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Preface

This is the first book devoted to linear systems of the form:

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S} ,

where 〈·, ·〉 denotes the standard inner product in R
n, W and S are arbitrary disjoint

index sets, at ∈ R
n and bt ∈ R for all t ∈ T := W ∪ S �= ∅ (a possibly

infinite set), to their solution sets (called evenly convex by Fenchel in 1952), and to
those extended real-valued functions whose epigraphs (or at least their lower level
sets) are evenly convex. The necessity of this book comes from the fact that only a
few available monographs pay some attention to the existence theorems for linear
systems containing strict inequalities, as those of Schrijver (on linear programming)
and Mangasarian (on nonlinear programming), Owen (on game theory), being the
three of them for T finite, and Goberna and López (on semi-infinite programming)
for an arbitrary T . The situation is even worst regarding evenly convex sets and
related functions, which have been only mentioned up to now in two monographs:
the second edition of Soltan’s book on convex sets [166] (which devotes the last
two notes for Chapter 9 to evenly convex sets and evenly convex hulls) and the PhD
thesis of Maggis [115] (where evenly convex and evenly quasiconvex functions are
used in finance and economics). The consequence of this almost null presence of
linear systems containing strict inequalities, evenly convex sets and related functions
in monographs and textbooks, has been decades of stagnation for this interesting
research field and the frequent rediscovery of known results on mathematical objects
that have received different names over the years.

We say that σ is ordinary whenever S = ∅ (i.e., σ is exclusively formed by
weak linear inequalities), in which case the solution set is closed and convex (a well-
known type of evenly convex set). We also say that the above linear system σ is finite
whenever T is finite and semi-infinite otherwise (this name being motivated by the
fact that they have finitely many unknowns but infinitely many inequalities). Finite
ordinary linear systems were firstly considered by Fourier in 1826 and secondly by
Farkas around 1900, to characterize equilibrium points in mechanical structures.
They have been intensively analyzed due to the crucial role they play in linear

v



vi Preface

programming, as this widely used optimization model is computationally equivalent
to the feasibility problem for finite ordinary linear systems, thanks to the duality
theorem and the Fourier–Motzkin elimination method. Semi-infinite ordinary linear
systems were first considered by Haar in 1824, in a paper that remained unnoticed
until the publication of a free translation by Charnes, Cooper, and Kortanek in 1963,
in their seminal paper on linear semi-infinite programming. We only consider in
this book ordinary linear systems with comparative purposes as they are treated in
the abovementioned monographs, while their nonordinary counterparts have been
systematically ignored up to now.

Finite nonordinary linear systems were first considered by Gordan in 1873. They
were used sporadically in the twentieth century, for example, by Kuhn in 1956,
Walkup and Wets in 1969, and Kannan in 1992, while they are intensively used
in the twenty-first century in operational research (e.g., in optimization and games),
computational sciences, and other fields. Their solution sets, which are called evenly
convex polyhedra in this book, have been rediscovered and studied again and again
under different names as wholefaced polyhedra, copolyhedra, not necessarily closed
(NNC) convex polyhedra, G-polyhedra, and semiclosed polyhedra.

Regarding functions, in the same way that quasiconvex functions and convex
functions are defined as those whose lower level sets and epigraphs are convex,
respectively, evenly quasiconvex functions and evenly convex functions are those
whose lower level sets and epigraphs are evenly convex, respectively. Evenly
quasiconvex functions, which have been applied in economics, were introduced
by Martínez-Legaz under the name of normal quasiconvex and, independently,
by Passy and Prisman, in the early 1980s, while evenly convex functions were
introduced by Rodríguez and Vicente-Pérez quite recently, in 2011.

Taking into account the objective of the book, the main concepts and basic results
are illustrated with suitable examples, figures, tables, and diagrams. The penultimate
section of each chapter is devoted to describe a selection of applications to different
fields, with the unique exception of Chap. 4, whose content is so recent that no
application is yet known. The last section of each chapter gives precise references
for all known results published after a reliable peer review, where the reader can find
the corresponding proofs. So, we only include in this book (detailed or sketched)
proofs of new results and some classical ones whose original proofs are hardly
readable today due to the use of obsolete terms and notations. Accordingly, in the
case of results that contain several statements, we provide partial proofs in the sense
that we only prove those items that are not proved in the literature.

This book is primarily intended as a guide for further readings addressed
to graduate and post-graduate students of mathematics, economics, operational
research, and computing and also to researchers specialized in those topics where
strict inequalities arise in a natural way. They could have difficulties in accessing
to the sparse literature on evenly convex sets and related functions, and their
applications to systems and optimization problems involving strict inequalities, due
to the lack of a unified terminology in this field. For the sake of simplicity, we
decided to work in a finite-dimensional setting, which forced us to consider even
optimization problems with finitely many constraints (as each constraint has an
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associated dual variable). However, the book can also be useful as a source of open
problems for researchers interested in functional analysis. To this aim, we include
an appendix with an exhaustive list of those results (sometimes whole subsections
or sections), which have been shown to be valid in Banach or even in general locally
convex Hausdorff topological vector spaces.

The book is organized as follows. Chapter 1 treats in parallel linear systems
and evenly convex sets, providing characterizations, operations rules, and separa-
tion theorems for evenly convex sets, and existence and Farkas-type results for
nonordinary systems. Chapter 2 follows the same scheme as Chap. 1 but now
applied to finite linear systems and evenly convex polyhedra; the main difference
is that, in this particular setting, it is possible to extend the Motzkin representation
theorem for polyhedra. Chapters 3 and 4 also follow similar schemes for evenly
quasiconvex functions and evenly convex functions, respectively: characterizations,
properties, conjugacy, and duality statements for optimization problems involving
such functions, extending in this way well-known results on lower semicontinuous
convex functions.

Alicante, Spain María D. Fajardo
May, 2020 Miguel A. Goberna

Margarita M. L. Rodríguez
José Vicente-Pérez
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Nomenclature

• R+ the set of nonnegative real numbers
• R++ the set of positive real numbers
• R− the set of nonpositive real numbers
• R−− the set of negative real numbers
• R := R ∪ {±∞} the extended real line
• sup X the smallest upper bound of X ⊂ R, with sup∅ = −∞
• inf X the greatest lower bound of X ⊂ R, with inf∅ = +∞
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n
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• 〈x, y〉 := x�y the standard inner product of two vectors x, y ∈ R
n

• ‖x‖ := √〈x, x〉 the Euclidean norm of x ∈ R
n

• d(x, y) = ‖x − y‖ the Euclidean distance from x to y, x, y ∈ R
n

• d(X, Y ) the Euclidean distance from X to Y , ∅ �= X,Y ⊂ R
n

• R
n+ the nonnegative orthant in R

n

• R
n++ the positive orthant in R

n

• R
T the (product) linear space formed by all functions λ : T → R with T any

index set
• supp λ := {t ∈ T : λt �= 0} the support of λ ∈ R

T

• R
(T ) the subspace of RT formed by those λ ∈ R

T such that supp λ is finite
• R

(T )
+ the convex cone, in R

(T ), of the nonnegative finite sequences
• [x, y] := {(1− λ)x + λy : λ ∈ [0, 1]} the closed segment joining x, y ∈ R

n

• The definitions of ]x, y[, [x, y[, and ]x, y] are similar, with ]0, 1[, [0, 1[, and
]0, 1] instead of [0, 1], respectively

• span X the linear subspace of Rn spanned by X, with span∅ = {0n}
• aff X the affine hull of X

• conv X the convex hull of X

• cone X the convex cone generated by X ∪ {0n}
• eco X the evenly convex hull of X

• e′ co X the e′-convex hull of X
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n
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n ×R : x ∈ dom f, f (x) < λ} the strict epigraph of f

• hypo f = {(x, λ) ∈ R
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• Im f = {f (x) : x ∈ dom f } the image set of f
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Chapter 1
Evenly Convex Sets: Linear Systems
Containing Strict Inequalities

This chapter deals with linear systems with an arbitrary (possibly infinite) number
of weak and/or strict inequalities and their solution sets, the so-called evenly convex
sets, which can be seen as the two faces of a same coin. Section 1.1 provides
different characterizations of evenly convex sets and shows that this class of sets
enjoys most of the well-known properties of the subclass of closed convex sets.
Since the intersection of evenly convex sets belongs to the same family, any set has
an evenly convex hull. Section 1.2 is focussed on the operations with evenly convex
hulls and their relationships with other hulls. Section 1.3 reviews different types of
separation theorems involving evenly convex sets. Section 1.4 provides existence
theorems for linear systems with strict inequalities and characterizations of the
linear inequalities which are consequence of consistent systems (those systems
with nonempty solution set), which allows us to tackle set containment problems
involving evenly convex sets. Section 1.5 is aimed to study the so-called evenly
linear semi-infinite programming problems (i.e., linear semi-infinite programming
problems with strict inequalities). Finally, Sect. 1.6 describes applications to polarity
(treated in a detailed way as it was the problem which inspired the concept of evenly
convex set), semi-infinite games, approximate reasoning, optimality conditions in
mathematical programming, and strict separation of families of sets.

1.1 Evenly Convex Sets

Since any equation can be replaced by two inequalities, we shall consider (linear)
systems in R

n of the form

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S} , (1.1)
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where 〈·, ·〉 denotes the standard inner product in R
n, W and S are disjoint index

sets, at ∈ R
n and bt ∈ R for all t ∈ T := W ∪ S �= ∅ (a possibly infinite set). The

solution set of σ, say

F = {x ∈ R
n : 〈at , x〉 ≤ bt, t ∈ W ; 〈at , x〉 < bt , t ∈ S

}
,

is the intersection of halfspaces and, so, it is a convex set, i.e., any segment [x, y]
determined by x, y ∈ F is contained in F. Since [x, y] is an arc joining x and y, any
convex set is arc-connected and, so, it is connected, i.e., it cannot be represented as
the union of two or more disjoint nonempty open subsets for the topology induced
by the Euclidean norm in F.

The above system σ is said to be ordinary when S = ∅, finite when T is finite
and semi-infinite otherwise. Moreover, it is said homogeneous when bt = 0 for all
t ∈ T .

The solution sets of ordinary systems are intersections of closed halfspaces and,
so, they are closed and convex. The converse holds as a consequence of the basic
separation theorem which asserts that, if ∅ �= C � R

n is a closed convex set and
y /∈ C, then, there exist a vector a �= 0n and a scalar b ∈ R such that 〈a, y〉 > b

and 〈a, x〉 ≤ b, for all x ∈ C (see, e.g., [91, Ch. A: Th. 4.1.1]). Since we can write
R

n = {x ∈ R
n : 〈0n, x〉 ≤ 0} and ∅ = {x ∈ R

n : 〈0n, x〉 ≤ −1} , any closed convex
set is the solution set of some ordinary system.

The following concept is the counterpart of closed convex set for non-ordinary
systems: a set C ⊂ R

n is evenly convex (e-convex, in brief) if it is the intersection
of some family, possibly empty, of open halfspaces. Clearly, any e-convex set is
convex, and the converse only holds for sets in R. From the definition, any e-convex
set is the solution set of a system as the one in (1.1). Conversely, since any weak
inequality 〈a, x〉 ≤ b, with a �= 0n and b ∈ R, has the same solutions as the system

of strict inequalities
{
〈a, x〉 < b + 1

k
, k ∈ N

}
, the solution set of the linear system σ

in (1.1) is an e-convex set. So, ordinary systems and closed convex sets are particular
types of linear systems and e-convex sets, respectively, as Diagram 1.1 shows:

Linear systems Ordinary linear systems
⇐

σ =
{ 〈at , x〉 ≤ bt , t ∈ W

〈at , x〉 < bt , t ∈ S

}
σ = {〈at , x〉 ≤ bt , t ∈ W }

� �

Evenly convex sets ⇐ Closed convex sets

Diagram 1.1 Linear representations of convex sets
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In this book we mainly use the standard notation of convex analysis and
optimization. So, given a set X ⊂ R

n, we denote by int X, rint X, cl X, bd X, and
rbd X the interior, the relative interior, the closure, the boundary, and the relative
boundary of X, respectively. The set X is said to be relatively open if rint X = X

(so, ∅ and R
n are relatively open). Moreover, conv X stands for the convex hull of X,

whereas cone X := R+ conv X means the convex conical hull of X∪{0n}, where 0n

denotes the null vector of Rn. Additionally, if X is a nonempty finite set, we say that
conv X is a polytope and cone X is a finitely generated cone. When ∅ �= X ⊂ R

n,

we denote by span X and aff X the linear span and the affine span of X, respectively,
and by

0+X := {d ∈ R
n : x + td ∈ X,∀t ≥ 0,∀x ∈ X}

the recession cone of X. The Minkowski sum of X, Y ⊂ R
n is the set X + Y :=

{x + y : x ∈ X, y ∈ Y }. Additionally, if C is a nonempty convex subset of R
n,

dim C denotes the dimension of C (defined as the dimension of aff C) and, for
x ∈ C, the cone of feasible directions of C at x is

D(C, x) := {v ∈ R
n : x + αv ∈ C for some α > 0

} = R+ (C − x) .

If x ∈ cl C, the tangent cone to C at x is TC (x) := cl D(cl C, x). A convex
subset D ⊂ C is said to be a face of C if, for all pairs v1 �= v2 of C such that
D ∩ ]v1, v2[ �= ∅, one has [v1, v2] ⊂ D. The extreme points and edges of C are the
zero- and one-dimensional faces of C, respectively. We say that a hyperplane H is
a supporting hyperplane of C at x ∈ C if x ∈ H and C lies in one of the closed
halfspaces determined by H . In such a case, we say that H supports C at x. The
supporting hyperplane theorem establishes that, if C is a nonempty convex set and
x ∈ C ∩ bd C, then there is a supporting hyperplane of C at x. The intersections of
C with its supporting hyperplanes are called exposed faces of C. Given X ⊂ C, the
intersection of exposed faces of C containing X is an exposed face of C. So, there
exists a minimal exposed face of C containing X.

Given a convex cone K , the lineality space of K is the greatest linear subspace
contained in K. We denote it by lin K. Obviously, lin K = K ∩ (−K) .

The next result provides eleven characterizations of e-convex sets. One of them
involves the following concept: the halfline {x + λy : λ ≥ 0} is a tangent ray for the
convex set C if x ∈ rbd C, y ∈ cl D(cl C, x), and {x + λy : λ ≥ 0} ∩ rint C = ∅.

Theorem 1.1 (Characterization of e-Convex Sets) Let C ⊂ R
n be such that

∅ �= C �= R
n. Then, the following statements are equivalent to each other:

(i) C is e-convex;
(ii) C is the result of eliminating from a closed convex set (precisely, cl C) the

union of a certain family of its exposed faces;
(iii) C is a convex set and for each x ∈ R

n\C there exists a hyperplane H such
that x ∈ H and H ∩ C = ∅;
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(iv) C is connected and through every point not in C there is some hyperplane H

such that H ∩ C = ∅;
(v) C is a convex set and x ∈ C for all x ∈ rbd C such that

{x − λy : λ ≥ 0} ∩ C �= ∅ for some tangent ray {x + λy : λ ≥ 0};
(vi) C is a convex set and (x + lin TC (x)) ∩ C = ∅, for any x ∈ (cl C) \C;
(vii) C is the intersection of a nonempty collection of nonempty open convex sets;
(viii) C is a convex set and is the intersection of a collection of complements of

hyperplanes;
(ix) C is a convex set and for any convex set D contained in (cl C) \C, there exists

a hyperplane containing D and not intersecting C;
(x) C is a convex set and for any convex set D ⊂ (cl C) \C, the minimal exposed

face (in cl C) containing D does not intersect C;
(xi) C is a convex set and for any x ∈ (cl C) \C, the minimal exposed face (in

cl C) containing x does not intersect C; and
(xii) C is a convex set and for any x ∈ (cl C) \C, there exists a supporting

hyperplane of cl C at x not intersecting C.

The equivalence of the statements (i)–(vi) has been established in different
published works (precise references can be found in Sect. 1.7), while the possibility
of enlarging this list with statements (vii)–(xii) was conjectured by J.E. Martínez-
Legaz in a private communication to one of the authors. So, we limit ourselves to
prove the equivalence of each of the statements from (vii) to (xii) with those from
(i) to (vi) by turning to the following consequence of (i) ⇐⇒ (iii): any relatively
open convex set is e-convex. In fact, according to [148, Th. 11.2], given a nonempty
relatively open convex set C and an affine manifold M such that C ∩M = ∅, there
exists a hyperplane H such that M ⊂ H and C is contained in one of the two open
halfspaces determined by H. Applying this result to the zero dimensional affine
manifolds, i.e., the singleton sets, it is easy to see that condition (iii) holds. So, any
relatively open convex set (in particular, any open convex set) is e-convex.

Partial Proof of Theorem 1.1 [(i) ⇒ (vii) ⇒ (i)] By the definition, any e-convex
set C such that ∅ �= C �= R

n is the intersection of some nonempty family of open
halfspaces, so C satisfies (vii). Conversely, it is obvious that the intersection of e-
convex sets is an e-convex set and, since each nonempty open convex set is e-convex,
the intersection of a collection of nonempty open convex sets is e-convex.

[(iii) ⇒ (viii) ⇒ (i)] If C satisfies condition (iii), then, given t ∈ T := R
n\C,

there exists a hyperplane Ht such that t ∈ Ht and Ht ∩ C = ∅. Therefore,

C ⊂ ∩
t∈T

(
R

n\Ht

)
(1.2)

and

R
n\C = T ⊂ ∪

t∈T
Ht . (1.3)
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By applying De Morgan’s laws to (1.3), we obtain the equality in (1.2), so C

satisfies (viii).
Now, suppose that C satisfies (viii) and let C = ∩

t∈T
(Rn\Ht), with Ht =

{x ∈ R
n : 〈at , x〉 = bt }, at ∈ R

n\ {0n} and bt ∈ R, for all t ∈ T . Since C is a
convex set and, for each t ∈ T , C ⊂ R

n\Ht , we have that C is contained in one of
the two open halfspaces determined by Ht . Then, we can suppose, without loss of
generality, that

C ⊂ ∩
t∈T

{
x ∈ R

n : 〈at , x〉 > bt

}
. (1.4)

On the other hand, if x /∈ C, there exists s ∈ T such that x /∈ R
n\Hs or, equivalently,

〈as, x〉 = bs . Therefore, x /∈ {x ∈ R
n : 〈as, x〉 > bs} and we obtain the equality in

(1.4). So, C is e-convex.
Finally, we shall prove (ii)⇒ (ix)⇒ (x)⇒ (xi)⇒ (xii)⇒ (iii).
[(ii) ⇒ (ix)] Let {Xt , t ∈ T } be a family of exposed faces of cl C such that

C = (cl C) \
[
∪

t∈T
Xt

]
.

Let D ⊂ (cl C) \C = ∪
t∈T

Xt be a nonempty convex set (if D = ∅, any hyperplane

not intersecting C contains D) and let x ∈ rint D. Then, there exists t ∈ T such that
x ∈ Xt , so that Xt is a face of cl C intersecting rint D and, by [148, Th. 18.1],
D ⊂ Xt . Since Xt is an exposed face of cl C, there exists a hyperplane H such that
Xt = H ∩ cl C and, therefore, D ⊂ H and

H ∩ C = H ∩ [(cl C) ∩ C] = Xt ∩ C = ∅.

[(ix) ⇒ (x)] Let D ⊂ (cl C) \C be a convex set and let X be the minimal
exposed face (in cl C) such that D ⊂ X. By (ix), there exists a hyperplane H such
that D ⊂ H and H ∩ C = ∅. If we take Y := H ∩ cl C �= ∅ (since D ⊂ Y ), then Y

is an exposed face containing D such that

Y ∩ C = (H ∩ cl C) ∩ C = H ∩ C = ∅. (1.5)

Since X is the minimal exposed face containing D, we have X ⊂ Y and, by (1.5),
X ∩ C = ∅.

[(x) ⇒ (xi)] It is trivial because (xi) is a particular case of (x).
[(xi) ⇒ (xii)] Let x ∈ (cl C) \C and let X be the minimal exposed face (in

cl C) containing x. Since X is an exposed face of cl C, there exists a hyperplane
H such that cl C is contained in one of the closed halfspaces determined by H and
X = H ∩cl C, so that x ∈ H and H supports cl C at x. Moreover, since X∩C = ∅,
we have

H ∩ C = H ∩ [(cl C) ∩ C] = X ∩ C = ∅.
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a b

Fig. 1.1 (a) The e-convex set C1; (b) The non e-convex set C2

[(xii) ⇒ (iii)] Let x ∈ R
n\C. We obtain a hyperplane H such that x ∈ H and

H ∩C = ∅ as a consequence of (xii), if x ∈ (cl C) \C, and as a consequence of cl C
being an e-convex set, if x /∈ cl C. ��
Example 1.1 Consider the closed convex set

C =
{
x ∈ R

2 : −tx1 + (t − 1)x2 ≤ t2 − t, t ∈ [0, 1]
}

. (1.6)

The set C1 := C\ ([1,+∞[× {0}) is e-convex, whereas C2 := C\ (]1,+∞[× {0})
is not, even though C2 is convex, and so connected (see Fig. 1.1). In fact, one has:

1. The elimination of the unique exposed face of C = cl C2 containing (2, 0) ,

[1,+∞[× {0} , yields C1 instead of C2 (so (ii) fails).
2. C2 is convex, (2, 0) /∈ C2, but H ∩ C2 �= ∅ for any hyperplane H such that

(2, 0) ∈ H , so (iii), (iv) and (ix) fail (taking D = {(2, 0)} ⊂ (cl C2) \C2 in the
latter case).

3. C2 is convex and [2,+∞[× {0} is a tangent ray emanating from (2, 0) ∈ bd C2
such that ([−∞, 2[× {0}) ∩ C2 = {(1, 0)} , but (2, 0) /∈ C2 (so (v) fails).

4. C2 is convex, x = (2, 0) ∈ (cl C2) \C2, TC2 (x) = R× [0,+∞[, x +
lin TC2 (x) = R×{0} and

(
x + lin TC2 (x)

) ∩ C2 = {(1, 0)} (so, (vi) fails).
5. C2 is convex and [1,+∞[× {0} is the minimal exposed face in cl C2 containing

(2, 0), but ([1,+∞[× {0}) ∩ C2 = {(1, 0)} (so, (x) and (xi) fail).
6. C2 is convex and the unique supporting hyperplane of cl C2 at (2, 0) is H ={

x ∈ R
2 : x2 = 0

}
, but H ∩ C2 = {(1, 0)} (so, (xii) fails).

From the comment prior to the proof of Theorem 1.1, since rint C is relatively
open, any convex set C �= ∅ can be fitted from inside by its relative interior
rint C and from outside by its closure cl C, both approximating sets being e-convex.
Analogously, any strictly convex set C (i.e., a convex set C such that its boundary,
bd C, does not contain segments) is e-convex since the exposed faces of cl C are
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the singleton sets determined by its boundary points. On the other hand, any convex
set C �= ∅ in the real line R is an interval and, by Theorem 1.1(ii), it is always an
e-convex set.

The next result allows to compare the cone of feasible directions at x, D (C, x) ,

the set extr C of extreme points, and the recession cone 0+C of an e-convex set
C with those of its closure cl C. This comparison shows that e-convex sets enjoy
many known properties of closed convex sets (see, e.g., [148, Ths. 8.3, 8.4 and Cor.
8.4.1]).

Proposition 1.1 (Properties of e-Convex Sets) If C ⊂ R
n is a nonempty e-convex

set, then the following statements hold:

(i) D (C, x) = D (cl C, x) for all x ∈ C.
(ii) extr C = C ∩ extr cl C.

(iii) [x, y[ ⊂ C for any x ∈ C and y ∈ cl C.

(iv) 0+C = 0+ (cl C). Consequently, C is bounded if and only if 0+C = {0n}.
(v) If y �= 0n and there exists x ∈ C such that {x + λy : λ ≥ 0} ⊂ C, then

y ∈ 0+C.
(vi) If M is an affine manifold such that C ∩ M is a nonempty bounded set, then

M ′ ∩ C is also bounded for each affine manifold M ′ which is parallel to M .

The convex sets satisfying property (iii) are said to be wholefaced in the sense
of Motzkin [131]. The well-known accessibility lemma asserts that, for any convex
set C, [x, y[ ⊂ rint C for any x ∈ rint C and y ∈ cl C (see, e.g., [148, Th. 6.1]).
Since cl rint C = cl C, this lemma means that the relatively open convex sets are
wholefaced and (iii) is nothing but the extension of this property from relatively
open convex sets to e-convex sets.

The next example shows that all statements of Proposition 1.1 may hold, and also
fail, simultaneously for convex sets which are not e-convex.

Example 1.2 Let C be as in Example 1.1. Neither C3 := C\ {(1, 0)} nor
C4 = C\ (]2,+∞[× {0}) is e-convex; however, C3 satisfies statements from
(i) to (vi) of Proposition 1.1; in particular, C3 is wholefaced even though it is not
e-convex. In the contrary, C4 violates the six statements in Proposition 1.1. In fact,
taking x = (2, 0) , y = (3, 0) , M = R×{0} and M ′ = R×{1} in Fig. 1.2b, we can
see that (i), (iii) and (vi) fail. Moreover, x = (2, 0) ∈ (extr C4) \ (extr cl C4)

(so, (ii) fails) and {(0, 1)+ λ (1, 0) : λ ≥ 0} ⊂ C4 with (0, 1) ∈ C4 and
(1, 0) ∈ (0+ (cl C4)

) \ (0+C4
)

(so (iv) and (v) fail).

The class of e-convex sets is closed for the same operations as the class of closed
convex sets, except for the sum. Sufficient conditions for the sum of two e-convex
sets to be e-convex will be given in Corollary 1.1.

Proposition 1.2 (Operations with e-Convex Sets) The following statements
hold:

(i) If C ⊂ R
n is an e-convex set, then αC (resp., C + v) is e-convex for all α ∈ R

(resp., v ∈ R
n).
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a b

Fig. 1.2 (a) C3 is wholefaced but not e-convex; (b) C4 violates all the statements in Proposi-
tion 1.1

(ii) If C ⊂ R
n is an e-convex set and A : Rm → R

n is a linear transformation
such that A−1C �= ∅, then A−1C is e-convex and 0+(A−1C) = A−1

(
0+C

)
.

(iii) If C1 ⊂ R
n and C2 ⊂ R

m are nonempty sets, then C1 × C2 is e-convex if and
only if C1 and C2 are e-convex.

(iv) If C1, C2 ⊂ R
n are nonempty e-convex sets such that

(
0+C1

) ∩ (−0+C2
) =

{0n} , then

0+ (C1 + C2) = 0+C1 + 0+C2. (1.7)

(v) If {Ci, i ∈ I } is a family of e-convex sets in R
n such that ∩

i∈I
Ci �= ∅, then ∩

i∈I
Ci

is e-convex and

0+
(
∩
i∈I

Ci

)
= ∩

i∈I
0+Ci.

(vi) Let C ⊂ R
n be a nonempty convex set with dim C = n, x ∈ R

n, and k ∈ Z

such that 1 ≤ k ≤ n. If C ∩ M is e-convex for each k-dimensional affine
manifold M containing x, with k ≥ 3, or x ∈ int C and k ≥ 2, then C is
e-convex.

In statement (vi), conditions over k can be weakened when we replace “e-
convex” by “open” or “closed”. So, C is open if C ∩ M is relatively open and
1 ≤ k ≤ n, and C is closed if C ∩M is closed and k ≥ 2 or x ∈ int C [101, Prop.
2.1]. However, with even convexity, statement (vi) fails when k = 2 and x /∈ int C,

as the following example shows.
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Fig. 1.3 The non e-convex set C = conv (G ∪ [0, y[ ∪ [0, z[)

Example 1.3 Consider in the plane of R3 given by x3 = 1, a closed rectangle R and
a closed half-disk D that is disjoint with rint R and whose diameter coincides with
one of the sides of R, say the segment [y, z], and let G = (R ∪D) \ {y, z}. The
set C = conv (G ∪ [0, y[ ∪ [0, z[) is not e-convex (see Fig. 1.3). However, for each
2-dimensional affine manifold M containing 03 /∈ int C, C ∩M consists of a single
point, a segment, a closed triangle, or a triangle with one or two missing vertices,
and each one of these sets is e-convex.

Concerning the sum of closed convex sets, it is well-known that the condition(
0+C1

)∩ (−0+C2
) = {0n} guarantees that C1 +C2 is closed convex too (see, e.g.,

[148, Cor. 9.1.2]). The next example shows that this is not true for e-convex sets
(even though one of the two sets is bounded).

Example 1.4 Consider the e-convex set C in (1.6). The compact convex set C5 :=
{x ∈ C : x1 + x2 ≤ 1} and the set

C6 :=
{
x ∈ R

2 : x1 ≥ 0; x2 ≥ 0; x1 + x2 > 0
}

(see Fig. 1.4) are obviously e-convex and satisfy (1.7). Nevertheless, C5 +C6 is not
e-convex (see Fig. 1.5).

Observe also that C5 + C6 = A (C5 × C6) if we define A : R2n → R
n as

A (x, z) = x + z. This shows that the image of an e-convex set through a linear
transformation may fail to be e-convex (as it happens with the closed convex sets).
In contrast, the linear transformation of a relatively open convex set is another
relatively open convex set [148, Th. 6.6].
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a b

Fig. 1.4 (a) The compact convex set C5; (b) The e-convex set C6

Fig. 1.5 C5 + C6 is not e-convex

1.2 Evenly Convex Hull

Given X ⊂ R
n, if conv X � R

n, the intersection of all open halfspaces containing
X is the minimal e-convex set which contains X, i.e., it is the e-convex hull of X,
denoted by eco X. Alternatively, if conv X = R

n (i.e., if it does not exist a halfspace
containing X), then eco X = R

n. Obviously, X is e-convex if and only if eco X = X.
This happens, for instance, if X is either a closed or a relatively open convex set.
Consequently, if X is a compact (open) set, then conv X is a compact (open) convex
set and eco X = conv X. This is the case, in particular, if |X| < ∞, where |X|
denotes the cardinality of X. From the properties of e-convex sets, for each x ∈ R

n

one has

x /∈ eco X ⇐⇒ ∃ z ∈ R
n : 〈z, x〉 < 〈z, x〉 , ∀x ∈ X. (1.8)
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For any X ⊂ R
n, since cl conv X is e-convex and eco X is convex, we have

conv X ⊂ eco X ⊂ cl conv X. (1.9)

For ∅ �= X ⊂ R
n, since aff convX = aff cl conv X [148, Th. 6.2], we also have that

aff eco X = aff conv X and dim eco X = dim conv X.
The next result establishes the existing relation between the two latter sets in

(1.9).

Proposition 1.3 (Characterization of e-Convex Hulls) For any X ⊂ R
n, eco X is

the result of eliminating from cl conv X the union of all its exposed faces which do
not intersect X.

Example 1.5 Given the set

X :=
{

x ∈ R
2 : x2 = 1

1+ x2
1

}

,

we have that conv X = (R× ]0, 1[) ∪ {(0, 1)} (see Fig. 1.6), eco X = R× ]0, 1]
and cl conv X = R× [0, 1]. Therefore, the inclusions in (1.9) are strict in this case.
Observe that eco X is obtained by eliminating from cl conv X its unique exposed
face which does not intersect X (the line R× {0}).

The next result describes how e-convex hulls behave under different operators as
closures, relative interiors and convex or conical hulls.

Proposition 1.4 (Relationships Between eco and Other Hulls) Let X ⊂ R
n.

Then, the following statements hold:

(i) cl eco X = cl conv X.
(ii) rint eco X = rint convX.
(iii) eco conv X = eco X = conv eco X.

(iv) cone eco X ⊂ eco coneX = cl cone X.
(v) If X is a nonempty bounded set, then cl eco X = eco cl X = conv cl X.

Fig. 1.6 The convex hull of X
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Statements (i) and (ii) are easily obtained by taking closures and relative
interiors, respectively, in (1.9). An immediate consequence of the equality in
statement (iv) is that a translated convex cone containing its apex is e-convex if
and only if it is closed [101, Prop. 3.3].

The inclusion in statement (iv) can be strict and the boundedness assumption in
statement (v) cannot be eliminated, as we can see in the next example.

Example 1.6 (Example 1.5 Revisited) We have that

cone eco X = cone X = (R× ]0,+∞[) ∪ {02} ,

whereas eco cone X = cl cone X = R× [0,+∞[, so that the inclusion in statement
(iv) is strict.

On the other hand, X is an unbounded set for which conv cl X = conv X and
eco cl X = eco X (since X is closed). Moreover, by statement (i), cl eco X =
cl conv X. Therefore, as we have already seen in Example 1.5,

conv cl X � eco cl X � cl eco X

and so, the boundedness assumption in statement (v) cannot be removed.

Proposition 1.5 (Operations with e-Convex Hulls) The following statements
hold:

(i) If X,Y ⊂ R
n and X ⊂ Y , then eco X ⊂ eco Y .

(ii) If X ⊂ R
n and Y ⊂ R

m, then eco (X × Y ) = (eco X)× (eco Y ) .

(iii) If X is a nonempty set in R
m and A : Rm → R

n is a linear transformation,
then A (eco X) ⊂ eco (AX).

(iv) If X,Y ⊂ R
n, then eco X + eco Y ⊂ eco (X + Y ) .

(v) If X is a nonempty set in R
n and A : R

n → R
n is a bijective linear

transformation, then A (eco X) = eco (AX).
(vi) If X is a nonempty set in R

n and A : Rm → R
n is a linear transformation

such that A−1X �= ∅, then eco(A−1X) ⊂ A−1 (eco X).
(vii) If {Xi, i ∈ I }is a family of nonempty sets in R

n, then

eco

(
∩
i∈I

Xi

)
⊂ ∩

i∈I
(eco Xi) .

As pointed out in Sect. 1.7, where the reader can find precise references, the
above statements are already known with the unique exception of statement (v) .

Partial Proof of Proposition 1.5 (v) By definition of e-convex hull, if one has
y ∈ eco (AX), then y belongs to any open halfspace containing AX. As A is
bijective, we can consider x := A−1y. We shall prove that x ∈ eco X.

If x /∈ eco X, then by (1.8), there exists z ∈ R
n\ {0n} such that 〈z, x − x〉 < 0

for all x ∈ X and, therefore,
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0 > 〈z, x − x〉 =
〈
z,A−1A (x − x)

〉
=
〈
(A−1)�z,Ax − Ax

〉
, ∀x ∈ X,

where (A−1)� represents the adjoint operator of A−1 (i.e., the unique linear
transformation such that

〈
x,A−1y

〉 = 〈
(A−1)�x, y

〉
for all x, y ∈ R

n). Taking
d := (A−1)�z and y := Ax, we have that 〈d, y − y〉 < 0 for all y ∈ AX and
so, y /∈ eco (AX). We have shown that eco (AX) ⊂ A (eco X) and the conclusion
follows from (iii). ��

Taking the e-convex sets X = C5 and Y = C6 as in Example 1.4, we have that
eco X = X and eco Y = Y whereas eco (X + Y ) �= X + Y (since X + Y is not an
e-convex set; see Fig. 1.5). So, the inclusions in statements (iii) and (iv) cannot be
replaced by equalities.

In the same way, the inclusions in statements (vi) and (vii) can be strict as we
can see in the following examples.

Example 1.7 Let X := (]0,+∞[× ]0,+∞[) ∪ {02} ⊂ R
2 and let A : R2 → R

2

be the linear transformation defined as A (x1, x2) = (x1, 0). Then, A−1X = {0}×R

is an e-convex set whereas A−1 (eco X) = R+ × R. So, eco(A−1X) = A−1X �

A−1 (eco X).

Example 1.8 Let X1 := R
2 × {0} and

X2 := conv

⎡

⎣

⎧
⎨

⎩

⎛

⎝
− cos t

− sin t

−1

⎞

⎠ , t ∈ ]0, 2π[

⎫
⎬

⎭
+ R+

⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠

⎫
⎬

⎭

⎤

⎦ ∪
⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠

⎫
⎬

⎭
,

(represented in Fig. 1.7).

Fig. 1.7 The set X2, where x = (1, 0, 1)
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Since eco X1 = X1 and eco X2 = cl X2, we have (eco X1) ∩ (eco X2) =
{(x1, x2, 0) ∈ R

3 : (x1 − 1)2 + x2
2 ≤ 1} whereas

eco (X1 ∩X2) = X1 ∩X2 =
{
(x1, x2, 0) ∈ R

3 : (x1 − 1)2 + x2
2 ≤ 1

}
\ {03} .

1.3 Separation Theorems

The standard separation theorem for convex sets asserts that any two nonempty
disjoint convex sets X,Y ⊂ R

n are weakly separated by a hyperplane, that is,
there exists a hyperplane H such that one of the closed halfspaces determined by
H contains X and the other one contains Y. This type of separation is so weak that
it does not require X and Y be disjoint. Stronger types of separation are valid for
pairs X,Y of convex sets satisfying suitable topological assumptions as openness,
closedness and compactness of some of the two sets. The separation theorems
for pairs of closed convex sets are useful tools in the study of ordinary systems
and those optimization problems whose constraint system is ordinary. Analogously,
separation theorems for pairs of e-convex sets are useful in the study of non-ordinary
systems and optimization problems with strict inequality constraints. This is the
type of separation theorems provided by Victor Klee in 1968 in his attempt to
obtain maximal separation theorems, that is, sufficient conditions for certain type
of separation of X from Y under minimal hypotheses on these sets. Following Klee
[99], given two disjoint sets X,Y ⊂ R

n, we say that a hyperplane H separates X

from Y :

• Nicely provided that H is disjoint from X or from Y (without specifying which).
• Openly provided that H is disjoint from X.
• Strictly provided that H is disjoint from both X and Y.

• Strongly provided that H is at positive distance from both X and Y.

Diagram 1.2 Types of
separation

Strong separation

⇓
Strict separation

⇓
Open separation

⇓
Nice separation

⇓
Weak separation
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It is easy to prove that, given a closed convex set X and x ∈ R
n\X, the

hyperplane H orthogonal to the midpoint of the segment joining x with its
projection on X separates strongly X from {x} . So, a nonempty set X is closed
and convex if and only if it is strongly separated from any singleton set contained
in R

n\X. Analogously, from the equivalence (i) ⇐⇒ (iii) in Theorem 1.1, a set X

is e-convex if and only if it is openly separated from any singleton set contained in
R

n\X (cf. (1.8)).
It is easy to separate by suitable examples the concepts involved in Diagram 1.2

for any n ≥ 2. For instance, given a hyperplane H determining two open halfspaces,
H+ and H−, and two different points, x, y ∈ H, defining the disjoint convex sets
X := H+ ∪ {x} and Y := H− ∪ {y} , H separates weakly X from Y, but not nicely.
If one aggregates the condition that X and Y should be closed, the counterexample
must be built in dimension at least 3, as the following one.

Example 1.9 Consider the line X := {(0, x2, 1) : x2 ∈ R} and the closed convex
cone

Y :=
{
y ∈ R

3+ : y2
3 ≤ y1y2

}
.

The hyperplane H = {
x ∈ R

3 : x1 = 0
}

contains X, while Y lies in the halfspace{
x ∈ R

3 : x1 ≥ 0
}
. In fact, H is the unique hyperplane separating weakly X from

Y , but the separation is not nice, as Fig. 1.8 shows.

Maximal strong and strict separation theorems involving closedness or openness
(among other) assumptions can be found in [99, Ths. 2 and 3]. In particular,
[99, Th. 3(d)] states that the openness of two nonempty disjoint convex sets is a
minimal condition for strict separation, so that weaker conditions as even convexity

Fig. 1.8 X is (just) weakly
separated from Y
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cannot imply this kind of separation. Before stating Klee’s (maximal) nice and open
separation theorems we must introduce some concepts.

Given a set X such that ∅ �= X � R
n, if Y ⊂ R

n\X is a j -dimensional affine
manifold such that d (X, Y ) := inf {d (x, y) : x ∈ X, y ∈ Y } = 0, then Y is called
a j -asymptote of X.

A convex set X is called continuous provided that X is closed and its support
function σX := sup {〈·, x〉 : x ∈ X} is continuous; this is equivalent to say that there
is no halfline contained in bd X and no 1-asymptote. Given a supporting hyperplane
of X, we say that X is continuous relative to H if H ∩ X is closed and convex but
it has neither ray contained in its relative boundary nor 1-asymptote relative to H .

A convex set ∅ �= X � R
n is called a strip provided that it is a union of

translates of a given hyperplane. Equivalently, a strip is a hyperplane, an open or
closed halfspace, or a set of the form S or H1 ∪ S, or H1 ∪ S ∪ H2, where H1 and
H2 are parallel hyperplanes and S is the set of all points of Rn lying between H1
and H2. All strips are e-convex.

A set X ⊂ R
n is said to be quasi-polyhedral (or boundedly polyhedral) provided

that its intersection with any polytope is a polytope and to be polyhedral at x ∈ X

provided that X contains a polytope which is a neighborhood of x relative to X. A
set is quasi-polyhedral if and only if it is closed, convex, and polyhedral at each of
its points.

The next two results collect six open and six nice separation theorems, respec-
tively.

Theorem 1.2 (Open Separation Theorems) For X,Y ⊂ R
n disjoint nonempty

convex sets, each of the following conditions implies X is openly separated
from Y .

(i) X is open; Y is arbitrary.
(ii) X is e-convex and its intersection with any supporting hyperplane is compact;

Y is closed.
(iii) X admits no asymptote in any supporting hyperplane intersecting X; Y admits

no asymptote.
(iv) X is e-convex and its intersection with any supporting hyperplane is closed; Y

is e-convex, Y admits no hyperplane asymptote, and Y is continuous relative
to every supporting hyperplane.

(v) X’s projections are all e-convex; Y admits no asymptote and is quasi-
polyhedral.

(vi) X is e-convex; Y is singleton or a closed strip.

Concerning Theorem 1.2, each statement “(i) (respectively, (ii), . . . , (vi)) implies
X is openly separated from Y ” is an open separation theorem, and all of them are
maximal in Klee’s sense [99], except that (vi) does not when n = 2.
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Theorem 1.3 (Nice Separation Theorems) For X,Y ⊂ R
n disjoint nonempty

convex sets, each of the following conditions implies X is nicely separated from Y .

(I) X is open or a strip; Y is arbitrary.
(II) X is e-convex and is continuous relative to any supporting hyperplane; Y is

e-convex and its intersection with any supporting hyperplane is closed.
(III) X admits no asymptote in any supporting hyperplane; Y admits no asymptote

in any supporting hyperplane.
(IV) X’s projections are all e-convex and X is polyhedral at each of its points; Y ’s

projections are all e-convex and Y is polyhedral at each of its points.
(V ) X’s projections are all e-convex; Y admits no asymptote in any supporting

hyperplane and Y is polyhedral at each of its points.
(VI) X is e-convex; Y is singleton or open or a strip.

Regarding Theorem 1.3, each statement “(I) (respectively, (II), . . . , (VI)) implies
X is nicely separated from Y ” is a nice separation theorem, and all of them are
maximal in Klee’s sense [99], except that (VI) does not when n = 2.

Since Klee’s paper was published before the standard terminology and notation
of convex analysis was established by Rockafellar in his celebrated book [148], the
original proofs of the two previous theorems are hardly readable for today’s readers.
Because of this, we give a sketch of them, which precludes cumbersome arguments
based on induction. The keys are Proposition 1.1(iii) and the following lemma.

Lemma 1.1 Let X,Y ⊂ R
n be disjoint nonempty convex sets. Then, X is openly

separated from Y if and only if there is no point p ∈ X which lies in every
hyperplane separating X from Y . Any such point p satisfies at least one of the
following conditions:

(a) p ∈ cl Y .
(b) There is a point w ∈ cl Y such that [p,w] ⊂ (cl X) ∩ H for every hyperplane

H separating X from Y .
(c) There are sequences

{
pk
} ⊂ R

n,
{
xk
} ⊂ X, and

{
yk
} ⊂ Y such that

yk ∈ [pk, xk
]

for all k, lim pk = p, lim xk = x, and [p, x] is contained in
some ray which lies in (cl X)∩H for every hyperplane H separating X from Y .

If X and Y are e-convex, then condition (c) is satisfied for each point p ∈ X

which lies in every hyperplane separating X from Y and each separating hyperplane
H such that X ∩H and Y ∩H are both closed and nonempty.

Sketch of the Proofs of Theorems 1.2 and 1.3. By the standard separation theo-
rem, there is a hyperplane H separating X from Y .

If X is open, then X ∩ H = ∅. If X is a strip, it can happen that H supports X

and, therefore, H ⊂ X and Y ∩H = ∅, or that H ∩ X = ∅. So, statements (i) and
(I) imply that X is openly and nicely separated from Y , respectively.

The proofs for statements (vi) and (VI) are trivial.
The separation theorems corresponding to statements (ii), (iv) and (II) are proved

by contradiction. Supposing that X is not openly separated from Y , by Lemma 1.1,
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there is a point p ∈ X which lies in every hyperplane H separating X from Y .
Therefore, p ∈ X ∩ H and H is a supporting hyperplane of X, which, under
statements (ii), (iv) or (II), implies that X is e-convex and X ∩ H is nonempty
and closed.

Regarding the set Y , if Y ∩ H �= ∅, any of the three conditions implies that Y

is e-convex and Y ∩ H is nonempty and closed, and then, by the last assertion in
Lemma 1.1, condition (c) is satisfied for p, X, Y and H .

If Y ∩ H = ∅, under (ii), conditions (a) and (b) in Lemma 1.1 are excluded
by the fact that Y is closed, so (c) is satisfied; under (iv), the fact that Y admits no
hyperplane asymptote yields to a contradiction; and finally, under (II), Y ∩ H = ∅
implies that X is nicely separated from Y and there is nothing to prove.

Condition (c) in Lemma 1.1 claims the existence of a ray

r := {p + λu : λ ≥ 0} ⊂ (cl X) ∩H

and, since p ∈ X and X is e-convex, by Proposition 1.1(iii), r ⊂ X ∩ H , which
is a contradiction under statements (ii) and (II). Finally, under (iv), [63, Lems. 1.1
and 1.2] assert the existence of a parallel ray to r which is a boundary ray or an
asymptote of Y ∩H and we obtain a contradiction again.

The remaining statements are proved by induction on n. ��
Corollary 1.1 (Even Convexity of the Sum of Convex Sets) If X and Y are
two proper convex sets in R

n, not necessarily disjoint, and they satisfy any of the
conditions of Theorems 1.2 and 1.3, then the set X + Y is e-convex.

