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Abstract

Obesity is related to metabolic defects that
may promote not only cancer initiation, but
also its progression. The molecular basis
for the association between obesity and cancer
is not fully understood; however, many
pathways are being investigated including
hyperinsulinemia/insulin resistance (IR) and
abnormalities of the insulin-like growth
factor-1 (IGF-1) signaling, sex hormones bio-
synthesis and pathway, alterations in
adipokines pathophysiology, and subclinical
chronic low-grade inflammation. In this chap-
ter, we analyze the current knowledge on the
proposed biological mechanisms, especially
focusing on the role of adiponectin (APN).

Keywords

Obesity · Cancer · Insulin-like growth factor-1
signaling · Sex hormones · adipokines ·
adiponectin · Low-grade inflammation

Introduction

White adipose tissue (WAT) was formerly stud-
ied in connection with caloric reserves, mechanic
and thermal insulation, and sexual attraction.
However, it is unquestionably a complex endo-
crine organ (Coelho et al. 2013). Adipocytes con-
stitute 90% of the cells, whereas the stromal-
vascular components include endothelial cells
(10–20% of cells), pericytes (3–5%), fibroblasts,
and others (15–30%). Stem and progenitor cells
(0.1%) should not be neglected, along with T- and
B-lymphocytes, macrophages, dendritic cells, and
others (Cozzo et al. 2017). Sex steroid hormones,
insulin resistance, growth factors, cytokines, and

adipokines are all influenced by this cellular envi-
ronment (Osborn and Olefsky 2012). Many can-
cer types are impacted by the same molecules and
pathways (Sung et al. 2019).

Excessive body weight promotes elevated free
fatty acids (FFA), triglycerides, glucose, insulin
resistance, and insulin production, some of which
could also stimulate cancer progression (Osborn
and Olefsky 2012).

Comorbidities

Obesity predisposes to metabolic, cardiovascular
diseases, as well as of several malignancies (Sung
et al. 2019; Global BMI Mortality Collaboration
et al. 2016; Goodwin and Stambolic 2015; GBD
2015 Obesity Collaborators et al. 2017), a phe-
nomenon called as “adiponcosis” (Bifulco and
Ciaglia 2017).

Cancers of digestive organs, like colon cancer,
and tissues with endocrine links, such as breast,
ovarian, endometrial, and prostate cancers,
receive most attention (Sung et al. 2019; Kyrgiou
et al. 2017; Tumminia et al. 2019). Cancer is the
number two most fatal human condition, after
cardiovascular disease, whereas obesity and
related aberrations could be aggravating
oncological mechanisms (Sung et al. 2019;
Goodwin and Stambolic 2015).

Biological Mechanisms Linking Obesity
to Cancer

Possible biological mechanisms comprise
hyperinsulinemia/insulin resistance (IR) and
abnormalities of the insulin-like growth factor-1
(IGF-1) signaling, sex hormones biosynthesis and
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pathway, alterations in adipokines pathophysiol-
ogy, and subclinical chronic low-grade inflamma-
tion (Fig. 28.1).

Hyperinsulinemia/Insulin Resistance

Insulin resistance is a common feature of obese
patients resulting in a compensatory increase in
systemic insulin and IGF-1 levels (Ackerman
et al. 2017). The excess of body weight is not
the only parameter determining
hyperinsulinemia: the distribution of the extra
weight and of visceral adipose tissue is also a
key variable. Hyperinsulinemia induces the pro-
duction of IGF-1 by hepatocytes and
downregulates the secretion of IGF-1 binding
proteins (IGFBPs), resulting in an increase in
bioavailable IGF-1. Several cancer cell types
respond to insulin and IGF-1 receptor binding,
by activating PI3K and MAPK pathways or
other downstream networks, promoting cell sur-
vival, growth, and motility (Di Zazzo et al. 2014;
Ackerman et al. 2017).

Insulin resistance, hyperinsulinemia, and high
IGF-1 levels increase the risk of endometrial,
breast, colorectal, and prostate cancer (Goodwin
and Stambolic 2015). When colorectal cancer-
susceptible mice were treated with an IGF-1-
receptor inhibitor disrupting downstream signal-
ing, tumor burden was significantly reduced
(Ackerman et al. 2017).

In adipose tissue, insulin controls lipid storage
and inhibition of lipolysis. Once glucose and
insulin levels are elevated for prolonged periods
as a consequence of overeating or lack of exer-
cise, insulin can induce lipid storage in
non-adipose tissue such as skeletal muscle. This
inappropriate accumulation of intramuscular fatty
acids contributes to altered insulin signaling.

