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1 Introduction

The aim of this paper is to describe the classes of maximal graph surfaces in
sub-Lorentzian geometry, namely, sufficient maximality conditions. The graph
mappings are constructed from mappings of two-step nilpotent graded groups.
These groups are a particular case of Carnot–Carathéodory spaces well-known in
various problems of pure and applied mathematics; see, e. g., [15] and references
therein. We also assume that the image and preimage are both subsets of another
nilpotent graded group possessing a sub-Lorentzian structure. This structure is a
sub-Riemannian generalization of Minkowski geometry. The main characteristic
of this geometry is that the distance between points (x1, t1) and (x2, t2), with
x1, x2 ∈ R

n and t1, t2 ∈ R, equals

√
(x1 − x2)2 − (t1 − t2)2,
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i.e., the squared distance along the time-like direction t is negative, while along
every space-like direction x ∈ R

n it is positive. If all tangent vectors to a surface
in R

n+1
1 have only positive lengths then this surface is called space-like and it is

locally representable as a graph, where the time-like variable depends on the space-
like variables: t = ψ(x) with x ∈ R

n. Under some additional assumptions it is
possible to deduce certain equations describing surfaces of maximal area; it follows
that their mean curvature vanishes a. e. According to Nielsen’s hypothesis, solutions
to Einstein’s gravity equations are physically meaningful if and only if they are
representable as such surfaces in R

n+1
1 . For the details concerning the properties,

applications and interpretations of Minkowski geometry, see [19] and references:
e.g., [20, 21] etc.

Sub-Lorentzian geometry is a relatively young branch of analysis; the first results
in this area were obtained in the 1990s; see [2]. Later, series of papers studied
some fine properties of geodesics together with their connection to relativity theory
problems; see, e. g., [5, 6, 16–18]. New cases of Minkowski geometry with multi-
dimensional time were studied recently in [1, 3] etc.

In [9], the author deduced necessary maximality conditions for classes of graph
surfaces and, moreover, the equations of maximal surfaces. Here the term “maximal
surface” means a surface of maximal area (under the assumption that a solution to
the corresponding boundary value problem exists). We emphasize that [9], in view
of certain fine properties of non-holonomic geometry, the definition of argument
increment of the area functional differs substantially from the classical one. Namely,
if the horizontal part of the argument changes arbitrarily to order ε then the other
part of the formula that corresponds to degree two fields depending on the horizontal
ones involves additional summands of order ε2. Consequently, when we take the
second differential of the area functional to obtain sufficient maximality conditions,
some new summands appear, which are absent in Riemannian geometry. Recall that
generally in non-holonomic structures the notions “maximal area” and “maximal
value of the area functional” are not the same. In the latter case, the functional can
take some maximal value but it need not correspond to any mapping defining a
surface of this area since the PDE problem may lack solutions.

The result of this paper was announced in [12].

2 Graphs on Carnot Groups

Let us recall necessary notions and results.

Definition 1 (See, e. g., [4]) A two-step Carnot group is a connected simply
connected stratified Lie group G with a graded Lie algebra V , that is, V = V1 ⊕ V2
with [V1, V1] = V2 and [V1, V2] = {0}. If we replace [V1, V1] = V2 by [V1, V1] ⊂
V2 and [V2, V2] = {0} then G is called a two-step nilpotent graded (Lie) group. A
basis in V is chosen so that each field belongs either to V1 or V2. The vector fields
in V1 are called horizontal and their degree is equal to one. Otherwise the degree is
equal to two.
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Definition 2 The derivatives along horizontal vector fields are called horizontal
derivatives.

The group operation is defined by the Baker–Campbell–Hausdorff formula.
Now, introduce the distance corresponding to the group structure.

Definition 3 (See, e. g., [12]) Take w = exp
( N∑

i=1
wiXi

)
(v) with w, v ∈ G.

Define d2(w, v) = max
{( ∑

j : deg Xj =1
w2

j

) 1
2
,
( ∑

j : deg Xj =2
w2

j

) 1
4
}

. The set {w ∈ G :
d2(w, v) < r} is called the radius r > 0 ball in d2 centered at v and is denoted by
Box2(v, r).