Proof The conditions on Y in Theorems 1.2 and 1.3 are symmetric in the sense
that they hold for Y if and only if they hold for −Y and they are also preserved
under translations. If we take z /∈ X + Y , then the sets X and −Y + z are disjoint
(otherwise, there exist x ∈ X and y ∈ Y such that x = −y + z and z = x +
y ∈ X + Y ). Then, since X and −Y + z are disjoint, any of the conditions of
Theorems 1.2 and 1.3 implies the existence of a ∈ R

n\ {0n} such that 〈a, x〉 <

〈a,−y + z〉 for all x ∈ X and y ∈ Y , whence, 〈a, x + y〉 < 〈a, z〉 and we have that
H = {x ∈ R

n : 〈a, x〉 = 〈a, z〉} is a hyperplane which contains z and misses X+ Y

and, since X + Y is convex, by Proposition 1.1(iii), X + Y is e-convex. ��
Observe that X and Y are simultaneously e-convex under conditions (ii) , (iv) ,

(vi) , (II) and (IV) , so that Corollary 1.1 can be interpreted, in those cases, as
providing sufficient conditions for the sum of two e-convex sets to be e-convex.

1.4 Linear Systems Containing Strict Inequalities

This section provides characterizations of the existence of solutions of linear
systems (Sect. 1.4.1), of the linear inequalities defining half-spaces which include
their solution sets (Sect. 1.4.2), and of those pairs of systems such that the solution
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set of one of them is contained in the solution set of the other one (Sect. 1.4.3). The
common feature of all these characterizations is that they are checkable in the sense
that they involve different hulls of sets which are expressed in terms of the data (that
is, the coefficients of the inequalities).

We associate with the linear system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt, t ∈ S} (1.10)

its relaxed system

σ = {〈at, x〉 ≤ bt , t ∈ T } ,

obtained by replacing 〈at , x〉 < bt with 〈at , x〉 ≤ bt for all t ∈ S. Obviously, the
consistency of σ does not entail the consistency of σ (consider, e.g., the system
σ = {0 < x < 0} in R). The next simple result, on the relationships between the
respective solution sets, F and F, is fundamental along this section.

Proposition 1.6 (Relationships Between F and F ) Let F and F be the solution
sets of σ and σ, respectively. Then, the following statements hold:

(i) If F �= ∅, then F = cl F.

(ii) If F = ∅ and σ does not contain the trivial inequality 〈0n, x〉 ≤ 0, then either
F = ∅ or dim F < n.

1.4.1 Existence of Solutions

We recall that σ is consistent if F �= ∅ and inconsistent otherwise. We next show
that the consistency of a linear system σ as in (1.10), with strict inequalities (i.e.,
S �= ∅), can be characterized in terms of the membership, or not, of two particular
vectors to the closed convex hull and the e-convex hull of suitable sets involving the
data.

It is well known that the consistency of σ can be characterized by means of the
cones

N(σ ) := cone

{(
at

bt

)
, t ∈ T

}
and K(σ) := N(σ)+ R+

(
0n

1

)
,

which are called, in the linear semi-infinite programming literature, second order
moment cone and characteristic cone of σ, respectively. Indeed, σ is consistent if
and only if

(
0n

−1

)
/∈ cl N(σ ), (1.11)
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if and only if

(
0n

−1

)
/∈ cl K(σ). (1.12)

Analogously, we define the moment set of σ as

C(σ) :=
{(

at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
,

and the characteristic set of σ as

D(σ) := C(σ) ∪
{(

0n

1

)}
.

Observe that cone C(σ) ⊂ N(σ ) ⊂ cl cone C(σ) and, therefore, cl cone C(σ) =
cl N(σ). Similarly, cone D(σ) ⊂ K(σ) ⊂ cl cone D(σ) and cl cone D(σ) =
cl K(σ). So, conditions (1.15) and (1.17) below express the consistency of the
relaxed system σ , which is necessary but not sufficient for the consistency of σ . We
now show that, assuming the consistency of σ , the additional conditions, (1.16) and
(1.18), at statements (ii) and (iii) , are equivalent, that is, the non-trivial implication,
[⇒] , in

0n+1 /∈ eco C(σ) ⇐⇒ 0n+1 /∈ eco D(σ)

holds. Since

(
0n

−1

)
/∈ cl cone C(σ), the separation theorem for closed convex cones

allows to assert the existence of some vector

(
u

un+1

)
∈ R

n+1\ {0n+1} such that

−un+1 =
〈(

u

un+1

)
,

(
0n

−1

)〉
< 0

and
〈(

u

un+1

)
,

(
x

xn+1

)〉
≥ 0, ∀

(
x

xn+1

)
∈ C(σ). (1.13)

Assume that 0n+1 /∈ eco C(σ). Then, by Theorem 1.1(iii), there exist(
v

vn+1

)
∈ R

n+1\ {0n+1} and vn+2 ∈ R such that

vn+2 =
〈(

v

vn+1

)
,

(
0n

0

)〉
= 0



1.4 Linear Systems Containing Strict Inequalities 21

and
〈(

v

vn+1

)
,

(
x

xn+1

)〉
> vn+2 = 0, ∀

(
x

xn+1

)
∈ C(σ). (1.14)

Since un+1 > 0, vn+1 + αun+1 > 0 for some α > 0 sufficiently large. For such
a large scalar α one has, from (1.13) and (1.14), that

〈(
v + αu

vn+1 + αun+1

)
,

(
x

xn+1

)〉
> 0, ∀

(
x

xn+1

)
∈ C(σ)

while
〈(

v + αu

vn+1 + αun+1

)
,

(
0n

1

)〉
= vn+1 + αun+1 > 0

as well. So, the hyperplane

〈(
v + αu

vn+1 + αun+1

)
,

(
x

xn+1

)〉
= 0

contains 0n+1 while D(σ) lies in one of the two open halfspaces it determines,
proving that

0n+1 /∈ eco D(σ).

Theorem 1.4 (Existence Theorem) Let σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt ,

t ∈ S} with S �= ∅. Then, the following statements are equivalent:

(i) σ is consistent.
(ii)

(
0n

−1

)
/∈ cl cone

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}]
(1.15)

and

0n+1 /∈ eco

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}]
. (1.16)

(iii)

(
0n

−1

)
/∈ cl cone

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
∪
{(

0n

1

)}]

(1.17)
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and

0n+1 /∈ eco

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
∪
{(

0n

1

)}]
. (1.18)

The equivalence [(ii) ⇐⇒ (iii)] holds because conditions (1.15) and (1.16) are
equivalent to (1.17) and (1.18), respectively. Nevertheless, it is easy to prove
that condition (1.18) implies (1.17), so that we obtain the following result as a
consequence of [(i) ⇐⇒ (iii)] in Theorem 1.4.

Corollary 1.2 Let σ be as in Theorem 1.4. Then, σ is consistent if and only if (1.18)
holds.

Proof We only prove that (1.18) implies (1.17). Suppose that (1.18) holds, that
is, 0n+1 /∈ eco D(σ). Then, by (1.8), there exists c ∈ R

n+1 such that 〈c, x〉 < 0,

for all x ∈ D(σ). So,

〈
c,

(
0n

1

)〉
< 0 or, equivalently,

〈
c,

(
0n

−1

)〉
> 0.

Denoting X := {x ∈ R
n+1 : 〈c, x〉 ≤ 0

}
, we have that X is an homogeneous closed

halfspace such that D (σ) ⊂ X and

(
0n

−1

)
/∈ X. Then, by [148, Cor. 11.7.2],

(
0n

−1

)
/∈ cl cone D(σ). ��

The next corollaries are straightforward consequences of the equivalence
(i) ⇐⇒ (ii) in Theorem 1.4. Similar results could be obtained from the equivalence
(i) ⇐⇒ (iii) .

Corollary 1.3 Let σ be as in Theorem 1.4. Then:

(i) If σ is consistent, then

(
0n

−1

)
/∈ cl cone C(σ) and

0n+1 /∈ conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}
. (1.19)

(ii) If σ is consistent, (1.19) holds and the set in (1.19) is closed, then σ is
consistent.

In [78, Lem. 2.1], it is proved that conv (A+ R+B) = conv A+ cone B for any
nonempty sets A and B in R

n, so that, taking into account the definition of C(σ),
we have

conv C(σ) = conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}
. (1.20)
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Since eco C(σ) = eco conv C(σ), one has

eco C(σ) = eco

[
conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}]
, (1.21)

so (1.19) is an immediate consequence of (1.16). On the other hand, if the set
in (1.19) is closed, then eco C(σ) = conv C(σ) and conditions (1.19) and (1.16)
coincide.

The following example shows that the closedness assumption in statement (ii)
of Corollary 1.3 is not superfluous. It also illustrates the use of Theorem 1.4 in the
dubious case that the mentioned closedness fails.

Example 1.10 Let σ := {−tx1 − x2 < t2, t ∈ [−1, 1] \ {0} ; x2 < 0
}
. The set in

Fig. 1.9a,

⎧
⎨

⎩

⎛

⎝
−t

−1
t2

⎞

⎠ , t ∈ [−1, 1] \ {0}
⎫
⎬

⎭
∪
⎧
⎨

⎩

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠

⎫
⎬

⎭
,

generates the (non-closed) characteristic cone

K(σ) =
(
R

2 × ]0,+∞[
)
∪ R+

⎛

⎝
0
1
0

⎞

⎠ .

JJ J'J'

a b

Fig. 1.9 (a) Generators of K(σ); (b) The set Y
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Since (1.15) holds, σ is consistent. The set in (1.19) is

Y := conv

⎛

⎝

⎧
⎨

⎩

⎛

⎝
−t

−1
t2

⎞

⎠ , t ∈ [−1, 1] \ {0}
⎫
⎬

⎭
∪
⎧
⎨

⎩

⎛

⎝
0
1
0

⎞

⎠

⎫
⎬

⎭

⎞

⎠

= conv

⎧
⎨

⎩

⎛

⎝
−t

−1
t2

⎞

⎠ , t ∈ [−1, 1] ;
⎛

⎝
0
1
0

⎞

⎠

⎫
⎬

⎭
\({0} × [−1, 1[×{0})

which does not contain 03. So, σ satisfies the necessary condition (i) in Corol-
lary 1.3 but not the sufficient one, (ii). We finally observe that eco C(σ) is the
closure of the set Y in Fig. 1.9b as all its exposed faces contain points of Y. Hence,

03 ∈ eco C(σ) = cl Y = conv

⎛

⎝

⎧
⎨

⎩

⎛

⎝
−t

−1
t2

⎞

⎠ , t ∈ [−1, 1]

⎫
⎬

⎭
∪
⎧
⎨

⎩

⎛

⎝
0
1
0

⎞

⎠

⎫
⎬

⎭

⎞

⎠ ,

and σ turns out to be inconsistent by Theorem 1.4.

Corollary 1.4 (Motzkin-Like Existence Theorem) Let

σ = {〈at , x〉 < 0, t ∈ S; 〈at , x〉 ≤ 0, t ∈ W ; 〈at , x〉 = 0, t ∈ E} (1.22)

be an homogeneous system such that the index sets are pairwise disjoint and S �= ∅.
Then, σ is consistent if and only if

0n /∈ eco [{at , t ∈ S} + R+ {at , t ∈ W } + R {at , t ∈ E}] . (1.23)

In the particular case that the set

conv {at , t ∈ S} + cone {at , t ∈ W } + span {at , t ∈ E}
is closed, σ is consistent if and only if

0n /∈ conv {at , t ∈ S} + cone {at , t ∈ W } + span {at , t ∈ E} .

It is customary in mathematical programming to express the existence theorems
in the equivalent form of alternative theorems asserting that exactly one of two
statements holds, being one of them relative to the consistency of some system, and
the other relative to the membership of certain vector in a suitable set. For instance,
the reformulation of Corollary 1.4 as an alternative theorem asserts that either σ in
(1.22) is consistent or

0n ∈ eco [{at , t ∈ S} + R+ {at , t ∈ W } + R {at, t ∈ E}] ,

but not both.
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Corollary 1.5 (Gordan-Like Existence Theorem) An homogeneous system σ =
{〈at , x〉 < 0, t ∈ S} is consistent if and only if

0n /∈ eco {at , t ∈ S} . (1.24)

In the particular case that conv {at , t ∈ S} is closed, σ is consistent if and only if
0n /∈ conv {at , t ∈ S}.

Obviously, Corollary 1.5 can be expressed as an alternative theorem by saying
that either σ = {〈at , x〉 < 0, t ∈ S} is consistent or 0n ∈ eco {at, t ∈ S} , but not
both.

The next alternative theorem is another immediate consequence of Theorem 1.4.
There, R(T ) denotes the space of generalized finite sequences, that is, the linear
space of those functions λ : T → R whose support, supp λ := {t ∈ T : λt �= 0} ,
is finite. We denote by R

(T )
+ the positive cone in R

(T ). This notation allows us
to characterize the existence of solutions in terms of the inexistence of certain
multipliers.

Corollary 1.6 (Rockafellar-Like Alternative Theorem) Let σ be as in Theo-
rem 1.4. Assume that {〈at , x〉 ≤ bt , t ∈ W } is consistent and that

cone

{(
at

bt

)
, t ∈ T

}
and conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}

are closed sets. Then one and only one of the following alternatives holds:

(i) σ is consistent.
(ii) There exists λ ∈ R

(T )
+ such that at least one of the numbers λt , t ∈ S, is

nonzero, and

∑

t∈T

λtat = 0n and
∑

t∈T

λtbt ≤ 0.

If

{(
at

bt

)
, t ∈ S

}
is compact and cone

{(
at

bt

)
, t ∈ W

}
is closed, the closedness

assumptions in Corollary 1.6 hold. In particular, if S and W are finite, then
Proposition 1.6 becomes [148, Th. 22.2] (see Corollary 2.4).

The following alternative theorem is an immediate consequence of Corollary 1.6
for systems of strict linear inequalities.

Corollary 1.7 (Carver-Like Alternative Theorem) Let σ = {〈at , x〉 < bt , t ∈ S}
be such that conv

{(
at

bt

)
, t ∈ S

}
is closed. Then one and only one of the following

alternatives holds:

(i) σ is consistent.
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(ii) There exists λ ∈ R
(T )
+ such that at least one of the numbers λt ,t ∈ S, is nonzero,

and

∑

t∈S

λtat = 0n and
∑

t∈S

λtbt ≤ 0.

We finish this section showing the natural way to decide whether σ is consistent
or not, and to compute a solution of σ in the first case. To do this we associate with
σ the ordinary linear semi-infinite programming (LSIP in short) problem

(Pσ ) Min
(x,xn+1)∈Rn+1

xn+1

s.t. 〈at , x〉 − xn+1 ≤ bt , t ∈ S,

〈at , x〉 ≤ bt , t ∈ W,

whose optimal value is denoted by v(Pσ ).

Proposition 1.7 (Checking the Consistency of σ via LSIP) The following state-
ments hold:

(i) If v(Pσ ) < 0, then σ is consistent.
(ii) If v(Pσ ) > 0 , then σ is inconsistent.
(iii) If v(Pσ ) = 0 and (Pσ ) is not solvable, then σ is inconsistent.

If v(Pσ ) = 0 and (Pσ ) is solvable, there exists an optimal solution of (Pσ ) which

can be written as

(
x

0

)
. Then x is solution of σ . Nevertheless, σ is not necessarily

consistent as the next example shows.

Example 1.11 Consider the inconsistent system in Example 1.10. We claim that
v(Pσ ) = 0 with (Pσ ) solvable. In fact, taking limits as t → 0 in−tx1−x2−x3 ≤ t2,
t �= 0, gives−x2 − x3 ≤ 0. The remaining constraint is x2 − x3 ≤ 0, so that x3 ≥ 0
for all feasible solution of (Pσ ). Since 03 is a feasible solution, v (Pσ ) = 0 and 03
is an optimal solution of (Pσ ).

Observe that, given ε < 0, if

(
x

xn+1

)
is a solution of

σε := {〈at , x〉 + btxn+1 ≤ ε, t ∈ S; xn+1 ≤ ε; 〈at , x〉 + btxn+1 ≤ 0, t ∈ W } ,

then (−xn+1)
−1
(

x

ε

)
is a feasible solution of (Pσ ), so that (as observed in [42])

the consistency of σε entails the consistency of σ , according to Proposition 1.7.

The converse statement holds if |S| < ∞ (since, given x ∈ F , then εδ−1
(

x

−1

)
is

solution of σε for δ := max {−1; 〈at , x〉 − bt , t ∈ S}), but it may fail for infinite
systems. In fact, for the system in R σ = {−tx < t2, t �= 0

}
, F = {0} whereas σε

is inconsistent for all ε < 0.
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1.4.2 Consequent Inequalities

An inequality 〈a, x〉 ≤ b (respectively, 〈a, x〉 < b) is consequence of

σ = {〈at , x〉 < bt , t ∈ S; 〈at , x〉 ≤ bt , t ∈ W }

if 〈a, x〉 ≤ b (respectively, 〈a, x〉 < b) holds for every x ∈ R
n solution of σ . If

σ is inconsistent, then any linear inequality is consequence of σ . So we assume
throughout this section that σ is consistent.

One way of generating consequent weak inequalities of the ordinary system σ =
{〈at , x〉 ≤ bt , t ∈ T } consists in picking some λ ∈ R

(T )
+ , multiplying the inequality

〈at , x〉 ≤ bt by λt for each t ∈ supp λ and summing up these inequalities. The
resulting inequality,

〈
∑

t∈T

λtat , x

〉

≤
∑

t∈T

λtbt , (1.25)

is of course a consequence of σ, as well as those obtained by strengthening the
constant term in (1.25), i.e., the inequalities of the form

〈
∑

t∈T

λtat , x

〉

≤
∑

t∈T

λtbt + μ, with μ ≥ 0.

In other words, if

(
a

b

)
∈ cone

{(
at

bt

)
, t ∈ T ;

(
0n

1

)}
= K(σ),

then 〈a, x〉 ≤ b is a consequence of σ . These are all the consequences of σ when
T is finite, by the non-homogeneous Farkas lemma proved by Minkowski in 1911,
but we can use limits to get more consequences whenever T is infinite. Indeed, if{(

ak

bk

)}
is a sequence in R

n+1 converging to

(
a

b

)
such that

(
ak

bk

)
∈ K(σ), k = 1, 2, . . .

then 〈a, x〉 ≤ b is consequence of σ . Even more, the weak inequalities which are
consequence of σ are characterized by the generalized non-homogeneous Farkas
lemma for ordinary systems [72, Th. 3.1] as follows:

〈a, x〉 ≤ b,∀x ∈ F ⇐⇒
(

a

b

)
∈ cl K(σ). (1.26)
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Regarding σ , where we now assume that S �= ∅, one can obtain a strict
consequent inequality 〈a, x〉 < b by picking some λ ∈ R

(T )
+ such that λt > 0

for at least one index t ∈ S, in which case

〈
∑

t∈T

λtat , x

〉

<
∑

t∈T

λtbt (1.27)

is a consequence of σ . A given λ ∈ R
(T )
+ is said to be legal if λt > 0 for at least one

index t ∈ S, while its corresponding strict inequality (1.27) is called a legal linear
combination of σ. Obviously,

〈
∑

t∈T

λtat , x

〉

<
∑

t∈T

λtbt + μ, with μ ≥ 0,

is also consequence of σ, but the limiting process mentioned above provides
consequent inequalities of the form 〈a, x〉 ≤ b, with

(
a

b

)
∈ cl K(σ) = cl cone D(σ),

whose corresponding strict inequality 〈a, x〉 < b is not necessarily a consequence
of σ. The next result replaces this limiting process by a stronger dual condition
involving its characteristic and moment sets and legal linear combinations.

Theorem 1.5 (Characterization of Consequent Inequalities) For any consistent
system σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S} the following statements
hold:

(i) 〈a, x〉 ≤ b is consequence of σ if and only if

(
a

b

)
∈ cl cone

[{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
∪
{(

0n

1

)}]
.

(ii) 〈a, x〉 < b is consequence of σ if and only if either

(
0n

−1

)
∈ cl cone

({(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
− R+

(
a

b

))

(1.28)

or

0n+1 ∈ eco

({(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
− R+

(
a

b

))
. (1.29)
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(iii) If 〈a, x〉 < b is a legal linear combination of the system
{〈at , x〉 ≤ bt , t ∈ W ∪ S; 〈0n, x〉 < 1}, then (1.28) holds and 〈a, x〉 < b

is consequence of σ . The converse holds whenever the cone

cone

({(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
− R+

(
a

b

))

is closed.
(iv) If 〈a, x〉 < b is a legal linear combination of σ , then (1.29) holds and the

inequality 〈a, x〉 < b is consequence of σ . The converse holds whenever the
convex set

conv

{(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}
− R+

(
a

b

)
(1.30)

is e-convex.

Statement (i) above means that 〈a, x〉 ≤ b is consequence of σ if and only if it
is consequence of σ . Regarding (ii) and (iii), taking into account that

cone

(
C(σ)− R+

(
a

b

))
⊂ N(σ )− R+

(
a

b

)
⊂ cl cone

(
C(σ)− R+

(
a

b

))
,

condition (1.28) is equivalent to

(
0n

−1

)
∈ cl

(
N(σ )− R+

(
a

b

))

and, whenever cone

(
C(σ)− R+

(
a

b

))
is closed, we have

cone

(
C(σ)− R+

(
a

b

))
= N(σ )− R+

(
a

b

)
.

In that case, condition (1.28) obviously yields 〈a, x〉 < b is a legal linear
combination of σ ∪ {〈0n, x〉 < 1}.

Regarding (iv), by (1.20), we have

conv

(
C(σ)− R+

(
a

b

))
= conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W ; −

(
a

b

)}

= conv C(σ)− R+
(

a

b

)
,

so that

eco

(
C(σ)− R+

(
a

b

))
= eco

(
conv C(σ)− R+

(
a

b

))
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and, whenever conv C(σ)− R+
(

a

b

)
is e-convex, we have

eco

(
C(σ)− R+

(
a

b

))
= conv C(σ)− R+

(
a

b

)
.

The closedness assumption at (iii) and even convexity at (iv) are not superfluous
for the validity of the converse statements, as the next example shows.

Example 1.12 The inequality−x2 < 0, in R
2, is a consequence of

σ :=
{

2tx1 − x2 < t2, t ∈ U ; x1 − x2 < 0
}

,

where U = ]−1, 0[, as far as the solution set F of σ is the interior of the convex
hull of the graph of the function f : R→ R defined by

f (x1) =
⎧
⎨

⎩

−2x1 − 1, if x1 < −1,

x2
1 , if − 1 ≤ x1 ≤ 0,

x1, if x1 > 0,

(see Fig. 1.10). Nevertheless, −x2 < 0 fails to be a legal linear combination of
σ ∪ {〈0n, x〉 < 1} or σ , since the following two systems are inconsistent:

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
0
−1
0

⎞

⎠ = ∑

t∈U

λt

⎛

⎝
2t

−1
t2

⎞

⎠+ γ

⎛

⎝
1
−1
0

⎞

⎠+ μ

⎛

⎝
0
0
1

⎞

⎠

λ ∈ R
(U)
+ , γ ≥ 0, μ > 0

⎫
⎪⎪⎬

⎪⎪⎭

a b

Fig. 1.10 (a) The closure of F ; (b) The solution set F
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Fig. 1.11 The set conv C(σ)− R+
(

a

b

)

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
0
−1
0

⎞

⎠ = ∑

t∈U

λt

⎛

⎝
2t

−1
t2

⎞

⎠+ γ

⎛

⎝
1
−1
0

⎞

⎠

∑

t∈U

λt + γ > 0

λ ∈ R
(U)
+ , γ ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Actually, (1.29) holds, but conv C(σ)− R+
(

a

b

)
is not e-convex (see Fig. 1.11).

Regarding the fulfilment of the additional assumption for the converse statement

in (iv), i.e., the even convexity of convC(σ) − R+
(

a

b

)
, this set is open whenever

conv C(σ) is open, and it is closed whenever

{(
at

bt

)
, t ∈ S

}
is compact and W = ∅

(and so e-convex in both cases). Moreover, according to Corollary 1.1, conv C(σ)−
R+
(

a

b

)
is e-convex if the pair of sets X := conv C(σ) and Y := R+

(
a

b

)
satisfies

any of the conditions of Theorems 1.2 and 1.3, for instance, at least one of the
conditions (ii), (iii), (v), and (I), which here collapse to:

• conv C(σ) is e-convex and its intersection with any supporting hyperplane is
compact.

• conv C(σ) admits no asymptote in any supporting hyperplane.
• The projections of conv C(σ) are all e-convex.
• conv C(σ) is a strip.
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1.4.3 Set Containment of Evenly Convex Sets

One of the basic tools in machine learning are the so-called linear classifiers,
which are affine functions allowing to incorporate prior knowledge obtained from
sets (the so-called learning sets), which are usually formed by individuals which
have been previously classified (e.g., as either healthy or ill in medical tests).
Mangasarian considered infinite learning sets, starting with the simple ones, the
polyhedral sets [117, 118]. The main question was how to model the condition that a
given polyhedral knowledge set F satisfies F ⊂ {x ∈ R

n : 〈a, x〉 − b ≤ 0} , where
a ∈ R

n\ {0n} and b ∈ R are the decision variables determining the best linear
classifier 〈a, ·〉 − b for certain criterion.

Since, by the separation theorem, any closed convex set F is the intersection of
all closed halfspaces containing F, we associate with F the so-called weak dual
cone of F,

K
≤
F :=

{(
a

b

)
∈ R

n+1 : 〈a, x〉 ≤ b,∀x ∈ F

}
. (1.31)

Then,

F ⊂ {x ∈ R
n : 〈a, x〉 ≤ b

}⇐⇒
(

a

b

)
∈ K

≤
F . (1.32)

If F is expressed as the solution set of a finite system {〈at , x〉 ≤ bt , t ∈ W } , the
classical non-homogeneous Farkas lemma asserts that

K
≤
F := cone

{(
at

bt

)
, t ∈ W ;

(
0n

1

)}
,

providing the aimed characterization,

F ⊂ {x ∈ R
n : 〈a, x〉 ≤ b

}⇐⇒
(

a

b

)
∈ cone

{(
at

bt

)
, t ∈ W ;

(
0n

1

)}
,

for the containment of F in a halfspace in terms of the data.
More generally, the containment problem, which consists of deciding, for a given

couple of subsets of Rn, the inbody F and the circumbody G, whether F ⊂ G or
not, was first posed in 2000 by Mangasarian [117]. The sets F and G are usually
given as solution sets of inequality systems, and the aim is the characterization of
the inclusion F ⊂ G in terms of the data (usually, the constraints describing these
sets). Mangasarian [117] solved the containment problem for polyhedral convex
sets (the situation illustrated by Fig. 1.12) via linear programming, by exploiting the
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Fig. 1.12 Inclusion of a
polyhedron F in another
one G

following consequence of (1.32): given two polyhedra F and G,

F ⊂ G ⇐⇒ K
≤
G ⊂ K

≤
F , (1.33)

where K
≤
F and K

≤
G are the weak dual cones of F and G defined as in (1.31).

Consequently,

F = G ⇐⇒ K
≤
F = K

≤
G.

If F is the solution set of {〈at , x〉 ≤ bt , t ∈ W } , from the definition of K
≤
F

and the non-homogeneous Farkas lemma for linear semi-infinite systems [72, Cor.
3.1.2], one gets

K
≤
F = cl cone

{(
at

bt

)
, t ∈ W ;

(
0n

1

)}
.

As shown in [68, Prop. 4.1], if F and G are the sets of solutions of two given
systems of weak inequalities, the preservation of the inclusion F ⊂ G under
sufficiently small perturbations of the respective linear representations is related
with the condition that F ⊂ int G. Here, both sets F and int G are e-convex as the
inbody F is a closed convex set while the circumbody int G is an open convex set.
In order to extend (1.33) to e-convex sets we must associate with F the cone which
results of replacing “≤” with “<” in (1.31).



34 1 Evenly Convex Sets: Linear Systems Containing Strict Inequalities

One can define the weak dual cone K
≤
F of an arbitrary set F by (1.31). Then,

given a couple F and G of proper subsets of Rn, one has cl conv F ⊂ cl conv G if
and only if K

≤
G ⊂ K

≤
F and cl conv F = cl conv G if and only if K

≤
G = K

≤
F .

The strict dual cone of a set F such that ∅ �= F ⊂ R
n is

K<
F :=

{(
a

b

)
∈ R

n+1 : 〈a, x〉 < b,∀x ∈ F

}
.

Observe that K<
F and K

≤
F can be seen as solution sets of homogeneous linear

systems of strict and weak inequalities in R
n+1 indexed by F, respectively. So, they

are an e-convex cone not containing 0n+1 and a closed convex cone, respectively.
From their definitions, we have that cl K<

F ⊂ K
≤
F . Moreover, the reverse inclusion

holds as any

(
a

b

)
∈ K

≤
F is the limit of the sequence

{(
a

b + 1
k

)}
contained in K<

F .

So,

(
0n

1

)
∈ cl K<

F = K
≤
F .

Proposition 1.8 (Characterization of the Strict Dual Cone) Let F be the solution
set of σ = {〈at , x〉 < bt , t ∈ S; 〈at , x〉 ≤ bt , t ∈ W } . Then the following state-
ments hold:

(i) K<
F is formed by all vectors

(
a

b

)
such that 〈a, x〉 < b is a legal linear

combination of σ provided the set

C(σ) =
{(

at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

}

satisfies at least one of the following conditions:

(a) conv C(σ) is open.

(b)

{(
at

bt

)
, t ∈ S

}
is compact and W = ∅.

(c) conv C(σ) is e-convex and its intersection with any supporting hyperplane
is compact.

(d) conv C(σ) admits no asymptote in any supporting hyperplane.
(e) The projections of conv C(σ) are all e-convex.
(f ) conv C(σ) is a strip.

(ii) If W = ∅, then

K<
F = ecoR++

{(
at

bt

)
, t ∈ S;

(
0n

1

)}
. (1.34)
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Partial Proof Since statement (ii) is known, we only prove here statement (i). Any

of the conditions from (i.a) to (i.f ) guarantees that conv C(σ)−R+
(

a

b

)
is e-convex

for all

(
a

b

)
∈ R

n+1 by Corollary 1.1. The conclusion follows from Theorem 1.5(iv).

��
The strict dual cone of F, K<

F , gathers useful geometric information on F ; for
instance, the recession cone of F is

0+F =
{
y ∈ R

n : 〈a, y〉 ≤ 0, ∀
(

a

b

)
∈ K<

F

}
,

and F is bounded if and only if

(
0n

1

)
∈ int K<

F .

Proposition 1.9 (Dual Characterization of the Containment of e-Convex Sets)
Given two proper subsets of Rn, F and G, one has

eco F ⊂ eco G ⇐⇒ K<
G ⊂ K<

F .

Moreover, if both sets are e-convex, then

F ⊂ G ⇐⇒ K<
G ⊂ K<

F .

Consequently,

F = G ⇐⇒ K<
F = K<

G.

Proof The first statement comes from the definitions of strict dual cone and e-
convex hull, and the second from the obvious equations eco F = F and eco G = G

when these two sets are e-convex. ��
The next result suggests the existence of an intriguing topological duality

between e-convex sets and their strict dual cones.

Proposition 1.10 (On the Topology of e-Convex Sets and Their Dual Cones)
Let F �= ∅ be an e-convex set. Then the following statements hold:

(i) F is open if and only if K<
F ∪ {0n+1} is closed.

(ii) If K<
F is relatively open, then F is closed.

(iii) If F is compact, then K<
F is open.

Example 1.13 Consider the closed convex set F = R
2+. From the definition of strict

dual cone one gets K<
F = (−R+)2 × R++ (it can also be obtained from (1.34) by

observing that F = {
x ∈ R

2 : −xi < α, α ∈ R++, i = 1, 2
}
). Since K<

F is neither
closed nor open, the converse statement of Proposition 1.10(ii) does not hold, and
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one cannot replace “compact” with “closed” in Proposition 1.10(iii). Finally, let us

observe that

(
02

1

)
∈ bd K<

F as F is unbounded.

1.5 Evenly Linear Semi-Infinite Programming

Strict inequality constraints naturally arise in many real situations, even though
they are usually replaced in optimization models by their corresponding weak
inequalities. For instance, in production planning problems, where the decision
variable xj represents the production level of the j -th good (or commodity), j ∈ J,

sign constraints of the type xj > 0 are usually replaced by their relaxation xj ≥ 0,

which provides relaxed optimization problems of the accurate ones. In the same
context, when the j -th good contains a percentage pj of some obnoxious component
and the percentage of this component at the whole production is required to be less
or equal than some given percentage threshold P , this condition can be formulated

as
∑

j∈J pj xj∑
j∈J xj

≤ P provided that xj > 0 for some j ∈ J, that is, the following pair

of linear constraints hold:

∑

j∈J

(
pj − P

)
xj ≤ 0 and

∑

j∈J
xj > 0.

In this section we obtain information on the accurate model from its relaxation.
To this aim, we associate with the given linear semi-infinite programming

problem with strict inequalities (in short, e-LSIP problem)

(P ) Min
x∈Rn

〈c, x〉
s.t. 〈at, x〉 ≤ bt , t ∈ W,

〈at, x〉 < bt , t ∈ S �= ∅,
(1.35)

where c �= 0n and W and S are arbitrary disjoint index sets, its relaxed problem

(P ) Min
x∈Rn

〈c, x〉
s.t. 〈at , x〉 ≤ bt, t ∈ T = W ∪ S.

(1.36)

We denote by σ and σ the linear systems given by the constraints of (P ) and(
P
)
, respectively, and by F and F their corresponding solution sets, which are

the feasible sets of (P ) and
(
P
)
, respectively. Observe that, since σ corresponds

to the relaxed system of σ , by Proposition 1.6, we have that F = cl F when (P ) is
consistent (that is, F �= ∅).

In order to obtain geometrical information on the feasible set F and to decide
whether a given x∗ ∈ F is an optimal solution of (P ) by means of a condition
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involving the data (that is, the coefficients of the constraints), we must introduce
assumptions on σ which are generically called constraint qualifications.

1.5.1 Constraint Qualifications

We first introduce five global constraint qualifications. We say that σ is continuous
if T is a compact topological space and the coefficient function t �−→ (at , bt ) is
continuous on T . In particular, σ is said to be analytical (respectively, polynomial)
if T is a compact interval in R and the n+1 projections of the vector-valued function
t �−→ (at , bt ) are analytical (respectively, polynomial). We say that σ satisfies the
Slater constraint qualification (SCQ in short) if there exists some x̂ ∈ R

n such that
〈at , x̂〉 < bt for all t ∈ T . Finally, we say that σ satisfies the Farkas-Minkowski
constraint qualification (FMCQ in brief) if it is consistent and each weak inequality
〈a, x〉 ≤ b which is consequence of σ is also consequence of a finite subsystem
of σ.

Assume that FMCQ holds and 〈a, x〉 ≤ b is consequence of σ. Then there exist
two finite sets W1 ⊂ W and S1 ⊂ S such that 〈a, x〉 ≤ b is consequence of σ1 =
{〈at , x〉 ≤ bt , t ∈ W1; 〈at , x〉 < bt , t ∈ S1} and, according to Theorem 1.5,

(
a

b

)
∈ cl cone

({(
at

bt

)
, t ∈ S1

}
+ R+

{(
at

bt

)
, t ∈ W1

}
∪
(

0n

1

))
.

Since the convex cone generated by the union of finitely many halflines together
with one element of the vertical axis is not necessarily closed, we cannot assert that

(
a

b

)
∈ cone

({(
at

bt

)
, t ∈ S1

}
+ R+

{(
at

bt

)
, t ∈ W1

}
∪
(

0n

1

))
.

Thus, the closedness of cone D(σ) is a sufficient, but not necessary, condition for
the fulfillment of FMCQ. Actually, σ satisfies FMCQ if and only if the characteristic
cone of the relaxed system σ ,

K(σ) = cone

{(
at

bt

)
, t ∈ T ;

(
0n

1

)}
,

is closed [72, Th. 5.3(i)]. The definition of the next two constraint qualifications
involves σ .

We say that σ satisfies the locally Farkas-Minkowski constraint qualification
(LFMCQ in short) at x ∈ F (not necessarily in F ) if it is consistent and each
inequality 〈a, x〉 ≤ b which is consequence of σ and binding at x (i.e., 〈a, x〉 = b)

is also consequence of a finite subsystem of σ. Obviously, FMCQ implies LFMCQ
at any x ∈ F , but the converse statement does not hold (see Example 1.14).
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Finally, we say that σ satisfies the locally polyhedral constraint qualification
(LOPCQ) at x ∈ F if A(x)◦ = D(F ; x), where

A(x) := cone {at : 〈at , x〉 = bt , t ∈ T }

is the so-called active cone at x and A(x)◦ denotes its (negative) polar cone, i.e.,

A(x)◦ = {y ∈ R
n : 〈at, y〉 ≤ 0,∀t ∈ T such that 〈at , x〉 = bt }

(see Sect. 1.6.1). A necessary condition for LOPCQ is F be quasipolyhedral and
its set of extreme points be isolated [72, Th. 5.6(ii)]. Any consistent finite system
satisfies LOPCQ at any point of F , which in turn implies LFMCQ at any point of
F . Diagram 1.3, where x denotes an arbitrary element of F, shows the relationships
between the above constraint qualifications.

When σ satisfies one of the above constraint qualifications, its corresponding
relaxed system σ also satisfies the same condition (recall that, according to
Theorem 1.5(i), an inequality 〈a, x〉 ≤ b is consequence of σ if and only if it is
consequence of σ ). This allows us to adapt the known results on ordinary semi-
infinite linear systems and ordinary semi-infinite linear programming to systems
and linear problems containing strict inequalities.

Example 1.14 Let σ := {−x1 − t2x2 < −2t, t ∈ R++
}
. It satisfies LFMCQ at

any x ∈ bd F = bd F as each inequality of σ describes the halfplane determined by
a different supporting hyperplane to F (the convex hull of the graph of the function
x �−→ 1

x
restricted to R++). However, FMCQ fails as −x1 ≤ 0 and −x2 ≤ 0

are linear consequences of σ which are not consequences of finite subsystems of
σ (Fig. 1.13 shows that the halfplanes −x1 ≤ 0 and −x2 ≤ 0 do not contain the
solution set of the subsystem obtained by replacing T by {t1, t2, t3} in σ ).

Example 1.15 The system σ1 :=
{−tx1+ (t − 1)x2 < t2− t, t ∈ [0, 1]

}
is poly-

nomial and satisfies SCQ as x̂ = (1, 1) is a Slater point. Thus, σ1 satisfies FMCQ
(Fig. 1.14 shows K(σ1)) and, so, LFMCQ everywhere. However, LFMCQ is lost
by the elimination of at least one of the redundant inequalities corresponding to
the indices t = 0, 1. For instance, σ2 =

{−tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1[
}

Diagram 1.3 Types of
ordinary linear systems

σ polynomial

⇓
σ analytical

⇓
σ continuous and SCQ

⇑ ⇓
σ finite �⇒ FMCQ

⇓
LFMCQ at x ⇐� LOPCQ at x
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Fig. 1.13 σ satisfies
LFMCQ everywhere but not
FMCQ

Fig. 1.14 Characteristic cone
of σ 1

does not satisfy LFMCQ at (1, 0) and (0, 1) as −x1 ≤ 0 and −x2 ≤ 0 are linear
consequences of σ 2 defining supporting halfspace to its feasible set F 2 = F 1, but
they are not consequences of any finite subsystems of σ 2. Figure 1.15 shows that the
halfplanes −x1 ≤ 0 and −x2 ≤ 0 do not contain the solution set of the subsystem
corresponding to the index set {t1, t2, t3}. Observe that F 1 = int F 2 is the result of
eliminating from F 2 its two facets.
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Fig. 1.15 σ2 does not satisfy
LFMCQ at two points

1.5.2 Feasible Set

Since we are assuming that F �= ∅ and its closure is cl F = F, by [148, Ths.
6.2 and 6.3], F and F have the same relative interiors and, so, the same relative
boundaries, affine hulls, and dimensions. Moreover, if int F �= ∅, the interiors and
the boundaries of F and F are also the same.

The next result is an immediate consequence of [72, Th. 9.3] taking into account
that

0+F = 0+F = {x ∈ R
n : 〈at , x〉 ≤ 0, t ∈ T

}
.

Proposition 1.11 (Boundedness of the Solution Set) The following statements are
equivalent:

(i) F is bounded.
(ii) 0n is the unique solution of {〈at , x〉 ≤ 0, t ∈ T } .
(iii)

(
0n

1

)
∈ int K (σ) .

(iv) cone {at , t ∈ T } = R
n.

To get a formula for dim F in terms of the data we must introduce another
concept. Since

〈at , x〉 = bt ,∀x ∈ F ⇐⇒ 〈at , x〉 = bt ,∀x ∈ F,
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the set of carrier indices of σ, defined as

T = := {t ∈ T : 〈at, x〉 = bt,∀x ∈ F } ⊂ W,

coincides with the set of carrier indices of σ (as defined in [72, p. 101] for ordinary
systems), SCQ holds if and only if T = = ∅ [72, Cor. 5.1.1] and, by [72, Th. 5.1],

rint F ⊂ {x ∈ R
n : 〈at, x〉 < bt, t ∈ T \T =; 〈at , x〉 = bt , t ∈ T =

}
.

The next result involves the lineality of a convex cone K (recall that lin K =
K ∩ (−K)).

Proposition 1.12 (Dimension Formulas) The following statements hold true:

(i) dim F = n− dim lin cl K(σ). Moreover, if LFMCQ holds at each x ∈ F (e.g.,
if FMCQ holds), then

dim F = n− dim span {at : t ∈ T =}

and

aff F = {x ∈ R
n : 〈at, x〉 = bt, t ∈ T =

}
.

(ii) dim 0+F = n− dim lin cl cone {at : t ∈ T } .
(iii) dim lin 0+F = n− dim cone {at : t ∈ T } .
Proof (i) comes from [72, Ths. 5.8 and 5.9], as dim F = dim F, while (ii) and (iii)
follow from [72, Remark after Th. 5.8] recalling that 0+F = 0+F . ��

To get information on the boundary points of F we denote by

Ft :=
{
x ∈ F : 〈at , x〉 = bt

}

the (possibly empty) exposed face of F associated with index t ∈ T . Obviously,
F = F\ ⋃

t∈S

Ft .

If σ is analytical, we associate with each x ∈ F a linear subspace L(x) of
R

n defined as the linear span of the union of the sets of successive derivatives{
at , a

(1)
t , . . . , a

(d(t))
t

}
of the slack function at x, t �−→ 〈at , x〉 − bt at those indices

t ∈ T which are roots (with order of multiplicity d(t)+ 1).
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Proposition 1.13 (Boundary and Extreme Points) The following statements hold
true:

(i) If LFMCQ holds at each x ∈ F (e.g., if FMCQ holds), then

rint F = {x ∈ R
n : 〈at , x〉 = bt , t ∈ T =; 〈at , x〉 < bt , t ∈ T \T =} ,

rbd F = ∪{Ft : t ∈ T \T =}

and

bd F = ∪{Ft : at �= 0n, t ∈ T } .

(ii) Given x ∈ F, if dim A(x) = n, then x is an extreme point of F . The converse
statement holds under LOPCQ at x.

(iii) Let σ be an analytical system and let x ∈ F be such that the slack function at
x is not the null function on T . Then, x is an extreme point of F if and only if
dim L(x) = n.

Proof (i) comes from [72, Th. 5.9], as rint F = rint F, and (ii) and (iii) follow
from [72, Th. 9.1], recalling that extr F = F ∩ extr F by Proposition 1.1(ii). ��
Example 1.16 (Example 1.15 Revisited) The solution set F2 of the system

σ2 :=
{
−tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1[

}
(1.37)

is the result of eliminating from the set F 1 in Fig. 1.15 the points of the arc
√

x1 +√
x2 = 1, −x1 < 0, −x2 < 0 (see [72, Ex 1.1]). Since

cone {at , t ∈ ]0, 1[} = cone

{( −t

t − 1

)
, t ∈ ]0, 1[

}
�= R

2,

by Proposition 1.11, F is unbounded. Moreover, aff F2 = R
2 and dim F2 = 2, as

prescribed by Proposition 1.12(i) even though the additional assumption does not
hold. Regarding Proposition 1.13, since T = = ∅, the three equations in (i) fail,
showing the necessity of LFMCQ. Regarding statement (ii), observe that A(x) =
{02} for all x ∈ F2, even at the extreme points of F2, (1, 0) and (0, 1) , which shows
that LOPCQ is not superfluous for the converse. Finally, regarding (iii), if we take
the analytical system

σ3 :=
{
−tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1] ; −tx1 + (t − 1)x2 ≤ t2 − t, t = 0

}
,

whose solution set F3 is the result of eliminating from F2 the exposed face {0} ×
[1,+∞[, the slack function at x = (1, 0) ∈ F3 is t �−→ −t2, whose unique zero
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is 0, with multiplicity 2 = d (0) + 1, i.e., d (0) = 1. Since at =
( −t

t − 1

)
and

a
(1)
t =

(−1
1

)
,

L(x) = span

{(
0
−1

)
,

(−1
1

)}

and dim L(x) = 2, as expected.

1.5.3 Optimality and Duality

Now, we consider the e-LSIP problem (P ) and its relaxed problem (P ), defined in
(1.35) and (1.36), respectively. We adopt the standard convention that the optimal
value of a minimization problem is +∞ (respectively, −∞) when the problem is
inconsistent (respectively, unbounded). We denote by v(P ), F, and F ∗ the optimal
value, the feasible set, and the optimal set of (P ), and by v(P ), F , and F

∗
the

optimal value, the feasible set, and the optimal set of (P ).
Observe that F ∗ is the intersection of the e-convex set F with the hyperplane

{x ∈ R
n : 〈c, x〉 = v (P )} , so it is an e-convex set too. Moreover, since F ⊂ F,

v(P ) ≤ v(P ) (even in the case that F = ∅ due to the above convention). Observe
also that, for the e-LSIP problem given by

(P ) Min
x∈R x

s.t. zx < 0, z ∈ Z\ {0} ,

one has F = F ∗ = ∅ and v(P ) = +∞ while F = F
∗ = {0} and v(P ) = 0. So, if

F = ∅, we may have v(P ) < v(P ) = +∞ and F ∩ F
∗
� F ∗.

Proposition 1.14 (Optimal Value and Optimal Set in e-LSIP) If the e-LSIP
problem (P ) is consistent, then v(P ) = v(P ) and F ∗ = F ∩ F

∗
.

