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Abstract We consider certain degenerations of trigonal curves and hyperelliptic
curves, which we call one step degeneration. We compute the limits of correspond-
ing quasi-periodic solutions using the Sato Grassmannian. The mixing of solitons
and quasi-periodic solutions is clearly visible in the obtained solutions.
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1 Introduction

The aim of this paper is to compute explicitly the limits of quasi-periodic solutions
of the KP (Kadomtsev-Petviashvili) equation according to certain degenerations of
trigonal and hyperelliptic curves, which we call one step degeneration.

The KP equation is the 2 + 1 dimensional equation given by

3ut2t2 + (−4ut3 + 6uut1 + ut1t1t1)t1 = 0, (1)

where (t1, t2) and t3 are space and time variables respectively. It can be rewritten in
the Hirota bilinear form:

(D4
t1

− 4Dt2Dt3 + 3D2
t2
)τ · τ = 0, (2)
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where Dti ’s are Hirota derivatives defined by

f (t + s)g(t − s) =
∞∑

n=0

Dn
t f · g

sn

n! .

For a solution τ of (2) u = 2(log τ )t1t1 gives a solution of (1). The KP hierarchy is
the infinite system of differential equations which contains the KP equation (2) as
its first member [6]. It is given by

∫
τ (t − s − [z−1])τ (t + s + [z−1])e−2

∑∞
j=1 sj zj dz

2πi
= 0, (3)

where t = (t1, t2, . . .), s = (s1, s2, . . .), [z−1] = [z−1, z−2/2, z−3/3, . . .] and
the integral signifies taking the coefficient of z−1 in the series expansion of the
integrand. Expanding (3) by s we get differential equations for τ (t) in the Hirota
bilinear form. A solution τ (t) is sometimes called a tau function. The introduction
of the infinitely many variables is indispensable to the Sato theory which we use in
this paper.

The KP hierarchy has a variety of solutions. Among them soliton solutions and
algebro-geometric solutions are relevant to us. Soliton solutions are the solutions
expressed by exponential functions given as follows (see [11] for example). Take
positive integers N < M , non-zero parameters κj , 1 ≤ j ≤ M and an N × M-
matrix A = (ai,j ). Then soliton solution is given by

τ (t) =
∑

I=(i1<···<iN )

�IAI eη(κi1 )+···+η(κiM
), (4)

�I =
∏

p<q

(κiq − κip ), AI = det(ap,iq )1≤p,q≤N, η(κ) =
∞∑

i=1

tiκ
i .

Recently it was discovered that the shapes of soliton solutions form various web
patterns and that they are related with the geometry of Grassmann manifolds, cluster
algebras (see [11] and references therein).

Quasi-periodic solutions, which is also called algebro-geometric solutions,
constitute a class of solutions expressed by theta functions of algebraic curves with
positive genus. Periodic solutions are contained in this class. Soliton solutions can
be considered as the limits of quasi-periodic solutions when periods go to infinity.
In terms of curves soliton solutions are the genus zero limits of quasi-periodic
solutions. Our original motivation of the research was to take these limits and
compare the structure of the quasi-periodic solutions and that of solitons described
in [11]. However in the course of study [2] we come to the recognition that the limits
to positive genus solutions are more fundamental. Anyhow the difficulty here is that
to take a limit of a theta function or, in other words, to take a limit of the period
matrix of an algebraic curve, is not very easy.
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In [2, 18, 19] we have demonstrated that the Sato Grassmannian (UGM) approach
to this kind of problem is very effective. The reason, roughly speaking, is explained
as follows. There is a one to one correspondence between points of UGM and
solutions of the KP-hierarchy up to constants. Using UGM an algebro-geometric
solution can be described as a series whose coefficients are constructed from some
rational functions on an algebraic curve. In this way the difficult problem on taking
limits of period matrices reduces to much easier problem on taking limits of rational
functions. In this paper we develop the UGM approach further.

We consider the following degeneration of algebraic curves, which we call one
step degeneration, given by

ym =
mn+1∏

j=1

(x − αj ) −→ ym = (x − α)m
m(n−1)+1∏

j=1

(x − αj ), (5)

for m = 2, 3. Fix m and denote by Cn the non-singular curve before taking the
limit. We define some canonical tau function τn,0(t) (see (35)) corresponding to the
curve Cn. Then we express the limit of τn,0(t) in terms of τn−1,0(t) with the variable
t being appropriately shifted. Then a solitonic structure can be seen clearly in the
degeneration of the algebro-geometric solution τn,0(t). This is another crucial idea
in this paper.

The results are as follows. For m = 2, that is, the case of a hyperelliptic curve,
we have (Theorem 24),

lim τn,0(t) = Ce−2
∑∞

l=1 αlt2l

×
(

eη(α1/2)τn−1,0(t − [α−1/2]) + (−1)neη(−α1/2)τn−1,0(t − [−α−1/2])
)
, (6)

for some constant C. It is observed that the soliton factors eη(±α1/2) pop out from
τn,0(t). Then the solution (6) looks like a mixture of solitons and quasi-periodic
solutions. Using the formula repeatedly and noting that τ0,0(t) = 1 if α1 = 0 we get
well known soliton solutions of the KdV equation.

