
Trends in Mathematics

Piotr Kielanowski
Anatol Odzijewicz
Emma Previato
Editors

Geometric 
Methods 
in Physics 
XXXVIII
Workshop, Białowieża, Poland, 2019





Trends in Mathematics

Trends in Mathematics is a series devoted to the publication of volumes arising from
conferences and lecture series focusing on a particular topic from any area of
mathematics. Its aim is to make current developments available to the community as
rapidly as possible without compromise to quality and to archive these for reference.

Proposals for volumes can be submitted using the Online Book Project Submission
Form at our website www.birkhauser-science.com.

Material submitted for publication must be screened and prepared as follows:

All contributions should undergo a reviewing process similar to that carried out by
journals and be checked for correct use of language which, as a rule, is English.
Articles without proofs, or which do not contain any significantly new results,
should be rejected. High quality survey papers, however, are welcome.

We expect the organizers to deliver manuscripts in a form that is essentially ready
for direct reproduction. Any version of TEX is acceptable, but the entire collection
of files must be in one particular dialect of TEX and unified according to simple
instructions available from Birkhäuser.

Furthermore, in order to guarantee the timely appearance of the proceedings it is
essential that the final version of the entire material be submitted no later than one
year after the conference.

More information about this series at http://www.springer.com/series/4961

http://www.birkhauser-science.com
http://www.springer.com/series/4961


Piotr Kielanowski • Anatol Odzijewicz •
Emma Previato
Editors

Geometric Methods
in Physics XXXVIII
Workshop, Białowieża, Poland, 2019
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Preface

The Workshops on Geometric Methods in Physics (WGMP) were established
in 1982 by Anatol Odzijewicz and they have been running yearly without inter-
ruption ever since under the sponsorship of the University of Białystok.

This volume contains original scholarship based on the talks presented at
the Thirty-Eighth Workshop (June 30–July 6, 2019); the posters presented; and
the Eighth School on Geometry and Physics, which immediately preceded the
workshop. The schools were created in 2012, to precede or follow the workshops,
so as to offer an introductory series of lectures on cutting-edge areas of research
related to the workshop themes. The materials of recent WGMPs, such as program,
abstracts of the talks and lectures, and participants’ lists, are posted on the website:
http://wgmp.uwb.edu.pl. The website includes bibliographical information on the
proceedings volumes for each year.

Each workshop comes with main themes; in 2019, the themes were “Inte-
grable Systems, Classical and Quantum Field Theories, Quantum Information, Lie
Groupoids and Lie Algebroids, and Poisson Geometry.” The school’s lecturers have
each contributed an extended abstract.

The WGMP has played an exceptional role in bringing together the two
communities of mathematicians and physicists. The workshop has grown from its
original contingent of mainly eastern-European scholars, to widely international,
with participants from several continents in 2019.

The venue plays no small role in fostering a close-knit, intense experience: situ-
ated in the Białowieża Forest, a UNESCO World Heritage Place, the village hosts
the participants in two small hotels and a variety of other local accommodations with
hospitality and customs providing the background for communal outings, bear and
bison sightings, evenings around campfires, and afternoons of discussion where new
collaborations are established and old ones come to fruition. The plenary lectures,
talks, and poster sessions take place in the Nature and Forest Museum, the oldest
museum in the Polish national parks; the school’s lectures take place in an Open-
air Museum of Wooden Architecture of the Russian People of Podlasie (in Polish:
Skansen Architektury Drewnianej Ludności Ruskiej Podlasia).

v

http://wgmp.uwb.edu.pl


vi Preface

We hope that this collection of articles may provide the readers with an overview
of the latest knowledge in a wide variety of areas, as well as stimulate interest in the
threads represented by the school’s lecture series.

Ciudad de México, Mexico Piotr Kielanowski
Białystok, Poland Anatol Odzijewicz
Boston, MA, USA Emma Previato
April 2020
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iń
sk

i)



Contents

Part I Contributions to the XXXVIII Workshop

Toeplitz Extensions in Noncommutative Topology and
Mathematical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Francesca Arici and Bram Mesland

Standard Groupoids of von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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Part I
Contributions to the XXXVIII Workshop



Toeplitz Extensions in Noncommutative
Topology and Mathematical Physics

Francesca Arici and Bram Mesland

Abstract We review the theory of Toeplitz extensions and their role in operator
K-theory, including Kasparov’s bivariant K-theory. We then discuss the recent
applications of Toeplitz algebras in the study of solid-state systems, focusing in
particular on the bulk-edge correspondence for topological insulators.

Keywords Toeplitz algebras · C∗-algebras · Extensions · KK-theory ·
Bulk-edge correspondence

Mathematics Subject Classification (2010) Primary 46L85; Secondary 19K35,
46L80, 47B35, 81T75, 81V70

1 Introduction

Noncommutative topology is rooted in the equivalence of categories between locally
compact topological spaces and commutativeC∗-algebras. This duality allows for a
transfer of ideas, constructions, and results between topology and operator algebras.
This interplay has been fruitful for the advancement of both fields. Notable examples
are the Connes–Skandalis foliation index theorem [17], the K-theory proof of the
Atiyah–Singer index theorem [4, 5], and Cuntz’s proof of Bott periodicity in K-
theory [22]. Each of these demonstrates how techniques from operator algebras
lead to new results in topology, or simplify their proofs. In the other direction,
Connes’ development of noncommutative geometry [19] by using techniques from
Riemannian geometry to studyC∗-algebras, led to the discovery of cyclic homology

The original version of this chapter was revised. A correction to this chapter can be found at https://
doi.org/10.1007/978-3-030-53305-2_27

F. Arici (�) · B. Mesland
Mathematical Institute, Leiden University, Leiden, The Netherlands
e-mail: f.arici@math.leidenuniv.nl; b.mesland@math.leidenuniv.nl

© The Author(s) 2020, corrected publication 2021
P. Kielanowski et al. (eds.), Geometric Methods in Physics XXXVIII,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-53305-2_1
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[18], a homology theory for noncommutative algebras that generalises de Rham
cohomology.

Noncommutative geometry and topology techniques have found ample applica-
tions in mathematical physics, ranging from Connes’ reformulation of the standard
model of particle physics [20], to quantum field theory [21], and to solid-state
physics. The noncommutative approach to the study of complex solid-state systems
was initiated and developed in [6, 8], focusing on the quantum Hall effect and
resulting in the computation of topological invariants via pairings betweenK-theory
and cyclic homology. Noncommutative geometry techniques have proven to be a
key tool in this field, and applications include the study of disordered systems,
quasi-crystals and aperiodic solids [44, 45]. The correct framework to describe
such systems, as has been shown recently, is via KK-theory elements for certain
observable C∗-algebras.

This review is dedicated to a discussion of Toeplitz algebras and more generally
C∗-extensions, and their role in noncommutative index theory. It is aimed at readers
interested in the more recent applications of Toeplitz extensions and should serve as
a brief overview and introduction to the subject. We shall provide an exposition of
operator algebra techniques recently used in mathematical physics, in particular in
the study of solid-state systems.

The paper is structured as follows. In Sect. 2 we review the construction of the
classical one-dimensional Toeplitz algebra as the universal C∗-algebra generated
by a single isometry, and we recall its role in the Noether–Gohberg–Krein index
theorem, which relates the index of Toeplitz operators to the winding number of
their symbol. We conclude the section by discussing how the construction can be
extended to higher dimensions. In Sect. 3 we take a deep dive into the world of
noncommutative topology and discuss the role of Toeplitz extensions in operator
K-theory, namely in Cuntz’s proof of Bott periodicity and in the development of
Kasparov’s bivariant K-theory. This rather technical section allows us to introduce
the tools that are needed in the noncommutative approach to solid-state physics.
In Sect. 4, we describe two constructions of universal C∗-algebras that will later
play a crucial role in the study of solid-state systems, namely crossed products by
the integers, Cuntz–Pimsner algebras, and their Toeplitz algebras. Finally, Sect. 5 is
devoted to describing how Toeplitz extensions and the associated maps in K-theory
provide the natural framework for implementing the bulk-edge correspondence from
solid-state physics.

2 Toeplitz Algebras of Operators

2.1 Shifts, Winding Numbers, and the
Noether–Gohberg–Krein Index Theorem

In view of the Gelfand–Naimark theorem [25], every abstract C∗-algebra, commu-
tative or not, admits a faithful representation as a subalgebra of the algebra B(H)
of bounded operators on some Hilbert space H . In this section, we will start by
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constructing two concrete examples of C∗-algebras of operators. As mentioned in
the Introduction, we are interested in how the commutative algebra of functions
on the circle and the noncommutative algebra generated by a single isometry fit
together in a short exact sequence. This extension will later serve as our prototypical
example illustrating the use of C∗-algebraic techniques in solid-state physics.

Let S1 := {z ∈ C | zz = 1} denote the unit circle in the complex plane. The
corresponding C∗-algebra, C(S1), is the closure in the supremum norm of the
algebra of Laurent polynomials

O(S1) = C[z, z]
〈zz = 1〉 .

The algebra C(S1) admits a convenient representation on the Hilbert space L2(S1)

of square-integrable functions on S1. This Hilbert space is isomorphic to the Hilbert
space of sequences �2(Z), and the isomorphism is implemented by the discrete
Fourier transform

F : �2(Z)→ L2(S1), (Fφ)(z) = (2π)− 1
2
∑

n∈Z
φne

−in·z. (1)

Under this isomorphism, the operator of multiplication by z is mapped to the
bilateral shift operator U , defined on the standard basis {en}n∈Z of �2(Z) via

U(en) = (en+1), U∗(en) = en−1. (2)

It is easy to see that U is a unitary operator, i.e. U∗U = 1 = UU∗. The algebra
C(S1) is then isomorphic to the smallest C∗-subalgebra of B(�2(Z)) that contains
U .

In order to define the second C∗-algebra we are interested in, which is genuinely
non-commutative, we shall consider the Hardy spaceH 2(S1). This is defined as the
subset of L2(S1) consisting of continuous functions that extend holomorphically to
the unit disk. The projection P : L2(S1) → H(S1) is called the Hardy projection.
Under the discrete Fourier transform, it corresponds to the projection p : �2(Z)→
�2(N).

Multiplication by z on the Hardy space corresponds to a shift operator on �2(N),
called the unilateral shift, expressed on the standard basis {fn}n∈N of �2(N) via:

T (fn) = (fn+1).

Its adjoint is not invertible, as

T ∗(fn) =
{
fn−1 n ≥ 1

0 n = 0
.
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This motivates the following:

Definition 1 The Toeplitz algebra T is the smallest C∗-subalgebra of B(�2(N))

that contains T .

It is easy to see that the Toeplitz algebra T is not commutative, as

T ∗T = 1, T T ∗ = 1− pker(T ∗). (3)

In particular, it follows from (3) that elements of T commute up to compact
operators, and in particular the generator T is unitary modulo compact operators.
In other words, the Toeplitz algebra can be viewed as the C∗-algebra extension of
continuous functions on the circle by the compact operators:

0 K 2(N))
π

C(S1) 0. (4)

The extension (4) admits a completely positive and completely contractive splitting
given by the Hardy projection P . Indeed, for every f ∈ C(S1), the assignment

Tf (g) = P(fg), g ∈ H 2(S1) (5)

defines a bounded operator on the Hardy space H 2(S1), where, under Fourier
transform, Tz corresponds to the unilateral shift. As the function z generates C(S1)

as a C∗-algebra, every such Tf is an element of T .
The following result implies that the Toeplitz algebra is the universalC∗-algebra

generated by an element T satisfying T ∗T = 1:

Theorem 2 (Coburn [16]) Suppose v is an isometry in a unital C∗-algebra A. Let
T = Tz ∈ T . Then there exists a unique unital ∗-homomorphism φ : T → A such
that φ(T ) = v. Moreover, if vv∗ �= 1, then the map φ is isometric.

2.1.1 The Noether–Gohberg–Krein Index Theorem

Recall that an operator F ∈ B(H) is a Fredholm operator if F has closed range
and both kerF and kerF ∗ are finite-dimensional. The Fredholm index of such an
operator is the integer

Ind(F ) = dim kerF − dim kerF ∗ ∈ Z.

One of the key properties of the Fredholm index is that it is constant along
continuous paths of Fredholm operators. As such it is a homotopy invariant.

The completely positive linear splitting f 	→ Tf allows one to give a precise
characterisation of which Toeplitz operators Tf are Fredholm. Moreover, the index
of a Fredholm Toeplitz operator Tf can be described entirely in terms of a familiar
homotopy invariant of the complex function f . This is the content of the Toeplitz
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index theorem, due to F. Noether and later reproved independently by Gohberg and
Krein. It was one of the first results linking index theory to topology and should be
viewed as an ancestor to the celebrated Atiyah–Singer index theorem.

Theorem 3 (Noether [41], Gohberg–Krein [27]) For f : S1 → C× the operator
Tf : H 2(S1)→ H 2(S1) is Fredholm and

Ind
(
Tf
) = −w(f ),

with w(f ) the winding number of f . If f is a C1-function, then the winding number
can be computed as

w(f ) =
∫

S1

f ′(z)
f (z)

dz.

The latter, explicit expression for the winding number shows that the Toeplitz
index should be viewed as a result of differential topology: By choosing a nice
representative in the homotopy class of the function f , the differential calculus can
be employed to compute a topological invariant. We will see an application of this
computation in Sect. 5.

2.2 Generalisation: Higher Toeplitz Algebras

2.2.1 Toeplitz Operators on Strongly Pseudo-Convex Domains

The definition of Toeplitz operators on the circle in terms of the Hardy space lends
itself to generalisations to higher dimensions. The crucial observation here is that
the Hardy space H 2(S1) can be defined as the closure of the space of boundary
values of holomorphic functions on the unit disk that admit a continuous extension
to the closed unit disk.

Definition 4 ([48, Definition 1.2.18]) Let � be a smooth domain in C
n with

defining function ρ ∈ C∞(Cn):

� = {z ∈ C
n : ρ(z) < 0}

and boundary ∂� = {z ∈ Cn : ρ(z) = 0}. For every z ∈ ∂�, the Levi form 〈 , 〉z is
defined as

〈u, v〉z :=
∑

1≤i,j≤n

∂2ρ

∂zi∂zj
(z)ujvj , u, v ∈ C

n.
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Then� is called a strongly pseudo-convex domain if the Levi form is positive semi-
definite on the complex tangent space at every point z ∈ ∂�. That, for every nonzero
u ∈ Tz(∂Ω) it holds that 〈u, u〉z > 0.

Open balls in Cn are examples of strongly pseudo-convex domains. However,
the product of two open balls is not strongly pseudo-convex, showing the notion is
somewhat subtle.

Given a strongly pseudo-convex domain � ⊆ Cn with smooth boundary, we
denote by L2(∂�) the Hilbert space of square integrable functions on the boundary
∂�. The Hardy space H 2(∂�) is defined as the Hilbert space closure in L2(∂�) of
boundary values of holomorphic functions on � that admit a continuous extensions
to the boundary ∂� (cf. [48, Definition 2.3]). The orthogonal projection

PCS : L2(∂�)→ H 2(∂�),

called the Cauchy–Szegö projection, is used to define Toeplitz operators, in analogy
with (5). Indeed, let f be a continuous function on ∂�, the Toeplitz operator with
symbol f is defined as

Tf (g) = PCS(fg),

for all g ∈ H 2(∂�).
For any two f, f ′ ∈ C(∂�), the product of Toeplitz operators Tf ◦ Tf ′ is equal

to Tff ′ modulo compact operators. Moreover, for any f ∈ C(∂�), the operator Tf
is compact if and only if f is identically zero. These two facts combined lead to the
following:

Theorem 5 Let � be a strongly pseudo-convex domain. Let T (∂�) be the closed
subalgebra of B(H 2(∂�)) that contains all the Toeplitz operators. There is an
extension of C∗-algebras

0 K(H 2 0.

The extension admits a completely positive and completely contractive linear
splitting given by the Cauchy–Szegö projection.

