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Abstract The aim of this work is to explain the role played by the Fock quanti-
zation of canonical transformations in the construction of the global semiclassical
(high-frequency) asymptotic approximation. This role may well pass unnoticed as
long as one deals with nondegenerate differential equations. However, the situation
is different for some classes of equations with degeneration, where the Fock
quantization of canonical transformations becomes instrumental in the construction
of asymptotic solutions.
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1 Introduction

Maslov’s canonical operator [14, 15] is a powerful tool for constructing global semi-
classical asymptotics of solutions of differential equations with a small parameter
multiplying the derivatives. The asymptotic solutions produced by this operator have
the form of sums of WKB elements1 in coordinate and momentum representations,
with the 1/h-Fourier transform F1/h

p→x applied to the latter to make them functions
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of the coordinate rather than the momentum.2 The operator F1/h
p→x is actually the

Fock quantization of the rotation by an angle of π/2 in the phase plane; however,
this, in a sense, works behind the scenes, and one may not know that but still apply
the canonical operator successfully to problems with nondegenerate characteristics.
Things become more difficult when one deals with degenerate operators to which
the standard scheme of the canonical operator does not apply. In that case, to de-
singularize the problem, one may need more complicated canonical transformations
than mere rotations by π/2, and then the Fock quantization rule gives the right
recipe of what to do with the WKB elements arising in the new variables and how
to construct a modified canonical operator suitable for the degeneration in question.

This is exactly what happens for the class of operators with boundary degenera-
tion arising in the linear theory of run-up of long waves on a shallow beach [19, 21].
The theory of global semiclassical asymptotics for this class of problems has
been developed in the recent years by the authors and their colleagues [1, 2, 5–
10, 16, 17]. The aim of the present note is to explain how the Fock quantization
of canonical transformations enters the construction of semiclassical asymptotics.
As an example, we use the simplest problem of this class in dimension 1, that is, a
problem for an ordinary differential equation (ODE).

2 Degenerate Boundary Value Problem

Let D(x) ∈ C∞([−1, 1]) be a function such that D(x) > 0 for x ∈ (−1, 1),
D(−1) = D(1) = 0, D′(−1) > 0, and D′(1) < 0. Further, consider the operator

L0 = − d

dx
D(x)

d

dx
with domain D(L0) = C∞

0 ((−1, 1))

in the space L2([−1, 1]). The operator L0 degenerates at the endpoints of the
interval (−1, 1), and hence one cannot define any self-adjoint extensions of L0
with the use of classical boundary conditions such as the Dirichlet or Neumann
conditions [18]. Thus, one has to use “generalized boundary conditions.” Define the
operator L in L2([−1, 1]) as the Friedrichs extension [3, Sec. 10.3] of L0, which
is equivalent to the finiteness of the energy integral [22, Sec. 33.1]. Consider the
eigenvalue problem

Lη = λη, (1)

2For simplicity, we only deal here with the case of one spatial variable x (i.e., x ∈ R
1); if

x = (x1, . . . , xn) ∈ R
n, then the construction also involves partial Fourier transforms (Fourier

transforms with respect to part of the variables).
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which naturally arises in the approximation given by the linearized shallow water
equations as the one-dimensional model of harmonic water waves (such as seiches)
in a basin of variable depth D(x). Here η(x)eiωt , ω = √

λ, has the meaning of the
free surface elevation at the point x at time t . The motion of water is assumed to be
potential, and we use a system of units in which the acceleration due to gravity has
the value g = 1.

We will be interested in the behavior of solutions of this eigenvalue problem
with large λ. One defines an asymptotic series of solutions as a sequence λn →
∞ of numbers (called asymptotic eigenvalues) and a sequence of functions ηn ∈
D(L) such that ‖ηn‖ ≥ C > 0 (where the norm is taken in L2([−1, 1])) and these
functions are almost eigenfunctions in the sense that ‖Lηn − λnηn‖ = O(1) as
n → ∞. By the well-known estimates for the resolvent of a self-adjoint operator,
an asymptotic series satisfies the relation dist(λn, σ (L)) = O(1), where σ(L) is the
spectrum of L, and has other useful properties.

Equation (1) is an ODE with singular points, and there is a vast literature
concerning the theory of such equations (e.g., see the books by Fedoryuk [11]
and Slavyanov [20] and references therein). Needless to say, problem (1) can be
solved by methods of that theory; for example, one can use the method of standard
equations with the Bessel equation serving as a standard equation (see [6, Sec. 2]).
However, these methods have a drawback in that they cannot be transferred to
the multidimensional case automatically; for us, Eq. (1) only serves as a simple
example, and we will use an approach is free from this drawback. This approach
is based on the geometry of the characteristics of the problem and extends Maslov’s
canonical operator.

