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Abstract We report on the trigonometric spin Ruijsenaars–Sutherland hierarchy
derived recently by Poisson reduction of a bi-Hamiltonian hierarchy associated with
free geodesic motion on the Lie group U(n). In particular, we give a direct proof of
a previously stated result about the form of the second Poisson bracket in terms of
convenient variables.
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1 Introduction

The classical integrable many-body models of Calogero–Moser–Sutherland and
Ruijsenaars–Schneider as well as their extensions by internal degrees of freedom are
in the focus of intense investigations even today, many years after their inception.
See [1–4] and references therein. One of the sources of these models is Hamiltonian
reduction of obviously integrable ‘free motion’ on suitable higher dimensional
phase spaces, among which cotangent bundles and their Poisson–Lie analogues
are the prime examples. In this framework, the emergence of the internal degrees
of freedom, colloquially called ‘spin’, originates from the fact that symplectic
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reductions of cotangent bundles are in general not cotangent bundles, but more
complicated phase spaces.

We do not have a single, all encompassing framework for understanding
integrable Hamiltonian systems, but there exist several powerful approaches with
large intersections of their ranges of applicability. For example, the method of the
classical r-matrix incorporates many famous systems, like Toda lattices, that can be
derived by Hamiltonian reduction, too, as reviewed in [9, 10]. The r-matrix method
and Hamiltonian reduction also have several links to the bi-Hamiltonian approach
initiated by Magri [8].

It was pointed out in the recent paper [4] that one of the simplest finite-
dimensional integrable systems, the free geodesic motion on the unitary group
U(n), admits a natural bi-Hamiltonian structure, and a suitable reduction of this
free system gives rise to the so-called spin Ruijsenaars–Sutherland hierarchy. In
this contribution, we overview the results of [4], and give a new, direct proof of a
statement formulated in this reference without detailed proof.

2 Bi-Hamiltonian Hierarchy on T ∗U(n) and Its Reduction

In this section we present a terse review of the results of [4].
Our starting point is the manifold T ∗U(n), which we identify with the set

M := U(n) × H(n) := {(g, L) | g ∈ U(n), L ∈ H(n)}, (1)

using right-trivialization. Here, the vector space of Hermitian matrices,
H(n) = iu(n), serves as the model of the dual u(n)∗ of the Lie algebra u(n).

Consider the real Lie algebra gl(n,C) endowed with the non-degenerate bilinear
form

〈X,Y 〉 := � tr(XY ), ∀X,Y ∈ gl(n,C). (2)

Then gl(n,C) is the vector space direct sum of its isotropic Lie subalgebras u(n)

and b(n), where b(n) contains the upper triangular matrices with real entries along
the diagonal. Consequently, we can decompose any X ∈ gl(n,C) as

X = Xu(n) + Xb(n), Xu(n) ∈ u(n), Xb(n) ∈ b(n). (3)

We also have another decomposition into isotropic linear subspaces,
gl(n,C) = u(n) + H(n). Thus both b(n) and H(n) can serve as models of u(n)∗.

For any real function F ∈ C∞(M), introduce the derivatives

D1F,D′
1F ∈ C∞(M, b(n)) and d2F ∈ C∞(M, u(n)) (4)
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by the relation

〈D1F(g,L),X〉 + 〈D′
1F(g,L),X′〉 + 〈d2F(g,L), Y 〉

= d

dt

∣
∣
∣
∣
t=0

F(etXgetX′
, L + tY ), (5)

for every X,X′ ∈ u(n) and Y ∈ H(n). The ‘free Hamiltonians’ of our interest are

Hk(g,L) := 1

k
tr(Lk), ∀k ∈ N. (6)

These feature in the ‘free bi-Hamiltonian hierarchy’ on M, which is given by the
next theorem.

