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Abstract We introduced some contact potentials that can be written as a linear
combination of the Dirac delta and its first derivative, the δ-δ′ interaction. After a
simple general presentation in one dimension, we briefly discuss a one dimensional
periodic potential with a δ-δ′ interaction at each node. The dependence of energy
bands with the parameters (coefficients of the deltas) can be computed numerically.
We also study the δ-δ′ interaction supported on spheres of arbitrary dimension.
The spherical symmetry of this model allows us to obtain rigorous conclusions
concerning the number of bound states in terms of the parameters and the dimension.
Finally, a δ-δ′ interaction is used to approximate a potential of wide use in nuclear
physics, and estimate the total number of bound states as well as the behaviour of
some resonance poles with the lowest energy.
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1 Introduction

Contact potentials are interactions supported on manifolds of lower dimension than
the dimension of the overall space [1, 3, 11, 16]. Along the present manuscript,
we shall consider the time independent one dimensional Schrödinger equation and
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contact potentials supported on isolated points (this is why we shall also use the
term of point interactions to refer to them) or on lower dimensional varieties. The
simplest case of a one dimensional contact potential is the Dirac delta interaction
δ(x) supported at a point. In this case the Schrödinger equation comes from a one
dimensional Hamiltonian of the form H = −d2/dx2 +V (x), where V (x) accounts
for the contact potential. This study is important in quantum mechanics and here are
a few reasons:

• Many of these models are exactly solvable and are very suitable to study
scattering properties [2, 21, 31]. In particular, they are good toy models to study
resonances and antibound states and their properties [4, 5].

• They may serve to model point defects in materials, topological insulators [10,
28] and heterostructures, which may be represented by abrupt mass changes [20,
30].

• In nanophysics: to mimic sharply peaked impurities inside quantum dots.
• In scalar QFT on a line: used to show the influence of impurities and external

singular backgrounds [33].
• Point interactions of the type Dirac delta, δ(x) or δ′(x), can be understood

as perturbations of a free kinetic Schrödinger Hamiltonian, but they could be
also combined with other type of interactions such as the harmonic oscillator,
a constant electric field, the infinite square well, the conical oscillator, etc.
[19, 22, 23, 27, 39].

• Double δ-δ′ barriers have been used to study the Casimir effect [8, 17, 24, 35].
• Chains of periodic δ-δ′ interactions have been considered in order to analyze

a solvable Kronig-Penney model in solid state, where the behaviour of band
spectrum has been thoroughly analyzed in order to obtain a better comprehension
of dielectric and conducting phenomena [15, 25].

• Although in principle we focused our attention in one dimensional non-
relativistic problems, work has been done also in the study of contact potentials
in higher dimensions [36], or as perturbations of the Dirac equation or the
Salpeter Hamiltonian [18]. There is a wide range of problems in this field that
will be studied in a near future.

In one dimension, it has been proven the existence of families depending on
four real parameters of contact potentials at each point compatible with the self-
adjointness of the Hamiltonian. There are some discussion on the physical meaning
of these families that are obtained through the formalism of self-adjoint extensions
of symmetric operators on Hilbert spaces.

Along this presentation, we shall consider the following forms for V (x):

• V (x) = −aδ(x) + bδ′(x), where a and b are real numbers with a > 0.
• The Kronig-Penney model V (x) = ∑∞

n=−∞(V0δ(x − na) + aV1δ
′(x − na)).

• The radial potential V (r) = aδ(r − r ′) + bδ′(r − r ′) with a and b real.
• An application to nuclear physics, considering the previous radial potential plus

a finite spherical well V0[θ(r − R) − 1].
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2 A δ-δ′ Perturbation of the One Dimensional Free
Hamiltonian

We start with the one dimensional Hamiltonian of the form

H = H0 + V (x) = p2

2m
− aδ(x) + bδ′(x) , with a > 0 , b ∈ R , (1)

where H0 = p2/(2m) and V (x) := −aδ(x) + bδ′(x). Here, we need a definition
of the potential V (x) such that the Hamiltonian H in (1) be self-adjoint. While a
perturbation of the type −δ(x) is well defined on H0, the point is to add the term
containing the δ′(x). There is not a unique definition for perturbation of this kind,
but we need one compatible with the term on δ(x). This is sometimes called the
local δ′(x) and the interaction V (x) has to be defined via the self-adjoint extensions
of symmetric (Hermitian) operators.

A self-adjoint determination of the Hamiltonian (1) can be provided through
the theory of self-adjoint extensions of symmetric (Hermitian) operators with
equal deficiency indices. First of all, we define the domain of the “free” operator
H0 = −d2/dx2 as the Sobolev space W 2

2 (R\{0}) of absolutely continuous functions
ψ(x) : R\{0} �−→ C, on the real line excluded the origin, such that:

(1) The first derivative ψ ′(x) is absolutely continuous on R\{0} (note that an
absolutely continuous function admits derivative at almost all points);

(2) Both ψ(x) and ψ ′′(x) are square integrable:

∫ ∞

−∞
{|ψ(x)|2 + |ψ ′′(x)|2} dx < ∞ . (2)

(3) ψ(0) = ψ ′(0) = 0.