For m = 3 we have (Theorem 18)

lim τn,0(t) = e−6
∑∞

l=1 αlt3l

×
∑

0≤i<j≤2,0≤k≤2

∂

∂β

(
C̃i,j,k(α, β)eη(zi (α)−1)+η(zj (α)−1)+η(zk(β)−1)

× τn−1,0(t − [zi(α)] − [zj (α)] − [zk(β)])
)∣∣∣

β=α
,

zi(α) = ω−iα−1/3, ω = e2πi/3, (7)
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for some constants C̃i,j,k(α, β). A new feature in this case is the appearance of the
derivative with respect to the parameter β. This corresponds to the fact that the limit
of τn,0 to genus zero curve in this case is not a soliton but a generalized soliton [18].
The constants C̃i,j,k (α, β) should be expressed by some derivatives of the sigma
function. The explicit formulas for them are important for the further analysis of the
solutions.

We remark that the formula of the forms (6), (7) can be generalized for m ≥ 4
in (5). They should be treated in a subsequent papers. A generalization of the results
in this paper to other class of curves such as that treated in [1] is also interesting.

The paper is organized as follows. In Sect. 2 we first review the theory of the
Sato Grassmannian (UGM). Then we explain how to embed the space of functions
on an algebraic curve to UGM. Next we apply the general theory to our concrete
examples and define the frame ξ̃n of a point of UGM corresponding to the space
of regular rational functions on Cn\{∞}. Then we study the degeneration of ξ̃n

and define the frame ξn as a gauge transformation of ξ̃n. In order to express ξn

by an object associated with the curve Cn−1 we study the frame associated with
the space of rational functions on Cn−1\{∞} which are singular at three points.
Decomposing some rational functions we derive the degeneration formula of the tau
function τ (t; ξ̃n) corresponding to ξ̃n in terms of some tau functions associated with
the curve Cn−1 in the final subsection of Sect. 2. In Sect. 3 we first review the sigma
function of a so called (N,M) curve. Then we recall the sigma function expression
of τ (t; ξ̃n). Next we express the tau function corresponding to the space of functions
with additional singularities as a shift of τ (t; ξ̃n). By substituting these formulas to
the degeneration formula derived in Sect. 2 we express the limit of τ (t; ξ̃n) in terms
of the shift of τ (t; ξ̃n−1). In Sect. 4 we derive a similar degeneration formula for
hyperelliptic curves based on the results of [2].

2 Sato Grassmannian and τ -Function

In this section we briefly recall the definition and basic properties of the Sato
Grassmannian.

2.1 Sato Grassmannian

Let V = C((z)) be the vector space of Laurent series in the variable z and Vφ =
C[z−1], V0 = zC[[z]] two subspaces of V . Then V is isomorphic to Vφ ⊕ V0.
Let π : V −→ Vφ be the projection map. Then the Sato Grassmannian UGM is
defined as the set of subspaces U of V such that the restriction π |U has the finite
dimensional kernel and cokernel whose dimensions coincide.
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To an element
∑

anz
n ∈ V we associate the infinite column vector (an)n∈Z. Then

a frame of a point U of UGM is expressed by a Z×N≤0 matrix ξ = (ξi,j )i∈Z,j∈N≤0 ,
where columns, and therefore a basis of U , are labeled by the set of non-positive
integers N≤0. A frame ξ is written in the form

ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

· · · ξ−1,−1 ξ−1,0

· · · ξ0,−1 ξ0,0

− − − − − − − − −
· · · ξ1,−1 ξ1,0

· · · ξ2,−1 ξ2,0
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

It is always possible to take a frame satisfying the following condition, there exists
a negative integer l such that

ξi,j =
{

1 if j < l and i = j

0 if (j < l and i < j) or (j ≥ l and i < l).
(9)

In the sequel we always take a frame which satisfies this condition, although it is
not unique.

A Maya diagram M = (mj )
∞
j=0 is a sequence of decreasing integers such that

mj = −j for all sufficiently large j . For a Maya diagram M = (mj )
∞
j=0 the

corresponding partition is defined by λ(M) = (j +mj)
∞
j=0. By this correspondence

the set of Maya diagrams and the set of partitions bijectively correspond to each
other.

For a frame ξ and a Maya diagram M = (mj )
∞
j=0 define the Plücker coordinate

by

ξM = det(ξmi ,j )−i,j≤0

Due to the condition (9) and the condition of the Maya diagram M this infinite
determinant can be computed as the finite determinant det(ξmi ,j )k≤−i,j≤0 for
sufficiently small k.

Define the elementary Schur function pn(t) by

e
∑∞

n=1 tnκn =
∞∑

n=0

pn(t)κ
n.

The Schur function [13] corresponding to a partition λ = (λ1, . . . , λl) is defined by

sλ(t) = det(pλi−i+j (t))1≤i,j≤l .
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Assign the weight j to the variable tj . Then it is known that sλ(t) is homogeneous
of weight |λ| = λ1 + · · · + λl . To a point U of UGM take a frame ξ and define the
tau function by

τ (t; ξ) =
∑

M

ξMsλ(M)(t). (10)

If we change the frame ξ τ (t; ξ) is multiplied by a constant. We call τ (t; ξ), for
any frame ξ of U , a tau function corresponding to U . So tau functions of a point of
UGM differ by constant multiples to each other.