Proof On the one hand, since ∅ �= F ⊂ F, there exists a sequence
{
xk
}

contained
in F such that

lim
k→∞〈c, x

k〉 = v(P ). (1.38)

On the other hand, since F = cl F, for each k ∈ N there exists zk ∈ F such that

∥
∥
∥zk − xk

∥
∥
∥ <

1

k
,∀k ∈ N. (1.39)
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From (1.38) and (1.39) one gets

v(P ) ≤ lim
k→∞〈c, z

k〉 = lim
k→∞〈c, x

k〉 = v(P ),

which combined with v(P ) ≤ v(P ) yields v(P ) = v(P ).
It remains to prove the non-trivial inclusion F ∗ ⊂ F ∩ F

∗
. Take an arbitrary

x∗ ∈ F ∗ ⊂ F. Then 〈c, x∗〉 ≤ 〈c, x〉 for all x ∈ F. Given x ∈ F there exists a
sequence

{
xk
}

contained in F such that limk xk = x. Then,

〈c, x〉 = lim
k→∞〈c, x

k〉 ≥ 〈c, x∗〉 ,

showing that x∗ ∈ F ∩ F
∗
. ��

From Proposition 1.14, any outer approximation method for (P ), as grid and
cutting plane discretization methods, is also an outer approximation method for
(P ). Similarly, any inner approximation method for (P ), like, for instance, feasible
directions methods (in particular, simplex-like methods) and interior-point methods,
provides a sequence of feasible solutions for (P ) approaching v(P ) even though (P )

is usually unsolvable.
We now discuss how to associate a suitable dual problem for (P ) when F �=

∅. To this aim we must construct lower bounds for {〈c, x〉 : x ∈ F } . Since we are
assuming F �= ∅, by Proposition 1.14,

v(P ) = inf {〈c, x〉 : x ∈ F } = inf
{〈c, x〉 : x ∈ F

} = v(P ),

which means that we can replace the strict inequalities with weak ones in order
to get lower bounds. If −c ∈ cone {at : t ∈ T } there exists λ ∈ R

(T )
+ such that∑

t∈T λtat = −c. Then, for any x ∈ F, one has

〈c, x〉 = −
∑

t∈T
λt 〈at , x〉 ≥ −

∑

t∈T
λtbt . (1.40)

Observe that, if λ is a legal element of R
(T )
+ , there exists a t ∈ T such that

λt (〈at , x〉 − bt ) < 0 and the inequality in (1.40) is strict, but this is not an advantage
when one looks for conditions guaranteeing a zero duality gap. So, we associate with
(P ) the Haar dual problem of (P ), which consists in maximizing the lower bound
for 〈c, x〉 provided by (1.40), that is

(D) Max
λ∈R(T )

+
−∑

t∈T

λtbt

s.t. −∑
t∈T

λtat = c.
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Defining the Lagrange function of (P ) as

L (x, λ) := 〈c, x〉 +
∑

t∈T

λt (〈at , x〉 − bt ), (1.41)

one has

infx∈Rn L (x, λ) = infx∈Rn

(−∑t∈T λtbt +
〈
c +∑t∈T λtat , x

〉)

=
{
−∑t∈T λtbt , if λ ∈ R

(T )
+ and

∑
t∈T λtat = −c,

−∞, otherwise,

so that (D) can be reformulated as the classical Lagrangian dual problem of (P ):

Max
λ∈R(T )

+
inf

x∈Rn
L (x, λ) .

Theorem 1.6 (Duality in e-LSIP) Let (P ) and (D) be consistent. If either FMCQ
holds or −c ∈ rint cone {at : t ∈ T } , then v(P ) = v(D) ∈ R. In the first case, (D)

is solvable.

Proof From the LSIP duality theorems in [72, Th. 8.4] and [155] (see also [72,
Ths. 8.1 and 8.2]) one gets that v(P ) = v(D) ∈ R, with (D) being solvable under
FMCQ, and that v(P ) = v(D) ∈ R with F

∗
being the sum of a nonempty compact

convex set with a linear subspace (see [75, Remark 4.16] for this last statement),
respectively. We get the conclusion observing that v(P ) coincides with v(P ). ��

The assumptions of Theorem 1.6 do not guarantee, however, the solvability of
(P ). Proposition 1.14 also allows us to obtain optimality conditions in e-LSIP.

Theorem 1.7 (Optimality and Strong Uniqueness in e-LSIP) Each one of the
following statements is sufficient for the optimality of x∗ ∈ F regarding (P ) , and
they are also necessary when LFMCQ holds at x∗:

(i) −c ∈ cl A(x∗).
(ii) −c ∈ A(x∗) (KKT condition).
(iii) There exists a feasible solution λ of (D) such that λt (bt − 〈at , x

∗〉) = 0 for
all t ∈ T (complementarity condition).

(iv) There exists λ ∈ R
(T )
+ such that L(x∗, λ) ≤ L(x∗, λ) ≤ L(x, λ) for all x ∈

R
n, with L(·, ·) defined as in (1.41), and for all λ ∈ R

(T )
+ (Lagrange saddle

point condition).

If, additionally, −c ∈ int A(x∗), then x∗ is a strongly unique optimal solution of
(P ), i.e., there exists κ > 0 such that

〈c, x〉 ≥ 〈c, x∗〉+ κ
∥
∥x − x∗

∥
∥ for all x ∈ F. (1.42)

The converse also holds under LFMCQ at x∗.
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Proof According to [72, Th. 7.1], any of the conditions from (i) to (iv) implies that
x∗ ∈ F

∗
. So, x∗ ∈ F ∩ F

∗ = F ∗, by Proposition 1.14. Under the LFMCQ at x∗
these conditions are also sufficient, again by [72, Th. 7.1].

Regarding the strong uniqueness, −c ∈ int A(x∗) guarantees [72, Th. 10.6] the
existence of κ > 0 such that

〈c, x〉 ≥ 〈c, x∗〉+ κ
∥
∥x − x∗

∥
∥ for all x ∈ F, (1.43)

which obviously entails (1.42). Since F = cl F, (1.42) is actually equivalent to
(1.43) and one can apply the converse statement in [72, Th. 10.6] thanks to the
LFMCQ assumption. ��
Example 1.17 (Example 1.16 Revisited) Consider the e-LSIP problem

(P1) Min
x∈R2

〈c1, x〉 := x1

s.t. −tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1[ .

We have

A1(x) = {02} ,∀x ∈ F ∗
1 = F

∗
1 =

{(
0
x2

)
: x2 ≥ 1

}
,

which shows the necessity of LFMCQ at Theorem 1.7 (see Fig. 1.16). Moreover,
since

−c1 =
(−1

0

)
/∈ cone {at , t ∈ ]0, 1[} = cone

{( −t

t − 1

)
, t ∈ ]0, 1[

}
,

Fig. 1.16 The sets F1 and
F ∗

1
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its dual problem (D1) is inconsistent and v(D1) = −∞ < v(P1) = 0, abnormality
due to the violation of three conditions of Theorem 1.6, namely, the consistency of
(D), FMCQ, and −c ∈ rint cone {at : t ∈ T } .

In contrast with this abnormality, for the problem

(P2) Min
x∈R2

〈c2, x〉 := x1 + x2

s.t. −tx1 + (t − 1)x2 < t2 − t, t ∈ ]0, 1[ ,

we have F ∗
2 = ∅ while F

∗
2 =

{(
1
4 , 1

4

)}
, v(P2) = v(P 2) = 1

2 , and −c2 ∈
rint cone {at : t ∈ T } , so that we must have v(P2) = v(D2) ∈ R by Theorem 1.6.
In fact, for λ∗ ∈ R

(]0,1[)
+ such that

λ∗t =
{

2, t = 1
2 ,

0, otherwise,

one has −∑t∈]0,1[ λ
∗
t bt = 1

2 = v(P2), so λ∗ is an optimal solution of (D2) and

v(D2) = 1
2 too.

1.6 Selected Applications

Semi-infinite systems containing strict inequalities (i.e., with S �= ∅) naturally arise
in polarity, strict separation of sets, stability analysis, linear optimization, and other
fields.

1.6.1 Polarity

H. Minkowski [128] defined in 1911 the (negative) polar of a closed convex set X

such that 0n ∈ X as

X◦ := {y ∈ R
n : 〈y, x〉 ≤ 1, ∀x ∈ X}.

Of course, X◦ enjoys the same properties as X.

This definition was later extended by H. Rådström [13] to any set X (not
necessarily closed and convex), with X◦ being still closed and convex with 0n ∈ X◦
and

(cl X)◦ = X◦. (1.44)
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Moreover, X ⊂ X◦◦ holds as any y ∈ X◦ satisfies 〈y, x〉 ≤ 1, for all x ∈ X, so
cl conv X ⊂ X◦◦. To prove the reverse inclusion, take y /∈ cl conv X. By the strict
separation theorem, there exist a ∈ R

n, a �= 0n, and b ∈ R such that 〈a, x〉 < b for
all x ∈ X and 〈a, y〉 > b. Since 0n ∈ X, b > 0. Then, a

b
∈ X◦ with

〈
a
b
, y
〉
> 1,

showing that y /∈ X◦◦. Hence, X◦◦ = cl conv X and the unique sets X containing
0n and satisfying X◦◦ = X are the closed convex ones.

A straightforward consequence of the last statement is the extended Farkas
lemma for cones asserting that the involution formula X◦◦ = X holds true for closed
convex cones, for which, as observed by E. Steinitz [168],

X◦ = {y ∈ R
n : 〈y, x〉 ≤ 0,∀x ∈ X}. (1.45)

In fact, if X is a cone, given y ∈ X◦, one has 〈λy, x〉 = 〈y, λx〉 ≤ 1, for all x ∈ X

and λ > 0. Since 〈y, x〉 ≤ 1
λ

for all x ∈ X, taking limits when λ → +∞ one
gets 〈y, x〉 ≤ 0, so that X◦ ⊂ {y ∈ R

n : 〈y, x〉 ≤ 0,∀x ∈ X}, while the reverse
inclusion holds trivially by observing that 〈y, x〉 ≤ 0 entails 〈y, x〉 ≤ 1.

W. Fenchel wondered in 1952 whether it was possible to define a wider class
of convex sets than that of closed cones which is reproduced by a suitably defined
polarity. Actually, he showed [55] that the answer is affirmative if one considers e-
convex sets (concept introduced in that seminal paper) and defined the e-polar of a
set X as

Xe := {y ∈ R
n : 〈y, x〉 < 1,∀x ∈ X},

which is, obviously, an e-convex set which contains 0n. Since Xe ⊂ X◦ and X◦ is
closed, cl Xe ⊂ X◦. Conversely, given y ∈ X◦, by the definitions of X◦ and Xe,(

1− 1
k

)
y ∈ Xe for all k ∈ N, so that y = limk→∞

(
1− 1

k

)
y ∈ cl Xe. Thus, one

has

cl Xe = X◦. (1.46)

We now prove that Xee = X characterizes the e-convex sets which contain 0n

from the characterization of the evenly convex hull in Sect. 1.2. It is obvious that
if Xee = X, then X is an e-convex set containing 0n. Assume now that X is an
e-convex set containing 0n. The inclusion eco X = X ⊂ Xee holds as any y ∈ Xe

satisfies 〈y, x〉 < 1 for all x ∈ X. To prove the reverse inclusion, let x /∈ eco X.
According to (1.8), there exists z ∈ R

n such that 〈z, x〉 < 〈z, x〉 for all x ∈ X. Since
0n ∈ X, then z �= 0n and b := 〈z, x〉 > 0. Letting z̃ := z

b
one has 〈̃z, x〉 < 1 =

〈̃z, x〉 for all x ∈ X. Thus, z̃ ∈ Xe and 〈̃z, x〉 = 1, which shows that x /∈ Xee.
This involutory formula for the e-polars of e-convex sets implies Minkowski’s

one, X◦◦ = X, for the polars of closed convex sets. In fact, given an arbitrary closed
convex set X containing 0n, since X is e-convex, we get the nontrivial inclusion
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X◦◦ ⊂ X from (1.44) and from the fact that Xe ⊂ X◦ implies X◦e ⊂ Xee as
follows:

X◦◦ = cl X◦e ⊂ cl Xee = cl X = X.

The term e-polar was first used to refer to Xe in [101]. In this paper, Klee and
his coauthors consider the following binary operations for X,Y ⊂ R

n:

X ∧1 Y = (int X) ∩ (int Y )

X ∧2 Y = X ∩ Y

X ∧3 Y = (cl X) ∩ (cl Y )

X ∧4 Y = (X ∩ cl Y ) ∪ (Y ∩ cl X)

X ∨1 Y = cl conv (X ∪ Y )

X ∨2 Y = eco (X ∪ Y )

X ∨3 Y = conv ((int X) ∪ (int Y ))

X ∨4 Y = eco (X ∪ int Y ) ∩ eco (Y ∪ int X) .

It is obvious that, if X and Y are e-convex sets, X∧i Y and X∨i Y are also e-convex
for 1 ≤ i ≤ 3. The even convexity of X∧4Y and X∨4Y is proved in [101, Prop. 4.1].
Moreover, in [101, Prop. 4.3], it is showed that, for 1 ≤ i ≤ 4, the operations ∧i

and ∨i are dual in the sense that (X ∧i Y )e = Xe ∨i Y e and (X ∨i Y )e = Xe ∧i Y e,
whenever X and Y are e-convex sets with 0n ∈ X ∩ Y .

1.6.2 Semi-Infinite Zero-Sum Two Person Games

A semi-infinite game is a two-person zero-sum game determined by a real matrix
with finitely many columns and infinitely many rows. The first papers on semi-
infinite games [74, 167, 180] considered countable many rows. They assumed that
the only admissible strategies of player I are those which have a finite support so that
the reward can be expressed as a finite sum. If the mentioned matrix is {at , t ∈ T },
with T countable, the mixed strategies of players I and II are

Λ :=
{

λ ∈ R
(T )
+ :

∑

t∈T

λt = 1

}

and Y :=
{

y ∈ R
n+ :

n∑

i=1

yi = 1

}

,

respectively, whose elements are discrete probability distributions over the corre-
sponding sets of pure strategies. The payoff function is P (λ, y) =∑t∈T λt 〈at , y〉 ,
which represents the expected outcome of player II when players I and II choose the
mixed strategies λ and y, respectively. The maximin and minimax values are

vI := sup
λ∈Λ

min
j=1,...,n

P
(
λ, ej

)
and vII := inf

y∈Y
sup
t∈T

〈at, y〉 ,
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respectively. Obviously,−∞ < vI ≤ vII . The duality gap is vII − vI ≥ 0. Denote
by Λ̃ and Ỹ the sets of optimal strategies of players I and II, respectively.

A.L. Soyster proved [167] that, if either player’s problem is consistent and
bounded, so is that of his adversary, and the minimax theorem (vII = vI ) holds.
Moreover, Λ̃ �= ∅while player II needs not have an optimal strategy. S.H. Tijs [180],
in turn, provided sufficient conditions guaranteeing that vII = vI and gave also a
new proof that Λ̃ �= ∅. Few years later, in [74], falling back on alternative theorems
for ordinary semi-infinite systems, it was shown that vII = vI and Ỹ �= ∅; the main
novelty in this paper was the consideration of semi-infinite games with an arbitrary
set T (not necessarily countable) and the analysis of an important type of strategies.
A pure strategy t of player I is called essential if, assuming Λ̃ �= ∅, there exists some
λ̃ ∈ Λ̃ such that λ̃t > 0. Similarly, a pure strategy ej of player II is called essential
if, assuming Ỹ �= ∅, there exists some ỹ ∈ Ỹ such that ỹj > 0. Theorems 2.4 and
2.6 in [74] provide sufficient conditions for the existence of essential strategies of
player II and I, respectively, whose proofs are based on Corollary 1.4. A similar
methodology was used in [111] to study more general semi-infinite games, where
either the pure strategies for player I are picked, instead of homogeneous linear
functions, from an infinite family of convex functions, or the set of mixed strategies
available to player II, instead of being the unit simplex is a given closed convex set.

The above results were used in [110, 157, 158] to analyze the so-called semi-
infinite transportation and assignment games. In transportation games, an economic
agent aims at maximizing her/his profit from transporting an infinitely divisible
good from a finite number of suppliers to an infinite number of demanders. The
assignment games arise when a finite set of agents of one type is assigned to a
countably infinite set of agents of another type; this has to be done in such a way
that the total profit arising from these assignments is as large as possible. Finally,
it is worth mentioning that nonzero-sum semi-infinite games with arbitrary sets of
pure strategies and bounded payoffs have been studied in [143].

1.6.3 Approximate Reasoning

Approximate reasoning is a subdiscipline of artificial intelligence which is focused
on the treatment of imprecision and uncertainty. It covers both the foundations
of uncertainty theories and the design of intelligent systems for scientific and
engineering applications. The generic term imprecise probabilities encompasses
several mathematical models to deal with ignorance and uncertainty such as upper
and lower probabilities, upper and lower previsions, classes of additive probability
measures and partial preference orderings, among other qualitative models (see
[187]). Methods of approximate reasoning and statistical inference using imprecise
probabilities are based on a behavioral interpretation of probability and principles of
coherence. We now introduce some basic notions in approximate reasoning theory.

Assume that the set of outcomes of an experiment is finite, say Ω =
{ω1, . . . , ωn}. A gamble is a function x : Ω → R that can be viewed as a
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vector in R
n. A preference ordering ! is a strict partial order over pairs of gambles

(i.e., a binary relation on R
n that is irreflexive and transitive). A gamble x ∈ R

n is
called desirable if x ! 0. The preference ordering ! is monotone whenever, for all
x, y ∈ R

n,

[xi > yi, ∀i = 1, . . . , n] �⇒ x ! y,

and it satisfies the cancellation rule whenever, for any x, y, z ∈ R
n, α ∈ ]0, 1], one

has

x ! y ⇐⇒ αx + (1− α) z ! αy + (1− α) z.

The literature on sets of desirable gambles employs cones of gambles to model
preferences. More precisely, a preference ordering can be captured by focusing
on preferences with respect to the zero gamble, or, equivalently, by focusing on a
convex cone of gambles. In this sense, the representation in [33, Prop. 2] establishes
that, if a preference ordering ! satisfies monotonicity and cancellation, then there
exists a convex cone D of gambles, not containing the origin but containing the
interior of the positive orthant, such that, for every x, y ∈ R

n,

x ! y ⇐⇒ x − y ∈ D. (1.47)

In spite of its simplicity, the theory of desirable gambles encompasses not only
the Bayesian theory of probability, but also other important mathematical models
like credal sets of probabilities. Credal sets is the term used in Bayesian approximate
reasoning for the probability distributions which allow to express uncertainty or
doubt about the probability model that should be used, or to convey the beliefs of a
Bayesian agent about the possible states of the world. They are usually assumed to
be compact and convex in order to express them as the closure of the convex hull of
their extreme points by the Krein–Milman theorem. More precisely, a credal set is
any closed convex subset of the unit simplex

Pn :=
{

p ∈ R
n :

n∑

i=1

pi = 1, 0 ≤ pi ≤ 1, ∀i = 1, . . . , n

}

,

the set of all probability measures over Ω , where pi stands for the probability of ωi

for each i = 1, . . . , n. The duality between credal sets and (coherent) sets of almost
desirable gambles (sets of gambles satisfying specific properties and representing
rational choices) is well-known in the literature. Given a vector p ∈ Pn inducing
a probability measure, and a gamble x ∈ R

n, the expected value of x, denoted by
EP[x], is simply the inner product 〈p, x〉.

Similarly to (1.47), F. Cozman [33] considered recently preference orderings that
can be represented by evenly convex sets of desirable gambles, which indeed can
also be represented by evenly convex credal sets. An evenly convex credal set can
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for instance encode preference judgements through strict and weak inequalities. By
introducing the property of even continuity of a preference ordering!whenever, for
any y ∈ R

n, sequence of gambles {xk}, and sequence of positive scalars {λk} such
that {λky − xk} is convergent, one has

xk ! 0 ∀k ∈ N, and y " 0 is false �⇒ lim
k→∞

(
λky − xk

)
! 0 is false,

and calling ! coherent if it is monotone, satisfies the cancellation rule, and it is
even continuous, the representation in [33, Prop. 7] establishes that, if a preference
ordering ! is coherent, then there exists an evenly convex cone D of gambles, not
containing the origin but containing the interior of the positive orthant, such that,
for every x, y ∈ R

n, (1.47) holds.
In addition to that, evenly convex sets of desirable gambles can be represented

by evenly convex sets of probability measures. This is shown in the representation
theorem [33, Th. 9] which asserts that, if ! is a coherent preference ordering, then
there exists a unique maximal evenly convex credal set C such that

x ! y ⇐⇒ EP[x] > EP[y]

for all probability measure p ∈ C. Moreover, according to [33, Th. 10], if ! is
a coherent preference ordering and C is the set built in the proof of the above
representation theorem, then a subset C′ of the unit simplex of R

n represents !
if and only if C = eco C′. Thus, different evenly convex sets represent different
preference orderings. Finally, the rest of the paper [33] analyzes the duality between
preference orderings and credal sets and discusses regular conditioning, a concept
which is also closely related to evenly convex sets.

1.6.4 Slater Condition in Mathematical Programming

In almost any branch of optimization there exists a so-called Slater condition
allowing to get necessary optimality conditions, duality theorems, and stability
results guaranteeing the continuity, in some sense, of the feasible set, the optimal set,
and the optimal value under perturbations of the data. These Slater-type conditions
can frequently be formulated in terms of the existence of solutions, called Slater
points, for suitable non-ordinary systems. We just mention three cases.

1. Consider a continuous linear semi-infinite programming problem of the form

(PLSIP ) Min
x∈Rn

〈c, x〉
s.t. 〈at , x〉 ≤ bt , t ∈ W,

(1.48)
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where W is a compact topological space and the functions t �−→ at and t �−→ bt

are continuous on W. The Slater elements of (PLSIP ) are the solutions of the
non-ordinary continuous semi-infinite system {〈at , x〉 < bt , t ∈ W } , so the set
of Slater elements is e-convex. The Haar dual problem of (PLSIP ) is

(D1
LSIP ) Max

λ∈R(W)
+
− ∑

t∈W

λtbt

s.t. − ∑

t∈W

λtat = c,

which is equivalent to the Lagrangian dual problem of (PLSIP ) , that is, the
unconstrained optimization problem

(D2
LSIP ) Max

λ∈R(W)
+

inf
x∈Rn

L (x, λ) .

A third dual problem for (PLSIP ) is the so-called continuous dual problem

(D3
LSIP ) Max

μ∈C ′+(W)
− ∫W bt dμ(t)

s.t. − ∫
W

atdμ(t) = c,

where C ′+ (W) represents the cone of non-negative regular Borel measures on W.

The optimal value v(D
j

LSIP ) of (D
j

LSIP ), j = 1, 2, 3, is not greater than the one
of (PLSIP ) , say v (PLSIP ) , i.e., weak duality always holds. Characterizations
of optimality, strong duality theorems guaranteeing zero duality gap with dual
solvability for the three dual pairs (PLSIP )− (D

j
LSIP ), j = 1, 2, 3, and stability

theorems, all of them under the Slater condition can be found in [73, Ths. 1 and 3]
and [72, Ths. 6.9 and 10.4], respectively (recall that SCQ implies, for continuous
problems, the FMCQ and, so, the weaker LFMCQ at any point).

2. We now consider a linear conic optimization problem of the form

(PK) Min
x∈Rn

〈c, x〉
s.t. Ax + b ∈ K,

where c ∈ R
n, A is an m × n matrix, b ∈ R

m, and K is a pointed closed
convex cone in R

m such that int K �= ∅. The assumptions on K guarantee that
K◦ satisfies the same properties and the existence of a compact base of K◦, that
is, a compact convex set W such that 0m /∈ W and K = cone W [65, p. 447]. For
instance, a compact base of

(
R

m+
)◦ = −Rm+ is W = − conv {e1, . . . , em} , where

{e1, . . . , em} is the canonical basis of Rm. Since K◦ = coneW,

Ax + b ∈ K ⇐⇒ 〈t, (Ax + b)〉 ≤ 0,∀t ∈ W. (1.49)
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Thus, (PK) is equivalent to the continuous linear semi-infinite problem (PLSIP )

in (1.48) just taking at = A�t and bt = −〈t, b〉 for all t ∈ W. As shown in
[40, Rem. 2], the dual problem for (PK) in the sense of conic optimization is
equivalent to the Haar dual problem (D1

LSIP ). Hence, the strong duality holds,

for the corresponding versions of the dual problems (D
j
LSIP ), j = 1, 2, 3, under

the Slater condition that the non-ordinary system
{〈

A�t, x
〉
< −〈t, b〉 , t ∈ W

}

is consistent.
3. We finally consider a convex (possibly semi-infinite) problem

(PCSIP ) Min
x∈Rn

f (x)

s.t. ft (x) ≤ 0, t ∈ W,

where f, ft : R
n → R are continuous for all t ∈ W. The problem

(PCSIP ) satisfies the Slater condition when the non-ordinary convex system
{ft (x) < 0, t ∈ W } is consistent (this condition implies strong duality and allows
to obtain optimality conditions). For any t ∈ W, as ft is a convex real-
valued function, it is subdifferentiable on R

n. Thus, the set of Slater points of
{ft (x) ≤ 0, t ∈ W } is the solution set of the non-ordinary semi-infinite system

{ft (y)+ 〈u, (x − y)〉 < 0, (y, u) ∈ gph ∂ft , t ∈ W } , (1.50)

where

gph ∂ft :=
{
(u, y) ∈ R

2n : u ∈ ∂ft (y)
}

is the graph of the subdifferential mapping ∂ft : Rn ⇒ R
n defined by

∂ft (y) = {u ∈ R
n : ft (x) ≥ ft (y)+ 〈u, (x − y)〉 , x ∈ R

n
}
.

In the particular case of convex quadratic systems, we can write ft (x) =
1
2 〈x,Qtx〉 + 〈ct , x〉 + dt , where Qt is a symmetric n × n positive semidefinite
matrix, ct ∈ R

n and dt ∈ R, for all t ∈ W . Then, (1.50) becomes

{
〈(Qty + ct ) , x〉 <

1

2
〈y,Qty〉 − dt , (y, t) ∈ R

n ×W

}
.

1.6.5 Strict Separation of Finite Families of Sets

The search of a hyperplane separating strictly a pair of disjoint sets in R
n, say Y and

Z, can be formulated as the feasibility problem for the non-ordinary system of strict
inequalities (with W = ∅)

{〈y, x〉 < xn+1, y ∈ Y ; − 〈z, x〉 < −xn+1, z ∈ Z} , (1.51)
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where the unknown

(
x

xn+1

)
∈ R

n+1 determines the vector of coefficients of the

separating hyperplane. Observe that x �= 0n for any solution

(
x

xn+1

)
of the system

in (1.51).
The concept of strict separation of sets was extended in [12] to families of more

than two sets as follows. A family of m ≥ 2 nonempty sets in R
n, A1, . . . , Am is

said to be strictly separable if there exist m closed halfspaces S1, . . . , Sm such that

Aj ⊂ int Sj , j = 1, . . . ,m, and
m∩

j=1
int Sj = ∅, i.e., if, for each j = 1, . . . ,m,

there exists a solution

(
cj

dj

)
∈ R

n+1 of σj :=
{〈a, x〉 − xn+1 < 0, a ∈ Aj

}
, with

cj �= 0n, such that the system σ0 :=
{〈

cj , x
〉
< dj, j = 1, . . . ,m

}
is inconsistent.

According to [12, Th. 2], if
m∩

k=1
k �=j

Ak �= ∅, j = 1, . . . ,m, then the inconsistency of

σ0 can be replaced by the simple condition that
m∑

j=1

(
cj

dj

)
= 0n+1.

1.7 Bibliographic Notes

Many mathematicians have contributed to the convexity theory in finite dimensional
spaces, but the most influential of them, thanks to the popularity attained by their
respective books on the subject, have been, in chronological order:

• Hermann Minkowski: His celebrated book [128], published in 1911 (even though
the first 240 pages were a reprint of his 1896 monograph [127]), introduced
the concepts of extreme point, convex hull, convex body (i.e., fully dimensional
compact convex set), supporting hyperplane, support function, sum of two sets,
etc. Minkowski provided a conjoint theory of ordinary linear inequality systems
and polyhedra, including the proof of the finiteness of the set of extreme points
of the latter sets and the characterization of the linear inequalities which are the
consequence of a given consistent linear inequality system (i.e., the so-called
non-homogeneous Farkas lemma).

• Werner Fenchel: His book [54], where he collected his lectures at Princeton
University during his sabbatical academic year 1950/51, introduced the key
concept of conjugate function, the notion of strict polar of a closed convex set,
etc. A year later, in 1952, he introduced the evenly convex sets in order to extend
the polarity theory to nonclosed convex sets [55].

• Ralph Tyrrell Rockafellar: The preface of his classical book [148], published
in 1970, where he virtually fixed the present notation and basic results of
modern convex analysis, recognizes the influence of Fenchel’s view of convexity
(not by chance, [148] was dedicated to Fenchel “as honorary coauthor”), in
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particular the crucial role played by the notion of conjugate function. Before
that, Rockafellar introduced in 1963, together with Jean-Jacques Moreau, the
concepts of subgradient and subdifferential and provided results involving linear
systems containing strict inequalities. Victor Klee recognized that his work
[99] on maximal separation theorems for e-convex sets was inspired by the
mentioned paper by Fenchel on polarity together with an unpublished separation
theorem, proved by Rockafellar [146], for the so-called partially polyhedral sets
(a particular class of e-convex sets defined in [150, p. 510]).

After the above mentioned seminal contributions to the theory of evenly convex
sets, this type of convex sets appeared sporadically in the literature for almost 30
years. Thus, in 1970 and 1972, Schröder used evenly convex sets to obtain his linear
range-domain implications [161, 162]. In the eighties and early nineties, the evenly
convex sets were applied in quasiconvex programming [120, 121, 138–140] and
mathematical economy [122]. Linear systems containing strict inequalities, in turn,
naturally arose in convex optimization [150, 190], separation problems [12, 99, 100],
and stability analysis [72, Th. 6.9], among other fields of mathematics and computer
sciences.

The resurgence of the even convexity theory in the 2000s is also motivated by
the mentioned stream of new applications of linear strict inequality systems and
the potential applications of evenly convex and quasiconvex functions in economy.
New characterizations of e-convex sets have been obtained by Daniilidis and
Martínez-Legaz [37] and by Goberna, Jornet and Rodríguez [71] (in infinite and
finite dimensions, respectively), showing that the class of e-convex sets enjoys
most of the well-known properties of the subclasses of open and closed convex
sets. Even convexity has been used to characterize the consistency of linear semi-
infinite systems containing strict inequalities in [78], whose results remain valid
in Banach spaces [133], and to obtain dual characterizations of set containments
with strict convex inequalities [68] (results which have been extended to systems
of strict cone-convex inequalities [39] and to systems of quasiconvex inequalities,
see [171, 174]). Furthermore, Klee, Maluta and Zanco have studied the behavior of
e-convex sets under sections and projections [101], which unfortunately became the
last publication in the fruitful research career of the first author. A suitable extension
of the concept of e-convex set is used in [60] to study quasi-convex dynamic risk
measures.

This chapter is mostly based on [37, 55, 68, 71, 78, 99]. More precisely,
concerning Sect. 1.1, recently reviewed in [79], the proof of the equivalence between
the first six conditions in Theorem 1.1 can be found in [71, Prop. 3.1], for (i) ⇐⇒
(ii) ⇐⇒ (iii), [55, Items 3.2 and 3.4], for (i) ⇐⇒ (iv) ⇐⇒ (v), and [37, Th.
5], for (i) ⇐⇒ (vi). The properties of e-convex sets gathered in Proposition 1.1
come from [55, Item 3.5], for (iii), [71, Cor. 3.2], for (vi), and [71, Prop. 3.2-3.4],
for the remaining properties. The statements on operations with e-convex sets in
Proposition 1.2 have been proved in [71, Prop. 3.5], for (ii), [71, Prop. 3.6], for the
“if” part of (iii), [151, Prop. 1.2], for the “only if” part of (iii), [71, Prop. 3.7], for
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(iv), [71, Prop. 3.8], for (v) and [101, Cor. 2.3], for (vi). Example 1.3 appeared in
[101, Ex. 2.5].

Section 1.2, also reviewed in [79], provides the notion of evenly convex hull
that was introduced by W. Fenchel in [55, Items 4.1 and 4.2]. Its characterization
in Proposition 1.3 is proved in [78, Prop. 2.1]. The relationships between eco and
other hulls in Proposition 1.4 are [78, (2.2) and (2.4)], for (iii) and (iv), respectively,
and [78, Prop. 2.7], for (v). The results involving operations with e-convex hulls
in Proposition 1.5 are proved in [78, Props. 2.3-2.6], for (ii), (iii), (vi), and (vii),
respectively, and [78, Cor. 2.1], for (iv).

Section 1.3 presents a selection of the separation theorems for convex sets
collected in Klee’s paper [99], which was published only 2 years before the
coining of the basic concepts and notations of convex analysis in the celebrated
Rockafellar’s book [148]. So, we have adapted here most Klee’s separation theorems
involving e-convex sets to the modern convex analysis language, the main difficulty
being the intuitive style of some arguments and the misleading use of different
concepts of supporting hyperplane in [99]. Example 1.9 is attributed to T.A. Botts
by the same Klee [99, p. 134], Theorems 1.2 and 1.3 are based on [99, Th. 4] and
[99, Th. 5], respectively, Lemma 1.1 is [99, Lemma 1] and Corollary 1.1 is [99, Cor.
p. 138].

The e-convex sets are the solution sets of the linear inequality systems possibly
containing strict inequalities whose study is the objective of Sect. 1.4. The rela-
tionships between the solution sets of a system σ containing strict inequalities and
its relaxed system σ (Proposition 1.6) appeared in [71, Prop. 1.1]. The rest of this
section is devoted, firstly, to existence theorems, secondly, to Farkas-type lemmas,
and, thirdly, to the containment problem for e-convex sets.

Section 1.4.1 starts recalling the known characterizations of the consistent
relaxed system. We summarize in Table 1.1 the relevant information on the most
outstanding existence theorems, most of them expressed as alternative theorems,
i.e., theorems which have the following form: exactly one of the two formulated
propositions holds true. The 11 sources in Column 1 appear chronologically

Table 1.1 Existence
theorems

Ref. Year S W E b· Cond.

[80] 1873 fin. ∅ ∅ 0 Not

[28] 1921–1922 fin. ∅ ∅ arb. Not

[131] 1936 fin. fin. fin. 0 Not

[62] 1960 ∅ fin. ∅ arb. Not

[193] 1966 ∅ arb. ∅ arb. Not

[50] 1968

[170] 1970 fin. fin. fin. arb. Not

[74] 1984 arb. arb. arb. 0 Yes

[74] 1984 arb. ∅ ∅ 0 Yes

[176] 1999 fin. fin. fin. arb. Not

[71] 2003 arb. arb. ∅ arb. Yes
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ordered, as Column 2 shows. The Columns 3, 4 and 5, in turn, inform on the
cardinality of the index sets, which can be empty, finite or arbitrary (abbreviated
as “∅”, “fin.” and “arb.”, respectively). Column 6 informs about the kind of right-
hand side scalars bt the theorems deal with (0, in the case of homogeneous systems,
and arbitrary, otherwise). Finally, Column 7 informs about the full generality or not
of the corresponding existence theorem, i.e., whether the result always holds or it
does just under certain assumptions.

Observe that all the known existence theorems for systems containing an arbi-
trary number of strict inequalities are only valid provided that a suitable closedness
assumption holds. Cor. 3.1.1 and Th. 3.1 in [72] provide simple proofs of the
characterization of the consistency of σ by means of conditions (1.11) and (1.12),
results which also follow from existence theorems due to K. Fan [50, Th. 1] and
Y. J. Zhu [193, Th. 1], respectively. These authors considered linear systems of weak
inequalities of the form σ = {〈a∗t , x

〉 ≤ bt , t ∈ T
}
, where x lives in a given locally

convex separated (i.e., Hausdorff) topological vector space X with topological dual
X∗, a∗t ∈ X∗ and bt ∈ R for all t ∈ T . The mentioned characterizations of the
consistency of σ, (1.11) and (1.12), are still valid in the infinite-dimensional setting
by replacing 0n with the null linear functional of 0X∗ . In this infinite-dimensional
setting, N(σ), K(σ) ⊂ X∗ × R, so that conditions (1.11) and (1.12) can be seen
as dual characterizations of the consistency of σ . Consequently, the same adjective,
dual, applies to any condition involving subsets of either X∗ or X∗ ×R, which have
the advantage of being expressed in terms of the data (the coefficients of σ ). The
existence Theorem 1.4 for linear systems involving strict inequalities was proved in
[78, Th. 3.1], Corollary 1.3 in [71, Prop. 2.1], and Corollary 1.6 in [78, Cor. 3.2],
while Corollaries 1.4 (proved in [78, Cor. 3.3]) and 1.5 are improved versions of the
Generalized Gordan’s alternative theorem [72, Th. 3.2] and the Extended Motzkin’s
alternative theorem [72, Th. 3.5], respectively. The “like” in the names given to these
results means that they extend to semi-infinite systems the corresponding results for
finite systems. Proposition 1.7 is [71, Prop. 2.2].

Section 1.4.2 deals with the extension to systems of an arbitrary number of con-
straints possibly containing strict inequalities of the generalized non-homogeneous
Farkas lemma (1.26) characterizing the weak linear inequalities which are con-
sequence of a finite consistent system of inequalities of the same type [72, Th.
3.1], which remains valid in locally convex spaces [193, Th. 2]. The concept of
legal linear combination was introduced by H.V. Kuhn [108] and by J. Stoer and
C. Witzgall [170] for ordinary finite linear systems. The term legal for the non-
null elements of R

(T )
+ and for the corresponding linear combinations of σ were

introduced by the same Kuhn [108]. The main result of this subsection, Theorem 1.5,
subsumes [78, Props. 4.1 and 4.2].

Regarding Sect. 1.4.3, Proposition 1.10 comes from [68, Props. 5.1-5.3] and
Proposition 1.8 from [68, Prop. 5.4]. The containment problem has been solved
for different pairs of sets usually represented by inequality systems. The simplest
and most studied version is the polytope containment problem, as it has important
applications such as computational geometry [64], machine learning [61], and
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control theory [87]. Computational issues on this problem are discussed in [156].
The polyhedral containment problem was posed by Mangasarian [117], who
also introduced non-polyhedral extensions. In fact, he characterized in [118], via
nonlinear programing, the containment of a polyhedral convex set F in a reverse
convex set (i.e., the complement of a finite union of convex sets) described by convex
quadratic functions, as

G =
{
x ∈ R

n : 1

2
〈x,Qix〉 + 〈ai, x〉 ≥ bi, i = 1, . . . ,m

}
,

with Qi symmetric and positive semi-definite, ai ∈ R
n, and bi ∈ R for i =

1, . . . ,m, that is, the situation illustrated in Fig. 1.17. The same Mangasarian [118]
characterized the containment of a convex set in a reverse convex set (the situation

Fig. 1.17 Inclusion of a
polyhedron F in a quadratic
reverse set G

Fig. 1.18 Inclusion of a
convex set F in a quadratic
reverse convex set G
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shown in Fig. 1.18), both represented by differentiable functions, while Jeyakumar
[93] proposed a non-smooth counterpart for this containment via epigraphs of
conjugate functions.

The containment problem has also been solved for pairs of sets represented by
systems of cone-convex inequalities [39], by quasiconvex systems [173, 174], by
quasiconvex systems containing strict inequalities [171], by sum-of-squares convex
polynomial systems [96], etc.

Section 1.5 is basically the transcription of known results on ordinary linear
semi-infinite systems and linear semi-infinite programming to systems and problems
containing strict inequalities where the concept of carrier index plays a crucial role.
As pointed out in [104], the term carrier index was used for the first time in [72]
(in the context of linear SIP), but it has received different names in the literature:
always binding constraint in [1], implicit equality constraint in [83], and immobile
index in [102, 103], as well as in different papers of Kostyukova and Tchemisova
(e.g., [105, 106]). The set of carrier indices was called equality set of constraints
in [189]. The existence of carrier indexes is incompatible with the SCQ, which was
introduced by M. Slater in the framework of convex programming [164], the FMCQ
by Charnes, Cooper and Kortanek in [31] to guarantee zero-duality gap in LSIP,
and the LFMCQ by Puente and Vera de Serio in [144] as the weakest constraint
qualification allowing to characterize optimality in LSIP. The term “continuous
linear system” was first used in the framework of stability while analytical systems
and polynomial systems appeared in [3] (in order to give a simplex-like method
for LSIP problems) and [70] (in a geometric setting), respectively. The LSIP
problems satisfying the LOPCQ may also be treated by means of some simplex-
like method [2].

The natural extension to the infinite-dimensional setting of LSIP problems are
the linear infinite programming (LIP) problems of the form

(P ) Min
x∈X

〈c, x〉
s.t. 〈at , x〉 ≤ bt , t ∈ T ,

where the decision space X is locally convex and c, at ∈ X∗ for all t ∈ T . Duality
theorems for different types of dual problems for (P ), among them the LIP Haar
dual defined in the same way as in LSIP, can be found in [75, Rem. 3.10, 4.16 and
5.6, and Cor. 4.15] and [76, Section 6]. From these results it is possible to obtain
e-LIP versions of Theorem 1.7.



Chapter 2
Evenly Convex Polyhedra: Finite Linear
Systems Containing Strict Inequalities

This chapter is about linear systems containing finitely many weak and/or strict
inequalities, whose solution sets, provided they are nonempty, are called evenly
convex polyhedral sets (e-polyhedra, in brief). Of course, all results in Chap. 1 on
e-convex sets and their linear representations are valid here, but the finiteness of the
linear representations of e-polyhedra allows to obtain specific results and methods.

Many families of convex sets have an internal as well as an external representa-
tion. For instance, any closed convex set C is the (Minkowski) sum of the lineality
subspace of C with the set of all extreme points and extreme directions of C, as well
as the intersection of all the closed halfspaces containing C. Moreover, any compact
convex set is the convex hull of its set of extreme points, as well as the intersection
of all the closed halfspaces determined by its supporting hyperplanes. In turn, any
polyhedron C is the sum of the convex hull of the set of all extreme points of C with
the convex cone generated by the set of extreme directions of C (a polyhedral convex
cone), as well as the intersection of some finite family of closed halfspaces. But the
outstanding advantage of the polyhedra against the other two families of convex
sets is the availability of double description methods allowing to get an external
representation from the internal one and vice versa. One of these methods is based
on the Fourier–Motzkin elimination method and the constructive proofs of the well-
known Weyl and Motzkin theorems. Extending this double description method from
polyhedra to e-polyhedra is the main theme of Chap. 2.

We first describe, in Sect. 2.1, the Fourier–Motzkin elimination method to
project a given e-polyhedron on the coordinate planes which, iteratively applied,
allows to obtain solutions for finite linear systems containing strict inequalities.
Then, in Sect. 2.2, we associate with each finite non-ordinary system its so-called
representative cone, which contains all the relevant information on these systems.
It allows to simplify the existence theorems and the characterizations of the
consequent inequalities provided in Sect. 1.4 for systems of an arbitrary number
of constraints. Section 2.3 provides, thanks to the properties of the mentioned
representative cone, the aimed double description method for e-polyhedra. Finally,
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in Sect. 2.4, we consider the minimization of linear functions under weak and strict
linear inequalities, that is, the so-called evenly linear programming problems.

2.1 Evenly Convex Polyhedra

A (convex) polyhedron is the solution set of a consistent finite ordinary linear
system. Obviously, every polyhedron is a closed convex set. Moreover, a polyhedron
which is also a cone is said to be a polyhedral cone and it is the solution set of
an homogeneous finite ordinary system. In 1896, Minkowski [127] showed that
every polyhedral cone is finitely generated, that is, its elements are the nonnegative
linear combinations of a finite set of vectors. Later, in 1935, Weyl [188] proved that
polytopes, finitely generated cones and Minkowski sums of a polytope and a finitely
generated cone are polyhedra. The converse of the last statement was proved by
Motzkin in 1936 [131]. In order to simplify the reference to these results, we merge
them in the next lemma:

Lemma 2.1 (Motzkin–Weyl–Minkowski Theorem) Given a set F ⊂ R
n, the

following statements hold:

(i) F is a polyhedron if and only if it is the sum of a polytope and a finitely
generated cone.

(ii) F is a bounded polyhedron if and only if it is a polytope.
(iii) F is a polyhedral cone if and only if it is a finitely generated cone.

A nonempty set F ⊂ R
n is an evenly convex polyhedron (e-polyhedron, in brief)

if it is the solution set of a finite linear system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S}, (2.1)

where T := S ∪W , S ∩W = ∅ and |T | < ∞. In such a case, we shall say that F is
represented by the system σ or that σ is an external representation of F .

Clearly, every polyhedron (whenever S = ∅) is an e-polyhedron, and its
interior is either empty or an e-polyhedron, too. Furthermore, every e-polyhedron
is obviously an e-convex set.

E-polyhedra arise in a natural way in different settings, including ordinary linear
and nonlinear programming. For instance, when solving a linear programming
problem

Min
x∈Rn

〈c, x〉
s.t. 〈ai, x〉 ≤ bi, i = 1, . . . ,m,
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by means of the logarithm barrier method of Fiacco and McCormick [56], one
minimizes at step k the barrier function

fk(x) := 〈c, x〉
μk

−
m∑

i=1

ln [bi − 〈ai, x〉] ,

where {μk} is a given sequence of barrier parameters such that μk ↘ 0. So, the
domain of the convex function fk,

dom fk =
{
x ∈ R

n : 〈ai, x〉 < bi, i = 1, . . . ,m
}
,

is an e-polyhedron.
We shall need the description of the closure of F , cl F , and the relative interior

of F , rint F , which are e-polyhedra, by means of linear systems.
We denote by F the polyhedron which is the solution set of the relaxed system

associated to σ ,

σ = {〈at , x〉 ≤ bt , t ∈ T }. (2.2)

According to Proposition 1.6, if F �= ∅, then cl F = F and, by Proposition 1.1(iv),

0+F = 0+F = {d ∈ R
n : 〈at , d〉 ≤ 0, t ∈ T },

which is a polyhedral cone. As a consequence of Lemma 2.1(iii), 0+F is a finitely
generated cone and so, 0+F = cone{d1, . . . , dr} for some extreme rays d1, . . . , dr ∈
R

n. Moreover, if F �= ∅, then F is bounded if and only if 0+F = {0n}.
Regarding the relative interior of F , we have rint F = rint cl F = rint F . Recall

that an index t ∈ T is said to be carrier in σ whenever F is contained in the
hyperplane {x ∈ R

n : 〈at , x〉 = bt}, where σ and F can be replaced by σ and F as
aff F = aff F . Recall that we denote by T = the set of carrier indices of either σ or
σ . Due to the finiteness of T , σ satisfies FMCQ and, by Proposition 1.13(i),

rint F = {x ∈ R
n : 〈at , x〉 < bt , t ∈ T \T =; 〈at , x〉 = bt , t ∈ T =

}
. (2.3)

A numerical method for the computation of T = in σ can be found in [107].
Kuhn [108] employed a generalization of the classical elimination procedure

for ordinary systems of linear inequalities first conceived by Fourier [58] to
get solutions of finite linear systems as in (2.1). Actually, the idea of Kuhn’s
generalization was already contained in the book of Motzkin [131] (published in
German by a rather unknown publishing house), based on his Ph.D. Thesis. For this
reason, the method that we describe next is usually known as the Fourier–Motzkin
elimination method.
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Let F ⊂ R
n be the solution set of the linear system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S}, (2.4)

with T := S ∪W , S ∩W = ∅ and |T | < ∞. We denote at = (at1, . . . , atn) ∈ R
n,

W+ := {t ∈ W : atn > 0},W− := {t ∈ W : atn < 0},W0 := {t ∈ W : atn = 0},

S+ := {t ∈ S : atn > 0}, S− := {t ∈ S : atn < 0}, S0 := {t ∈ S : atn = 0},

T+ := W+ ∪ S+, T− := W− ∪ S−, T0 := W0 ∪ S0.