Theorem 1 ([4]) The following formulae define two compatible Poisson brackets
on M:

{F,H }1(g, L) = 〈D1F, d2H 〉 − 〈D1H, d2F 〉 + 〈L, [d2F, d2H ]〉 , (7)

and

{F,H }2(g, L) = 〈D1F,Ld2H 〉 − 〈D1H,Ld2F 〉

+ 2
〈

Ld2F, (Ld2H)u(n)

〉 − 1

2

〈

D′
1F, g−1(D1H)g

〉

, (8)

where the derivatives are taken at (g, L) and (3) is applied. The Hamiltonians Hk

satisfy

{F,Hk}2 = {F,Hk+1}1, ∀F ∈ C∞(M), (9)

and {Hk,H�}1 = {Hk,H�}2 =0 for every k, � ∈ N. The bi-Hamiltonian flow
of the systems (M, { , }2,Hk) and (M, { , }1,Hk+1) is given by (g(t), L(t)) =
(

exp(itL(0)k)g(0), L(0)
)

.

The first Poisson bracket is the canonical one carried by the cotangent bundle of
U(n), while the second one arises from the Heisenberg double [12] of the Poisson–
Lie group U(n). The latter point is explained in [4], where it is also noted that the
Lie derivative of the Poisson tensor of { , }2 along the infinitesimal generator of the
flow (g(t), L(t)) = (g(0), L(0) + t1n) is the Poisson tensor of { , }1. This implies
[13] compatibility, and the rest of the statements is readily checked as well.

The fact that the flow generated by the Hamiltonian H1 on the Heisenberg
double of U(n) projects to free motion on U(n) was pointed out long time ago by
S. Zakrzewski [14], which served as one of the motivations behind Theorem 1.
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The ‘conjugation action’ of U(n) on M associates with every η ∈ U(n) the
diffeomorphism Aη of M that operates according to

Aη(g,L) := (ηgη−1, ηLη−1). (10)

A key property of the Poisson brackets on M is that they can be restricted to the set
of invariant functions with respect to this action, denoted C∞(M)U(n). This means
that if F,H ∈ C∞(M)U(n), then the same holds for their Poisson brackets {F,H }i
for i = 1, 2. Because the Hamiltonians Hk are also invariant, we can restrict the ‘free
hierarchy’ to U(n)-invariant observables. This procedure, called Poisson reduction
[10], is an algebraic formulation of projection onto the quotient space M/U(n).

Any smooth function on M can be recovered from its restriction to the dense
open submanifold Mreg ⊂ M, which contains the points (g, L) with g having
distinct eigenvalues. Moreover, F ∈ C∞(Mreg)

U(n) is uniquely determined by its
restriction f on the manifold Tn

reg × H(n), where Tn
reg is the set of regular elements

in the standard maximal torus of U(n). In fact, restriction engenders a one-to-one
correspondence

C∞(Mreg)
U(n) ←→ C∞(Tn

reg × H(n))N (n), (11)

where N (n) is the normalizer of Tn in U(n), whose action preserves Tn
reg × H(n).

Note that N (n) is the semi-direct product of the permutation group Sn, naturally
embedded into U(n), with Tn. By taking advantage of the correspondence (11),
one can encode the Poisson brackets on C∞(Mreg)

U(n) by two compatible Poisson
brackets { , }red

i on C∞(Tn
reg × H(n))N (n). The main result of [4] is the formula of

these reduced Poisson brackets.
For f ∈ C∞(Tn

reg ×H(n)), the b(n)0-valued derivative D1f and the u(n)-valued
derivative d2f are defined by the equality

〈D1f (Q,L),X〉 + 〈d2f (Q,L), Y 〉 = d

dt

∣
∣
∣
∣
t=0

f (etXQ,L + tY ), (12)

for every X ∈ u(n)0 and Y ∈ H(n), where b(n)0 and u(n)0 denote the subalgebras of
diagonal matrices in b(n) and u(n), respectively. Decompose gl(n,C) as the vector
space direct sum of subalgebras

gl(n,C) = gl(n,C)+ + gl(n,C)0 + gl(n,C)−, (13)

defined by means of the principal gradation. Accordingly, we can decompose any
X ∈ gl(n,C) as X = X+ + X0 + X−, where X0 is diagonal and X+ is strictly
upper-triangular. Then, for Q ∈ Tn

reg, introduce R(Q) ∈ End(gl(n,C)) by setting it
equal to zero on gl(n,C)0 and defining it otherwise as