Applied to the unit ball in Cn this construction yields the Toeplitz extensions for
odd-dimensional spheres as a special case:

0 K(H 2(S2d−1)) (S2d−1) C(S2d−1) 0,

which clearly recover (4) for d = 1.
The Toeplitz algebra T (S2d−1) admits an equivalent description in terms of so-

called d-shifts, as described in [3, Theorem 5.7]. For an overview of the interplay
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of Toeplitz C∗-algebras and index theory, as well as their role in the computation of
noncommutative invariants, we refer the reader to the excellent survey [38].

3 Toeplitz Algebras in Operator K-Theory and Bivariant
K-Theory

An indispensable tool in Fredholm index theory is operator K-theory, a functor
associating to a C∗-algebra A two Abelian groups K∗(A), ∗ = 0, 1. Functoriality
means that for a ∗-homomorphism ϕ : A→ B between C∗-algebrasA and B, there
are induced homomorphism of Abelian groups

ϕ∗ : K∗(A)→ K∗(B).

The key properties of the operator K-theory functor are that it is homotopy
invariant, half-exact and Morita invariant. We now define each of these properties
more precisely.

Homotopy invariance is the property that if ϕ and ψ are connected by a
continuous path of ∗-homomorphisms, then the induced maps onK-theory coincide,
that is ϕ∗ = ψ∗.

Half-exactness is the property that for any extension of C∗-algebras

0 I
i

E
p

A 0, (6)

the corresponding sequence of groups

K∗(I)
i∗

K∗(E)
p∗

K∗(A),

is exact at K∗(E).
Lastly, Morita invariance entails that for any rank-one projection p ∈ K =

K(�2(N)), the ∗-homomorphism

A→ K⊗ A, a 	→ p ⊗ a,

induces an isomorphism in K-theory.
Recall that the suspension SA of a C∗-algebraA is defined to be

SA := C0(0, 1)⊗ A � C0((0, 1), A),

which is a C∗-algebra in the sup-norm, and pointwise product and involution
inherited from A.

The operation A→ SA is functorial for ∗-homomorphisms, and it is customary
to define the higher K-groups as Kn(A) := K0(S

nA). Via a general construction in
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topology, it follows that the extension (6) induces a long exact sequence

· · · → Kn+1(A)→ Kn(I)→ Kn(E)→ Kn(A)→ Kn−1(I)→ · · · , (7)

of Abelian groups.
The boundary maps in such exact sequences are often related to index theory. For

instance, for the Toeplitz extension (4), the boundary map

∂ : K1(C(S
1))→ K0(K(�2(N)) � Z, (8)

maps the class of a nonzero function f ∈ C(S1) to the index of the corresponding
Toeplitz operator Tf .

One of the key features of operator K-theory is Bott periodicity. It states that
for any C∗-algebra A there are natural isomorphisms between its K-theory and
the K-theory of its double suspension S2A. It turns out that the three properties
of homotopy invariance, half-exactness and Morita invariance suffice to deduce
the existence of natural Bott periodicity isomorphisms K∗(A) � K∗(S2A). As a
consequence, there are only twoK-functors,K0 andK1, and the exact sequence (7)
reduces the cyclic six-term exact sequence

K0(I)
i∗

K0(E)
p∗

K0(A)

K1(A) K1(E)
p∗ K1(I).

i∗

3.1 Cuntz’s Proof of Bott Periodicity

Apart from the invariance properties of the K-functor, Cuntz’s proof of Bott
periodicity (cf. [22]) exploits essential properties of the Toeplitz extension (4). By
composing the projection homomorphism π : T → C(S1) with the evaluation map
ev1 : C(S1)→ C, given by ev1(f ) = f (1), we obtain a character of T :

χ := ev1 ◦ π : T → C. (9)

The unital embedding ι : C → T splits the homomorphism χ in the sense that
χ ◦ ι = idC. It is a non-trivial fact that these ∗-homomorphisms are mutually inverse
in K-theory, in a strong sense made precise below.

To state the result, which lies at the heart of the proof of the Bott periodicity
theorem, we shall recall the construction of the spatial or minimal tensor product
A1⊗A2 of C∗-algebras Ai, i = 1, 2. Choose faithful representations πi : Ai →
B(Hi ) and let H1 ⊗ H2 be the completed tensor product of Hilbert spaces. One
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defines A⊗B to be the completion of the algebraic tensor product A ⊗ B in the
norm inherited from the representation

π1 ⊗ π2 : A1 ⊗ A2 → B(H1 ⊗H2).

Proposition 6 ([22, Proposition 4.3]) Let A be a C∗-algebra. The map χ ⊗ 1 :
T ⊗A→ A induces an isomorphism χ∗ ⊗ 1 : K0(T ⊗A) ∼−→ K0(A).

Tensor products of C∗-algebras are not unique, and the spatial tensor product is the
completion in the minimal C∗-norm on the algebraic tensor product A ⊗ B. There
is also a maximal C∗-norm on A ⊗ B, which involves taking the supremum over
all representations. A C∗-algebra N is nuclear, if for any other C∗-algebra A, the
minimal and maximal C∗-tensor norms on N ⊗ A coincide. For our purposes it
suffices to know that all commutative C∗-algebras are nuclear. Given an extension
of C∗-algebras

0 I E B 0 , (10)

the sequence of tensor products

0 I⊗A E⊗A B⊗A 0 , (11)

may fail to be exact in the middle. However, nuclearity of the C∗-algebra B
guarantees exactness.

Lemma 7 (cf. [15, Corollary 3.7.4]) Let A be a C∗-algebra and consider an
extension (10). If the C∗-algebra B is nuclear, then the sequence (11) is exact.

We can now exploit Proposition 6, Lemma 7, and the exactness properties of the
K-functor to deduce Bott periodicity.

Theorem 8 For any C∗-algebra A there are natural isomorphisms Kn(A) �
Kn+2(A).

Proof Consider the character χ defined in (9) and let T0 := kerχ , so that we have
an extension

0 0 C 0 .

As C is nuclear, this extension has the property that the induced sequence

0 0⊗A ⊗A A 0 ,

is exact for any C∗-algebra A as well, by Lemma 7.
The long exact sequence (7), together with the fact that S(A⊗B) � A⊗SB and

Proposition 6, imply that χ∗ : Kn(T ⊗A) → Kn(A) is an isomorphism for all n.
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Consequently Kn(T0⊗A) = 0 for all n. Now observe that, after identifying ker ev1
with C0(0, 1), we can construct a second extension

0 K 0 C0(0, 1) 0 .

As C0(0, 1) is nuclear, this extension, too, has the property that

0 K⊗A 0⊗A C0(0, 1)⊗A 0

is exact for any C∗-algebra A, by Lemma 7. Since C0(0, 1)⊗A � SA, the long
exact sequence (7) gives an isomorphism

Kn+1(C(0, 1)⊗A) ∼−→ Kn(K⊗A).

Now we use the Morita invariance isomorphism Kn(K⊗A) � Kn(A) and the fact
that C(0, 1)⊗A � SA to deduce that

Kn+2(A) � Kn+1(C(0, 1)⊗A) ∼−→ Kn(K⊗A) � K0(A),

which yields the Bott periodicity isomorphism. ��
We remark that, in fact, the theorem holds if we replace K by any functor that is
homotopy invariant, half-exact and Morita invariant. We also note that earlier work
of Karoubi [31] provides another short and conceptual proof of Bott periodicity.
Although Bott periodicity does not hold in algebraicK-theory, Karoubi’s proof puts
algebraic and topologicalK-theory of Banach algebras on the same footing.

3.2 Toeplitz Extensions and Bivariant K-Theory

As we have seen so far in the Toeplitz index and Bott periodicity theorems,
extensions of C∗-algebras play a crucial role in K-theory and henceforth in index
theory. An extension of aC∗-algebraA by B should be viewed as a newC∗-algebra,
built by “gluing together”A and B in a possibly topologically nontrivial way.

In [14], Brown, Douglas, and Fillmore initiated the study of extensions by
considering exact sequences of the form

0 K(H) E C(M) 0,

for some Hilbert space H and some compact Hausdorff topological spaceM . They
proved that such extensions form an Abelian group by defining addition via an
appropriate version of the Baer sum. They also showed that their Abelian group
is dual to K-theory in a precise sense governed by Fredholm index theory.
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Kasparov generalised this construction to extensions

0 K(X) E A 0,

where A is a separable C∗-algebra and X a countably generated Hilbert C∗-
module over a second, σ -unital C∗-algebra B. A technical assumption on such
extensions is that they admit a completely positive and completely contractive linear
splitting � : A → E such that � ◦ π = idA. This assumption is automatically
satisfied when the quotient algebra in the extension is nuclear. Commutative C∗-
algebras are nuclear, and thus the Toeplitz extensions discussed previously satisfy
this assumption. The isomorphism classes of such extensions form an Abelian group
Ext1(A,B) which is isomorphic to the Kasparov group KK1(A,B). This section
is devoted to making this statement more precise. An excellent reference for this
discussion is [28, Chapter 3].

3.2.1 Hilbert Modules and C∗-Correspondences

Before we proceed, we need to recall some results from the theory of Hilbert
C∗-modules. For more details on the latter, we refer the interested reader to the
monograph [37] and to the recent article [36].

Definition 9 A pre-Hilbert module over aC∗-algebraB is a rightB-moduleX with
a B-valued Hermitian product, i.e. a map 〈·, ·〉B : X ×X→ B satisfying

〈ξ, η + ζ 〉B = 〈ξ, η〉B + 〈ξ, ζ 〉B,
〈ξ, η〉B = 〈η, ξ〉∗B, 〈ξ, ηb〉B = 〈ξ, η〉Bb,
〈ξ, ξ〉B ≥ 0, 〈ξ, ξ〉B = 0 ⇔ ξ = 0,

for all ξ, η, ζ ∈ X and for all b ∈ B.

Note that using the existence of approximate units in C∗-algebras, one can prove
that the inner product automatically satisfies 〈ξ, λη〉B = λ〈ξ, η〉B for all ξ, η ∈ X
and λ ∈ C (cf. [36, Section 2]).

For a pre-Hilbert module X, one can define a scalar valued norm ‖ · ‖ using the
C∗-norm on B:

‖ξ‖2 = ‖〈ξ, ξ〉B‖B. (12)

Definition 10 A Hilbert C∗-module is a pre-Hilbert module that is complete in the
norm (12).

If one defines 〈X,X〉 to be the linear span of elements of the form 〈ξ, η〉 for ξ, η ∈
X, then its closure is a two-sided ideal in B. We say that the Hilbert module X is
full whenever 〈X,X〉 is dense in B.
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Let now X,Y be two Hilbert C∗-modules over the same C∗-algebra B.

Definition 11 A map T : X → Y is said to be an adjointable operator if there
exists another map T ∗ : Y → X with the property that

〈T ξ, η〉 = 〈ξ, T ∗η〉 for all ξ ∈ X, η ∈ Y .

Every adjointable operator is automatically right B-linear and bounded. However,
the converse is in general not true: a bounded linear map between Hilbert modules
need not be adjointable. We denote the collection of adjointable operators from X
to Y by Hom∗

B(X, Y ). WhenX = Y , the adjointable operators form a C∗-algebra in
the operator norm, that is denoted by End∗B(X).

Inside the adjointable operators one can single out a particular subspace, which
is analogous to that of finite-rank operators on a Hilbert space. More precisely, for
every ξ ∈ Y, η ∈ X one defines the operator θξ,η : X→ Y as

θξ,η(ζ ) = ξ 〈η, ζ 〉, ∀ζ ∈ X. (13)

This is an adjointable operator, with adjoint θ∗ξ,η : Y → X given by θη,ξ .
We denote by KB(X, Y ) the closure of the linear span of

{θξ,η | ξ, η ∈ X} ⊆ Hom∗
B(X, Y ), (14)

and we refer to it as the space of compact adjointable operators. In particular
KB(X) := KB(X,X) ⊆ End∗B(X) is a closed two-sided ideal in the C∗-algebra
End∗B(X), hence a C∗-subalgebra, whose elements are referred to as compact
endomorphisms. Elements of KB(X) and of End∗B(X) act on X from the left,
motivating the following:

Definition 12 A C∗-correspondence (X, φ) from A to B, is a right Hilbert B-
module X endowed with a ∗-homomorphism φ : A → End∗B(X). If φ : A →
KB(X) we refer to (X, φ) as a compact C∗-correspondence and in the case A = B
we refer to (X, φ) as a C∗-correspondence over B.

When no confusion arises, we will omit the map φ and simply write X.
Two C∗-correspondences (X, φ) and (Y,ψ) over the same algebra B are called

isomorphic if and only if there exists a unitary U ∈ End∗B(X, Y ) intertwining φ and
ψ .

Given an (A,B)-correspondence (X, φ) and a (B,C)-correspondence (Y,ψ),
one can construct an (A,C)-correspondence, named the interior tensor product of
(X, φ) and (Y,ψ). As a first step, one constructs the balanced tensor product X⊗B
Y which is a quotient of the algebraic tensor product X ⊗alg Y by the subspace
generated by elements of the form

ξb ⊗ η − ξ ⊗ ψ(b)η, (15)

for all ξ ∈ X, η ∈ Y, b ∈ B.
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This has a natural structure of right module over C given by

(ξ ⊗ η)c = ξ ⊗ (ηc),

and a C-valued inner product defined on simple tensors as

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉C := 〈η1, ψ(〈ξ1, ξ2〉B)η2〉C, (16)

and extended by linearity.
The inner product is well-defined (cf. [37, Proposition 4.5]); in particular, the

null space N = {ζ ∈ X ⊗alg Y ; 〈ζ, η〉 = 0} can be shown to coincide with the
subspace generated by elements of the form in (15).

One then defines X⊗̂ψY to be the right Hilbert module obtained by completing
X⊗BY in the norm induced by (16). Moreover for every T ∈ End∗B(X), the operator
defined on simple tensors by

ξ ⊗ η 	→ T (ξ)⊗ η

extends to a well-defined operator φ∗(T ) := T ⊗ 1. It is adjointable with adjoint
given by T ∗ ⊗ 1 = φ∗(T ∗). In particular, this means that there is a left action of A
defined on simple tensors by

(φ ⊗ψ 1)(a)(ξ ⊗ η) = φ(a)ξ ⊗ η,

and extended by linearity to a map

φ ⊗ψ 1 : A→ End∗C(X⊗̂ψY ),

thus turningX⊗̂ψY into an (A,C)-correspondence. For all the details, we refer the
reader once more to [37, Chapter 4].

We remark that the interior tensor product induces an associative operation on
isomorphism classes of C∗-correspondences.

3.2.2 Kasparov Modules and the Theory of Extensions

We now come to defining the key objects in Kasparov’s bivariant K-theory [34],
which are inspired by the geometry of elliptic operators on manifolds. For technical
reasons, Kasparov theory is developed under some mild countability assumptions.
Recall that a C∗-algebraB is σ -unital if it admits a countable approximate unit, and
separable if it admits a countable dense subset. Separable C∗-algebras are σ -unital.
A Hilbert C∗-moduleX over B is countably generated if there is a countable subset
{xi} ⊂ X such that the right B submodule generated by {xi} is dense in X.
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Definition 13 An odd Kasparov (A,B)-bimodule is a pair (Y, F ) where Y =
(Y, φ) is a countably generated Hilbert C∗-correspondence from A to B, and
F ∈ End∗B(Y ) is a self-adjoint operator such that F 2 = 1 and [F, φ(a)] ∈ K(Y ).
An even Kasparov module is a triple (Y, F, γ ) such that (Y, F ) is an odd Kasparov
module and γ ∈ End∗B(Y ) is a self-adjoint unitary that commutes with A and
anticommutes with F .

