
A Model Management Platform
for Industry 4.0 – Enabling Management

of Machine Learning Models
in Manufacturing Environments

Christian Weber1(B) , Pascal Hirmer2 , and Peter Reimann1,2

1 Graduate School of Advanced Manufacturing Engineering, University of Stuttgart,
Stuttgart, Germany

{christian.weber,peter.reimann}@gsame.uni-stuttgart.de
2 Institute for Parallel and Distributed Systems, University of Stuttgart,

Stuttgart, Germany
pascal.hirmer@ipvs.uni-stuttgart.de

Abstract. Industry 4.0 use cases such as predictive maintenance and
product quality control make it necessary to create, use and maintain
a multitude of different machine learning models. In this setting, model
management systems help to organize models. However, concepts for
model management systems currently focus on data scientists, but do not
support non-expert users such as domain experts and business analysts.
Thus, it is difficult for them to reuse existing models for their use cases.
In this paper, we address these challenges and present an architecture, a
metadata schema and a corresponding model management platform.

Keywords: Model management · Machine learning · Metadata
management · Industry 4.0

1 Introduction

Through the emergence of cyber-physical systems and initiatives, such as Indus-
try 4.0 [8] and the Industrial Internet [13], manufacturing environments are
equipped with a variety of sensors that produce large amounts of data. Ana-
lyzing these data enhances various use cases in manufacturing. These use cases
include predictive maintenance, product quality control, root cause analysis of
quality problems, and the optimization of manufacturing processes [6,16]. In the
analysis process, data scientists experiment with different algorithms, frame-
works and tools for machine learning (ML). The result of such data analyses are
several promising candidates for the final machine learning model. By estimating
the generalization error and conducting A/B tests, the most suitable model is
selected and used for inference or prediction [3,9].

In the process of creating and maintaining a ML solution, a high amount
of diverse models is created even for a single use case. The reason for this is
c© Springer Nature Switzerland AG 2020
W. Abramowicz and G. Klein (Eds.): BIS 2020, LNBIP 389, pp. 403–417, 2020.
https://doi.org/10.1007/978-3-030-53337-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53337-3_30&domain=pdf
http://orcid.org/0000-0002-3957-9297
http://orcid.org/0000-0002-2656-0095
https://doi.org/10.1007/978-3-030-53337-3_30


404 C. Weber et al.

the variety and multitude of manufacturing processes, machines and product
variants that require individual models. This is further reinforced by the fact
that companies implement many different uses cases that multiply the amount of
models being created. Due to the high dynamics of the manufacturing processes,
such models tend to become stale very quickly, e.g., because of concept drifts
in data [1,4,17]. For example, a machine learning model that predicts the wear
of a tool based on multiple sensors may lose quality because patterns in data
change, e.g., through changes in air pressure or damage to a sensor. Thus, stale
models need to be continuously replaced by new models. Since a large number
of new models are created every day and others become stale at the same time,
the management of these models turns into a great challenge. Hence, for all
stakeholders, it becomes a tedious task to keep an overview of all models in the
manufacturing environment. This prevents effective reuse of machine learning
models and may result in costly reengineering tasks. So, data scientists often
recreate models for each new use case, although they could possibly reuse an
existing model that has been created for a similar use case.

In order to cope with these issues, we introduce a Model Management Plat-
form (MMP) for I4.0 that enables to store, index, and retrieve machine learning
models in a manufacturing context. Our platform enables central access to all
involved models and provides domain experts with a clear overview of differ-
ent versions of models and their current status, i.e., whether they are currently
planned, experimental, in use, maintained or retired. A rich interface to query
context data facilitates the effective discovery of models for similar use cases
and ML tasks. Furthermore, the platform provides reporting functionalities for
domain experts to keep the overview on all models within the company.

Related work does not cover these issues to a full extend, i.e., they do not
consider the manufacturing or business context in the lifecycle of a machine
learning model. Furthermore, to the best of our knowledge, current solutions do
not provide status tracking to machine learning models.

The remainder of this paper is structured as follows: In Sect. 2, we provide an
exemplary model management use case which guided the design of our platform
and also serves as base for our later case study. In Sect. 3, we describe founda-
tions and discuss related work in the scope of model management and related
platforms. Section 4 describes our main contribution: the Model Management
Platform (MMP), including its metadata schema and architecture. Section 5
discusses the implementation of the platform and presents the features of the
platform by a case study. Finally, Sect. 6 concludes this paper and lists possible
future work.