With this domain, H0 is a symmetric operator with deficiency indices (2, 2), which
means that it has a set of self-adjoint extensions depending on 4 real parameters.
Note that Conditions (1) and (2) give the domain of the adjoint, H

†
0 , of H0. Self-

adjoint extensions of H0 have domains included in the domain of H
†
0 and are

characterized by matching conditions at the origin. They have been classified in
[9, 31]. In our case, we propose for V (x) = −a δ(x) + b δ′(x) the following
matching conditions:

⎛

⎝
ψ(0+)

ψ ′(0+)

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

h̄2 + mb

h̄2 − mb
0

−2h̄2am

h̄4 − m2b2

h̄2 − mb

h̄2 + mb

⎞

⎟
⎟
⎟
⎠

⎛

⎝
ψ(0−)

ψ ′(0−)

⎞

⎠ , (3)
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where f (0+) and f (0−) are the right and left limits, respectively, of the function
f (x) at the origin. The corresponding Schrödinger equation for H = H0 + V (x) is

− h̄2

2m
ψ ′′(x) − a δ(x)ψ(x) + b δ′(x) ψ(x) = E ψ(x) . (4)

Since neither the functions ψ(x) in the domain of H nor their first derivatives are
continuous at the origin, we need to give a determination of the products δ(x)ψ(x)

and δ′(x) ψ(x) that replace the usual ones and that were somehow compatible
with (3). Following [31], we propose

δ(x)ψ(x) := ψ(0+) + ψ(0−)

2
δ(x) , (5)

δ′(x) ψ(x) := ψ(0+) + ψ(0−)

2
δ′(x) − ψ ′(0+) + ψ ′(0−)

2
δ(x) . (6)

Some conclusions will be presented next. This includes bound states and
scattering coefficients.

2.1 Bound States and Scattering Coefficients

It is well known that the Hamiltonian (1) has a bound state for b = 0, since −a is
negative. When b �= 0, it is easy to prove that a bound state must exist. Furthermore,
we can find its energy and its wave function by solving the Schrödinger equation (4).
Note that outside the origin, this is the Schrödinger equation for the free particle, so
its solution should be of the form

ψ(x) = α eκx θ(−x) + β e−κx θ(x) , κ =
√

−2mE/h̄2 , (7)

with E < 0, θ(x) is the Heaviside step function, α = ψ(0−) and β = ψ(0+). In
addition, the function ψ(x) in (7) must belong to the domain of the Hamiltonian (1),
so that it must satisfy the matching conditions (3). Taking into account (3), the final
form of (7) is

ψ(x) =
√

ma h̄

h̄4 + m2b2
[(h̄2 − mb) eκx θ(−x) + (h̄2 + mb) e−κx θ(x)] . (8)

Note that the function (8) is square integrable and, therefore, represents the
wave function for the unique bound state of the system. Then, we plug (8) into
the Schrödinger equation (4), which after some algebra gives the energy value for
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the unique bound state,

E = −1

2

ma2h̄6

(h̄4 + b2m2)2
. (9)

It is a simple task to obtain the scattering coefficients. Assume that a monochro-
matic wave eikx , k = √

2mE/h̄2, E ≥ 0, comes from the left to the right. After
scattering with the potential V (x), the resulting wave function has different forms
on the regiones x < 0 or x > 0, which are given by

for x < 0 : ψ(x) = eikx + R e−ikx ; for x > 0 : ψ(x) = T eikx, (10)

where R and T are the reflection and transmission coefficients, respectively. These
coefficients are easily obtained by using matching conditions (3), where we now
choose h̄ = 1 for simplicity:

⎛

⎜
⎜
⎝

T

ikT

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 + mb

1 − mb
0

−2am

1 − m2b2

1 − mb

1 + mb

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 + R

ik(1 − R)

⎞

⎟
⎟
⎠ , (11)

so that,

R(k) = −(am + 2mbki)

am + (1 + m2b2)ki
, T (k) = (1 − m2b2)ki

am + (1 + m2b2)ki
, (12)

where i is the imaginary unit. Note that |R(k)|2 + |T (k)|2 = 1. At the exceptional
values b = ±1/m, there is no transmission. This case will not be treated in the
sequel, but it was carefully considered in [24, 34].

3 The Dirac δ-δ′ Comb

The correspondence between boundary conditions and surface interactions in
quantum field theory was established by Symanzik some time ago [38]. One the
most interesting examples of these surface interactions is given by the Casimir effect
[14]. It was in [34] where an interpretation of the Casimir effect using a δ-δ′ type of
potential was proposed. The idea in [34] was mimicking the plates in the Casimir
effect as two point interactions, so that the Hamiltonian becomes

H = H0 + V (x) = − h̄2

2m

d2

dx2
+ a1 δ(x + q) + b1 δ′(x + q) + a2 δ(x − q) + b2 δ′(x − q) ,

(13)

where q > 0 and the meaning of H0 and V (x) is obvious.
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A generalization of the Hamiltonian (13) is given by the Dirac δ-δ′ comb.
This is a modification of the Kronig-Penney model, which is an exactly solvable
periodic potential, used in Solid State Physics, which describes electron motion
in a periodic array of rectangular barriers. The most obvious generalization of the
Kronig-Penney model is to replace the rectangular barriers by Dirac deltas of the
same amplitude, something that can be obtained by a formal limit procedure. Now,
the one dimensional Hamiltonian H = H0 + V (x) is given by a periodic potential
of the form V (x) = V0

∑∞
n=−∞ δ(x − na), with V0 > 0 and a > 0.