3 Quantization of Canonical Transformations

The idea of quantization of canonical transformations is apparently due to Dirac,
who wrote [4, Sec. 26]:

. . . for a quantum dynamic system that has a classical analogue, unitary transformation in
the quantum theory is the analogue of contact transformation in the classical theory.

The definition of quantization of canonical transformations was given by Fock [12].
Since then, there have been an extensive literature on the topic. In particular, a
comprehensive theory including global aspects and featuring far-reaching general-
izations was developed by Karasev and Maslov [13]. We will need the simplest local
version essentially defined by Fock himself. In this paper, we restrict ourselves to
the one-dimensional case. Consider a canonical transformation g : R2

(x,p) → R
2
(y,q).

The quantized canonical transformation is given by

T (g) : L2(Ry) −→ L2(Rx), [T (g)u](x) =
∫

Kg(x, y)u(y) dy,
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where the kernel Kg depends on the small parameter h > 0 and is defined via the
generating function of g as follows.

1. If g is defined by a generating function �(x, y) by the formulas q = −�y(x, y),
p = �x(x, y), where, by definition, �′′

xy(x, y) 	= 0, then the kernel is given by

Kg(x, y) =
( −i

2πh

)1/2
e

i
h

�(x,y)
√

�′′
xy(x, y), arg i = π

2
.

2. If g is defined by a generating function �(x, q) by the formulas y = �q(x, q),
p = � x(x, q), where, by definition, �′′

xq(x, q) 	= 0, then

Kg(x, y) = 1

2πh

∫
e

i
h

(�(x,q)−yq
√

�′′
xq(x, q) dq.

The choice of the argument of the radicand is irrelevant to our discussion.
Let us present two examples.

1. Let �(x, y) = −xy, so that p = �x = −y, q = −�y = x, and the
transformation is the counterclockwise rotation by π/2. Then the quantized
transformation has the kernel

Kg(x, y) =
( −i

2πh

)1/2

e− i
h xy, [T (g)u](x) =

( −i

2πh

)1/2 ∫
e− i

h xyu(y) dy;

thus, T (g) = F1/h
y→x is the 1/h-Fourier transform.

2. Now let �(x, q) = qf (x) (where f ′(x) 	= 0); then y = f (x), p = (f ′(x))−1q

is the classical canonical transformation associated with a change of variables.
The kernel has the form

Kg(x, y) =
√

f ′(x)

2πh

∫
e

i
h q(f (x)−y) dq = √

f ′(x)δ(y − f (x)),

and the transformation T (g) itself is the same change of variables in a function
followed by the multiplication by a factor ensuring the unitarity of T (g) in L2.

4 Semiclassical Asymptotics

The semiclassical theory deals with equations of the form Ĥu = 0, where
Ĥ = H(x, p̂), p̂ = −ih ∂

∂x
, is a differential operator with a small parameter

h > 0 multiplying the derivatives. Semiclassical asymptotic theory provides rapidly
oscillating asymptotic solutions of the equation Ĥu = 0 as h → 0. Let us recall the
standard construction of the canonical operator [14, 15], again sticking to the case of
n = 1. To define the canonical operator, we need a Lagrangian manifold 
 ⊂ R

2
(x,p)
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with a smooth measure dμ (volume form) on it. The canonical operator Kh

 takes

smooth functions on 
 to rapidly oscillating functions on Rx . The manifold 
 must
be compact (or at least the projection 
 → Rx must be proper).

The function Kh

φ is pasted together from local elements corresponding to parts

of 
 with “good” projection onto one of the coordinate axes. There can be two
possible cases:

(i) Assume that the projection of supp φ ⊂ 
 onto the x-axis is good. Then
[Kh


φ](x) is the WKB element

[Kh

φ](x) = exp

(
iS(x)

h

)
φ(x)

(
dμ

dx

)1/2

, where 
 =
{
p = ∂S

∂x
(x)

}
.

(ii) Assume that the projection of supp φ ⊂ 
 onto the p-axis is good. Then we
can in a similar way define the WKB element

exp

(
iS̃(p)

h

)
φ(p)

(
dμ

dp

)1/2

, where 
 =
{
x = −∂S̃

∂p
(p)

}
,

but we cannot make it the value of the canonical operator, because it depends on
the wrong variable! To obtain a function of x, we transpose the axes by rotating
the picture by an angle of π/2. The Fock quantization of this rotation gives the
Fourier transform, and we obtain

[Kh

φ](x) =

(
i

2πh

)1/2 ∫
exp

(
i(S̃(p) + px)

h

)
φ(p)

(
dμ

dp

)1/2

dp.