Sex Hormones

Peripheral adipose tissue performs steroids aro-
matization: androgens and androgenic precursors
are converted to estradiol by aromatase. In

obesity, the excess of adipose tissue and the
increased aromatase activity lead to a higher con-
version rate, resulting in higher levels of
circulating estrogens (Gérard and Brown 2018).
In men and in postmenopausal women, the con-
version of androgens to estrogens is dependent
upon adipose tissue mass. Estrogen signaling has
several consequences in tumor growth promotion.
Indeed, estradiol is able to stimulate cell prolifer-
ation of breast epithelial and endometrial cells, to
inhibit apoptosis, and to induce angiogenesis
(Andò et al. 2019). Additionally, obesity is
associated with lower plasma levels of sex
hormone-binding globulin (SSBG), thus increas-
ing bioavailable concentrations of estradiol and
testosterone, resulting in a greater cancer risk
(Di Zazzo et al. 2018).

Adipokines and Cancer

Adipokines are bioactive molecules released by
WAT that acts locally in an autocrine and para-
crine manner, but they also have a systemic,
endocrine effect through blood circulation
(Diedrich et al. 2015). Adipokines include
adiponectin (APN), leptin, resistin, omentin, and
chemerin; under physiological conditions, they
regulate several processes such as energy balance,
lipid metabolism, insulin sensitivity, inflamma-
tion, innate and adaptive immunity, angiogenesis,
hematopoiesis, and cell proliferation (Schrover
et al. 2016).

Abnormal accumulation of adipose tissue
induces adipocyte dysfunctions, resulting into
the alteration of its endocrine functions and con-
sequently affecting the secretion of different
adipokines, usually leading to increased leptin
and decreased APN blood concentration. Abnor-
mal adipokine secretion often represents a factor
leading to cancer (Fig. 28.1) ( Di Zazzo et al.
2019). Upon analysis of a panel of 14 obesity-
related hormones, cytokines, coagulation factors,
and other biomarkers, C-peptide, IL-6, and
TNF-α pointed toward clear-cell renal carcinoma
risk (Wang et al. 2019).

388 E. Di Zazzo et al.



Adiponectin and Cancer

APN behaves as insulin-sensitizing, anti-apopto-
tic, and immune regulatory (Ackerman et al.
2017). Various homo-oligomers are recognized,
and as adiposity accumulates, APN diminishes in
the same proportion (Di Zazzo et al. 2019). APN
usual receptors, AdipoR1 and AdipoR2, are phys-
iologically highly relevant. Hexameric and
multimeric APN binds to a different receptor, from
the cadherin superfamily (Di Zazzo et al. 2019).

Signaling pathways for cellular responses
include AMPK, mTOR, PI3K/AKT, MAPK,
STAT3, and NF-kB, (Di Zazzo et al. 2019).
AdipoR1 and AdipoR2 also impact energy bal-
ance, including insulin sensitization (Di Zazzo
et al. 2019). Ceramidase stimulatory activity,
which depletes intracellular ceramide, inhibits
apoptosis (Holland et al. 2011).

Hypoadiponectinemia

Poor response to APN during excessive adiposity
could be explained by low receptor values
(Yamauchi et al. 2014). The same tends to occur
during inflammation linked to diabetes and ath-
erosclerosis (Di Zazzo et al. 2019). APN is usu-
ally classified as an anti-cancer molecule, with
anti-inflammatory, anti-proliferative, and
pro-apoptotic impact (Porcile et al. 2014; Di
Zazzo et al. 2019).

Breast Cancer

Breast Cancer (BC) risk is heightened during
advanced adiposity: (i) aromatization of
androgens to estrogens stimulates growth of
mammary cells; (ii) interference with APN physi-
ology prevents its protective response (Avgerinos
et al. 2019). Low APN levels are certainly delete-
rious in this context (Ye et al. 2014), including
cancer growth and virulence. In the ERα-negative
human BC cell line MDA-MB-231, Genes
involved in cell cycle progression and apoptosis

are one of the possible mechanisms (Mauro et al.
2014).