The natural equivalence relation of homotopy of Kasparov modules is conve-
niently defined via Kasparov modules for (A,C([0, 1], B)). The homotopy classes
of odd Kasparov (A,B)-modules form an Abelian group denoted KK1(A,B).
Similarly, the homotopy classes of even Kasparov modules form an Abelian
group KK0(A,B). If we choose A = C then there are natural isomorphisms
KK∗(C, B) � K∗(B), and as such KK-theory generalises K-theory. The main
feature of the theory is the existence of an associative, bilinear product structure

KKi(A,B)×KKj(B,C)→ KKi+j (A,C), (17)

the Kasparov product, defined whenever A is separable and B is σ -unital. Again,
if we set A = C, we see that elements in KKj(B,C) induce maps K∗(B) →
K∗+j (C) by taking products from the right.

There is a close relationship between the Abelian groups KK1(A,B) and
Ext1(A,B) which can be understood via the following Kasparov–Stinespring
theorem, first proved in [33].

Theorem 14 (See the Proof of Theorem 3.2.7 in [28]) Let A,B be C∗-algebras,
with A separable and B σ -unital. Let X be a countably generated Hilbert C∗-
module over B and ρ : A→ End∗B(X) be a completely positive contraction. There
exists a countably generated Hilbert C∗-module Y over B, a ∗-homomorphism
π : A→ End∗B(Y ) and an isometry v : X→ Y such that ρ(a) = v∗π(a)v.

A proof of the above theorem is obtained by combining the proof of Theorem
3.2.7 in [28] with Kasparov’s stabilisation theorem for countably generated C∗-
modules [33, Theorem 3.2]. For our KK-theoretic purposes, remaining in the
countably generated category is of vital importance, but the reader is invited to
consult the more general versions of this result that are available, see for instance
[37, Theorem 5.6].

It is worth noting that such an isometry v : X → Y immediately gives rise to a
Toeplitz type algebra

Tv := vv∗End∗B(Y )vv∗ � End∗B(X).

To an extension

0 K(X) E A 0,

with a completely positive linear splitting � : A → E, we can associate an
odd Kasparov module by observing that, as K(X) is an ideal in E, there is a
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∗-homomorphism ϕ : E → End∗B(X). We consider the completely positive
contraction ρ := ϕ ◦ � : A → End∗B(X) and obtain an (A,B)-bimodule Y and
an isometry v : X→ Y via Theorem 14.

Theorem 15 Let X be a countably generated Hilbert C∗-module over the σ -unital
C∗-algebra B and A a separable C∗-algebra. If

0 K(X) E A 0,

is a semisplit extension with completely contractive and completely positive linear
splitting � : A→ E, then the Stinespring dilation v : X→ Y of ρ := ϕ ◦ � : A→
End∗B(X) makes (Y, 2vv∗ − 1) into an odd Kasparov module for (A,B).

Proof As Y is an (A,B)-correspondence and F = 2vv∗ − 1 it holds that F 2 = 1
and F ∗ = F . Hence all we need to check is that [F, π(a)] = 2[vv∗, π(a)] is an
element of K(Y ). Write p = vv∗, so p2 = p∗ = p and

[p, π(a)] = pπ(a)(1− p)− (1− p)π(a)p.

It thus suffices to show that pπ(a)(1 − p)π(a)∗p ∈ K(Y ), for K(Y ) is an ideal
in End∗B(Y ) and thus for T ∈ End∗B(Y ) it holds that T ∈ K(Y ) if and only if
T T ∗ ∈ K(Y ) (see for instance [10, Proposition II.5.1.1.ii]). Now vK(X)v∗ ⊂ K(Y ),
since for x1, x2 ∈ X it holds that vθx1,x2v

∗ = θv(x1),v(x2), and we compute

pπ(a)(1− p)π(a∗)p = vv∗π(a)(1− vv∗)π(a∗)vv∗
= v(v∗π(a)vv∗π(a∗)v − v∗π(aa∗)v)v∗
= v(�(a)�(a∗)− �(aa∗))v∗ ∈ vK(X)v∗.

This proves that (Y, F ) is a Kasparov module. ��
By the previous theorem, we see that an extension of C∗-algebras induces an
element in KK1(A,B). Using the product structure (17), this leads to the elegant
viewpoint that an extension induces maps

⊗A[(Y, F )] : K∗(A)→ K∗+1(B),

via the Kasparov product. These maps coincide with the boundary maps in the
long exact sequence associated to the extension. For instance, the product with the
extension

0 K⊗A 0⊗A C0(0, 1)⊗A 0 ,
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of the previous section induces the Bott periodicity isomorphisms Kn(S2A) �
Kn(A). In fact, the extension above, in combination with the Kasparov product,
can be used to prove the general bivariant Bott periodicity isomorphisms

KK∗(S2A,B) � KK∗(A,B) � KK∗(A, S2B),

for any pair of separable C∗-algebras (A,B).
The Kasparov–Stinespring construction can be inverted up to homotopy, yielding

the statement that KK1(A,B) is isomorphic to Ext1(A,B). Effectively, this
amounts to the observation that KK-theory is nothing but the study of extensions
of C∗-algebras.

To conclude, let us sketch the inverse construction. An odd Kasparov module
(X, F ) for (A,B) defines an adjointable projection P := 1

2 (F + 1) and hence a
complemented submodule X := PY ⊂ Y . The C∗-subalgebra

E := {(PT P, a) ∈ End∗B(X)⊕ A : T ∈ End∗B(Y ), P (T − a)P ∈ K(Y )
}
,

of End∗B(Y ) ⊕ A is an extension of A by K(X). To see that E is closed under
products, we use that

PSPT P − PabP = P(S − a)PT P + PaP(T − b)P − Pa(1− P)bP
= P(S − a)PT P + PaP(T − b)P − [P, a](1− P)bP,

which is an element of K(X). The quotient map E → A, given by (PT P, a) 	→ a

has kernel K(X) = K(PY ). Moreover, it admits the completely contractive linear
splitting

� : A→ E, � : a 	→ (PaP, a).

The C∗-algebra E can be viewed as an abstract Toeplitz algebra associated to the
Kasparov module (Y, F ). This inverts the Kasparov–Stinespring construction, as is
easily checked.

4 Toeplitz Algebras, Crossed Products by the Integers,
and Cuntz–Pimsner Algebras

We will now describe two constructions of Toeplitz C∗-algebras and quotients
thereof that appear in the study of solid-state systems, as they provide the natural
framework for implementing the bulk-edge correspondence.
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4.1 Crossed Products by the Integers and the
Pimsner–Voiculescu Toeplitz Algebra

Our first object of study are crossed products by the integers. They constitute one of
the simplest and most well-understood examples of C∗-algebras associated to C∗-
dynamical systems, a class of objects which were introduced to study group actions
on C∗-algebras.

Let α be an automorphism of a unital C∗-algebra B. This defines an action of the
additive group Z of integers on B given by

Z→ Aut(B), n 	→ αn.

The crossed product C∗-algebra B �α Z is realised as the universal C∗-algebra
generated by B and a unitary u satisfying the covariance condition

αn(b) = unbu∗n, ∀b ∈ B, n ∈ Z.

As described in [42], crossed products by a single automorphism can be realised as
quotients in a Toeplitz exact sequence of C∗-algebras, constructed starting from the
Toeplitz extension (4).

Definition 16 Let B a unital C∗-algebra and α an automorphism of B. Let T =
C∗(T ) be the Toeplitz algebra of the unilateral shift. The Pimsner–Voiculescu
Toeplitz algebra T (B, α) is defined as the C∗-subalgebra of (B�αZ)⊗T generated
by B ⊗ 1 and u⊗ T .

The Pimsner–Voiculescu Toeplitz algebra T (B, α) and the crossed product C∗-
algebra B �α Z fit into a short exact sequence involving the stabilisation of B:

0 K⊗B (B, α) B α Z 0. (18)

Proof of exactness of the above sequence follows after tensoring the Toeplitz exact
sequence (4) with the algebra B, using nuclearity of C(S1) together with Lemma 7,
and by realising B �α Z as a subalgebra of B⊗C(S1) (see [42, Section 2]).

The Pimsner–Voiculescu Toeplitz algebra T (B, α) is KK-equivalent to the
algebra B itself. The exact sequence (18) then induces six-term exact sequences
that allow for an elegant computation of the K-theory and K-homology groups of
the crossed product algebra B �α Z in terms of those of the algebra B. These exact
sequences are a special case of those described in Sect. 4.2.2.
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4.2 Pimsner’s Construction: Universal C∗-Algebras from
C∗-Correspondences

The construction which we shall describe now generalises that of crossed products
by the integers. In [43], starting from a C∗-correspondence (X, φ) such that φ
is injective, Pimsner constructed two C∗-algebras TX and OX, which are now
referred to as the Toeplitz algebra and the Cuntz–Pimsner algebra of the pair (X, φ),
respectively. Both algebras are characterised by universal properties and depend
only on the isomorphism class of the pair (X, φ). We will describe the construction
for compact correspondences, i.e. such that Im(φ) ⊆ KB(X).

4.2.1 The Toeplitz Algebra

As one can take balanced tensor products of C∗-correspondences, as described in
Sect. 3.2.1, we consider the modules

X(k) := X⊗̂kφ k > 0, (19)

and we take the infinite direct sum

FX = B ⊕
∞⊕

k=1

X(k), (20)

which is referred to as the (positive) Fock correspondence associated to the
correspondence (X, φ).

One can naturally associate to any element ξ ∈ X a shift map:

Tξ (ξ1 ⊗ · · · ⊗ ξk) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξk, Tξ (b) = ξb. (21)

This is an adjointable operator on FX , with adjoint

T ∗ξ (ξ1 ⊗ · · · ⊗ ξk) = φ(〈ξ, ξ1〉)ξ2 ⊗ · · · ⊗ ξk, T ∗ξ (b) = 0. (22)

Definition 17 The Toeplitz algebra of the C∗-correspondence Xφ is the smallest
C∗-subalgebra of End∗B(FX) that contains all the Tξ for ξ ∈ X.

When (X, φ) is a compact C∗-correspondence, the compact operators on the Fock
module sit inside TE as a two-sided ideal, motivating the following:

Definition 18 The Cuntz–Pimsner algebra OX of a compact C∗-correspondence
(X, φ) is the quotient algebra appearing in the exact sequence

0 KB(FX) X
π OX 0. (23)

The image of an element Tξ ∈ TX under the quotient map π will be denoted by Sξ .
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Changing the ideal in the exact sequence (23), one can define the Cuntz–
Pimsner algebra of a general (i.e. non-compact, and possibly non-injective) C∗-
correspondence. We will not be concerned with this more elaborate construction
here. For details see the original papers of Pimsner [43] and Katsura [35], as well as
[15, Section 4.6].

Many well-known examples of C∗-algebras admit a description as Toeplitz–
Pimsner or Cuntz–Pimsner algebras. The theory provides a unifying framework for a
variety of examples, ranging from the study of discrete dynamics to more geometric
situations.

Example Let B = C and X = Cn and φ the left action by multiplication. If one
chooses a basis for Cn, then the Toeplitz algebra of (X, φ) is the universal C∗-
algebra generated by n isometries V1, . . . , Vn satisfying

∑
i ViV

∗
i ≤ 1.

This yields the well known Toeplitz extension for the Cuntz algebras On:

0 K(F) C∗(V1, . . . , Vn) On 0,

where F is the full Fock space on Cn. In particular, for n = 1 one gets back the
classical Toeplitz extension of (4).

Example (cf. [29, Section 2]) If the correspondence X is a finitely generated and
projective module over a unital C∗-algebra, the Pimsner algebra of (X, φ) can be
realised explicitly in terms of generators and relations. Indeed, since X is finitely
generated and projective, there exists a finite set {ηj }nj=1 of elements of X such that

ξ =
∑n

j=1
ηj 〈ηj , ξ〉B, ∀ξ ∈ X.

Then, using the above formula, one can spell out the left B-action on X as

φ(b)ηj =
n∑

j=1

ηi 〈ηi, φ(b)ηj 〉B, ∀b ∈ B.

The C∗-algebra OX is then the universal C∗-algebra generated by B together with
n operators S1, . . . , Sn, satisfying

S∗i Sj = 〈ηi, ηj 〉B,
∑

j
SjS

∗
j = 1, and bSj =

∑
i
Si 〈ηi, φ(b)ηj 〉B,

(24)

for b ∈ B, and j = 1, . . . , n. The generators Si are partial isometries if and only
if 〈ηi, ηj 〉 = 0 for i �= j . For B = C and E a Hilbert space of dimension n, one
recovers the Cuntz algebra On of Example 4.2.1.
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Example Let B be a C∗-algebra and α : B → B an automorphism of B. Then
X = B, seen as a module over itself, can be naturally made into a compact C∗-
correspondence.

The right Hilbert B-module structure is the standard one, with right B-valued
inner product 〈a, b〉B = a∗b. The automorphism α is used to define the left action
via a · b = α(a)b.

Each module X(k) is isomorphic to B as a right-module, with left action

a · (x1 ⊗ · · · ⊗ xk) = αk(a)αk−1(x1) · · ·α(xk−1)xk. (25)

The corresponding Pimsner algebra OX coincides with the crossed product algebra
B �α Z, while the Toeplitz algebra TX agrees with the Toeplitz algebra T (B, α).
The extension (23) then reduces to (18).

4.2.2 Six-Term Exact Sequences

The Toeplitz extension (23) induces a six-term exact sequence in K-theory. In case
the extension is semi-split, it induces six-term exact sequences in KK-theory as
well. Split-exactness is automatic, for instance, when the coefficient algebra B is
nuclear. These exact sequences can be simplified to a great extent after making the
following observations:

• For a compact C∗-correspondence (X, φ), the triple (X, φ, 0) gives a well-
defined even Kasparov module (with trivial grading), whose class we denote by
[X].

• The ideal K(FX) is naturally Morita equivalent to the algebra B itself.
• By [43, Theorem 4.4.], the Toeplitz algebra TX is KK-equivalent to the

coefficient algebra B.

In K-theory, the induced six-term exact sequence reads

K0(B)
⊗(1−[X])

K0(B)
i∗

K0(OX)

∂

K1(OX)

∂

K1(B)
i∗ K1(B)⊗(1−[X])

,

(26)

where i∗ is the map induced by the inclusion B ↪→ OX and the maps ∂ are
connecting homomorphisms. Up to Morita equivalence, the latter can be computed
as Kasparov products with the class of the extension (23). An unbounded repre-
sentative for the extension class was constructed [26] in the setting bi-Hilbertian
bimodules of finite Jones–Watatani index (cf. [30]), subject to some additional
assumptions.
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We conclude this section by remarking that, in the case of a self-Morita
equivalence bimodule—i.e., whenever X is full and φ implements an isomorphism
between B and KB(X)—the exact sequence (26) can be interpreted as a generalisa-
tion of the classical Gysin sequence in K-theory (see [32, IV.1.13]) for the module
of sections E of a noncommutative line bundle. The Kasparov product with the
map 1− [X] can be interpreted as a noncommutative Euler class. This analogy was
exploited in [2] to compute K-theory groups of algebras presenting a circle bundle
structure.

5 Applications to Topological Insulators

We conclude by discussing the bulk-edge correspondence, a principle in solid-
state physics, according to which one should be able to read the topology of the
bulk physical system from the effects it induces on boundary states. This principle
underlies, for example, the quantization of the Hall current on the boundary of a
sample of a quantum Hall system.

In this section, we illustrate how Toeplitz extensions and the maps they induce
in (bivariant) K-theory are essential for a mathematical understanding of these
phenomena.