Now, to define Kh

φ for an arbitrary compactly supported smooth function φ on 
,

one uses a partition of unity to split φ into a sum of terms each of which can
be treated with the use of (i) or (ii). The consistency of (i) and (ii) in case they
both apply is ensured by additional unimodular factors; in turn, these can be chosen
consistently if 
 satisfies the quantization conditions (see [14, 15]).

5 Solution of the Degenerate Problem

5.1 Geometric Construction

We rewrite problem (1) in the semiclassical form

Ĥη = η, Ĥ = p̂D(x)p̂,
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with Hamiltonian H(x, p) = D(x)p2. The semiclassical asymptotics is associated
with a Lagrangian manifold 
0 contained in the set {(x, p) : H(x, p) = 1}. In the
one-dimensional case, this set is a curve, and the Lagrangian manifold necessarily
coincides with it. The difficulty is that the Lagrangian manifold is singular (namely,
the projection onto the base is improper). The solution is to extend the phase space.

The geometric construction was suggested in [16] based on the idea in [23]
that one should proceed from the momentum variable p to its reciprocal, 1/p.
The natural next step (which however was not made in [23]) is to accompany this
transformation with a transformation of the variable x so as to obtain a canonical
transformation. This was done in [16]. The desired change of variables in the phase
space T ∗((−1, 1)) over a neighborhood of the left end x = −1 of the interval
(−1, 1) has the form

θ = p2(x + 1), q = − 1

p
⇔ x = q2θ − 1, p = − 1

q
. (2)

This transformation is canonical, dp ∧ dx = dq ∧ dθ . We add the open half-line
{q = 0, θ > 0} to this chart of the phase space in the new coordinates and carry
out a similar construction near the right end x = 1. The resulting new phase space
� is diffeomorphic to a plane with two deleted points, � � R2 \ {(−1, 0), (1, 0)}.
The closure 
 of the manifold 
0 in the phase space � is obtained by the addition
of two points; it is a smooth Lagrangian manifold diffeomorphic to a circle. To
construct asymptotic eigenfunctions, we must define the canonical operator on 
 in
the vicinity of the newly added points.

5.2 Modified Canonical Operator

Consider a neighborhood of a point in 
 \ 
0. This point is projected into
one of the endpoints of [−1, 1] and is defined by the equation q = 0 in the
corresponding new coordinates. Thus, the endpoints are a special kind of caustic.
To define the canonical operator near these points, we use the same idea as earlier
for the “standard” canonical operator. Namely, we write a WKB element that is
a function of q and then define a function of the variable x by applying the
Fock quantized canonical transformation corresponding to the classical canonical
transformation (2). To be definite, consider a neighborhood of the left endpoint x =
−1. Then the canonical transformation (2) can be defined by the generating function
�(x, q) = −x/q , and accordingly the quantized canonical transformation is

[T (g)u](x) =
∫

K(x, θ)u(θ) dθ,
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where

K(x, θ) = 1

2πh

∫ ∞

−∞
e
− i

h

(
x
q

+θq
)
dq

q
= − i

h
J0

(2
√

xθ

h

)

and J0(z) is the Bessel function of the first kind and zero order. Thus, we have
the Hankel transform instead of the usual Fourier transform in the definition of the
canonical operator. In other words, the canonical operator in a neighborhood of the
boundary point acts as an application of the Hankel transform (composed with the
Fourier transform) to a WKB element. The corresponding integral formulas can
be found in [17]; the kernels of these integrals are products of K(x, θ) by certain
rapidly oscillating exponentials. Computing these Bessel type integrals according
to [5], we arrive at the form of the modified canonical operator given in [1]. In the
one-dimensional case, these formulas do not contain any integrals and hence express
the asymptotic solution in closed form. We refer the reader for the general formulas
to [1, 6] and restrict ourselves in the present paper to the solution formulas for our
specific problem.

5.3 Formulas for the Asymptotic Eigenfunctions

The final answer in problem (1) reads [6, Eq. (1.6)]

ηn(x) �

⎧⎪⎪⎨
⎪⎪⎩

√
2πωnJ0(ωnS(−1, x))

(S(−1, x)

c(x)

)1/2
, x ∈ [−1, 1 − ε],

(−1)n
√

2πωnJ0(ωnS(x, 1))
(S(x, 1)

c(x)

)1/2
, x ∈ [−1 + ε, 1],

where ε > 0 is fixed,

c(x) = √
D(x), S(x0, x) =

∫ x

x0

dξ

c(ξ)
, −1 ≤ x0, x ≤ 1,

and

ωn = π

S(−1, 1)

(
n + 1

2

)
, n = 1, 2, . . . ,

are the asymptotic eigenvalues of the problem.
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