2 Exemplary Use Case and Requirements

We provide an exemplary use case in which a platform for model management
becomes crucial. The use case was derived by conducting interviews with our
industrial partners from the manufacturing sector.



A Model Management Platform for Industry 4.0 405

Fig. 1. Example showing the current IT infrastructure of the model management use
case of the steel plate manufacturer. Each data scientist owns a ML project folder on
the distributed file system with his or her files. Business Analysts and Domain Experts
manage their files in an Enterprise Content Management System (ECMS).

2.1 Use Case Environment

We consider that a medium-sized manufacturer produces tailor-made steel plates
for customers all over the world. In order to serve the market in the best possi-
ble way, the steel plate manufacturer owns several plants in different countries.
The products are of good quality, but in the past there have often been prob-
lems in meeting delivery times. Completing orders took longer than planned
because machines suddenly failed due to wear on machine parts. Therefore,
based on the experience of production employees, the manufacturer introduced
fixed maintenance intervals to replace machine parts preventively. Nevertheless,
there were still occasional machine downtimes, as machine parts were worn out
faster than planned. Furthermore, the maintenance personnel noticed that some
machine components showed only slight signs of wear and were replaced much
too early. In order to better determine the maintenance intervals individually for
each machine component, the steel plate manufacturer introduced a ML solu-
tion which can make predictions based on historical wear data for the machine
components. At the moment, the data of machines from different locations are
collected centrally. This includes time-series data, such as temperature, humidity,
and vibration data, as well as high-resolution image data from cameras.

2.2 Use Case for Model Management

We imagine the data scientists Bob and Alice, who are located in different depart-
ments. Together with other data scientists, they form a decentralized data science
team. In addition, Jill is a business analyst whose task is to keep an overview
on ML projects in the company. Bob, Alice, and Jill share a common IT infras-
tructure (see Fig. 1). A distributed file system is part of this IT infrastructure
to store datasets, scripts, and model files of ML projects.



406 C. Weber et al.

Bob wants to create a machine learning model that predicts downtimes for
a specific machine type. After receiving data about the machine, he performs
several machine learning experiments by writing a Python script and trying out
several algorithms for logistic regression. Each time the script is run, it creates
a new version of the model. Some of the model versions provide good evaluation
results and meet the target thresholds of evaluation metrics. Therefore, he marks
them as candidates for the final model. Through A/B testing, he selects the best
performing model and deploys it to a ML serving system. The deployed model
may however become stale at some point of time, because the data from machines
is non-stationary and concept drifts occur. Bob retrains and redeploys the model
from time to time to keep it up-to-date, which results in a new model version.
Each time he trains or retrains a model, he stores the raw data, his script, and
model files on the distributed file system, thereby using his individual folder
structure and file names as shown in Fig. 1. Exemplary names for model files
include LogReg Model Testv12, optimized LogReg Model, Depl Model Testv12.

Later, Alice begins to develop a logistic regression model for another machine
that includes the same sensor types as Bob’s machine. Unfortunately, she knows
nothing about Bob’s experiments. After performing a short search on the dis-
tributed file system, she cannot find any related models. She is confused by the
names of the model files and wonders to which machines which model belongs.
Therefore, she decides to develop the model from scratch and spends a lot of
time on it. By chance she meets Bob, who tells her that he has developed a
model for a similar type of machine. Bob shows Alice where he saved his model
files. After examining his files and doing A/B tests on the models, Alice finds
that Bob’s final model is more accurate than any of the models she created on
her own. She uses Bob’s model and puts it into production. She copies Bob’s
files into her folder on the distributed file system.

Some time later, Jill needs to create a report for the chief digital officer.
The report should contain an overview of currently used models, the involved
departments and business processes. She talks to Alice and Bob to acquire the
necessary information. With this information, Jill creates a report using a spread-
sheet. Jill, however, complains about the slow reporting process. This is because
Bob and Alice must manually examine the model serving system and cannot do
so immediately due to other tasks.

2.3 Required Functions of a Model Management Platform

Overall, the steel plate manufacturer’s analytics team has several problems estab-
lishing an efficient way of model management. For these reasons, the manufac-
turer’s data science department wants to establish a model management platform
to cope with the depicted issues. In the following, we discuss the issues of the
use case and identify required functions a model management should offer.