R(Q)|gl(n,C)++gl(n,C)− := 1

2
(AdQ + id) ◦

(

(AdQ − id)|gl(n,C)++gl(n,C)−

)−1
,

(14)
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where AdQ(X) = QXQ−1 for all X ∈ gl(n,C). The definition makes sense
because of the regularity of Q. Note that 〈R(Q)X, Y 〉 = −〈X,R(Q)Y 〉, and
introduce the notation

[X,Y ]R(Q) := [R(Q)X, Y ] + [X,R(Q)Y ], ∀X,Y ∈ gl(n,C). (15)

Theorem 2 ([4]) For f, h ∈ C∞(Tn
reg × H(n))N (n), the reduced Poisson brackets

have the form

{f, h}red
1 (Q,L) = 〈D1f, d2h〉 − 〈D1h, d2f 〉 + 〈L, [d2f, d2h]R(Q)〉, (16)

and

{f, h}red
2 (Q,L) = 〈D1f,Ld2h〉−〈D1h,Ld2f 〉+2〈Ld2f,R(Q)(Ld2h)〉, (17)

where the derivatives are evaluated at (Q,L), and the notations (14) and 15) are
applied.

The reduced system that descends from the free hierarchy generated the Hamilto-
nians Hk (6) is called spin Ruijsenaars–Sutherland hierarchy. The reason for this
terminology will become clear in the next section. For the reduced equations of
motion and remarks on their integrability, see [4].

3 Useful Changes of Variables

In the first subsection we introduce new variables that behave as canonically
conjugate pairs and ‘spin variables’ with respect to the second Poisson bracket, and
allow us to interpret tr(L) as a spin Ruijsenaars Hamiltonian. These new variables
go back to the papers [3, 4]. In the second subsection we describe another, in
this case well-known [5, 7], set of new variables, which convert the first Poisson
bracket into that of canonical pairs and (other kind of) spin variables, and lead to the
interpretation of tr(L2) as a spin Sutherland Hamiltonian.

3.1 Interpretation as Spin Ruijsenaars Model

We now discuss the change of variables that the underlie the interpretation of the
reduced free system as a spin Ruijsenaars model. For this purpose, we focus on the
second Poisson bracket (17), and restrict ourselves to the open submanifold

T
n
reg × P(n) ⊂ T

n
reg × H(n), (18)
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where P(n) denotes the set of positive definite Hermitian matrices. It is a standard
fact of linear algebra that any L ∈ P(n) can be uniquely written in the form

L = bb† with b ∈ B(n), (19)

and b ∈ B(n) can be decomposed as

b = epb+ with p ∈ b(n)0, b+ ∈ B(n)+, (20)

where B(n)+ is the group of upper triangular matrices with unit diagonal. We define

λ := b−1+ Q−1b+Q, (21)

and obtain the change of variables

T
n
reg × P(n) � (Q,L) ←→ (Q,p, λ) ∈ T

n
reg × b(n)0 × B(n)+. (22)

A grade by grade inspection of the defining relation (21) shows that this is
a diffeomorphism between the respective spaces. Thus every function f (Q,L)

corresponds to a unique function F(Q,p, λ). The diffeomorphism (22) induces an
action of N (n) on Tn

reg × b(n)0 × B(n)+, and we are interested in the invariant
functions. The action of the subgroup Tn < N (n) is especially simple, it is given
by

(Q,p, λ) �→ (Q,p, τλτ−1), ∀τ ∈ T
n, (23)

since this corresponds to (Q,L) �→ (Q, τLτ−1).
For any F ∈ C∞(Tn

reg × b(n)0 × B(n)+), we define the derivatives DQF ∈
b(n)0, dpF = u(n)0 and DλF , D′