Then

Theorem 1 ([24]) The tau function τ (t; ξ) is a solution of the KP-hierarchy.
Conversely for a formal power series solution τ (t) of the KP-hierarchy there exists
a point U of UGM such that τ (t) coincides with a tau function of U .

The point U of UGM corresponding to a solution τ (t) in Theorem 1 is given as
follows [10, 16, 23, 24].

Let �∗(t; z) be the adjoint wave function [6] corresponding to τ (t) which is
defined by

�∗(t; z) = τ (t + [z])
τ (t)

e− ∑∞
i=1 tiz

−i

. (11)

Define �∗
i (z) by the following expansion

(
τ (t)�∗(t; z)

) |t=(x,0,0,0,...)

= τ ((x, 0, 0, 0, . . .) + [z])e−xz−1 =
∞∑

i=0

�∗
i (z)xi. (12)

Then

U =
∞∑

i=0

C�∗
i (z). (13)

By this correspondence between points of UGM and tau functions the following
property follows. Let U be a point of UGM, τ (t) be a tau function corresponding to

U and f (z) = e
∑∞

i=1 ai
zi

i be an invertible formal power series. Then f (z)U belongs
to UGM and the corresponding tau function is given by

e
∑∞

i=1 ai ti τ (t). (14)

It is sometimes called the gauge transformation of τ (t).
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2.2 Embedding of Algebro-Geometric Data to UGM

In this section we recall the construction of points of UGM from algebraic curves
(see [14, 19] for more details).

Let C be a compact Riemann surface of genus g, p∞ a point on it, z a local
coordinate around p∞. For m ≥ 0 and points pi , 1 ≤ i ≤ m, on C, such that
pj 	= ∞ for any j , we denote by

H 0(C,O(

m∑

j=1

pj + ∗p∞)) (15)

the vector space of meromorphic functions on C which have a pole at each pj of
order at most 1 and have a pole at p∞ of any order. By expanding functions in the
local coordinate z we can consider H 0(C,O(

∑m
j=1 pj + ∗p∞)) as a subspace of

V = C((z)). Then

Proposition 2 ([14, 19]) The subspace zg−mH 0(C,O(
∑m

j=1 pj + ∗p∞)) belongs
to UGM.

Remark 3 This Proposition was proved in [19] from the general results [14], for
m ≤ g. But the case m > g can be proved in the same way.

2.3 Tau Function Corresponding to Zero Point Space

For n ≥ 1 and mutually distinct complex numbers {αi}3n
i=1 consider the compact

Riemann surface Cn corresponding to the algebraic curve defined by the equation

y3 =
3n+1∏

j=1

(x − αj ). (16)

The genus of Cn is g = 3n and there is a unique point on Cn over x = ∞ which we
denote by ∞.

Consider the space H 0(Cn,O(∗∞)) which corresponds to m = 0 in (15). It is
the space of meromorphic functions on C which are regular on Cn\{∞}. It can be
easily proved that it coincides with the vector space C[x, y] of polynomials in x, y.
A basis of this vector space is given by

xi, xiy, xiy2 i ≥ 0. (17)
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We take the local coordinate z around ∞ such that

x = z−3, y = z−(3n+1)Fn(z), Fn(z) =
⎛

⎝
3n+1∏

j=1

(1 − αj z
3)

⎞

⎠
1/3

. (18)

In the following we denote by z this local coordinate unless otherwise stated. The
function Fn(z) is considered as a power series in z by the Taylor expansion at z = 0.

By Proposition 2 zgH 0(Cn,O(∗∞)) determines a point of UGM. Writing (17)
in terms of z and multiplying them by zg we get a basis of it,

z3n−3i , z−1−3iFn(z), z−3n−2−3iFn(z)
2 i ≥ 0. (19)

We define the frame ξ̃n from this basis as follows.
For an element v(z) = ∑

n≤i aiz
i , an 	= 0, define the order of v(z) to be −n and

write ord v(z) = −n.

Definition 4 Label the elements of (19) by ṽi , i ≤ 0, in such a way that ord ṽ0 <

ord ṽ−1 < ord ṽ−2 < · · · and define the frame ξ̃n of zgH 0(Cn,O(∗∞)) by

ξ̃n = (. . . , ṽ−2, ṽ−1, ṽ0). (20)

By the construction of ξ̃n the tau function τ (t; ξ̃n) has the following expansion
(see [16])

τ (t; ξ̃n) = sλ(n) (t) + h.w.t, (21)

where h.w.t means the higher weight terms, λ(n) is the partition determined from the
gap sequence w1 < · · · < wg at ∞ of Cn and is given by

λ(n) = (wg − (g − 1), . . . , w2 − 1, w1).

Example 5 λ(1) = (3, 1, 1), λ(2) = (6, 4, 2, 2, 1, 1), λ(3) = (9, 7, 5, 3, 3, 2, 2, 1, 1).