It is easy to see that the system σ is equivalent to

σ̂ := {〈ct , x
′〉+ xn ≤ dt, t ∈ W+;

〈
ct , x

′〉− xn ≤ dt , t ∈ W−;
〈
ct , x

′〉+ xn < dt , t ∈ S+;
〈
ct , x

′〉− xn < dt , t ∈ S−;
〈
ct , x

′〉 ≤ dt , t ∈ W0;
〈
ct , x

′〉 < dt , t ∈ S0}

where x ′ = (x1, . . . , xn−1), dt := bt|atn| and ct := 1
|atn| (at1, . . . , atn−1)

for all t ∈ T+ ∪ T−, and dt := bt and ct := (at1, . . . , atn−1) for all t ∈ T0.
Denoting by projJn : Rn → R

|J |, ∅ �= J � {1, . . . , n} the projection mapping
consisting in the elimination from each x ∈ R

n of the i-th coordinate for i /∈ J , that
is, projJn (x) = (

xj

)
j∈J

, we can write x ′ = proj{1,...,n−1}
n (x) ∈ R

n−1. Obviously,

x ′ ∈ R
n−1 can be identified with the projection of x ∈ R

n onto the hyperplane
xn = 0.

We now introduce the reduced system σ ′ associated to σ , whose solution set is
denoted by F ′ ⊂ R

n−1. Consider the following groups of inequalities:

〈
(ct + cs), x

′〉 ≤ dt + ds, (t, s) ∈ W+ ×W−, (2.5)
〈
(ct + cs), x

′〉 < dt + ds, (t, s) ∈ (S− × T+) ∪ (T− × S+), (2.6)
〈
ct , x

′〉 ≤ dt , t ∈ W0;
〈
ct , x

′〉 < dt , t ∈ S0. (2.7)

Table 2.1 defines σ ′ for the 16 different cases (according to the emptiness or not
of the sets W+, S+, W− and S−) to be discussed in the proof of Theorem 2.1.

Theorem 2.1 (Fourier–Motzkin Elimination) Given an e-polyhedron F in R
n,

represented by the system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S},

proj{1,...,n−1}
n (F ) is the e-polyhedron F ′ in R

n−1 represented by the system σ ′ in
Table 2.1.
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Table 2.1 In columns 2–5, 0 and 1 stand for “= ∅” and “�= ∅”, respectively

Case W+ S+ W− S− σ ′

1 1 0 1 0 {(2.5), (2.7)}
2 1 1 1 1 {(2.5), (2.6), (2.7)}
3 1 1 1 0 {(2.5), (2.6), (2.7)}
4 1 0 1 1 {(2.5), (2.6), (2.7)}
5 1 1 0 1 {(2.6), (2.7)}
6 1 0 0 1 {(2.6), (2.7)}
7 0 1 1 1 {(2.6), (2.7)}
8 0 1 1 0 {(2.6), (2.7)}
9 0 1 0 1 {(2.6), (2.7)}

10 1 1 0 0 {(2.7)} if T0 �= ∅ and {〈0n−1, x
′〉 ≤ 0} else

11 1 0 0 0 {(2.7)} if T0 �= ∅ and {〈0n−1, x
′〉 ≤ 0} else

12 0 1 0 0 {(2.7)} if T0 �= ∅ and {〈0n−1, x
′〉 ≤ 0} else

13 0 0 1 1 {(2.7)} if T0 �= ∅ and {〈0n−1, x
′〉 ≤ 0} else

14 0 0 1 0 {(2.7)} if T0 �= ∅ and {〈0n−1, x
′〉 ≤ 0} else

15 0 0 0 1 {(2.7)} if T0 �= ∅ and {〈0n−1, x
′〉 ≤ 0} else

16 0 0 0 0 {(2.7)}

Proof Look at Table 2.1 for the description of the cases.

• Case 1. Observe that the system σ is equivalent to

⎧
⎨

⎩

maxt∈W−{
〈
ct , x

′〉− dt } ≤ xn ≤ mint∈W+
{
dt −

〈
ct , x

′〉}
〈
ct , x

′〉 ≤ dt , t ∈ W0〈
ct , x

′〉 < dt , t ∈ S0

⎫
⎬

⎭
.

Obviously, if x ∈ F then x ′ ∈ F ′. Conversely, if x ′ ∈ F ′, one has from (2.5) that

max
t∈W−

{〈ct , x
′〉− dt } ≤ min

t∈W+
{dt −

〈
ct , x

′〉}.

By taking xn ∈ [
maxt∈W−{

〈
ct , x

′〉− dt }, mint∈W+{dt −
〈
ct , x

′〉}], one has that
x := (x ′, xn

) ∈ F .
• Case 2. Observe that the system σ is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

maxt∈W−{
〈
ct , x

′〉− dt } ≤ xn ≤ mint∈W+{dt −
〈
ct , x

′〉}〈
ct , x

′〉 ≤ dt , t ∈ W0

maxt∈S−{
〈
ct , x

′〉− dt} < xn < mint∈S+{dt −
〈
ct , x

′〉}〈
ct , x

′〉 < dt , t ∈ S0

⎫
⎪⎪⎬

⎪⎪⎭
.

Assume that x ∈ F , i.e., x is a solution of the system above. Obviously, the
inequalities in (2.7) hold for x′. By following the same reasoning as in Case 1,
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one has that x′ satisfies the inequalities in (2.5). On the other hand, as

maxt∈S−{
〈
ct , x

′〉− dt } < mint∈T+{dt −
〈
ct , x

′〉},
maxt∈T−{

〈
ct , x

′〉− dt } < mint∈S+{dt −
〈
ct , x

′〉},

one easily gets that x ′ satisfies the inequalities in (2.6). Therefore, x′ ∈ F ′.
Assume now that x ′ ∈ F ′, i.e., x′ satisfies the inequalities in (2.5), (2.6) and

(2.7), which implies

maxt∈W−{
〈
ct , x

′〉− dt } ≤ mint∈W+{dt −
〈
ct , x

′〉},
maxt∈S−{

〈
ct , x

′〉− dt } < mint∈T+{dt −
〈
ct , x

′〉},
maxt∈T−{

〈
ct , x

′〉− dt } < mint∈S+{dt −
〈
ct , x

′〉}.

As maxt∈S−{
〈
ct , x

′〉− dt } ≤ maxt∈T−{
〈
ct , x

′〉− dt }, one has

max
t∈S−

{〈ct , x
′〉− dt } < min

t∈S+
{dt −

〈
ct , x

′〉}.

On the other hand, one easily gets that

maxt∈W−{
〈
ct , x

′〉− dt } < mint∈S+{dt −
〈
ct , x

′〉},
maxt∈S−{

〈
ct , x

′〉− dt } < mint∈W+{dt −
〈
ct , x

′〉},

which guarantees the nonemptyness of the interval

Ω := [maxt∈W−{
〈
ct , x

′〉− dt }, mint∈W+{dt −
〈
ct , x

′〉}]⋂]
maxt∈S−{

〈
ct , x

′〉− dt }, mint∈S+{dt −
〈
ct , x

′〉}[ .

In fact, let α := maxt∈W−{
〈
ct , x

′〉 − dt }, β := mint∈W+{dt −
〈
ct , x

′〉}, γ :=
maxt∈S−{

〈
ct , x

′〉− dt }, and δ := mint∈S+{dt −
〈
ct , x

′〉}. Since α < δ and α ≤ β,
α ≤ min {δ, β}. Similarly, γ < β and γ < δ, so that γ < min {δ, β}. If α = β,

then γ < β = α < δ and α ∈ Ω. So, we can assume α < β, in which case
α < min {δ, β} , max {α, γ } < min {δ, β} , and

max {α, γ } +min {δ, β}
2

∈ ]α, β[ ∩ ]γ, δ[ ⊂ Ω.

By taking xn ∈ Ω one has that x := (x′, xn

) ∈ F .
• Case 3. It follows by using the same reasoning as in Case 2. Given x ′ ∈ F ′, a

solution x ∈ F is completed by taking xn ∈ Ω with

Ω := [maxt∈W−{
〈
ct , x

′〉− dt}, mint∈W+{dt −
〈
ct , x

′〉}]⋂ ]−∞, mint∈S+{dt −
〈
ct , x

′〉}[ .



2.1 Evenly Convex Polyhedra 67

• Case 4. It follows by using the same reasoning as in Case 2. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω := [maxt∈W−{
〈
ct , x

′〉− dt}, mint∈W+{dt −
〈
ct , x

′〉}]⋂ ]
maxt∈S−{

〈
ct , x

′〉− dt },+∞
[
.

• Case 5. Observe that the system σ is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

xn ≤ mint∈W+{dt −
〈
ct , x

′〉}〈
ct , x

′〉 ≤ dt , t ∈ W0

maxt∈S−{
〈
ct , x

′〉− dt} < xn < mint∈S+{dt −
〈
ct , x

′〉}〈
ct , x

′〉 < dt , t ∈ S0

⎫
⎪⎪⎬

⎪⎪⎭
.

It is easy to see that if x ∈ F , then x ′ ∈ F ′.
Assume now that x ′ ∈ F ′, i.e., x′ satisfies the inequalities in (2.6) and (2.7),

which implies

maxt∈S−{
〈
ct , x

′〉− dt} < mint∈S+{dt −
〈
ct , x

′〉},
maxt∈S−{

〈
ct , x

′〉− dt } < mint∈T+{dt −
〈
ct , x

′〉}.

Consequently, maxt∈S−{
〈
ct , x

′〉−dt} < mint∈W+{dt −
〈
ct , x

′〉}, which guarantees
that

Ω := ]−∞, mint∈W+{dt −
〈
ct , x

′〉}]⋂ ]
maxt∈S−{

〈
ct , x

′〉− dt }, mint∈S+{dt −
〈
ct , x

′〉}[

is nonempty. By taking xn ∈ Ω , one has that x ∈ F .
• Case 6. It follows by using the same reasoning as in Case 5. Given x ′ ∈ F ′, a

solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
]
−∞, min

t∈W+
{dt −

〈
ct , x

′〉}
]⋂]

max
t∈S−

{〈ct , x
′〉− dt },+∞

[
.

• Case 7. It follows by using the same reasoning as in Case 5. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω := [maxt∈W−{
〈
ct , x

′〉− dt },+∞
[

⋂]
maxt∈S−{

〈
ct , x

′〉− dt }, mint∈S+{dt −
〈
ct , x

′〉}[ .

• Case 8. It follows by using the same reasoning as in Case 5. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
[

max
t∈W−

{〈ct , x
′〉− dt },+∞

[⋂]
−∞, min

t∈S+
{dt −

〈
ct , x

′〉}
[

.
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• Case 9. It follows by using the same reasoning as in Case 5. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
]

max
t∈S−

{〈ct , x
′〉− dt }, min

t∈S+
{dt −

〈
ct , x

′〉}
[

.

• Case 10. Let x ∈ F . If T0 �= ∅ then x ′ ∈ F ′ = {x ′ ∈ R
n−1 : 〈ct , x

′〉 ≤ dt, t ∈
W0; 〈ct , x

′〉 < dt , t ∈ S0}, and if T0 = ∅ then it is clear that x ′ ∈ F ′ = R
n−1.

Conversely, given x ′ ∈ F ′, a solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
]
−∞, min

t∈W+
{dt −

〈
ct , x

′〉}
]⋂]

−∞, min
t∈S+

{dt −
〈
ct , x

′〉}
[

.

• Case 11. It follows by using the same reasoning as in Case 10. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
]
−∞, min

t∈W+
{dt −

〈
ct , x

′〉}
]

.

• Case 12. It follows by using the same reasoning as in Case 10. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
]
−∞, min

t∈S+
{dt −

〈
ct , x

′〉}
[

.

• Case 13. It follows by using the same reasoning as in Case 10. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
[

max
t∈W−

{〈ct , x
′〉− dt },+∞

[⋂]
max
t∈S−

{〈ct , x
′〉− dt },+∞

[
.

• Case 14. It follows by using the same reasoning as in Case 10. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
[

max
t∈W−

{〈ct , x
′〉− dt },+∞

[
.

• Case 15. It follows by using the same reasoning as in Case 10. Given x ′ ∈ F ′, a
solution x ∈ F is completed by taking xn ∈ Ω with

Ω :=
]

max
t∈S−

{〈ct , x
′〉− dt },+∞

[
.
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Fig. 2.1 The solution sets of
σ and its reduced system σ ′

• Case 16. In this case one has T0 �= ∅. It is obvious that x ∈ F implies x′ ∈ F ′.
Conversely, given x′ ∈ F ′, a solution x ∈ F is completed by taking any xn ∈ R.

��
We illustrate the Fourier–Motzkin elimination method described in Theorem 2.1

with a simple example.

Example 2.1 Consider the e-polyhedron F in R
2 represented by the system σ =

{−x1 − 4x2 ≤ −2,−x1 < −1}. We are going to eliminate the variable x2. For this
variable, we have W+ = W0 = S+ = S− = ∅, W− �= ∅ and S0 �= ∅, so we are in
Case 14, and the reduced system associated to σ is σ ′ = {−x1 < −1}. Therefore,
the projection of F onto the x1 axis is F ′ = ]1,+∞[ (see Fig. 2.1).

If we take x1 ∈ F ′ and x2 ∈
[

1
2 − 1

4x1,+∞
[
, we have x = (x1, x2) ∈ F . This

yields the following tomographic description of F as the union of its intersections
with vertical lines:

F =
⋃

x1>1

[
1

2
− 1

4
x1,+∞

[
.

According to Theorem 2.1, the orthogonal projection of any e-polyhedron F onto
the coordinate hyperplane xn = 0 is an e-polyhedron too. The same applies to the
projection of F onto the remaining coordinate hyperplanes after the corresponding
adaptation of σ ′. By induction, the orthogonal projection of F onto any linear
subspace obtained as intersection of coordinate hyperplanes (in particular, the
coordinate axis) is an e-polyhedron too.
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2.2 Finite Linear Inequality Systems Containing Strict
Inequalities

It is well-known that, for an arbitrary ordinary linear system, the characteristic cone
introduced by Zhu [193] is a very useful tool to characterize the consistency and the
consequent inequalities of the system, among other things. In the particular case of
finite ordinary systems, the characteristic cone is finitely generated and, therefore, it
is a polyhedral cone, which allows us to simplify the conditions. For non-ordinary
linear systems, we have obtained characterizations for consistency (Theorem 1.4)
and consequent inequalities (Theorem 1.5) in terms of the characteristic and the
moment sets. These conditions can also be simplified when the system is finite,
but, in this case, we shall introduce a new dual cone which will allow us to give
simpler characterizations for consistency (Theorem 2.2) and consequent inequalities
(Theorem 2.3), and will be the fundamental tool to obtain an extension, for e-
polyhedra, of the celebrated Motzkin decomposition theorem for polyhedra.

The representative cone associated to the system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S}

is

K (σ ) := cone

⎧
⎨

⎩

⎛

⎝
at

bt

0

⎞

⎠ , t ∈ W ;
⎛

⎝
at

bt

−1

⎞

⎠ , t ∈ S;
⎛

⎝
0n

1
−1

⎞

⎠ ;
⎛

⎝
0n

0
1

⎞

⎠

⎫
⎬

⎭
,

whose polar cone is

K (σ )◦ =

⎧
⎪⎪⎨

⎪⎪⎩
(x, y, z) ∈ R

n × R× R :
〈at , x〉 + bty ≤ 0, t ∈ W,

〈at, x〉 + bty − z ≤ 0, t ∈ S,

y − z ≤ 0,

z ≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
.

Since K (σ ) is a finitely generated cone, by Lemma 2.1(iii), it is a polyhedral
cone and, therefore, it is closed and convex. The extended Farkas lemma establishes,
in this case, that K (σ )◦◦ =K (σ ) (see Sect. 1.6.1).

Here, we also consider the characteristic cone associated to the relaxed system
σ = {〈at , x〉 ≤ bt , t ∈ W ∪ S}, i.e.,

K(σ) = cone

{(
at

bt

)
, t ∈ T ;

(
0n

1

)}

and its polar cone

K(σ)◦ = {(x, y) ∈ R
n × R : 〈at , x〉 + bty ≤ 0, t ∈ W ∪ S; y ≤ 0

}
. (2.8)
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The next result establishes some relations between the representative cone of a
finite linear inequality system and the characteristic cone of its associated relaxed
system. For that purpose, recall that

proj{1,...,n+1}
n+2 (x, y, z) := (x, y), ∀(x, y, z) ∈ R

n × R× R. (2.9)

The reader can find a precise reference for the proof of the next result in Sect. 2.6.
The same applies to all the missing proofs in this chapter.

Proposition 2.1 (Comparing Representative and Characteristic Cones) The
following statements hold:

(i) K(σ)× R+ � K (σ ).

(ii) K (σ ) ⊂ K(σ)×R.
(iii) K(σ) = proj{1,...,n+1}

n+2 (K (σ )).

(iv) K(σ)◦ = proj{1,...,n+1}
n+2 (K (σ )◦).

A straightforward consequence of the statements (i) and (ii) is that, given a scalar
λ ∈ R+, (a, b, λ) ∈ K (σ ) if and only if (a, b) ∈ K(σ), which collapses to

proj{1,...,n+1}
n+2 (K (σ )) = proj{1,...,n+1}

n+2 (K (σ ) ∩ (Rn+1 × {λ})).

The inclusion in (i) is always strict, as (0n, 0,−1) ∈ K (σ )\ (K(σ)× R+),
whereas in (ii) it can be strict or not, as we can see in the following examples.

Example 2.2 Consider the system σ = {−x1−4x2 ≤ −2,−x1 < −1} in R
2 whose

solution set F is represented in Fig. 2.1. The unique solution of the linear system

(
− 3

4 ,−1,−1,−1
)
= α(−1,−4,−2, 0)+β(−1, 0,−1,−1)+γ (0, 0, 1,−1)+μ(0, 0, 0, 1),

is α = 1/4, β = 1/2, γ = 0 and μ = −1/2 < 0. This shows that
(−3/4,−1,−1,−1) /∈ K (σ ). However, one has (−3/4,−1,−1) ∈ K(σ) and
so (−3/4,−1,−1,−1) ∈ K(σ)×R.

Example 2.3 Consider the inconsistent system σ = {x ≤ −1,−x < −2} in R

whose representative cone is

K (σ ) = cone

⎧
⎨

⎩

⎛

⎝
1
−1
0

⎞

⎠ ,

⎛

⎝
−1
−2
−1

⎞

⎠ ,

⎛

⎝
0
1
−1

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠

⎫
⎬

⎭
.

Since (0, 0,−1) = (1,−1, 0)+ (−1,−2,−1)+ 3(0, 1,−1)+ 3(0, 0, 1), we have
that (0, 0,−1) ∈ K (σ ) so, if (a, b, c) ∈ K(σ)×R with c < 0, then

(a, b, c) = (a, b, 0)− c(0, 0,−1) ∈ K (σ )

and, therefore, K (σ ) = K(σ)× R.
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The following result plays a crucial role in both the proof of Theorem 2.2, part
[(i) ⇐⇒ (ii)] , and the decomposition of e-polyhedra (Theorem 2.5).

Proposition 2.2 (Characterizing the Solution Sets via Associated Cones) Let F

and F be the solution sets of σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S}
and its relaxed system σ = {〈at , x〉 ≤ bt , t ∈ W ∪ S}, respectively. Then, for any
x ∈ R

n, the following statements hold true:

(i) x ∈ F if and only if (x,−1) ∈ K(σ)◦.
(ii) x ∈ F if and only if (x,−1, ε) ∈ K (σ )◦ for some ε ∈ [−1, 0[.
Partial Proof (i) By (2.8), (x,−1) ∈ K(σ)◦ if and only if 〈at , x〉 − bt ≤ 0, for all
t ∈ W ∪ S, if and only if x ∈ F . ��

2.2.1 Existence of Solutions

This subsection is devoted to characterize the consistency of finite linear systems
possibly containing strict inequalities.

The main result in this subsection provides four characterizations of the consis-
tency of a finite linear system containing strict inequalities in terms of its associated
sets.

Theorem 2.2 (Existence for Finite Systems) For a given system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S}

with S �= ∅, the following statements are equivalent:

(i) σ is consistent.

(ii)

(
0n

−1

)
/∈ cl cone

({(
at

bt

)
, t ∈ S

}
+ R+

{(
at

bt

)
, t ∈ W

})

and 0n+1 /∈ conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}
.

(iii) 0n+1 /∈ conv

{(
at

bt

)
, t ∈ S;

(
0n

1

)}
+ cone

{(
at

bt

)
, t ∈ W

}
.

(iv)

⎛

⎝
0n

0
−1

⎞

⎠ /∈ cone

⎧
⎨

⎩

⎛

⎝
at

bt

0

⎞

⎠ , t ∈ W ;
⎛

⎝
at

bt

−1

⎞

⎠ , t ∈ S;
⎛

⎝
0n

1
−1

⎞

⎠ ;
⎛

⎝
0n

0
1

⎞

⎠

⎫
⎬

⎭
.

(v) z = 0 is not a consequence of the system

⎧
⎪⎪⎨

⎪⎪⎩

〈at , x〉 + bty ≤ 0, t ∈ W

〈at , x〉 + bty − z ≤ 0, t ∈ S

y − z ≤ 0
z ≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
.
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Sketch of the Proof [(i) ⇐⇒ (ii)] It is the finite version of Theorem 1.4. In fact,
since σ is a finite system, N(σ) is a closed convex cone (as it is a finitely generated
cone) and condition (1.15) reads here

(
0n

−1

)
/∈ cl cone C(σ) = N(σ ). (2.10)

Moreover, the set in (1.20) is a polyhedron and, therefore, it is also convex and
closed, so that, taking into account (1.21), condition (1.16) can be rewritten as

0n+1 /∈ conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W

}
. (2.11)

[(ii) ⇐⇒ (iii)] (iii) is a reformulation of (ii).
[(iii) ⇐⇒ (iv)] It is easy to prove the equivalence between the negations of

statements (iii) and (iv).
[(i) ⇐⇒ (v)] The negation of (v) means that K (σ )◦ is contained in the

hyperplane xn+2 = 0, and this is equivalent to assert that F = ∅ by Proposition
2.2(ii). ��

The next four results are straightforward consequences of their corresponding
extensions in Sect. 1.4.1, called there Motzkin-like and Gordan-like existence
theorems, and Rockafellar-like and Carver-like alternative theorems, respectively.

Corollary 2.1 (Motzkin Existence Theorem) Let

σ = {〈at , x〉 < 0, t ∈ S; 〈at , x〉 ≤ 0, t ∈ W ; 〈at , x〉 = 0, t ∈ E}

be a finite homogeneous system with S �= ∅. Then, σ is consistent if and only if

0n /∈ conv [{at , t ∈ S} + R+ {at, t ∈ W } + R {at , t ∈ E}] .

Observe that the previous result can also be obtained as a straightforward
consequence of Theorem 2.2, part [(i) ⇐⇒ (iii)] , when E = ∅.

Corollary 2.2 (Gordan Existence Theorem) A given finite homogeneous system
σ = {〈at , x〉 < 0, t ∈ S} is consistent if and only if

0n /∈ conv {at , t ∈ S} .

Corollary 2.3 (Carver Alternative Theorem) Let σ = {〈at , x〉 < bt , t ∈ S} be a
finite system. Then one and only one of the following alternatives holds:

(i) σ is consistent.
(ii) There exists λ ∈ R

(S)
+ which is legal relative to σ and satisfies

∑

t∈S

λtat = 0n and
∑

t∈S

λtbt ≤ 0.
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This result was extended to systems with strict and weak inequalities as follows:

Corollary 2.4 (Rockafellar Alternative Theorem) Let

σ = {〈at , x〉 < bt, t ∈ S; 〈at , x〉 ≤ bt, t ∈ W }

be a finite system with S �= ∅. Assume that {〈at , x〉 ≤ bt , t ∈ W } is consistent. Then
one and only one of the following alternatives holds:

(i) σ is consistent.
(ii) There exists λ ∈ R

(T )
+ which is legal relative to σ and satisfies

∑

t∈T

λtat = 0n and
∑

t∈T

λtbt ≤ 0.

Corollary 2.5 (Stiemke Existence Theorem I) The system

σ = {〈at, x〉 = 0, t ∈ W ; 〈ej , x〉 > 0, j = 1, . . . , n
}
,

with W finite, is consistent if and only if

span {at , t ∈ W } ∩ (Rn+\ {0n}
) = ∅. (2.12)

Proof According to Theorem 2.2, σ is inconsistent if and only if there exist αt ∈ R,

t ∈ W, βj ≥ 0, j = 1, . . . , n, γ ≥ 0 and δ ≥ 0 such that

⎛

⎝
0n

0
−1

⎞

⎠ =
∑

t∈W

αt

⎛

⎝
at

0
0

⎞

⎠+
∑

βj

⎛

⎝
ej

0
−1

⎞

⎠+ γ

⎛

⎝
0n

1
−1

⎞

⎠+ δ

⎛

⎝
0n

0
1

⎞

⎠ ,

which is equivalent to the negation of (2.12). ��
Corollary 2.6 (Stiemke Existence Theorem II) Given a finite set {at , t ∈ W } ,
the following statements are equivalent:

(i) {〈at , x〉 ≤ 0, t ∈ W } has a solution x such that 〈at , x〉 �= 0 for some t ∈ W.

(ii) The system σ =
{
〈at , x〉 ≤ 0, t ∈ W ; 〈∑

t∈W

at , x〉 < 0

}
is consistent.

(iii) cone {at , t ∈ W } is not a linear subspace of Rn.
(iv) 0n /∈ rint conv {at , t ∈ W } .



2.2 Finite Linear Inequality Systems Containing Strict Inequalities 75

Proof [(i) ⇐⇒ (ii)] It is trivial.
[(ii) ⇐⇒ (iii)] We shall do the proof by contraposition. By the equivalence

[(i) ⇐⇒ (iv)] in Theorem 2.2 applied to system σ, σ is inconsistent if and only
if

⎛

⎝
0n

0
−1

⎞

⎠ ∈ cone

⎧
⎪⎨

⎪⎩

⎛

⎝
at

0
0

⎞

⎠ , t ∈ W ;
⎛

⎜
⎝

∑

t∈W

at

0
−1

⎞

⎟
⎠ ;

⎛

⎝
0n

1
−1

⎞

⎠ ;
⎛

⎝
0n

0
1

⎞

⎠

⎫
⎪⎬

⎪⎭
,

which is equivalent to the existence of λ ∈ R
W+ , η, μ, δ ∈ R+ such that

⎛

⎝
0n

0
−1

⎞

⎠ =
∑

t∈W

λt

⎛

⎝
at

0
0

⎞

⎠+ η

⎛

⎜
⎝

∑

t∈W

at

0
−1

⎞

⎟
⎠+ μ

⎛

⎝
0n

1
−1

⎞

⎠+ δ

⎛

⎝
0n

0
1

⎞

⎠ . (2.13)

From (2.13), we obtain that μ = 0, η = δ + 1 > 0 and

−
∑

t∈W

at =
∑

t∈W

λt

η
at ∈ cone {at , t ∈ W } .

Thus, σ is inconsistent if and only if − ∑

t∈W

at ∈ cone {at , t ∈ W }.
It remains to prove that − ∑

t∈W

at ∈ cone {at , t ∈ W } if and only if

cone {at , t ∈ W } is a linear subspace.
If cone {at , t ∈ W } is a linear subspace, then − ∑

t∈W

at ∈ span {at , t ∈ W } =
cone {at , t ∈ W } . Conversely, assume that − ∑

t∈W

at ∈ cone {at , t ∈ W } , and let

x ∈ span {at , t ∈ W } . Then, there exist αt ∈ R, t ∈ W, such that x = ∑

t∈W

αtat .

Let δ := mint∈W αt . If δ ≥ 0, x ∈ cone {at , t ∈ W } and we are done. So we assume
δ < 0. Since αt + |δ| ≥ 0 for all t ∈ W,

x + |δ|
∑

t∈W

at =
∑

t∈W

(αt + |δ|) at ∈ cone {at , t ∈ W }

and, so,

x ∈ − |δ|
∑

t∈W

at + cone {at , t ∈ W } ⊂ cone {at , t ∈ W } ,

showing that cone {at , t ∈ W } is a linear subspace.
[(iii) ⇐⇒ (iv)] We now prove that 0n ∈ rint conv {at , t ∈ W } if and only if

cone {at , t ∈ W } is a linear subspace.
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If 0n ∈ rint conv {at , t ∈ W } , by [148, Th. 6.9], there exist λt > 0, t ∈ W,

such that
∑

t∈W

λtat = 0n and
∑

t∈W

λt = 1. Given 0 < ε < mint∈W λt , −ε
∑

t∈W

at =
∑

t∈W

(λt − ε) at ∈ cone {at, t ∈ W } , so that − ∑

t∈W

at ∈ cone {at , t ∈ W } .
Conversely, assume that cone {at , t ∈ W } is a linear subspace and let

{u1, . . . , ud } be a basis of span {at , t ∈ W } . Since

{±ui, i = 1, . . . , d} ⊂ span {at , t ∈ W } = cone {at , t ∈ W } ,
all vectors of {±ui, i = 1, . . . , d} are non-negative linear combination of the vectors
of {at , t ∈ W } , with not all coefficients equal to zero as 0n /∈ {±ui, i = 1, . . . , d} .
Dividing each vector of {±ui, i = 1, . . . , d} by the sum of the coefficients of
{at, t ∈ W } in the corresponding linear combination, we obtain that 0n belongs to
the convex hull of a set of positive multiples of the vectors {±ui, i = 1, . . . , d} ,
each one belonging to conv {at , t ∈ W } . So, there exists a polytopal neighborhood
of 0n, for the topology induced by the Euclidean one in span {at , t ∈ W } , whose
extreme points belong to conv {at , t ∈ W } . Thus, 0n ∈ rint conv {at , t ∈ W } and
we are done. ��

2.2.2 Consequent Inequalities

In this subsection we provide dual characterizations of linear inequalities which are
consequences of a consistent finite linear system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S

in terms of its associated representative cone

K (σ ) = cone

⎧
⎨

⎩

⎛

⎝
at

bt

0

⎞

⎠ , t ∈ W ;
⎛

⎝
at

bt

−1

⎞

⎠ , t ∈ S;
⎛

⎝
0n

1
−1

⎞

⎠ ;
⎛

⎝
0n

0
1

⎞

⎠

⎫
⎬

⎭
.

Theorem 2.3 (Characterization of Consequent Inequalities of σ ) Assume that
σ = {〈at , x〉 ≤ bt, t ∈ W ; 〈at , x〉 < bt, t ∈ S} is consistent and suppose that
(a, b) ∈ R

n ×R. Then, the following statements hold:

(i) 〈a, x〉 ≤ b is a consequence of σ if and only if (a, b, 0) ∈ K (σ ).
(ii) 〈a, x〉 < b is a consequence of σ if and only if (a, b, c) ∈ K (σ ) for some

c < 0.
(iii) 〈a, x〉 < b is a consequence of σ if and only if 〈a, x〉 < b is a legal linear

combination of σ ∪ {〈0n, x〉 < 1}.
Partial Proof (iii) Consider the two conditions in Theorem 1.5(ii) adapted to the
case when σ is finite. In such a case, condition (1.28) can be reformulated as(

0n

−1

)
∈ N(σ ) − R+

(
a

b

)
, where the latter cone is polyhedral, whereas the set
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conv C(σ)− R+
(

a

b

)
can be written as

conv

{(
at

bt

)
, t ∈ S

}
+ cone

{(
at

bt

)
, t ∈ W ; −

(
a

b

)}
,

which is also a polyhedron by Lemma 2.1(i). So, according to Theo-
rem 1.5, 〈a, x〉 < b is consequence of a consistent finite system σ if and only
if 〈a, x〉 < b is a legal linear combination of either σ or σ ∪ {〈0n, x〉 < 1}. The
latter statement is a reformulation of statement (iii). ��

Although the negative value c in Theorem 2.3(ii) is not unique (as (0n, 0, 1) ∈
0+(K (σ ))), an arbitrary c < 0 is not valid as it is shown in the following example.

Example 2.4 Let σ be the system in Example 2.1. The weak inequality−x1−x2 ≤
−1 is a consequence of σ (we can see in Fig. 2.2 that it is satisfied by any solution
of σ ). By solving the linear system

(−1,−1,−1, 0) = α(−1,−4,−2, 0)+β(−1, 0,−1,−1)+γ (0, 0, 1,−1)+μ(0, 0, 0, 1),

we obtain α = 1
4 , β = 3

4 , γ = 1
4 and μ = 1. Therefore, we have that

(−1,−1,−1, 0) ∈ K (σ ), as stated in Theorem 2.3(i).
In the same way, the strict inequality− 3

4x1−x2 < −1 is a consequence of σ (see
the green line in Fig. 2.2), but (−3/4,−1,−1,−1) /∈ K (σ ) (see Example 2.2).
Nevertheless, (−3/4,−1,−1,−1/2) ∈ K (σ ) and so the characterization in
Theorem 2.3(ii) holds.

Fig. 2.2 The consequent
inequalities −x1 − x2 ≤ −1
(in red) and − 3

4 x1 − x2 < −1
(in green)
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Observe that an inequality 〈a, x〉 < b is a consequence of σ if and only if the
system σ ∪ {〈−a, x〉 ≤ −b} is inconsistent. Thus, by applying the equivalence
[(i) ⇐⇒ (iii)] of Theorem 2.2, one has that 〈a, x〉 < b is a consequence of σ if and
only if

0n+1 ∈ conv{(at , bt ), t ∈ S; (0n, 1)} + cone{(at , bt ), t ∈ W ; −(a, b)}.

Corollary 2.7 (Characterization of Consequent Inequalities of σ ) Let σ, with
relaxed system σ, and (a, b) be as in Theorem 2.3. Then, the following statements
hold:

(i) 〈a, x〉 ≤ b is a consequence of σ if and only if (a, b) ∈ K(σ).
(ii) 〈a, x〉 < b is a consequence of σ if and only if (a, b) ∈ K(σ) and (0n,−1) ∈

K(σ)+ span{(a, b)}.
Sketch of the Proof

(i) According to Theorem 1.5(i), a weak inequality 〈a, x〉 ≤ b is a consequence
of σ if and only if it is a consequence of σ . Moreover, by Proposition 2.1,
statements (i) and (ii) , (a, b, 0) ∈ K (σ ) if and only if (a, b) ∈ K(σ). So, one
gets (i) from statement Theorem 2.3(i).

(ii) Taking into account statement (ii) in Theorem 2.3, one has to prove

∃ c < 0 :
⎛

⎝
a

b

c

⎞

⎠ ∈ K (σ ) ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

(
a

b

)
∈ K(σ), and

(
0n

−1

)
∈ K(σ)+ span

{(
a

b

)}
.

The direct implication is immediate. For the converse, if
(

a

b

)
=
∑

t∈T

λt

(
at

bt

)
+ μ

(
0n

1

)
, (2.14)

with λt ≥ 0, for all t ∈ T and μ ≥ 0, and
(

0n

−1

)
=
∑

t∈T

γt

(
at

bt

)
+ δ

(
0n

1

)
+ α

(
a

b

)
, (2.15)

with γt ≥ 0, for all t ∈ T , δ ≥ 0 and α ∈ R, we have the following cases:

Case 1: If μ > 0, taking c = −μ < 0, we obtain from (2.14) that (a, b, c) ∈
K (σ ).

Case 2: If μ = 0 and α ≥ 0, replacing (2.14) in (2.15), we obtain that
(0n,−1) ∈ K(σ), which is a contradiction.

Case 3: If μ = 0 and α < 0, taking c = γ+1
α

< 0, we obtain from (2.15) that
(a, b, c) ∈ K (σ ).

��
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2.2.3 Set Containment of Evenly Convex Polyhedra

As every e-polyhedron is an e-convex set, one may apply the dual characterization
stated in Proposition 1.9 to the set containment of e-polyhedra by means of their
strict dual cones. Furthermore, since every e-polyhedron F is the solution set of a
consistent system σ as in (2.1), by the statement (i) ⇐⇒ (ii) in Theorem 2.3, we
have

F ⊂ {x ∈ R
n : 〈a, x〉 < b

}⇐⇒
(

a

b

)
∈ proj{1,...,n+1}

n+2 (K (σ ) ∩ (Rn+1 × R−−)),

so we obtain the following expression for the strict dual cone of F in terms of the
data of σ and the projection mapping defined in (2.9):

K<
F = proj{1,...,n+1}

n+2 (K (σ ) ∩ (Rn+1 × R−−)). (2.16)

The following result provides a characterization for the set containment of e-
polyhedra in terms of the representative cones of their external representations.

Proposition 2.3 (Dual Characterization of the Containment of e-Polyhedra)
Let F1 and F2 be solution sets of the finite systems σ1 and σ2, respectively. Then
F1 ⊂ F2 if and only if

proj{1,...,n+1}
n+2 (K (σ2)∩ (Rn+1 ×R−−)) ⊂ proj{1,...,n+1}

n+2 (K (σ1)∩ (Rn+1 ×R−−)).

Consequently, F1 = F2 if and only if

proj{1,...,n+1}
n+2 (K (σ1)∩ (Rn+1 ×R−−)) = proj{1,...,n+1}

n+2 (K (σ2)∩ (Rn+1 ×R−−)).

Observe that if σ1 and σ2 are finite systems defining F1 and F2, respectively, by
applying Proposition 1.9, K (σ2) ⊂ K (σ1) entails F1 ⊂ F2. The converse is not
true, as the next example shows.

Example 2.5 Let σ1 be the consistent system in Example 2.1, and consider
σ2 = {− 3

4x1 − x2 < −1}, the system whose solution set is the open halfspace
(not containing the origin) determined by the green line in Fig. 2.2. Obviously
F1 ⊂ F2, whereas K (σ2) � K (σ1) as (− 3

4 ,−1,−1,−1) ∈ K (σ2)\K (σ1)

(see Example 2.2). However, if we consider σ�
2 = {−3x1 − 4x2 < −4}, which is a

different external representation of F2, we have K (σ �
2 ) ⊂ K (σ1), since

(−3,−4,−4,−1) = (−1,−4,−2, 0)+ 2(−1, 0,−1,−1)+ (0, 0, 0, 1) ∈ K (σ1).
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2.3 Double Description of Evenly Convex Polyhedra

H. Weyl proved in 1935 [188] that the (Minkowski) sum of a polytope and a
finitely generated cone is a polyhedron and, a year later, Motzkin [131] proved
that, conversely, every polyhedron can be expressed as the sum of a polytope and
a finitely generated cone. So, any polyhedron admits an internal representation
(as the sum of a polytope with a finitely generated convex cone) and an external
representation (as solution set of an ordinary finite linear system). It is easy to get an
external representation from a given internal one by means of the Fourier–Motzkin
elimination method, while it is possible to get an internal representation from an
external one from the internal representation of the characteristic cone.

The e-polyhedra also admit a double representation. In this section we first
define the internal representations of e-polyhedra, from which it is possible to
get an external representation (a finite linear system) by means of the Fourier–
Motzkin elimination method described in Theorem 2.1. Then, we show how to
obtain an internal representation of an e-polyhedron by using the representative cone
associated with an external representation of such an e-polyhedron.

We start by extending the notion of polytope. A subset Q ⊂ R
n is said to be

an evenly convex polytope (e-polytope, in brief) if there are two finite sets U :=
{u1, . . . , um} and V := {v1, . . . , vq } in R

n such that

Q =
⎧
⎨

⎩

m∑

i=1

λiui +
q∑

j=1

μjvj : λ ∈ R
m+, μ ∈ R

q
+,

m∑

i=1

λi +
q∑

j=1

μj = 1,

m∑

i=1

λi > 0

⎫
⎬

⎭
.

(2.17)

In short, we shall denote Q = conv(U : V ).
Each point of Q can be thought as a kind of legal convex combination, that

is, a convex combination of finitely many points in U ∪ V with a positive
weight associated to at least one point in U . It easily follows from the definition
that Q contains the set U , but it does not contain V necessarily. Additionally,
one has conv(U :V ) �= conv(V :U) In the particular case, in general, although
conv(U : ∅)= conv(∅ :U)= conv U . Thus, if either U or V are empty, then Q

becomes a polytope in the classical sense.

Proposition 2.4 (Topological Properties of e-Polytopes) Let Q = conv(U : V )

be an e-polytope as in (2.17). Then,

(i) cl Q = conv(U ∪ V ).
(ii) Q is closed if and only if V ⊂ Q.
(iii) Q is relatively open if and only if U ⊂ rint Q.

The two results below establish, conjointly, an evenly polyhedral counterpart
for Lemma 2.1(i). The first theorem is a generalization of the well-known Weyl
Theorem and its proof provides a method for obtaining an external representation
from the internal one for an e-polyhedron. We illustrate this method in Example 2.6.
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Theorem 2.4 (Extended Weyl Theorem) Let U,V,D ⊂ R
n be finite sets such

that U∪V �= ∅. Then, the Minkowski sum conv(U : V )+coneD is an e-polyhedron.

Sketch of the Proof Let U = {ui, i ∈ I }, V = {vj , j ∈ J }, and D = {dk, k ∈ K} ,
with I, J and K finite. If x ∈ conv(U : V )+ coneD, it can be written as

x =
∑

i∈I

λiui +
∑

j∈J

μjvj +
∑

k∈K

αkdk, (2.18)

with

∑

i∈I

λi +
∑

j∈J

μj = 1, (2.19)

∑

i∈I

λi > 0, (2.20)

and

λi ≥ 0, μj ≥ 0, αk ≥ 0,∀i ∈ I,∀j ∈ J,∀k ∈ K. (2.21)

Eliminating the parameters {λi, i ∈ I } , {μj , j ∈ J
}

and {αk, k ∈ K} in the finite
system {(2.18), (2.19), (2.20), and (2.21)} one gets a linear system with unknowns
x1, . . . , xn which is the aimed external representation of conv(U : V )+coneD. ��

In the particular case when D = ∅, Theorem 2.4 establishes that the e-polytope
conv(U : V ) is an e-polyhedron. Moreover, since cl conv(U : V ) = conv(U ∪ V ),
Theorem 1.1(ii) allows to express the e-polytope conv(U :V ) as the result of
eliminating from the polytope conv(U ∪ V ) the union of a certain family of its
faces.

Example 2.6 Consider F = conv(U : V ) + cone D in R
2 described by the sets

U = {(1, 0)}, V = {(4, 0) , (4, 3)} and D = {(1, 0), (2, 1)} (see Figs. 2.3 and 2.4).

Fig. 2.3 A decomposition of F
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Fig. 2.4 An internal
representation of F (drawing
the points of U and V in blue
and red, respectively)

Then, a given vector (x1, x2) ∈ R
2 belongs to F if and only if

(x1, x2) = λ(1, 0)+ μ1 (4, 0)+ μ2(4, 3)+ α1(1, 0)+ α2(2, 1),

with λ+ μ1 + μ2 = 1, λ > 0, μ ∈ R
2+ and α ∈ R

2+, or equivalently, the system

λ +4μ1 +4μ2 +α1 +2α2 = x1,

+3μ2 +α2 = x2,

λ +μ1 +μ2 = 1,

λ > 0,

μj ≥ 0, ∀ j = 1, 2,

αl ≥ 0, ∀ l = 1, 2,

has a solution for λ ∈ R, μ ∈ R
2 and α ∈ R

2. By applying the Gauss method on
the three equalities, we obtain λ = − 1

3x1 + 1
3α1 + 2

3α2 + 4
3 , μ1 = 1

3x2 − 1
3α2 and

μ2 = 1
3x1 − 1

3x2 − 1
3α1 − 1

3α2 − 1
3 . Now, by replacing these three variables in the

inequalities of the system, we have

−x1 +α1 +2α2 > −4,

x2 −α2 ≥ 0,

x1 −x2 −α1 −α2 ≥ 1,

α1 ≥ 0,

α2 ≥ 0.

Finally, by applying the Fourier–Motzkin method twice in order to eliminate
successively the variables α1 and α2, one gets the following external representation
of F (see Fig. 2.5)

σ = {−x1 + 2x2 < 2,−x2 ≤ 0,−x1 + x2 ≤ −1}. (2.22)
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Fig. 2.5 An external representation of F

Although the following result is [152, Th. 4.2], we reproduce a sketch of its
proof in order to show how to obtain an internal representation of an e-polyhedron
from an external one. The decomposition of an e-polyhedron provided by this
theorem coincides with the one given by the classical Motzkin theorem when the
e-polyhedron is closed.

Theorem 2.5 (Extended Motzkin Theorem) Let the e-polyhedron F ⊂ R
n be

the solution set of σ = {〈at , x〉 ≤ bt, t ∈ W ; 〈at , x〉 < bt , t ∈ S}, with W and
S finite. Then, F is the Minkowski sum of an e-polytope and a finitely generated
convex cone.

Sketch of the Proof Let F be the solution set of σ . Since K (σ ) is a finitely
generated cone, it is also a polyhedral cone (as a consequence of Lemma 2.1), that
is,

K (σ ) = {(x, y, z) ∈ R
n × R× R : 〈(χp,ψp, ωp), (x, y, z)〉 ≤ 0, p = 1, . . . , s}.