In an ERα-positive cell culture, APN leads to
expression of ERα and cell growth (Mauro et al.
2014). Cross talk between APN/AdipoR1,
IGF-IR, and ERα seems relevant (Mauro et al.
2015). Insulin and estrogen elevation, which
favor cancer progression, contrast with depressed
APN, including postmenopausal and ER-positive
breast tumors (Di Zazzo et al. 2014; Mauro et al.
2014). APN modulates cell migration and inva-
sion (Jia et al. 2014), AdipoR2 signals lymphatic
and vascular penetration, and all of them are
markers of metastatic disease (Jeong et al. 2011).

Gastrointestinal Malignancies

Strong correlation between obesity and the devel-
opment of gastrointestinal (GI) cancers is
reported (Murphy et al. 2018). The largest adi-
pose intra-abdominal depot is the omentum, the
so-called fatty apron connecting the stomach to
the colon, enriched with immune cells and
responsible for local inflammation. Obesity
disrupts the homeostatic profiles of innate and
adaptive immune cell populations within the
omentum (O’Sullivan et al. 2018). APN plasma
levels were found decreased in patients with GI
cancers (Nagaraju et al. 2015). APN is suggested
to be involved in esophageal mucosa remodeling,
and it might have a protective role against cancer
transformation, contributing to the link between
obesity and lower esophageal carcinoma
(EC) (Almers et al. 2015). Patients with metabolic
syndrome, associated with increased leptin and
decreased APN serum levels, are prone to
Barrett’s esophagus, a metaplastic change occur-
ring in response to gastroesophageal reflux dis-
ease that can potentially lead to the
EC. Moreover, high levels of LMW-APN are
associated with a decreased risk of Barrett’s
esophagus (Tilg and Moschen 2014).

Beales and colleagues demonstrated that in
OE33, an esophageal carcinoma cell line, leptin
was able to induce proliferation, invasion, and
migration and inhibit apoptosis in a STAT3-
dependent manner and, by contrast, APN
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inhibited leptin-stimulated proliferation via
AdipoR1 (Beales et al. 2014). In gastric cancer,
APN inhibited proliferation in vitro with most
prominent effects in AZ521 and HGC27 gastric
cell lines expressing high levels of AdipoR1/R2
mRNA. Moreover, higher concentrations of APN
significantly reduce tumor volume and peritoneal
metastases in vivo (Ishikawa et al. 2007), consis-
tent with previous findings suggesting an anti-
angiogenic and tumor suppressive role for this
adipokine (Bråkenhielm et al. 2004). In the
same models, APN elicits its biological effects
through AdipoR1/R2 activation, whose expres-
sion was significantly associated with histological
type and overall survival (Ishikawa et al. 2007).
Negative AdipoR1 immunostaining was found in
patients with lymphatic metastasis and peritoneal
dissemination, while positive AdipoR1 expres-
sion corresponded to a longer survival rate
(Tsukada et al. 2011).

Circulating APN levels have been also
associated with increased risk of pancreatic can-
cer (Pothuraju et al. 2018). APN exerted its inhib-
itory effect through modulation of the β-catenin
signaling pathway. In BxPC-3 and CFPAC-1,
pancreatic cell lines both expressing the AdipoRs,
APN reduced serum-induced phosphorylation of
GSK-3β, decreased the nuclear accumulation of
β-catenin, and downregulated the expression of
cyclin D1. Knockdown of AdipoRs abolished the
growth-inhibiting effect induced by APN in vitro
and in xenograft models (Jiang et al. 2019).

Colorectal Cancer

Low APN is a marker of colorectal cancer (CRC)
(Di Zazzo et al. 2019). Both AdipoR1 and
AdipoR2 in turn could signal lymphatic metasta-
sis (Ayyildiz et al. 2014), as well as (for
AdipoR1) the ability to survive the illness (Choe
et al. 2018). APN negatively controls CRC
growth, by inhibiting the mechanistic target of
rapamycin (mTOR) via AMPK phosphorylation,
and decreasing PI3K and Akt phosphorylation
(Parida et al. 2019).

In CRC models, APN knockdown resulted in
increased multiplicity of aggressive colorectal

polyps. In an APN-deficient mice model, APN
treatment inhibited cancer progression and angio-
genesis (Moon et al. 2013). APN deficiency also
aggravated azoxymethane-induced colon cancer
in C57BL/6J mice (Mutoh et al. 2011).