Inspired in the above mentioned analysis of the Casimir effect, we propose the
study of the Dirac δ-δ′ comb, in which the potential takes the form:

V1(x) =
∞∑

n=−∞
(V0 δ(x − na) + a V1 δ′(x − na)) , a, V0 > 0 , V1 ∈ R . (14)

so that it is a second generalization of the Kronig-Penney model. From the point
of view of physics, this chain may model a periodic array of charges and dipoles.
The objective is to solve the one dimensional Schrödinger equation using (14) as
potential.

Now, we operate on a neighbourhood of the origin, see Fig. 1. If we call ψI (x)

and ψII (x) to the wave functions in the region I (left) and II (right), respectively,

they have the following form (k =
√

2mE
h̄

> 0):

ψI (x) = AI eikx + B1 e−ikx , ψII (x) = AII eikx + BII e−ikx ,

ψ ′
I (x) = ik AI eikx − ik B1 e−ikx , ψ ′

II (x) = ik AII eikx − ik BII e−ikx .

(15)

Equations (15) can be written in simplified matrix form as

ψJ (x) :=
⎛

⎝
ψJ (x)

ψ ′
J (x)

⎞

⎠ = KMx

⎛

⎝
cAJ

BJ

⎞

⎠ , J = I, II , (16)

0

region I

V0d (x) + aV1d ′(x)

V0d (x + a) + aV1d ′(x + a) V0d (x – a) + aV1d ′(x – a)

region II

a–a

Fig. 1 Periodic potential (14) near the origin
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with

K =
(

1 1

ik −ik

)

, Mx =
(

eikx 0

0 e−ikx

)

. (17)

In order to include the perturbation of the form δ-δ′ at the origin, we have to use
the matching conditions, as before. The resulting equation has the form ψII (0

+) =
TU ψI (0

−), with

TU =

⎛

⎜
⎜
⎝

1 + U1

1 − U1
0

2U0/a

1 − U2
1

1 − U1

1 + U1

⎞

⎟
⎟
⎠ , U0 = maV0

h̄2 , U1 = maV1

h̄2 . (18)

Again, (18) is valid provided that V1 �= ±h̄2/(ma), otherwise the origin becomes
opaque. After some algebra, we finally arrive to the following relation between the
coefficients of the wave function to both sides of the origin:

⎛

⎝
AII

BII

⎞

⎠ = K
−1

TUK

⎛

⎝
AI

BI

⎞

⎠ . (19)

Then, we use the periodicity properties of the potential in order to obtain the
wave function over all the real line R and some other properties. First of all, the
Floquet-Bloch theorem imposes the following condition (x ∈ (−a, a)):

ψ(x + a) = eiqa ψ(x) 
⇒ ψ ′(x + a) = eiqa ψ ′(x) , (20)

where q is a constant called the quasi-momentum and it is a characteristic of the
periodic potential given, and a is the distance between the nodes or points supporting
the contact potential. We may write relation (20) in matrix form, which for x ∈
(−a, 0) is

ψII (x + a) = eiqa ψ I (x) 
⇒ KMxMa

⎛

⎝
AII

BII

⎞

⎠ = eiqa
KMx

⎛

⎝
AI

BI

⎞

⎠ . (21)

From (17), the matrices Mx and K are invertible, so that (21) implies that

[MaK
−1

TUK − eiqa
I]
⎛

⎝
AI

BI

⎞

⎠ = 0 ⇔ det[TU − eiqa
KM

−1
a K

−1] = 0 , (22)
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where I is the 2 × 2 identity matrix. The cancellation of the determinant in (22) has
some important consequences. With the definitions q̃ = aq and k̃ = ka, Eq. (22)
gives

cos q̃ = f (U1)

[

cos k̃ + U0 g(U1)
sin k̃

k̃

]

, f (U1) = 1 + U2
1

1 − U2
1

, g(U1) = 1

1 + U2
1

,

(23)

and U0 and U1 are as in (18). The first equation in (23) is often known as the secular
band equation and determines the dispersion relation in each energy band k̃ =
k̃n(q). It is an even function of U1, or equivalently, of aV1 the coefficient of δ′. The
main interest of the dispersion relation comes from the fact that that it provides the
band spectrum of the Hamiltonian (14). The case U1 = 0, i. e., no δ′ term is present,
has been previously studied. If U1 �= 0, the δ′ term appears and the structure of the
band spectrum changes drastically and must be obtained numerically. The graphical
results can be seen in Fig. 2.

3.1 A Two Species Dirac δ-δ′ Comb

Let us now consider a Hamiltonian of the form H = H0 + V1(x) + V2(x), where
H0 = −h̄2/(2m) d2/dx2, V1(x) is as in (14) and V2(x) is given by

V2(x) =
∞∑

n=−∞

(
W0 δ(x − na − b) + a W1 δ′(x − na − b)

)
, a > 0,W0,W1 ∈ R.