This means that K (σ ) = [
cone{(χp,ψp, ωp), p = 1, . . . , s}]◦, and so, by taking

polars,

K (σ )◦ = cone{(χp,ψp, ωp), p = 1, . . . , s}.
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We may assume without loss of generality that K (σ )◦ has just three kind of
generators such that

K (σ )◦ = cone{(ui,−1, εi), i = 1, . . . ,m;
(vj ,−1, 0), j = 1, . . . , q;
(dl, 0, 0), l = 1, . . . , r}

with −1 ≤ εi < 0 for all i = 1, . . . ,m, m+ q + r = s and m ≥ 1.

If x ∈ F , by Proposition 2.2(ii), there exists ε ∈ [−1, 0[ such that (x,−1, ε) ∈
K (σ )◦ and, so, there exist λ ∈ R

m+, μ ∈ R
q
+ and α ∈ R

r+ such that

(x,−1, ε) =
m∑

i=1

λi(ui,−1, εi)+
q∑

j=1

μj(vj ,−1, 0)+
r∑

l=1

αl(dl, 0, 0).

Thus, one has

x =
m∑

i=1

λiui +
q∑

j=1

μjvj +
r∑

l=1

αldl

with
∑m

i=1 λi +∑q

j=1 μj = 1 and
∑m

i=1 λi ≥ ∑m
i=1−εiλi = −ε > 0. Taking

U := {u1, . . . , um}, V := {v1, . . . , vq } and D := {d1, . . . , dr }, we finally have

F = conv(U : V )+ coneD.

��
Example 2.7 Consider the e-polyhedron F in R

2 defined by the system σ in (2.22).
The representative cone K (σ ) is the cone finitely generated by (0,−1, 0, 0),
(−1, 1,−1, 0), (−1, 2, 2,−1), (0, 0, 1,−1) and (0, 0, 0, 1). Hence, a given vector
(x1, x2, y, z) ∈ R

4 belongs to K (σ ) if and only if the linear system

−λ2 −λ3 = x1,

−λ1 +λ2 +2λ3 = x2,

−λ2 +2λ3 +λ4 = y,

−λ3 −λ4 +λ5 = z,

λi ≥ 0, ∀ i = 1, . . . , 5,

has a solution for λ ∈ R
5. By applying the Gauss-Fourier method in order to

eliminate the variables λi , one gets the following external representation of K (σ ):

3x1 + 2x2 − y − z ≤ 0, 4x1 + 3x2 − y ≤ 0, x1 ≤ 0,

x1 − y − z ≤ 0, x1 − y ≤ 0, 2x1 + x2 ≤ 0.
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Fig. 2.6 A different internal
representation of F

Thus, according to the above method, an internal representation of F is given by
conv(U : V )+ cone D (see Fig. 2.6) where

U = {(3, 2), (1, 0)},
V = {(4, 3), (1, 0)},
D = {(1, 0), (2, 1)}.

Corollary 2.8 An e-polyhedron is bounded if and only if it is an e-polytope.

Proof Given the e-polytope conv(U : V ), by Proposition 2.4(i), we know that
cl conv(U : V ) is the polytope conv (U ∪ V ). Then, we have

0+ (conv(U : V )) = 0+ (conv (U ∪ V )) = {0n} ,

that is, every e-polytope is a bounded e-polyhedron.
Conversely, if F is a bounded polyhedron, then 0+F = {0n}. By applying

Theorem 2.5, F = conv(U : V ) + cone D with U,V,D ⊂ R
n finite sets such

that U ∪ V �= ∅. Finally, since conv(U : V ) is a bounded e-polyhedron and
coneD is a polyhedral cone such that 0+ (conv(U : V )) ∩ 0+ (cone D) = {0n},
then Proposition 1.2(iv) yields

0+F = 0+ (conv(U : V ))+ 0+ (cone D) = cone D, (2.23)

and so F = conv(U : V ) is an e-polytope. ��
The next result shows that the same operations which are closed in the class of

e-convex sets (recall Proposition 1.1) are closed in the class of e-polyhedral, but
here the image by linear mappings and the sum also preserve the e-polyhedrality.
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Proposition 2.5 (Operations with e-Polyhedra) The following statements
hold:

(i) If F ⊂ R
n is an e-polyhedron, then αF (resp., F + v) is an e-polyhedron for

all α ∈ R (resp., v ∈ R
n).

(ii) If F ⊂ R
n is an e-polyhedron and A : Rm → R

n is a linear transformation,
then AF is an e-polyhedron. Moreover, if A−1F �= ∅, then A−1F is an e-
polyhedron and 0+(A−1F) = A−1

(
0+F

)
.

(iii) If F1 ⊂ R
n and F2 ⊂ R

m are nonempty sets, then F1 × F2 is e-polyhedron if
and only if F1 and F2 are e-polyhedra.

(iv) If F1, F2 ⊂ R
n are e-polyhedra, then F1 + F2 is an e-polyhedron and

0+ (F1 + F2) = 0+F1 + 0+F2.

(v) If {Fi, i ∈ I } is a finite family of e-polyhedra in R
n such that ∩

i∈I
Fi �= ∅, then

∩
i∈I

Fi is an e-polyhedron and

0+
(
∩
i∈I

Fi

)
= ∩

i∈I
0+Fi.

Sketch of the Proof This result contains three types of statements:

• Statements which are immediate application of those of Proposition 1.1 as the
e-polyhedra are e-convex sets. This is the case of the assertions related with the
recession cones.

• Statements that can be proved turning to the external representations of the e-
polyhedra. For instance, regarding (iii) , if σ1 and σ2 are finite linear systems
representing F1 ⊂ R

n and F2 ⊂ R
m, respectively, the finite system obtained

by joining the inequalities of σ1 to those of σ2 is an external representation of
F1 × F2 in R

n+m.

• Statements that can be proved by means of internal representations of the
involved e-polyhedra. For instance, regarding (ii) and the first part of (iv) ,

if F = conv(U : V ) + cone(D), where U, V and D are finite sets, then
AF = conv(AU : AV ) + cone(AD), showing that AF is an e-polyhedron. In
particular, if F1, F2 ⊂ R

n are e-polyhedra, then F1 +F2 is the image of F1 ×F2
by a linear mapping, showing that F1 + F2 is an e-polyhedron.

Observe that some statements, like (i) , can be proved through either external or
internal representations of F . ��

In Examples 2.6 and 2.7, we have seen two different decompositions for the
same e-polyhedron as a sum of an e-polytope and a finitely generated cone. For an
e-polyhedron F , given U , V , D ⊂ R

n such that F = conv(U : V ) + coneD,
by (2.23), we know that coneD = 0+F , so that the conical component of any
decomposition of F is always 0+F . Regarding the sets U and V , by employing the
notion of minimal face, one can apply the following refinement of Theorem 2.5.
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Theorem 2.6 (Minimal Decomposition of e-Polyhedra) Let F ⊂ R
n be a

nonempty e-polyhedron. Then,

F = conv(U : V )+ 0+F (2.24)

where U := {u1, . . . , um}, ui ∈ Fi with Fi a minimal face of F , for every
i = 1, . . . ,m, and V := {v1, . . . , vq }, vj ∈ Gj with Gj a minimal face of F

not intersecting F , for every j = 1, . . . , q .

Example 2.8 Consider again the e-polyhedron F defined in Example 2.7 (see
Fig. 2.5). The only minimal face of F is F1 = {(1, 0)}, whereas the only minimal
face of F not intersecting F is G1 = {(4, 3)}. The extreme rays of F are d1 = (1, 0)

and d2 = (2, 1), and so 0+F = cone ({d1, d2}). Then, by choosing any u1 ∈ F1 and
v1 ∈ G1, Theorem 2.6 guarantees that an internal representation of F is

F = conv({(1, 0)} : {(4, 3)})+ cone ({(1, 0), (2, 1)}) .

Thus, we observe that the representations given in Examples 2.6 and 2.7 were not
minimal in the sense that the sets of generators there can be simplified as shown.

As a straightforward consequence of Theorem 2.6, the following internal repre-
sentations for e-polyhedra which are either closed or relatively open can be obtained.

Corollary 2.9 Let F ⊂ R
n be a nonempty e-polyhedron.

(i) If F is closed, then F = conv {u1, . . . , um} + 0+F with ui ∈ Fi and Fi a
minimal face of F , for every i = 1, . . . ,m.

(ii) If F is relatively open, then F = conv({u} : {v1, . . . , vq

}
) + 0+F with u ∈

F , vj ∈ Gj and Gj a minimal face of F not intersecting F , for every j =
1, . . . , q .

Thus, if a polyhedron F contains no line, then F = extr F + 0+F. Just as an
illustration, the e-polyhedron F = {x ∈ R

2 : x1 > 1, x2 > 1} can be represented
as stated in Corollary 2.9 by conv({u} : {v}) + R

2+ where v = (1, 1) and u is any
point in F .

2.4 Evenly Linear Programming

We now come back to the problems of obtaining geometrical information on the
solution set F of a given consistent system

σ = {〈at , x〉 ≤ bt , t ∈ W ; 〈at , x〉 < bt , t ∈ S} ,

with S �= ∅ and T = W ∪ S finite, and deciding whether a given x∗ minimizes or
not a given linear function on F. To do this, we fall back on the results of Sect. 1.5
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on similar questions relative to linear systems containing strict inequalities under
constraint qualifications.

Since T is finite, it is a compact space for the discrete topology, so that σ is
continuous. Actually, σ satisfies the FMCQ due to the finiteness of T , which entails
the closedness of

K(σ) = cone

{(
at

bt

)
, t ∈ T ;

(
0n

1

)}
,

independently of the satisfaction or not of SCQ. Consequently, σ satisfies the
LFMCQ at any x ∈ F . Similarly, again by the finiteness of T , σ satisfies the LOPCQ
at any x ∈ F .

2.4.1 Feasible Set

The boundedness of F is characterized by Proposition 1.11, with no change.
Regarding the formulas for dim F, the following result follows immediately from
Proposition 1.12 just taking into account that the involved cones are finitely
generated and, so, closed. Let I := {1, ..., p} be the set of indices of the linear
representation of F , and I= := {i ∈ i : 1, . . . p : 〈ai, x〉 = bi,∀x ∈ F }.
Proposition 2.6 (Dimension Formulas) The following statements hold true:

(i) dim F = n− dim lin K(σ). Moreover,

dim F = n− dim span {ai : i ∈ I=}

and

aff F = {x ∈ R
n : 〈ai, x〉 = bi, i ∈ I=

}
.

(ii) dim 0+F = n− dim lin cone {ai, i ∈ I }.
(iii) dim lin 0+F = n− dim cone {ai, i ∈ I }.

The next result is straightforward consequence of Proposition 1.13.

Proposition 2.7 (Boundary and Extreme Points) The following statements hold
true:

(i) One has

rint F = {x ∈ R
n : 〈ai, x〉 = bi, i ∈ I=; 〈ai, x〉 < bi, i ∈ I\I=} ,

rbd F = ∪{Fi : i ∈ I\I=}
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and

bd F = ∪{Fi : ai �= 0n, i ∈ I } .

(ii) A given x ∈ F is an extreme point of F if and only if

dim cone {ai : 〈ai, x〉 = bi, i ∈ I } = n.

2.4.2 Optimality and Duality

We now consider the evenly linear programming (e-LP in short) problem

(P ) Min
x∈Rn

〈c, x〉
s.t. 〈ai, x〉 ≤ bi, i = 1, . . . ,m,

〈ai, x〉 < bi, i = m+ 1, . . . , p,

where c �= 0n. The optimal value of (P ), say v(P ), may be +∞ (when F = ∅),
−∞ (when the set {〈c, x〉 : x ∈ F } is not bounded from above), and a real number
(when {〈c, x〉 : x ∈ F } is a nonempty set bounded from above), in which cases P is
said to be inconsistent, unbounded and bounded, respectively. In the last two cases,
F �= ∅, and P is said to be consistent.

The relaxed problem of (P ) is

(P ) Min
x∈Rn

〈c, x〉
s.t. 〈ai, x〉 ≤ bi, i = 1, . . . , p.

Recall that we denote by F and F (respectively, F ∗ and F
∗
) the feasible sets (resp.,

optimal sets) of (P ) and (P ). By Proposition 1.14, if the e-LP problem (P ) is
consistent, then v(P ) = v(P ) and F ∗ = F ∩ F

∗
.

Regarding duality, let us observe that the Haar dual problem of (P ),

(D) Max
λ∈Rp

+
−

p∑

i=1
λibi

s.t. −
p∑

i=1
λiai = c,

is nothing else but its ordinary LP dual.

Theorem 2.7 (Duality in e-LP) Let (P ) and (D) be consistent. Then v(P ) =
v(D) ∈ R and (D) is solvable.
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Proof From the LP duality theorem one gets that v(P ) = v(D) ∈ R and, by
Theorem 1.6, (D) is solvable. ��

The final result of this section is the specialization of Proposition 1.7 to the e-LP
setting.

Theorem 2.8 (Optimality and Strong Uniqueness in e-LP) Given x∗ ∈ F, the
following statements are equivalent:

(i) x∗ ∈ F ∗.
(ii) −c ∈ A(x∗) (KKT condition).
(iii) There exists a feasible solution λ of (D) such that λi (bi − 〈ai, x

∗〉) = 0 for
all i = 1, . . . , p (complementarity condition).

Additionally, x∗ is a strongly unique optimal solution of (P ) if and only if
−c ∈ int A(x∗).

We now discuss the use of the Fourier–Motzkin elimination method to solve
small size e-LP problems of the form (P ) above. In contrast with ordinary LP, in
e-LP we may have v(P ) ∈ R without having optimal solutions. For this reason, we
must introduce a more general concept of solution. We say that a sequence {xk} is
a minimizing sequence for (P ) whenever xk ∈ F for all k ∈ N and lim

k→∞
〈
c, xk

〉 =
v(P ).

Assume that (P ) is consistent and choose x̂ ∈ rint F (recall that the relative
interior of a convex set is nonempty). By (2.3), such a point can be obtained by
applying the Fourier–Motzkin elimination method to the system

{〈ai, x〉 < bi, i ∈ I\I=; 〈ai, x〉 = bi, i ∈ I=} .

By the continuity of linear functions, if (P ) is consistent, then v(P ) = v(P ). The
LP algorithms provide either an optimal solution z of (P ), when (P ) is bounded, or
a minimizing sequence {zk} for (P ), when it is unbounded. Then, taking a sequence
{λk} of positive scalars such that lim

k→∞λk = 0, since (1− λk) z + λkx̂ ∈ F for all

k ∈ N in the first case and (1− λk) zk + λkx̂ ∈ F for all k ∈ N in the second case,
we conclude that either {(1− λk) z + λkx̂} or {(1− λk) zk + λkx̂} is a minimizing
sequence for (P ). In conclusion, the strategy consists in checking the consistency of
σ (by using an existence theorem for linear systems containing strict inequalities)
and, if F �= ∅, applying some LP solver to the relaxed problem (P ) to get an optimal
solution z of (P ) (which will be also optimal for (P ) if z ∈ F , or provides at least
a converging minimizing sequence for (P )), or a minimizing sequence {zk} for (P )

with lim
k→∞

〈
c, zk

〉 = −∞, which provides a corresponding minimizing sequence for

(P ). Observe that x̂ can effectively be computed by the ellipsoid method whenever
the polyhedron F is full dimensional.

As the next example shows, the Fourier–Motzkin elimination method may help
to determine whether (P ) is solvable or not.
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Example 2.9 Consider the consistent e-LP problem consisting in the minimization
of the functional 〈c, x〉 subject to the linear constraints of Example 2.1 when the
objective function is either

(i) c = (1, 0), or
(ii) c = (1,−1).

Introducing a new variable x3 = 〈c, x〉, (P ) is equivalent to

(Pc) Min
x∈R3

x3

s.t. c1x1 + c2x2 − x3 ≤ 0
−x1 − 4x2 ≤ −2,

−x1 < −1.

We must project the feasible set of (Pc), say Fc, onto the x3 axis. Firstly, by
eliminating the variable x1 in the system

σc = {c1x1 + c2x2 − x3 ≤ 0,−x1 − 4x2 ≤ −2,−x1 < −1} ,

we obtain its corresponding reduced system σ ′c, whose solution set F ′
c is the

projection of Fc onto the coordinate hyperplane x1 = 0. Finally, by eliminating
the variable x2 in the system σ ′c, we obtain the projection of Fc onto the x3 axis as
the solution set of the reduced system of σ ′c.

(i) If c = (1, 0), for the variable x1, we are in Case 4 of Table 2.1, and the reduced
system associated to σc = {x1 − x3 ≤ 0,−x1 − 4x2 ≤ −2,−x1 < −1} is
σ ′c = {−4x2 − x3 ≤ −2,−x3 < −1}. Now, for the variable x2, we are in Case
14 and, therefore, the projection of Fc onto the x3 axis is F ′′

c = ]1,+∞[.
Consequently, v (P ) = v (Pc) = 1. Hence, v(P ) = v(P ) = 1 but the

e-LP problem is not solvable. An optimal solution of (P ) is z =
(

1, 1
4

)

(the extreme point of the polyhedron provided by the simplex method) and
a relative interior point of F (actually a Slater point for σ ) is x̂ = (2, 2).
Taking λk = 1

k
for all k ∈ N, one gets the bounded minimizing sequence

{(1− λk)z+ λkx̂} =
{(

k+1
k

, k+7
4k

)}
.

(ii) If c = (1,−1), by applying the Fourier–Motzkin elimination method to the
system σc, we obtain that the projection of Fc onto the x3 axis is the real line
R and, therefore, v(P ) = v(P ) = −∞ with the objective function decreasing

along the edge
{(

1, 1
4

)
+ λ (0, 1) : λ ≥ 0

}
of F . Taking zk = (1, k) and λk =

1
k

for all k ∈ N, one gets the unbounded minimizing sequence {(1 − λk)z
k +

λkx̂} =
{(

k+1
k

, k2−k+2
k

)}
.



92 2 Evenly Convex Polyhedra: Finite Linear Systems Containing Strict Inequalities

2.5 Selected Applications

Finite linear systems involving strict inequalities and their solutions sets, the evenly
convex polyhedra, are frequently used in mathematical programming, ordinary zero-
sum two person games, economy, combinatorial problems, formal verification of
hardware and software systems, etc.

2.5.1 Mathematical Programming

The existence (alternative or transposition) theorems of Sect. 2.2 have been fre-
quently used to prove important results in mathematical programming. For instance,
just to mention classic works, Motzkin [132] and Slater [165] used the Motzkin
transposition theorem to derive the duality theorem of linear programming (see
[160, Cor. 7.11]) while, according to D. Hilbert [88], Gordan [80] used his
transposition theorem to study Hilbert bases of finitely generated convex cones,
which became a useful instrument in integer programming some decades later (see
[160, pp. 232–233 and 315–316]). From an expository point of view, the alternative
theorems, including those involving strict inequalities, are the basic tool of the
famous book by Mangasarian on nonlinear programming, whose first edition is
dated in 1969 and has been reedited many times, e.g., [116].

In recent times, the systems of strict linear inequalities play a crucial role in
single and multiobjective piecewise linear optimization programming. On the one
hand, by exploiting the fact that any e-polyhedron is obtained by removing faces
from a polyhedron, [52] obtained an internal representation (in terms of linear
combinations of generating points and rays) for e-polyhedra which was applied to
show that the image of an e-polyhedron under an affine function is always an e-
polyhedron (which is not true for arbitrary e-convex sets), and to study sensitivity
in a piecewise linear program with possible discontinuity [51]. On the other hand,
[190] has shown that the Pareto frontier of any piecewise linear multiobjective
optimization can be expressed as finite union of e-polyhedra.

2.5.2 Finite Zero-Sum Two Person Games

A finite two-person zero-sum game is determined by a payoff matrix A (m× n) ,

where m and n are the numbers of pure strategies of players I and II. The sets
of mixed strategies of both players are discrete probability distributions over the
corresponding sets of pure strategies, that we represent by

X :=
⎧
⎨

⎩
x ∈ R

m+ :
m∑

j=1

xj = 1

⎫
⎬

⎭
and Y :=

{

y ∈ R
n+ :

n∑

i=1

yi = 1

}

.
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The expected outcome of player II when players I and II choose the mixed strategies
x and y is x�Ay, so that the maximin and minimax values are

vI := max
x∈X

min
y∈Y

x�Ay and vII := min
y∈Y

max
x∈X

x�Ay,

respectively. Let us mention two classical applications of the alternative theorems
for finite systems in this framework:

• The celebrated minimax theorem, proved by John von Neumann in 1937 [134],
asserts that, in contrast with semi-infinite games, vI = vII for finite games. This
common value is called value of the game and it is usually denoted by v (A). The
proof of this crucial result in the popular book of G. Owen [137] (reedited many
times since its first edition in 1968) is based on the following matrix version of
Gordan alternative theorem (Corollary 2.2): there is a vector x ∈ R

n such that
x � 0n and Ax = 0m if and only if there is no vector y ∈ R

m such that A�y � 0n

implies A�y = 0n, where the symbol � between two vectors of Rn denotes the
componentwise partial order on R

n.

• The famous work [18], published in 1950 by H. F. Bohnenblust, S. Karlin and
L. S. Shapley, was devoted to the relationship between the dimensions of the
optimal strategy sets, the uniqueness of solution, and the way to construct a game
matrix with a given solution. To state the main result in that paper we need some
additional notation. Let A1, . . . , An and a1, . . . , am be the columns of A and A�,
respectively. Consider the index sets

J :=
{
j ∈ {1, . . . , n} : x�Aj = v (A) ,∀x ∈ X

}

and

I :=
{
i ∈ {1, . . . ,m} : a�i y = v (A) ,∀y ∈ Y

}
.

The mentioned result of [18] asserts, firstly, that for each maximin strategy x

there exists a minimax strategy y such that yj > 0 for all j ∈ J and, secondly,
that for each minimax strategy y there exists a maximin strategy x such that xi >

0 for all i ∈ I. The proof in [18] was based on the following matrix reformulation
of one of the Stiemke’s alternative theorems of Sect. 2.2.1 (Corollary 2.5): there
is a vector x ∈ R

n such that Ax � 0m if and only if there is no vector y ∈ R
m

such that A�y � 0n and y > 0m (componentwise).

2.5.3 Economy

The work of von Neumann [134] mentioned in the previous subsection also contains
a famous growth model consisting in a finite linear system that we now summarize.
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The model is determined by two nonnegative m × n matrices A = [
aij

]
and B =[

bij

]
, the data, to be interpreted as follows:

• Each row-index i stands for a ‘good’, while each column index j stands for a
‘process’.

• Process j can convert (in one time unit, say a year) aij units of good i = 1, . . . ,m

into bij units of the same good i.

The variables of the model are two vectors, x ∈ R
n, y ∈ R

m, and two scalars, γ

and δ, and have the following meaning:

• xj denotes the ‘intensity’ by which we let process j work.
• yi is the price of one unit of good i.

• The real number γ is the factor by which all intensities are multiplied each year.
• The real number δ denotes the interest factor (i.e., δ := 1 + z

100 , where z is the
rate of interest).

Regarding the constraints:

• All variables are nonnegative: x � 0n, y � 0m, γ ≥ 0 and δ ≥ 0.

• Moreover, it is required that x �= 0n and y �= 0m. Taking into account the
sign constraints, the latter constraints can be replaced by the strict inequalities
n∑

j=1
xj > 0 and

m∑

i=1
yi > 0.

• The vector inequality γAx � Bx expresses that for each good i, the amount of
good i produced in year k is at least the amount of good i required in year k + 1.

• If there is strict surplus at the i-th inequality of γAx � Bx, then the equation
y� (γAx − Bx) = 0 requires the price of good i to be zero.

• The vector inequality δy�A � y�B says that, for each process j, the price of the
goods produced at the end of year k is at most the price of the goods necessary
for the process at the beginning of year k, added with interest.

• If the j -th inequality at δy�A � y�B is strict, the equation
(
δy�A− y�B

)
x =

0 means that the intensity of process j is 0.

Even though the resulting system contains nonlinear equations and inequalities,
von Neumann (as well as [160, p. 220]) proved the existence of solution to
that nonlinear system turning to the following matrix reformulation of Motzkin
alternative theorem (Corollary 2.1): Let A (m× n) and B (p × n) be matrices and
let b ∈ R

m and c ∈ R
p (the data); then there exists a vector x ∈ R

n with Ax < b

and Bx ≤ c if and only if for all y ∈ R
m+ and z ∈ R

p
+ it holds

A�y + B�z = 0n �⇒ y�b + z�c ≥ 0

and

A�y + B�z = 0n with y �= 0m �⇒ y�b + z�c > 0.
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More recently, alternative theorems involving strict inequalities due to Stiemke
(Corollary 2.5) and Tucker have been used by H. Nikaidô in his well-known
monographs on mathematical economics [135, 136]. There, he basically adopts a
Keynesian disequilibrium view of the accumulation process.

2.5.4 Combinatorial Problems

R. Kannan considered in [98] the so-called Frobenius problem: given n natural num-
bers a1, .., an such that their greatest common divisor is 1, find the largest natural
number that is not expressible as a nonnegative integer combination of them. The
author provides a polynomial time algorithm for a closely related problem: that of
finding the covering radius of any polytope F, i.e., inf

{
ρ ∈ R+ : Zn + ρF = R

n
}
.

Kannan called “copolyhedra” the intersections of finitely many halfspaces not
necessarily closed (where the particle “co” before “polyhedra” stands for closed
/ open), and “copolytopes” those copolyhedra which are bounded. We prefer
to call these sets e-polyhedra and e-polytopes, respectively, as other terms like
“copolyhedra” and “co-polyhedra” are used with different meanings in functional
analysis (e.g., in [185] a co-polyhedron is a subset of some infinite-dimensional
space that can be expressed as the sum of the convex hull of finitely many points
with a finitely generated convex cone), in algebra, in chromatography, in polymer
sciences, etc.

In the main results of [98] one finds the sentence “the algorithm finds an e-
polytope F such that . . .”, meaning that the corresponding algorithm will find a
matrix A ∈ Q

m×(n+l) and a vector b ∈ Q
m, where l is at most some polynomial

function of n such that

F =
{
x ∈ R

n : A
(

x

y

)(≤
<

)
b for some y ∈ R

l

}
,

where the symbol

(≤
<

)
means that the inequality corresponding to each row of A

may be either ≤ or <.

2.5.5 Formal Verification of Hardware and Software Systems

The term “real-time” derives from its use in the early years of simulation, in which
real-world processes were simulated at a rate that matched that of the corresponding
real processes. Fortunately, since the 1970s, anybody can use her/his home computer
as a real-time system thanks to the existence of coding libraries which offer real time
capabilities in a high level language on a variety of operating systems. The purpose
of formal verification of the real-time properties of hardware and software is to
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ensure the correct functionality of complex systems in a complementary way to that
of a dynamic verification (empirical testing). Research in this domain of computing
science is currently developed by many university departments and institutes, as
well as industrial labs.

In particular, there exists an abundant literature on the automatic detection
of the linear equations and inequalities which are the consequence of the linear
equations and inequalities which are explicit in a given computer program (term
meaning, in this setting, collection of instructions or sentences, written in some
language programming, that perform specific tasks). Until the mid 1990s, most
works dealt with systems of linear equations and weak inequalities, so that the basic
mathematical tool then used was the transit between the two possible representations
of a given polyhedron: the external one, as the solution set of a finite linear system of
weak inequalities, and the internal one, as the Minkowski sum of a polytope with a
finitely generated convex cone (which are called “representation by linear restraints”
and “representation by frame”, respectively in [32]). The same approach, based in
the double representation of polyhedral-like sets, was used in [85] for a particular
type of hybrid systems involving both integer and continuous variables as well as
both weak and strict linear inequalities. The idea behind was the replacement of the
solution set of the linear system with mixed variables and (possibly) strict linear
inequalities by a greater set: the solution set of the relaxed system which results
of considering all variables continuous and all inequalities weak. The proposed
methodology is illustrated by the authors with three examples involving water-level
monitors, Fischer mutual exclusion protocols, and scheduling problems.

The systematic handling of linear systems of mixed inequalities and continuous
variables in formal verification starts in [86] (paper which subsumes the theory and
examples of [85]) under the generic name of “linear relation analysis”, and continues
with a series of papers of R. Bagnara, P. M. Hill, E. Zaffanella, and co-authors, who
coined the term “not necessarily closed (NNC) convex polyhedra” for the objects
simply called “e-polyhedra” in this book.

In [11] the authors point out that the existing libraries for the manipulation of
polyhedra do not allow to handle linear systems of mixed inequalities, and present
their first version of the Parma Polyhedra Library (PPL), which is focussed on the
double representation of e-polyhedra. Indeed, the significance of having an internal
representation relies on the fact that the ability to switch from one to another
representation can be usefully exploited to provide simple implementations for the
basic operations on e-polyhedra. Successive improvements of this free software
are described in subsequent works [4–10]. Recent works [14–16] have investigated
and implemented an improved representation for NNC polyhedra, leading to the
software library PPLite, which can achieve impressive time and memory efficiency
improvements with respect to the PPL.

To conclude this section containing a selection of applications of e-polyhedra,
we point out that finite linear systems containing strict inequalities also arise in the
determination of the so-called strict witnesses in computational geometry [97], in
the Bayesian approach to probabilistic logic [145, Subsection 1.3], and in other sub-
fields of computer science, e.g., in the treatment of constraint satisfaction problems
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[17] and safety verification [163]. Furthermore, evenly linear programming has been
used in the framework of natural language processing in order to analyze sentiments
[159].

2.6 Bibliographic Notes

The notion of polyhedron, i.e., the solution set of an ordinary finite linear system in
R

n, can be extended in several ways, for instance:

• Replacing some weak inequalities by strict ones, giving rise to e-polyhedra.
• Removing the finiteness assumption on the index set, giving rise to the class of

closed convex sets.
• If one allows for infinitely many linear inequalities, not necessarily weak, one

gets the class of the e-convex sets.
• If one maintains the finite number of inequalities and the weak nature of them,

but replaces the space R
n of variables by a locally convex space one has the

so-called generalized polyhedra. More precisely, a generalized polyhedron in the
sense of Bonnans and Shapiro [19, Def. 2.195] is the intersection of finitely many
closed halfspaces with a closed affine subspace.

Three are the main questions regarding all these extensions: guaranteeing the
existence of solutions, characterizing the consequent inequalities, and availability
of some method for the double description of the elements of the corresponding
class.

In this chapter we have analyzed e-polyhedra from this point of view. The
first known results on finite linear systems containing strict inequalities are the
alternative theorems of Gordan [80], Stiemke [169], Carver [28] and Motzkin [131],
published in 1873, 1915, 1921–1922, and 1936, respectively. Table 2.4.1 of the
famous Mangasarian’s book [116] contains a list of 11 alternative theorems for
finite systems, 9 of them involving strict inequalities. These results are also called
transposition theorems in the literature (e.g., in [132, 160, 165]) as, when they
are reformulated as the equivalence of two of statements on matrices, one of the
statements involves certain matrix while the other condition involves its transpose
(recall the matrix reformulations of Gordan, Stiemke and Motzkin alternative
theorems in Sect. 2.5.2). Rockafellar’s alternative theorem is relatively recent [148,
Th. 22.2] in comparison with the previous ones. All these theorems can be seen
as existence theorems for finite linear systems containing strict inequalities (recall
Table 1.1 for the comparison with other existence theorems).

All these alternative and transposition theorems can be directly proved from
the very general existence Theorem 2.2, whose equivalences (i) ⇐⇒ (iii),
(i) ⇐⇒ (iv), and (i) ⇐⇒ (v) are [152, Cor. 3.3], [152, Th. 3.1], and [152,
Lem. 3.2(ii)], respectively. These equivalences have been proved falling back on
the representative cone of the given system and the characteristic cone of its
relaxed one. Proposition 2.1, analyzing the relationships between these two cones,
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is [152, Lem. 3.1] while statement (ii) of Proposition 2.2, on the relationships
between these cones and the corresponding solution sets, is [152, Lem. 3.2(i)]. The
counterpart of Theorem 2.2 for ordinary finite systems (i.e., with S = ∅) asserts that
σ = {〈at , x〉 ≤ bt , t ∈ W } is consistent if and only if

(0n,−1) /∈ cone {(at , bt ) , t ∈ W ; (0n, 1)} .

This is a straightforward consequence of the existence theorem for ordinary linear
systems in locally convex spaces due to Y. J. Zhu [193, Th. 1]. The equivalence
(i) ⇐⇒ (ii) in Corollary 2.6 does not have a semi-infinite counterpart as

∑

t∈W

at is

not well-defined whenever W is an infinite set. However, the equivalence (i) ⇐⇒
(iv) for ordinary linear systems appears in [72, Th. 3.3].

Finite linear systems containing finitely many weak and/or strict inequalities
were reconsidered in the 1950s by Kuhn [108] in his extension of the Fourier–
Motzkin elimination method. Regarding their solution sets, they appear in the
literature with different names: wholefaced polyhedra [186], copolyhedra [98], NNC
polyhedra [6], G-polyhedra [192], semiclosed polyhedra [190] and evenly convex
polyhedra [152] which is, in our modest opinion, the natural name for these sets
as it recalls the term introduced by Fenchel for the intersections of halfspaces. In
all these papers, evenly convex polyhedra (e-polyhedra, in brief) were defined by
means of their external representations, that is, as the solution sets of finite linear
systems possibly containing strict inequalities.

The three statements of Theorem 2.3 were proved in [152]: (i) in Prop. 3.1, (ii)
in Prop. 3.2, and (iii) in Cor. 3.6 (see also [108, Th. II]). Corollary 2.7(i) is the non-
homogeneous Farkas lemma [128], later extended by Zhu [193, Th. 2] to infinite
systems posed in locally convex spaces while different proofs of Corollary 2.7(ii)
can be found in [78, Prop. 1.2] and [152, Cor. 3.7].

Regarding the characterization of the containment of e-polyhedra in Proposi-
tion 2.3, [⇐] is [152, Prop. 3.4 ] while [⇒] is [152, Prop 3.5].

Concerning Sect. 2.3, on the double description of the evenly convex polyhedra,
statements (i) , and (ii) and (iii) of Proposition 2.4 are proved in [152, Lem. 4.1
(i)] and [152, Prop. 4.1], respectively, while Theorem 2.4 is [152, Th. 4.1]. Motzkin
proved in his 1936 Inaugural Dissertation [131] that any polyhedral convex set in R

n

can be written as the sum of a polytope and a polyhedral convex cone. Inspired by
this result, different authors have investigated those sets which can be decomposed
as the (Minkowski) sum of a convex compact set and a closed convex cone [66,
67, 77], those which can be decomposed as the sum of a convex compact set and a
convex cone [92], and those that can be expressed as the sum of a bounded convex
set and a convex cone [125]. Theorem 2.5 (proved in [152, Th. 4.2]), also inspired by
the mentioned Motzkin’s decomposition theorem, deals with those sets which can be
decomposed as the sum of an e-polytope and a polyhedral convex cone. In fact, this
class of decomposition constitutes an internal representation for e-polyhedra. The
double representation of e-polyhedra is also studied by Fang and co-authors in [51–
53] and by Bagnara and co-authors in [6, 11]. In [52, Th. 2.1], the authors give an
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internal representation for a e-polyhedron based on the Motzkin decomposition of
its closure (which is a polyhedron) and on the fact that any e-polyhedron is the result
of eliminating from a polyhedron (its closure) the union of a family of its faces. The
obtained result is different of the one in Theorem 2.5 and, as a consequence, the
minimal decomposition given in [53, Th. 4.1] cannot be recovered in Theorem 2.6,
proved in [152, Th. 4.3]. Likewise, the internal representation for relatively open
e-polyhedral sets in Corollary 2.9(ii) differs from the one given in [52, Lem. 2.3].
On the other hand, although the internal representation for e-polyhedra obtained in
[6, Th. 4.4] coincides with the one given in Theorem 2.5, the proof of the latter
does not use the standard version of Motzkin theorem but a generalization of the
technique employed by him and provides an accurate method to obtain the internal
representation from an external one. Statements (ii) and (iv) in Proposition 2.5 are
Theorem 2.2 and Proposition 2.1(i) in [52], respectively.

The feasibility problem regarding finite linear systems containing finitely many
weak and/or strict inequalities can be tackled in three different ways: Fourier–
Motzkin elimination, the ellipsoid method and reduction to a nonlinear program-
ming problem (e.g., minimizing a barrier function). By the end of the 1980s,
only finite linear strict inequality systems with small number of variables could be
solved with the Fourier–Motzkin elimination method. The proposal by Khachiyan
and co-authors [177], in 1988, of the so-called Khachiyan’s ellipsoid method, a
polynomial-time algorithm allowing to solve large infinite linear strict inequality
systems, provoked an increasing use of this type of systems in different fields.
Inspired in the logarithmic barrier method of Fiacco and McCormick [56], one can

compute a solution of σ =
{
〈ai, x〉

(≤
<

)
bi, i = 1, . . . ,m

}
, provided its solution

set S is nonempty, by solving the unconstrained optimization problem

Min
x ∈ R

n −
∑

t∈T

ln [bt − 〈at , x〉] ,

whose optimal solution (which is unique thanks to the strict convexity of the
objective function, usually named the barrier of S) is the so-called analytic center
of S.



Chapter 3
Evenly Quasiconvex Functions

It is well-known that a real-valued function f : Rn → R is continuous if and only if
its graph, gph f := {(x, f (x)) : x ∈ R

n} , is a closed subset of Rn+1. Since gph f

can be written as the intersection of the sets epi f := {(x, λ) ∈ R
n × R : f (x) ≤ λ}

and hypo f := {(x, λ) ∈ R
n × R : f (x) ≥ λ} , called epigraph and hypograph of

f, respectively, one can split the continuity in two weaker properties: f is said to be
lower (upper) semicontinuous whenever epi f (hypof , resp.) is closed, so that f is
continuous if and only if it is lower and upper semicontinuous.

In the same vein, the modern treatment of extended real-valued functions
emphasizes the role played by the set-based approach. So, functions of the form
f : Rn → R := R ∪ {±∞} such that

f ((1− μ) x + μy) ≤ (1− μ) f (x)+ μf (y) ,∀x, y ∈ R
n,∀μ ∈ [0, 1] ,

are called convex and are characterized by the convexity of their epigraph epi f
while the concave functions f (for which −f is convex) are those functions whose
hypograph hypo f is convex. Similarly, functions f : Rn → R such that

f ((1− μ) x + μy) ≤ max {f (x) , f (y)} ,∀x, y ∈ R
n,∀μ ∈ [0, 1] ,

which are called quasiconvex, are those functions whose lower level sets [f ≤ r] :=
{x ∈ R

n : f (x) ≤ r} (or equivalently, their strict lower level sets, [f < r] :=
{x ∈ R

n : f (x) < r}) are convex for all r ∈ R. The opposite of the quasiconvex
functions are called quasiconcave, and they are characterized by the convexity of
their upper level sets [f ≥ r] := {x ∈ R

n : f (x) ≥ r}, r ∈ R.

One of the ways of facing the unconstrained minimization of a given function
f : R

n → R whose bad behavior does not allow the application of known
numerical methods consists in the replacement of f by a function f̂ ≤ f (that
is, a minorant of f ) enjoying desirable properties and such that the approximation
gap infx∈Rn f (x)− infx∈Rn f̂ (x) ≥ 0 is sufficiently small.

© Springer Nature Switzerland AG 2020
M. D. Fajardo et al., Even Convexity and Optimization, EURO Advanced Tutorials
on Operational Research, https://doi.org/10.1007/978-3-030-53456-1_3

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53456-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-53456-1_3


102 3 Evenly Quasiconvex Functions

In this sense, if F = {fi, i ∈ I } is a family of minorants of f , then the
supremum of F , supF , defined as (supF ) (x) := sup {fi (x) , i ∈ I }, is also
a minorant of f and its epigraph and lower level sets are the intersection of the
epigraphs and the lower level sets, respectively, of the family members. Since the
intersection of closed sets is closed, there exists a greatest lower semicontinuous
minorant of f , which is called lower semicontinuous hull of f, denoted by cl f
and defined as the supremum of the family of all lower semicontinuous minorants
of f . In the same way, since the intersection of convex sets is convex, one
can consider the convex (quasiconvex) hull of f, denoted by co f (qco f, resp.)
and defined as the largest convex (quasiconvex, resp.) minorant of f . Similarly,
cu f denotes the upper semicontinuous hull of f (defined as its smallest upper
semicontinuous majorant, whose hypograph is the closure of hypo f ). The reader
is referred to [59, 91, 148, 191], among many other textbooks on convex analysis,
for a comprehensive introduction on these notions.

The approximation gap decreases when one replaces the given minorant f̂ by a
greater one. In Sect. 3.1 we define a class of functions, the evenly quasiconvex ones,
which provide greater minorants than the smaller class of the lower semicontinuous
quasiconvex functions (analogously, in the next chapter, we analyze the class
of evenly convex functions, which extends the class of lower semicontinuous
convex functions). Section 3.2 studies the evenly quasiconvex hull providing the
largest evenly quasiconvex minorant of a given function. Section 3.3 analyzes
conjugates and subdifferentials for evenly quasiconvex functions, while Sect. 3.4
provides a sketch of quasiconvex duality. Finally, Sect. 3.5 describes an application
in mathematical economy.

3.1 Evenly Quasiconvex Functions

A function f : Rn → R is said to be lower semicontinuous, lsc in brief, (upper
semicontinuous, usc in brief) at a point x ∈ R

n if for any λ ∈ R, λ < f (x) (λ >

f (x), resp.), there exists a neighbourhood of x, Vx , such that λ < f (x) (λ > f (x),
resp.) for all x ∈ Vx . It is well-known that a function f is lsc at any point of Rn

if and only if epi f is closed, or equivalently, if [f ≤ r] is closed for every r ∈ R.
As a function f is usc if and only if −f is lsc, usc functions turn out to be those
functions whose strict lower level sets are open.

An extended real-valued function f : Rn → R is said to be evenly quasiconvex,
e-quasiconvex in brief, (strictly evenly quasiconvex, resp.) if the lower level set
[f ≤ r] (the strict lower level set [f < r], resp.) is e-convex for every r ∈ R.
In particular, if f : R → R is an univariate quasiconvex function, then all its
lower level sets are e-convex (since all of them are intervals) and, therefore, f

is e-quasiconvex. Since every convex set being closed or open is also e-convex,
it is obvious that every lsc quasiconvex function is e-quasiconvex and every
usc quasiconvex function is strictly e-quasiconvex. Moreover, since [f ≤ r] =
∩r<q [f < q] and the intersection of e-convex sets is e-convex, every strictly
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Fig. 3.1 The strict lower
level set [f < 1] is not
e-convex

e-quasiconvex function is e-quasiconvex. The converse is not true, as the following
example shows.

Example 3.1 Let f : R2 → R be the function defined as follows:

f (x1, x2) =
⎧
⎨

⎩

0, if x1 ≥ x2 and x2 ≤ 0,

x2/x1, if x1 > x2 > 0,

1, elsewhere.

All the lower level sets of f are closed and convex, and so e-convex, showing that
f is e-quasiconvex. However,

[f < 1] = {x ∈ R
2 : x1 > x2 > 0} ∪ {x ∈ R

2 : x1 ≥ x2, x2 ≤ 0}

is not e-convex (see Fig. 3.1).

The relationships between the different families of quasiconvex functions are
summarized in Diagram 3.1. In Example 3.2, we show a strictly e-quasiconvex (and
so, e-quasiconvex) function which is neither lsc nor usc.

Example 3.2 Consider the function f : R→ R defined by

f (x) =
⎧
⎨

⎩

x2, if − 1 < x < 1,

3, if x = 1,

+∞, otherwise,
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Diagram 3.1 Evenly
quasiconvex and related
functions

usc quasiconvex

⇓
strictly e-quasiconvex

⇓
e-quasiconvex

⇑
lsc quasiconvex

Fig. 3.2 Strictly
e-quasiconvex function which
is neither usc nor lsc 3

EE

whose graph is represented in Fig. 3.2. It is easy to see that all the strict lower level
sets are e-convex. However, [f < 4] = [f ≤ 4] = ]−1, 1] is neither open nor
closed, so that f is a strictly e-quasiconvex function which is not usc and it is also
an e-quasiconvex function which is not lsc.

As a straightforward consequence of the definitions given in this section, we
observe that the solution set of a system of the form
{gt (x) ≤ 0, t ∈ W ; gt (x) < 0, t ∈ S} with W ∩ S = ∅, gt e-quasiconvex (in
particular, lsc quasiconvex) for all t ∈ W and gt strictly e-quasiconvex for all
t ∈ S, is e-convex.

Proposition 3.1 (Operations with e-Quasiconvex Functions) The following
statements hold:

(i) If f : R
n → R is an e-quasiconvex function and α > 0, then αf is

e-quasiconvex.
(ii) If {fi : Rn → R, i ∈ I } is a family of e-quasiconvex functions, then supi∈I fi

is an e-quasiconvex function.
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Proof

(i) It is a direct consequence of the equalities

[αf ≤ r] = {x ∈ R
n : (αf ) (x) ≤ r

} =
{
x ∈ R

n : f (x) ≤ r

α

}
=
[
f ≤ r

α

]
.

(ii) As
[(

supi∈I fi

) ≤ r
] = ∩i∈I [fi ≤ r] and even convexity is preserved under

intersections, we have that the family of e-quasiconvex functions is closed under
pointwise suprema.

��
The sum of e-quasiconvex functions is not, in general, e-quasiconvex as we can

see in the following example.

Example 3.3 Let f, g : R → R be the functions defined by f (x) = x, for all
x ∈ R and

g (x) =
{

x2, if − 1 ≤ x ≤ 1,

1, otherwise.

It is easy to see that f and g are e-quasiconvex functions, whereas the function
f + g, whose graph is represented in Fig. 3.3, is not e-quasiconvex.

Fig. 3.3 Graphical
representation of f + g
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3.2 Evenly Quasiconvex Hull

As a consequence of Proposition 3.1(ii), every function f : Rn → R has a largest
e-quasiconvex minorant, which is called its evenly quasiconvex hull (e-quasiconvex
hull, in short) and denoted by eqco f . Obviously,

cl qco f ≤ eqco f ≤ qco f ≤ f (3.1)

and, therefore, cl eqco f = cl qco f . We shall say that a function f is e-quasiconvex
at x ∈ R

n if f (x) = (eqco f )(x). Clearly, f is e-quasiconvex if and only if it is
e-quasiconvex at every x ∈ R

n.
The following examples show that the inequalities in (3.1) can be strict.