5.1 The Bulk-Boundary Correspondence for the
One-Dimensional Su–Schrieffer–Heeger Model
and the Noether–Gohberg–Krein Index Theorem

We will now give an exposition of the key ideas behind the bulk-edge correspon-
dence for the one-dimensional Su–Schrieffer–Heeger model [47], a lattice model
with chiral symmetry. Our main reference for this Subsection is [45, Chapter 1]. On
the Hilbert space C2 ⊗ Cn ⊗ �2(Z) we consider the one dimensional Hamiltonian

H := 1

2
(σ1 + iσ2)⊗ 1n ⊗U + 1

2
(σ1 − iσ2)⊗ 1n ⊗U∗ +mσ2 ⊗ 1n⊗ 1, (27)

where 1n and 1 are identity operators on Cn and C2, respectively,m is a mass term,
U is the right shift on �2(Z) defined in (2), and the σi are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

This Hamiltonian goes back to work of [47] and models a conducting polymer,
namely polyacetilene. It possess a chiral symmetry, implemented by the unitary
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operator

J = σ3 ⊗ 1n ⊗ 1,

i.e., J ∗HJ = −H .
The model has a spectral gap at m = 0 so there exists ε > 0 and a continuous

function

χ : R→ R, χ(x) =
{

0 for x ∈ (−∞,−ε]
1 for x ∈ [0,∞),

so that we can form the Fermi projection PF := χ(H) through functional calculus
with χ . The projection PF satisfies the identity JPF J = 1 − PF , so that the flat
band Hamiltonian

Q := 1− 2PF = sgn(H)

satisfies again J ∗QJ = −Q. Moreover,Q2 = 1, hence its spectrum consists of the
two isolated points +1 and −1, allowing us to write

Q =
(

0 U∗F
UF 0

)

for UF a unitary on Cn ⊗ �2(Z). This unitary operator, called the Fermi unitary,
provides us with a natural topological invariant for the boundary system, the first
odd Chern number, which can be computed as follows.

We use the discrete Fourier transform mentioned in (1) to write FQF∗ as a direct
integral

∫ ⊕
S1 Qzdz where each of theQz’s has the form

Qz =
(

0 U∗z
Uz 0

)
.

The family of unitary operators is differentiable and the first Chern class can be
computed as the integral

Ch1(UF ) := i

2π

∫ ⊕

S1
tr(Uz∂zUz)dz (28)

This quantity is an invariant under small perturbations.
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5.1.1 The Bulk Boundary Correspondence

We now introduce an edge for the Hamiltonian (27) by restricting it to the Hilbert
space C2 ⊗C

n ⊗ �2(N) and imposing Dirichlet boundary conditions. The resulting
Hamiltonian is

Ĥ := 1

2
(σ1 + iσ2)⊗ 1n ⊗ T + 1

2
(σ1 − iσ2)⊗ 1n ⊗ T ∗ +mσ2 ⊗ 1n ⊗ 1, (29)

with conventions as above, and with S the unilateral shift on �2(N) described in
Sect. 2.1. Similarly to the bulk Hamiltonian, the edge Hamiltonian has a chiral
symmetry implemented by the half-space chiral operator Ĵ = σ3⊗1n⊗1. Moreover,
it has a spectral gap at 0 that we denote by �.

Let us now consider the Hilbert space obtained as the span of all the eigenvectors
with eigenvalues in [−δ, δ] ⊂ �, which we denote by Eδ . The chirality operator Ĵ
can be diagonalised on Eδ , and we have a splitting Eδ = Eδ+ ⊕ Eδ−.

The difference of the dimensions of the spaces Eδ± is the boundary invariant of
the system and it can be computed as a trace:

tr(Ĵ P̂δ) = N+ −N−, N± = dim Eδ±,

where P̂δ := χ(|Ĥ | ≤ δ) is the spectral projection. This invariant is independent of
the choice of δ, as long as it lies in the central gap.

The bulk-edge correspondence is contained in the following identity, that relates
the bulk invariant (winding number of the Fermi unitary) to the boundary invariant
we just introduced.

Theorem 19 ([45, Theorem 1.2.2]) Consider the Hamiltonian (27) and its half-
space restriction (29). If UF is the Fermi unitary and Ch1(UF ) its winding number
defined in (28), then

Ch1(UF ) = Tr(J̃ P̃ (δ)).

We remark that the Toeplitz extension (4) offers an index theoretic interpretation
of this identity. The above equality of classes follows from the six-term exact
sequence coming from the Toeplitz extension (4). Indeed, the boundary map
described in (8) maps classes of unitaries in the bulk algebra C(S1) to classes of
projections in the boundary algebra K(�2(N)), whose integer K-theory classes are
given by the winding number of the relevant unitary.
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5.2 The Role of Toeplitz Extensions in the Bulk-Edge
Correspondence

The example of the Su–Schrieffer–Heeger model is in some sense paradigmatic,
as other solid-state systems can be modelled using related C∗-algebraic extensions,
where Toeplitz algebras serve as models for the half-space system, while quotients
of Toeplitz algebras are used to model the edge system. Likewise, the K-theory
boundary map coming from the extension can be used to implement the bulk-edge
correspondence, relating bulk invariants to edge invariants.

The idea to model the algebra of observables of a solid-state system via
crossed product C∗-algebras of some disorder space goes back to Bellissard [7].
His approach culminated in outlining a full-fledged mathematical programme for
solid-state physics based on Delone sets [6, 9]. These are uniformly discrete and
relatively dense subsets of Euclidean space, but are not required to possess any
translational symmetry. In order to work with them, one needs to replace crossed
products by groupoid C∗-algebras. The recent developments around the bulk-edge
correspondence gave new impetus to this program [44]. We will now present a
selection of contemporary results that make use of Toeplitz extensions and KK-
theory.

In [12], the authors use the techniques from unbounded KK-theory to prove
the bulk-edge correspondence in K-theory for the quantum Hall effect. In their
approach, they are able to represent bulk topological invariants as a Kasparov
product of boundary invariants with the class of a Toeplitz extension that links the
bulk and boundary algebras.

A topological boundary map associated to an extension of a bulk algebra of
observables by a boundary algebra is also used in [40]. The bulk algebra is
constructed as a crossed product of the codimension-one boundary algebra by the
integers, and the K-theoretic invariants are obtained from the associated Toeplitz
extension. In their approach the authors use methods from noncommutative T-
duality [39].

In [13], the observable algebra of the physical system is a twisted crossed product
C∗-algebra. The Toeplitz extensions for twisted crossed products by Zn offers
the natural framework for the investigation of the bulk-edge correspondence, as it
elegantly links the algebras of the bulk and the edge systems.

Crossed product C∗-algebras are also used to describe disordered systems. The
recent paper [1] describes the bulk-boundary correspondence for disordered free-
fermion topological phases in terms of Van Daele K-theory for graded C∗-algebras
[49, 50]. The relevant observable algebra is the crossed product of the algebra of
continuous functions on a compact disorder space by the action of a lattice.

In [11], the authors replaced crossed products C∗-algebras by groupoid C∗-
algebras. While crossed products of commutative C∗-algebras are naturally an
example of groupoid C∗-algebras, the advantage of this more general setting lies
in the possibility of studying systems without translational symmetries, like those
resulting from non-periodic Rd -actions and the above mentioned Delone sets. The
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systems are still linked by a short exact sequence of the form

0 C∗
r (Y, σ ) ⊗ K C∗

r (G, σ ) 0 ,

where σ is a 2-cocycle encoding the magnetic field, Y is a closed subgroupoid of
the groupoid G, and the algebra T models the half-space system.

Quite remarkably, in the one-dimensional case, the groupoid C∗-algebra admits
an alternative description as Cuntz–Pimsner algebra of a self-Morita equivalence
bimodule (cf. [11, Subsection 2.3]). The map implementing the bulk-edge corre-
spondence is realised as a Kasparov product with the unbounded representative
for the class of the extension (23), as constructed in [26] (see also [2]). It remains
an interesting open question whether groupoid C∗-algebras of higher dimensional
systems admit a description in terms of C∗-algebras associated to families of
C∗-correspondences, for instance in terms of product and subproduct systems
[23, 24, 46, 51].
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Standard Groupoids of von Neumann
Algebras
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Abstract We point out the deep relation between the Poisson geometry and the
standard form representation of any von Neumann algebra. This is done via a
canonical presymplectic groupoid structure of the representation Hilbert space
H endowed with a suitable Banach manifold structure H̃ for which the identity
mapping is a bijective weak immersion H̃→ H.
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1 Introduction

Motivated by the similarities between finite-dimensional Poisson geometry and the
theory of von Neumann algebras that were pointed out by A. Weinstein in [10], we
discuss the Poisson geometric background of the standard form of an arbitrary von
Neumann algebra M. The Banach-Lie groupoid U(M) ⇒ L(M), where U(M) is
the set of partial isometries and L(M) the projections lattice of M was already
investigated in [6] and [9] with a view to Poisson geometry, while the Poisson
bracket on the predual M∗ of M had been studied in [8].
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In the present note, for any standard form realization (M,H, J,P) in the sense
of [5], we find a canonical foliation of the Hilbert space H, whose leaves are Banach
manifolds that are weakly immersed into H. The manifold structure that underlies
the Hilbert space H is thus enriched to a Banach manifold structure to be denoted
by H̃. It turns out that H̃ has the structure of a Banach-Lie groupoid H̃ ⇒ M+∗
which is isomorphic to the action groupoid U(M) ∗M+∗ ⇒ M+∗ defined by the
natural action of the groupoid U(M) ⇒ L(M) on the positive cone M+∗ in the
predual. There is also a presymplectic form ω̃ ∈ �2(H̃) that comes from the
scalar product of H and is multiplicative in the usual sense of finite-dimensional
Lie groupoid theory. We further show that the groupoid (H̃, ω̃) ⇒ M+∗ shares
several other properties of finite-dimensional presymplectic groupoids from [4] and
we investigate the Banach manifold structures of its orbits as well as the leaf spaces
of the foliation defined by the degeneracy kernel of the presymplectic form ω̃.

Details on the facts presented in this note can be found in [2].

2 Preliminaries on W∗-Algebras and Their Standard Forms

We recall here a few facts concerning W∗-algebras indispensable of this presenta-
tion.

A C∗-algebra is an associative Banach ∗-algebra M whose topology can be
defined by a norm satisfying ‖x∗x‖ = ‖x‖2 for every x ∈M. One can equivalently
define a C∗-algebra as a ∗-algebra that is ∗-isomorphic to a norm-closed ∗-
subalgebra of L∞(H), where L∞(H) is the algebra of all bounded operators on
a complex Hilbert space H.

A W∗-algebra is a C∗-algebra M that admits a predual Banach
space M∗, hence M = (M∗)∗. Then M∗ is uniquely determined and we define its
positive cone

M+∗ := {ϕ ∈M∗ | (∀x ∈M) 〈ϕ, x∗x〉 ≥ 0}.

One can equivalently define a W∗-algebra as a ∗-algebra that is ∗-isomorphic to a
von Neumann algebra, that is, a weakly closed ∗-subalgebra of L∞(H).

Since for every smooth functions f, g ∈ C∞(M∗) their derivatives at any ϕ ∈
M∗ satisfy Df (ϕ),Dg(ϕ) ∈ (M∗)∗ = M, one defines the Lie-Poisson bracket as
follows

{f, g}(ϕ) := 〈ϕ, [Df (ϕ),Dg(ϕ)]〉.

See [8] for details. In particular, since L1(H)∗ = L∞(H), one has a Lie-Poisson
structure on the ideal of the trace-class operators

L1(H) := {ρ ∈ L∞(H) | Tr |ρ| < +∞}.
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One also defines the lattice of projections

L(M) = {p ∈M | p = p∗ = p2}

and the set of partial isometries

U(M) = {v ∈M | v∗v ∈ L(M)}.

If M ⊆ L∞(H) is a von Neumann algebra, then one has

L(M) =M ∩ L(L∞(H)) and U(M) =M ∩ U(L∞(H)).

Every W∗-algebra can be realized as a standard von Neumann algebra (see [5]).
That is, a von Neumann algebra M ⊆ L∞(H), along with an antilinear unitary
J = J−1 : H→ H and a self-dual cone P ⊂ H satisfying

(i) JMJ =M′ (:= {y ∈ L∞(H) | xy = yx for all x ∈M});
(ii) JxJ = x∗ for x ∈M ∩M′;

(iii) Jγ = γ for γ ∈ P;
(iv) xJxJP ⊂ P for x ∈M.

The standard form (M,H, J,P) of any W∗-algebra is unique up to unitary
equivalence.

In the above setting, the expectation map E : H→M+∗ defined by

〈E(γ ), x〉 := 〈γ | xγ 〉

gives the homeomorphismE|P : P ∼→M+∗ . Using that homeomorphism one obtains
the polar decomposition of vectors

γ = vγ |γ | ∈ H, (1)

where vγ ∈ U(M) and |γ | ∈ P , are uniquely determined if v∗γ vγ = [M′|γ |] ∈
L(M), where [M′|γ |] denotes the orthogonal projection of H onto the closure of
M′|γ |. Also, |γ | ∈ P is uniquely determined by the condition E(γ ) = E(|γ |).

3 The Groupoids U(M) ⇒ L(M) and U(M) ∗ M+∗ ⇒ M+∗

Loosely speaking, a groupoid is defined by an associative partial multiplication
on a set (“of arrows”) G. In more detail, a groupoid is a set G with the following
structures:

• a set of unit elements (“objects”) G(0)
• an object inclusion map ε : G(0)→ G
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• source/target maps s, t : G → G(0)
• a set of composable pairs G ∗ G := {(γ1, γ2) ∈ G × G | s(γ1) = t(γ2)}
• the multiplication map G ∗ G → G, (γ1, γ2) 	→ γ1 · γ2
• inversion map ι : G → G

satisfying associativity, unit element, inversion axioms whenever they make sense.

This groupoid should be denotedG
t

⇒
s
G(0) but for the sake of simplicity it is denoted

as G ⇒ G(0). The groups are precisely the groupoids G ⇒ G(0) for which the set
G(0) is a singleton.

More briefly, a groupoid is a small category whose morphisms are invertible.
A Banach-Lie groupoid is a groupoid G ⇒ G(0) as above for which the sets

G and G0 are Banach manifolds, the source/target maps are submersions and the
multiplication and the inversion maps are smooth (see [3] and [1] for more details).

To any W∗-algebra one can directly associate a few Banach-Lie groupoids. The
groupoid of partial isometries U(M) ⇒ L(M) has U(M) as the set of arrows and
L(M) as the set of objects. Its structural maps as defined as follows:

• the object inclusion map ε : L(M)→ U(M) is the inclusion
L(M) ↪→ U(M);

• the source s : U(M)→ L(M) and target t : U(M)→ L(M) maps are

s(v) := v∗v and t(v) := vv∗;

• the inverse groupoid map ι : U(M)→ U(M) is ι(v) = v∗;
• the product of (v1, v2) ∈ U(M)∗U(M) := {(v1, v2) ∈ U(M)×U(M) : s(v1) =

t(v2) is their algebraic product v1v2 ∈ U(M).

The groupoid U(M) ⇒ L(M) is a real Banach-Lie groupoid which was studied in
[6] and [9].

One has the action of U(M)⇒ L(M) on M+∗ (called as the co-adjoint action in
this note)

U(M) ∗M+∗ � (u, ρ) 	→ uρu∗ ∈M+∗ (2)

where

U(M) ∗M+∗ := {(u, ρ) ∈ U(M)×M+∗ ; u∗u = σ∗(ρ)}

for which σ∗ : M+∗ → L(M), defined as the support σ∗(ρ) of ρ ∈ M+∗ , is the
momentum map.