We called this model the two species Dirac δ-δ′ comb in comparison with the model
discussed just above in relation to the Hamiltonian with periodic potential V1(x).
The objective is again to study the band spectrum. Now, the discussion is quite
similar to the precedent one, albeit a bit more complicated, but it is carried out
under the same premises. We arrive to a band secular equation of the form

cos(qa) = F(k; a, b,W0,W1, U0, U1) , (24)

where the explicit form of the function F is rather complicated and has been
obtained in [25]. A numerical analysis gives the behaviour of the band spectrum.
There are interesting differences in the behaviour of band spectrum as compared
with this band spectrum for the one species Dirac δ-δ′ comb. Now the band shape is
completely deformed and, for certain values of the parameters U1 and Ww , the band
shape is the reverse of what is for the one species comb. See details in [25]. This
effect is particularly notorious for high values of |U1| and |W1|. In addition, there
are critical values of the parameters, typically U1 = ±1 and W1 = ±1, for which
impenetrable barriers appear.



Contact or Point Supported Potentials 205

Fig. 2 Band structure for different values of U0. From left to right U0 = 0.1, U0 = 1, U0 = 10
and U0 = 30. In all the cases, the band structure of the standard Dirac comb corresponds to U1 = 0

4 Hyperspherical δ-δ′

One of the most obvious generalizations of the Dirac δ-δ′ potentials is a homoge-
neous d-th dimensional potential supported on a hull sphere of radius r0. Due to
the symmetry of this model, this potential would be equivalent to a one dimensional
contact potential at the point r = r0 > 0 plus an impenetrable barrier at the origin.
Let us pose the problem from the very beginning and consider the d-th dimensional
Hamiltonian of the form [35]

H := − h̄2

2m
�̂d + V̂ (x) , (25)
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with

V̂ (x) = a δ(x − x0) + b δ′(x − x0), x = |x|. (26)

Here it is convenient to introduce the following dimensionless quantities:

h := 2

mc2
H w0 := 2a

h̄c
, w1 := bm

h̄2
, r := mc

h̄
|x| , (27)

where c is the speed of light in the vacuum. After (27), the new Hamiltonian reads:

h = −�d + w0 δ(r − r0) + 2w1 δ′(r − r0) = −�d + V (r) . (28)

Here, �d is the d-dimensional Laplace operator, which expressed in hyperspher-
ical coordinates, (r,	d := {θ1, θ2, . . . , θd−2, φ}) reads:

�d = 1

rd−1

∂

∂ r

(

rd−1 1

rd−1

)

+ �Sd−1

r2 , (29)

�Sd−1 being the Laplace-Beltrami operator on functions defined on the hull hyper-
sphere Sd−1 with dimension d−1. This operator satisfies the identity �Sd−1 = −L2

d ,
where Ld is the generalized d-dimensional angular momentum operator.

The eigenvalue equation for h is separable, so that there are factorizable solutions
of the form ψλ(r,	d) = Rλ(r) Y(	d), where Rλ(r) is the radial wave function
and Y(	d) are the hyperspherical harmonics. These are eigenfunctions of the
Laplace-Beltrami operator �Sd−1 with eigenvalues χ(d, ) = −( + d − 2) [29].
The radial wave function is given by

[

− d2

dr2 − d − 1

r

d

dr
+ ( + d − 2)

r2 + V (r)

]

Rλ(r) = λRλ(r) , (30)

where V (r) was defined in (28).
Next, we introduce the reduced radial function,

uλ(r) := r
d−1

2 Rλ(r) . (31)

The effect of this change of indeterminate is to remove the term with the first
derivative in (30). The resulting equation is

(h0 + V (r)) uλ(r) = λ uλ(r) , (32)

where,

h0 = − d2

dr2 + (d + 2 − 3)(d + 2 − 1)

4r2 . (33)
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In order to define the potential V (r) using the theory of self-adjoint extensions of
symmetric operators, we need to define a domain for h0, in which h0 be symmetric
with equal deficiency indices (2, 2). Then, the domain D(h0) is the space of
functions ϕ(r) ∈ L2(R+) with the following properties:

1. Any ϕ(r) ∈ D(h0) is in the Sobolev space W 2
2 (R+) of absolutely continuous

functions with absolutely continuous first derivative and which second derivative
is in L2(R+).

2. They vanish at the origin, ϕ(0) = 0.
3. At the point r = r0, they satisfy the property: ϕ(r0) = ϕ′(r0) = 0.

The domain D(h
†
0) of the adjoint, h

†
0, of h0 is the space verifying some changes

in the above conditions: in Condition (1), we replace W 2
2 (R+) by W 2

2 (R+\{r0}),
which is the space satisfying the same properties, except that its functions and their
first derivatives have finite jumps at r0 and, then, Condition (3) is not fulfilled. The
domain D(h0 + V (r)) that makes the operator h0 + V (r) self-adjoint is the space
of all functions ϕ(r) in D(h

†
0) satisfying the following matching conditions at r0:

(
ϕ(r+

0 )

ϕ′(r+
0 )

)

=
(

α 0

β α−1

)(
ϕ(r−

0 )

ϕ′(r−
0 )

)

, (34)

where ϕ(r±
0 ) are the right (+) and left (−) limits of ϕ(r) at r = r0. Also,

α = 1 + w1

1 − w1
, β = w0

1 − w2
1

. (35)

These matching conditions determine the boundary conditions that should be
verified by the radial wave functions Rλ(r). In fact, (31) and (34) give:

(
Rλ(r

+
0 )

R′
λ(r

+
0 )

)