Example 3.4 Let f : R→ R be the function defined by

f (x) =
⎧
⎨

⎩

x + 1, if x ≤ −1,

x2 + x, if − 1 < x < 1,

x + 2, otherwise,

whose graph is represented in Fig. 3.4. Obviously, f is not a quasiconvex function.
Figure 3.5 represents the graphs of qco f and cl qco f and, as we can see, one has:

cl qco f � qco f � f.

In this case, as qco f is an univariate quasiconvex function, it is also
e-quasiconvex and we have that eqco f = qco f .

Fig. 3.4 The function f is
not quasiconvex
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RR

a b

Fig. 3.5 (a) The graph of qco f ; (b) The graph of cl qco f

a b

Fig. 3.6 (a) convex hull of C; (b) e-convex hull of C

Example 3.5 Consider the set C = {x ∈ R
2 : 0 ≤ x1 < 1, x2 = 0}∪{(1, 1)} and its

indicator function δC : R2 → R defined by δC(x) = 0 if x ∈ C and δC(x) = +∞
if x ∈ R

2\C. Since C � conv C � eco C (see Fig. 3.6), one gets

eqco δC = δeco C � qco δC = δconv C � δC.

It is easy to see that, for every function f : Rn → R and for all r, r ′ ∈ R with
r ≤ r ′, the following inclusion holds,

[f ≤ r] ⊂ [f ≤ r ′
]
.

In general, we say that the family A := {At }t∈R of (possibly empty) subsets of Rn

is an ascending family if At ⊂ At ′ for all t, t ′ ∈ R with t ≤ t ′. We also associate
to the ascending family A the function ψA : Rn → R, which we call the extended
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gauge of A , defined by

ψA (x) := inf{t ∈ R : x ∈ At }, ∀x ∈ R
n, (3.2)

with the convention inf∅ = +∞. It is easy to prove that, for every r ∈ R,

Ar ⊂ [ψA ≤ r] = ∩
t>r

At . (3.3)

The motivation of the name given to the function ψA relies on the following fact.
For a convex set A ⊂ R

n such that 0n ∈ int A, the family A = {At }t∈R, defined by
At = ∅ if t < 0 and At = tA if t ≥ 0, is ascending and the function

ψA (x) = inf{t ≥ 0 : x ∈ At }, ∀x ∈ R
n,

is nothing else but the gauge (or Minkowski functional) of A.

Example 3.6 Consider the ascending family A = {At }t∈R given by At =]−∞, t[
if t < 0, At =] −∞, 1[ if t = 0 and At =] −∞, et [ if t > 0. The gauge function
of A is

ψA (x) =
⎧
⎨

⎩

x, if x < 0,

0, if 0 ≤ x < 1,

ln(x), if x ≥ 1.

Obviously, the family of all lower level sets of a function f : Rn → R, Af :=
{[f ≤ t]}t∈R, is an ascending family whose extended gauge is the function f . In
fact, by (3.3), one has

[f ≤ r] ⊂ [ψAf
≤ r

] = ∩
t>r

[f ≤ t] = [f ≤ r] , ∀r ∈ R,

so
[
ψAf

≤ r
] = [f ≤ r] for all r ∈ R, which implies that ψAf

= f .

Proposition 3.2 (Even Quasiconvexity of the Extended Gauge) Let A =
{At }t∈R be an ascending family of e-convex sets of Rn. Then, the extended gauge
ψA is e-quasiconvex.

Proof Taking into account (3.3) and that the intersection of a family of e-convex
sets is an e-convex set, we have that [ψA ≤ r] is e-convex for all r ∈ R. ��

Next, for a family of sets A = {At}t∈R, we shall denote ecoA := {eco At}t∈R.
Observe that ecoA is an ascending family of e-convex sets whenever A is an
ascending family.
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Proposition 3.3 (Evenly Quasiconvex Hull of the Extended Gauge) Let A =
{At }t∈R be an ascending family of sets in R

n. Then,

eqco ψA = ψecoA .

Proof Since At ⊂ eco At for every t ∈ R, one has ψecoA ≤ ψA , with ψecoA
being an e-quasiconvex function due to Proposition 3.2. Now, by the definition of
the e-quasiconvex hull of ψA , we obtain

ψecoA ≤ eqco ψA ≤ ψA .

On the other hand, since At ⊂ [ψA ≤ t] ⊂ [eqco ψA ≤ t
]

for every t ∈ R, then

eco At ⊂ eco [ψA ≤ t] ⊂ eco
[
eqco ψA ≤ t

] = [eqco ψA ≤ t
]
, ∀ t ∈ R.

Therefore,

[ψecoA ≤ r] = ∩
t>r

eco At ⊂ ∩
t>r

[
eqco ψA ≤ t

] = [eqco ψA ≤ r
]
, ∀r ∈ R,

which implies ψecoA ≥ eqco ψA . ��
Corollary 3.1 (Characterization of the e-Quasiconvex Hull) Let f : Rn → R

and A = {At }t∈R be an ascending family such that [f < t] ⊂ At ⊂ [f ≤ t] for
every t ∈ R. Then,

eqco f = ψecoA .

Proof From the hypothesis, one obtains

[f ≤ r] = ∩
t>r

[f < t] ⊂ ∩
t>r

At ⊂ ∩
t>r

[f ≤ t] = [f ≤ r] .

Hence, [ψA ≤ r] = [f ≤ r] for every r ∈ R, and so ψA = f . Now, by
Proposition 3.3, we have that eqco f = eqco ψA = ψecoA . ��

In the previous result, we can consider the ascending family Af = {[f ≤ t]}t∈R,
(equivalently, A = {[f < t]}t∈R). Then, one obtains the following representation
for the e-quasiconvex hull of f :

(eqco f )(x) = inf{r ∈ R : x ∈ eco [f ≤ r]}, x ∈ R
n (3.4)

(equivalently, (eqco f )(x) = inf{r ∈ R : x ∈ eco [f < r]}, for every x ∈ R
n).

Proposition 3.4 (A Sufficient Condition for e-Quasiconvexity) For a function
f : Rn → R, if there is an ascending family A = {At }t∈R of e-convex sets in
R

n such that [f < t] ⊂ At ⊂ [f ≤ t] for all t ∈ R, then f is e-quasiconvex.
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Proof As f = ψA and A is an ascending family of e-convex sets, due to
Proposition 3.2, one has that f is e-quasiconvex. ��

A direct consequence of Proposition 3.4 is that any function whose strict lower
level sets are e-convex (that is, any strictly e-quasiconvex function), is e-quasiconvex
as well (as pointed out in Diagram 3.1).

Next result gathers together four characterizations of e-quasiconvexity at a point
given in the literature. For illustrative purposes, we give a proof of (i) ⇐⇒ (iii)

based on the notion of ascending family, whereas precise references for the complete
proof can be found in Sect. 3.6. The latter also applies to all the missing proofs in
this chapter.

Theorem 3.1 (Characterizations of e-Quasiconvexity at a Point) Consider
f : Rn → R and x ∈ R

n. The following statements are equivalent:

(i) f is e-quasiconvex at x.
(ii) f (x) = inf{t ∈ R : x ∈ eco [f ≤ t]}.
(iii) x /∈ eco [f ≤ r] for all r < f (x).
(iv) For every r < f (x), there exists q ∈ R

n such that 〈q, x − x〉 < 0 for all
x ∈ [f ≤ r].

(v) f is quasiconvex and for every y ∈ R
n such that f (y) < f (x), every sequence

yk ⊂ R
n such that

{
yk
}→ y, and every {μk} ⊂ (0,+∞), one has

f (x) ≤ lim inf
k→+∞ f (x + μk(x − yk)).

Partial Proof Consider the ascending family ecoAf := {eco [f ≤ t]}t∈R.
[(i) ⇒ (iii)] Let r ∈ R be such that x ∈ eco [f ≤ r] ⊂ [

ψecoAf
≤ r

]
. By

applying (i) and Corollary 3.1, one has

f (x) = (eqco f )(x) = ψecoAf
(x) ≤ r.

[(iii) ⇒ (i)] Suppose that (iii) holds. Then, f (x) ≤ r , for every r ∈ R such that
x ∈ eco [f ≤ r], so that, by applying Corollary 3.1, we have

(eqco f )(x) = ψecoAf
(x) = inf{t ∈ R : x ∈ eco [f ≤ t]}

≥ inf{t ∈ R : x ∈ [f ≤ t]} = f (x). ��

3.3 Conjugacy and Subdifferentiability

Duality theory plays an essential role in convex optimization. Its construction is
based on Fenchel conjugation, an important tool in convex analysis. Recall that
the Fenchel conjugate of a function f : Rn → R is f ∗ : Rn → R defined by
f ∗(·) := sup{〈·, x〉−f (x) : x ∈ dom f }, where dom f := {x ∈ R

n : f (x) < +∞}
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is the effective domain of f . If f is a proper function (that is, dom f �= ∅ and
f (x) > −∞ for all x ∈ R

n), then f ∗ is a proper lsc convex function (since it is the
pointwise supremum of a collection of affine functions). In particular, the second
conjugate of f , f ∗∗, is the largest proper lsc convex minorant of f . Therefore, a
proper function f is lsc and convex if and only if f = f ∗∗, result that turns out to
be crucial for convex duality (see, e.g., [148, Th. 12.2]).

Another essential tool in duality theory is the notion of subdifferential due to
Moreau and Rockafellar [129, 148]. Given ε ≥ 0, a function f : Rn → R is said to
be ε-subdifferentiable at a point x ∈ f−1(R) if there exists u ∈ R

n such that

f (x) ≥ f (x)+ 〈u, x − x〉 − ε, ∀x ∈ R
n. (3.5)

The set of those points u ∈ R
n satisfying (3.5) is the ε-subdifferential of f at x,

denoted by ∂εf (x). If f (x) /∈ R, it is assumed to be empty. When ε = 0, we just
write ∂f (x) and it is called the subdifferential of f at x. The function f is said to
be ε-subdifferentiable on a subset A of Rn if it is ε-subdifferentiable at each point
of A.

Subdifferentiability is used to obtain optimality conditions in both convex and
nonconvex optimization (see, e.g., [89]). Thus, given a proper convex function f :
R

n → R and x ∈ R
n, [148, Th. 23.5] establishes that x ∈ argminf := {x ∈ R

n :
f (x) ≤ f (y) , ∀y ∈ R

n} if and only if 0n ∈ ∂f (x).
However, convex duality is not adequate for nonconvex problems. With the aim

of providing a basis for duality theory in the e-quasiconvex case, some conjugation
and subdifferentiability notions were developed in the literature. Next we show some
of them.

3.3.1 H -Conjugation

Let H be a family of univariate extended real-valued functions, closed under
pointwise supremum. A function f : Rn → R is said to be H -convex if it can
be expressed as the supremum of those minorants obtained by composing some
h ∈H with some linear function, that is, if for each x ∈ R

n one has

f (x) = sup{h(〈y, x〉) : h ∈H , y ∈ R
n, h(〈y, x〉) ≤ f (x), ∀x ∈ R

n}.

The supremum of H -convex functions is again an H -convex function, and the
greatest H -convex function majorized by a given function f : Rn → R is called
the H -convex hull of f .

For f : Rn → R, its H -conjugate is fH : Rn →H given by

fH (y) := sup{h : h ∈H , h(〈y, x〉) ≤ f (x) ∀x ∈ R
n}.
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Conversely, given g : Rn → H , its H ′-conjugate function gH
′ : Rn → R is

defined by

gH
′
(x) := sup

y∈Rn

g(y)(〈y, x〉). (3.6)

As a consequence of these definitions the following statements hold.

Proposition 3.5 (Properties of H -Conjugation) Let f : R
n → R. Then, the

following statements hold:

(i) fH (y)(〈y, x〉) ≤ f (x), for all y, x ∈ R
n.

(ii) fH H ′
is H -convex.

(iii) The H -convex hull of f is equal to the second conjugate fH H ′
.

(iv) f is H -convex if and only if f = fH H ′
.

This generalized concept of conjugation encompasses the classical Fenchel
conjugation method by considering H the family of functions hb(t) = t − b, with
b ∈ R, in which case the H -convex functions are the lsc convex functions. It also
includes conjugation schemes which are suitable both for lsc quasiconvex functions
and e-quasiconvex functions.

Now we give the details of the conjugation for the family of e-quasiconvex
functions. For that purpose, recall that an e-quasiaffine function is a function which
is both e-quasiconvex and quasiconcave. If H is assumed to be the family of all
nondecreasing univariate extended real-valued functions, then the H -conjugation
method introduced above provides a characterization of the family of e-quasiconvex
functions. More precisely, one gets the following results.

Proposition 3.6 (Characterization of e-Quasiaffine Functions) Let q : Rn → R.
Then, the following statements are equivalent:

(i) q is e-quasiaffine.
(ii) q(x) = h(〈y, x〉) for all x ∈ R

n, for some y ∈ R
n and h : R → R

nondecreasing.
(iii) For each r ∈ R, [q ≤ r] is either a closed or open halfspace or ∅ or Rn.

Proposition 3.7 (Conjugation for e-Quasiconvex Functions) For a function
f : Rn → R, if H is the family of all nondecreasing univariate extended real-
valued functions, then the following statements hold:

(i) fH (y)(t) = inf{f (x) : 〈y, x〉 ≥ t} for all y ∈ R
n and t ∈ R.

(ii) fH H ′ = eqco f .
(iii) f is e-quasiconvex if and only if f = fH H ′

.

The conjugation theory described above (called H -conjugation) is not symmet-
ric, since the conjugate of an extended real-valued function is a function whose
values are taken in a family of functions H instead of R. However, it provides a
good geometric interpretation of e-quasiconvexity, since any e-quasiconvex function
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f is the supremum of e-quasiaffine minorants. Recall from (3.6) that

fH H ′
(·) := sup

y∈Rn

fH (y)(〈y, ·〉),

where fH (y)(〈y, ·〉), for each y ∈ R
n, is an e-quasiaffine minorant of f in virtue

of Propositions 3.5 and 3.6.

3.3.2 Moreau’s Generalized Conjugation Theory

Next we show how the conjugacy for e-quasiconvex functions can be derived from
the generalized conjugation theory that was developed by Moreau [130] in an
abstract framework. We begin by recalling the essentials of Moreau’s conjugation
theory (see, for instance, [124]). Let X and Y be two arbitrary sets and let
c : X × Y → R be a function, called the coupling function. For any function
f : X → R, its c-conjugate f c : Y → R is defined by

f c(y) = sup
x∈X

{c(x, y)− f (x)}, ∀y ∈ Y,

where the conventions+∞+ (−∞) = −∞+ (+∞) = +∞− (+∞) = −∞−
(−∞) = −∞ are assumed. In the same way, for every g : Y → R, its c′-conjugate
is the function gc′ : X → R defined by

gc′ (x) = sup
y∈Y

{c(x, y)− g(y)}, ∀x ∈ X.

This notation is consistent with considering the coupling function c′ : Y ×X → R

given by c′(y, x) = c(x, y). Functions of the form x ∈ X �→ c(x, y)− β ∈ R, with
y ∈ Y and β ∈ R, are called c-elementary. Similarly, c′-elementary functions are
those of the form y ∈ Y �→ c′(y, x) − β ∈ R, with x ∈ X and β ∈ R. We denote
by Γc and Γc′ the sets of c-elementary and c′-elementary functions, respectively.
A function f : X → R is said to be Γc-convex if it is the pointwise supremum
of a subset of Γc. Hence, every function f : X → R has a largest Γc-convex
minorant, which is called its Γc-convex hull. Similarly, a function g : Y → R is
said to be Γc′-convex if it is the pointwise supremum of a subset of Γc′ , being the
largest Γc′ -convex minorant of g its Γc′ -convex hull. We summarize in the following
proposition the main properties of this conjugation theory.

Proposition 3.8 Let f : X → R and g : Y → R. Then,

(i) f c(y) ≤ c(x, y)− f (x) and gc′ (x) ≤ c(x, y)− g(y), for all x ∈ X, y ∈ Y .
(ii) f c and gc′ are Γc′ -convex and Γc-convex, respectively.
(iii) f = f cc′ if and only if f is Γc-convex, and g = gc′c if and only if g is

Γc′-convex.
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Following this generalized conjugation theory in order to get an appropriate
conjugation scheme for the family of e-quasiconvex functions, we shall consider
the coupling function c : Rn × (Rn ×R) → R defined by

c(x, (y, α)) =
{

0, if 〈y, x〉 ≥ α,

−∞, otherwise.
(3.7)

The conjugation formulas are then

f c(y, α) = − inf{f (x) : 〈y, x〉 ≥ α} (3.8)

for f : Rn → R and (y, α) ∈ R
n ×R, and

gc′(x) = − inf{g(y, α) : 〈y, x〉 ≥ α}

for g : Rn × R → R and x ∈ R
n. The second c-conjugate of f : Rn → R is, for

every x ∈ R
n,

f cc′ (x) = sup
y∈Rn

inf{f (x) : 〈y, x〉 ≥ 〈y, x〉}. (3.9)

We illustrate these formulas with an example.

Example 3.7 Consider the function f : R→ R defined by f (x) = x3. By (3.8), its
c-conjugate (with c the coupling function in (3.7)) is, for every (y, α) ∈ R

2,

f c(y, α) =
⎧
⎨

⎩

−∞, if y = 0, α > 0,

−(α/y)3, if y > 0,

+∞, otherwise.

Now, given x ∈ R, we observe that if y > 0 then inf{f (x) : 〈y, x〉 ≥ 〈y, x〉} = x3,
and if y ≤ 0 then inf{f (x) : 〈y, x〉 ≥ 〈y, x〉} = −∞. Hence, in virtue of (3.9) we
get

f cc′(x) = sup
y∈Rn

inf{f (x) : 〈y, x〉 ≥ 〈y, x〉} = x3 = f (x).

Therefore, as a straightforward consequence of the general theory of conjugation,
one has that eqco f = f cc′ for any f : Rn → R, getting a further characterization
of the even quasiconvexity at a point besides the ones given in Theorem 3.1.
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Theorem 3.2 (Characterization of e-Quasiconvexity at a Point) Let f : Rn →
R and x ∈ R

n. The following statements are equivalent:

(i) f is e-quasiconvex at x.
(ii) f (x) = sup

y∈Rn

inf{f (x) : 〈y, x〉 ≥ 〈y, x〉}.

The above result shows that every e-quasiconvex function can be expressed
as a supremum of a family of e-quasiaffine functions. More precisely, if f is
e-quasiconvex, then

f = sup
y∈Rn

fy,

with fy = inf{f (x) : 〈y, x〉 ≥ 〈y, ·〉}.

3.3.3 Subdifferentials

Quasiconvex functions are not (Moreau-Rockafellar) subdifferentiable in general.
Because of that, several subdifferential notions have been proposed for quasiconvex
functions in the literature, being the Greenberg–Pierskalla subdifferential [82]
the first to be proposed and the key for subgradient methods in quasiconvex
optimization problems. Next we aim to link e-quasiconvexity of a function and
subdifferentiability (in the sense of Greenberg–Pierskalla) via its strict lower level
sets.

Given ε ≥ 0, a function f : Rn → R is said to be ε-GP-subdifferentiable at a
point x ∈ f−1(R) if there exists u ∈ R

n such that

〈u, x − x〉 ≥ 0 ⇒ f (x) ≥ f (x)− ε, ∀x ∈ R
n. (3.10)

We define the ε -GP-subdifferential of f at x, denoted by (∂GP
ε f )(x) as the set

of those points u ∈ R
n satisfying (3.10). If f (x) /∈ R, it is assumed to be empty.

When ε = 0, we just write (∂GP f )(x) and it is called the GP-subdifferential of f

at x. The function f is said to be ε-GP-subdifferentiable on a subset A of Rn if it is
ε-GP-subdifferentiable at each point of A.

Next result characterizes the ε-GP-subdifferentiability of a function at a given
point in terms of the even convexity of a given strict lower level set.

Proposition 3.9 (Non-emptiness of the ε-GP-Subdifferential) Consider ε ≥ 0,
f : Rn → R and x ∈ f−1(R). Then, the following statements are equivalent:

(i) (∂GP
ε f )(x) �= ∅.

(ii) x /∈ eco [f < f (x)− ε] .
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Proof It follows from the definition of ε-GP-subdifferential since (3.10) is equiva-
lent to

〈u, x〉 < 〈u, x〉 , ∀x : f (x) < f (x)− ε,

and this is equivalent to (ii) according to (1.8). ��
Corollary 3.2 Let f : Rn → R and x ∈ f−1(R). Then:

(i) (∂GP f )(x) �= ∅ if and only if x /∈ eco [f < f (x)].
(ii) If [f < f (x)] is e-convex, then f is GP-subdifferentiable at x.

Corollary 3.2(ii) provides a sufficient condition for GP-subdifferentiability based
on the even convexity of an strict lower level set. The next result shows that,
under certain even convexity assumptions on either the function or its domain,
the even convexity of all strict lower level sets is a necessary condition for the
subdifferentiability. The results in this section are in line with the fact that a given
e-quasiconvex function at a point is not necessarily GP-subdifferentiable at that
point (cf. [183]).

Proposition 3.10 (Necessary Condition for GP-Subdifferentiability) Assume
that a function f : Rn → R is GP-subdifferentiable on f−1(R) and either f is
e-quasiconvex or dom f is e-convex. Then, [f < r] is e-convex for every r ∈ R

(i.e., f is strictly e-quasiconvex).

Proof Let r ∈ R and x /∈ [f < r], that is, f (x) ≥ r .
Firstly, assume that f (x) < +∞ and so, f (x) ∈ R. As f is GP-subdifferentiable

on f−1(R), there exists u ∈ (∂GP f )(x) such that if 〈u, x − x〉 ≥ 0, then f (x) ≥
f (x) ≥ r . Hence, x /∈ eco [f < r] and so, [f < r] is e-convex.

Now, if f (x) = +∞ and dom f is e-convex, there exists u ∈ R
n such that

〈u, x〉 > 〈u, x〉 for all x ∈ dom f . Since [f < r] ⊂ dom f , then x /∈ eco [f < r]
and, so, [f < r] is e-convex.

Finally, assume that f (x) = +∞ and f is e-quasiconvex. If x ∈ eco [f < r],
then x ∈ [f ≤ r] = eco [f ≤ r], but this is impossible as f (x) = +∞.
Consequently, x /∈ eco [f < r] and the conclusion follows. ��

Following Moreau’s generalized conjugation theory described in
Sect. 3.3.2, it is possible to define alternative notions of subdifferentials based
on the coupling function employed for the conjugacy. Thus, f : X → R is said to
be c-subdifferentiable at x ∈ X if f (x) ∈ R and there exists y ∈ Y such that

c(x, y) ∈ R and f (x)− f (x) ≥ c(x, y)− c(x, y), ∀x ∈ X. (3.11)

The set of those points y ∈ Y satisfying (3.11) is called the c-subdifferential of f

at x, denoted by ∂cf (x). If f (x) /∈ R, ∂cf (x) = ∅ by definition. The following
properties hold.
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Proposition 3.11 (Properties of the c-Subdifferential) Let f : X → R, x ∈ X

and y ∈ Y . If c(x, y) ∈ R, then:

(i) y ∈ ∂cf (x) if and only if f (x)+ f c(y) = c(x, y).
(ii) y ∈ ∂cf

cc′(x) if and only if x ∈ ∂c′f c(y).
(iii) If ∂cf (x) �= ∅, then f is Γc-convex at x.
(iv) If f is Γc-convex at x, then ∂cf

cc′(x) = ∂cf (x).

In particular, if we consider again the coupling function c : Rn× (Rn×R) → R

introduced in (3.7) for the appropriate conjugation scheme of the e-quasiconvex
functions, one gets a corresponding notion of c-subdifferential, say ∂c. The rela-
tionship between this coupling-based subdifferential and the GP-subdifferential is
as follows: for f : Rn → R and x ∈ f−1(R), one has

y ∈ ∂GP f (x) ⇐⇒ (y, 〈y, x〉) ∈ ∂cf (x).

Finally, taking into account the H -conjugation method described in
Sect. 3.3.2, we can define further notions of subdifferentials based on the family
H of univariate extended real-valued functions. Thus, f : Rn → R is said to be
H -subdifferentiable at x ∈ R

n if f (x) ∈ R and there exist h ∈ H and y ∈ R
n

such that

h(〈y, x〉) = f (x) and h(〈y, x〉) ≤ f (x), ∀x ∈ R
n. (3.12)

The set of those points y ∈ R
n satisfying (3.12) is called the H -subdifferential of

f at x, denoted by ∂H f (x). If f (x) /∈ R, ∂H f (x) = ∅ by definition. When H is
the family of all nondecreasing functions, then ∂H f (·) = ∂GP f (·).

3.4 Duality in Quasiconvex Optimization

Consider an arbitrary unconstrained optimization problem

(GP) Min
x∈Rn

F (x),

where F : R
n → R is a proper function. We now recall (see, e.g., [41, 149])

the well-known perturbational approach to duality, whose key is the use of a
perturbation function Φ : Rn × R

m → R, such that Φ(x, 0m) = F(x) for all
x ∈ R

n, Rm being the space of perturbation variables. Thus, for each y ∈ R
m, we

have the perturbed optimization problem

(GPy) Min
x∈Rn

Φ(x, y),
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and we associate to the family of perturbed problems, the infimum value function
p : Rm → R defined by p(y) := infx∈Rn Φ(x, y). It is obvious that p (0m) =
infx∈Rn F (x). In order to apply the conjugation scheme for e-quasiconvex functions,
we consider the coupling function c : Rm × (Rm × R) → R introduced in (3.7) as

c(y, (y∗, α)) =
{

0, if 〈y∗, y〉 ≥ α,

−∞, otherwise,

for all y ∈ R
m and (y∗, α) ∈ R

m×R, and the c-conjugate of p, pc : Rm×R→ R,
defined by

pc(y∗, α) = sup
y∈Rm

{c(y, (y∗, α)) − p(y)}, ∀(y∗, α) ∈ R
m ×R. (3.13)

From (3.1), it is easy to obtain

p(0m) ≥ c(0m, (y∗, α))− pc(y∗, α), ∀(y∗, α) ∈ R
m × R,

so that we define the dual problem of (GP) as

(GD) Max
y∗∈Rm,α∈R

c(0m, (y∗, α))− pc(y∗, α),

which can be equivalently written as

(GD) Max
y∗∈Rm,α∈R

inf{Φ(x, y) : x ∈ R
n, 〈y∗, y〉 ≥ α}

s.t. α ≤ 0.

Proposition 3.12 (Duality Theorem) The following statements hold:

(i) v(GD) ≤ v(GP).
(ii) v(GD) = (eqco p)(0m). If it is finite, the optimal solution set is

∂c(eqco p)(0m).
(iii) v(GD) = v(GP) if and only if p is e-quasiconvex at 0m. In this case, if the

optimal value is finite, then the optimal solution set to (GD) is ∂cp(0m).

3.5 An Application to Consumer Theory

In economics it is rather common the following duality framework (see, e.g., [141,
142]). Given a real-valued, non-decreasing function u on the non-negative orthant of
R

n, a dual function v is defined by the relation v(y) = supx∈Rn+ {u(x) : 〈x, y〉 ≤ 1}.
It is easy to see that v is non-increasing and quasiconvex. If u is quasiconcave,
some additional assumptions allow to obtain a complete duality between the primal
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function u and the dual function v in the sense that u can be obtained from v through
the relation u(x) = infy∈Rn+ {v(y) : 〈x, y〉 ≤ 1}. A case in which this scheme is
applied is the one of the duality between direct and indirect utility functions in
consumer theory.

In an economy in which n different type of commodities are available, each
vector x = (x1, . . . , xn) ∈ R

n+, with xi denoting the quantity of i-commodity,
represents a consumption option. The preferences of a consumer in the set of
commodity bundles, Rn+, are usually represented by a so-called utility function u :
R

n+ → R, that is, for any x, y ∈ R
n+, x is preferred to y if and only if u (x) > u (y).

If M > 0 is the maximal amount of money that the consumer can spend and p ∈ R
n+

is the vector of commodity prices, the consumer chooses a commodity bundle x by
maximizing u (x) subject to the budget constraint 〈p, x〉 ≤ M . As M > 0, one
can consider the vector of normalized prices y = p/M and the consumer’s utility
problem may be written as

(P (y)) sup
{
u (x) : 〈y, x〉 ≤ 1, x ∈ R

n+
}
.

The function v that associates to y the optimal value of the parameterized problem
P (y), v (y) = sup

{
u (x) : 〈y, x〉 ≤ 1, x ∈ R

n+
}
, is called the indirect utility

function associated with u and it gives the maximum utility level that the consumer
can attain when he or she faces the vector y of normalized prices. A complete
duality between u (x) and v (y) allows to obtain u from v through the relation
u (x) = inf

{
v (y) : 〈x, y〉 ≤ 1, y ∈ R

n+
}
, which implies that the behavior of the

consumer can be equivalently described through the indirect utility function, whose
variables are the prices.

The duality between the utility function of a consumer and the corresponding
indirect utility function has been studied extensively. In 1977, Crouzeix established
quite symmetric conditions for the utility functions when they are continuous [34]
and, later, in 1983, for the differentiable case [36]. In 1991, Martínez-Legaz [122]
obtained a symmetric duality under the weakest possible assumptions.

Proposition 3.13 Let v : Rn+ → R. There exists a utility function u : Rn+ → R

having v as its associated indirect utility function if and only if v is non-increasing,
evenly quasiconvex and satisfies

v (y) ≤ lim
α→1−

(cl v) (αy) , ∀y ∈ bdRn+. (3.14)

In this case, one can take u non-decreasing, evenly quasiconcave and satisfying

u (x) ≥ lim
α→1−

cu u (αx) , ∀x ∈ bdRn+. (3.15)

Under these conditions, u is unique, namely,

u (x) = inf
{
v (y) : 〈x, y〉 ≤ 1, y ∈ R

n+
}
, ∀x ∈ R

n+.
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According to this theorem, any non-increasing e-quasiconvex function
v : R

n+ → R satisfying (3.14) is the indirect utility function associated with a
unique non-decreasing e-quasiconcave function u : Rn+ → R satisfying (3.15).

3.6 Bibliographic Notes

The concept of e-quasiconvex function first appeared in the PhD thesis of J.E.
Martínez-Legaz [119] (see also [120]) on generalized conjugation under the name
of “normal quasiconvex function”. The term “evenly quasiconvex function” was
introduced by Passy and Prisman in [138], a work on conjugacy in quasiconvex
programming which was followed by a sequel on the same subject [139]. After
that, Martínez-Legaz [121] presented a survey on quasiconvex duality theory based
on generalized conjugation methods and showed that e-quasiconvex functions
constitute the class of regular functions in most of the conjugation schemes.

This chapter is based on [37, 79, 121, 123, 138]. More precisely, the con-
cept of strictly e-quasiconvex function and the relationships reflected in Dia-
gram 3.1 appeared in [138]. Although Passy and Prisman provide an example of
an e-quasiconvex function which is not strictly e-quasiconvex, our Example 3.1 has
been taken from [37, p. 64]. The e-quasiconvex hull of a function is introduced
in [138, Def. 2.5] and its representation as in (3.4) is [138, Th. 2.1]. The notions
regarding ascending families were previously considered in [35, Sec. 2]. The
equivalences in Theorem 3.1 appear in [37] in the more general context of separable
Banach spaces. In particular, (i) ⇐⇒ (ii) is [37, Prop. 8], (i) ⇐⇒ (iii) is [37, Prop.
10], (i) ⇐⇒ (iv) is [37, Prop. 11] and (i) ⇐⇒ (v) is [37, Prop. 12].

Several generalizations and particularizations of e-quasiconvex functions have
been studied in the literature. Next we review two of them.

• According to Thach [179], a convex set C ⊂ R
n is R-convex if λx ∈ C for all

x ∈ C and λ ≥ 1. Thus, in the same way that quasiconvex functions are defined
by the convexity of its lower level sets, a function f is said to be R-quasiconvex
when its lower level sets are R-convex, and it is R-evenly quasiconvex when
these lower level sets are R-evenly convex, i.e., intersection of a family of open
halfspaces whose closures do not contain 0n. Martínez-Legaz [123] characterized
the R-evenly quasiconvex functions as those evenly quasiconvex functions f that
satisfy a certain simple relation with their lower semicontinuous hull cl f .

• Rubinov and Glover [153] defined, for a given pair of sets (X, V ) with a coupling
function [, ] : V ×X → R, the so-called evenly-(X, V )-convex sets as those sets
Z ⊂ X such that, for each x ∈ X\Z there exists v ∈ V such that [v, x] > [v, z]
for all z ∈ Z. Then, they define the evenly-(X, V )-quasiconvex functions as those
whose lower level sets are evenly-(X, V )-convex.
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Regarding the conjugation schemes, the H -conjugation method described in
Sect. 3.3.1 was introduced by Martínez-Legaz in [119, 120], whereas the alternative
conjugation method in Sect. 3.3.2 was pointed out in [124] and obtained as a
particular case from the generalized conjugation theory developed by Moreau [130].
More precisely, Proposition 3.5 is [120, Prop. 1], [120, Prop. 2] and [120, Cor. 3]
for statements (i) , (iii) and (iv), respectively, Proposition 3.6 is [120, Prop. 23’],
Proposition 3.7 is [120, Props. 24’–26’], Proposition 3.8 is [124, Props. 6.1 and
6.2] and the result in Theorem 3.2 is given in [124, p. 258]. Finally, the proofs of
Propositions 3.11 and 3.12 can be found in [124, Secs. 6.3 and 6.5].

Independently to the above methods, a related symmetric conjugation scheme
for quasiconvex functions was introduced by Passy and Prisman in [138]. In this
case, however, the biconjugate function coincides with the proper homogeneous
e-quasiconvex hull instead of just the e-quasiconvex hull. The motivation of this
result is as follows. For f : R

n → R, its perspective function of order 0 (the
perspective function in [90] can be understood as the one of order 1) gf : Rn×R→
R is defined by

gf (x, λ) :=
{

f (x/λ), if λ > 0,

sup f, otherwise.

By construction, gf is a positively homogeneous function of degree zero (that
is, gf (tx, tλ) = gf (x, λ) for all t > 0), and f is recoverable from gf in
the sense that f (·) = gf (·, 1). It holds that f is e-quasiconvex if and only
if gf is e-quasiconvex. Only quasiconvex positively homogeneous of degree
zero functions (those functions whose lower level sets are convex cones) are
considered in [138]. In this case, if f is quasiconvex, then gf is proper in the
sense that if α < sup gf , then one has 0n+1 /∈ [gf ≤ α] (which implies
gf (0n+1) = sup gf (x, λ)). Hence, for any function g : R

n → R, its quasi-
conjugate function g$ : Rn → R is given by

g$(y) = − inf{g(x) : 〈y, x〉 ≥ 0}, ∀y ∈ R
n,

having that g$ is a proper homogeneous e-quasiconvex function, and g = g$$ if
and only if g is a proper homogeneous e-quasiconvex function (cf. [138, Th. 3.1]).
Consequently, the quasi-conjugate$ induces a one-to-one mapping on the family of
proper homogeneous e-quasiconvex functions. The study of those functions whose
lower level sets are e-convex cones allows us to recover, with some improvements,
some results of Passy and Prisman, and Martínez-Legaz. For instance, a function
that attains its maximum at the origin is e-quasiconvex and homogeneous if and
only if all its lower level sets are evenly convex cones (cf. [182, Th. III.1.2]).

The notion of λ-quasiconjugate (λ ∈ R) of a function f : Rn → R, defined by
f ∗λ (y) = λ − inf{f (x) : 〈y, x〉 ≥ λ} for all y ∈ R, was introduced by Greenberg
and Pierskalla [82] and plays an important role in quasiconvex optimization and in
the theory of surrogate duality (as well as the Fenchel conjugate does in convex
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conjugation and Lagrangian duality). Thach [178, 179] established two dualities
for a general quasiconvex optimization problem, restricting himself to particular
classes of quasiconvex functions. For that purpose, he introduced the notions of
H -quasiconjugate and R-quasiconjugate. On the one hand, the H -quasiconjugate
of f is defined by f H (y) = − inf{f (x) : 〈y, x〉 ≥ 1} if y �= 0n, and
f H (0n) = − sup{f (x) : x ∈ R

n}. The fundamental theorem says that f is
H -evenly quasiconvex (i.e., all its lower level sets are evenly convex containing
0n) and f (0n) = inf{f (x) : x ∈ R

n\{0n}} if and only if f = f HH . On the other
hand, the R-quasiconjugate of f is defined by f R(y) = − inf {f (x) : 〈y, x〉 ≥ −1}
for all y ∈ R

n. In this case, the fundamental theorem says that a function f

is R-evenly quasiconvex if and only if f = f RR . These concepts have been
applied by Suzuki and Kuroiwa [171, 172, 174, 175] to provide duality theorems
and set containment characterizations for quasiconvex programming. Furthermore,
the paper [179] provides an application to a decentralization by prices for the von
Neumann equilibrium problem.

Rubinov and Dutta [154] obtained a Hadamard type inequality for non-negative
evenly quasiconvex functions that attain their minimum. The asymptotically sharp
constant associated with the inequality over the unit square in the two-dimensional
plane is explicitly calculated. An extension of this Hadamard type inequality to non-
negative quasiconvex functions was obtained a year later by Hadjisavvas [84].

Quasiconvex analysis has always been deeply related with economic theory.
Thus, the seminal work of de Finetti [57] was motivated by problems in Paretian
ordinal utility and, later, research in quasiconvex duality was motivated by the
dual description of preferences and technologies in microeconomics (see, e.g.,
[38]). The application of duality theory to problems arising in economics, provides
dual problems which usually have nice interpretations that give new perspectives
for analyzing the associated primal problems. That is the case of the application
to consumer theory described in Sect. 3.5. Proposition 3.13, which establishes a
symmetric duality between direct and indirect utility functions under the weakest
possible assumptions, is [124, Th. 6.16], although the original result appeared in
[122, Th. 2.2] in the more general framework of locally convex topological vector
spaces.

Other similar duality schemes, involving suitable extensions of the concept of e-
convex set, enjoy a number of applications in finance and economics, particularly, in
the context of decision theory [29] and risk measures [30, 60]. For instance, Frittelli
and Maggis [60, 115] introduced a generalization of the concept of e-convex set in
the conditional framework, providing also the corresponding generalized version of
the bipolar theorem. Then, they applied this notion to obtain the dual representation
of conditionally evenly quasiconvex maps, which turns out to be a key tool in the
study of quasiconvex dynamic risk measures.



Chapter 4
Evenly Convex Functions

In this chapter we introduce evenly convex functions as those whose epigraphs
are evenly convex sets, and develop a duality theory for nonlinear programming
problems involving evenly convex functions, that is, evenly convex optimization
problems. In Sect. 4.1 we present the main properties of this class of convex
functions that contains the important subclass of lower semicontinuous convex
functions, whose relevance in convex analysis comes from the fact that the Fenchel
conjugacy is an involution on most of them. More precisely, any proper lower
semicontinuous convex function coincides with its biconjugate. In Sects. 4.2 and
4.3 we introduce the evenly convex hull of a function and appropriate conjugation
schemes for evenly convex functions, respectively. Finally, in Sect. 4.4, we use the
perturbational approach for developing the so-called c-conjugate duality theory,
providing closedness-type regularity conditions. These conditions will be expressed
in terms of the even convexity of the involved functions, for both strong and stable
strong duality for convex optimization problems.

4.1 Evenly Convex Functions

In the same way that convex functions are defined by the convexity of their
epigraphs, we will say that an extended real-valued function f : Rn → R is evenly
convex (in brief, e-convex) provided that its epigraph epi f is an e-convex set in
R

n+1. Obviously, any e-convex function is convex and, since any closed convex
set is e-convex, lsc convex functions constitute a subclass of e-convex functions. In
particular, any finite-valued convex function is e-convex.

The next two examples show that not every convex function is e-convex and not
every e-convex function is a lower semicontinuous convex function, respectively.

Example 4.1 (Example 3.2 Revisited) The epigraph of the function f defined in
Example 3.2, which is represented in Fig. 4.1, is obviously a convex set, but it is
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Fig. 4.1 epi f is not
e-convex

not e-convex. In fact, considering x = (1, 2) ∈ R
2\ (epi f ), we have that, for any

hyperplane H containing x, H ∩ (epi f ) �= ∅.

Example 4.2 One can easily check that the epigraph, represented in Fig. 4.2, of the
function f : R→ R defined by

f (x) =
{

x2, if x > −1,

+∞, if x ≤ −1,

is e-convex, but it is not closed. Then, f is an e-convex function which is not lower
semicontinuous.

Recall that closedness of lower level sets characterizes the class of lower
semicontinuous functions. While lower level sets are convex for convex functions,
a function whose lower level sets are all convex needs not be convex (see, e.g., the
function f in Example 3.7). Analogously, lower level sets of e-convex functions
are all e-convex, that is, every e-convex function is e-quasiconvex as well. This fact
follows from the identity

[f ≤ r] × {r} = (epi f ) ∩ (Rn × {r}), ∀r ∈ R,

and the properties of e-convex sets studied in Chap. 1 (see Proposition 1.2(iii) and
(v)).
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Fig. 4.2 f is an e-convex function but it is not lower semicontinuous

Having these facts in mind, the following diagram shows the relations between
different types of convex and quasiconvex functions.

Convex ⇒ Quasiconvex
convex epigraph convex lower level sets

⇑⇑

Evenly convex ⇒ Evenly quasiconvex
evenly convex epigraph evenly convex lower level sets

⇑⇑

Lsc convex ⇒ Lsc quasiconvex
closed and convex epigraph closed and convex lower level sets

Diagram 4.1 Evenly convex and related functions
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Fig. 4.3 The graph of f

It is well-known that the effective domain of a convex function is a convex set,
since it is the projection on R

n of the epigraph. However, the projection of an e-
convex set is not, in general, e-convex. Then, the effective domain of an e-convex
function is convex but not necessarily e-convex, as the following example shows
Example 4.3.

Example 4.3 Let f : R2 → R be the function defined by

f (x) =

⎧
⎪⎨

⎪⎩

x1 ln x1
x2

, if x ∈ E,

0, if x = 02,

+∞, otherwise,

where E = {
x ∈ R

2 : 0 < x1 ≤ 1, 0 < x2 ≤ x1
}
, whose graph is represented in

Fig. 4.3. Observe that dom f = E ∪ {02} (represented in Fig. 4.4) is not e-convex,
although, as we shall see, f is a lower semicontinuous convex function and,
therefore, it is e-convex.

Consider the function g : R2++ → R defined by g (x) = x1 ln x1
x2

, where R2++ =
(]0,+∞[)2. Since g is a twice continuously differentiable real-valued function on
the open convex set R2++ and its Hessian matrix is positive semi-definite for every
x ∈ R

2++, according to [148, Th. 4.5], we have that g is a convex function on R
2++.

On the other hand, both functions f and g coincide on the convex subset E of R2++
and, hence, f is convex on E. The convexity of f on dom f = E ∪ {02} can be
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Fig. 4.4 The domain of f is
not e-convex

easily proved showing that f (λx + (1− λ) y) ≤ λf (x)+ (1− λ) f (y) for x ∈ E,
y = 02 and 0 < λ < 1. So, f is a convex function.

Since every convex function is always lsc except perhaps at relative boundary
points of its domain, we only have to prove that f is lsc on rbd (dom f ).

Since g is a finite-valued convex function on R
2++, g is lsc at any x ∈ R

2++, i.e.,
for all λ < g (x), there exists a neighborhood of x, Vx , in R

2++ such that λ < g (x)

for all x ∈ Vx . Then, given x ∈ rbd (dom f ) ∩ E ⊂ R
2++, we have that, for all

λ < f (x) = g (x), there exists a neighborhood of x , Vx , in R
2++ ⊂ R

2 such
that λ < g (x) = f (x) for all x ∈ Vx ∩ E. Obviously, if x ∈ Vx ∩ (R2\E) ⊂
R

2\ (dom f ), then f (x) = +∞ > λ, so that f is lsc at x.
On the other hand, lower semicontinuity of f at 02 is a direct consequence of

f (x) ≥ 0 = f (02) for all x ∈ R
2.

Finally, for x ∈ ]0, 1]× {0}, we have f (x) = +∞ > λ for all λ ∈ R. Moreover,
since

lim
x→x
x∈E

f (x) = lim
x→x
x∈E

g (x) = +∞,

we have that, given any λ ∈ R, there exists a neighborhood of x, Vx , inR2\ {02} such
that f (x) > λ, for all x ∈ Vx ∩E, and f (x) = +∞ > λ, for all x ∈ Vx ∩ (R2\E).
Then, f is also lsc on ]0, 1]× {0}.

The next result states conditions ensuring the even convexity of the effective
domain of an e-convex function. Recall that a function is said to be improper if it
is not proper (i.e., if it is identically +∞ or takes the value −∞ at some point).
Clearly, the improper e-convex functions identically either +∞ or −∞ have e-
convex effective domains. Precise references to all missing proofs in this chapter
are appropriately given in Sect. 4.5.
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Theorem 4.1 (On the Effective Domain of an e-Convex Function) Let f :
R

n → R.

(i) If f is an improper function such that f (x) = −∞ for some x ∈ R
n, then f is

e-convex if and only if dom f is e-convex and f (x) = −∞ for all x ∈ dom f .
(ii) If f is a proper e-convex function bounded from above on dom f , then dom f

is e-convex.

So, the even convexity of the effective domain is a necessary condition for the
even convexity of proper functions which are bounded from above. However, this
is not a sufficient condition, as illustrates the function considered in Example 4.1,
which is bounded on dom f = ]−1, 1] and dom f is e-convex, but f is not e-
convex.

As stated in Diagram 4.1, the class of e-convex functions is intermediate
between the class of lower semicontinuous convex functions and the class of convex
functions (that are always lower semicontinuous except perhaps at relative boundary
points of their domains). Next we provide a characterization of proper e-convex
functions in terms of lower semicontinuity.

Theorem 4.2 (Characterization of e-Convex Functions I) Let f : R
n → R

be a proper function. Then, f is e-convex if and only if f is convex and lower
semicontinuous on eco (dom f ).

Corollary 4.1 Let f : Rn → R be an e-convex function whose effective domain is
closed. Then, f is a lower semicontinuous convex function.

It is well-known that any convex function f is lsc/usc/continuous relative to
rint dom f (see [148, Th. 10.1]). Moreover, if f is a proper e-convex function,
then f is lower semicontinuous on the greater set eco dom f . When we ask
whether any proper convex function f can be assumed upper semicontinuous on
rbd (dom f )∩ dom f relative to dom f , the answer is negative in general (see [148,
p. 83]). However, it is easy to prove that this property holds for univariate functions.
Consequently, we consider the concept of upper semicontinuity along lines (as in
[114]).