Although the analytics team stores data sets, scripts and model files in a
customized folder structure on a distributed file system, it is difficult to keep
track on which model is the most recent one and which files relate to it. This can



A Model Management Platform for Industry 4.0 407

even lead to re-deploying model versions which have even been retired. Here, a
function to versionize models, according datasets, and scripts would be beneficial.

In addition, information about assets, such as machines and other manufac-
turing equipment for which the models are built, is hidden in an ECMS where
domain experts store their documents. Therefore, models are isolated from these
documents and it is hard to discover related models used for similar assets and
for corresponding ML tasks. These management problems let data scientists
(re-)develop models, even if they exist already. Thus, a function to add manu-
facturing and business context to models is required. Afterwards, the platform
can use the added context to provide a better discovery of models and to provide
views for effective model reporting. For example, users may search for models
that are appropriate for a certain business process or machine. In addition they
may also want to have an overview on models that are used within different
departments of the company.

Further difficulties exist to distinguish between models. That is, experimental
versions of the model are stored along with model candidates and the final version
in the same folder. Beyond managing the files themselves, it is also unclear which
model is currently in use or stale. This requires a function to distinguish these
different states of ML models.

In sum, required model management functions include a) model versioning,
b) providing context, and c) tracking the status of models across their lifecycle.

3 Related Work and Challenges

Our work is based on the process model for managing machine learning models
by Weber et al. [15]. This process is depicted in Fig. 2. It shows all the lifecycle
steps a machine learning model passes through and that must be supported
by model management. In the following, we discuss the steps in the process
model and show how the derived model management functions a), b) and c)
(see Sect. 2.3) can provide support for each process step. Afterwards, we discuss
related work on model management platforms and possible tool support.

In the first step, new use cases serve as initiators to plan models that can help,
e.g., to improve manufacturing processes. Planning includes, e.g., specifying the
involved data sources, describing specifics of the use case, defining acceptance
criteria, or documenting expected results. Different stakeholders are required
that bring in domain-specific or technical expertise. In this step, function b)
providing context to models would help to identify and re-use existing models
for similar use cases. After that, if the model passes a feasibility check, the
model is created and evaluated by data scientists and programmers (step 2).
In order to document results of experiments and to store different model files,
function a) model versioning is required. In case the evaluation of the model
shows promising results, the model can be deployed into its target environment
(step 3). Otherwise, e.g., because the data quality is poor, the model needs to
be replanned or even retired (step 6). After deployment, the model is used, e.g.,
to make continuous predictions (step 4a). In parallel, it is constantly monitored



408 C. Weber et al.

Experimental Analytics Operational Analytics

Ac
cu

ra
cy

 >
= 

Th
re

sh
ol

d

Accuracy < Threshold

Concept drift
detected or
manual/periodical
trigger

Further development infeasible or not economical

Target
requirements
not met

Infeasible or 
not economical
e.g. data not available,
costs too high, …

Accuracy cannot
be achieved,
e.g. data quality
too poor

New 
use case
available

Model
retired

Comprehensive Management of Machine Learning Models

Rebuild Model 
with new Data & 

Test Model

5

Build & Test 
Model

2

Update Plan

2a

Deploy
Model

3
Retire Model

6
Use Model

4a

Monitor Model

4b
Plan Model

1

Fig. 2. Process of the model lifecycle [15] that is covered by the platform. Blue lines:
experimental loop, green lines: update loop, purple line: upgrade loop. (Color figure
online)

to recognize concept drifts (step 4b). In case of a concept drift, the model needs
to be rebuilt with new data and tested once again before it can be redeployed
(step 5). Here, function a) is also needed because this step is similar to step 2
in that different versions of a model may be created. Once a model is not useful
or not needed anymore, it is retired (step 6). Function c) tracking the status of
models is required throughout the whole model lifecycle to check the status of
a model in each step, e.g., if it is already in production or just a candidate for
future application. This prevents users from selecting models that are outdated
or do not conform to their requirements.