=
(

α 0

β̃ α−1

)⎛

⎝
Rλ(r

−
0 )

R′
λ(r

−
0 )

⎞

⎠ , (36)

with

β̃ := β − (α2 − 1)(d − 1)

2αr0
= w̃0

1 − w2
1

, w̃0 = 2(1 − d)w1

r0
+ w0 . (37)

These matching conditions are well defined, except at the exceptional values w1 =
±1. These two cases have to be treated separately, see [24, 31].
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4.1 Bound States

Here, we present some results concerning the existence of bound states for the model
under consideration. The eigenvalue equation for bound states is (30) with λ < 0.
Then, it is convenient to use the parameter κ > 0 with λ = −κ2. The general
solution of (30) is

Rκ(r) =

⎧
⎪⎨

⎪⎩

A1 I(κr) + B1 K(κr) if r ∈ (0, r0) ,

A2 I(κr) + B2 K(κr) if r ∈ (r0,∞) .

(38)

Then, Rκ(r) can be written in terms of modified hyperspherical Bessel functions
of the first (I(z)) and second (K(z)) kind, respectively, where,

I(κr) = 1

(κr)ν
I+ν(κν) , K(κν) = 1

(κr)ν
K+ν(κν) , ν := d − 2

2
.

The form of the solution in terms of the functions uκ(r) defined in (31) comes
straightforwardly from (38). The square integrability condition of the radial wave
function for bound states imposes that A2 = 0. Furthermore, the term multiplied
by B1 is not square integrable, except for zero angular momentum in two and three
dimensions. In three dimensions, the condition uκ(0) = 0 implies that B1 = 0.
There are other type of arguments that show that in two dimensions, we also have
B1 = 0 [26]. After these considerations, (36) can be written as

B2

⎛

⎝
K(κr0)

κ K′
(κr0)

⎞

⎠ = A1

⎛

⎝
α 0

β̃ α−1

⎞

⎠

⎛

⎝
I(κr0)

κ I ′
(κr0)

⎞

⎠ . (39)

If we divide the identity obtained with the lower component of (39) with that
found with the first component, we get the following expression called the secular
equation:

α
d

dr
logK(κr)|r=r0 = β̃ + α−1 d

dr
logI(κr)|r=r0 . (40)

Solutions for κ > 0 of (40) give the energies for the bound states of the model
under consideration. If we denote by y0 = κr0, (40) takes the form

F(y0) = −y0

(
Iν+−1(y0)

Iν+(y0)
+ αKν+−1(y0)

Kν+(y0)

)

−(α−α−1) = 2ν(α−α−1)+ β̃r0 .

Observe that the right hand side is independent on the energy and the angular
momentum. This equation cannot be solved analytically. However, it may be used to
obtain some properties concerning the number of bound states, Nd

 = nd
 deg(d, ),
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that exist for given values of d and . Here nd
 is the number of negative energy

eigenvalues and deg(d, ) the degeneracy associated with  in d dimensions. We
listed here below these results without proofs that may be found in [26]:

1. In the d-dimensional quantum system described by the Hamiltonian (28), the
number nd

 defined above is at most one. This is, nd
 ∈ {0, 1}.

2. The d-dimensional quantum system described by the Hamiltonian (28) admits
bound states with angular momentum  if and only if

max �= Lmax , and  ∈ {0, 1, . . . , max} , max > −1 , (41)

with

max := Lmax� , Lmax := w1 − r0w0/2

w2
1 + 1

+ 2 − d

2
, (42)

where A� denotes the integer part of the real number A. In addition, if λ =
−κ2

 is the energy of the bound state with angular momentum , the following
inequality holds:

λ < λ+1 < 0 ,  ∈ {0, 1, . . . , max − 1} . (43)

3. The quantum Hamiltonian (28) admits a bound state for any ω0 > 0, only if
d = 2 and  = 0.

5 An Application to Nuclear Physics

The δ-δ′ is an approximation that serves to obtain interesting results concerning
realistic models in physics. Next, we want to introduce one of these examples
coming from nuclear physics. Let us consider a model for atomic nuclei based on
a mean field potential with volume, surface and spin orbits parts, for which the
Hamiltonian is given by

H(r) = − h̄2

2μ
∇2

r + U0(r) + USO(r)(L · S) + Uq(r) , (44)

where r = |r|, μ is the reduced mass and the terms U0(r), USO(r) and Uq(r) have
their origin in the Wood-Saxon potential:

U0(r) = −V0 f (r) := −V0
1

1 + e(r−R)/a
, (45)
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USO(r) = VSO

h̄2 f ′(r) = −VSO

ah̄2

e(r−R)/a

(1 + e(r−R)/a)2
, (46)

Uq(r) = Vq f i ′′(r) = −Vq

a2

e(r−R)/a (1 − e(r−R)/a)

(1 + e(r−R)/a)3
. (47)

Here, V0, VSO and Vq are positive constants, R is the nuclear radius and a is the
thickness of the nuclear surface.