Given a nonempty convex set A ⊂ R
n, a function f : R

n → R is said to be
upper (resp. lower) semicontinuous along lines on A ⊂ R

n if, for every x, y ∈ A,
the function fx,y : [0, 1] → R, given by

fx,y(t) := f (x + t (y − x)),

is upper semicontinuous (resp. lower semicontinuous) at t relative to [0, 1], for any
t ∈ [0, 1]. Moreover, f is said to be continuous along lines on A if f is upper and
lower semicontinuous along lines on A.

For any proper convex function f , dom f is a nonempty convex set and, for
every x, y ∈ dom f , fx,y is a univariate convex function and, therefore, it is upper
semicontinuous relative to [0, 1]. As a consequence, any proper convex function is
upper semicontinuous along lines on its domain. Furthermore, it is easy to prove that
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any proper convex function f that is lower semicontinuous on a nonempty convex
set A ⊂ dom f , is also lower semicontinuous along lines on A.

Proposition 4.1 (Necessary Conditions for Even Convexity) If f is a proper e-
convex function, then it is continuous along lines on its domain, and its image set
Im f := {f (x) : x ∈ dom f } is convex.

It is well-known that convexity and lower semicontinuity are preserved by the
most important functional operations. The following theorem shows that the same
happens with even convexity.

Theorem 4.3 (Operations with e-Convex Functions) Let f, g, fi : R
n → R,

i ∈ I .

(i) If f is an e-convex function and α > 0, then αf is e-convex.
(ii) If {fi}i∈I is a family of e-convex functions, then supi∈I fi is an e-convex

function.
(iii) If f and g are two proper e-convex functions, then f + g is e-convex.
(iv) If f and g are two e-convex functions and f is improper, then f +g is e-convex

if and only if dom(f + g) is an e-convex set.
(v) If f and g are two e-convex functions, where f is improper and g is proper

with e-convex domain, then f + g is e-convex.
(vi) If f and g are two e-convex functions, where f is improper and g is proper

and bounded on its domain, then f + g is e-convex.
(vii) If f and g are two improper e-convex functions, then f + g is e-convex.

In general, (iii) is not true whenever one of the functions is not proper.

Example 4.4 Let f, g : R2 → R, where f is the proper e-convex function defined
in Example 4.3 and g is the improper e-convex function defined by

g(x) =
{−∞, if x ∈ [0, 1]2,
+∞, otherwise.

Obviously, dom(f +g) = (dom f )∩ (dom g) = dom f , that is not an e-convex set,
and, in particular,

(f + g)(x) =
{−∞, if x ∈ dom f,

+∞, otherwise,

so, by Theorem 4.1, f + g is not an e-convex function.
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4.2 Evenly Convex Hull

Given a function f , its evenly convex hull, abbreviated as e-convex hull and denoted
by eco f , is defined to be the largest e-convex function minorizing f . Obviously,
thanks to Theorem 4.3(ii), eco f coincides with the pointwise supremum of all the
e-convex functions minorizing f . Moreover, a function f is said to be evenly convex
at a point x provided that f (x) = (eco f )(x).

With each subset A ⊂ R
n+1, we associate the so-call lower-bound function ϕA :

R
n → R (cf. [90]) defined by

ϕA(x) := inf{t ∈ R : (x, t) ∈ A}.

If A = ∅ then ϕA(x) = +∞ for all x ∈ R
n. A set A ⊂ R

n+1 is said to be ascending
if either A = ∅ or there exists (x, t) ∈ A such that (x, t) ∈ A for all t ≥ t . Thanks
to Proposition 1.1(v), which can be equivalently written as follows: “if there exist
x ∈ C ⊂ R

n and y �= 0n such that {x + λy : λ ≥ 0} ⊂ C, then d ∈ 0+(eco C)”,
one easily gets that for a nonempty e-convex set A ⊂ R

n+1, A is ascending if and
only if (0n, 1) ∈ 0+A. This fact allows to get the following results, where the strict
epigraph of a function f is denoted by

epis f :=
{
(x, λ) ∈ R

n+1 : x ∈ dom f, f (x) < λ
}

.

Theorem 4.4 (Sufficient Conditions for Even Convexity) Let A ⊂ R
n+1 be an

e-convex set and f : Rn → R. Then

(i) If A is ascending, then ϕA is an e-convex function.
(ii) If A is such that epis f ⊂ A ⊂ epi f , then f is an e-convex function. In

particular, any function whose strict epigraph is e-convex, is e-convex as well.

Concerning statement (i) in the above theorem, it is worth saying that the
assumption that A is ascending is not superfluous in order to guarantee the even
convexity of ϕA (see the e-convex set in [101, Ex. 3.1]). This makes a difference
with a well-known result ensuring that if A ⊂ R

n × R is a closed convex set, then
ϕA is a lower semicontinuous convex function (see [148, Th. 5.3]), no matter A is
ascending or not.

Regarding statement (ii), whose proof derives from (i) , not every e-convex
function has an e-convex strict epigraph, as we can see in the following example.

Example 4.5 Let f : R→ R be the function defined by

f (x) =
{−√1− x2, if− 1 ≤ x ≤ 1,

+∞, otherwise.

In Fig. 4.5a, we can see that the epigraph of f is e-convex (so f is an e-convex
function), whereas Fig. 4.5b shows that its strict epigraph is not.
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a b

Fig. 4.5 (a) The epigraph of f ; (b) The strict epigraph of f

Theorem 4.5 Let A ⊂ R
n+1 and f : Rn → R.

(i) If eco A is ascending, then

eco ϕA = ϕeco A.

(ii) If A is such that epis f ⊂ A ⊂ epi f , then

eco f = ϕeco A.

Consequently,

(eco f )(x) = inf {a ∈ R : (x, a) ∈ eco epi f } , ∀x ∈ R
n.

Next we summarize some basic properties regarding the domain and the epigraph
of the e-convex hull.

Theorem 4.6 (Properties of the e-Convex Hull) Let f : Rn → R be a convex
function. Then:

(i) cl f ≤ eco f ≤ f .
(ii) epis (eco f ) ⊂ eco epi f ⊂ epi(eco f ).
(iii) dom f ⊂ dom(eco f ) ⊂ dom (cl f ) ⊂ cl dom f .
(iv) dom(eco f ) ⊂ eco dom f ⊂ cl dom f .
(v) rint dom(eco f ) = rint dom f .

The inequalities in statement (i) and the inclusions in statements (ii), (iii) and
(iv) can be strict, as the following example shows.
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Example 4.6 (Example 3.2 Revisited) Consider the function f : R → R defined
in Example 3.2. Taking into account the epigraph of f , represented in Fig. 4.1, it is
easy to conclude that

(eco f ) (x) =
{

x2, if − 1 < x ≤ 1,

+∞, otherwise,

and

(cl f ) (x) =
{

x2, if − 1 ≤ x ≤ 1,

+∞, otherwise.

Thus, cl f � eco f � f and

dom f = dom (eco f ) = eco (dom f ) = ]−1, 1] � [−1, 1] = dom (cl f ) = cl dom f.

On the other hand, in Fig. 4.6, we can see that

epis (eco f ) � eco epi f � epi(eco f ).

The following result characterizes the even convexity of a function at a point.
Corresponding characterizations have been given in Chap. 3 for even quasiconvexity
of a function at a point by using lower level sets instead of epigraphs.

Theorem 4.7 (Characterization of the Even Convexity at a Point) Let f :
R

n → R and x ∈ R
n. Then:

(i) f is e-convex at x if and only if (x, a) /∈ eco epi f for every a < f (x).
(ii) f is e-convex at x if and only if, for any a < f (x), there exists q ∈ R

n+1 such
that 〈q, (x, λ)− (x, a)〉 > 0, for all (x, λ) ∈ epi f .

(iii) f is e-convex if and only if it is e-convex at every x ∈ R
n.

Fig. 4.6 The inclusions in Theorem 4.6(ii) are strict
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The even convexity of a function can also be characterized in most cases through
the set Ef of all the e-affine minorants of f , that is,

Ef :=
{
a : Rn → R : a is e-affine and a ≤ f

}
.

Here, a function a : Rn → R is said to be e-affine if there exist c, z ∈ R
n and

α, t ∈ R such that, for all x ∈ R
n,

a(x) =
{ 〈x, c〉 − α, if 〈x, z〉 < t,

+∞, if 〈x, z〉 ≥ t,

i.e., a is the restriction of an ordinary affine function to some open half-space, and it
is identically+∞ on its complement. For instance, the function a : R→ R defined
by

a(x) =
{ 3x−6

5 , if x > −6
5 ,

+∞, if x ≤ −6
5 ,

is an e-affine minorant of the function f : R → R in Example 4.5, that is, a ∈ Ef

(see Fig. 4.7).

Theorem 4.8 (Characterization of e-Convex Functions II) Let f be a proper
function. Then, f is e-convex if and only if

f = supEf . (4.1)

The representation of e-convex functions as suprema of their e-affine minorants
in (4.1) also applies to improper e-convex functions identically either −∞ or +∞,
by considering Ef the empty set and the set of all e-affine functions, respectively.

Fig. 4.7 An e-affine
minorant of f

MM
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However, such a representation does not apply to those improper e-convex functions
f such that f (x) = −∞ for some and x ∈ R

n and dom f �= R
n, as in this case

Ef = ∅.

Corollary 4.2 Let f : Rn → R.

(i) If f has a proper e-convex minorant, then

eco f = supEf .

(ii) If f is a proper e-convex function, then

eco dom f =
⋂

a∈Ef

dom a.

4.3 Conjugacy and Subdifferentiability

In this section we shall adopt the generalized conjugation theory of Moreau
described in Sect. 3.3 in order to provide up to three different conjugation schemes
which are appropriate for e-convex functions, in the sense that a (proper) function
is e-convex if and only if it coincides with its biconjugate. For this purpose, we
shall recall that every lsc convex function f admitting a continuous affine minorant
coincides with its Fenchel biconjugate f ∗∗ (see, e.g., [41, Prop. 3.1]).

4.3.1 First Conjugacy Scheme

Let us consider the space W := R
n × R

n × R and the coupling function
c : Rn ×W → R ∪ {+∞} defined by

c(x, (x∗, u∗, α)) :=
{ 〈x∗, x〉 , if 〈u∗, x〉 < α,

+∞, if 〈u∗, x〉 ≥ α.
(4.2)

Then, the c-conjugate of a function f : Rn → R is the function f c : W → R given,
for every (x∗, u∗, α) ∈ W , by

f c(x∗, u∗, α) = sup
x∈Rn

{
c(x, (x∗, u∗, α)) − f (x)

}

=
{

f ∗(x∗), if dom f ⊂ [u∗ < α],
+∞, otherwise.
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From this expression, one easily gets that

dom f c = dom f ∗ × {(u∗, α) ∈ R
n ×R : dom f ⊂ [u∗ < α]} .

Similarly, the c′-conjugate of a function g : W → R is the function gc′ : Rn → R

given, for every x ∈ R
n, by

gc′(x) = sup
(x∗,u∗,α)∈W

{
c(x, (x∗, u∗, α)) − g(x∗, u∗, α)

}

=
{

g∗(x, 0n, 0), if dom g ⊂ [(0n, x,−1) < 0],
+∞, otherwise.

For this particular coupling function in (4.2), that is, for this particular conjuga-
tion scheme, we have that the class of c-elementary functions is precisely the family
of e-affine functions, and then, by Theorem 4.8, the class of Γc-convex functions
coincides with the class of e-convex functions from R

n to R∪{+∞} along with the
function identically −∞. We will say that a function g : W → R is e′-convex if it
is Γc′ -convex, and the e′-convex hull of g : W → R will be denoted by e′ co g.

The most remarkable properties of this c-conjugation scheme are summarized in
the following theorem.

Theorem 4.9 (Properties of c-Conjugation) Let f : Rn → R, g : W → R and
c : Rn ×W → R ∪ {+∞} be as in (4.2). Then,

(i) f c is e′-convex, and gc′ is e-convex.

(ii) f cc′ =
{

f ∗∗ + δeco dom f , if dom f ∗ �= ∅,
−∞, otherwise.

(iii) If f is minorized by a proper e-convex function, then eco f = f cc′ .
(iv) If f does not take the value−∞, then f is e-convex if and only if f = f cc′ .
(v) e′ co g = gc′c.
(vi) g is e′-convex if and only if g = gc′c.

Consequently, f : R
n → R ∪ {+∞} is e-convex at x ∈ R

n if and only if
f (x) = f cc′(x), and g : W → R is e′-convex at (x∗, u∗, α) ∈ W if and only if
g(x∗, u∗, α) = gc′c(x∗, u∗, α).

Statement (iv) also holds whenever f is the function identically −∞, but it fails
if f is an arbitrary function such that ∅ �= dom f �= R

n and f (x) = −∞ for some
x ∈ R

n, as in that case f cc′ is identically−∞. Furthermore, if f : Rn → R∪{+∞}
does not admit any proper e-convex minorant, then the relation eco f = f cc′ may
be false, as it is shown by the following example, which involves the so-called valley
function υC of a set C ⊂ R

n, defined as υC (x) := −∞ if x ∈ C and υC (x) := +∞
if x /∈ C.
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Example 4.7 Consider the function f defined on the real line given by

f (x) =

⎧
⎪⎨

⎪⎩

0, if x = 0,

− 1
|x| , if 0 < |x| < 1,

+∞, if |x| ≥ 1.

Its effective domain is ]−1, 1[, which is an e-convex set. We have f ∗ ≡ +∞ and,
by Theorem 4.9(ii), f cc′ ≡ −∞. However, it is easy to see that eco f = v]−1,1[.
Hence, in this case the identity eco f = f cc′ fails because of the fact that f does
not have a proper e-convex minorant.

Next example illustrates how this conjugation scheme works with a well-known
function.

Example 4.8 By applying the conjugation scheme developed in this subsection to
the indicator function δC of C ⊂ R

n, for every (x∗, u∗, α) ∈ W one has

δc
C(x∗, u∗, α) =

{
σC(x∗), if C ⊂ [u∗ < α],
+∞, otherwise.

The function δc
C : W → R can be regarded as a kind of support function of C. The

second conjugate is

δcc′
C (x) =

{
δcl co C(x), if x ∈ eco C,

+∞, if x /∈ eco C.

Consequently, eco δC = δcc′
C = δeco C .

4.3.2 Second Conjugacy Scheme

Next we apply the e-quasiconvex conjugation scheme developed in Sect. 3.3 in order
to get another conjugation scheme for e-convex functions. More precisely, we will
consider a slightly modification of the coupling function in (3.7), in order to get
a conjugation scheme for e-convex functions in R

n by means of the conjugation
scheme for e-quasiconvex functions in R

n+1. Thus, consider the coupling function
c : Rn+1 × (Rn+1 × R) → R defined by

c
(
(x, t) ,

(
x∗, t∗, α

)) :=
{

0, if 〈x∗, x〉 + t t∗ ≥ α,

−∞, if 〈x∗, x〉 + t t∗ < α.
(4.3)
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With each function f : Rn → R, we associate the function f̃ : Rn+1 → R defined,
for every (x, t) ∈ R

n ×R, by

f̃ (x, t) := f (x)+ t .

Observe that dom f̃ = dom f × R. If we assume that dom f �= ∅ and consider the
coupling function c in (4.3), then the c-conjugate of f̃ is

f̃ c
(
x∗, t∗, r

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f ∗
(

x∗
t∗
)
− r

t∗ , if t∗ > 0,

+∞, if t∗ < 0,

+∞, if t∗ = 0 and dom f �⊂ [x∗ < r
]
,

−∞, if t∗ = 0 and dom f ⊂ [x∗ < r
]
,

for every (x∗, t∗, r) ∈ R
n × R × R. From Sect. 3.3, f̃ cc′ , the biconjugate of f̃ ,

coincides with the e-quasiconvex hull of f̃ . This fact, together with the following
equivalences,

f is e-convex ⇐⇒ f̃ is e-convex ⇐⇒ f̃ is e-quasiconvex , (4.4)

allow to obtain expressions for the e-convex hulls of f̃ and f .

Theorem 4.10 (Properties of c-Conjugation) Let c : Rn+1×(Rn+1×R) → R be
as in (4.3). For any f : Rn → R and any (x, t) ∈ R

n ×R, the following statements
hold:

(i) (eco f̃ ) (x, t) = (eco f ) (x)+ t .

(ii) f̃ cc′ (x, t) = f ∗∗ (x)+ δeco dom f (x)+ t .

(iii) (eco f̃ ) (x, t) = f ∗∗ (x)+ δeco domf (x)+ t .

(iv) eco f = f ∗∗ + δeco dom f .

The conjugation method described in this subsection does not apply directly on
a given function f on R

n, but on a certain extension f̃ defined on R
n+1. The results

obtained in Theorem 4.10 follow from the relationship between f and f̃ in (4.4),
and the conjugation method for e-quasiconvex functions. Among the given results,
we observe that the identity eco f = f ∗∗+δeco domf is guaranteed for any extended
real-valued function f . However, with the method described in Sect. 4.3.1, such
equality can be just asserted for functions having an e-convex minorant (besides the
function identically −∞).
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4.3.3 Third Conjugacy Scheme

Now, consider the coupling function c : Rn × (Rn × R× {0, 1}) → R, defined by

c
(
x,
(
x∗, r, i

)) :=
{ 〈x, x∗〉 , if i = 0,

υ[x∗<r] (x) , if i = 1.
(4.5)

In this case, the c-conjugate of f : Rn → R is the function f c : Rn×R×{0, 1} → R

given, for every (x∗, r) ∈ R
n ×R by

f c
(
x∗, r, i

) =
{

f ∗ (x∗) , if i = 0,

υ{(x∗,r)∈Rn×R : domf⊂[x∗<r]}, if i = 1.

Observe that the c-elementary functions are, on the one hand, the continuous affine
functions on R

n, and, on the other hand, the valley functions of the open halfspaces
of Rn, plus the constant functions+∞ and −∞.

The main properties of this conjugation scheme are as follows.

Theorem 4.11 (Properties of c-Conjugation) Let c : Rn × (Rn × R× {0, 1}) →
R be as in (4.5). For any function f : Rn → R, the following statements hold:

(i) f cc′ = eco f .
(ii) f is e-convex if and only if f cc′ = f .
(iii) f cc′ = max{f ∗∗, υeco dom f } = f ∗∗ + δeco dom f .
(iv) eco f coincides with the supremum of all the continuous affine functions and

all the open halfspaces valley functions that are minorants of f .

From the above theorem we get that eco f = f ∗∗ + δeco domf for any extended
real-valued function f . This identity was also obtained in Sect. 4.3.2 by using a
different approach. It required a transformation of the function f , which is not
needed here. Furthermore, we observe that the identity eco f = f cc′ holds for any
function f , while in Sect. 4.3.1 such equality was just asserted for functions having
an e-convex minorant (besides the function identically−∞). Finally, Theorem 4.11
points out that eco f = max{f ∗∗, υeco dom f }, which is another representation of
the e-convex hull of f (and of its biconjugate f cc′ ) that was not obtained with
the two approaches in Sects. 4.3.1 and 4.3.2. Such representation is related with
the following geometric interpretation: the e-convex hull of a function f is the
supremum of all the continuous affine minorants and all the open halfspaces valley
functions that are minorants of f .
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4.3.4 Subdifferentials

As pointed out in Sect. 3.3, each coupling functional c defining a conjugacy has an
associated c-subdifferential ∂c. Thus, if we consider the first coupling function c in
this section, the one in (4.2), the following result provides the link between the c-
subdifferential ∂c and the Moreau–Rockafellar subdifferential ∂ . We would like to
clarify that this subsection is not related to Clark subdifferentials at all.

Proposition 4.2 Let f : Rn → R and x ∈ f−1(R). Then,

∂cf (x) = ∂f (x)× {(u∗, α) ∈ R
n ×R : dom f ⊂ [u∗ < α]}.

Example 4.9 Consider the function f in Example 4.5 and x = 0. Then,

∂cf (0) = {0} × {(a, b) ∈ R
2 : ax < b is a consequence of {−x ≤ 1, x ≤ 1}}.

More precisely, the latter set is characterized in Theorem 2.3 as

{0} × proj{1,2}
3

⎛

⎝cone

⎧
⎨

⎩

⎛

⎝
−1
1
0

⎞

⎠ ,

⎛

⎝
1
1
0

⎞

⎠ ,

⎛

⎝
0
1
−1

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠

⎫
⎬

⎭
∩
(
R

2 × (−R++)

)
⎞

⎠

= {0} × int epi |·| ,

where |·| : R→ R is the absolute value function (see Fig. 4.8).

As a consequence of Proposition 4.2, f is c-subdifferentiable at x if and only
if it is subdifferentiable at this point. This motivates our focus on the (Moreau-
Rockafellar) subdifferential in the next results. Firstly, we provide a characterization
of the ε-subdifferentiability of a function at a given point in terms of the even
convexity of its strict epigraph.

Fig. 4.8 The
c-subdifferential of f at 0
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Proposition 4.3 (Non-emptiness of the ε-Subdifferential) Let ε ≥ 0, f : Rn →
R and x ∈ f−1(R). Then, the following statements are equivalent:

(i) ∂εf (x) �= ∅.
(ii) ({x} × R) ∩ eco(epis f ) ⊂ ({x} ×R) ∩ epis(f − ε).
(iii) (x, f (x)− ε) /∈ eco(epis f ).

The following notion is inspired by the concept of closedness regarding to a set
(see [20, p. 56]): given two sets A and B, one says that A is e-convex regarding to
B provided that B ∩ eco A = B ∩ A.

Corollary 4.3 Let f : Rn → R and x ∈ f−1(R). Then, the following statements
are equivalent:

(i) ∂f (x) �= ∅.
(ii) epis f is e-convex regarding to {x} ×R.
(iii) (x, f (x)) /∈ eco

(
epis f

)
.

Regarding the function in Example 4.5 and x = −1, we have

({−1} × R) ∩ epis f = {−1} ×R++,

while ({−1} × R)∩ eco epis f = {−1}×R+ (see, Fig. 4.9). Since (ii) fails, (i) and
(iii) also fail. In the case x = 0, (i), (ii) and (iii) hold.

In particular, if the strict epigraph of a function f is e-convex, then f is
subdifferentiable on f−1(R).

Proposition 4.4 (Necessary Condition for Subdifferentiability) Assume that
f : Rn → R is subdifferentiable on f−1(R) and either f is e-convex or dom f is
e-convex. Then, epis f is e-convex.

a b

Fig. 4.9 (a) ({−1} × R) ∩ epis f = {−1} × R++; (b) ({−1} × R) ∩ eco
(
epis f

) = {−1} × R+
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We conclude this section by providing two additional characterizations of the
even convexity at a given point (cf. Ths. 4.5 and 4.7).

Theorem 4.12 (Characterization of the Even Convexity at a Point) Consider
f : Rn → R, x ∈ f−1(R) and A ⊂ R

n × R such that epis f ⊂ A ⊂ epi f . Then,
the following statements are equivalent:

(i) f (x) = (eco f )(x).
(ii) For all ε > 0, ∂εf (x) �= ∅.
(iii) For all ε > 0, (x, f (x)− ε) /∈ eco A.

There exits also an ε-subdifferentiability notion associated with the c-
conjugation pattern described in Sect. 4.3.1. For f : R

n → R and ε ≥ 0, it
is said that (x∗, u∗, α) ∈ W is an ε − c-subgradient of f at x0 ∈ f−1(R), if
〈u∗, x0〉 < α and

f (x)− f (x0) ≥ c
(
x,
(
x∗, u∗, α

))− c
(
x0,
(
x∗, u∗, α

))− ε,

for all x ∈ R
n. The set of all the ε − c-subgradients of f at x0 is denoted by

∂c,εf (x0), and it is called the ε − c-subdifferential of f at x0. Clearly, for ε = 0 we
obtain the c-subdifferential of f at x0.

The most important properties of ε − c-subdifferentiability, whose counterparts
for ε-subdifferentiability and Fenchel conjugation are very well known, are summa-
rized in the following theorem. Previously, we introduce a set of e-affine functions
associated to a pair of functions f, g : R

n → R, due to the lack of additivity
property in the set of e-affine functions. This new set, denoted by Ẽf+g is defined in
the following way: a ∈ Ẽf+g if and only if there exist a1 ∈ Ef , a2 ∈ Eg such that, if

a1 (x) =
{
〈x, y1〉 − β1, if 〈x, z1〉 < α1,

+∞, otherwise,
and a2 (x) =

{
〈x, y2〉 − β2, if 〈x, z2〉 < α2,

+∞, otherwise,

then

a (x) =
{ 〈x, y1 + y2〉 − (β1 + β2) ,

+∞,

if 〈x, z1 + z2〉 < α1 + α2,

otherwise.
(4.6)

Clearly Ẽf+g ⊂ Ef+g .

Theorem 4.13 (Properties of c-Subdifferentiability) Let f, g : R
n → R be

proper functions, such that dom f ∩ dom g �= ∅. Then,

(i) For x0 ∈ dom f ,

epi f c =
⋃

ε≥0

{(
x∗, u∗, α,

〈
x∗, x0

〉+ ε − f (x0)
) : (x∗, u∗, α) ∈ ∂c,εf (x0)

}
.
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(ii) If f + g = sup{a : a ∈ Ẽf+g}, epi f c + epi gc is e′-convex if and only if

∂c,ε (f + g) (x) =
⋃

ε1+ε2=ε

∂c,ε1f (x)+ ∂c,ε2g (x) .

for all ε ≥ 0 and x ∈ dom f ∩ dom g.

(iii) If f + g = sup{a : a ∈ Ẽf+g} and epi f c + epi gc is e′-convex, then

∂c (f + g) (x) = ∂cf (x)+ ∂cg (x) .

for all x ∈ dom f ∩ dom g.

4.4 Duality in Evenly Convex Optimization

4.4.1 General Regularity Conditions

An important part of mathematical programming from both theoretical and com-
putational points of view is duality theory. We consider an arbitrary unconstrained
optimization problem

(GP) Min
x∈Rn

F (x), (4.7)

where F : Rn → R is a proper function, and we apply the perturbational approach
to duality as in Sect. 3.4. By taking a perturbation function Φ : Rn×R

m → R such
that Φ(x, 0m) = F(x) for all x ∈ R

n, Rm being the space of perturbation variables,
the so-called conjugate dual problem of (GP) can be formulated as follows:

(GD) Max
y∗∈Rm

−Φ∗(0n, y
∗),

where Φ∗ : Rn ×R
m → R is the Fenchel conjugate of Φ, that is,

Φ∗ (x∗, y∗
) = sup

(x,y)∈Rn×Rm

{〈
x, x∗

〉+ 〈y, y∗
〉−Φ (x, y)

}
.

Problem (GD) can also be expressed by means of the infimum value function
p : Rm → R,

p (y) := inf
x∈Rn

Φ (x, y) . (4.8)
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In fact, since p (0m) = infx∈Rn F (x), and p∗ (y∗) = Φ∗(0n, y
∗), one has

(GD) Max
y∗∈Rm

p∗
(
y∗
)
.

From the so-called Fenchel–Young inequality

p∗
(
y∗
)+ p (y) ≥ 〈y, y∗

〉
,∀y, y∗ ∈ R

m,

it follows that −p∗ (y∗) ≤ p (0m) and, denoting by v(GP) and v(GD) the optimal
values of the primal and the dual problems, respectively, we have v(GD) ≤ v(GP),
situation known as weak duality. The difference between the optimal values of
the primal and the dual problems is called duality gap, and it is said that there
exists strong duality when there is no duality gap and the dual problem is solvable.
Sufficient conditions for strong duality are called regularity conditions, and they
are classified, mainly, in two different groups: interiority-type and closedness-
type conditions, being the last ones used recently as a viable alternative to
their interiority-type counterparts. This well-known framework will be named the
classical setting throughout this section. In this classical framework, strong duality
is characterized through the subdifferential of the infimum value function at 0m;
[191, Th. 2.6.1] states that, if the perturbation function is convex, ∂p (0m) �= ∅ if
and only if strong duality holds.

However, from the point of view of applicability, it is also necessary to find
out conditions guaranteeing strong duality even when F is perturbed with linear
functions, situation called stable strong duality.

Since e-convex functions can be viewed as a generalization of convex lower
semicontinuous functions and, moreover, c-conjugation (with c the coupling func-
tion in (4.2)) is suitable for this kind of functions, it is natural trying the extension
of well-known results for convex duality in the classical setting to that more
general framework. In this moment we introduce the notion of e′-convexity, which
appeared firstly in [46], for the calculus of the counterpart of the classical Moreau–
Rockafellar formula (see, e.g., [24]). The idea consisted in creating a kind of hull for
the convex set epi f c+epi gc, for f, g : Rn → R, trying to link it with epi (f + g)c.
For this problem, lower semicontinuous and evenly convex hulls do not properly
work. Recall that epi f c + epi gc and epi (f + g)c are both contained in W × R,
where W = R

n × R
n ×R.

A subset D ⊂ W ×R is said to be e′-convex if there exists an e′-convex function
h : W → R such that D = epi h. Clearly, the intersection of an arbitrary family
of e′-convex sets is an e′-convex set, and the e′-convex hull of a set D ⊂ W × R is
defined as the smallest e′-convex set containing D, which will be denoted by e′ co D.
Actually, it is the epigraph of the e′-convex hull of the function fD : Rn → R

defined by fD(x∗, u∗, α) := inf {a ∈ R : (x∗, u∗, α, a) ∈ D} .
Considering now the general dual problem (4.7) with F : Rn → R a proper

function, let us take a perturbation function Φ : R
n × R

m → R. Denoting by
Z = R

n×R
m, the c-conjugate of the perturbation function Φ, Φc : Z×Z×R→ R,
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is

Φc
((

x∗, y∗
)
,
(
u∗, v∗

)
, α
) = sup

(x,y)∈Z

{
c
(
(x, y) ,

((
x∗, y∗

)
,
(
u∗, v∗

)
, α
))−Φ (x, y)

}
,

where c : Z × Z × Z × R→ R is the coupling function

c
(
(x, y) ,

((
x∗, y∗

)
,
(
u∗, v∗

)
, α
)) =

{ 〈x, x∗〉 + 〈y, y∗〉 , if 〈x, u∗〉 + 〈y, v∗〉 < α,

+∞, otherwise.

In [46], the general problem (GP) is associated with the dual problem

(GDc) Max
y∗,v∗∈Rm,α∈R

−Φc ((0n, y
∗) , (0n, v

∗) , α)

s.t. α > 0,
(4.9)

verifying weak duality, v(GDc) ≤ v(GP). Since

Φc
((

0n, y
∗) ,

(
0n, v

∗) , α
) = pc

(
y∗, v∗, α

)
,∀y∗, v∗ ∈ R

m,∀α > 0,

(GDc) can also be expressed by means of the infimum value function p in (4.8), as
follows:

(GDc) Max
y∗,v∗∈Rm,α∈R

−pc (y∗, v∗, α)

s.t. α > 0.

We focus firstly in obtaining interior point regularity conditions for strong duality
between (GP) and (GDc). It is evident that strong duality holds if v(GP) = −∞,
hence we deal with the case v(GP) ∈ R. In first place, we will characterize strong
duality in terms of the c-subdifferential associated to the coupling c in (4.2) as
considered in Sect. 4.3.

Proposition 4.5 (General Characterization of Strong Duality) Let us assume
that v(GP) ∈ R. Then the duality pair (GP) − (GDc) verifies strong duality if
and only if ∂cp (0m) �= ∅. In this case, ∂cp (0m) is the solution set of (GDc).

We introduce an interior point condition expressed in terms of the relative interior
of a set, and a closedness-type one, expressed in terms of closures of epigraphs, as
usual in this kind of conditions.

Denoting by proj (dom Φ) the projection of dom Φ onto R
m, let us also observe

that epi Φc ⊂ Z × Z × R× R, Z = R
n × R

m, so denoting by W =
R

n × R
n × R, we refer to the projection of epi Φc onto W×R by proj (epi Φc) .

These two projections could be written more precisely as proj{n+1,...,n+m}
n+m and

proj{1,...,n,m+1,...,m+n,2n+2m+1}
2n+2m+1 , respectively, but this notation would provide cum-

bersome formulae.



4.4 Duality in Evenly Convex Optimization 145

Theorem 4.14 (General Regularity Conditions) Let us consider the general
primal problem (GP) and its dual (GDc), and assume that Φ is e-convex. The
following conditions ensure ∂cp (0m) �= ∅ and, therefore, strong duality between
(GP) and (GDc):

(C1) 0m ∈ rint proj (dom Φ) .

(C2) proj (epi Φc) is e′-convex or, equivalently,

proj
(
epi Φc

) = epi Φc (·, 0m) .

Moreover, this equality can be reformulated as the fulfilment of the following
condition

Φc (·, 0m) = min
y∗,v∗∈Rm

Φc
((·, y∗) , (·, v∗) , ·) ,

where Φ (·, 0m) : Rn → R, Φc (·, 0m) : W → R, Φc ((·, y∗) , (·, v∗) , ·) :
W → R and W = R

n × R
n ×R.

Remark 4.1 As it is shown in [47], conditions (C1) and (C2) are also sufficient
for stable strong duality. The perturbed problems with linear functionals and the
corresponding duals are

(GPx∗) Min
x∈Rn

Φ(x, 0m)+ 〈x, x∗
〉
,

(GDc,x∗) Max
y∗,v∗∈Rm,α∈R

−Φc
((−x∗, y∗

)
,
(
0n, v

∗) , α
)

s.t. α > 0,

for an arbitrary x∗ ∈ R
n.

4.4.2 Regularity Conditions for Fenchel Duality

In this subsection, we consider a particular primal problem together with a particular
perturbation function, whose c-conjugate allows us to obtain a Fenchel-type dual
problem. We analyze regularity conditions for this pair of problems and do a
comparison among them. Let us consider the following optimization problem

(P1) Min
x∈Rn

f (x)+ g(x),

where f, g : Rn → R are proper functions, with dom f ∩ dom g �= ∅. The problem
(P1) is a particular case of (GP) with F = f + g.
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We will consider the perturbation function ΦF : Rn × R
n → R given by

ΦF (x, u) := f (x + u)+ g (x) . (4.10)

Calculating the c-conjugate of ΦF as in (4.9) we obtain the Fenchel dual problem
of (P1):

(DF ) Max
x∗,u∗∈Rn,α1,α2∈R

{−f c (x∗, u∗, α1)− gc (−x∗,−u∗, α2)}
s.t. α1 + α2 > 0.

(4.11)

We state the next theorem which gathers all the studied regularity conditions for
Fenchel duality, being (C1F ) and (C2F ) the particularized versions of the general
conditions (C1) and (C2) in Theorem 4.14, respectively. Let us recall that for proper
convex functions f, g : Rn → R, the infimal convolution of f with g, denoted by
f�g : Rn → R, is defined by

(f�g) (x) := inf
x1+x2=x

{f (x1)+ g (x2)} ,

and it is said to be exact at x ∈ R
n if (f�g) (x) = f (a) + g (x − a) for some

a ∈ R
n. Moreover, the infimal convolution is called exact when it is exact at any

x ∈ R
n.

Observe that, in this case, Z = R
n × R

n, and W = R
n × R

n ×R, and when we
refer to the projection of epi Φc

F onto W×R, proj
(
epi Φc

F

)
, we mean

proj
(
epi Φc

F

) = {(x∗, u∗, α, β
) ∈ W×R : (x∗, y∗, u∗, v∗, α, β

) ∈ epi Φc
F , y∗, v∗ ∈ R

n
}
.

Theorem 4.15 (Fenchel Regularity Conditions) Let us consider the primal prob-
lem (P1), where f, g : Rn → R are proper e-convex functions, and its Fenchel dual
(DF ). The following conditions ensure strong duality between both problems:

(C1F ) 0n ∈ rint (dom f − dom g) .

(C2F ) proj
(
epi Φc

F

)
is e′-convex, or, equivalently,

Φc
F (·, 0m) = min

y∗,v∗∈Rn
Φc

F

((·, y∗) , (·, v∗) , ·) .

(C3F ) f + g = sup Ẽf,g and epi f c + epi gc is e′-convex.

Moreover, strong duality is characterized by the following condition:

(C4F ) There exists α > 0 such that (f + g)c (0n, 0n, α) ≥ (f c�gc) (0n, 0n, α)

and the infimal convolution is exact at (0n, 0n, α) , which is equivalent to
saying that

epi (f + g)c ∩ {(0n, 0n, α)× R} ⊆ (epi f c + epi gc
) ∩ {(0n, 0n, α)× R} .
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Comparing regularity conditions (C1F ) , (C2F ) and (C3F ) , the unique rela-
tionship among them is that (C3F ) implies (C2F ), as it is pointed out ahead in
Proposition 4.6. The following example shows that (C3F ) does not imply (C1F ) .

Example 4.10 Let us take n = 1, f = δ[0,+∞[ and g = δ]−∞,0]. Since

dom f − dom g = [0,+∞[,

0 ∈ int(dom f − dom g) and (C1F ) does not hold. We now check condition (C3F ).
We have f + g = δ{0} and let h = sup Ẽf,g. Now, an e-affine function a1 ∈ Ef if

and only if

a1 (x) =
{

α1x − β1, if γ1x < δ1,

+∞, otherwise,

with α1 ≤ 0, β1 ≥ 0, γ1 ≤ 0 and δ1 > 0. On the other hand, a2 ∈ Eg if and only if

a2 (x) =
{

α2x − β2, if γ2x < δ2,

+∞, otherwise,

with α2 ≥ 0, β2 ≥ 0, γ2 ≥ 0 and δ2 > 0. Then, a ∈ Ẽf,g if and only if

a (x) =
{

αx − β, if γ x < δ,

+∞, otherwise,

with α, γ ∈ R, β ≥ 0 and δ > 0.

We obtain h = sup Ẽf,g = δ{0} = f + g. The following step is to calculate
epi f c + epi gc. We have (α, β, γ, δ) ∈ epi f c if and only if, for all x ≥ 0, αx ≤ δ

and βx < γ, hence epi f c = R−×R−×R++×R+. Similarly, (α, β, γ, δ) ∈ epi gc

if and only if, for all x ≤ 0, αx ≤ δ and βx < γ, hence epi δc
A = R+ × R+ ×

R++ ×R+. We obtain

epi f c + epi gc = R× R× R++ ×R+.

This set is e′-convex, because it is the epigraph of the c′-elementary function
c′ (·, 0) , which allows us to conclude that conditions in (C3F ) fulfills.

Proposition 4.6 (Relations Between Fenchel Regularity Conditions) (C3F )

implies (C2F ). Moreover, if f + g = sup Ẽf,g, (C2F ) implies (C3F ) if and only if

f c�gc = min
y∗,v∗∈Rn

Φc
((·, y∗) , (·, v∗) , ·) .

The following example shows that in general (C2F ) does not imply (C3F ) .

Example 4.11 Let us take n = 1, g = δ[0,+∞[ and f = δ]0,+∞[.
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It is easy to see that f + g = sup Ẽf,g. The most important fact to prove is that

(
f c�gc

) (
x∗, u∗, α

)
> inf

y∗,v∗∈RΦc
((

x∗, y∗
)
,
(
u∗, v∗

)
, α
)

at some point (x∗, u∗, α) ∈ R
3, implying, by Proposition 4.6, that (C3F ) does not

hold. So, we must give (u∗, α) ∈ R
2 such that, if we have

(
v∗ − u∗

)
x + u∗u < α,∀x ∈ dom g,∀u ∈ dom f, (4.12)

for some v∗ ∈ R, then

(
u∗ − w∗) x < α1 and w∗u < α2 (4.13)

whatever w∗ ∈ R implies α1 + α2 > α, meaning that (f c�gc) (x∗, u∗, α) = +∞.

Take (u∗, α) = (−1, 0) . For any −1 ≤ v∗ < 0, (4.12) holds. However for any
w∗ ∈ R verifying (4.13) it must be α1 + α2 > 0, since α1 > 0 and α2 ≥ 0
necessarily.

On the other hand, if x∗ ≤ 0,

inf
y∗,v∗∈RΦc

((
x∗, y∗

)
,
(−1, v∗

)
, 0
) = inf

y∗∈R

{

sup
x≥0

(
x∗ − y∗

)
x + sup

z>0
y∗z

}

= 0.

Now we are going to check that

sup
x∈R

{
c
(
x,
(
x∗, u∗, α

))−Φ (x, 0)
} = min

y∗,v∗∈R
Φc
((

x∗, y∗
)
,
(
u∗, v∗

)
, α
)
,

(4.14)

for all (x∗, u∗, α) ∈ R
3, which means that (C2F ) holds.

In the case supx∈R {c (x, (x∗, u∗, α))−Φ (x, 0)} = +∞, (4.14) holds trivially.
Hence, let us assume that supx∈R {c (x, (x∗, u∗, α))−Φ (x, 0)} < +∞. It is
equivalent to saying that (x∗, u∗, α) ∈ R− × (R− ×R+\ {02}) and then

sup
x∈R

{
c
(
x,
(
x∗, u∗, α

))−Φ (x, 0)
} = 0.

We now compute Φc ((x∗, y∗) , (u∗, v∗) , α), for any points (x∗, u∗, α)

∈ R− × (R− × R+\ {02}) and y∗, v∗ ∈ R :

Φc
((

x∗, y∗
)
,
(
u∗, v∗

)
, α
)

= sup
x,z∈R

{
c
(
(x, y) ,

(
x∗ − y∗, y∗

)
,
(
u∗ − v∗, v∗

)
, α
) − f (y)− g (x)

}

= sup
x≥0,y>0

{
c
(
(x, y) ,

(
x∗ − y∗, y∗

)
,
(
u∗ − v∗, v∗

)
, α
)}

.
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Since we are interested in those suprema which are finite, if u∗ < 0 and α ≥ 0, take
any v∗ ∈ [u∗, 0

[
and, if u∗ = 0 and α > 0, take v∗ = 0. Then

inf
y∗,v∗∈R sup

x≥0,y>0

{
c
(
(x, y) ,

(
x∗ − y∗, y∗

)
,
(
u∗ − v∗, v∗

)
, α
)}

= inf
y∗≤x∗

sup
x≥0,y>0

{(
x∗ − y∗

)
x + y∗z

} = 0,

and this infimum is a minimum.

We finish the comparison with an example showing that (C1F ) does not imply
(C2F ).

Example 4.12 Let us take n = 1, g = δ[0,+∞[ and f = δ]1,+∞[. At the point

(x∗,−1,−1) ∈ R
3, x∗ ≤ 0, we obtain

sup
x∈R

{c (x, (−1,−1,−1))− Φ (x, 0)} = sup
x>1

{
c
(
x,
(
x∗,−1,−1

))} = x∗.

On the other hand,

inf
y∗,v∗∈RΦc

((
x∗, y∗

)
,
(−1, v∗

)
,−1

)

= inf
y∗,v∗∈R sup

z>1,x≥0

{
c
(
(x, y) ,

(
x∗ − y∗, y∗

)
,
(−1− v∗, v∗

)
,−1

)}
.

Let us observe that a necessary condition (depending on v∗ ∈ R) for these suprema
to be finite is that, for all x ≥ 0 and y > 1,

(−1− v∗
)
x + v∗y < −1.

In particular for x = 0 and y > 1, it must be v∗ < −1, but this implies that
(−1− v∗) > 0 and hence (−1− v∗) x cannot be bounded from above, since x ≥ 0.
We conclude that

c
(
(x, y) ,

(
x∗ − y∗, y∗

)
,
(−1− v∗, v∗

)
,−1

) = +∞,

for all y∗, v∗ ∈ R and

min
y∗,v∗∈RΦc

((
x∗, y∗

)
,
(−1, v∗

)
,−1

) = +∞.

Hence (C2F ) does not hold despite (C1F ) being fulfilled, because of the fact that
dom f − dom g = R.
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Remark 4.2 As it is shown in [47], (C3F ) is a sufficient condition for stable strong
Fenchel duality, i.e., for strong duality between the pair of problems

(P1,x∗) Min
x∈Rn

f (x)+ g(x)+ 〈x, x∗
〉

(DF,x∗) Max
y∗,u∗∈Rn,α1,α2∈R

{−f c
(
y∗ − x∗, u∗, α1

)− gc
(−y∗,−u∗, α2

)}

s.t. α1 + α2 > 0,

for all x∗ ∈ R
n.

4.4.3 Regularity Conditions for Lagrange Duality

In this subsection, we consider the following primal problem

(P2) Min
x∈Rn

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . ,m,
(4.15)

where f, gi : Rn → R, for all i = 1, . . . ,m, are proper functions. Let us suppose
that the feasible set A = {x ∈ R

n : gi (x) ≤ 0, i = 1, . . . ,m} is nonempty. The
problem (P2) is a particular case of (GP) with F = f + δA. We also consider
the following perturbation function ΦL : Rn ×R

m → R,

ΦL (x, b) =
{

f (x) , if gi (x) ≤ bi, i = 1, . . . ,m,

+∞, otherwise.
(4.16)

In this case, the perturbation variable is b ∈ R
m. We can describe A as the set

{x ∈ R
n : g (x) ∈ −Rm+}, where g (x) = (g1 (x) , . . . , gm (x)) , for all x ∈ R

n, and
the perturbation function ΦL reads

ΦL (x, b) =
{

f (x) , if g (x)− b ∈ −Rm+,

+∞, otherwise.

Calculating the c-conjugate of ΦL makes it possible to associate to (P2) a dual
problem verifying weak duality. In [45] it was obtained the following Lagrange
dual problem

(DL) Max
λ∈Rm+

inf
x∈Rn

{f (x)+ 〈λ, g (x)〉} (4.17)

which is the classical Lagrange dual problem actually.
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This subsection is devoted to study strong duality between (P2) and (DL).
Trivially, if v(P2) = −∞ strong duality holds. The function 〈λ, g (·)〉 : Rn → R

defined as 〈λ, g (·)〉 (x) := 〈λ, g (x)〉, for any λ ∈ R
m+, will be denoted by λg.

We will say that (P2) verifies the e-convex cone constraint qualification (ECCQ)

if the cone
⋃

λ∈Rm+
epi (λg)c is an e′-convex set. It can be viewed as the counterpart of

the Farkas-Minkowski CQ in [69], and can be reformulated in the following way, if
the e′-convex hull of

⋃

λ∈Rm+
epi (λg)c is computed:

(ECCQ)
⋃

λ∈Rm+
epi (λg)c = epi δc

A. (4.18)

The next theorem shows the main regularity conditions for Lagrange duality.
Again, as in Fenchel case, conditions (C1L) and (C2L) are the particularized
versions of the general conditions (C1) and (C2) in Theorem 4.14, respectively.