In order to evaluate solutions for implementing the functions proposed in
Sect. 2.3, we also conducted an evaluation of different tools for managing models
in machine learning projects. For function a) model versioning, data scientists
can rely on versioning tools that provide a repository such as Git LFS [2] or
more specialized tools like DVC [11] for bigger model files. Additionally, for
storing metadata about how the model files were produced, data scientists can
use experiment management tools. Examples for such tools are ModelDB [14]
and MLflow [18], which is available both in the Microsoft Azure platform and as
a standalone application. These tools store settings and metrics about training
runs, and they track the history of experiments along with their evaluation
results. This makes it possible for data scientists to reproduce experiments and
share their results with others. Furthermore, the tools can be used for saving
metadata about experiments, as well as materialization and versioning of model
files produced in step 2) and 5) of the ML lifecycle. MLflow provides a model
registry which allows to add states to a model version, staging and production.
Multiple model versions belong to a model that has a unique name. However,
we argue that the status information should be kept by the model entity as well
because status information about other lifecycle steps is required. A platform



A Model Management Platform for Industry 4.0 409

that addresses the whole lifecycle would need additional states for each lifecycle
step, e.g. planned (step 1), experimental (step 2), staging (step 3), production
(step 4a, 4b), stale (step 4a, 4b), maintenance (step 5) and retired (step 6). Thus,
c) tracking the status of models across their lifecycle is partially supported. Since
these tools are intended to support data scientists rather than domain experts
and business analysts, requirement b) providing context information to models
is also an open issue that we want to support with the platform.

Based on the required functions resulting from the model management use
case as well as our discussion of related work and tool support, we identified
open challenges that must be addressed by the platform. These challenges can
be summarized as follows:
1© Tracking the status of models across their lifecycle –
According to the process model for the model lifecycle, a model passes several
steps. In each step, metadata is generated that can be used to further describe
the model. However, current tools and related work do not focus on tracking
metadata across all lifecycle steps to describe the whole lifecycle. The follow-
ing states require support by a model registry component and an appropriate
metadata schema: planned (step 1), experimental (step 2), staging (step 3),
production (step 4a, 4b), stale (step 4a, 4b), maintenance (step 5) and retired
(step 6).
2© Adding context to models for discovery/reporting –
Currently, there is no related work on adding context to machine learning models
to enable functions for search and discovery that are tailored to domain experts.
In order to discover the most suitable model for a given use case, it is essential
that users are provided with context information. However, this information is
kept in files that are often located in Content Management Systems. These files
may contain semantical information about manufacturing assets that conforms
to standards for Industry 4.0 or the Industrial Internet. Due to broader use of
these standards in the future, they need to be supported by different platforms
such as model management platforms. To cope with these formats in manu-
facturing, a platform requires concepts to extract, store, and link information
about manufacturing assets to a machine learning model. This would allow data
scientists to search for a model version that matches a specific machine or sen-
sor type. Moreover, through adding business context, business analysts can be
supported with model reporting functionalities which reduces manual efforts to
collect the required information from different stakeholders.

4 Model Management Platform for Industry 4.0

Our model management platform (MMP) builds on the process model of the
model lifecycle by supporting users in each step. In this section, we present a
metadata schema, as well as the MMP’s architecture and its components. We
follow up with details about the implementation of the components.



410 C. Weber et al.

Model MetadataDomain Metadata

Machine

Actuator

Model

Business Metadata

BusinessProcess

OrgUnit

OPC UA Information Model

UseCase

Measuring
Unit

Type

Sensor

…

Asset

Digital Asset Physical Asset

… ModelVersion

ProcessOwner

ProcessType

SupportedDecision
Project

Description

ModelName

Status

InputAttributes

OutputAttributes

Annotation

VersionNumber

ModelType

Timestamp

AlgorithmName

DataTransformation

Description
BusinessSupport

PMML

Name

Version
Application

PMML

…

Fig. 3. Extract from the MMP metamodel, showing the combination of the model,
business, and domain metadata package.

4.1 Metadata Schema

For storing models with according metadata for the different steps of the lifecycle
process, we provide a metadata schema as depicted in Fig. 3.

The model metadata are provided via a model metadata package. In order
to provide structure to massive amounts of ML models, the lifecycle of machine
learning models is represented by the model entity. A model entity is comprised
of several model versions that are produced within steps 2) and 5) of the ML
lifecycle process. It contains a model name, a description and the status of a
model. Thus, the metamodel supports challenge 1©.