The kinetic term in (44) can be written in terms of the orbital angular momentum
L as

− h̄2

2μ
∇2

r = − h̄2

2μ

[
1

r2

∂

∂r

(

r2 ∂

∂r

)

− L2/h̄2

r2

]

. (48)

Then, there exist factorizable solutions for the Schrödinger equation associated
to (48). This factorization is of the form,

ψ(r) = unj (r)

r
Yjm(θ, φ) , (49)

where the angular part, satisfies the following relations:

L2 Yjm(θ, φ) = h̄2 ( + 1)Yjm(θ, φ) , (50)

and

(L · S)Yjm(θ, φ) = h̄2ξ,jYjm(θ, φ), with ξ,j :=
⎧
⎨

⎩


2 for j =  + 1

2 ,

− +1
2 for j =  − 1

2 .

Note that  ∈ N ∪ {0}. The functions denoted as Yjm(θ, φ) are linear combination
of spherical harmonics Ym

 (θ, φ), which are simultaneous eigenfunctions of the
operators L2, S2 and J2 = (L + S)2. The radial part of the three dimensional
Schrödinger equation has the form

H(r) unj (r) = Enj unj (r) , (51)

where,

H(r) = − h̄2

2μ

[
d2

dr2 − ( + 1)

r2

]

−V0 f (r)+VSO ξ,j f ′(r)+Vq f i ′′(r) . (52)
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Our approximation can be obtained by taking the limit a → 0+ in the potential
terms. This limit makes proper mathematical meaning in a distributional sense.
From this point of view, we have that (r ≥ 0)

lim
a→0+ U0(r) = V0[θ(r − R) − 1] , (53)

lim
a→0+ VSO(r) = −VSO ξ,j δ(r − R) , (54)

lim
a→0+ Uq(r) = −Vq δ′(r − R) , (55)

where θ(x) in (53) is the Heaviside step function. After this limit procedure, we
finally obtain our model, which is given by the following radial Hamiltonian with
contact potential:

Hc = − h̄2

2μ

[
d2

dr2 − ( + 1)

r2

]

+ V0[θ(r − R) − 1] − VSOξ,j δ(r − R) − Vqδ′(r − R).

(56)

The advantage of the Hamiltonian in (56) over that in (48) is that the Schrödinger
equation, Hs(r) unj (r) = Enj unj , associated to the former can be exactly solved
for all values of  and j . If we use, α := (2μ/h̄2)VSOξ,j and β = (2μ/h̄2)Vq , this
Schrödinger equation becomes, were we omit the subindices in u(r) for simplicity:

d2u(r)

dr2 +
{

2μE

h̄2 − 2μV0

h̄2 [θ(r − R) − 1]

+ α δ(r − R) + β δ′(r − R) − ( + 1)

r2

}

u(r) = 0 .

Square integrable solutions inside the nucleus are

u(r) = A
√

γ r J
+ 1

2
(γ r) , γ =

√
2μ(V0 + E)

h̄
, r ∈ [0, R) , (57)

and outside the nucleus,

u = D

√
κr K

+ 1
2
(κr) , κ =

√
2μ|E|
h̄

, r ∈ (R,∞) . (58)

Then, we impose the condition that the above solution be in the domain of the
Hamiltonian (52). To do it, we need to find a relation between the coefficients A

and D such that (57) and (58) verify the precise matching relations at r = R so
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that (52) be self-adjoint. These relations are

⎛

⎝
u(R

+)

u′
(R

+)

⎞

⎠ =

⎛

⎜
⎜
⎝

2 − β

2 − β
0

4α

4 − β2

2 − β

2 + β

⎞

⎟
⎟
⎠

⎛

⎝
u(R

−)

u′
(R

−)

⎞

⎠ . (59)

This gives a system of two equations, which permits to find a relation which is
independent of the coefficients A and D and is

ϕ(χ) := χ J+3/2(χ)

J+1/2(χ)
= (2 + β)2

(2 − β)2

σ K+3/2(σ )

K+1/2(σ )
− 8β( + 1)

(2 − β)2 + w0

(2 − b)2 =: φ(σ ),

(60)

with

χ := v0
√

1 − ε , σ := v0
√

ε , ε := |E|
V0

∈ (0, 1) , (61)

v0 =
√

2μR2V0

h̄2
> 0 , w0 = 8μVSO ξ,j R

h̄2
. (62)

Equation (60) if often called the secular equation. It is useful in order to obtain
results concerning bound states. These results have been derived and proven in [26].
Here, we listed some of which we consider the most interesting:

1. If for any value  ∈ N0 such that  ≤ max the following inequality holds

w0 > −
(
(β − 2)2 + 2

(
β2 + 4

))
, (63)

there exists one, and only one, energy level with relative energy

εs ∈
(

1 − j2
+1/2,s

v2
0

, 1 − j2
+3/2,s−1

v2
0

)

⊂ (0, 1), s ∈ N. (64)

For w0 ∈ R the final number of bound states, N = (2+ 1)n, is determined by

n = M + m1 − m2, (65)

where M is

M = min{s ∈ N0 | j+1/2,s+1 > v0}, (66)
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and, using the functions ϕ(χ) and φ(σ) defined in (60), we obtain

m1 =
⎧
⎨

⎩

1 if ϕ(v0) > φ(0+),

0 if ϕ(v0) < φ(0+) or v0 = j+1/2,M,
m2 =

⎧
⎨

⎩

1 if 0 > φ(v0),

0 if 0 < φ(v0).

2. The quantum system governed by the Hamiltonian (56) does not admit bound
states with angular momentum  > max, where

max := max{ ∈ N0 | j+1/2,1 < v0 or ϕ(v0) > φ(0+)}.