λF ∈ u(n)⊥ by

d

dt

∣
∣
∣
∣
t=0

F(etX0Q,p + tY0, e
tX+λetY+)

= 〈DQF ,X0〉 + 〈dpF , Y0〉 + 〈DλF ,X+〉 + 〈D′
λF , Y+〉. (24)

Here, X0 ∈ u(n)0, Y0 ∈ b(n)0 and X+, Y+ ∈ b(n)+ are arbitrary, the argument
(Q,p, λ) is suppressed on the right hand side, and u(n)⊥ denotes the off-diagonal
linear subspace of u(n).

The next proposition was stated previously without elaborating its proof.
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Proposition 3 ([4]) Consider the functionsF ,H ∈ C∞(Tn
reg×b(n)0×B(n)+)N (n)

that are related to f, h ∈ C∞(Tn
reg × P(n))N (n) according to

F(Q,p, λ) = f (Q,L), H(Q,p, λ) = h(Q,L) with

L = epb+b
†
+ep, λ := b−1+ Q−1b+Q. (25)

In terms of the variables (Q,p, λ), the second Poisson bracket (17) takes the form

2{F ,H}red
2 (Q,p, λ) = 〈DQF , dpH〉 − 〈DQH, dpF〉 + 〈D′

λF , λ−1(DλH)λ〉,
(26)

where the derivatives are evaluated at (Q,p, λ).

Proof Recall that (Q,L), (Q, b) and (Q,p, λ) are alternative sets of variables. In
particular, we have the invertible correspondences:

(Q,L) ↔ (Q, b) ↔ (Q,p, λ) with L = bb†, ep := bdiag, λ := b−1Q−1bQ.

(27)

Here, we suppressed that λ does not depend on p. Any tangent vector at a fixed
(Q, b) can be represented as the velocity vector at t = 0 of a curve of the form

(Q(t), b(t)) = (etξQ, betβ), with some ξ ∈ u(n)0, β = (β0 + β+) ∈ b(n).

(28)

In terms of the alternative variables, the corresponding curves are easily seen to
satisfy

L(t) = L + tb(β + β†)b† + o(t),

λ(t) = λ exp
(

t
[

ξ − Q−1b−1ξbQ + Q−1βQ − λ−1βλ
] + o(t)

)

,

p(t) = p + tβ0 + o(t).

(29)

Of course, the curve that appears in the exponent after λ lies in b(n)+. Let us now
consider a function on our space, which is either expressed as (Q,L) �→ f (Q,L),
or equivalently as (Q,p, λ) �→ F(Q,p, λ). By the definition of derivatives, we
obtain the equality

d

dt

∣
∣
∣
∣
t=0

f
(

Qetξ , L + tb(β + β†)b† + o(t)
)

= d

dt

∣
∣
∣
∣
t=0

F(

Qetξ , p+ tβ0, λ exp(t[ξ −Q−1b−1ξbQ+Q−1βQ−λ−1βλ]+o(t))
)

.

(30)
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This generates the following relations between the derivatives of f and F :

〈2b†d2f b − dpF − QD′
λFQ−1 + (λD′

λFλ−1)u(n) , β〉
+ 〈D1f − DQF −D′

λF + bQD′
λFQ−1b−1 , ξ〉 = 0, ∀ξ ∈ u(n)0, ∀β ∈ b(n).

(31)

The derivatives of f and F are taken at (Q,L) and at (Q,p, λ), respectively,
according to (12) and (24). We have 〈D′

λF , ξ〉 = 0, and the conventions
D′

λF , DλF ∈ u(n)⊥ imply

(λD′
λFλ−1)u(n) = DλF + (λD′

λFλ−1)im −diag. (32)

The matrix Xim −diag is obtained from the matrix X by setting to zero the off-
diagonal entries and the real parts of the diagonal entries of X, and (3) is used.