Using the action (2), one defines U(M) ∗ M+∗ ⇒ M+∗ , the co-adjoint action
groupoid whose structural maps are defined as follows:

• the object inclusion map ε∗ :M+∗ → U(M) ∗M+∗

ε∗(ρ) := (σ∗(ρ), ρ)
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• the source s∗ : U(M) ∗M+∗ → M+∗ and target t∗ : U(M) ∗M+∗ → M+∗ maps
are

s∗(u, ρ) := ρ and t∗(u, ρ) := uρu∗;

• the inverse groupoid map ι∗ : U(M) ∗ M+∗ → U(M) ∗ M+∗ is ι∗(u, ρ) :=
(u∗, uρu∗);

• the product of elements (u, ρ), (w, δ) ∈ U(M) ∗ M+∗ such that s∗(u, ρ) =
t∗(w, δ) is defined by

(u, ρ)(w, δ) := (uw, δ)

For the co-adjoint action groupoid the following assertions hold.

Theorem 1

(i) The groupoid U(M) ∗M+∗ ⇒ M+∗ is a Banach-Lie groupoid whose various
connected components are modeled on different Banach spaces.

(ii) Every orbit

Oρ := {v∗ρv : (v, ρ) ∈ U(M) ∗M+∗ }

of ρ ∈M+∗ is a weakly symplectic Banach manifold.

See [2, Sections 3 and 5] for details.

4 Poisson Geometry on the Standard Groupoid ˜H ⇒ M+∗

Throughout this section, unless otherwise mentioned, (M,H, J,P) is a standard
form of an arbitraryW∗-algebra.

Theorem 2 There exists a groupoid H ⇒ M+∗ having as structural maps

• the source map s = E,
• the inversion map J ,
• the target map t = E ◦ J ,
• the object inclusion map ε = (E|P )−1 : M+∗ → P ↪→ H,
• the multiplication γ1 · γ2 = vγ1vγ2 |γ2| if s(γ1) = t(γ2).

Example 3 Assume that M is commutative. Then the standard form of M is the
4-tuple (M,H, J,P) and its corresponding standard groupoid H ⇒ P can be
described as follows. For a suitable measure space (T , μ), one has M∗ � L1(T , μ),
M+∗ � L1(T , μ)+ := {ϕ ∈ L1(T , μ) | ϕ ≥ 0 a.e.} and moreover

• H = L2(T , μ) and P = L2(T , μ)+ := {γ ∈ L2(T , μ) | γ ≥ 0 a.e.}
• s = t : L2(T , μ)→ L1(T , μ)+, γ 	→ |γ |2
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Also M = {Mf | f ∈ L∞(T , μ)}, where Mf : H → H, γ 	→ f γ is the
multiplication-by-f operator for any f ∈ L∞(T , μ). Finally, J : H → H, γ 	→ γ ,
and we note that JMJ =M =M′ since M is commutative.

Since s = t , the standard groupoid H ⇒ M+∗ is a group bundle.

The expectation map E : H → M+∗ allows us to define the bijection φ : H →
U(M) ∗M+∗ by

φ(γ ) := (vγ ,E|γ |), (3)

where the partial isometry vγ is related to γ ∈ H by the polar decomposition (1).

Theorem 4

(i) The map (3) defines the groupoid isomorphism between U(M) ∗M+∗ ⇒ M+∗
and H ⇒ M+∗ .

(ii) This bijection is a weak immersion of Banach manifolds H and U(M) ∗M+∗ .

Corollary 5 (smooth structure of the standard groupoid) We thus obtain a
(foliation-like) Banach manifold structure H̃ on the Hilbert space H for which the
identity map is a weak immersion H̃ → H. Thus the standard groupoid H̃ ⇒ M+∗
is a Banach-Lie groupoid.

For details see [2].
We assume again that (M,H, J,P) is a standard form of an arbitrary W∗-

algebra, unless otherwise specified.
The mapping M ↪→ C∞(M∗), x 	→ 〈x, ·〉, is a Lie algebra morphism for a

unique Poisson bracket {·, ·} on C∞(M∗) and for the Lie bracket [x, y] := xy − yx
on M. (See [8] and [7].) Also the Hilbert space H has the symplectic structure
defined by Im 〈· | ·〉.
Theorem 6 The following assertions hold.

(i) The source/target maps s, t : H→M∗ are Poisson/anti-Poisson maps.
(ii) Im 〈· | ·〉 gives a multiplicative presymplectic form ω̃ ∈ �2(H̃):

m∗ω̃ = pr∗1ω̃ + pr∗2ω̃, where m, pr1, pr2 : H̃ ∗ H̃ → H̃ are the groupoid
multiplication and the Cartesian projections, respectively.

(iii) The leaves of the null-foliation of ω̃ are the fibers of the submersion
(t, s) : H̃→M+∗ ×M+∗ .

(iv) Every orbit O ⊆ M+∗ has a weakly symplectic structure ωO ∈ �2(O) and
a Poisson bracket for which O ↪→ M∗ is a Poisson map. Moreover, on the
transitive subgroupoid t−1(O) ⊆ H̃, one has

ω̃ = t∗ωO − s∗ωO.
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Example 7 Here we study the special case of the type I factor L∞(H0) =
(L1(H0))

∗, where H0 is any complex Hilbert space. To this end we introduce the
notation

• H = L2(H0) := {x ∈M0 | Tr(x∗x) <∞},
• J : L2(H0)→ L2(H0), J (x) := x∗,
• P := {x ∈ L2(H0) | x ≥ 0},
• for all a ∈ L∞(H0) we define λ(a) : L2(H0) → L2(H0), λ(a)γ := aγ , and

then L∞(H0) � λ(L∞(H0)) =:M ⊆ L∞(H).
Then (M,H, J,P) is a standard form of the W∗-algebra L∞(H0), whose corre-
sponding standard groupoid is

L2(H0)⇒ L1(H0)
+ := L1(H0) ∩ P

having its source/target maps

s, t : L2(H0)→ L1(H0)
+, s(γ ) = γ ∗γ, t(γ ) = γ γ ∗

and its multiplication

γ1 · γ2 := v1v2|γ2|

if γj = vj |γj | ∈ L2(H0) for j = 1, 2 with γ ∗1 γ1 = γ2γ
∗
2 . Moreover, the orbit of

any ρ ∈ L1(H0)
+ is

Oρ = {vρv∗ | v ∈ L∞(H0), v
∗v = [ρH0]}.

5 Further Facts

5.1 Standard Groupoids of Finite W∗-Algebras

AW∗-algebra M is finite if every isometry in M is unitary, i.e.,

u ∈M & u∗u = 1 �⇒ uu∗ = 1

Examples of finiteW∗-algebras include

1. Type I:Mn(C), n = 1, 2, . . .
2. Type II: the von Neumann of any countable discrete group.

Proposition 8 For anyW∗-algebra M the following conditions are equivalent:

(i) M is finite.
(ii) The orbits of the standard groupoid of M are connected.



38 D. Beltiţă and A. Odzijewicz

5.2 Standard Groupoids of Purely Infinite W∗-Algebras

AW∗-algebra M is purely infinite (or type III) if every nonzero projection is infinite
(i.e., is equivalent to a strictly smaller projection):

p ∈ L(M) \ {0} �⇒ (∃u ∈M) p = u∗u > uu∗

Recall that M is a factor if {x ∈M | (∀y ∈M) xy = yx} = C1.

Proposition 9 If M is a factor with separable predual, the following are equiva-
lent:

(i) M is purely infinite
(ii) Each nonzero orbit of the standard groupoid of M has exactly two connected

components.

5.3 Standard Groupoids of Type III1

Special (type III1) purely infinite W∗-algebras occur in some models of the
relativistic quantum field theory due to Haag-Kastler-Araki-Borchers-. . . We recall
that aW∗-algebra M is type III1 if

1. M is a purely infinite factor;
2. M∗ is separable;
3. for every faithful state ρ ∈ M+∗ its modular operator �ρ ≥ 0 has its spectrum

equal to [0,∞).
Proposition 10 If M is a factor with separable predual, the following are equiva-
lent:

(i) M is type III1
(ii) The norm-closure of every orbit of the standard groupoid of M is a sphere

in M+∗ .
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1 Quantum Cohomology

1.1 Notations and Conventions

Let X be a smooth projective variety over C with vanishing odd-cohomology, i.e.
H 2k+1(X,C) = 0, for k ≥ 0. Fix a homogeneous basis (T1, . . . , Tn) of the complex
vector space H •(X) := ⊕

k H
2k(X,C), and denote by t := (t1, . . . , tn) the

corresponding dual coordinates. Without loss of generality, we assume that T1 = 1.
The Poincaré pairing on H •(X) will be denoted by

η(u, v) :=
∫

X

u ∪ v, u, v ∈ H •(X), (1)
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and we put ηαβ := η(Tα, Tβ), for α, β = 1, . . . , n, to be the Gram matrix w.r.t. the
fixed basis. The entries of the inverse matrix will be denoted by ηαβ , for α, β =
1, . . . , n. In all the paper, the Einstein rule of summation over repeated indices is
used. General references for this section are [7, 8, 10–13, 27, 28, 31].

1.2 Gromov–Witten Invariants in Genus 0

For a fixed β ∈ H2(X,Z)/torsion, denote by M0,k(X, β) the Deligne–Mumford
moduli stack of k-pointed stable rational maps with targetX of degree β:

M0,k(X, β) := {f : (C, x)→ X, f∗[C] = β} /equivalencies, (2)

where C is an algebraic curve of genus 0 with at most nodal singularities, x :=
(x1, . . . , xk) is a k-tuple of pairwise distinct marked points of C, and equivalencies
are automorphisms of C → X identical on X and the markings.

Gromov–Witten invariants (GW -invariants for short) of X, and their descen-
dants, are defined as intersection numbers of cycles on M0,k(X, β), by the integrals

〈τd1γ1, . . . , τdk γk〉Xk,β :=
∫

[M0,k (X,β)]virt

k∏

i=1

ev∗i γi ∧ ψdii , (3)

for γ1, . . . , γk ∈ H •(X), di ∈ N. In formula (3),

evi : M0,k(X, β)→ X, f 	→ f (xi), i = 1, . . . , k, (4)

are evaluation maps, and ψi := c1(Li ) are the first Chern classes of the universal
cotangent line bundles

Li →M0,k(X, β), Li |f = T ∗xiC, i = 1, . . . , k. (5)

The virtual fundamental cycle [M0,k(X, β)]virt is an element of the Chow ring
A•
(
M0,k(X, β)

)
, namely

[M0,k(X, β)]virt ∈ AD
(
M0,k(X, β)

)
, D := dimCX − 3+ k +

∫

β

c1(X).

See [1] for its construction.
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1.3 Quantum Cohomology as a Frobenius Manifold

Introduce infinitely many variables t• := (tαp )α,p with α = 1, . . . , n and p ∈ N.

Definition 1 The genus 0 total descendant potential ofX is the generating function
FX0 ∈ C[[t•]] of descendantGW -invariants of X defined by

FX0 (t•) :=
∞∑

k=0

∑

β

n∑

α1,...,αk=1

∞∑

p1,...,pk=0

t
α1
p1 . . . t

αk
pk

k! 〈τp1Tα1, . . . , τpkTαk 〉Xk,β .

Setting tα0 = tα and tαp = 0 for p > 0, we obtain the Gromov–Witten potential of X

FX0 (t) :=
∞∑

k=0

∑

β

n∑

α1,...,αk=1

tα1 . . . tαk

k! 〈Tα1, . . . , Tαk 〉Xk,β . (6)

Let � ⊆ H •(X) be the domain of convergence of FX0 (t), assumed to be non-
empty. We denote by T� and T ∗� its holomorphic tangent and cotangent bundles,
respectively. Each tangent space Tp�, with p ∈ �, is canonically identified with
the space H •(X), via the identification ∂

∂tα
	→ Tα. The Poincaré metric η defines a

flat non-degenerate O�-bilinear pseudo-Riemannian metric on �. The coordinates
t are manifestly flat. Denote by ∇ the Levi-Civita connection of η.

Definition 2 Define the tensor c ∈ �(T �⊗⊙2
T ∗�) by

cαβγ := ηαλ∇3
λβγ F

X
0 , α, β, γ = 1, . . . , n, (7)

and let us introduce a product ∗ on vector fields on � by

∂

∂tβ
∗ ∂

∂tγ
:= cαβγ

∂

∂tα
, β, γ = 1, . . . , n. (8)

Theorem 3 ([27, 31]) The Gromov–Witten potentialFX0 (t) is a solution ofWDVV
equations

∂3FX0 (t)

∂tα∂tβ∂tγ
ηγ δ

∂3FX0 (t)

∂tδ∂tε∂tφ
= ∂3FX0 (t)

∂tφ∂tβ∂tγ
ηγ δ

∂3FX0 (t)

∂tδ∂tε∂tα
, (9)

for α, β, ε, φ = 1, . . . , n.

On each tangent space Tp�, the product ∗p defines a structure of associative,
commutative algebra with unit ∂

∂t1
≡ 1. Furthermore, the product ∗ is compatible

with the Poincaré metric, namely

η(u ∗ v,w) = η(u, v ∗ w), u, v,w ∈ �(T�). (10)

This endows (Tp�, ∗p, ηp, ∂
∂t1

∣∣∣
p
) with a complex Frobenius algebra structure.
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Definition 4 The vector field

E = c1(X)+
n∑

α=1

(
1− 1

2
degTα

)
tα
∂

∂tα
, (11)

is called the Euler vector field. Here, deg Tα denotes the cohomological degree of
Tα, i.e. deg Tα := rα if and only if Tα ∈ Hrα(X,C). We denote by U the (1, 1)-
tensor defined by the multiplication with the Euler vector field, i.e.

U : �(T�)→ �(T�), v 	→ E ∗ v. (12)

Proposition 5 ([11, 13]) The Euler vector field E is a Killing conformal vector
field, whose flow preserves the structure constants of the Frobenius algebras:

LEη = (2− dimCX)η, LEc = c. (13)

The structure (�, c, η, ∂
∂t1
, E) gives an example of analytic Frobenius manifold,

called quantum cohomology of X and denoted byQH •(X), see [11–13, 28].

1.4 Extended Deformed Connection

Definition 6 The grading operator μ ∈ End(T�) is the tensor defined by

μ(v) := 2− dimCX

2
v −∇vE, v ∈ �(T�). (14)

Consider the canonical projection π : C∗ × � → �, and the pull-back bundle
π∗T�. Denote by

1. T� the sheaf of sections of T�,
2. π∗T� the pull-back sheaf, i.e. the sheaf of sections of π∗T�
3. π−1T� the sheaf of sections of π∗T� constant on the fibers of π .

All the tensors η, c,E,U, μ can be lifted to π∗T�, and their lifts will be denoted
by the same symbols. The Levi-Civita connection ∇ is lifted on π∗T�, and it acts
so that

∇ ∂
∂z
v = 0 for v ∈ (π−1T�)(�), (15)

where z is the coordinate on C
∗.



Quantum Differential Equations and Helices 45

Definition 7 The extended deformed connection is the connection ∇̂ on the bundle
π∗T� defined by

∇̂wv = ∇wv + z ·w ∗ v, (16)

∇̂ ∂
∂z
v = ∇∂zv + U(v)− 1

z
μ(v), (17)

for v,w ∈ �(π∗T�).
Theorem 8 ([11, 13]) The connection ∇̂ is flat.

1.5 Semisimple Points and Orthonormalized Idempotent Frame

Definition 9 A point p ∈ � is semisimple if and only if the corresponding
Frobenius algebra (Tp�, ∗p, ηp, ∂∂t1 |p) is without nilpotents. Denote by �ss the
open dense subset of � of semisimple points.

Theorem 10 ([24]) The set �ss is non-empty only if X is of Hodge–Tate1 type, i.e.
hp,q(X) = 0 for p �= q .

On �ss there are n well-defined idempotent vector fields π1, . . . , πn ∈ �(T�ss),
satisfying

πi ∗ πj = δij πi, η(πi, πj ) = δij η(πi, πi), i, j = 1, . . . , n. (18)

Theorem 11 ([10, 11, 13]) The idempotent vector fields pairwise commute:
[πi, πj ] = 0 for i, j = 1, . . . , n. Hence, there exist holomorphic local coordinates
(u1, . . . , un) on �ss such that ∂

∂ui
= πi for i = 1, . . . , n.