If there exist s0 ∈ N and 0 ∈ N0 such that v0 = j0+1/2,s0 the second condition
in the previous set cannot be evaluated. Nonetheless, it is not necessary since the
existence of at least one bound state for 0 is guaranteed.

3. If there exist bound states with relative energies εnj , ε(n+1)j
, εn(+1)j for n,  ∈

N0 the following inequalities hold:

(a) εnj > ε(n+1)j
, (b) εnj > εn(+1)j , (c) εn+1/2 > εn−1/2 .

Notice that the second inequality only applies for j =  + 1/2.
4. There are two special cases, in which β = ±2. Now, the contact potential at

r = R becomes opaque in the sense that the transmission coefficient is equal
to zero. Here, we expect the existence of bound states alone, without resonances
or scattering states. This specific problem has been discussed in [26], where the
proposed nuclear model is tested with experimental and numerical data in the
double magic nuclei 132Sn and 208Pb with an additional neutron.

5.1 Resonances

Apart from bound states, we may analyze scattering states or the possibility of
the existence of resonances or even antibound states. Here, we briefly discuss the
existence of resonances, which are unstable quantum states [12, 13]. Contrary to the
case of bound states, wave functions (usually called Gamow functions) for unstable
quantum states are not square integrable. Moreover, in the coordinate representation,
they show an asymptotically exponential grow at the infinity. In our case, this have
the following consequence: Although for consistency reasons, we should keep the
expression (57) for the wave function inside the nucleus (r < R), we should use
the complete solution for the Schrödinger equation outside the nucleus, i.e., in the
region r > R. This is

u(r) = √
κr

(

C H
(1)

+ 1
2
(κr) + D H

(2)

+ 1
2
(κr)

)

, κ :=
√

2μE

h̄
, E > 0 ,

(67)
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where H(i)(κr) are the Hänkel functions of first (1) and second (2) kind, respec-
tively, and C and D are coefficients depending solely on κ . In the search for
resonances, the knowledge of the asymptotic forms of the Hänkel functions for large
values of r is essential. These are:

H
(1)

+ 1
2
(κr) ≈

√
2

πκr
e−i(κr−(+1)π/2) , H

(2)

+ 1
2
(κr) ≈

√
2

πκr
ei(κr−(+1)π/2) .

(68)

These asymptotic forms show that H
(1)

+ 1
2
(κr) is an outgoing wave function while

H
(2)

+ 1
2
(κr) is an incoming wave function. Resonances are determined by the often

called purely outgoing boundary conditions, which assumes that only the outgoing
wave function survives. This implies that D(κ) = 0, and this is a transcendental
equation for which the solutions coincide with the resonance poles of the S-matrix
[13]. The determination of D comes after the use of the matching conditions (59)
and the expression (57) for the wave function inside the nucleus, where without
lack of generality we may choose A = 1. This gives D(κ) = 0. The latter
is a complicated transcendental equation, which depends on Hänkel and Bessel
functions with different indices, see [26]. The solutions of this equation should be
classified in three categories:

1. Simple solutions on the positive imaginary axis correspond to bound states.
2. Simple solutions on the negative imaginary axis correspond to virtual states also

called antibound states.
3. Pairs of solutions on the lower half plane, symmetrically located with respect

to the imaginary axis that correspond to resonances. Both members of each pair
determine the same resonance and must have the same multiplicity. Usually, this
multiplicity is one, although models with resonance poles with multiplicity two
have been constructed [7, 32].

This model shows resonance poles. Due to the complexity of the relation
D(κ) = 0 these resonances can only be obtained numerically in most of cases.
It is important to remark that the imaginary part of the resonance poles is always
negative. This implies that the asymptotic form on r of the first expression in (68) is
exponentially growing, as previously noted.

General arguments [37] show that the number of resonance poles should be
infinite. In order to give an idea on how these poles look like, we show a few in
Fig. 3. Resonance poles lie at the intersection of two curves. Here, we have chosen
the following values of the parameters:  = 0, v0 = 5, w0 = 10 and β = 1.
Observe that resonance poles are rather close to the real axis, so that their imaginary
part is rather small. Since the mean life of an unstable quantum state is related with
the inverse of the imaginary part of its resonance pole, this means that the unstable
states corresponding to the poles shown in Fig. 3 are rather stable. Some other cases
with  = 1, 2, 3, 4 have been also considered and we have seen a similar pattern for
resonance poles [26]. Exact analytical results were also obtained.
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Fig. 3 Resonance poles are
located at the intersection of
curves below the real axis.
here,  = 0, v0 = 5, w0 = 10
and β = 1

5.2 A Comment on the Self-adjointness
of the Hamiltonian (56)

Take the Hamiltonian Hc(r) in (56) and fix for simplicity h̄2/2μ = 1, which shall
not alter our results. Then, write Hc(r) = H + V (r), with

H := − d2

dr2 + ( + 1)

r2 + V0[θ(r − R) − 1] , V (r) = aδ(r − R) + bδ′(r − R) .