A model version contains descriptive attributes, e.g., the version number,
model type, annotation, a creation timestamp, and the input and output param-
eters. Furthermore, a model version contains lineage metadata that describe the
process to generate the model version, e.g., metadata about experiments – the
algorithm used, data transformations used for preprocessing the input attributes
and quality metrics. These metadata can be parsed from model files by a model
metadata extractor component (attributes are color-coded in grey).

In contrast, the domain metadata package describes the manufacturing con-
text. Different assets, e.g., machines, stations and manufacturing equipment that
provide input data to models can be linked to the model’s lifecycle. In order
to support linking models to as much manufacturing entities as possible, we
rely on the concept of Gröger et al. [5] which stores links between models and
manufacturing entities in a data warehouse. However, this concept does not pro-
vide means to link models to semantical information contained in files that are
not part of the datawarehouse, e.g. XML-based OPC UA files that describe



A Model Management Platform for Industry 4.0 411

machines. We hence support parsing these files, extracting their content, storing
it, and linking it to a model. Currently, we support parsing semantical descrip-
tions of machines. By providing the machine’s actuator, as well as sensors with
their type and measuring unit, we can add context to models, e.g., to search for
models for a certain machine and/or sensor type. Thus, we extend the concept
of Gröger et al. by providing further details on machine entities.

We further define a business metadata package to support reporting for mod-
els. It supports linking business processes, organizational units, and use cases of
projects to the model lifecycle entity. A use case contains the supported decision
for which the model should provide support and a description. Examples for
decisions are e.g. root cause analysis for production failures or the prediction
of maintenance schedules. The description then explains more domain specific
details about the problem, e.g., about quality issues, downtimes, the produc-
tion process, production materials, and machines. This enables to provide visu-
alizations such as dashboards and overviews on models used within different
departments of a company.

By combining the business, domain and model metadata package via a Busi-
nessSupport entity, the metamodel supports adding context to models and facil-
itates model discovery and reporting according to challenge 2©.

4.2 Architecture

Our architecture (see Fig. 4) consists of a frontend component, a backend compo-
nent, and data storages for metadata and model files. The frontend component
offers a graphical user interface to manipulate and query the metadata and
model store. In the backend component, corresponding functions are provided
to manage models and according metadata based on user input. The detailed
components are presented in the following. Thereby, we point out how these com-
ponents offer the required functions discussed in Sect. 2.3 and especially how they
cope with the challenges identified in Sect. 3.

Frontend Components. The frontend provides functions for model man-
agement and model reporting. It communicates with the backend components
through a REST API. Model management functionalities include model upload,
model comparison, model deployment and model discovery. Model reporting
comprises a model landscape visualization which provides a holistic overview of
models used in different organizational units and business processes for business
analysts. Furthermore, a model dashboard provides multiple KPIs, e.g., about
the amount of current models in use and added models over the past months.

Model Metadata Store. The model metadata store contains metadata that
are generated in each step of the lifecycle process. These are organized accord-
ing to the metadata model we provided in Sect. 4.1. The model metadata store
enables functions for model discovery, model comparison, and model reporting



412 C. Weber et al.

Model Management Plattform

Backend

Frontend

Model Upload

Model StoreModel Metadata 
Store

MMP Client Interface

REST

Metadata
Extractor

Context
Manager

Model
Registry

Model 
Discovery

Model 
Dashboard

Model Landscape
Visualisation

Model ReportingModel Management

Data Scientists Business Analysts Domain Experts

Fig. 4. MMP Architecture showing the backend and frontend components connected
via REST interfaces

to store and retrieve information about models. For example, the stored meta-
data allows users to perform semantic queries to discover related models for a
particular use case. By materializing metadata in the model metadata store, the
platform can provide faster access than parsing model files at run-time for each
user request.

Model Store. The model store is used to store machine learning models that
should be materialized for future use. It is closely tied to the model metadata
store, because metadata of models need to be linked to materialized model files.
Additionally to different serialization formats for ML models, the model store
contains information models of machines.

Model Metadata Extractor. The metadata extractor is a functional com-
ponent that extracts metadata from model files by parsing their content. The
model metadata extractor’s functionality is of utmost importance to handle the
indexing of all the model versions which are created in steps 2) and 5) of the
model lifecycle process. By using the metadata, users can search for models
with, e.g., specific input attributes or model types (e.g. Regression, Tree Model,
Neural Network). The extracted metadata are inserted into the model metadata
store and a link is set to the corresponding model file in the model store. For
experimental models that should not be materialized, the user can decide that
the extractor should only store the available metadata.