2.4 Degeneration

Let us take a complex number α which is different from αi , 1 ≤ i ≤ 3n − 2 and
consider the limit

α3n+1, α3n, α3n−1 → α, (22)
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which means that the curve Cn degenerates to

y3 = (x − α)3
3n−2∏

j=1

(x − αj ). (23)

which we call one step degeneration of Cn.
In the limit

Fn(z) −→ (1 − αz3)Fn−1(z),

and the basis (19) tends to

z3n−3i , z−1−3i (1 − αz3)Fn−1(z), z−3n−2−3i (1 − αz3)2Fn−1(z)
2, i ≥ 0. (24)

Let Wn be the point of UGM generated by this basis. Multiply (24) by (1 − αz3)−2

we have

z3n−3i

(1 − αz3)2 ,
z−1−3i

(1 − αz3)
Fn−1(z), z−3n−2−3iFn−1(z)

2 i ≥ 0. (25)

By taking linear combinations we have

Lemma 6 The following set of elements gives a basis of (1 − αz3)−2Wn.

z3n−6−3i , z−4−3iFn−1(z), z−3n−2−3iFn−1(z)
2, i ≥ 0,

z3n

(1 − αz3)2 ,
z3n−3

1 − αz3 ,
z−1

1 − αz3 Fn−1(z).
(26)

We arrange the basis elements of this lemma according as their orders and define
the frame ξn as follows.

Definition 7 Define the frame ξn of Wn by

ξn = (. . . , v−2, v−1, v0),

with

v0 = z3n

(1 − αz3)2 ,

v−1 = z3n−3

1 − αz3 ,

v−(2+i) = z3n−6−3i , 0 ≤ i ≤ n − 2,
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v−(n+1) = z−1

1 − αz3 Fn−1(z),

v−(n+2+2i) = z−3−3i , 0 ≤ i ≤ n − 1,

v−(n+3+2i) = z−4−3iFn−1(z), 0 ≤ i ≤ n − 1,

v−(3n+2+3i) = z−3n−2−3iFn−1(z)
2, i ≥ 0,

v−(3n+3+3i) = z−3n−3−3i , i ≥ 0,

v−(3n+4+3i) = z−3n−4−3iFn−1(z), i ≥ 0.

Since we have the expansion

log(1 − αz3)−2 = 6
∞∑

l=1

αl z
3l

3l
,

the following relation holds by (14),

τ (t; ξn) = e6
∑∞

l=1 αlt3l lim τ (t; ξ̃n), (27)

where the lim signifies taking the limit (22).

2.5 Three Point Insertion

Consider the curve Cn−1 defined by (16) where n is replaced by n − 1. The genus
of Cn−1 is g′ = 3n − 3 = g − 3. Let

Qj = (cj , Yj ), j = 0, 1, 2, (28)

be points on Cn−1. We assume cj 	= αi for any i, j . Define ϕj by

ϕj = y2 + Yjy + Y 2
j

x − cj

.

The pole divisor of this function is Qj + (2g′ − 1)∞. Consider the space
H 0(Cn−1,O(Q0 + Q1 + Q2 + ∗∞)). A basis of it is given by

xi, xiy, xiy2, ϕj , i ≥ 0, j = 0, 1, 2.
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Write this basis in terms of the local coordinate z and multiply it by zg′−3 we have

z3n−6−3i , z−4−3iFn−1(z), z−3n−2−3iFn−1(z)
2, z3n−6ϕj , i ≥ 0, j = 0, 1, 2.

(29)

By Proposition 2 zg′−3H 0(Cn−1,O(Q0 + Q1 + Q2 + ∗∞)) is a point of UGM
and the set of functions (29) is a basis of it. Using this basis define the frame of
zg′−3H 0(Cn−1,O(Q0 + Q1 + Q2 + ∗∞)) by

ξn−1(Q0,Q1,Q2)

= (. . . , v−(n+3), v−(n+2), v−n, . . . , v−2, z
3n−6ϕ0, z

3n−6ϕ1, z
3n−6ϕ2),

where vj is the same as that in ξn.

2.6 Degeneration Formula in Algebraic Form

Corresponding to the parameter α in (22) let Pi(α) = (α, ωiy0(α)), i = 0, 1, 2
be points on Cn−1, where ω = e2πi/3. Take Qj = Pj (α) in (28) and denote the
function ϕj by ϕj (α). Then

ϕj (α) = y2 + (ωj y0(α))y + (ωjy0(α))2

x − α
.

Lemma 8 For 0 ≤ i ≤ 2 we have

yi

x − α
= 1

3y0(α)2−i

2∑

j=0

ω(i+1)j ϕj (α)

The lemma can be verified by direct computation. From these relations we have

v−1 = z3n−3

1 − αz3 = 1

3y0(α)2

2∑

i=0

ωiz3n−6ϕi(α) (30)

v−(n+1) = z−1Fn−1(z)

1 − αz3
= 1

3y0(α)

2∑

i=0

ω2iz3n−6ϕi(α) (31)

v0 = z3n

(1 − αz3)2 = ∂

∂β

(
1

3y0(β)2

2∑

i=0

ωiz3n−6ϕi(β)

)∣∣∣∣∣
β=α

. (32)

The third equation is obtained by differentiating the first equation in α.
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Let λ be a partition and consider the Plücker coordinate of (ξn)λ. Substitute the
above expression to the definition of (ξn)λ of ξn. Then Eqs. (30)–(32) mean that each
of the column vectors of ξn corresponding to v0, v−1, v−(n+1) is a sum of vectors.
So we have

(ξn)λ = (−1)n

27yn−1,0(α)5

∑

0≤i<j≤2,0≤k≤2

ωi+k+2j (1 − ωi−j )

× ∂

∂β

(
ξn−1(Pi(α), Pj (α), Pk(β))λ

) |β=α.