APN conferred protection against
inflammation-induced colon cancers by
preventing apoptosis in the goblet cells and pro-
moting conversion of epithelial to goblet cells
(Saxena et al. 2012). In HCT116, HT29, and
LoVo CRC cell lines, APN induced G1/S cell
cycle arrest with concomitant overexpression of
p21 and p27 via AMPK phosphorylation; inhibi-
tion of AdipoRs released cells from APN-induced
growth blockade (Kim et al. 2010). APN anti-
cancer effect is glucose-dependent, possibly
explaining why CRC survival is enhanced in a
low glucose medium; however, the opposite
occurs with APN in high glucose conditions
(Habeeb et al. 2011).

Ovarian Cancer

Ovarian cancer patients have a lower blood con-
centration of APN than healthy women (Jin et al.
2016); low APN concentration was associated
with longer progression-free survival times and
a better tumor responsiveness to chemotherapy
(Diaz et al. 2013; Slomian et al. 2019). In addi-
tion, AdipoR1 expression level in ovarian cancer
tissues could represent a marker of prognosis,
being positively associated with overall patient’s
survival (Li et al. 2017). Low APN plasma levels
may favor ovarian cancer growth, induced by
persistent activation of PI3K/Akt/mTOR signal-
ing. Moreover, APN is able to repress human
ovarian cancer cell growth and reverse the stimu-
latory effects of 17β-estradiol and IGF-1 on cell
proliferation through the downregulation of their
receptors (Hoffmann et al. 2018).

Endometrial Cancer

Low APN blood levels were associated with an
increased risk and a worse prognosis of endome-
trial cancer (EMC). Low expression of AdipoR1
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in endometrial cancer cells is associated with
advanced tumor stage (Tumminia et al. 2019).
Several hypotheses have been formulated the
role of APN implying: (i) activation of AMPK
(resulting in cell growth suppression and apopto-
sis); (ii) extracellular signal-regulated protein
kinase (ERK) and Akt pathway inhibition; (iii)
reduction of Cyclin D1 expression (Moon et al.
2011). Association seems more evident for type II
EMC, and APN modulators are being explored
for potential therapeutic avenues (Garikapati et al.
2019).

Prostate Cancer

Conflicting reports about APN exist (Hu et al.
2016). APN concentration in prostate cancer
patients was low and connected to disease advent
(Goktas et al. 2005). A lower AdipoR1 and
AdipoR2 expression was observed in prostate
neoplastic tissues compared with healthy prostate
tissue (Michalakis et al. 2007). Growing evidence
indicates that APN exerts an anti-proliferative
action in prostate cancer cells, inhibiting
dihydrotestosterone-activated cell proliferation
(Bub et al. 2006). The ectopic overexpression of
APN in prostate cancer cell lines inhibited
mTOR-mediated neoplastic cell proliferation
(Gao et al. 2015).

No links are also advocated (Baillargeon et al.
2006), or a significant positive correlation
between APN concentrations and incidence of
low- or intermediate-risk prostate cancer (Ikeda
et al. 2015). Higher APN plasma levels were
detected in subjects with cancer stage T3
(advanced) than in subjects with T2 (confined
within the prostate). AdipoR2 findings could be
a signal of cancer progression and metastasis
(Rider et al. 2015).

Low Chronic Inflammation

Large adipocytes become distant from the blood
supply, which can trigger chronic hypoxia and
inflammation (Boutari and Mantzoros 2018).

Neutrophils and mast cells enhance inflamma-
tion whereas the opposite is expected from

eosinophils and myeloid-derived suppressor
cells. B- and T-lymphocytes and natural-killer
cells are also engaged in the process, as well as
M1 pro-inflammatory macrophages (ATMs)
(Ouchi et al. 2011).

Macrophages constituting crown like
structures elicit nuclear factor-kappa B (NF-κB)
aggravating chronic inflammation (Ouchi et al.
2011). The cross talk between adipocytes and
cancer engages IL-1, IL-6, and TNF-α, ROS gen-
eration, adipokines, and other molecules
(Fig. 28.1) (Avgerinos et al. 2019). Cancer cells
can also induce phenotype alteration of adjacent
adipocytes, encompassing reduction of their lipid
content and release of adipokine and matrix
metalloproteinases (Dirat et al. 2011).

Inflammasome is an innate immune pathway
activating proinflammatory cytokines, including
IL-1 and IL-18 (Lamkanfi and Dixit 2014).
Inflammasome-related genes are encountered in
adipocytes (Yin et al. 2014), potentially
stimulating cancer growth (Guo et al. 2016). Obe-
sity treatment tends to ameliorate this negative
profile (Hagman et al. 2017).