A Model Management Platform for Industry 4.0 413

Due to the plenty amount of available tools and libraries for machine learning,
data scientists also use different formats to persist their model files. A commonly
used format is the Predictive Modeling Markup Language (PMML). It is an open
standard for an interchange format that is supported by a variety of tools, frame-
works, and ML serving systems. As depicted in Fig. 3, grey attributes represent
attributes that can be extracted from PMML files. PMML supports a variety
of metadata and is therefore a suitable model format for storing models. The
format is XML-based and allows to store the model and its metadata in one file.
Hence, it can be parsed using common XML parsing libraries. However, there
also a lot of other formats, e.g., scikit-learn models use pickle1 as serialization
format, RDS 2 is used for R, and HDF5 3 for Tensorflow. Often, these formats
are binary formats that are just readable by the according libraries. For these
model formats, the metadata extractor uses the jpmml4 library to convert them
into the PMML format. Thus, the metadata extractor also supports users who
want to use their custom model formats. The models are kept in their converted
and original model file format for users that want to deploy them quickly to
different ML serving systems.

Model Registry. The model registry keeps track on model files and the actual
status of a model. Thus, the component addresses challenge 1©. The status is
set for both, model version and model entity. The status of the model entity
depends on the collective status information of its underlying model versions.
For example, if a model contains multiple model versions with status “exper-
imental” and another model version which is in production, the status of the
model entity is set to “production”. The same applies when the actual model
version becomes stale, then the overall status of the model is “stale”. Users can
set the status information manually or by inserting specific REST-calls in their
training scripts to collect it automatically. For example, if the user rebuilds a
model, a setModelStatus-Call can be inserted right before the training routine
to set it to maintenance. After the training routine and the deployment, another
call sets the status to “production” again. Old model versions can then be set
to retired.

Context Manager. The context manager is a component to realize function
b) of the use case and to provide a solution to challenge 2©. It provides inter-
linking between models, manufacturing entities, and business entities. In order
to support model discovery for domain-related queries, we link machine learning
models to assets in the manufacturing environment, e.g., machines. For that pur-
pose, we rely on information models [12] that semantically describe machines.
For example, the information model can describe device information, process
1 Pickle: https://docs.python.org/3/library/pickle.html.
2 RDS: https://www.rdocumentation.org/packages/base/versions/3.6.1/topics/read

RDS.
3 HDF5: https://www.hdfgroup.org/solutions/hdf5/.
4 jpmml: https://github.com/jpmml.

https://docs.python.org/3/library/pickle.html
https://www.rdocumentation.org/packages/base/versions/3.6.1/topics/readRDS
https://www.rdocumentation.org/packages/base/versions/3.6.1/topics/readRDS
https://www.hdfgroup.org/solutions/hdf5/
https://github.com/jpmml


414 C. Weber et al.

variables or machine capabilities. Information models are part of the Open Plat-
form Communications Unified Architecture (OPC UA) [10]. We consider OPC
UA information models as suitable because they can be modeled according to
companion specifications that are uniform across different machine manufactur-
ers. Therefore, a machine learning model for a certain type of machine can be
re-used across machines of the same type from different machine manufacturers.
The linking of machine learning models to information models enhances the func-
tions for model discovery. In order to also provide functions for model reporting
to business users, it is possible to attach an enterprise architecture repository
that contains information about business processes and organizational units. By
interlinking these with the model metadata, we can provide powerful visualiza-
tions for business analysts such as the model landscape view (see Fig. 5). Such
views are common in the scientific field of enterprise architectures and provide
a holistic overview [7]. The model Landscape view shows business processes on
top, departments on the left and corresponding models highlighted in green color.
The view provides two benefits. First, business analysts can get an overview on
all the models within the company. Second, they can also identify spots with
missing models in the model landscape.

Fig. 5. The MMP Frontend – showing the model landscape of machine learning models
in the manufacturing environment. Models (green) are listed with a name and a version
number. A grid organizes the models via business processes on top and according
organizational units on the left. (Color figure online)

5 Case Study

In this section, we assess how the platform addresses the main challenges 1©
Tracking the status of models across their lifecycle, and 2© Adding
context to models for discovery/reporting. For the assessment, we use the
steel plate manufacturer’s use case for model management.



