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Abstract This paper traces the development of the theory of the matrix geometric
mean in the cone of positive definite matrices and the closely related operator
geometric mean in the positive cone of a unital C∗-algebra. The story begins with
the two-variable matrix geometric mean, moves to the n-variable matrix setting,
then to the extension to the positive cone of the C∗-algebra of operators on a Hilbert
space, and even to general unital C∗-algebras, and finally to the consideration of
barycentric maps on the space of integrable probability measures on the positive
cone. Besides expected tools from linear algebra and operator theory, one observes
a substantial interplay with operator monotone functions, geometrical notions in
metric spaces, particularly the notion of nonpositive curvature, some probabilistic
theory of random variables with values in a metric space of nonpositive curvature,
and the appearance of related means such as the inductive and power means.
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1 Introduction

Positive definite matrices have become fundamental computational objects in many
areas of engineering, statistics, quantum information, and applied mathematics.
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They appear as “data points” in a diverse variety of settings: covariance matrices
in statistics, elements of the search space in convex and semidefinite programming,
kernels in machine learning, observations in radar imaging, and diffusion tensors in
medical imaging, to cite only a few. A variety of computational algorithms have
arisen for approximation, interpolation, filtering, estimation, and averaging. Our
interest focuses on the last named, the process of finding an average or mean, which
is again positive definite.

A simple computation would be to take the arithmetic mean of a given finite set
of positive definite matrices. However, researchers have learned that to find a mean
or average that performs well and exhibits desirable properties, one needs to take
into account the underlying geometric structure of �n, the space of n × n-positive
definite matrices.

Formally a mean of order n, or n-mean for short, on a set X is a function μ :
Xn → X satisfying the idempotency condition ∀x ∈ X, μ(x, x, . . . , x) = x. It is
frequently assumed in the definition of a mean that a mean is invariant under any
permutation of variables; we call these symmetric means. The mean μ : Xn → X

is continuous or a topological mean if X is a topological space and μ is continuous.
Typically a mean represents some type of averaging operator.

The subject of (binary) means for positive numbers or line segments has a rich
mathematical lineage dating back into antiquity. The Greeks, motivated by their
interest in proportions and musical ratios, defined at least eleven different means
(depending on how one counts), the arithmetic, geometric, harmonic, and golden
being the best known. A geometric construction for the geometric mean

√
ab of

a, b > 0 is given by Euclid in Book II in the form of “squaring the rectangle,” i.e.,
constructing a square of the same area as a given rectangle of sides a and b. The
study of various means and their properties on the positive reals has remained an
active area of investigation up to the present day.

2 Positive Definite Matrices

Let Mn(C), or simply Mn, denote the set of n × n complex matrices. We may
identify Mn with the set of linear operators on C

n, where we consider Cn to be a
complex Hilbert space of column vectors with the usual Hermitian inner product.
Denoting the conjugate transpose of A ∈ Mn by A∗, we recall that A is Hermitian
if A = A∗ and unitary if A∗ = A−1. The Hermitian matrix A is positive definite
if ∀u �= 0, 〈u,Au〉 > 0. These notions readily generalize to B(H), the algebra of
operators on an arbitrary Hilbert space.

The following are well-known equivalences for a Hermitian matrix A to be
positive definite:

1. 〈Ax, x〉 > 0 for all 0 �= x, where 〈·, ·〉 is the Hilbert space inner product on Cn.
2. A = BB∗ for some invertible B.
3. A has all positive eigenvalues.
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4. A = exp B = ∑∞
n=0 Bn/n! for some (unique) Hermitian B.

5. A = UDU∗ for some unitary U and diagonal D with positive diagonal entries.

The positive definite n×n-matrices form an open cone in Hn, the n×n Hermitian
matrices, with closure the positive semidefinite matrices (equivalently, 〈Ax, x〉 ≥ 0
for all x). We denote the open cone of positive definite matrices by � (or �n if we
need to distinguish the dimension).