The Obesity Paradox in Cancer

Obesity negatively influences cancer recurrence,
prognosis, and survival (Lennon et al. 2016).
However, opposite evidence in certain
circumstances suggests that obesity reduces can-
cer incidence and improves survival. Obesity has
been ruled out as a risk for cancer mortality (Kuk
et al. 2018). Body fatness reduced the nerve
sheath tumor risk (Wiedmann et al. 2017); over-
weight or obesity attenuated mortality of bladder
(Pavone et al. 2018); and lung cancer (Zhang
et al. 2017) after surgery or chemotherapy. A
meta-analysis also showed that obese patients
with esophageal cancer had better long-term sur-
vival (Kayani et al. 2012).

The use of BMI as a measure of adiposity
could partly explain the discrepancies, as it does
not fully characterize the intricate biology and
physiology of excess body fat. BMI cannot dif-
ferentiate between lean mass and adipose tissue
and depends upon gender, age, ethnicity, and
race. Additionally, BMI does not estimate the
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visceral adipose tissue (VAT), which seems to be
metabolically more relevant. Computed tomogra-
phy and MRI are better alternatives for quantifi-
cation of VAT; however, they are not always
feasible (Allott and Hursting 2015). Anthropo-
metric measures, such as waist circumference
(WC) and waist-to-hip ratio (WHR), are viable
techniques (Sung et al. 2019), however, not per-
fect ones, as both VAT and subcutaneous abdom-
inal tissue (SAT) are lumped together in the
results (Avgerinos et al. 2019).

Obesity and Therapy

Obesity and comorbidities like dysglycemia,
hypertension, and dyslipidemia could reduce the
response to chemotherapy. Elevated BMI was
associated with poor prognosis in patients
affected by colon cancer who received surgical
resection of primary tumor and adjuvant chemo-
therapy with capecitabine and oxaliplatin
(Lashinger et al. 2014). In bevacizumab-treated
metastatic CRC patients, high visceral fat and
BMI were significantly associated with absence
of a response and increased progression. BMI was
negatively associated with response to standard
first-line chemotherapy with platinum and
taxanes in ovarian cancer patients (Califano
et al. 2014). These results could be related to the
expression by adipose tissue of angiogenic factors
(in particular VEGF) (Ottaiano et al. 2018).
Hyperinsulinemia, a known growth factor, could
trigger chemoresistance to 5-fluorouracil,
anthracyclines, taxanes, and other drugs
upregulating P-glycoprotein (Wei et al. 2015).

Drug Dosage

Pharmacokinetic studies rarely address the obese.
The most common strategy is dose-capping or
dose-fixed regimens. The consequence of this
“depotentiation” attitude may be the use of sub-
therapeutic strategies, conducting to disease
recurrence and mortality. According to the

American Society of Clinical Oncology, full
weight should be adopted for dosage calculation.

Specific Cancer Therapies for Obese
and Diabetic Patients?

A balanced and healthy diet may control factors
that sustain obesity-related disease (i.e., IGF-1,
insulin, leptin) (Avgerinos et al. 2019). In addi-
tion, vigorous aerobic exercise leads to a peak of
circulating APN levels (Saunders et al.
2012). Moreover, there is an increasing interest
in testing diabetes and cholesterol-lowering drugs
for cancer therapy.

Metformin

Metformin could decrease incidence and mortal-
ity of cancer by inducing hepatic gluconeogenesis
and reducing IR of peripheral tissues, resulting in
lower insulin and IGF-1 levels (Gallagher and
LeRoith 2015). Metformin blocks tumor growth
and induces apoptosis through insulin-
independent mechanisms (Safe et al. 2018). Fur-
thermore, metformin decreases cancer recurrence
by directly inducing cancer stem cell death
(Gallagher and LeRoith 2015).

Glycemic control with metformin can restore
adipokine concentrations, increasing APN, and
decreasing pro-inflammatory adipokine levels in
both humans and mice (Avgerinos et al. 2019).
For prostate and breast malignancies, large meta-
analyses failed to demonstrate benefits for met-
formin regarding cancer risk and mortality (Feng
et al. 2019; Au Yeung and Schooling 2019; Wang
et al. 2020). Yet in other contexts, such as rectal
cancer treated by neoadjuvant
chemoradiotherapy, better cancer response and
lower risk of recurrence were elicited (Kim et al.
2020). Clinical trials are going on. Twelve of
them address the following cancers: breast
(five), along with head and neck, thyroid, endo-
metrial, multiple myeloma, lymphocytic leuke-
mia, and various gynecologic/ solid tumors (one
of each) (www.cancer.gov, 2020).
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Thiazolidinediones (TZDs) and Other
Agents