Multiplying this equation by sλ(x) and summing up in λ we get

τ (t; ξn) = (−1)n

27yn−1,0(α)5

∑

0≤i<j≤2,0≤k≤2

ωi+k+2j (1 − ωi−j )

× ∂

∂β

(
τ (t; ξn−1(Pi(α), Pj (α), Pk(β)))

) |β=α.

Finally using (27) we obtain

Theorem 9 Consider the limit (22). Then the limit of the tau function of the frame
ξ̃n defined by (20) is given by the following formula:

lim τ (t; ξ̃n) = (−1)n

27yn−1,0(α)5 e−6
∑∞

l=1 αlt3l
∑

0≤i<j≤2,0≤k≤2

ωi+k+2j (1 − ωi−j )

× ∂

∂β

(
τ

(
t; ξn−1(Pi(α), Pj (α), Pk(β))

) )∣∣∣
β=α

.

Remark 10 The new feature of the trigonal case compared with the hyperelliptic
case studied in [2] (see Theorem 20) is the existence of a derivative in the parameter
β. In [18] the degeneration to genus zero curve in the trigonal case was directly
studied. The obtained solutions are not solitons but generalized solitons. The
appearance of the derivative corresponds to this phenomenon.

3 Analytic Expression of Tau Functions

In this section we derive the analytic expression of tau functions appeared in The-
orem 9 in terms of the multivariate sigma function [3–5, 15, 16]. The fundamental
idea behind constructing the expression is due to Krichever [12].
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3.1 The Sigma Function of an (N,M) Curve

We consider the general (N,M)-curve [5] defined by f (x, y) = 0 with

f (x, y) = yN − xM −
∑

Ni+Mj<NM

λij xiyj , (33)

where N,M are relatively prime integers such that 1 < N < M . We assume that
the curve is non singular. We denote the corresponding compact Riemann surface
by C. Then the genus of C is given by g = 1/2(N − 1)(M − 1). There is one point
on C over x = ∞ which is also denoted by ∞. Here we recall several necessary
facts related with the curve C. See [15, 16] for details.

We assign the order Ni + Mj to the monomial xiyj , i, j ≥ 0, and define fi ,
i ≥ 1, to be the i-th monomial in this order. For example f1 = 1, f2 = x. Then the
set of differentials

dui = −fg+1−idx

fy

, 1 ≤ i ≤ g

constitutes a basis of holomorphic one forms. We choose an algebraic fundamental
form ω̂(p1, p2) on C × C as in [15]. It has the decomposition of the form

ω̂(p1, p2) = dp2�(p1, p2) +
g∑

i=1

dui(p1)dri(p2),

where �(p1, p2) is a certain meromorphic one form on C × C and dri(p) is a
certain differential of the second kind on C with a pole only at ∞ (see [15] for more
precise form of ω̂, �, dri ). Taking a symplectic basis {αi, βi}gi=1 of the homology
group of C we define the period matrices ωk , ηk , k = 1, 2, � by

2ω1 =
(∫

αj

dui

)
, 2ω2 =

(∫

βj

dui

)
,

−2η1 =
(∫

αj

dri

)
, −2η2 =

(∫

βj

dri

)
,

and � = ω−1
1 ω2. Define Riemann’s theta function by

θ [ε](z,�) =
∑

m∈Zg

eπit (m+ε′)�(m+ε′)+2πit (m+ε′)(z+ε′′),
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where ε = t (ε′, ε′′) ∈ R
2g, ε′, ε′′ ∈ R

g . Let �δ′ + δ′′, δ′, δ′′ ∈ (1/2)Zg, be a
representative of Riemann’s constant with respect to the choice of the base point ∞
and {αi, βi}gi=1, and δ = t (δ′, δ′′) ∈ (1/2)Z2g.

Let (w1, . . . , wg), w1 < · · · < wg, be the gap sequence of the curve C at ∞ (see
[7, 15] for example). Define the partition λ(N,M) by

λ(N,M) = (wg − (g − 1), . . . , w2 − 1, w1).

By the definition λ(n) = λ(3,3n+1).

Definition 11 The sigma function is defined by

σ(u) = Ce
1
2

t uη1ω
−1
1 uθ [−δ]((2ω1)

−1u,�),

u = t (u1, . . . , ug)

for some constant C.

Assign the weight wi to ui . Then the constant C is specified by the condition that
σ(u) has the expansion of the form

σ(u) = sλ(N,M)(t)|twi
=ui + h.w.t.

