of a finite union of convex sets) described by convex
quadratic functions, as

G =
{
x ∈ R

n : 1

2
〈x,Qix〉 + 〈ai, x〉 ≥ bi, i = 1, . . . ,m

}
,

with Qi symmetric and positive semi-definite, ai ∈ R
n, and bi ∈ R for i =

1, . . . ,m, that is, the situation illustrated in Fig. 1.17. The same Mangasarian [118]
characterized the containment of a convex set in a reverse convex set (the situation

Fig. 1.17 Inclusion of a
polyhedron F in a quadratic
reverse set G

Fig. 1.18 Inclusion of a
convex set F in a quadratic
reverse convex set G
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shown in Fig. 1.18), both represented by differentiable functions, while Jeyakumar
[93] proposed a non-smooth counterpart for this containment via epigraphs of
conjugate functions.

The containment problem has also been solved for pairs of sets represented by
systems of cone-convex inequalities [39], by quasiconvex systems [173, 174], by
quasiconvex systems containing strict inequalities [171], by sum-of-squares convex
polynomial systems [96], etc.

Section 1.5 is basically the transcription of known results on ordinary linear
semi-infinite systems and linear semi-infinite programming to systems and problems
containing strict inequalities where the concept of carrier index plays a crucial role.
As pointed out in [104], the term carrier index was used for the first time in [72]
(in the context of linear SIP), but it has received different names in the literature:
always binding constraint in [1], implicit equality constraint in [83], and immobile
index in [102, 103], as well as in different papers of Kostyukova and Tchemisova
(e.g., [105, 106]). The set of carrier indices was called equality set of constraints
in [189]. The existence of carrier indexes is incompatible with the SCQ, which was
introduced by M. Slater in the framework of convex programming [164], the FMCQ
by Charnes, Cooper and Kortanek in [31] to guarantee zero-duality gap in LSIP,
and the LFMCQ by Puente and Vera de Serio in [144] as the weakest constraint
qualification allowing to characterize optimality in LSIP. The term “continuous
linear system” was first used in the framework of stability while analytical systems
and polynomial systems appeared in [3] (in order to give a simplex-like method
for LSIP problems) and [70] (in a geometric setting), respectively. The LSIP
problems satisfying the LOPCQ may also be treated by means of some simplex-
like method [2].

The natural extension to the infinite-dimensional setting of LSIP problems are
the linear infinite programming (LIP) problems of the form

(P ) Min
x∈X

〈c, x〉
s.t. 〈at , x〉 ≤ bt , t ∈ T ,

where the decision space X is locally convex and c, at ∈ X∗ for all t ∈ T . Duality
theorems for different types of dual problems for (P ), among them the LIP Haar
dual defined in the same way as in LSIP, can be found in [75, Rem. 3.10, 4.16 and
5.6, and Cor. 4.15] and [76, Section 6]. From these results it is possible to obtain
e-LIP versions of Theorem 1.7.
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