Definition 12 The coordinates (u1, . . . , un) of Theorem 11 are called canonical
coordinates.

Proposition 13 ([11, 13]) Canonical coordinates are uniquely defined up to order-
ing and shifts by constants. The eigenvalues of the tensor U define a system of
canonical coordinates in a neighborhood of any semisimple point of �ss .

Definition 14 We call orthonormalized idempotent frame a frame (fi)ni=1 of T�ss
defined by

fi := η(πi, πi)− 1
2πi, i = 1, . . . , n, (19)

1Here hp,q (X) := dimCH
q(X,�

p

X), with �pX the sheaf of holomorphic p-forms on X, denotes
the (p, q)-Hodge number of X.
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for arbitrary choices of signs of the square roots. The �-matrix is the matrix
(�iα)

n
i,α=1 of change of tangent frames, defined by

∂

∂tα
=

n∑

i=1

�iαfi, α = 1, . . . , n. (20)

Remark 15 In the orthonormalized idempotent frame, the operator U is represented
by a diagonal matrix, and the operator μ by an antisymmetric matrix:

U := diag(u1, . . . , un), �U�−1 = U, (21)

V := �μ�−1, V T + V = 0. (22)

2 Quantum Differential Equation

The connection ∇̂ induces a flat connection on π∗(T ∗�). Let ξ ∈ �(π∗(T ∗�)) be
a flat section. Consider the corresponding vector field ζ ∈ �(π∗(T �)) via musical
isomorphism, i.e. such that ξ(v) = η(ζ, v) for all v ∈ �(π∗(T �)).

The vector field ζ satisfies the following system2 of equations

∂

∂tα
ζ = zCαζ, α = 1, . . . , n, (23)

∂

∂z
ζ =

(
U + 1

z
μ

)
ζ. (24)

Here Cα is the (1, 1)-tensor defined by (Cα)βγ := cβαγ .

Definition 16 The quantum differential equation (qDE) of X is the differential
equation (24).

The qDE is an ordinary differential equation with rational coefficients. It has
two singularities on the Riemann sphere P1(C):

1. a Fuchsian singularity at z = 0,
2. an irregular singularity (of Poincaré rank 1) at z = ∞.

2We consider the joint system (23) and (24) in matrix notations (ζ a column vector whose entries
are the components ζα(t , z)w.r.t. ∂

∂tα
). Bases of solutions are arranged in invertible n×n-matrices,

called fundamental systems of solutions.
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Points of� are parameters of deformation of the coefficients of the qDE. Solutions
ζ(t, z) of the joint system of Eqs. (23) and (24) are “multivalued” functions w.r.t.
z, i.e. they are well-defined functions on � × Ĉ∗, where Ĉ∗ is the universal cover
of C∗.

2.1 Solutions in Levelt form at z = 0 and
Topological-Enumerative Solution

Theorem 17 ([7, 11, 13]) There exist fundamental systems of solutions Z0(t, z) of
the joint system (23) and (24) with expansions at z = 0 of the form

Z0(t, z) = F(t, z)zμzR, R =
∑

k≥1

Rk, F (t, z) = I +
∞∑

j=1

Fj (t)z
j (25)

where (Rk)αβ �= 0 only if μα − μβ = k. The series F(t, z) is convergent and
satisfies the orthogonality condition

F(t,−z)T ηF (t, z) = η. (26)

Definition 18 A fundamental system of solutions Z0(t, z) of the form described in
Theorem 17 are said to be in Levelt form at z = 0.

Remark 19 Fundamental systems of solutions in Levelt form are not unique. The
exponent R is not uniquely determined. Moreover, even for a fixed exponent R, the
series F(t, z) is not uniquely determined, see [7]. It can be proved that the matrix R
can be chosen as the matrix of the operator c1(X) ∪ (−) : H •(X) → H •(X) w.r.t.
the basis (Tα)nα=1 [13, Corollary 2.1].

Remark 20 Let Z0(t, z) be a fundamental system of solutions in Levelt form (25).
The monodromy matrixM0(t), defined by

Z0(t, e
2π
√−1z) = Z0(t, z)M0(t), z ∈ Ĉ∗, (27)

is given by

M0(t) = exp(2π
√−1μ) exp(2π

√−1R). (28)

In particular,M0 does not depend on t .
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Definition 21 Define the functions θβ,p(t, z), θβ(t, z), with β = 1, . . . , n and p ∈
N, by

θβ,p(t) := ∂2FX0 (t•)
∂t10 ∂t

β
p

∣∣∣∣∣
tαp=0 for p>1, tα0=tα for α=1,...,n

, (29)

θβ(t, z) :=
∞∑

p=0

θβ,p(t)z
p. (30)

Define the matrix �(t, z) by

�(t, z)αβ := ηαλ
∂θβ(t, z)

∂tλ
, α, β = 1, . . . , n. (31)

Theorem 22 ([7, 13]) The matrix Ztop(t, z) := �(t, z)zμzc1(X)∪ is a fundamental
system of solutions of the joint system (23)–(24) in Levelt form at z = 0.

Definition 23 The solution Ztop(t, z) is called topological-enumerative solution of
the joint system (23) and (24).

2.2 Stokes Rays and �-Chamber Decomposition

Definition 24 We call Stokes rays at a point p ∈ � the oriented rays Rij (p) in C

defined by

Rij (p) :=
{
−√−1(ui(p)− uj (p))ρ : ρ ∈ R+

}
, (32)

where (u1(p), . . . , un(p)) is the spectrum of the operator U(p) (with a fixed
arbitrary order).

Fix an oriented ray � in the universal cover Ĉ∗.

Definition 25 We say that � is admissible at p ∈ � if the projection of the ray � on
C∗ does not coincide with any Stokes ray Rij (p).

Definition 26 Define the open subset O� of points p ∈ � by the following
conditions:

1. the eigenvalues ui(p) are pairwise distinct,
2. � is admissible at p.

We call �-chamber of � any connected component of O�.
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2.3 Stokes Fundamental Solutions at z = ∞

Fix an oriented ray � ≡ {arg z = φ} in Ĉ∗. For m ∈ Z, define the sectors in Ĉ∗

 L,m(φ) :=
{
z ∈ Ĉ∗ : φ + 2πm < arg z < φ + π + 2πm

}
, (33)

 R,m(φ) :=
{
z ∈ Ĉ∗ : φ − π + 2πm < arg z < φ + 2πm

}
. (34)

Definition 27 The coalescence locus of � is the set

�� :=
{
p ∈ � : ui(p) = uj (p), for some i �= j} . (35)

Theorem 28 ([11, 13]) There exists a unique formal solutionZform(t, z) of the joint
system (23) and (24) of the form

Zform(t, z) = �(t)−1G(t, z) exp(zU(t)), (36)

G(t, z) = I +
∞∑

k=1

1

zk
Gk(t), (37)

where the matricesGk(t) are holomorphic on � \��.

Theorem 29 ([11, 13]) Let m ∈ Z. There exist unique fundamental systems of
solutions ZL,m(t, z), ZR,m(t, z) of the joint system (23) and (24) with asymptotic
expansion

ZL,m(t, z) ∼ Zform(t, z), |z| → ∞, z ∈  L,m(φ), (38)

ZR,m(t, z) ∼ Zform(t, z), |z| → ∞, z ∈  R,m(φ), (39)

respectively.

Definition 30 The solutionsZL,m(t, z) andZR,m(t, z) are called Stokes fundamen-
tal solutions of the joint system (23) and (24) on the sectors L,m(φ) and R,m(φ)
respectively.

2.4 Monodromy Data

Let � ≡ {arg z = φ} be an oriented ray in Ĉ∗ and consider the corresponding Stokes
fundamental systems of solutions ZL,m(t, z), ZR,m(t, z), form ∈ Z.



50 G. Cotti

Definition 31 We define the Stokes and central connection matrices S(m)(p),
C(m)(p), with m ∈ Z, at the point p ∈ O� by the identities

ZL,m(t(p), z) = ZR,m(t(p), z)S(m)(p), (40)

ZR,m(t(p), z) = Ztop(t(p), z)C
(m)(p). (41)

Set S(p) := S(0)(p) and C(p) := C(0)(p).
Definition 32 The monodromy data at the point p ∈ O� are defined as the 4-tuple
(μ,R, S(p), C(p)), where

• μ is the (matrix associated to) the grading operator,
• R is the (matrix associated to) the operator c1(X)∪: H •(X)→ H •(X),
• S(p), C(p) are the Stokes and central connection matrices at p, respectively.

Remark 33 The definition of the Stokes and central connection matrices is subordi-
nate to several non-canonical choices:

1. the choice of an oriented ray � in Ĉ∗,
2. the choice of an ordering of canonical coordinatesu1, . . . , un on each �-chamber,
3. the choice of signs in (19), and hence of the branch of the �-matrix on each
�-chamber.

Different choices affect the numerical values of the data (S, C), see [7]. In particular,
for different choices of ordering of canonical coordinates, the Stokes and central
connection matrices transform as follows:

S 	→  S −1, C 	→ C −1,  permutation matrix. (42)

Definition 34 Fix a point p ∈ O� with canonical coordinates (ui(p))ni=1. Define
the oriented rays Lj(p, φ), j = 1, . . . , n, in the complex plane by the equations

Lj(p, φ) :=
{
uj (p)+ ρe

√−1( π2 −φ) : ρ ∈ R+
}
. (43)

The ray Lj (p, φ) is oriented from uj (p) to ∞. We say that (ui(p))ni=1 are in �-
lexicographical order if Lj(p, φ) is on the left of Lk(p, φ) for 1 ≤ j < k ≤ n.

In what follows, it is assumed that the �-lexicographical order of canonical
coordinates is fixed at all points of �-chambers.

Lemma 35 ([7, 13]) If the canonical coordinates (ui(p))ni=1 are in �-lexicogra-
phical order at p ∈ O�, then the Stokes matrices S(m)(p), m ∈ Z, are upper
triangular with 1’s along the diagonal.
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By Remarks 19 and 20, the matrices μ and R determine the monodromy of
solutions of the qDE,

M0 := exp(2π
√−1μ) exp(2π

√−1R). (44)

Moreover, μ and R do not depend on the point p. The following theorem furnishes
a refinement of this property.

Theorem 36 ([7, 11, 13]) The monodromy data (μ,R, S,C) are constant in each
�-chamber. Moreover, they satisfy the following identities:

CST S−1C−1 = M0, (45)

S = C−1 exp(−π√−1R) exp(−π√−1μ)η−1(CT )−1, (46)

ST = C−1 exp(π
√−1R) exp(π

√−1μ)η−1(CT )−1. (47)

Theorem 37 ([7]) The Stokes and central connection matrices Sm,Cm, with m ∈
Z, can be reconstructed from the monodromy data (μ,R, S,C):

S(m) = S, C(m) = M−m
0 C, m ∈ Z. (48)

Remark 38 Points of O� are semisimple. The results of [4, 5, 7, 9] imply that the
monodromy data (μ,R, S,C) are well defined also at points p ∈ �ss ∩ ��, and
that Theorem 36 still holds true.

Remark 39 From the knowledge of the monodromy data (μ,R, S,C) the Gromov–
Witten potential FX0 (t) can be reconstructed via a Riemann–Hilbert boundary value
problem, see [7, 8, 13, 23]. Hence, the monodromy data may be interpreted as a
system of coordinates in the space of solutions ofWDVV equations.

2.5 Action of the Braid Group Bn

Consider the braid group Bn with generators β1, . . . , βn−1 satisfying the relations

βiβj = βjβi, |i − j | > 1, (49)

βiβi+1βi = βi+1βiβi+1. (50)

Let Un be the set of upper triangular (n× n)-matrices with 1’s along the diagonal.
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Definition 40 Given U ∈ Un define the matricesAβi (U), with i = 1, . . . , n− 1, as
follows

(
Aβi (U)

)
hh
:= 1, h = 1, . . . , n, h �= i, i + 1, (51)

(
Aβi (U)

)
i+1,i+1 = −Ui,i+1, (52)

(
Aβi (U)

)
i,i+1 =

(
Aβi (U)

)
i+1,i = 1, (53)

and all other entries of Aβi (U) are equal to zero.

Lemma 41 ([7, 11, 13]) The braid group Bn acts on Un ×GL(n,C) as follows:

Bn × Un ×GL(n,C) −−−−−−−−−−→ Un ×GL(n,C)
(βi, U,C) 	−−−→ (Aβi (U) · U ·Aβi (U), C · Aβi (U)−1)

We denote by (U,C)βi the action of βi on (U,C).

Fix an oriented ray � ≡ {arg z = φ} in Ĉ∗, and denote by � its projection on C
∗.

Let ��,1,��,2 be two �-chambers and let pi ∈ ��,i for i = 1, 2. The difference
of values of the Stokes and central connection matrices (S1, C1) and (S2, C2), at
p1 and p2 respectively, can be described by the action of the braid group Bn of
Lemma 41.

Theorem 42 ([7, 11, 13]) Consider a continuous path γ : [0, 1] → � such that

• γ (0) = p1 and γ (1) = p2,
• there exists a unique to ∈ [0, 1] such that � is not admissible at γ (to),
• there exist i1, . . . , ik ∈ {1, . . . , n}, with |ia − ib| > 1 for a �= b, such that the

rays3
(
Rij ,ij+1(t)

)r
j=1

(resp.
(
Rij ,ij+1(t)

)k
j=r+1

) cross the ray � in the clockwise

(resp. counterclockwise) direction, as t → t−o .

Then, we have

(S2, C2) = (S1, C1)
β , β :=

⎛

⎝
r∏

j=1

βij

⎞

⎠ ·
(

k∏

h=r+1

βih

)−1

. (54)

Remark 43 In the general case, the points p1 and p2 can be connected by
concatenations of paths γ satisfying the assumptions of Theorem 42.

Remark 44 The action of Bn on (S, C) also describes the analytic continuation of
the Frobenius manifold structure on �, see [13, Lecture 4].

3Here the labeling of Stokes rays is the one prolonged from the initial point t = 0.
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3 Derived Category, Exceptional Collections, and Helices

3.1 Notations and Basic Notions

Denote by Coh(X) the abelian category of coherent sheaves onX, and by Db(X) its
bounded derived category. Objects of Db(X) are bounded complexesA• of coherent
sheaves onX. Morphisms are given by roofs: ifA•, B• are two bounded complexes,
a morphism f : A• → B• in Db(X) is the datum of

• a third object C• in Db(X),
• two homotopy classes of morphisms of complexes q : C• → A• and g : C• →
B•,

• the morphism q is required to be a quasi-isomorphism, i.e. it induces isomor-
phism in cohomology.

C•
q g

A•
f

B•
(55)

The derived category Db(X) admits a triangulated structure, the shift functor
[1] : Db(X)→ Db(X) being defined by

A•[1] := A•+1, A• ∈ Db(X). (56)

Denote by Hom•(A•, B•) := ⊕
k∈Z Hom(A•, B•[k]). General references for this

section are [17, 20, 21, 32].

3.2 Exceptional Collections

Definition 45 An object E ∈ Db(X) is called exceptional iff

Hom•(E,E) ∼= C. (57)

Definition 46 An exceptional collection is an ordered family (E1, . . . , En) of
exceptional objects of Db(X) such that

Hom•(Ej ,Ei) ∼= 0 for j > i. (58)
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An exceptional collection is full if it generates Db(X) as a triangulated category,
i.e. if any full triangulated subcategory of Db(X) containing all the objects Ei’s is
equivalent to Db(X) via the inclusion functor.