Activation of PPAR-γ by TZDs could restrict cell
proliferation by decreasing insulin concentration
and also influencing key pathways of the Insulin/
IGF-1 axis, such as MAPK, PI3K/mTOR, and
Glycogen synthase kinase (GSK)3-β/
Wnt/β-catenin cascades, which modulate cancer
cell survival and differentiation. Additionally, the
PPARγ agonists TZDs, rosiglitazone, and
pioglitazone augment the circulating level of
APN directly, enhancing its gene and protein
expression in a dose-dependent manner (Parida
et al. 2019). Yet, meta-analysis results are
conflicting.

For bladder cancer, an increased risk with
pioglitazone was announced, possibly dose and
time dependent (Tang et al. 2018). As regards
colorectal cancer, no advantages were detected
with pioglitazone, whereas other PZDs seemed
moderately protective (Liu et al. 2018). A lack
of association with breast cancer risk is reported
(Du et al. 2018). This last outcome is consistent
with a meta-analysis addressing digestive
cancers, in which the risk did not differ for
incretin mimetics, insulin, metformin, sodium-
glucose co-transporter 2, sulfonylureas, TZDs,
alpha-glucosidase inhibitors, or placebo (Chai
et al. 2019).

Therapies Targeting APN

Increasing plasma APN levels or mimicking
some of its cancer-protective properties could
mitigate the deleterious effects of metabolic
dysfunctions on tumor development and progres-
sion (Vansaun 2013; Tumminia et al. 2019).
Therefore, pharmacological increase in serum
APN levels, up-regulation of AdipoRs expres-
sion, or synthesis of AdipoRs agonists could rep-
resent promising therapeutic strategies.

Using a high-throughput assay, several natural
compounds showing AdipoRs agonist activity

were identified. These compounds, acting prefer-
ably on AdipoR1 (e.g., matairesinol, arctiin,
arctigenin, gramine) or AdipoR2 (e.g., syringin,
parthenolide, taxifolion, deoxyschizandrin),
shared important anti-cancer properties, including
anti-proliferative and anti-inflammatory effects
(Sun et al. 2013). ADP355, a peptide-based
APN receptor agonist, prevented the proliferation
of AdipoRs-positive cancer cell lines. ADP
355 showed high affinity with AdipoR1, and
through the regulation of the canonical
APN-regulated pathways (i.e., AMPK, Akt,
STAT3, and ERK1/2), reduced breast tumor
growth both in vitro and in vivo (Otvos Jr et al.
2015). Additionally, three peptides BHD1028,
BHD43, and BHD44 have been designed to
mimic APN actions. BHD1028 showed the
highest affinity with AdipoR1 and the main acti-
vation of AMPK already at low concentration,
more than ADP 355 (Kim et al. 2018).

Oral Adiponectin Receptor Agonist

AdipoRon (AdipoR) is the first oral AdipoRs
agonist able to bind and activate AdipoR1 and
AdipoR2 that successfully re-established APN
functions, mainly activating AMPK and PPARγ
pathways in obesity-related type 2 diabetes
(Okada-Iwabu et al. 2013). Initial reports have
also investigated the possible anti-cancer role of
AdipoR in preclinical models, especially in pan-
creatic and ovarian cancer (Akimoto et al. 2018;
Ramzan et al. 2019). However, modifying
AdipoRs interactions could also result in infertil-
ity, cardiac damage, and reduced bone density
(Holland and Scherer 2013).

Statins and Assorted Drugs

Statins have been reported to be effective in
increasing circulating APN levels. Statins func-
tion by releasing cellular oxidative stress,
resulting in increased APN multimerization and

28 Obesity and Cancer: Linked Molecular Mechanisms 393



secretion. Angiotensin converting enzyme
inhibitors as well as angiotensin receptor
antagonists Ramipril, Quinapril, Losartan,
Telmisartan, Irbesartan, and Candesartan have
similarly shown promising results in clinical
trials. They function by enhancing APN secretion
via PPARγ, though some of them are also known
to induce transcription. Other potential drugs
include non-statin anti-hyperlipidemic drugs like
Fenofibrate and Zetia, non-TZD anti-diabetic
drugs, such as Acarbose and the sulfonylurea
Glimepiride and Sulfonylureas (Parida et al. 2019).
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