It is known that C is explicitly expressed by some derivatives of the Riemann’s
theta function [17, 20]. The sigma function satisfies the following quasi-periodicity
property:

σ(u +
2∑

i=1

2ωimi)

= (−1)
tm1m2+2(t δ′m1−t δ′′m2)e

t (
∑2

i=1 2ηimi)(u+∑2
i=1 ωimi )σ (u). (34)

3.2 Sigma Function Expression of Tau Functions

Here we derive sigma function expressions for the tau functions corresponding to
the spaces in Proposition 2 in the case of (N,M) curves.

We take the local coordinate z around ∞ such that

x = z−N, y = z−M(1 + O(z)).
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Expand dui , ω̂ in z as

dui =
∞∑

j=1

bi,j z
j−1,

ω̂(p1, p2) =
⎛

⎝ 1

(z1 − z2)2 +
∑

i,j≥1

q̂i,j z
i−1
1 z

j−1
2

⎞

⎠ dz1dz2,

where zi = z(pi). The differential dug has a zero of order 2g − 2 at ∞ and has the
expansion of the form

dug = z2g−2(1 +
∞∑

j=2g

bg,jz
j−2g+1)dz.

Define ci by the expansion

log

(√
z−2g+2

dug

dz

)
=

∞∑

i=1

ci

zi

i
.

In [16] there is a misprint, ciz
i should be ciz

i/i as above. Define g × N matrix B

and the quadratic form q̂ by

B = (bi,j )1≤i≤g,j≥1, q̂(t) =
∞∑

i,j=1

q̂i,j ti tj .

The following theorem is proved in [16].

Theorem 12 ([16]) A tau function corresponding to zgH 0(C,O(∗∞)) is given by

τ0(t) := e− ∑∞
i=1 ci ti+ 1

2 q̂(t )σ (Bt). (35)

It has the expansion of the form

τ0(t) = sλ(N,M)(t) + h.w.t. (36)

Remark 13 In [16] it is proved that τ0(t) defined by (35) is a solution of the N-
reduced KP-hierarchy [6].

More generally the tau function corresponding to the m-point space with m ≥ 1
given by Proposition 2 is described in terms of the shift of τ0(t).
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Theorem 14 Let pi , 1 ≤ i ≤ m, be points on C\{∞} and zi = z(pi). A tau
function corresponding to zg−mH 0(C,O(

∑m
i=1 pi + ∗∞)) is given by

τ (t|p1, . . . , pm) := e
∑∞

i=1 η(z−1
i )τ0(t −

m∑

i=1

[zi]), (37)

where η(κ) = ∑∞
i=1 tiκ

i , [w] = [w,w2/2, w3/3, . . .].
By (14) and by that the KP-hierarchy is the system of autonomous equations, if

τ (t) is a solution of the KP-hierarchy, so is e
∑∞

i=1 γi ti τ (t +ζ ) for any set of constants
{γi} and a constant vector ζ . Therefore τ (t|p1, . . . , pm) is a solution of the KP-
hierarchy.

Then the theorem is proved by calculating the adjoint wave function using (13).
To this end we need some notation.

Let E(p1, p2) be the prime form [8] (see also [10]). Define E(z1, z2), E(q, p)

with zi = z(pi) and q being a fixed point on C by

E(p1, p2) = E(z1, z2)√
dz1

√
dz2

, E(q, p) = E(z(q), z(p))√
dz(p)

.

Define Ẽ(q, p) for q fixed by

Ẽ(q, p) = E(q, p)

√
dug(p)e

1
2

∫ p
q

t du(η1ω
−1
1 )

∫ p
q du

,

du = t (du1, . . . , dug).

In [15] two variables Ẽ(p1, p2) and one variable Ẽ(∞, p) were introduced and
studied. It should be noticed that Ẽ(q, p) is a multiplicative function of p while
E(q, p) is a −1/2 form. Similarly to the case of Ẽ(∞, p) in [15] the following
lemma can be proved.

Lemma 15

(i) The function Ẽ(q, p) has the expansion in z = z(p) near ∞ of the form

Ẽ(q, p) = (z − z(q))zg−1(1 + O(z)).

(ii) Let γ be an element of π1(C,∞) and its Abelian image be∑g
i=1(m1,iαi + m2,iβi). Then

Ẽ(q, γ (p))/Ẽ(q, p)

= (−1)
tm1m2+2(t δ′m1−t δ′′m2)e

t (
∑2

i=1 2ηimi)(
∫ p
q du+∑2

i=1 ωimi ), (38)

where mi = t (mi,1, . . . ,mi,g).
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By (i) of this lemma Ẽ(∞, p) has a zero of order g at ∞.
Let dr̃i be the normalized differential of the second kind with a pole only at ∞,

that is, it satisfies

∫

αj

dr̃i = 0, 1 ≤ j ≤ g, dr̃i = d(z−i + O(1)).

Define

dr̂i = dr̃i +
g∑

j,k=1

bj,i (η1ω
−1
1 )j,kduk.

By the construction their periods can be computed as (Lemma 5 in [16])

∫

αj

dr̂i = (
t (2η1)B

)
j,i

,

∫

βj

dr̂i = (
t (2η2)B

)
j,i

. (39)

In Lemma 5 of [16] there is a misprint: the right hand side is not the (i, j) component
but the (j, i) component.