We define a partial order (sometimes called the Loewner order) on the vector
space Hn of Hermitian matrices by A ≤ B if B − A is positive semidefinite. We
note 0 ≤ A iff A is positive semidefinite and write 0 < A if A ∈ � iff A is positive
definite. The matrix A is sometimes called strictly positive in this setting.

Every positive definite (Hermitian) matrix operator has a unique spectral decom-
position

A =
n∑

i=1

λiEi,

where λi > 0 (λi ∈ R) is the ith-eigenvalue and Ei is the orthogonal projection
onto the eigenspace of λi . One then has

Ak =
n∑

i=1

λk
i Ei,

from which one can easily deduce that every positive definite matrix has a unique
positive definite kth-root.

The arithmetic and harmonic means readily extend fromR>0 to the set of positive
definite matrices:

A(A,B) = 1

2
(A + B); H(A,B) = 2(A−1 + B−1)−1.

The geometric mean is not so obvious (e.g.,
√

AB need not be positive definite for
A,B positive definite). One approach is to rewrite the equation x2 = ab (which
has positive solution the geometric mean of a and b) in its appropriate form in the
noncommutative setting:

XA−1X = B

A−1/2XA−1/2A−1/2XA−1/2 = A−1/2BA−1/2

A−1/2XA−1/2 = (A−1/2BA−1/2)1/2

X = A1/2(A−1/2BA−1/2)1/2A1/2.
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We write A#B(= A1/2(A−1/2BA−1/2)1/2A1/2) for the matrix geometric mean.
Other connections between the matrix geometric mean and the one for positive real
numbers may be found in [8].

3 Operator Monotone Functions and the Kubo–Ando
Theorem

For M1,M2 ⊆ R and a mapping f : M1 → M2, we define a function on the set of
all Hermitian A with spectrum contained in M1 by f (A) = ∑n

i=1 f (λi)Ei , where
A = ∑n

i=1 λiEi is the spectral decomposition (functions constructed in this way
are called primary matrix functions and provide a simple example of the functional
calculus). A continuous function f : M1 → M2 is operator monotone if f (A) ≤
f (B) whenever A ≤ B. Operator monotone functions defined on some interval are
continuous, monotone (nondecreasing), and concave.

If Mμ(A,B)M∗ = μ(MAM∗,MBM∗) for all invertible M , the mean μ : � ×
� → � is said to be invariant under congruence transformations. The mean μ is
monotonic if A1 ≤ A2, B1 ≤ B2 implies μ(A1, B1) ≤ μ(A2, B2). The next result
is a major 1980 result of F. Kubo and T. Ando [6].

Theorem Every operator monotone function f : R>0 → R>0 with f (1) = 1 gives
rise to a congruence-invariant, monotonic mean μ defined by

μ(A,B)[= A
1
2 μ(I,A−1/2BA−1/2)A

1
2 ] = A

1
2 f (A−1/2BA−1/2)A

1
2 .

The association f → μf is a bijection between the operator monotone functions
and the congruence-invariant, monotonic continuous means. (For the converse, one
defines f from μ(I, λI) = f (λ)I .)

To illustrate we apply the Kubo–Ando roadmap for passing from numeric to
matrix means for certain important examples:

1. The Geometric Mean A#B and Weighted Geometric Mean A#tB:

γ (a, b) = √
ab → f (x) = γ (1, x) = x1/2

→ G(A,B) = A#B = A1/2(A−1/2BA−1/2)1/2A1/2

γt (a, b) = a1−t bt → Gt (A,B) = A#tB = A1/2(A−1/2BA−1/2)tA1/2

2. The Arithmetic Mean:

α(a, b) = (a + b)/2 → f (x) = α(1, x) = (1/2)(1 + x)

→ A(A,B) = A1/2((1/2)(I + A−1/2BA−1/2))A1/2

= (1/2)(A + B)
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The Kubo–Ando Theorem provided the foundation for the rapid development
of the theory of matrix and operator means of two variables. However, no such
analogous theorem has been discovered for multivariable means, even when the
extension is known for the case of the positive reals. Some means, such as the
arithmetic and harmonic, admit rather obvious extensions to the n-variable matrix
case. But the problem of extending the geometric mean to the multivariable matrix
setting remained unsolved for a number of years. An important step along the way
was the gradual realization that the geometric matrix mean of two variables had an
important alternative geometric/metric characterization, apparently first appearing
in print in an article of the authors in 2001 [8].