From the first term in (31) (the one involving arbitrary β), we must have

A := 2b†d2f b − dpF − QD′
λFQ−1 + (λD′

λFλ−1)u(n) ∈ b(n). (33)

But the formula of A shows that A ∈ u(n), and thence A = 0. It is convenient to
rewrite

2b†d2f b = QD′
λFQ−1 − λD′

λFλ−1 + [

dpF + λD′
λFλ−1 − (λD′

λFλ−1)u(n)

]

,

(34)

and, conjugating by b and using bλ = Q−1bQ, we get

2Ld2f = bQD′
λFQ−1b−1 − bλD′

λFλ−1b−1

+ Adb[dpF + AdλD
′
λF − (λD′

λFλ−1)u(n)]
= (AdQ − id)AdQ−1bQD′

λF + Adb[dpF + AdλD
′
λF − (λD′

λFλ−1)u(n)],
(35)

from which it is easy to obtain

2R(Q)(Ld2f ) = 1

2
(AdQ + id)AdQ−1bQD′

λF − (bQD′
λFQ−1b−1)diag

+ R(Q)
(

Adb[dpF + AdλD
′
λF − (λD′

λFλ−1)u(n]
)

. (36)

Of course, we could have written everywhere AdλD
′
λF − (λD′

λFλ−1)u(n) ≡
(AdλD

′
λF)b(n). Note also that Adm denotes conjugation by m for any m ∈

GL(n,C).
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A glance at the last equation (36) shows that the expression in the second line
belongs to b(n)+, and this is crucial for the computation of 〈Ld2f,R(Q)(Ld2h)〉
(cf. (17)):

4〈Ld2f , R(Q)(Ld2h)〉 =
〈(AdQ − id)AdQ−1bQD′

λF + Adb[dpF + AdλD
′
λF − (λD′

λFλ−1)u(n)] ,

− (AdbQD′
λH)diag + 1

2 (AdQ + id)AdQ−1bQD′
λH

+ R(Q)
(

Adb[dpH + AdλD
′
λH − (λD′

λHλ−1)u(n)]
)〉

= 1
2 〈AdbQD′

λF , AdQ−1bQD′
λH〉 + 1

2 〈dpF + AdλD
′
λF − (λD′

λFλ−1)u(n) ,

AdQD′
λH + AdλD

′
λH − 2(AdbQD′

λH)diag〉 − (F ↔ H)

= 1
2 〈AdQD′

λF , AdλD
′
λH〉 + 1

2 〈dpF , AdλD
′
λH − 2bQD′

λHQ−1b−1〉
+ 1

2 〈AdλD
′
λF , AdQD′

λH〉 + 〈(λD′
λFλ−1)u(n) − AdλD

′
λF , (AdbQD′

λH)diag〉
− 1

2 〈(λD′
λFλ−1)u(n), AdλD

′
λH〉 − (F ↔ H). (37)

Notice that the terms at the beginning of the first two lines after the last equality sign
add up to

1
2 〈AdQD′

λF , AdλD
′
λH〉 + 1

2 〈AdλD
′
λF , AdQD′

λH〉, (38)

and this is symmetric with respect to exchange of F and H; thereby it cancels.
Notice also that the second expression in the second line simplifies as follows:

〈(λD′
λFλ−1)u(n) − AdλD

′
λF , (AdbQD′

λH)diag〉
= 〈(λD′

λFλ−1)u(n) − AdλD
′
λF , (AdbQD′

λH)im −diag〉
= −〈AdλD

′
λF , (AdbQD′

λH)im −diag〉,
(39)

which will be shortly shown to vanish. To summarize, we obtained

4〈Ld2f , R(Q)(Ld2h)〉 = − 1
2 〈AdλD

′
λF , dpH + 2(AdbQD′

λH)im −diag〉
− 〈dpF , AdbQD′

λH〉 − 1
2 〈(λD′

λFλ−1)u(n), AdλD
′
λH〉 − (F ↔ H). (40)