Definition 4 ([22]; See Also [23] for the General Case) A mapping ϕ : U →
K̃, U ⊂ K, where K and K̃ are nilpotent graded groups, is hc-differentiable
at x ∈ U if there exists a horizontal homomorphism Lx : K → K̃ such that
d2(ϕ(w),Lx〈w〉) = o(d2(x,w)), where U � w → x. The hc-differential Lx at x is
denoted by D̂ϕ(x).

Definition 5 (See, e. g., [23]) If the horizontal derivatives of ϕ exist everywhere
and are continuous, while the images of horizontal vector fields are horizontal,
then ϕ is called a mapping of class C1

H , or C1
H -mapping.

Let us now give a precise description of the setup. To this end, we consider a
mapping ϕ : � → G̃, where:

1. � ⊂ G is an open set and ϕ : � → G̃ is a C1
H -mapping;

2. G is a Carnot group of topological dimension N with basis vector
fields X1, . . . , XN , Lie algebra V = V1 ⊕ V2, where X1, . . . , Xdim V1 constitute
the basis of V1, and origin 0;

3. each degree two field on G can be uniquely expressed via the commutators of
horizontal fields:

Xk =
n∑

i,j=1

ak
i,j [Xi,Xj ], i < j, k = dim V1 + 1, . . . , N (1)

(this enables us to vary the argument arbitrarily; see the details in [10]);
4. G̃ is a two-step nilpotent graded group of topological dimension Ñ with basis

fields X̃1, . . . , X̃Ñ , Lie algebra Ṽ = Ṽ1 ⊕ Ṽ2, where X̃1, . . . , X̃dim Ṽ1
constitute

the basis of Ṽ1, structure constants [4] {clmq}l,m,q

[X̃l, X̃m] =
∑

q:deg X̃q=2

clmqX̃q, (2)

for l,m = 1, . . . , dim Ṽ1, and origin 0̃;
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5. G, G̃ ⊂ U, where U is a two-step nilpotent graded group of topological
dimension N + Ñ , and G ∩ G̃ = 0̂ = (0, 0̃);

6. the fields X1, . . . , XN and X̃1, . . . , X̃Ñ coincide with the restrictions of the basis
fields on U to the groups G and G̃ respectively; moreover, their degrees are equal
to those of the corresponding fields on U.

Note that the Cartesian product G × G̃ is a particular case of U. In general,
groupsG and G̃ are submanifolds of U intersecting at their origins. This intersection
coincides with the origin 0̂ of U.

The following property is used to obtain the main result.

Theorem 6 ([23]) Every C1
H -mapping ϕ of a Carnot group to a nilpotent graded

group is continuously hc-differentiable everywhere, that is, in a neighborhood of
each point x it is approximated by a horizontal homomorphism up to o(d2(x, ·)).
Moreover, the matrix of its hc-differential has a block-diagonal structure with
blocks (D̂ϕ)H and (D̂ϕ)H⊥ , where the first block corresponds to fields in V1 and Ṽ1,
and the second one, to fields in V2 and Ṽ2.

Definition 7 Given ϕ, the graph mapping ϕ� : � → U assigns to each x the

element ϕ�(x) = exp
( Ñ∑

j=1
ϕj (x)X̃j

)
(x), where exp

( Ñ∑

j=1
ϕj (x)X̃j

)
(̃0) = ϕ(x).

Straightforward calculations show that the graph mappings of C1
H -mappings

are neither hc-differentiable nor differentiable in the classical sense. Nevertheless,
a suitable tool, polynomial hc-differentiability, was created recently in [7, 8]. It
enables us to approximate graphs by smooth mappings. The main disadvantage of
graph mappings is that the differential of polynomial hc-differential does not have
block diagonal structure, which complicates the description of metric properties.
The solution is to introduce a new basis [8], called the intrinsic basis, close to initial
one but ensuring the desired structure of the polynomial hc-differential.