4 Means of Several Variables and NPC-Spaces

In 2004 Ando et al. [2] gave the first extension of the binary geometric mean to n-
variables, which came to be called the ALM mean. They listed desirable axiomatic
properties for such an n-variable extension g and showed they were satisfied by their
extension. The proofs typically involved extending from the known case of n = 2
by induction.

Let A = (A1, . . . , An),B = (B1, . . . , Bn) ∈ �n.

(P1) (Consistency with scalars) g(A) = (A1 · · ·An)
1/n if the Ai’s commute;

(P2) (Joint homogeneity) g(a1A1, . . . , anAn) = (a1 · · · an)
1/ng(A);

(P3) (Permutation invariance) g(Aσ ) = g(A), where Aσ = (Aσ(1), . . . , Aσ(n));
(P4) (Monotonicity) If Bi ≤ Ai for all 1 ≤ i ≤ n, then g(B) ≤ g(A);
(P5) (Continuity) g is continuous;
(P6) (Congruence invariance) g(MAM∗) = Mg(A)M∗ for M invertible, where

M(A1, . . . , An)M
∗ = (MA1M

∗, . . . ,MAnM
∗);

(P7) (Joint concavity) g(λA+ (1 − λ)B) ≥ λg(A) + (1 − λ)g(B) for 0 ≤ λ ≤ 1;
(P8) (Self-duality) g(A−1

1 , . . . , A−1
n )−1 = g(A1, . . . , An);

(P9) (Determinantal identity) Det g(A) = ∏n
i=1(DetAi)

1/n; and
(P10) (AGH mean inequalities) n(

∑n
i=1 A−1

i )−1 ≤ g(A) ≤ 1
n

∑n
i=1 Ai.

But a better candidate soon appeared. To understand it, we need some back-
ground. The parallelogram law in Hilbert spaces is given by

sum of 2 diagonals squared = sum of 4 sides squared

d2(x1, x2) + 4d2(x,m)(= (2d(x,m))2) = 2d2(x, x1) + 2d2(x, x2)
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Replacing the equality by an inequality in a general metric space yields the more
general semiparallelogram law: for all x1, x2 ∈ X, there exists m ∈ X such that for
any x ∈ X,

d2(x1, x2) + 4d2(x,m) ≤ 2d2(x, x1) + 2d2(x, x2) (NPC)

One can show that m = m(x1, x2) is unique and is the unique metric midpoint
between x1 and x2.

(Global) NPC-spaces are complete metric spaces satisfying the semiparallelo-
gram law (NPC). They have been intensely studied in recent years, often under
alternative names such as CAT(0)-spaces or Hadamard spaces.

Condition (NPC) is a metric version of NonPositive Curvature, since the
distance metric of a simply connected Riemannian manifold satisfies (NPC) iff the
Riemannian metric has nonpositive curvature in the usual sense.

Example The open cone �n of n × n positive definite matrices becomes a
Riemannian manifold when equipped with the trace Riemannian metric: 〈X,Y 〉A =
trA−1XA−1Y, where A ∈ �n and X,Y are n × n Hermitian matrices. The
corresponding distance metric on �n is given by d(A,B) = ‖ log(A−1/2BA−1/2‖2,
where ‖ · ‖2 is the Frobenius (or Hilbert-Schmidt) norm. The cone �n equipped
with the metric d is an NPC-space. Furthermore, the unique midpoint between
A,B ∈ �n is the geometric mean A#B.

Let (M, d) be a metric space. Given a weight w = (w1, . . . , wn) (each wi ≥ 0 and∑n
i=1 wi = 1), the weighted least squares mean �(w; a1, . . . , an) of (a1, . . . , an) ∈

Mn is defined as the solution to the optimization problem of minimizing the
weighted sum of distances squared:

argmin
x∈M

n∑

i=1

wiδ
2(x, ai),
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provided the solution uniquely exists. This is the case for NPC spaces, since the
function defined by x �→ ∑n

i=1 wiδ
2(x, ai) is uniformly convex in this case. E.