In this context, epi Φc
L ⊂ Z × Z × R×R, Z = R

n × R
m, W = R

n × R
n × R,

and when we refer to the projection of epi Φc
L onto W×R, proj

(
epi Φc

L

)
, we mean

proj
(
epi Φc

L

) = {(x∗, u∗, α, β
) ∈ W×R : (x∗, λ, u∗, δ, α, β

) ∈ epi Φc
L, λ, δ ∈ R

m
}
.

Theorem 4.16 (Lagrange Regularity Conditions) Let us consider the primal
problem (P2), where f, gt : R

n → R are proper e-convex functions, and its
Lagrange dual (DL). If f + δA = sup Ẽf,δA and epi f c + epi δc

A is e′-convex, any of
the following conditions ensures strong duality between (P2)− (DL).

(C1L) 0m ∈ rint
(
g (dom f )+ R

m+
)
.

(C2L) proj
(
epi Φc

L

)
is e′-convex, or, equivalently,

ΦL (·, 0m)c = min
λ,β∈Rm

Φc
L (·, (λ, β)) .

(C3L) (P2) verifies (ECCQ).
(C4L) For all (x∗, y∗, α) ∈ W such that A ⊂ {x ∈ R

n : 〈x, y∗〉 < α} it holds

inf
x∈A

c
(
x,
(
x∗, y∗, α

)) = max
R

m+

{
inf

x∈Rn

{
c
(
x,
(
x∗, y∗, α

))+ λg (x)
}
}

.

(4.19)

and there exists a solution λ of (4.19) which, in addition, verifies

inf
x∈A

c
(
x,
(
x∗, y∗, α

)) = inf
x∈domλg

{−c
(
x,
(−x∗, y∗, α

))+ λg (x)
}
.

Actually, (C3L) and (C4L) are equivalent.
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Next we compare the regularity conditions (C1L) , (C2L) and (C3L) . As we
shall see, the unique relationship between them is that (C3L) implies (C2L) .

Proposition 4.7 (Relation Between Lagrange Regularity Conditions) Regular-
ity condition (C3L) implies (C2L).

The following example shows that (C2L) does not imply (C3L) .

Example 4.13 Let us take n = 1, f = δ[0,+∞[, m = 1 and g1 (x) = x. We have
A = ]−∞, 0] .

It was shown, in Example 4.10, that f + δA = sup Ẽf,δA and

epi f c + epi δc
A = R× R× R++ ×R+,

which is e′-convex. We shall see that (ECCQ) does not hold, i.e.,

⋃

λ≥0

epi (λg)c � epi δc
A.

Since epi δc
A = R+ × R+ × R++ × R+ (see again Example 4.10), a point

(α, β, γ, δ) ∈ epi δc
A verifies α ≥ 0, β ≥ 0, γ > 0 and δ ≥ 0. This point will be in

epi (λg)c for some λ ≥ 0 if c (x, (α, β, γ )) − λx ≤ δ, for all x ∈ dom (λg) = R,
which implies that βx < γ, for all x ∈ R, and this is impossible if β �= 0. Hence
(C3L) does not fulfill.

We now prove that (C2L) holds. The set proj
(
epi Φc

L

)
is e′-convex if and only if

epi ΦL (·, 0)c ⊂ proj
(
epi Φc

L

)
,

according to the equivalent formulation of (C2L). Since (dom f )∩A �= ∅, f +δA =
hf,δA and epi f c + epi δc

A is e′-convex, applying Theorem 4.16, we have

epi ΦL (·, 0)c = epi (f + δA)c = epi f c + epi δc
A,

hence we will see that

R× R× R++ ×R+ = epi f c + epi δc
A ⊂ proj

(
epi Φc

L

)
.

Take a point (α, β, γ, δ) ∈ epi f c+ epi δc
A. Hence α ∈ R, β ∈ R, γ > 0 and δ ≥ 0.

This point will be in proj
(
epi Φc

L

)
if and only if there exist λ1, λ2 ∈ R such that

Φc
L ((α, λ1) , (β, λ2) , γ ) ≤ δ, meaning that, for all (x, b) ∈ dom ΦL,

c1 ((x, b) , (α, λ1) , (β, λ2) , γ ) ≤ δ;

equivalently,

βx + λ2b < γ and αx + λ1b ≤ δ. (4.20)
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Since dom ΦL = {(x, b) ∈ R× R : 0 ≤ x ≤ b} , taking in particular x = 0 and
b ≥ 0, from (4.20) we deduce that λ1, λ2 ≤ 0. Now, for x > 0 and b ≥ x,

βx + λ2b ≤ x (β + λ2) .

Taking λ2 ≤ 0 satisfying (β + λ2) ≤ 0, we have βx + λ2b < γ, If we now take the
second inequality in (4.20), we also deduce that the choice of λ1 only depends of
the chosen α, which is fixed, and again clearly λ1 ≤ 0 can be found. We conclude
that (α, β, γ, δ) ∈ proj

(
epi Φc

L

)
.

We continue with an example showing that (C3L) does not imply (C1L) .

Example 4.14 Consider n = 1, f = δ[0,+∞[, m = 2 and gi (x) = (i − 1) x +
δ]−∞,i−1] (x) , i = 1, 2. We have A = ]−∞, 0] . Then, as in the previous example,

f + δA = hf,δA and epi f c + epi δc
A is e′-convex. For the fulfilment of (C3L) we

only need to show that (ECCQ) holds, i.e.,

epi δc
A = R+ × R+ × R++ × R+ ⊂

⋃

λ∈R2+

epi (λg)c .

Take any point (α, β, γ, δ) ∈ epi δc
A, with α ≥ 0, β ≥ 0, γ > 0 and δ ≥ 0. Then

(α, β, γ, δ) ∈ epi (λg)c for some λ ∈ R
2+ if c (x, (α, β, γ )) − λg (x) ≤ δ, for all

x ∈ R, i.e.,

dom (λg) ⊂ {x ∈ R :βx < γ } and αx − λg (x) ≤ δ, ∀x ∈ dom (λg) .

We distinguish two cases.

Case 1: If β = 0, it is enough to take λ = (λ1, λ2) = (0, α). Then dom (λg) =
dom g2 = ]−∞, 1] ⊂ {x ∈ R :βx < γ } = R. Moreover, αx − λg (x) =
(α − α) x = 0 ≤ δ, for all x ≤ 1, since δ ≥ 0.

Case 2: If β > 0, take λ = (λ1, λ2) = (1, 0) . Then dom (λg) = dom g1 =
]−∞, 0] ⊂ {x ∈ R |βx < γ } . Moreover, αx − λg (x) = αx ≤ δ, for all
x ∈ dom (λg) , since α ≥ 0 and δ ≥ 0.

Then, we conclude that epi δc
A ⊂

⋃

λ∈R2+
epi (λg)c .

It remains to prove that 0 /∈ rint
(
g(dom f )++R2+

)
, meaning that (C1L) does

not hold. Since dom f = [0,+∞[ , x = 0 is the only point verifying g (0) ∈ R
2.

Hence

g (dom f )+ R
2+ = R

2+,

and (C1L) does not fulfill.

We finish with an example showing that (C1L) does not imply (C2L) .
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Example 4.15 Let us take n = 2, m = 2, g1 (x) = x1 + x2 and g2 (x) = x1 − x2,

and consider the function f : R2 → R such that

f (x1, x2) =

⎧
⎪⎨

⎪⎩

x2
2

x1
, if x1 > 0,

0, if x1 = x2 = 0,

+∞, otherwise.

It was shown, in Example 4.3, that f is a proper e-convex function. We have

A =
{
(x1, x2) ∈ R

2 : x1 ≤ 0, x1 ≤ x2

}
.

It is clear that (C1L) holds, since dom f = (]0,+∞[× R) ∪ {02}], and we obtain
in this case that g (dom f )+ R

2+ = R
2.

Now, we use the equivalent condition to (C2L), and we will see that there exists
at least a point (x∗, y∗, α) ∈ W such that

ΦL (·, 0)c
(
x∗, y∗, α

)
< min

λ,β∈R2
Φc

L

((
x∗, λ

)
,
(
y∗, β

)
, α
)
.

Let y∗ = (0, 1), any x∗ ∈ R
2 and α = 1. Then,

ΦL (·, 0)c
(
x∗, y∗, α

) = sup
x∈A∩domf

{
c
(
x,
(
x∗, y∗, α

))−ΦL (x, 0)
}

= sup
x=02

{〈
x, x∗

〉} = 0.

Now, take any λ, β ∈ R
2. Then,

Φc
L

((
x∗, λ

)
,
(
y∗, β

)
, α
) = sup

x∈domf

g(x)−b∈−R2+

{
c1
(
(x, b) ,

(
x∗, λ

)
,
(
y∗, β

)
, α
) − f (x)

}
.

It is clear that c1 ((x, b) , (x∗, λ) , (y∗, β) , α) < +∞ only if

〈
x, y∗

〉+ 〈β, b〉 < α, (4.21)

for all (x, b) such that x ∈ dom f and g (x) − b ∈ −R2+. Since the sequence{(
x0
k , b0

k

)}
, where x0

k = (1, k) and b0
k = (1+ k, 1− k) for k ∈ N is contained

in the set D := {
(x, b) : x ∈ dom f, g (x)− b ∈ −R2+

}
, the fulfilment of (4.21)

implies that, denoting β = (β1, β2) ,

1+ β1 − β2 ≤ 0.
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On the other hand, taking the sequence
{(

x1
k , b1

k

)}
, where x1

k = (1,−k) and b1
k =

(1− k, 1+ k) for k ∈ N, also contained in D, (4.21) forces

1+ β1 − β2 ≥ 0,

and we conclude that 1+β1−β2 = 0. Finally, considering the sequence
{(

x2
k , b2

k

)}
,

where x2
k =

(
1
k
, k
)

and b2
k =

(
1
k
+ k, 1

k
− k

)
for k ∈ N, again contained in D, we

obtain, if (4.21) holds and taking into account that 1+ β1 = β2,

k + 2

k
β1 < 1,

for k ∈ N, which is impossible. Hence c1 ((x, b) , (x∗, λ) , (y∗, β) , α) = +∞, for
all λ, β ∈ R

2, and

min
λ,β∈R2

Φc
L

((
x∗, λ

)
,
(
y∗, β

)
, α
) = +∞.

Remark 4.3 (C3L) is a sufficient condition for stable strong duality for (P2)−(DL).
Here the extended primal and dual problems are

(P2,x∗) Min
x∈Rn

f (x)+ 〈x, x∗
〉

s.t. gi (x) ≤ 0, i = 1, . . . ,m,

(DL,x∗) Max
λ∈Rm+

{
inf

x∈Rn

{
f (x)+ 〈x, x∗

〉+ λg (x)
}
}

,

for all x∗ ∈ R
n, as it is shown in [47, Prop. 5.1]. Moreover, in that work, it was

introduced another sufficient condition which has its counterpart in the classical
setting, where f and gi , for all i = 1, . . . ,m, are proper convex and lsc functions.
As it is proved in [22], stable strong Lagrange duality in the classical setting is
equivalent to the closedness of the set

⋃

λ∈Rm+

epi (f + λg)∗ .

Then, Proposition 5.3 and Corollary 5.4 in [47] show that condition

(C′L)
⋃

λ∈Rm+

epi (f + λg)c is an e′-convex set

is sufficient for stable strong Lagrange duality, however not necessary, as we can see
in the following example, since (C3L) does not imply

(
C′L
)
.
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Example 4.16 Let us take n = 1, f = δ[0,+∞[, m = 2 and gi (x) = (i − 1) x +
δ]−∞,i−1] (x) , i = 1, 2. We have A = ]−∞, 0] . From Example 4.14, it is
shown that (C3L) holds, so f + δA = sup Ẽf,δA and the sets epi f c + epi δc

A and⋃
λ∈R2+ epi(λg)c are e′-convex in R

4. Furthermore,

epi f c + epi δc
A = R× R× R++ ×R+.

We are going to see that

⋃

λ∈R2+

epi (f + λg)c � e′ co

⎛

⎜
⎝
⋃

λ∈R2+

epi (f + λg)c

⎞

⎟
⎠

being, in this case,

e′ co

⎛

⎜
⎝
⋃

λ∈R2+

epi (f + λg)c

⎞

⎟
⎠ = epi (f + δA)c = epi f c + epi δc

A.

Let us take any λ ∈ R
2+. Then (y∗, z∗, α, β) ∈ epi (f + λg)c if and only if

c
(
x,
(
y∗, z∗, α

))− f (x)− λg (x) ≤ β,∀x ∈ R.

This is equivalent to the fulfilment of

〈
x, y∗

〉− λ1
(
δ]−∞,0] (x)

)− λ2
(
x + δ−∞,1 (x)

) ≤ β and
〈
x, z∗

〉
< α,∀x ≥ 0.

It implies, in particular, that z∗ ≤ 0, and it happens for any λ ∈ R
2+. Then

⋃

λ∈R2+

epi (f + λg)c � R×R×R++ × R+.

4.4.4 Regularity Conditions for Fenchel–Lagrange Duality

The primal optimization problem treated in this subsection will be again (4.15)

(P2) Min
x∈Rn

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . ,m,
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where f, gi : Rn → R , i = 1, . . . ,m, are proper functions and the feasible set A =
{x ∈ R

n : gi (x) ≤ 0, i = 1, . . . ,m} is nonempty. In [48], using the c-conjugation
scheme and the perturbation function ΦFL : Rn × (Rn ×R

m) → R defined as

ΦFL(x, (u, b)) :=
{

f (x + u), gi (x) ≤ 0, i = 1, . . . ,m,

+∞, otherwise,
(4.22)

the Fenchel–Lagrange dual problem for (P2) was obtained:

(DFL) Max
λ∈Rm+,y∗,v∗∈Rn,α1,α2∈R

{−f c(x∗, u∗, α1)− (λg)c(−x∗,−u∗, α2)}
s.t. α1 + α2 > 0,

(4.23)
where λg = 〈λ, g (·)〉 : Rn → R is defined as 〈λ, g (·)〉 (x) := 〈λ, g (x)〉, for
any λ ∈ R

m+. Observe that the perturbation function (4.22) is a combination of the
perturbation functions (4.10) and (4.16) to build the Fenchel and the Lagrange dual
problems, respectively. It is natural, then, to try to connect the regularity conditions
for both dualities presented in the previous subsections in order to obtain regularity
conditions for Fenchel–Lagrange duality.

We state, in the next theorem, all the studied regularity conditions for Fenchel–
Lagrange duality, where (C1FL) and (C2FL) are the particularized versions
of the general regularity conditions (C1) and (C2) in Theorem 4.14, respec-
tively. Moreover, two of them are characterizations. In this result, we use the set
gph (−g) = {(x,−g (x))} ⊂ R

n × R
m. For the definition of Ẽf,g in (C3F ), we

recall (4.6).
In this setting, epi Φc

FL ⊂ Z × Z × R× R and the spaces Z = R
n × R

n ×R
m,

W = R
n × R

n × R, and when we refer to the projection of epi Φc
FL onto W×R,

proj
(
epi Φc

FL

)
, we mean

proj
(
epi Φc

FL

) =
{

(x∗, u∗, α, β) ∈ W×R : (x∗, y∗, λ, u∗, v∗, δ, α, β) ∈ epi Φc
L,

λ, δ ∈ R
m, y∗, v∗ ∈ R

n

}

.

Theorem 4.17 (Fenchel–Lagrange Regularity Conditions) Let us consider the
primal problem (P2), where f, gi (i = 1, . . . ,m) : Rn → R are proper e-convex
functions, and its Fenchel–Lagrange dual (DFL). Any of the following conditions
ensure strong duality between both problems:

(C1FL) 0n+m ∈ rint
((

dom f × R
m+
)− gph (−g)

)
.

(C2FL) proj
(
epi Φc

FL

) = epi(f + δA)c, or, equivalently,

Φc
FL(·, 0n, 0m) = min

y∗,v∗∈Rn

λ,β∈Rm

ΦFL((·, y∗, λ), (·, v∗, β), ·).
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(C3FL) f + λg = sup Ẽf,λg for all λ ∈ R
m+ and the set

epi f c +
⋃

λ∈Rm+

epi(λg)c

is e′-convex, which is equivalent to saying that epi f c+⋃λ∈Rm+ epi(λg)c =
epi(f + δA)c.

Moreover, strong duality is characterized by the followings conditions:

(C4FL) For some α > 0, it holds

epi(f+δA)c
⋂
{(0n, 0n, α)× R} ⊆

⎛

⎝epi f c +
⋃

λ∈Rm+

epi(λg)c

⎞

⎠
⋂
{(0n, 0n, α)× R} ,

where {(0n, 0n, α)×R} := {(0n, 0n, α, β) : β ∈ R}.
(C5FL) For some λ ∈ R

m+ and α > 0, it holds

(f c�(λg)c)(0n, 0n, α) ≤ (f + δA)c(0n, 0n, α)

and f c�(λg)c is exact at (0n, 0n, α).

We study the relationships between the regularity conditions (C2FL) and
(C3FL). The only relation between them is stated in the next result.

Proposition 4.8 (Relation Between Fenchel–Lagrange Regularity Conditions)
If the functions f, gi , i = 1, . . . ,m, are e-convex and f + λg = sup Ẽf,λg for all
λ ∈ R

m+, then (C3FL) implies (C2FL).

The following example shows that the converse of the above proposition does not
hold in general. From this example and Theorem 4.17 we deduce that (C3FL) is not
necessary for strong Fenchel–Lagrange duality because otherwise, (C2FL) would
imply (C3FL).

Example 4.17 Let n = 1, f = δ]0,+∞[, m = 1 and g(x) = −x + δ]−1,+∞[(x).
Since f and g are e-convex functions, first of all we will check that f + λg =
sup Ẽf,λg for any λ ≥ 0. In that case, we have (f + λg)(x) = −λx + δ]0,+∞[(x).
Identifying any e-affine function

a (x) =
{

αx − β, if γ x < δ,

+∞, otherwise,
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with a = (α, β, γ, δ) ∈ R
4, we see that Ef = R− × R+ × (R− × R+\ {02}) and,

since λg(x) = −λx+ δ]−1,+∞[(x), we have Eλg = {−λ}×R+×{0}×R++. Then,

Ẽf,λg =] −∞,−λ] ×R+ × (R− ×R+\ {02}),

and sup Ẽf,λg = f + λg.
In order to show that (C2FL) holds, and taking into account that epi(f + δA)c =

epi f c = R− × (R− × R+\ {02})× R+, it will be enough to show that

R− × (R− × R+\ {02})× R+ ⊆ proj
(
epi Φc

FL

)
.

Let us fix (α, β, γ, δ) ∈ R− × (R− ×R+\ {02})×R+ arbitrarily. The key is to find
κ, ν ∈ R and λ,μ ∈ R such that, for all (x, u, b) ∈ dom ΦFL

βx + νu+ μb < γ and αx + κu+ λb ≤ δ. (4.24)

Now, dom ΦFL = {(x, u, b) : x + u > 0, x > −1, b ≥ −x}, and if we consider
any sequence {uk} ⊆ R++ converging to zero, and any b ≥ 0, {(0, uk, b)} ⊆
dom ΦFL. Then, from (4.24), taking limits when k tends to +∞, it follows that,
necessarily, λ,μ ≥ 0. For every (x, u, b) ∈ dom ΦFL, if ν ∈ R and μ ≥ 0,
βx + νu + μb ≤ (β − μ)x + νu. In the case β = 0 (let us observe that γ > 0),
take μ = 0 (ν = 0), and if β < 0, take μ ≥ 0 such that β − μ < 0, and name
ν = β − μ. We would have, in both cases, βx + νu + μb < γ . Proceeding in the
same way with the second inequality in (4.24), we can also find κ and λ verifying it.
Hence, (α, β, γ, δ) ∈ proj

(
epi Φc

FL

)
and (C2FL) is fulfilled. Finally, let us check

that (C3FL) does not hold, i.e., epi f c +⋃λ≥0 epi(λg)c � epi(f + δA)c. Let λ ≥ 0
be arbitrary. Then, epi(λg)c = {(α, β, γ, δ) : α ≤ λ, β ≤ 0, γ > −β, δ ≥ λ− α}
and ∪λ≥0 epi(λg)c = R− × R− ×R++ × R+, so that (C3FL) is not fulfilled.

To close this subsection, let us show that (C2FL) is not necessary for strong
Fenchel–Lagrange duality either.

Example 4.18 (Example 4.15 Revisited) Let n = 2, m = 2, g1 (x) = x1 + x2,

g2 (x) = x1 − x2, and f : R2 → R such that

f (x1, x2) =

⎧
⎪⎨

⎪⎩

x2
2

x1
, if x1 > 0,

0, if x1 = x2 = 0,

+∞, otherwise.

The feasible set is A = {
(x1, x2) ∈ R

2 : x1 ≤ 0, x1 ≤ x2
}

and we obtain
v(P2) = 0. On the other hand, taking λ = 0 and α1, α2 > 0, one has

v(DFL) ≥ −f c(0, 0, α1)− (0g)c(0, 0, α2) = inf
x∈R2

{f (x)} = 0.
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Hence, we have shown that v(DFL) ≥ v(P2). Due to the weak duality, it follows that
strong Fenchel–Lagrange duality holds. Now, let us see that (C2FL) is not fulfilled.
We will use its equivalent formulation which is stated in Theorem 4.17 and we will
see that there exists, at least a point (x∗, u∗, α), such that

ΦFL(·, 0, 0)c(x∗, u∗, α) < min
y∗,v∗∈R
λ,β∈R2

ΦFL((x∗, y∗, λ), (u∗, v∗, β), α).

Let any x∗ ∈ R
2, u∗ = (0, 1) and α = 1. Then, it is not difficult to see that

ΦFL(·, 0, 0)c(x∗, u∗, α) = sup
x=02

{〈
x, x∗

〉} = 0,

and following an analogous argument to the one of Example 4.15, it follows

min
y∗,v∗∈R
λ,β∈R2

Φc
FL((x∗, y∗, λ), (u∗, v∗, β), α) = +∞.

Remark 4.4 It is easy to check that if f + λg = sup Ẽf,λg for all λ ∈ R
m+, (C3FL)

assures stable strong duality between (P2)− (DFL). Here the extended primal and
dual problems are

(P2,x∗) Min
x∈Rn

f (x)+ 〈x, x∗
〉

s.t. gi (x) ≤ 0, i = 1, . . . , m,

(DFL) Max
λ∈Rm+, y∗,v∗∈Rn,α1,α2∈R

{− (f + 〈·, x∗
〉)c

(y∗, u∗, α1)− (λg)c(−y∗,−u∗, α2)
}

s.t. α1 + α2 > 0,

for all x∗ ∈ R
n.

4.4.5 A Comparison Between Optimal Values and Optimal
Solutions

We devote this subsection to make a comparison of the optimal values of
Fenchel, Lagrange and Fenchel–Lagrange dual problems for the primal problem
(P2) in (4.15). We point out that in the case of the Fenchel dual, since the
objective function in (P2) is F = f + δA, being the feasible set A =
{x ∈ R

n : gi (x) ≤ 0, i = 1, . . . ,m} , we obtain

(DF ) Min
x∗,u∗∈Rn,α1,α2∈R

{−f c (x∗, u∗, α1)− δc
A (−x∗,−u∗, α2)

}

s.t. α1 + α2 > 0.
(4.25)
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Recall that f, gi : R
n → R for all i = 1, . . . ,m are proper functions. We

assume also that the feasible set is nonempty. We will provide sufficient conditions
under which the optimal value of Fenchel–Lagrange dual problem is equal, on the
one hand, to the one of Fenchel dual problem and, on the other hand, to the optimal
value of Lagrange dual problem. Finally, we study the relations between the optimal
solutions of these three dual problems and their solvability.

First of all, we will establish the main inequalities that their optimal values satisfy
as well as some examples where the inequalities are strictly fulfilled. Recall that the
space W = R

n ×R
n × R.

Theorem 4.18 (Optimal Values Relationships) Let (DF ), (DL) and (DFL) be
the dual problems defined in (4.25), (4.17) and (4.23), respectively. The following
statements hold:

(i) v(DL) ≥ v(DFL).
(ii) v(DF ) ≥ v(DFL).
(iii) If f, gi : Rn → R are convex, for all i = 1, . . . ,m, then v(DL) = v(DFL).
(iv) If there exist α > 0 and (

(
y∗, v∗, α1

)
, α2, λ) ∈ W × R × R

m+ such that
α1 + α2 = α and

f c(y∗, v∗, α1)+ (λg)c(−y∗,−v∗, α2) ≤ inf
λ∈Rm+

{
(f + λg)c(0n, 0n, α)

}
,

then v(DL) = v(DFL).
(v) If (ECCQ) (4.18) holds, and gi, for all i = 1, . . . ,m, are e-convex functions,

then v(DF ) = v(DFL).
(vi) If there exist λ ∈ R

(T )
+ and α > 0 such that (f + δA)c(0n, 0n, α) =

(f c�(λg)c)(0n, 0n, α) and the infimal convolution is exact at (0n, 0n, α), then

v(P2) = v(DL) = v(DF ) = v(DFL).

Remark 4.5 In statement (iii), the convexity assumption on the involved functions
in the primal problem cannot be removed.

Example 4.19 Let us take n = 1, f (x) = −x2, m = 1 and g1 (x) = x2. Clearly
A = {0} and

v(DL) = sup
λ≥0

{
inf
x∈R

{
−x2 + λx2

}}
= 0.
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On the other hand,

v(DFL) = sup
y∗,v∗∈R,
α1+α2>0,

λ≥0

{
− sup

x∈R

{
c
(
x,
(
y∗, v∗, α1

))+ x2
}

− sup
x∈R

{
c
(
x,
(−y∗,−v∗, α2

))− λx2
}}

.

It is clear that we can restrict ourselves to v∗ = 0 and α1, α2 > 0, and we get

(DFL) = sup
y∗,∈R,
λ≥0

{
inf
x∈R

{
−xy∗ − x2

}
+ inf

x∈R

{
xy∗ + λx2

}}
= −∞.

In the following example it is shown that condition (ECCQ) is necessary in
Theorem 4.18(v), even when the involved functions in (P2) are e-convex.

Example 4.20 Let us take n = 2, m = 2, g1 (x) = −x2, g2 (x) = x1 − x2 and

f (x) =
{

x2 if x1 ≤ 0, x2 ∈ R,

+∞ otherwise.

Firstly, let us see that f is e-convex. Naming H = {
(x1, x2, x3) ∈ R

3 : x3 ≥ x2
}
,

it is easy to calculate epi f = H ∩ (dom f × R). This set is clearly convex and
closed, so f is e-convex. The feasible set A is

A =
{
(x1, x2) ∈ R

2 : x2 ≥ 0, x2 ≥ x1

}
.

Hence, since A ∩ dom f = {(x1, x2) ∈ R
2 : x1 ≤ 0, x2 ≥ 0

}
, a simple calculation

shows that v(P2) = 0. Now, we calculate the optimal value of the Lagrange dual
problem

v(DL) = sup
λ1,λ2≥0

inf
x∈domf

{λ1x1 + (1− λ1 − λ2) x2} = −∞.

Since the involved functions are convex, from Theorem 4.18, we get that v(DFL) =
v(DL) = −∞. If we compute the optimal value of the Fenchel dual problem, we
have

v(DF ) = sup
y∗,v∗∈R2,
α1+α2>0

{−f c(y∗, v∗, α1)− (δA)c(−y∗,−v∗, α2)
}
.
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It is not difficult to see that, at least, one of these c-conjugate functions equals +∞
whenever v∗ �= 02. Analyzing the trivial case where v∗ = 02 and α1, α2 > 0, we
get that f c(y∗, v∗, α1) and (δA)c(−y∗,−v∗, α2) are finite, and

v(DF ) = sup
y∗∈R2

{

− sup
x∈domf

{
x1y

∗
1 + x2y

∗
2 − x2

}− sup
x∈A

{−x1y
∗
1 − x2y

∗
2

}
}

≥ − sup
x∈domf

{x1 · 0+ x2 · 1− x2} + inf
x∈A

{x1 · 0+ x2 · 1} = inf
x∈A

x2 = 0.

We have just shown that v(DF ) ≥ 0 and, by the weak duality, v(DF ) ≤ 0, so
v(DF ) = 0. To conclude this example, it remains to see that

epi δc
A �

⋃

λ∈R2+

epi(λg)c. (4.26)

Clearly, ((0,−1), (0,−1), 1, 0) ∈ epi δc
A. However, this element does not belong to

any epi(λg)c with λ ∈ R
2+ since this fact would imply the fulfilment of

c((x1, x2), ((0,−1), (0,−1), 1))− (λg)(x1, x2) ≤ 0,

for all (x1, x2) ∈ dom λg = R
2, or, equivalently, 〈(x1, x2), (0,−1)〉 < 1, for all

(x1, x2) ∈ dom(λg) = R
2, which is not true. Therefore, (4.26) holds.

Remark 4.6 If the involved functions are proper and convex, applying Theo-
rem 4.18, it always holds

v(DL) = v(DFL) ≤ v(DF ),

but without any assumption over the primal problem, v(DL) and v(DF ) cannot be
related.

It is worth studying conditions under which the solvability of one of these dual
problems implies the solvability of the others.

Theorem 4.19 (Optimal Solutions Relationships) Let (DF ), (DL) and (DFL) be
the dual problems defined in (4.25), (4.17) and (4.23), respectively. The following
statements hold:

(i) If v(P ) = v(DFL) and (y∗0 , v∗0 , α1, α2, λ) ∈ W × R × R
m+ is an optimal

solution of (DFL) with α1+α2 > 0, then λ is optimal to (DL), (y∗0 , v∗0 , α1, α2)

is optimal to (DF ), and

v(P ) = v(DL) = v(DF ) = v(DFL).
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Then if there exists strong Fenchel–Lagrange duality, there also exist Fenchel
and Lagrange strong dualities.

(ii) If v(DL) = v(DF ) = v(DFL) and either (DL) or (DF ) is not solvable, then
(DFL) is not solvable.

We finish by showing that the converse statement of Theorem 4.19(i) does not
hold in general.

Example 4.21 Let us take n = 1, f = δ[0,+∞[, m = 1 and g1(x) = x. Then,
A =] −∞, 0] and trivially v(P ) = 0. On the other hand,

v(DL) = sup
λ≥0

{
inf
x≥0

{λg(x)}
}
= 0,

so every λ ≥ 0 is an optimal solution of (DL). Since f c(y∗, v∗, α1) < +∞ if and
only if (y∗, v∗, α1) ∈ R− ×R− ×R++ and its value is 0, and δc

A(−y∗,−v∗, α2) <

+∞ if and only if (y∗, v∗, α2) ∈ R− × R− × R++ being its value, again, 0, it
follows that v(DF ) = 0 and the solution set of (DF ) is R− ×R− × R++ ×R++.

Now, taking in particular y∗ = v∗ = 0, α1, α2 > 0 and λ = 1, which are optimal
solutions of (DF ) and (DL), respectively, we get that f c(0, 0, α1) = 0, but

(λg)c(0, 0, α2) = sup
x∈R

{−x} = +∞.

Then, (0, 0, α1, α2, λ) is not optimal to (DFL) since, according to Theorem 4.18,
v(DFL) = v(DL) = 0.

4.5 Bibliographic Notes

Convex and lower semicontinuous functions represent a crucial ingredient in
variational analysis (see, e.g., [41]), subdifferential calculus [90, 147], conjugate
duality theory and optimization [20, 149]. The Fenchel-Moreau Theorem, or the
biconjugation Theorem, gives necessary and sufficient conditions for a real extended
valued function to be equal to its biconjugate. This happens, in particular, if
the function is proper, convex and lower semicontinuous (see [191, Th. 2.3.3]).
This theorem represents a fundamental tool when we deal with duality in convex
optimization, where a convex optimization problem is embedded in a family of
perturbed problems, and by using Fenchel conjugation, a dual problem is associated
with the primal one.

In the literature we can find good references concerning the perturbational
approach to conjugate duality theory. It has been well-described in the monographs
from Rockafellar [149] in the finite-dimensional context, from Ekeland and Temam
[41] in Banach spaces, and from Zălinescu [191] in locally convex spaces. There
exist two main classes of regularity conditions, named generalized interior-point
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and closedness-type conditions. In [21] it is provided an overview on some classical
interior-point regularity conditions as well as several new ones, which are indeed
generalized interior-point ones. In [24–27, 94, 95] the reader can find closedness-
type regularity conditions for particular cases of primal and dual problems, see for
instance [20] as a presentation of the state of art in this field. The mechanisms behind
the closedness-type regularity conditions can be seen in [81]. Also in the general
case, sufficient interior-point-type conditions for stable strong duality can be found
in [191], while it is characterized by a much more general closedness-type condition
in [27].

Evenly convex functions, introduced in [151], extend in a natural way the concept
of evenly convex set to functions, and also allow a generalization of the convex
and lower semicontinuous functions class. Although Fenchel conjugation theory is
not suitable for evenly convex functions, in the sense that different evenly convex
functions may have the same lower semicontinuous hull and hence identical second
conjugates, we have described in this chapter different conjugation schemes fulfill-
ing that, in the case of an evenly convex function, the second conjugate is identical
to the original function. Thus, invoking to the c-conjugation scheme in particular,
a perturbational duality theory for evenly convex optimization problems has been
developed by Fajardo and her co-authors [45–49], while regularity conditions for
strong duality based on even convexity are given in [43, 45, 46, 48, 49, 181].

This chapter is based on [43, 45, 48, 49, 126, 151, 181, 184]. Evenly convex
functions definition, properties and examples in Sect. 4.1 can be found almost
entirely in [151]: statements (i) and (ii) of Theorem 4.1 are [151, Th. 2.6] and [151,
Prop. 2.7], respectively, Theorem 4.2 and Corollary 4.1 correspond to [151, Th. 2.9]
and [151, Cor. 2.10], respectively. For Proposition 4.1 see [151, Prop. 2.12], while
operations with evenly convex functions in Theorem 4.3 are stated in [151, Sec. 3].

Results in Sect. 4.2 on the e-convex hull of a given function can be found in
[126, 151, 181]. The representation for the e-convex hull of a function f in (4.5)
was proved for the first time in [151, Prop. 3.10] and it still remains true if the set
epi f is replaced by epis f , or even by any set A such that epis f ⊂ A ⊂ epi f .
More precisely, Theorem 4.4 is [181, Prop. 2.3 and Cor. 2.4], Theorem 4.5 is [181,
Prop. 2.6 and Cor. 2.7], Theorems 4.6 and 4.7 are taken from [151], Theorem 4.8 is
[126, Th. 16], and finally, Corollary 4.2 encompasses [126, Cors. 18 and 19].

Section 4.3 is devoted to three possible conjugation schemes for evenly convex
functions, depending on the chosen coupling functions, and the notion of subdif-
ferentibility associated to one of these schemes. It is based on [46, 126, 184]. On
the one hand, regarding the conjugation patterns, the first approach is taken from
[46, 126], whereas the details to the second and the third approaches can be found
in [184]. On the other hand, c-subdifferentiability is described in [126]. Regarding
the precise references for the given results in this section, Theorem 4.9 is [46, Prop.
2], Theorem 4.10 encompasses [184, Props. 4.2, 5.2 and Cor. 5.1] while the key tool
(4.4) is proved in [184, Prop. 4.1], and Theorem 4.11 is [184, Th. 6.1 and Cor. 6.1].
In addition to that, Proposition 4.2 is [126, Prop. 45], Proposition 4.3 is [181, Th.
3.1], Corollary 4.3 is [181, Cor. 3.2], Proposition 4.4 is [181, Prop. 3.4], and finally,
Theorem 4.12 is [181, Th. 4.1]. Readers who are familiar with the classical concept
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of subdifferentiability and its relationship with Fenchel conjugation will find that the
three statements given in Theorem 4.13 are generalizations of well-known formulas
(see, e.g., [20]). Statement (i) in that theorem is [46, Lem. 9], while (ii) is [46, Th.
11] and (iii) is [46, Cor. 12].

Section 4.4 is divided into five subsections, corresponding to the following
objectives. Section 4.4.1 is devoted to regularity conditions for general optimization
problems and duals obtained via perturbational approach and by means of c-
conjugation, and is based mostly on [43], where the general optimization problem
framework does not have any restrictions about dimensionality, and the involved
spaces are Hausdorff locally convex. Actually the Fenchel dual problem and the
regularity conditions were obtained in the particular case of g being an indicator
function of any subset, but all the results can be generalized easily to any function
g. It is necessary to point out that the regularity condition (C1) in Theorem 4.5 is
expressed in terms of the relative algebraic interior of certain projection of dom Φ.
Theorem 4.5 is proved in [43, Prop. 4.3]. This result can be derived as a particular
case in [124, Prop. 6.4, Th. 6.7 and Cor. 6.2], because the dual problem with u0 = 0
suggested by Martínez-Legaz is equivalent to (GDc), as it is shown in [46]. The
general regularity conditions in Theorem 4.14 are stated in [43, Prop. 4.5] and [43,
Props. 5.4 and 5.5], respectively.

The topic in Sect. 4.4.2 is Fenchel duality, obtaining regularity conditions and
comparing them. Most results there can be found in [43, Section 6]. Condition
(C3F ) in Theorem 4.15 is studied in detail in [46, Section 5], and strong duality
characterization (C4F ) is discussed in [47, Lem. 4.3]. This characterization was
motivated by [109], where, in the classical setting, strong Fenchel duality is
equivalent to the following inequality, which is called (FRC)A,

(f + g ◦ A)∗ (0) ≥ (f ∗�A∗g∗
)
(0) ,

together with the exactness of the infimal convolution at the point 0. In that paper,
X and Y are assumed to be Hausdorff locally convex spaces, A : X → Y is a linear
operator and f : X → R and g : Y → R are proper convex functions such that
A(dom f ) ∩ dom g �= ∅. Finally, the relationships between regularity conditions in
Proposition 4.6 are established in [43, Props. 6.3 and 6.5].

Section 4.4.3 develops an analogous study for Lagrange duality, with a similar
structure than in the previous subsection. It is based mostly on [45], where the
primal problem is stated in an infinite-dimensional framework and the number
of constraints is arbitrary. The calculus of the e′-convex hull of

⋃
λ∈Rm+ (λg)c is

computed in [45, Prop. 4.1], which allows formula (4.18). The general regularity
condition (C1L) in Lagrange duality Theorem 4.16 is provided in [45, Prop. 5.1],
while (C3L) , (C4L) and their equivalence can be found in [45, Prop. 4.2 and Th.
4.1]. The comparison between regularity conditions in Proposition 4.7 is stated in
[45, Prop. 5.2].

Regarding Fenchel–Lagrange duality, Sect. 4.4.4 follows the same scheme as
Sects. 4.4.2 and 4.4.3. All the results can be found in [49], in a more general
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framework with infinite dimensional spaces and an arbitrary number of constraints
in the primal problem. The regularity condition (C3FL) from Theorem 4.17 is
proved in [49, Prop. 3.4], and it was motivated by the regularity condition (ECCQ)

in (4.18). Actually, it is a direct generalization of a regularity condition from
the closed convex case; see

(
CQFL

)
in [22]. On the other hand, strong duality

characterizations (C4FL) and (C5FL) can be found in [49, Prop. 3.1], and the
comparison between regularity conditions in Proposition 4.8 is provided in [49,
Prop. 4.1]. It is worth to remark that in the infinite dimensional case, (i) in
Proposition 4.8 is not enough for the equality between optimal values v(DL) and
v(DFL). We also need that int(epi f ) �= ∅, as it is pointed out in [49, Rem. 4.2 and
Ex. 4.3].

The last subsection within Sect. 4.4 extends what Boţ and Wanka obtained in
[23], where they compared the three dual problems on finite-dimensional spaces
having a finite number of constraints and dealing with the classical Fenchel
conjugation scheme. In our setting we also deal with a finite number of inequalities,
but work with the c-conjugation pattern. The relations between optimal values in
Theorem 4.18 can be found, in a more general setting, with an arbitrary number of
constraints and within Hausdorff locally convex spaces, in the following references
from [48]: (i), (iii) and (iv) in Proposition 4.1, (ii) in Proposition 4.5, (v) in
Proposition 4.6 and (vi) in Proposition 5.1. Finally, Theorem 4.19 is stated in
Theorems 5.3 and 5.5.

For readers who could be interested in evenly convex optimization, a very recent
work [44] deals with converse and total duality, situations where, in the first case,
there is no duality gap and the primal problem is solvable, and, in the second case,
strong and converse duality hold together. Total duality is characterized by means of
the saddle-point theory approach. Furthermore, one can find there formulae for the
c-subdifferential and biconjugate of the objective function in a general optimization
problem.



Appendix A
Extensions to Infinite-Dimensional Spaces

Some of the results collected in this book have infinite-dimensional versions, where
the finite-dimensional Euclidean space R

n (decision space for the optimization
problems considered in this book) is replaced by some Banach spaces or even a
locally convex separated (i.e., Hausdorff) topological vector space (lcHtvs in short),
as Table A.1 shows:

Table A.1 Infinite-dimensional extensions

Item Banach lcHtvs

[(i) ⇐⇒ (iii) ⇐⇒ (vi)] in Theorem 1.1 [37] –

Section 1.4.3 [39] –

Section 2.3 [192] [112, 113]

Theorem 3.1 [37] –

Section 3.3 – [121]

Sections 4.1 and 4.2 – [126, 181]

Section 4.3 – [126, 184]

Section 4.4.1 – [43]

Section 4.4.2 – [43, 46]

Section 4.4.3 – [47]

Section 4.4.4 – [49]

Section 4.4.5 – [48]
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Symbols
H -subdifferential, 117
ε-GP-subdifferential, 115
ε-subdifferential, 111
c-subdifferential, 116

A
Asymptote, 16

B
Base

compact, 53
Basis

canonical, 53

C
Classifier

linear, 32
Combination

legal linear, 28
Condition

complementarity, 45, 90
KKT, 45, 90
Lagrange saddle point, 45
regularity, 143
Slater, 52, 54

Cone
active, 38
characteristic, 19, 71
dual

strict, 34
weak, 32

of feasible directions, 3
finitely generated, 3
polar, 38
polyhedral, 62
recession, 3
representative, 70, 71
second order moment, 19
tangent, 3

Constraint qualification, 37
e-convex cone (ECCQ), 151
Farkas-Minkowski (FMCQ), 37
locally Farkas-Minkowski (LFMCQ), 37
locally polyhedral (LOPCQ), 38
Slater (SCQ), 37

Convolution
infimal , 146

exact, 146
exact at a point, 146

D
Duality

strong, 143
stable, 143

weak, 143

E
Edge, 3
Epigraph, 101

F
Face, 3

exposed, 3, 41

© Springer Nature Switzerland AG 2020
M. D. Fajardo et al., Even Convexity and Optimization, EURO Advanced Tutorials
on Operational Research, https://doi.org/10.1007/978-3-030-53456-1

179

https://doi.org/10.1007/978-3-030-53456-1


180 Index

Family (of sets)
ascending, 107

Fenchel conjugate, 110
Function

H -subdifferentiable, 117
H -convex, 111
ε-GP-subdifferentiable, 115
ε-subdifferentiable, 111
c-conjugate of a, 134
c′-conjugate of a, 135
concave, 101
continuous along lines, 128
convex, 101
c-subdifferentiable, 116
e-affine, 133
e′-convex, 135
evenly convex, 123

at a point, 130
evenly quasiaffine, 112
evenly quasiconvex, 102

locally, 106
strictly, 102

gauge, 108
extended, 107

H-quasiconjugate of a, 122
hull of a

convex, 102
e-convex, 130
evenly quasiconvex, 106
lower semicontinuous, 102
quasiconvex, 102
upper semicontinuous, 102

improper, 127
indicator, 107
infimum value, 142
Lagrange, 45
payoff, 49
perspective, 121
proper, 111
quasiconcave, 101
quasiconvex, 101
R-quasiconjugate of a, 122
semicontinuous

lower, 101, 102
upper, 101, 102

semicontinuous along lines
lower, 128
upper, 128

slack, 41
valley, 135

G
Gap

approximation, 101
duality, 50, 143

Graph, 54, 101

H
Hyperplane

relatively continuous, 16
supporting, 3

Hypograph, 101

I
Index

carrier, 63
Inequality

consequent, 27, 28, 76, 78
Fenchel–Young, 143

M
Mapping

subdifferential, 54
Matrix

payoff, 92

P
Point

extreme, 3, 42
Slater, 52

Polyhedron, 62
evenly convex, 62, 86, 87
generalized, 97

Polytope, 3
evenly convex, 80

Problem
bounded, 89
conjugate dual, 142
consistent, 89
continuous dual, 53
dual

Fenchel, 146
Fenchel–Lagrange, 157
Lagrange, 150

Frobenius, 95
Haar dual, 44, 53
inconsistent, 89
Lagrangian dual, 45, 53
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linear
continuous, 52
semi-infinite, 36

relaxed, 36
set containment, 32, 34, 79
unbounded, 89

R
Ray

extreme, 63
tangent, 3

Representation
external, 62, 96
internal, 96

S
Separation

nice, 14, 17
open, 14, 16
strict, 14, 55
strong, 14
weak, 14

Sequence
minimizing, 90

Set
of carrier indices, 41
characteristic, 20
connected, 2
convex, 2

continuous, 16
evenly, 2, 3, 35
stricly, 6

e′-convex, 143
evenly convex, 7, 11, 12

regarding to a set, 140
hull of a

e′-convex, 143
evenly convex, 10

lower level, 101
lower level

strict, 101
moment, 20
of carrier indices, 63
of optimal strategies, 50
polar

evenly, 48
ordinary, 47

polyhedral
boundedly, 16
knowledge, 32
locally, 16

quasi-polyhedral, 16

relatively open, 3
reverse convex, 59
upper level, 101
wholefaced, 7

Space
of generalized finite sequences, 25
lineality, 3

Strategy
essential, 50

Strip, 16
Sum

Minkowski, 3
System

consistent, 1, 19
finite, 2
homogeneous, 2
inconsistent, 19
linear, 1

analytical, 37
continuous, 37
polynomial, 37

ordinary, 2
reduced, 64
relaxed, 19
semi-infinite, 2

T
Theorem

Carver alternative, 73
Carver-like alternative, 25
existence, 21
existence for finite systems, 72
existence via LSIP, 26
extended Motzkin, 83
extended Weyl, 81
Gordan existence, 73
Gordan-like existence, 25
Motzkin existence, 73
Motzkin-like existence, 24
Motzkin–Weyl–Minkowski, 62
Rockafellar alternative, 74
Rockafellar-like alternative, 25
Stiemke existence (I), 74
Stiemke existence (II), 74
transposition, 97

V
Value

maximin, 93
minimax, 93
of a game, 93
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