Theorem 8 ([14]) In a neighborhood of each ϕΓ (x), where x ∈ �, there exists an
intrinsic basis

Xi �→ xXi = Xi +
∑

k:deg Xk=2

aikXk +
∑

l:deg X̃l=2

bilX̃l

such that the matrix of the differential of polynomial hc-differential has block lower
triangle with blocks equal to union of blocks in D̂ϕ and unit matrices.

3 Sub-Lorentzian Structures

To describe the sub-Lorentzian structure on U, we introduce the following notation.
Since we consider non-holonomic generalization of Minkowski geometry with
multi-dimensional time, the main idea is to divide basis fields into “positive” and
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“negative”. Here, the squared length of integral curves of “negative” fields is set to
be negative.

Definition 9 Put {X1, . . . , XN, X̃1, . . . , X̃Ñ } = {Y1, . . ., YN̂ }, where N̂ = N + Ñ .
Moreover, let the Lie algebra V̂ on U be equal to V̂1 ⊕ V̂2 with

[V̂1, V̂1] ⊂ V̂2,

(X1, . . . , Xdim V1 , X̃1, . . . , X̃dim Ṽ1
) = (Y1, . . . , Ydim V̂ +

1
, Ydim V̂ +

1 +1, . . . , Ydim V̂1
),

{Ydim V̂ +
1 +1, . . . , Ydim V̂1

} = {X̃1, . . . , X̃dim Ṽ1
},

(Xdim V1+1, . . . , XN, X̃dim Ṽ1+1, . . . , XÑ )

= (Ydim V̂1+1, . . . , Ydim V̂1+dim V̂
+
2

, Ydim V̂1+dim V̂
+
2 +1, . . . , YN̂ ),

where (Ydim V̂1+dim V̂ +
2 +1, . . . , YN̂ ) = (X̃dim Ṽ1+1, . . . , XÑ ). Denote dim V̂2 = N̂ −

dim V̂1, dim V̂ −
1 = dim V̂1−dim V̂ +

1 (= dim Ṽ1) and dim V̂ −
2 = dim V̂2−dim V̂ +

2 (=
dim Ṽ2).

Definition 10 For a vector field T =
N̂∑

j=1
yjYj with constant coefficients, set the

squared sub-Lorentzian norm to be

dSL2

2 (T ) = max
{ dim V̂ +

1∑

j=1

y2
j −

dim V̂ −
1∑

k=1

y2
dim V̂ +

1 +k
,

sgn
( dim V̂ +

2∑

j=1

y2
dim V̂1+j

−
dim V̂ −

2∑

k=1

y2
dim V̂1+dim V̂ +

2 +k

)

×
∣∣∣

dim V̂ +
2∑

j=1

y2
dim V̂1+j

−
dim V̂ −

2∑

k=1

y2
dim V̂1+dim V̂ +

2 +k

∣∣∣
1/2}

.

If w = exp(T )(v) then the squared sub-Lorentzian distance d2
2(v,w) equals

dSL2

2 (T ). The d2
2-ball of radius r centered at v is Boxd2

2
(v, r) = {x ∈ U : d2

2(v, x) <

r2}.
The intrinsic squared distance xd2

2(v,w) is defined similarly with Yj replaced by
xYj for j = 1, . . . , N̂ .

Definition 11 For each x ∈ ϕ�(�), consider a neighborhood U(ϕ−1
� (x)) ⊂ �

where o(1) from the definition of hc-differentiability is sufficiently small. Consider
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δ0 > 0 such that each ball in � of radius r < T δ0 lies in at least one of these
neighborhoods (since we study local property, we may assume without loss of
generality that � ⊂ G is a compact neighborhood), where T satisfies

1

T
d2(vj ,w) ≤ vj d2

2(ϕ�(vj ), ϕ�(w))1/2 ≤ T d2(vj ,w).