A Model Management Platform for Industry 4.0 415

The steelplate manufacturer develops a new type of machine that must be
supported by a machine learning model for predictive maintenance. In the plan
model step, Bob creates a new project on the MMP and adds a label and descrip-
tion to it. For documenting purposes, he also adds the business process “Machine
Maintenance” and the department “Machine Maintenance Services” that should
be supported by the model. After that, domain experts provide a dataset with
historical records and an OPC UA information model of the machine to Bob.
With the supported data, he conducts multiple machine learning experiments in
the build & test model step. He screens the resulting models and selects the best
performing model from a list of candidates. After uploading the model to the
platform, the metadata extractor stores the model in the model store and then
extracts its metadata and saves it to the model metadata store. Bob assigns the
status “experimental” to the models created. In order to support model discov-
ery for future experiments, he also uploads the OPC UA information model to
the platform. The information model is parsed and its semantic information is
linked to the machine learning model and stored in the model metadata store. He
deploys the model into production and sets its status to “production”. From time
to time, he updates it on detected concept drifts (model status: “stale”). Models
that are currently updated are set to status “maintenance” through entries in
the training pipeline that interface with the MMP. When a new model version is
deployed, the old version is set to status “retired” and the new version to status
“production”.

Some time later, Alice creates a new project in the MMP for the model
she wants to develop. The status “planned” is assigned to the model. She does
not know about Bob, but she has access to the model management platform.
Therefore, she searches for similar models in the model store that satisfy her use
case requirements. For instance, she searches for models that belong to a certain
machine and sensor type. She discovers Bob’s model as a possible candidate.
With this information, she can also get more context, e.g., about the machine in
which the sensor is built in and she also retrieves information about Bob, who
built the model. She finds out that the model was developed for the same type
of machine and that it already satisfies her requirements. Therefore, she copies
it into the newly created project. Through the MMP’s support, Alice saves time
by finding and re-using existing models. The MMP stores a link between the
copied version and the original model version of Bob to keep track of the history
for later analysis.

Again, some time later, Jill wants to create the report about all models that
are used for predictive maintenance in the company. With the MMP, she now can
generate reports faster and provide them to the chief digital officer. She searches
the repository for models with the status “production” and the term “predictive
maintenance” in the use case description. By using the visualization function
of the platform, she can display all the models with corresponding business
processes and departments, e.g., in a model landscape view (see Fig. 5). This
relieves Alice and Bob from the burden of creating such visualizations manually.



416 C. Weber et al.

Right now, the status experimental can be automatically tracked via REST
calls to the MMP which are inserted into the training scripts by data scientists.
Candidate models need to be explicitely flagged on the platform, because it is
a manual selection process. The same applies to the final model selected. When
data scientists create a script to put the model into production, REST calls in
this script put the model into status production. Typically such scripts contain a
training routine that is also used to retrain a model when a model becomes stale.
When the script is executed, the current model version is set to maintenance via
a REST call. Stale models that are replaced by new ones are set to retired
automatically. If a model is not used anymore data scientists set it to retired.

To sum up, the proposed platform and its function address both challenges
introduced in Sect. 3: 1© Tracking the status of models across their lifecycle,
and 2© adding context for model reporting and discovery. This constitutes an
advancement to the state of the art, because existing model management plat-
forms to do not offer such dedicated means. More precisely, our platform goes
beyond existing platforms in that it provides status information across the whole
lifecycle of machine learning models. Other platforms provide this information
just for the steps build and test model and use model according to the process
model we provide in Sect. 3. Furthermore, our platform supports adding context
to machine learning models to enable functions for search and discovery that are
tailored to domain experts and business analysts. Thus, it is the first platform
that provides such functionalities for model management.

6 Conclusions and Future Work

Providing structure and context to machine learning models is a core require-
ment in ML projects. Machine learning models that are well organized facilitate
the effective re-use of artifacts and collaboration between data scientists and
business analysts. In this paper, we focus on the challenge of adding context to
models to enable model discovery and reporting as well as tracking the status
of models across their lifecycle. To address these challenges, we propose a model
management platform. The model metadata is then extended to include addi-
tional context, namely, manufacturing and business metadata for Industry 4.0
use cases. The platform integrates with existing ML environments for training
and model serving systems through standardized interfaces.