Proof of Theorem 14 The adjoint wave function (11) corresponding to the tau
function (37) is computed as

�∗(t, z) = C(z1, . . . , zm)zg−m
Ẽ(∞, p)m−1σ

(∫ p

∞ du − ∑m
i=1

∫ pi

∞ du + Bt
)

∏m
i=1 Ẽ(pi, p) σ

(− ∑m
i=1

∫ pi

∞ du + Bt
)

× e− ∑∞
i=1 ti

∫ p
dr̂i ,

C(z1, . . . , zm) = (−1)m(

m∏

i=1

zi)e
1
2

∑m
i=1

∫ pi∞ t du(η1ω
−1
1 )

∫ pi∞ du.

By Lemma 15 and (39) we can check that z−g+m�∗(t, z) is, as a function of
p ∈ C, π1(C,∞) invariant. Then the same is true for any expansion coefficient
of �∗(t, z) in t . Expansion coefficients in t are regular except pi , 1 ≤ i ≤ m, ∞
and have at most a simple pole at pi . Therefore the point U of UGM corresponding
to τ (t|p1, . . . , pm) is contained in zg−mH 0(C,O(

∑m
i=1 pi + ∗∞)). Since a strict

inclusion relation is impossible for two points of UGM [2, Lemma 4.17], these two
points of UGM coincide. �
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3.3 Degeneration Formula in Analytic Form

In this section we apply the results in the previous section to the curves Cn, Cn−1
and associated tau functions in Theorem 9. So, in this section τn,0(t) denotes the
function defined by (35) for the curve Cn.

Lemma 16 We have

τ (t; ξ̃n) = τn,0(t). (40)

Proof Since ξ̃n is a tau function corresponding to zgH 0(Cn,O(∗∞)), we have, by
Theorem 12,

τ (t; ξ̃n) = Cτn,0(t),

for some constant C. Comparing the expansions (21) and (36) we have C = 1. �

Next we consider tau functions appearing in the right hand side of the equation

in Theorem 9. We need a point (α, y0(α)) of Cn−1. To specify y0(α) is equivalent
to specify one value of z such that z−3 = α, that is, α−1/3. In fact, if z = α−1/3 is
given the value of y0(α) is determined by (18) as

y0(α) = αn−1α1/3Fn−1(α
−1/3). (41)

Since Pi(α) = (α, ωiy0(α)), we have

z(Pi(α)) = ω−iα− 1
3 . (42)

For simplicity we set

zi(α) = ω−iα− 1
3 . (43)

Since, in general ξn−1(Q0,Q1,Q2) is a frame of the point

zg′−3H 0(Cn−1,O(

2∑

i=0

Qi + ∗∞)) ∈ UGM

we have, by Theorem 14,

τ (t; ξn−1(Pi(α), Pj (α), Pk(β)))

= Ci,j,k (α, β)eη(zi(α)−1)+η(zj (α)−1)+η(zk(β)−1)

× τn−1,0(t − [zi(α)] − [zj (α)] − [zk(β)]), (44)
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for some constant Ci,j,k(α, β).

Remark 17 The explicit forms of the constants Ci,j,k(α, β) are not yet determined.
They should be calculated by comparing the Schur function expansions and are
expected to be expressed by some derivatives of the sigma function.

Substituting (40), (44) into the relation in Theorem 9 we get

Theorem 18 Let τn,0(t) be defined by the right hand side of (35) for the curve Cn

and zi(α) defined by (43). Then, in the limit αj → α for j = 3n, 3n ± 1, we have

lim τn,0(t)

= (−1)n

27y0(α)5 e−6
∑∞

l=1 αlt3l
∑

0≤i<j≤2,0≤k≤2

ωi+k+2j (1 − ωi−j )

× ∂

∂β

(
Ci,j,k (α, β)eη(zi(α)−1)+η(zj (α)−1)+η(zk(β)−1)

× τn−1,0(t − [zi(α)] − [zj (α)] − [zk(β)])
)∣∣∣

β=α
. (45)

for the constants Ci,j,k(α, β) in (44), where y0(α) is given by (41).

Remark 19 In the right hand side of (45) the exponential factor, which is character-
istic to soliton solutions, is clearly visible. Since it can be shown that τ0,0 = 1 for the
genus zero curve y3 = x which corresponds to the case α1 = 0, using repeatedly the
formula (18) we obtain the formula which contains only exponential functions and
their derivatives with respect to parameters. The formulas for them were computed
in [18] independently of Theorem 18, where all constants are explicitly given as
functions of {αj }. These solutions are called generalized solitons in [18].

4 The Case of Hyperelliptic Curves

In this section, based on the results of [2], we derive the corresponding formula
to (45) in the case of hyperelliptic curve Xg defined by

y2 =
2g+1∏

j=1

(x − αj ) (46)

and its degeneration

α2g+1, α2g−1 → α, (47)
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where α 	= αj for 1 ≤ j ≤ 2g − 2. The curve Xg has the unique point over x = ∞
which we also denote by ∞. We take the local coordinate z around ∞ such that

x = z−2, y = z−2g−1Fg(z), Fg(z) =
⎛

⎝
2g+1∏

j=1

(1 − αiz
2)

⎞

⎠
1/2

. (48)

Let

μ(g) = (g, g − 1, . . . , 1)

be the partition and ξ̃g a frame of zgH 0(Xg,O(∗∞)) such that the corresponding
tau function has the expansion of the form

τ (t; ξ̃g) = sμ(g) (t) + h.w.t. (49)

Fix one of the square root α−1/2 and define y0 by

y0 = αg−1/2Fg−1(α
−1/2). (50)

Then (α, y0) is a point of Xg−1. Set

p± = (α,±y0). (51)

Then the values of the local coordinates of p± are

z(p±) = ±α−1/2.