Define the intrinsic measure SLHν
� on S ⊂ ϕ�(�) as

ωdim V1ωdim V2 lim
δ→0

inf
{ ∑

j∈N
rν
j :

⋃

j∈N
ϕ−1

� (xj ) Boxd2
2
(xj , rj ) ∩ ϕ�

(U(ϕ−1
� (xj ))

) ⊃ S,

xj ∈ S, rj < δ < δ0, j ∈ N

}
. (3)

To this end, rows 1, . . . , dim Ṽ1 of the matrix of the hc-differential together
are denoted by (D̂ϕ)H (x). Assume that the squares of its column lengths are
at most 1

2 dimV 2
1

− c with c > 0. The block starting from row dim Ṽ1 + 1 is

denoted by (D̂ϕ)H⊥(x) and we assume that the squares of its column lengths are at
most 1

dim V2
− c with c > 0.

Remark 12 The above restrictions guarantee the space-like property of the surface
ϕ�(�); see the details in [14].

One of the main results of [14] is the following area formula for the graphs
of C1

H -mappings defined on a two-step Carnot group with values in a two-step
nilpotent graded group. We formulate it for our case.

Theorem 13 The surface ϕ�(�) is space-like and its SLHν
�-measure is

∫

�

SLJ (ϕ, v) dHν(v) =
∫

ϕ�(�)

d SLHν
b(y), (4)

where the sub-Lorentzian Jacobian SLJ (ϕ, v) equals

√
det

(
EdimV1 − (D̂ϕ)∗H(D̂ϕ)H

)√
det

(
Edim V2 − (D̂ϕ)∗

H⊥(D̂ϕ)H⊥
)

and SLHν
b is defined the same way as SLHν

� , where ωdim V1ωdim V2r
ν
j is replaced by

b(xj , rj , ν), j ∈ N; see details in [13]. If the matrix of D(D̂P ϕ�) has block diagonal
structure everywhere then SLHν

b = SLHν
� .

The following notions are important for our description of the main properties of
maximal surfaces.
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Definition 14 (cf. [11]) The area functional S(ϕ) defined on the class of graph
mappings constructed from C1

H -mappings is

∫

�

√
det

(
EdimV1 − (D̂ϕ)∗H(D̂ϕ)H

)√
det

(
EdimV2 − (D̂ϕ)∗

H⊥(D̂ϕ)H⊥
)
dHν.

(5)

The area functional increment on ξ : � → R
dim Ṽ1 with ξ = (ξ1, . . . , ξdim Ṽ1

)

equals S(ϕ, ξ, ε) − S(ϕ), where S(ϕ, ξ, ε) is the integral over � of

√
det

(
EdimV1 − (

(D̂ϕ)H + εDH ξ
)∗(

(D̂ϕ)H + εDH ξ
))

×
√

det
(
EdimV2 − (

(D̂ϕ)H⊥ + εP1 + ε2P2
)∗(

(D̂ϕ)H⊥ + εP1 + ε2P2
))

,

DH denotes differentiation along the horizontal fields only, P1(x)〈Xk〉 and
P2(x)〈Xk〉 are equal to

2
dimV1∑

i,j=1

ak
i,j

∑

q>dim Ṽ1

dim Ṽ1∑

l,m=1

(
(D̂ϕ(x))liXj ξm(x) − (D̂ϕ(x))ljXiξm(x)

)
clmqX̃q,

(6)

and

dim V1∑

i,j=1

ak
i,j

∑

q>dim Ṽ1

dim Ṽ1∑

l,m=1

(
Xiξl(x)Xjξm(x) − Xiξm(x)Xjξl(x)

)
clmqX̃q, (7)

respectively, ak
i,j are from (1), clmq are from (2), i, j = 1, . . . , dim V1 with i < j ,

k, l,m = 1, . . . , dim Ṽ1, q = dim Ṽ1 + 1, . . . , Ñ (see the details in [10] and [11]).

Definition 15 Take � ⊂ G, ξ1, . . . , ξdim Ṽ1
∈ C1

H (�,R), and m ∈ N. Define the
norm ‖ξ‖m for ξ as

‖ξ‖m =
( ∫

�

dim Ṽ1∑

k=1

|ξk(x)|m +
∑

β: |β|=m

|̂ξ(x)β | dHν(x)

) 1
m

,
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and the (semi)norm ‖ξ‖H,m for ξ = (ξ1, . . . , ξdim Ṽ1
) as

‖ξ‖H,m =
( ∫

�

∑

β: |β|=m

|̂ξ(x)β | dHν(x)

) 1
m

,

where ξ̂ = (X1ξ1, . . . , X1ξdim Ṽ1
,X2ξ1, . . . , Xdim V1ξdim Ṽ1

).