(69)

We study the cases  = 0 and  �= 0 separately. Let us discuss  = 0, first. To begin
with, take Hr := −d2/dr2 with domain, Dc, the subspace of functions f (r) ∈
L2[0,∞) such that: (1) f (r) is absolutely continuous with absolutely continuous
first derivative; (2) The second derivative f i ′′(r) ∈ L2[0,∞) is square integrable;
(3) For all functions f (r) in this domain, either f (0) + cf ′(0) = 0 for some fixed
real number c or f ′(0) = 0. Each of these choices gives a self-adjoint determination
of Hr .

Next, define the subdomain Dc(Hr) of all f (r) ∈ Dc such that f (R) =
f ′(R) = 0. Choosing Dc(Hr) as domain of Hr , we conclude that Hr is symmetric
(Hermitian) with deficiency indices (2, 2). When Hr is define on this domain, then
the domain of the adjoint of Hr , Dc(H

†
r ), is the space of functions f (r) fulfilling

conditions 1 and 2 above with one modification: they and their first derivatives have
arbitrary although finite jumps at r = R. Self-adjoint extensions of Hr are given
by imposing the functions f (r) ∈ Dc(H

†
r ) the matching conditions (59) at r = R.

The exceptional cases β = ±2 also give respective self-adjoint extensions. These
extensions determine self-adjoint operators of the form −d2/dr2 + aδ(r − R) +
bδ′(r − R). Since the term V0[θ(r − R) − 1) is bounded, adding it does not change
anything.
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Let us consider now the case  �= 0. In this case, we do not need to establish
boundary conditions at the origin of the type f (0) = cf ′(0), since the Hamiltonian
H in (69) with  �= 0 is already essentially self-adjoint when its domain is the
Schwartz space of functions supported on R

+ ≡ [0,∞), S(R+), for which we
always have that f (0) = f ′(0) = 0. In this case −d2/dr2+(+1)/r2 is essentially
self-adjoint on the mentioned domain [6] and the same condition for H comes
trivially, since V0[θ(r − R) − 1 is bounded.

Then for any  �= 0, let us define a domain D,0 of functions f (r) ∈ L2(R+)

fulfilling the following conditions:

1. f (r) and f ′(r) are absolutely continuous;
2. The function −f i ′′(r) = [( + 1)/r2]f (r) belongs to L2(R+);
3. f (0) = 0;
4. f (R) = f ′(R) = 0.

The conclusion is that H on D,0 is symmetric with deficiency indices (2, 2).
In order to add to H the perturbation V (r) = aδ(r − R) + bδ′(r − R), we

define the domain of the adjoint of H on D,0 as the subspace of L2(R+) satisfying
the above conditions 1, 2 and 3 and replacing 4 by: 4′ f (r) and f ′(r) have finite
discontinuities at r = R. Then, imposing the matching conditions (59) to these
functions, we obtain the domain in which Hc(r) = H + V (r) is self-adjoint for
any value of a and b. For  �= 0, the subindex c is irrelevant. This completes our
discussion on the self-adjoint of the Hamiltonian.

6 Concluding Remarks

Contact potentials are quite interesting in quantum mechanics because they provide
of simple models to analyze the behaviour of quantum systems. Along this presen-
tation, we were concerned with perturbations of the type aδ(x − x0) + bδ′(x − x0)

either in one dimension or in arbitrary dimensions with spherical symmetry, so that
the model could be projected to a one dimensional one. This is what we call δ-δ′
interactions.

In the first place, we have introduced a very simple one-dimensional model with
a unique δ-δ′ interaction on the free Hamiltonian. This interaction can be easily
studied and serves as a basis for more complicated models. The contact interaction
can be mathematically well defined using the theory of self-adjoint extensions of
symmetric operators with equal deficiency indices. The possible existence of a
bound state is investigated and scattering coefficients are determined.

This is used for the construction of a sort of Kronig-Pennery model in which
rectangular barriers are replaced by δ-δ′ interactions with identical coefficients, so
that the resulting potential is periodic. The behaviour of the energy bands can be
studied in terms of the variations of the coefficients of the delta and the delta prime.
We have also considered an hybrid potential with two types of δ-δ′ interactions.
The study of the energy bands requires powerful numerical estimations and the use
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of the software Mathematica. A detailed description of this model, which could be
interesting in Condensed Matter, can be just briefly summarized in this short review
and has been published in [25].

Spherically symmetric models in quantum mechanics are often studied as one
dimensional models with an infinite barrier at the origin, after separation of radial
and angular variables. This is also the case of the δ-δ′ interactions supported on hull
spheres of arbitrary dimensions. Here, we have determined matching conditions that
make the Hamiltonian with this type of interaction self-adjoint and have obtained
some results concerning the number of bound states. These results depend on the
dimension as well as the angular momentum.

Finally, we have used one type of δ-δ′ interaction as an approximation of a mean
field potential of wide use in nuclear physics. The objective is double. In one side,
we have obtained results concerning the existence and number of bound states in
the considered model in terms of the given parameters. For two exceptional cases,
the model shows no transmission through the δ-δ′ barrier, so that the number of
bound states is infinite. Otherwise this number is finite. Outside the exceptional
cases, the model shows resonances that are manifested as pairs of poles of the
analytic continuation to the complex plane of the S-matrix, S(k), in the momentum
representation. These resonance poles can be obtained numerically as solutions of
a transcendental equation. There is an infinite in number, so that in Fig. 2, we have
depicted some resonance poles with the lowest real part. We have also discussed the
construction of a self-adjoint Hamiltonian for such purpose.
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