Example In [2] A. Beilinson showed that the collection of line bundles

B := (O,O(1), . . . ,O(n)) (59)

on Pn is a full exceptional collection. M. Kapranov generalized this result in [25],
where full exceptional collections on Grassmannians, flag varieties of group SLn,
and smooth quadrics are constructed.

Denote by G(k, n) the Grassmannian of k-dimensional subspaces in Cn, by S∨
the dual of its tautological bundle. Let Sλ be the Schur functor (see [15]) labelled by
a Young diagram λ inside a rectangle k × (n− k). The collection K := (SλS∨)

λ
is

full and exceptional in Db(G(k, n)). The order of the objects of the collection is the
partial order defined by inclusion of Young diagrams.

3.3 Mutations and Helices

Let E be an exceptional object in Db(X). For any X ∈ Db(X), we have natural
evaluation and co-evaluation morphisms

j∗ : Hom•(E,X) ⊗E→ X, j∗ : X→ Hom•(X,E)∗ ⊗ E. (60)

Definition 47 The left and right mutations of X with respect to E are the objects
LEX and REX uniquely defined by the distinguished triangles

EX 1 Hom•(E,X) E
j

X EX, (61)

EX X
j∗

Hom (X,E) E EX 1 , (62)

respectively.

Remark 48 In general, the third object of a distinguished triangle is not canonically
defined by the other two terms. Nevertheless, the objects LXE and REX are
uniquely defined up to unique isomorphism, because of the exceptionality of E,
see [8, Section 3.3].



Quantum Differential Equations and Helices 55

Definition 49 Let E = (E1, . . . , En) be an exceptional collection. For any i =
1, . . . , n− 1 define the left and right mutations

LiE : = (E1, . . . ,LEiEi+1, Ei, . . . , En), (63)

RiE : = (E1, . . . , Ei+1,REi+1Ei, . . . , En). (64)

Theorem 50 ([21, 32]) For all i = 1, . . . , n − 1 the collections LiE and RiE are
exceptional. Moreover, we have that

LiRi = RiLi = Id, Li+1LiLi+1 = LiLi+1Li , i = 1, . . . , n, (65)

LiLj = LjLi , |i − j | > 1. (66)

According to Theorem 50, we have a well-defined action of Bn on the set of
exceptional collections of length n in Db(X): the action of the generator βi is
identified with the action of the mutation Li for i = 1, . . . , n− 1.

Definition 51 Let E = (E1, . . . , En) be a full exceptional collection. We define the
helix generated by E to be the infinite family (Ei)i∈Z of exceptional objects obtained
by iterated mutations

En+i := REn+i−1 . . .REi+1Ei, Ei−n := LEi−n+1 . . .LEi−1Ei, i ∈ Z.

Any family of n consecutive exceptional objects (Ei+k)nk=1 is called a foundation
of the helix.

Lemma 52 ([21]) For i, j ∈ Z, we have Hom•(Ei, Ej ) ∼= Hom•(Ei−n,Ej−n).

3.4 Exceptional Bases in K-Theory

Consider the Grothendieck group K0(X) ≡ K0(Db(X)), equipped with the
Grothendieck–Euler–Poincaré bilinear form

χ([V ], [F ]) :=
∑

k

(−1)k dimC Hom(V , F [i]), V , F ∈ Db(X). (67)

Definition 53 A basis (ei)ni=1 of K0(X)C is called exceptional if χ(ei, ei) = 1 for
i = 1, . . . , n, and χ(ej , ei) = 0 for 1 ≤ i < j ≤ n.

Lemma 54 Let (Ei)ni=1 be a full exceptional collection in Db(X). The K-classes
([Ei])ni=1 form an exceptional basis ofK0(X)C.

The action of the braid group on the set of exceptional collections in Db(X) admits
a K-theoretical analogue on the set of exceptional bases of K0(X)C, see [8, 21].
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4 Dubrovin’s Conjecture

4.1 �-Classes and Graded Chern Character

Let V be a complex vector bundle on X of rank r , and let δ1, . . . , δr be its Chern
roots, so that cj (V ) = sj (δ1, . . . , δr ), where sj is the j -th elementary symmetric
polynomial.

Definition 55 Let Q be an indeterminate, and F ∈ C[[Q]] be of the form F(Q) =
1+∑n≥1 αnQ

n. The F -class of V is the characteristic class F̂V ∈ H •(X) defined
by F̂V :=∏rj=1 F(δj ).

Definition 56 The �±-classes of V are the characteristic classes associated with
the Taylor expansions

�(1±Q) = exp

(
∓γQ+

∞∑

m=2

(∓1)m
ζ(m)

m
Qn

)
∈ C[[Q]], (68)

where γ is the Euler–Mascheroni constant and ζ is the Riemann zeta function.

If V = TX, then we denote �̂±X its �-classes.

Definition 57 The graded Chern character of V is the characteristic class Ch(V ) ∈
H •(X) defined by Ch(V ) :=∑r

j=1 exp(2π
√−1δj ).

4.2 Statement of the Conjecture

Let X be a Fano variety. In [12] Dubrovin conjectured that many properties of the
qDE of X, in particular its monodromy, Stokes and central connection matrices,
are encoded in the geometry of exceptional collections in Db(X). The following
conjecture is a refinement of the original version in [12].

Conjecture 58 ([8]) Let X be a smooth Fano variety of Hodge–Tate type.

1. The quantum cohomology QH •(X) has semisimple points if and only if there
exists a full exceptional collection in Db(X).

2. If QH •(X) is generically semisimple, for any oriented ray � of slope φ ∈
[0, 2π[ there is a correspondence between �-chambers and helices with a marked
foundation.

3. Let �� be an �-chamber and E� = (E1, . . . , En) the corresponding exceptional
collection (the marked foundation). Denote by S and C Stokes and central
connection matrices computed in ��.
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(a) The matrix S is the inverse of the Gram matrix of the χ-pairing in K0(X)C
w.r.t. the exceptional basis [E�],

(S−1)ij = χ(Ei,Ej ); (69)

(b) The matrix C coincides with the matrix associated with the C-linear
morphism

D−
X : K0(X)C −→H •(X) (70)

F 	−−−→ (
√−1)d

(2π)
d
2

�̂−X exp(−π√−1c1(X))Ch(F ), (71)

where d := dimCX, and d is the residue class d (mod 2). The matrix is
computed w.r.t. the exceptional basis [E�] and the pre-fixed basis (Tα)nα=1 of
H •(X).

Remark 59 Conjecture 58 relates two different aspects of the geometry of X,
namely its symptectic structure (GW -theory) and its complex structure (the derived
category Db(X)). Heuristically, Conjecture 58 follows from Homological Mirror
Symmetry Conjecture of M. Kontsevich, see [8, Section 5.5].

Remark 60 In the paper [26] it was underlined the role of �-classes for refining
the original version of Dubrovin’s conjecture [12]. Subsequently, in [14] and [16,
�-conjecture II] two equivalent versions of point (3.b) above were given. However,
in both these versions, different choices of solutions in Levelt form of the qDE at
z = 0 are chosen w.r.t. the natural ones in the theory of Frobenius manifolds, see
Remark 19, and [8, Section 5.6].

Remark 61 If point (3.b) holds true, then automatically also point (3.a) holds true.
This follows from the identity (46) and Hirzebruch–Riemann–Roch Theorem, see
[8, Corollary 5.8].

Remark 62 Assume the validity of points (3.a) and (3.b) of Conjecture 58. The
action of the braid group Bn on the Stokes and central connection matrices
(Lemma 41) is compatible with the action of Bn on the marked foundations attached
at each �-chambers. Different choices of the branch of the �-matrix correspond
to shifts of objects of the marked foundation. The matrix M−1

0 is identified
with the canonical operator κ : K0(X)C → K0(X)C, [F ] 	→ (−1)d[F ⊗ ωX].
Equations (48) imply that the connection matrices C(m), with m ∈ Z, correspond
to the matrices of the morphism D−

X w.r.t. the foundations (E� ⊗ ω⊗mX )[md]. The
statement S(m) = S coincides with the periodicity described in Lemma 52, see [8,
Theorem 5.9].

Remark 63 Point (3.b) of Conjecture 58 allows to identifyK-classes with solutions
of the joint system of Eqs. (23) and (24). Under this identification, Stokes fundamen-
tal solutions correspond to exceptional bases ofK-theory. In the approach of [6, 33],
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where the equivariant case is addressed, such an identification is more fundamental
and a priori, see Sect. 6.

5 Results for Grassmannians

Conjecture 58 has been proved for complex Grassmannians G(k, n) in [8, 16].
See also [22, 34]. The proof is based on direct computation of the monodromy
data of the qDE at points of the small quantum cohomology, namely the subset
H 2(G(k, n),C) of �. Here we summarize the main results obtained.

Remark 64 If4 π1(n) ≤ k ≤ n − π1(n), the small quantum locus of G(k, n) is
contained in the coalescence locus ��, see [3]. In these cases, the computations of
the monodromy data is justified by the results of [4, 5, 7, 9]. See also Remark 38.

5.1 The Case of Projective Spaces

Denote by σ ∈ H 2(Pn−1,C) the hyperplane class and fix the basis (σ k)n−1
k=0 of

H •(Pn−1). The joint system (23) and (24) for Pn−1, restricted at the point tσ ∈
H 2(Pn−1,C), with t ∈ C, is

∂Z

∂t
= zC(t)Z, (72)

∂Z

∂z
=
(
U(t) + 1

z
μ

)
Z, (73)

with

U(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 nq

n 0
n 0
. . .
. . .

n 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, q := et , C(t) = 1

n
U(t), (74)

μ = diag

(
−n− 1

2
,−n− 3

2
, . . . ,

n− 3

2
,
n− 1

2

)
. (75)

The canonical coordinates are given by the eigenvalues of the matrix U(t),

uh(t) = ne 2πi(h−1)
n q

1
n h = 1, . . . , n. (76)

4Here π1(n) denotes the smallest prime number which divides n.
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Fix the orthonormalized idempotent vector fields, f1(t), . . . , fn(t), given by

fh(t) :=
n∑

�=1

f �h (t)σ
�−1, f �h (t) := n−

1
2 q

n+1−2�
2n e(1−2�)iπ (h−1)

n h, � = 1, . . . , n,

and consider the following branch of the �-matrix,

�(t) :=
⎛

⎜⎝
f 1

1 (t) . . . f
1
n (t)

...
...

f n1 (t) . . . f
n
n (t)

⎞

⎟⎠

−1

. (77)

Theorem 65 ([8]) Fix the oriented ray � in Ĉ∗ of slope φ ∈ [0, π
n
[. For suitable

choices of the signs of the columns of the �-matrix (77), the central connection
matrix computed at 0 ∈ H •(Pn−1) coincides with the matrix attached to the
morphism

D−
Pn−1 : K0(P

n−1)C → H •(Pn−1)

computed w.r.t. the exceptional bases

O
(n

2

)
,
∧1

T
(n

2
− 1
)
,O
(n

2
+ 1
)
,
∧3

T
(n

2
− 2
)
, . . . ,O(n−1),

∧n−1
T (78)

for n even, and

O
(
n− 1

2

)
,O
(
n+ 1

2

)
,
∧2

T
(
n− 3

2

)
,

O
(
n+ 3

2

)
,
∧4

T
(
n− 5

2

)
, . . . ,O (n− 1) ,

∧n−1
T (79)

for n odd. In particular, Conjecture 58 holds true for Pn−1.

Remark 66 Exceptional collections (78) and (79) are related to Beilinson’s excep-
tional collection (59) by mutations and shifts. For different choices of the ray �, the
exceptional collections attached to the monodromy data computed at 0 ∈ H •(Pn−1)

are given (up to shifts) by the following list, see [6, 8].

1. Case n odd: an exceptional collection either of the form

O
(
−k − n− 1

2

)
, T

(
−k − n− 1

2
− 1

)
, O

(
−k − n− 1

2
+ 1

)
,

∧3
T
(
−k − n− 1

2
− 2

)
, O

(
−k − n− 1

2
+ 2

)
, . . . ,

∧n−4
T (−k − n+ 2) ,

O(−k − 1),
∧n−2

T (−k − n+ 1) , O(−k),
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or of the form

O
(
−k − n− 1

2

)
, O

(
−k − n− 1

2
+ 1
)
,
∧2

T
(
−k − n− 1

2
− 1
)
,

O
(
−k − n− 1

2
+ 2

)
,
∧3

T
(
−k − n− 1

2
− 2

)
. . . , O(−k − 1),

∧n−3
T (−k − n+ 2) , O(−k),

∧n−1
T (−k − n+ 1) ,

for some k ∈ Z

2. Case n even: an exceptional collection either of the form

O
(
−k − n

2

)
, O

(
−k − n

2
+ 1
)
,
∧2

T
(
−k − n

2
− 1
)
, O

(
−k − n

2
+ 2
)
, . . . ,

. . . ,
∧n−4

T (−k − n+ 2) , O(−k − 1),
∧n−2

T (−k − n+ 1) , O(−k),

or of the form

O
(
−k − n

2
+ 1
)
, T

(
−k − n

2

)
, O

(
−k − n

2
+ 2
)
,
∧3

T
(
−k − n

2
− 1
)
, . . . ,

. . . , O(−k − 1),
∧n−3

T (−k − n+ 2) , O(−k),
∧n−1

T (−k − n+ 1) ,

for some k ∈ Z.

5.2 The Case of Grassmannians

Denote by G the Grassmannian G(k, n) parametrizing k-dimensional subspaces in
C
n, and by P the projective space Pn−1. Let ξ1, . . . , ξk be the Chern roots of the dual

of the tautological bundle S on G, and denote by hj (ξ) the j -th complete symmetric
polynomial in ξ1, . . . , ξk . An additive basis of the cohomology ring

H •(G) ∼= C[ξ1, . . . , ξk]Sk

/
〈hn−k+1, . . . , hn〉, (80)

is given by the Schubert classes (σλ)λ⊆k×(n−k), labelled by partitions λ with Young
diagram inside a k × (n − k) rectangle. Under the presentation (80), the Schubert
classes are given by Schur polynomials in ξ ,

σλ :=
det
(
ξ
λj+k−j
i

)

1≤i,j≤k∏
i<j (ξi − ξj )

. (81)
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Denote by ηP and ηG the Poincaré metrics on H •(P) and H •(G) respectively. The
metric ηP induces a metric η∧k

P
on the exterior power

∧k
H •(P):

η∧k
P
(α1 ∧ . . . ,∧αk, β1 ∧ . . . ,∧βk) := det

(
ηP(αi , βj )

)
1≤i,j≤k . (82)

Theorem 67 ([8, 16]) We have a C-linear isometry

I :
(∧k

H •(P), (−1)(
k
2)η∧k

P

)
→ (H •(G), ηG) , σ ν1 ∧ · · · ∧ σνk 	→ σν̃,

where n− 1 ≥ ν1 > ν2 > · · · > νk ≥ 0 and ν̃ := (ν1 − k + 1, ν2 − k + 2, . . . , νk).

Consider the domain �G ⊂ H •(G) (resp. �P ⊂ H •(P)) where the GW -potential
FG

0 (resp. FP

0 ) converges. Let t ∈ C and consider the points

p := tσ1 ∈ H 2(G,C), p̂ :=
(
t + π√−1(k − 1)

)
σ ∈ H 2(P,C), (83)

in the small quantum cohomology of G and P respectively. Theorem 67 allow us to
identify5 the tangent spaces Tp�G and

∧k
Tp̂�P.

Lemma 68 ([8, 16]) Let �P(t) be the �-matrix defined by (77). Then the matrix

�G(t) := (√−1)(
k
2)
∧k
�P(t + π√−1(k − 1)) defines a branch of the �-matrix

for G.

The following results show that under the identification of Theorem 67, solutions
and monodromy data of the joint system (23) and (24) for G can be reconstructed
from solutions for the joint system for P.