Cartan considered such “barycenters” in the case of Riemannian manifolds, where
they uniquely exist for the ones of nonpositive curvature, and M. Fréchet considered
them in more general metric spaces. Thus the least squares mean is also called the
Cartan mean or Fréchet mean.

First M. Moakher [13] and independently R. Bhatia and J. Holbrook [3, 4]
studied the uniformly weighted least squares mean for the set of positive definite
matrices � equipped with the trace metric as a multivariable generalization of
the two-variable geometric mean. They established its (unique) existence and
verified several of the axiomatic properties (P1)–(P10) satisfied by the Ando–Li–
Mathias geometric mean: consistency with scalars, joint homogeneity, permutation
invariance, congruence invariance, and self-duality (the last two being true since
congruence transformations and inversion are isometries). Further, based on com-
putational experimentation, Bhatia and Holbrook conjectured monotonicity for the
least squares mean, but this was left as an open problem.

5 Monotonicity, Probability, and the Inductive Mean

One other mean will play an important role in what follows, one that we shall call
the inductive mean, following the terminology of K.-T. Sturm [15]. It appeared
elsewhere in the work of M. Sagae and K. Tanabe [14] and Ahn et al. [1]. It
is defined inductively for NPC spaces (or more generally for metric spaces with
weighted binary means x#t y) for each k ≥ 2 by S2(x, y) = x#y and for k ≥
3, Sk(x1, . . . , xk) = Sk−1(x1, . . . , xk−1)# 1

k
xk . (Here x#ty is the unique point z

such that d(x, y) = (1 − t)d(x, z) + td(y, z) for 0 ≤ t ≤ 1.) Note that this mean at
each stage is defined from the previous stage by taking the appropriate two-variable
weighted mean, which is monotone. Thus the inductive mean is monotone.

Let (X, d) be an NPC metric space, {x1, . . . , xm} ⊆ X. Set Nm = {1, 2, . . . ,m}
and assign to k ∈ Nm the probability wk , where 0 ≤ wk ≤ 1 and

∑m
k=1 wi = 1.

For each ω ∈ ∏∞
n=1 Nm, define a sequence σ = σω in X by σ(1) = xω(1), σ (k) =

Sk(xω(1), . . . , xω(k)), where Sk is the inductive mean. (The sequence σω may be
viewed as a “walk” starting at σ(1) = xω(1) and obtaining σ(k) by moving from
σ(k − 1) toward xω(k) a distance of (1/k)d(σ (k − 1), xω(k)).) The following is a
special case of Sturm’s main results in [15].

Theorem 1 (Sturm’s Theorem) Giving
∏∞

n=1 Nm the product probability, the set

{ω ∈
∞∏

n=1

Nm : lim
n

σω(n) = �(w; x1, . . . , xm)}

has measure 1, i.e., σω(n) → �(w; x1, . . . , xm) for almost all ω.
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More generally, Sturm establishes a version of the Strong Law of Large Numbers
for random variables into an NPC metric space, with limit the least squares mean.

Using Sturm’s Theorem, the authors were able to show (2011) [8]:

Theorem 2 Let � be the open cone of positive definite matrices of some fixed
dimension n.

(1) The least squares mean � on � is monotone: Ai ≤ Bi for 1 ≤ i ≤ n implies
�(A1, . . . , An) ≤ �(B1, . . . Bn).

(2) All ten of the ALM axioms hold for �.
(3) In a natural way � can be extended to a weighted mean, and appropriate

weighted versions of the ten properties hold.

Note The ALM mean is typically distinct from the least squares mean for n ≥ 3.
Thus the ALM axioms do not characterize a mean. The latter fact had already been
noted by Bini et al. [5], who introduced a much more computationally efficient
variant of the ALM mean [5].