Next, we may look at the other terms, and return to the ξ -term of (31). This gives

D1f = DQF − (AdbQD′
λF)real−diag, (41)
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which, together with (35)—discarding the term in the range of (AdQ − id) as this
is in the annihilator of b(n)0 – gives us

2〈D1f , Ld2h〉
= 〈DQF − (AdbQD′

λF)real−diag , Adb[dpH + AdλD
′
λH − (λD′

λHλ−1)u(n)]〉
= 〈DQF − (AdbQD′

λF)real−diag , dpH〉 = 〈DQF − AdbQD′
λF , dpH〉. (42)

Putting together now (40) and (42), the second term at the very end of (42) cancels,
and we arrive at

2{f, h}red
2 (Q,L) = 2〈D1f,Ld2h〉 − 2〈Ld2f,D1h〉 + 4〈Ld2f,R(Q)(Ld2h)〉

= 〈DQF , dpH〉 + 1
2 〈AdλD

′
λF , (λD′

λHλ−1)u(n)〉
− 1

2 〈AdλD
′
λF , ηH〉 − (F ↔ H), (43)

where u(n)0 � ηH := dpH + 2(AdbQD′
λH)im −diag represents the diagonal-

imaginary entities from the previous formulae. As explained below, for invariant
functions F and H, the term containing ηH vanishes, and we also have

〈AdλD
′
λF , (λD′

λHλ−1)u(n)〉
= 〈AdλD

′
λF ,DλH + (λD′

λHλ−1)im −diag〉 = 〈AdλD
′
λF ,DλH〉, (44)

where we used (32) and the property (45).
By the above, the claim of the proposition follows from (43) if we can verify

that for any F ∈ C∞(Tn
reg × b(n)0 × B(n)+)T

n
we have

〈X,λD′
λFλ−1〉 = 0, ∀X ∈ u(n)0. (45)

In order to justify this, we remark that

〈X,λD′
λFλ−1〉 = 〈λ−1Xλ − X,D′

λF 〉. (46)

Since λ−1Xλ − X ∈ b(n)+, we may rewrite this as

〈X,λD′
λFλ−1〉 = d

dt

∣
∣
∣
∣
t=0

F(

Q,p, λ exp(t[λ−1Xλ − X]))

= d

dt

∣
∣
∣
∣
t=0

F(

Q,p, etXλe−tX
)

. (47)

In the last step we used that d
dt

∣
∣
t=0 λ exp(t[λ−1Xλ−X]) = [X,λ]. We see from (47)

that (45) follows from the Tn-invariance of F , and hence the proof is complete. ��
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Regarding the interpretation of Proposition 3, it is worth pointing out that one
may view the restriction to N (n)-invariant functions on Tn

reg × b(n)0 × B(n)+ as
the result of a two step process. The first step consists in Hamiltonian reduction
of Tn

reg × b(n)0 × B(n) by the normal subgroup Tn. The formula (26) defines a
Poisson bracket already on the Tn-invariant functions. In fact, its last term can be
identified as the result of reduction of the multiplicative Poisson bracket on B(n)

by the conjugation action of Tn, at the zero value of the pertinent moment map. In
other words, the last term of (26) corresponds to the Poisson space B(n)//0T

n. (Cf.
Theorem 4.3 in [3].) The second step consists in taking quotient by Sn = N (n)/Tn.

When expressed in the variables (Q,p, λ), the Hamiltonian tr(L) = tr(bb†) =
tr(e2pb+b

†
+) can be written as

tr(L) =
n∑

i=1

e2piVi(Q, λ) with Vi(Q, λ) =
(

b+(Q, λ)b+(Q, λ)†
)

ii
, (48)

where λ is a ‘spin’ variable, and b+(Q, λ) denotes the solution of the equation (21)
for b+. An explicit formula of b+(Q, λ) can be extracted from Section 5.2 in [3].
Comparison of (48) with the light-cone Hamiltonians of the standard RS model [11]
justifies calling this a spin Ruijsenaars type Hamiltonian. A further justification is
that restriction of the system to a one-point symplectic leaf in B(n)//0T

n yields the
spinless trigonometric RS model [6].