Definition 16 The domain � ⊂ G is called horizontally attainable if each interior
point of it can be connected to a boundary point by a curve consisting of a finite
number of integral lines of horizontal vector fields.

Theorem 17 The area functional (5) is differentiable twice with respect
to the norm ‖ · ‖max{6 dimV1,12 dimV2}. If � is horizontally attainable then
‖ · ‖H,max{6 dimV1,12 dimV2} is a norm, and (5) is also differentiable twice with
respect to it.

The proof follows the scheme of [10, Theorem 5] almost verbatim with
obvious changes. The main idea is to deduce the expression of the third
derivative of

√
f1(ε)

√
f2(ε) at ε and then to estimate the maximal degree of

X1ξ, . . . , Xdim V1ξ in

√
det

(
EdimV1 − (

(D̂ϕ)H + εDHξ
)∗(

(D̂ϕ)H + εDH ξ
))

and

f2(ε) =
√

det
(
EdimV2 − (

(D̂ϕ)H⊥ + εP1 + ε2P2
)∗(

(D̂ϕ)H⊥ + εP1 + ε2P2
))

as well as their derivatives at ε.

Theorem 18 Assume that ak
i,j in (1), clmq in (2), i, j = 1, . . . , dim V1 with i < j ,

k, l,m = 1, . . . , dim Ṽ1, q = dim Ṽ1 + 1, . . . , Ñ , are sufficiently small. If there
exists K > 0 such that

∫

�

‖DH ξ‖2
(

√
det

(
Edim V2 − (D̂ϕ)∗

H⊥ (D̂ϕ)H⊥
)

√
det

(
Edim V1 − (D̂ϕ)∗H (D̂ϕ)H

)

+
√

det
(
Edim V1 − (D̂ϕ)∗H (D̂ϕ)H

)

√
det

(
Edim V2 − (D̂ϕ)∗

H⊥(D̂ϕ)H⊥
)

)
dHν(x) ≥ K‖ξ‖2

max{6 dim V1,12 dim V2},
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and the necessary maximality condition

∫

�

D1(ϕ, ξ)

√
det

(
Edim V2 − (D̂ϕ)∗

H⊥(D̂ϕ)H⊥
)

√
det

(
Edim V1 − (D̂ϕ)∗H(D̂ϕ)H

) dHν

+
∫

�

D2(ϕ, ξ)

√
det

(
Edim V1 − (D̂ϕ)∗H(D̂ϕ)H

)

√
det

(
Edim V2 − (D̂ϕ)∗

H⊥(D̂ϕ)H⊥
) dHν = 0 (8)

holds (cf. [11]), where D1(ϕ, ξ, x) and D2(ϕ, ξ, x) are equal to

dim V1∑

i=1

dim V1∑

j=1

〈
DH ξi(x), (D̂ϕj )H (x)

〉(
Edim V1 − (D̂ϕ)∗H (x)(D̂ϕ)H (x)

)
ij

+
dim V1∑

i=1

dim V1∑

j=1

〈
(D̂ϕi)H (x),DH ξj (x)

〉(
Edim V1 − (D̂ϕ)∗H (x)(D̂ϕ)H (x)

)
ij

,

and

dim V2∑

i=1

dim V2∑

j=1

〈
(P1)i (x),

(
(D̂ϕ)H⊥

)
j
(x)

〉(
Edim V2 − (D̂ϕ)∗

H⊥(x)(D̂ϕ)H⊥(x)
)
ij

+
dim V2∑

i=1

dim V2∑

j=1

〈(
(D̂ϕ)H⊥

)
i
(x), (P1)j (x)

〉(
Edim V2 − (D̂ϕ)∗

H⊥ (x)(D̂ϕ)H⊥(x)
)
ij

,

respectively, then (5) takes maximal value at ϕ on its neighborhood. For a
horizontally attainable domain �, we may use ‖ · ‖H,max{6 dimV1,12 dimV2} instead
of ‖ · ‖max{6 dim V1,12 dimV2}.