Our future work will focus on the collection of metadata from operational
pipelines and lineage tracking across different steps in the life cycle of machine
learning models. In addition, we are going to support more industrial standards
for adding context and to develop more views to enhance user experience.

References

1. Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D.: The ML test score: a rubric for
ML production readiness and technical debt reduction. In: 2018 IEEE International
Conference on Big Data (Big Data), pp. 1123–1132. IEEE (2017)



A Model Management Platform for Industry 4.0 417

2. Carlson, B.M., Schneider, L., Schuberth, S., et al.: Git large file storage. https://
git-lfs.github.com/

3. Ding, J., Tarokh, V., Yang, Y.: Model selection techniques: an overview. IEEE Sig.
Process. Mag. 35(6), 16–34 (2018)

4. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

5. Gröger, C., Schwarz, H., Mitschang, B.: The deep data warehouse: link-based inte-
gration and enrichment of warehouse data and unstructured content. In: 2014 IEEE
18th International Enterprise Distributed Object Computing Conference, pp. 210–
217. IEEE (2014)

6. Gröger, C., Schwarz, H., Mitschang, B.: The manufacturing knowledge repository
- consolidating knowledge to enable holistic process knowledge management in
manufacturing. In: ICEIS (2014)

7. Kirchner, A., Scheurer, S., Weber, C., Wiechmann, A.: Architektur eines Cockpits
zur interaktiven Analyse von Enterprise Architectures auf Basis von Viewpoints.
In: Porada, L. (ed.) Informatiktage 2014, pp. 139–142. GI-Edition, Gesellschaft für
Informatik, Bonn (2014)

8. Knafla, F., Loewen, U., et al.: Implementation strategy Industrie 4.0: report
on the results of the Industrie 4.0 platform. http://www.zvei.org/Publikationen/
Implementation-Strategy-Industrie-40-ENG.pdf

9. Kumar, A., McCann, R., Naughton, J., Patel, J.M.: Model selection management
systems: the next frontier of advanced analytics. ACM SIGMOD Rec. 44(4), 17–22
(2015)

10. Mahnke, W., Leitner, S.H., Damm, M.: OPC Unified Architecture, 1st edn.
Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-68899-0

11. N.N.: Data version control. https://dvc.org/
12. OPC Unified Architecture: Part 5 : Information Model (2017)
13. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet

of things: challenges, opportunities, and directions. IEEE Trans. Ind. Inf. 14(11),
4724–4734 (2018)

14. Vartak, M., Madden, S.: MODELDB: opportunities and challenges in managing
machine learning models. IEEE Data Eng. Bull. 41, 16–25 (2018)

15. Weber, C., Hirmer, P., Reimann, P., Schwarz., H.: A new process model for the
comprehensive management of machine learning models. In: Proceedings of the
21st International Conference on Enterprise Information Systems , ICEIS, vol. 1,
pp. 415–422. INSTICC, SciTePress (2019)

16. Weber, C., Wieland, M., Reimann, P.: Konzepte zur Datenverarbeitung in Ref-
erenzarchitekturen für Industrie 4.0: Konsequenzen bei der Umsetzung einer IT-
Architektur. Datenbank-Spektrum 18(1), 39–50 (2018)

17. Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufac-
turing: advantages, challenges, and applications. Prod. Manuf. Res. 4(1), 23–45
(2016)

18. Zaharia, M., Chen, A., et al.: Accelerating the machine learning lifecycle with
MLflow. IEEE Data Eng. Bull. 41(4), 39–45 (2018)

https://git-lfs.github.com/
https://git-lfs.github.com/
http://www.zvei.org/Publikationen/Implementation-Strategy-Industrie-40-ENG.pdf
http://www.zvei.org/Publikationen/Implementation-Strategy-Industrie-40-ENG.pdf
https://doi.org/10.1007/978-3-540-68899-0
https://dvc.org/

	A Model Management Platform for Industry 4.0 – Enabling Management of Machine Learning Models in Manufacturing Environments
	1 Introduction
	2 Exemplary Use Case and Requirements
	2.1 Use Case Environment
	2.2 Use Case for Model Management
	2.3 Required Functions of a Model Management Platform

	3 Related Work and Challenges
	4 Model Management Platform for Industry 4.0
	4.1 Metadata Schema
	4.2 Architecture

	5 Case Study
	6 Conclusions and Future Work
	References