6 The Karcher Equation

The uniform convexity of the trace metric d on � yields that the least squares mean
is the unique critical point for the function X �→ ∑n

k=1 d2(X,Ak). The least squares
mean is thus characterized by the vanishing of the gradient, which is equivalent to
its being a solution of the following Karcher equation:

n∑

i=1

wi log(X−1/2AiX
−1/2) = 0. (1)

The Karcher equation (1) can be used to define a mean on the cone � of positive
invertible bounded operators on an infinite-dimensional Hilbert space (where one no
longer has an NPC-space), called the Karcher mean. As we just previously noted,
restricted to the matrix case it yields the least squares mean.

Power means for positive definite matrices were introduced by Lim and Palfia
[11].

Theorem 3 Let A1, . . . , An ∈ � and let w = (w1, . . . , wn) be a weight. Then
for each t ∈ (0, 1], the following equation has a unique positive definite solution
X = Pt (w; A1, . . . , An), called the weighted power mean:

X =
n∑

i=1

wi(X#tAi).
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When restricted to the positive reals, the power mean reduces to the usual power
mean

Pt(w; a1, . . . , an) = (
w1a

t
1 + · · · + wna

t
n

) 1
t .

In 2014 the authors showed [9] that the preceding notion of power mean extended
to the setting of bounded operators on a Hilbert space [9] and established that the
power means are decreasing, s < t implies Ps(· ; ·) ≤ Pt (· ; ·). Using power means
we were able to establish the existence and uniqueness of the Karcher mean in the
C∗-algebra of bounded operators on a Hilbert space.

Theorem 4 In the strong operator topology

�(· ; ·) = lim
t→0+ Pt (· ; ·) = inf

t>0
Pt (· ; ·),

where � is the Karcher mean, the unique solution of the Karcher equation

X = �n(A1, . . . , An) ⇔
n∑

i=1

log(X−1/2AiX
−1/2) = 0.

Via this machinery many of the axiomatic properties of the least squares mean in
the finite-dimensional setting were extended to the corresponding Karcher mean in
the infinite-dimensional setting.

Recent work by Lim and Palfia [12] and independently by Lawson [7] shows that
the preceding constructions and results remain valid for the open cone of positive
invertible elements in any unital C∗-algebra.

7 Barycenters

A Borel probability measure on a metric space (X, d) is a countably additive non-
negative measure μ on the Borel algebra B(X), the smallest 
-algebra containing
the open sets, such that μ(X) = 1. We denote the set of all probability measures
on (X,B(X)) by P(X). Let P0(X) be the set of all uniform finitely supported
probability measures, i.e., all μ ∈ P(X) of the form μ = 1

n

∑n
j=1 δxj for some

n ∈ N, where δx is the point measure of mass 1 at x.
A measure μ ∈ P(X) is said to be integrable if

∫

X

d(x, y)dμ(y) < ∞.

The set of integrable measures is denoted by P1(X).
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The Wasserstein distance (alternatively Kantorovich–Rubinstein distance) dW

on P1(X) is a standard metric for probability measures. It is known that dW is a
complete metric on P1(X) whenever X is a complete metric space and that P0(X)

is dW -dense in P1(X).
One can view the Karcher mean (A1, . . . , An) �→ �(A1, . . . , An) on �, the

open cone of positive invertible operators, alternatively as yielding a barycenter
for the probability measure with weight 1/n at each Ak. It turns out that this
barycentric map is contractive from P0(�) to �, and hence extends uniquely to
a contractive barycentric map � : P1(�) → �. We call this extended map the
Karcher barycentric map. It is characterized by

X = �(μ) ⇔
∫

�

log(X−1/2AX−1/2)dμ(A) = 0.

The existence and basic theory and properties of the Karcher barycentric map can
be found in [10]. We note that from its definition it extends the Karcher mean.

8 Summary

In the preceding we have attempted to trace out how the matrix/operator geometric
mean has strikingly developed over the past 15 years from a two-variable mean
to a multivariable matrix mean (the least squares mean) to an operator mean in
unital C∗-algebras (the Karcher mean) to a barycentric map on integrable Borel
probability measures. Whatever future developments may hold, it is clear that a
substantial theory has already emerged.
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