Proof This statement is actually a reformulation of the following condition of
strong positivity of the area functional: if the functional F is differentiable twice,
its first variation at ζ ∗ equals zero, and the second variation is strongly positive in
the sense that there exists K > 0 such that δ2F(ζ ∗, δζ ) ≥ K‖δζ‖2 then F has
minimum at ζ ∗. The necessary condition (8) is deduced in the same way as in [10,
Theorem 6]. To describe sufficiency estimates, put

f1(ε) = det
(
Edim V1 − (

(D̂ϕ)H + εDH ξ
)∗(

(D̂ϕ)H + εDH ξ
))

,

f2(ε) = det
(
Edim V2 − (

(D̂ϕ)H⊥ + εP1 + ε2P2
)∗(

(D̂ϕ)H⊥ + εP1 + ε2P2
))

.
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Then

(√
f1(ε)

√
f2(ε)

)′′ = f ′′
1

√
f2

2
√

f1
+ f ′′

2

√
f1

2
√

f2

+ f ′
1f

′
2

2
√

f1
√

f2
− (f ′

1)
2√f2

4f
3/2
1

− (f ′
2)

2√f1

4f
3/2
2

≤ f ′′
1

√
f2

2
√

f1
+ f ′′

2

√
f1

2
√

f2
.

Consequently, it suffices to estimate the values f ′′
1 and f ′′

2 in terms of DH ξ . For
f ′′

1 , we see that it coincides with the sum of determinants of the modified matrices
EdimV1 − (D̂ϕ)∗H(D̂ϕ)H where row k is replaced by −2Xkξ · DH ξ or rows i and j

with i �= j are replaced by −Xiξ · (D̂ϕ)H − Xiϕ · DH ξ and −Xjξ · (D̂ϕ)H −
Xjϕ · DH ξ respectively, for i, j, k = 1, . . . , dim Ṽ1. Here Xiϕ stands for row i of
(D̂ϕ)TH .

Applying, if necessary, orthogonal transformations OH = OH(x) and OH⊥ =
OH⊥(x), where x ∈ �, we may assume without loss of generality that
(D̂ϕ)∗H(D̂ϕ)H and (D̂ϕ)∗

H⊥(D̂ϕ)H⊥ are diagonal matrices. Note that this
transformation corresponds to orthogonal transformation of bases within V1(x)

and within V2(x), thus, all lengths and scalar products are the same at x. Fix
x ∈ �. The assumption on the column lengths of these matrices implies that
the (diagonal) elements 1 − a1, . . . , 1 − adim V1 of EdimV1 − (D̂ϕ)∗H(D̂ϕ)H are
positive and strictly separated from 0 everywhere in �. Thus, if we replace row k

of EdimV1 − (D̂ϕ)∗H(D̂ϕ)H by −2Xkξ · DH ξ then the corresponding determinant
equals

−2〈Xkξ,Xkξ〉
∏

m:m�=k

(1 − am) = −2
∏

m:m�=k

(1 − am)‖Xkξ‖2 < 0,

since max
j=1,...,dimV1

{aj } ≤ 1
3 dimV1

− c with c > 0 for k = 1, . . . , dim Ṽ1. Next,

consider the first group of dim V1(dim V1 − 1) determinants. Each of them equals
the sum of four determinants of the modified matrix EdimV1 −(D̂ϕ)∗H (D̂ϕ)H , where
rows i and j with i �= j are replaced by only one term. Consider the corresponding
cases and estimate each value.

Case 1 Rows i and j are replaced by −Xiξ · (D̂ϕ)H and −Xjξ · (D̂ϕ)H . Then, the
determinant is estimated as

∏

m:m�=i,j

(1 − am)〈Xiξ · (D̂ϕ)H ,Xjξ · (D̂ϕ)H 〉

≤ 1

2

∏

m:m�=i,j

(1 − am)‖(D̂ϕ)H ‖2(‖Xiξ‖2 + ‖Xjξ‖2).
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Case 2 Rows i and j are replaced by −Xiϕ ·DHξ and −Xjξ ·(D̂ϕ)H . The estimate
is

∏

m:m�=i,j

(1 − am)〈Xiϕ · DH ξ,Xj ξ · (D̂ϕ)H 〉

≤ 1

2

∏

m:m�=i,j

(1 − am)
(
ai

dim V1∑

q=1

‖Xqξ‖2 + ‖(D̂ϕ)H‖2‖Xjξ‖2
)
.