3.2 Interpretation as Spin Sutherland Model

Concentrating on the first Poisson bracket (16), we present another set of useful
variables

(Q,p, φ) ∈ T
n
reg × H(n)0 × H(n)⊥, (49)

where the subscripts 0 and ⊥ refer to diagonal matrices and off-diagonal matrices,
respectively. The relevant change of variables is encoded by the diffeomorphism

γ : Tn
reg × H(n)0 × H(n)⊥ → T

n
reg × H(n) (50)

operating according to

γ : (Q,p, φ) �→ (Q,L(Q,p, φ)) with L(Q,p, φ) = p − (R(Q) + 1

2
id)(φ).

(51)
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We now express the functions f, h ∈ C∞(Tn
reg × H(n))N (n) in the form

f ◦ γ = F , h ◦ γ = H, F ,H ∈ C∞(Tn
reg × H(n)0 × H(n)⊥)N (n), (52)

where N (n) acts in the natural manner inherited from the conjugation action. The
Poisson bracket { , }red

1 on C∞(Tn
reg×H(n)0×H(n)⊥)N (n) is defined by the formula

{F ,H}red
1 ≡ {F ◦ γ −1,H ◦ γ −1}red

1 ◦ γ, (53)

where (51) is used and the right-hand side refers to the Poisson bracket (16).
For any F ∈ C∞(Tn

reg × H(n)0 × H(n)⊥), we have the derivatives

DQF(Q,p, φ) ∈ b(n)0, dpF(Q,p, φ) ∈ u(n)0, dφF(Q,p, φ) ∈ u(n)⊥,

(54)

defined by

〈DQF(Q,p, φ),X〉 + 〈dpF(Q,p, φ), Y0〉 + 〈dφF(Q,p, φ), Y⊥〉

= d

dt

∣
∣
∣
∣
t=0

F(etXQ,p + tY0, φ + tY⊥), (55)

for every X ∈ u(n)0 and Y = (Y0 + Y⊥) ∈ H(n).

Proposition 4 ([5, 7]) In terms of the variables (Q,p, φ) defined by (51), the
reduced first Poisson bracket (16) has the following form:

{F ,H}red
1 (Q,p, φ) = 〈DQF , dpH〉 − 〈DQH, dpF〉 + 〈φ, [dφF , dφH]〉. (56)

Here, F ,H ∈ C∞(Tn
reg × H(n)0 × H(n)⊥)N (n) and the derivatives are taken at

(Q,p, φ).

The change of variables (Q,L) ↔ (Q,p, φ) appeared in the construction of spin
Sutherland models via the method of Li and Xu [7], whose relation to Hamiltonian
reduction of free motion on Lie groups was clarified in [5]. The proof of Proposition
4 can be extracted from these references. One can also prove it by direct calculation,
which is much simpler than the one required for the proof of Proposition 3.

The reduced Hamiltonians Hred
k arising from those in (6) can be written in terms

of the variables (Q,p, φ) as

Hred
k (Q, p, φ) = 1

k
tr(L(Q,p, φ)k). (57)



On the bi-Hamiltonian Structure of the Trigonometric Spin Ruijsenaars–. . . 87

For k = 2, with Q = exp (diag(iq1, . . . , iqn)), and p = diag(p1, . . . , pn) this gives

Hred
2 (Q,p, φ) = 1

2

n
∑

i=1

p2
i + 1

8

∑

j �=l

|φjl|2
sin2 qj −ql

2

, (58)

which is a standard spin Sutherland Hamiltonian. The last term in the Poisson
bracket (56) represents the Poisson space u(n)∗//0T

n, and only gauge invariant
functions of the spin variable φ appear in the model.
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