Let ξg−1(p±) be a frame of zg−2H 0 (
Xg−1,O(p± + ∗∞)

)
such that their tau

functions have the following expansions

τ (t; ξg−1(p±)) = sμ(g−2) (t) + h.w.t. (52)

The following theorem is proved in [2] in a similar way to Theorem 9.

Theorem 20 ([2]) The following relation holds.

lim τ (t; ξ̃ )

= (−1)g−1(2y0)
−1e−2

∑∞
l=1 αlt2l

(
τ (t; ξg−1(p+)) − τ (t; ξg−1(p−))

)
, (53)

where lim in the left hand side means the limit taking α2g+1, α2g to α.

Let τg,0(t) denote the function defined by the right hand side of (35) for Xg.
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Lemma 21

(i) τ (t; ξ̃g) = τg,0(t).

(ii) For some constant Cε(α)

τ(t; ξg−1(pε)) = Cε(α)e
∑∞

l=1(εα
−1/2)−l tl τg−1,0(t − [εα−1/2]), ε = ±.

Proof

(i) Both τ (t; ξ̃g) and τg,0(t) are tau functions corresponding to zgH 0(Xg,O(∗∞)).
By comparing the expansions (36) and (49) we get the result.

(ii) Since the right hand side and the left hand side without Cε(α) of the equation
in the assertion are the tau functions corresponding to zg−2H 0(Xg−1,O(pε +
∗∞)) by the definition of ξg−1(pε) and Theorem 14, the assertion follows.

�

This lemma is proved in [2] in a different form. The explicit form of the constant

Cε(α) can be extracted from there. Let us give the formula.

Let m(g) =
[

g+1
2

]
. Define the sequence A(g) and s(g) ∈ {±1} by

A(g) = (a
(g)
1 , . . . , a

(g)

m(g)) = (2g − 1, 2g − 5, 2g − 9, . . .),

s(g) = (−1)(g−1)m(g)

.

Example 22 A(1) = (1), A(2) = (3), A(3) = (5, 1), A(4) = (7, 3).
s(1) = 1, s(2) = −1, s(3) = 1, s(4) = 1.

The following property of A(g) is known [20, 22],

|A(g)| :=
m(g)∑

j=1

a
(g)
j = 1

2
g(g + 1). (54)

Denote the sigma function of Xg−1 by σ (g−1)(u). Set

bi = (a
(g−2)
i + 1)/2 ∈ {1, 2, . . . , g − 2}, 1 ≤ i ≤ m(g−2),

and define

σ
(g−1)

A(g−2)(u) = ∂m(g−2)

∂ub1 · · · ∂ub
m(g−2)

σ (g−1)(u).
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Then, by Theorem 4.14 of [2], we can deduce that

Cε(α) = s(g−2)σ
(g−1)

A(g−2) (−
∫ pε

∞
du)−1, du = t (du1, . . . , dug). (55)

Lemma 23 The following relation is valid.

C−(α) = (−1)g−1C+(α). (56)

Proof It is known that the sigma function satisfies the following relation [15, 22]

σ (g−1)(−u) = (−1)
1
2 g(g−1)σ (g−1)(u).

By differentiating it we get

σ
(g−1)

A(g−2) (−u) = (−1)
1
2 g(g−1)+m(g−2)

σ (g−1)(u). (57)

We can easily verify that

1

2
g(g − 1) + m(g−2) = g − 1 mod.2. (58)

For the hyperelliptic curve Xg−1 the following relation holds,

∫ p−

∞
du = −

∫ p+

∞
du. (59)

The assertion of the lemma follows from (55), (57), (58), (59). �

Substituting the equations of (i), (ii) in Lemma 21 into (53) and using (56) we

get

Theorem 24 Let τg,0(t) be given by the right hand side of (35) for the hyperelliptic
curve Xg defined by (46). Then in the limit α2g+1, α2g → α we have the following
formula,

lim τg,0(t) = (−1)g(2y0)
−1C+(α)e−2

∑∞
l=1 αlt2l

×
(

eη(α1/2)τg−1,0(t − [α−1/2]) + (−1)geη(−α1/2)τg−1,0(t − [−α−1/2])
)
,

where y0, p±, C+(α) are given by (50), (51), (55) respectively.

Remark 25 The tau function τg,0(t) gives a solution of the KdV hierarchy (see
Remark 13). Again it can be shown that τ0,0 = 1 for the genus zero curve y2 = x

which corresponds to α1 = 0. Using the formula repeatedly we get the well known
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soliton solution [9, 21]. For α1 	= 0 we can show that τ0,0(t) = eL(t)+Q(t), where
L(t) and Q(t) are certain linear and quadratic functions of t .
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