Case 3 If rows i and j are replaced by −Xiξ · (D̂ϕ)H and −Xjϕ · DHξ , then the

estimate equals 1
2

∏

m:m�=i,j

(1 − am)
(
aj

dim V1∑

q=1
‖Xqξ‖2 + ‖(D̂ϕ)H‖2‖Xiξ‖2

)
.

Case 4 If rows i and j are replaced by −Xiϕ ·DH ξ and −Xjϕ ·DH ξ then we have

1
2

∏

m:m�=i,j

(1 − am)
(
ai

dim Ṽ1∑

q=1
‖Xqξ‖2 + aj

dim Ṽ1∑

q=1
‖Xqξ‖2

)
.

Fix i and recall that ‖(D̂ϕ)H‖2 =
dim V1∑

q=1
aq as the trace of D̂H ϕ∗D̂H ϕ. We infer

that the coefficient at ‖Xiξ‖2 is equal to

dimV1∑

q=1

aq

∑

j :j �=i

∏

m:m�=i,j

(1 − am) +
dimV1∑

q=1

∑

j :j �=q

∏

m:m�=q,j

(1 − am)aq

− 2
∏

m:m�=i

(1 − am) ≤ −
∏

m:m�=i

(1 − am) − ĉ < 0

with ĉ > 0 since 0 < max
q=1,...,dim V1

{aq} ≤ 1
2 dimV 2

1
− c with c > 0 for i =

1, . . . , dim V1.
Consider now f ′′

2 and its estimates. It coincides with the sum of determinants
of the modified matrices EdimV1 − (D̂ϕ)∗

H⊥(D̂ϕ)H⊥ where row k is replaced by

−2(P ∗
2 )k · (Dϕ)H⊥ − 2(P ∗

1 )kP1 − 2
(
(D̂ϕ)H⊥

)
k
P2, or rows i and j with i �= j are

replaced by −(P ∗
1 )i · (D̂ϕ)H⊥ − (D̂ϕi)H · P1 and −(P ∗

1 )j · (D̂ϕ)H⊥ − (D̂ϕj )H · P1
respectively, for i, j, k = 1, . . . , dim V2. In contrast to the horizontal case, each
summand depending on the horizontal derivatives of ξ has coefficients depending
on the entries of D̂H ϕ. Thus, the absolute value of the coefficient at ‖DH ξ‖2 can
be considered strictly less than

∏

m:m�=i

(1 − am). Since each summand also contains

products of ak
i,j and clmq , we can easily see that if they are sufficiently small then

|f ′′
2 | ≤ ‖DH ξ‖2 ·

∏

m:m�=i

(1 − am),
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and finally

(√
f1(ε)

√
f2(ε)

)′′ ≤ f ′′
1
√

f2

2
√

f1
+ f ′′

2
√

f1

2
√

f2
≤ −ĉ‖DH ξ‖2

(√
f2√
f1

+
√

f1√
f2

)
, ĉ > 0.

Thus, the functional −S(ϕ) has minimum since its second variation is strongly
positive; and therefore the area functional (5) has maximum at ϕ. The theorem
follows. ��
Remark 19 We may replace strong restrictions on |ak

i,j | and |clmq | by adding some

restrictions to ‖(D̂ϕ)H‖ since all coefficients at the horizontal derivatives of ξ

contain the horizontal derivatives of ϕ. Moreover, it is possible to deduce restrictions
on (D̂ϕ)H basing on the given values of ak

i,j and clmq for i, j = 1, . . . , dim V1 with

i < j and k, l,m = 1, . . . , dim Ṽ1, q = dim Ṽ1 + 1, . . . , Ñ .
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