Theorem 69 ([8]) Let ZP(t, z) be a solution of the joint system (72) and (73). The
function

ZG(t, z) :=
∧k (

ZP(t + π√−1(k − 1), z)
)

(84)

is a solution for the joint system for G, namely

∂ZG

∂t
= zCG(t)ZG, (85)

∂ZG

∂z
=
(
UG(t)+ 1

z
μG

)
ZG. (86)

5In what follows, if A is a n × n-matrix, we denote by
∧k
A the matrix of k × k-minors of A,

ordered in lexicographical order.



62 G. Cotti

Corollary 70 ([8]) Fix an oriented ray � in Ĉ∗ admissible at both points p, p̂
in (83). Denote by SP(p̂), SG(p) and CP(p̂), CG(p) the Stokes and central
connection matrices at p̂ and p, respectively. We have

SG(p) =
∧k

SP(p̂), (87)

CG(p) = (√−1)−(
k
2)
(∧k

CP(p̂)

)
exp(π

√−1(k − 1)σ1∪). (88)

Proof Denote by

• ZP
top(t, z) and ZG

top(t, z) the topological-enumerative solutions for P and G

respectively, restricted at their small quantum cohomologies;
• Z

P/G
L/R,m(t, z), with m ∈ Z, the Stokes fundamental solutions of the joint

systems (23) and (24) for P and G respectively.

We have

ZG

top(t, z) =
(∧k

ZP

top(t + π
√−1(k − 1), z)

)
· exp(−π√−1(k − 1)σ1∪),

ZG

L/R,m(t, z) = (
√−1)−(

k
2)
∧k

ZP

L/R,m(t + π
√−1(k − 1), z).

See [8] for proofs of these identities. ��
Corollary 71 ([8]) The central connection matrix computed at 0 ∈ H •(G) coin-
cides with the matrix attached to the morphism

D−
G
: K0(G)C → H •(G)

computed w.r.t. an exceptional basis of K0(G)C. Such a basis is the projection in
K-theory of an exceptional collection of Db(G) related by mutations and shifts to
the twisted Kapranov exceptional collection

(SλS∨ ⊗ L), L := det

(∧2
S∨
)
. (89)

In particular, Conjecture 58 holds true for G.

6 Results on the Equivariant qDE of Pn−1

Gromov–Witten theory, as described in Sect. 1.2, can be suitably adapted to the
equivariant case [18]. Given a variety X equipped with the action of a group G,
a quantum deformation of the equivariant cohomology algebra H •

G(X,C) can be
defined.
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Consider the projective space Pn−1 equipped with the diagonal action of the torus
T := (C∗)n. Although the isomonodromic system (72) and (73) does not admit
an equivariant analog, the differential equation (72) only can be easily modified.
By change of coordinates q := exp(t), setting z = 1, and replacing the quantum
multiplication ∗q by the corresponding equivariant one ∗q,z, Eq. (72) takes the form

q
d

dq
Z = σ ∗q,z Z. (90)

Here the equivariant parameters z = (z1, . . . , zn) correspond to the factors of T, and
Z(q, z) takes values in H •

T
(Pn−1,C). Equation (90) admits a compatible system of

difference equations, called qKZ difference equations

Z(q, z1, . . . , zi − 1, . . . , zn) = Ki(q, z)Z(q, z), i = 1, . . . , n, (91)

for suitable linear operatorsKi ’s, introduced in [33]. The joint system (90) and (91)
is a suitable limit of an analogue one for the cotangent bundle T ∗Pn−1, see [19, 30].
The existence and compatibility of such a joint system for more general Nakajima
quiver varieties is justified by the general theory of D. Maulik and A. Okounkov
[29].

In [33], the study of the monodromy and Stokes phenomenon at q = ∞ of
solutions of the joint system (90) and (91) is addressed. Furthermore, elements of
KT

0 (P
n−1)C are identified with solutions of the joint system (90) and (91): Stokes

bases of solutions correspond to exceptional bases.
In [6], the authors describe relations between the monodromy data of the joint

system of the equivariant qDE (90) and qKZ Eqs. (91) and characteristic classes of
objects of the derived category Db

T
(Pn−1) of equivariant coherent sheaves on Pn−1.

Equivariant analogs of results of [8, Section 6] are obtained.
The B-Theorem of [6] is the equivariant analog of Theorem 65. Moreover, in [6]

the Stokes bases of solutions of the joint system (90) and (91) are identified with
explicit T-full exceptional collections in Db

T
(Pn−1), which project to those listed in

Remark 66 via the forgetful functor Db
T
(Pn−1) → Db(Pn−1). This refines results

of [33]. Finally, in [6] it is proved that the Stokes matrices of the joint system (90)
and (91) equal the Gram matrices of the equivariant Grothendieck–Euler–Poincaré
pairing on KT

0 (P
n−1)C w.r.t. the same exceptional bases.

Acknowledgments The author thanks the Max-Planck-Institut für Mathematik in Bonn, Ger-
many, for support.
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Periodic One-Point Rank One
Commuting Difference Operators

Alina Dobrogowska and Andrey E. Mironov

Abstract In this paper we study one-point rank one commutative rings of differ-
ence operators. We find conditions on spectral data which specify such operators
with periodic coefficients.

Keywords Commuting difference operators

Mathematics Subject Classification (2010) 39A13, 39A23, 17B80

1 Introduction and Main Results

In this paper we study one-point rank one commuting difference operators with
periodic coefficients.

Let us consider a (maximal) commutative ring A of difference operators
consisting of operators of the form

Lm =
i=N+∑

i=−N−
ui(n)T

i, uN+ = 1, N+, N− ≥ 0,

where T is a shift operator, T ψ(n) = ψ(n + 1), m = N+ + N− is the order of
Lm (assuming uN− �= 0). The operator Lm acts on the space of formal functions
{ψ : Z −→ C}. The ring A is isomorphic to a ring of rational functions on spectral
curve � with poles in points q1, . . . , qs ∈ � (see [1]). Common eigenfunctions of
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operators from A form a vector bundle of rank l over �\{∪sj=1qj }.More precisely,
there is a vector-function ψ(n, P ) = (ψ1(n, P ), . . . , ψl(n, P )), P ∈ �\{∪sj=1qj }
which is called Baker–Akhiezer function, such that every operator Lm ∈ A
corresponds to a meromorphic function f (P ) on � with poles in q1, . . . , qs

Lmψ = fψ.

Moreover,m = lm′, where m′ is the degree of the pole divisor of f. The operators
from A are called s-point rank l operators.

Two-point rank one operators were classified in [1, 7]. Baker–Akhiezer function
of such operators can be reconstructed from Krichever’s spectral data [1]. One-point
rank l > 1 operators were discovered by Krichever and Novikov in [3]. Spectral data
for one-point rank one operators were found in [4]. Those operators contain the shift
operator T only in positive power. Recall that the spectral data for such operators
has the form (see [4])

S = {�, γ, Pn, q, k−1}.

Here � is a Riemannian surface of genus g (we do not consider singular spectral
curves), γ = γ1 + . . .+ γg is a non-special divisor on �, Pn ∈ �, n ∈ Z is a set
of general points, q ∈ � is a fixed point, k−1 is a local parameter near q . There is a
unique Baker–Akhezer function ψ(n, P ), n ∈ Z, P ∈ � which is rational function
on � and satisfies the following properties

• if n > 0, then the zero and pole divisor of ψ has the form

(ψ(n, P )) = γ (n)+ P0 + . . .+ Pn−1 − γ − nq,

• if n < 0, then the zero and pole divisor of ψ has the form

(ψ(n, P )) = γ (n)− P−1 − . . .− Pn − γ − nq,

• if n = 0 then ψ(n, P ) = 1,
• in a neighborhood of q the function ψ has the following expansion

ψ(n, P ) = kn +O(kn−1).

Here γ (n) = γ1(n)+ . . .+ γg(n), n �= 0 is some divisor on �. Further we will use
the following notation γ (0) = γ. For arbitrary meromorphic function f (P ) on �
with the unique pole in q of orderm there is a unique operator

Lm = T m + um−1(n)T
m−1 + . . .+ u0(n)

such that Lmψ = fψ , see [4].
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If in the spectral data S all points Pn coincide, Pn = q+, then we get the two-
point Krichever’s construction [1].

One-point rank one operators were studied in [4–6], in particular some explicit
examples of such operators were given. That class of operators is very interesting
because, for example with the help of those operators one can construct a dis-
cretization of the Lamé operator preserving the spectral curve. More precisely, let
℘(x), ζ(x) be the Weierstrass functions. We define the function Ag(x, ε) by the
following formulas

A1 = −2ζ(ε) − ζ(x − ε)+ ζ(x + ε),

A2 = −3

2
(ζ(ε)+ ζ(3ε) + ζ(x − 2ε)− ζ(x + 2ε)) ,

Ag = A1

g1∏

i=1

(
1+ ζ(x − (2i + 1)ε) − ζ(x + (2i + 1)ε)

ζ(ε) + ζ((4i + 1)ε)

)
, for odd g = 2g1 + 1,

Ag = A2

g1∏

i=2

(
1+ ζ(x − 2iε) − ζ(x + 2iε)

ζ(ε) + ζ((4i − 1)ε)

)
, for even g = 2g1.

The operator

L2 = 1

ε2 T
2
ε + Ag(x, ε)

1

ε
Tε + ℘(ε) (1)

commutes with the operator L2g+1, operators L2, L2g+1 are rank one one-point
operators. In the above formulas it is assumed that Tεψ(x) = ψ(x+ε). The operator
L2 has the following expansion

L2 = ∂2
x − g(g + 1)℘ (x)+O(ε).

For small g it is checked that the spectral curve of the pair L2, L2g+1 coincides
with the spectral curve of the Lamé operator ∂2

x − g(g + 1)℘ (x), see [5].
Probably this class of difference operators can be used for the construction of a
discretization of arbitrary finite-gap one dimensional Schrödinger operators. Note
that the operator (1) is periodic. So, for the discretization of the finite-gap operators
it is useful to find the condition when rank one one-point operators are periodic with
real coefficients. This is the main motivation of this paper.

In the next theorem we formulate periodicity and reality conditions of the
coefficients of the operators.

Theorem 1 Coefficients of one-point rank one operators corresponding to the
spectral data

S = {�, γ, Pn, q, k−1}
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are N-periodic, N ∈ N, if and only if

Pn+N = Pn,

and there is a meromorphic function λ(P ) on � with a divisor of zeros and poles of
the form

(λ(P )) = P0 + . . .+ PN−1 −Nq.

Let us assume that the spectral curve � admits an antiholomorphic involution

τ : � −→ �, τ 2 = id.

If

τ (Pn) = Pn, τ (γ ) = γ, τ (q) = q, τ (k) = k, (2)

then the Baker–Akhiezer function satisfies the identity

ψ(n, P ) = ψ(n, τ(P )), (3)

and if additionally

τ (f (P )) = f (P ),

then the coefficients of the operator Lm corresponding to the function
f (P ), Lmψ = fψ, are real.

In the case of two-point rank one operators the analogue of Theorem 1 was
proved in [2]. In the two-point case we have (λ) = Nq+ −Nq.

2 Proof of Theorem 1

At the beginning we prove the second part of the theorem. The proof of this part is
usual. The identity (3) follows from the uniqueness of the Baker–Akhiezer function
with the fixed spectral data. Indeed, from (2) it follows that the functionψ(n, τ(P ))
satisfies the same conditions as ψ(n, P ), hence we get (3).

We have

Lmψ(n, τ (P )) = f (τ(P ))ψ(n, τ (P )).
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Consequently,

Lmψ(n, τ (P )) = L̄mψ(n, τ (P )) = L̄mψ(n, P ) = f (τ(P ))ψ(n, τ (P )).

Hence

L̄mψ(n, P ) = f (P )ψ(n, P ).

From the uniqueness of the operator corresponding to the meromorphic function
f (P ) we get

L̄m = Lm,

hence, the coefficients of Lm are real.
To prove the first part of the theorem we introduce the following function

χ(n, P ) = ψ(n+ 1, P )

ψ(n, P )
.

From the definition of the Baker–Akhiezer function we obtain that the zero and pole
divisor of χ has the form

(χ(n, P )) = γ (n+ 1)+ Pn − γ (n)− q, n ∈ Z. (4)

Lemma 1 Operators from A have N-periodic coefficients if and only if

χ(n+N,P) = χ(n, P ).

Proof Let us prove the inverse part of the lemma. We assume that the coefficients of
all operators from A are periodic. This means that the operator T N commutes with
all operators from A, i.e., T N ∈ A. This also means that there is a meromorphic
function λ(P ) on � with the unique pole in q of order N such that

T Nψ(n, P ) = ψ(n +N,P) = λ(P )ψ(n, P ). (5)

We have

χ(n+N,P) = ψ(n + 1+N,P)
ψ(n +N,P) = λ(P )ψ(n + 1, P )

λ(P )ψ(n, P )
= χ(n, P ). (6)

Let us prove the direct part of the lemma. We assume that χ(n+N,P) = χ(n, P ).
We introduce a rational function on �

λ(P ) = χ(0, P ) . . . χ(N − 1, P ) = ψ(N,P ).
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Then we obtain

T Nψ(n, P ) = ψ(n +N,P) = χ(n+N − 1, P )ψ(n +N − 1, P ) =
χ(n+N − 1, P )χ(n +N − 2, P )ψ(n + N − 2, P ) = . . . =

χ(n+N − 1, P ) . . . χ(n, P )ψ(n, P ) =
χ(0, P ) . . . χ(N − 1, P )ψ(n, P ).

Hence,

T Nψ(n, P ) = λ(P )ψ(n, P ). (7)

From (7) it follows that T N ∈ A since T N and operators from A have common
Baker–Akhiezer eigenfunction. Moreover λ(P ) has the unique pole of order N in
q . Lemma 1 is proved. ��

Now we can finish the proof of Theorem 1. Let us assume that coefficients of the
operators are periodic. Then by Lemma 1 the function χ is periodic and from (4)
we have

(χ(n+N,P)) = γ (n+N + 1)+ Pn+N − γ (n+N)− q. (8)

Hence, comparing the pole divisors of (4) and (8) we get γ (n) = γ (n + N), and
after comparing the zero divisors of (4) and (8) we get Pn+N = Pn.

From the proof of Lemma 1 it follows that the function λ(P ) = ψ(N,P ) has an
unique pole q of order N , moreover

(λ(P )) = γ (N)+ P0 + . . .+ PN−1 − γ (0)−Nq = P0 + . . .+ PN−1 −Nq.

Hence the direct part of Theorem 1 is proven.
Let us assume that there is a meromorphic function λ(P ) such that

(λ(P )) = P0 + . . .+ PN−1 − Nq,

and Pn+N = Pn. We can suppose that in the neighborhood of q we have the
expansion

λ = kN +O(kn−1).

Then from (4) we have

(χ(n+N)) = γ (n+N + 1)+ Pn+N − γ (n+N)− q
= γ (n+ 1)+ Pn − γ (n)− q = χ(n).
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Since χ(n) = k+O(1) in the neighborhood of q , we get χ(n+N) = χ(n). Hence
by Lemma 1 the coefficient of the operators are periodic. Theorem 1 is proven.

2.1 Example

Let us consider the case of elliptic spectral curve � given by the equation

w2 = F(z) = z3 + c2z
2 + c1z + c0.

The degree of the divisor γ (n) is 1. Let

γ (n) = (αn, βn) ∈ �, β2
n = F(αn).

Commuting operators of orders 2 and 3 have the forms (see [4])

L2 = (T + Un)2 +Wn, Un = βn + βn+1

αn+1 − αn , Wn = −c2 − αn − αn+1,

L3 = T 3 + (Un + Un+1 + Un+2)T
2

+ (U2
n + U2

n+1 + UnUn+1 +Wn − αn+2)T + (Un(U2
n +Wn − αn)+ βn).

The function χ(n, P ) has the form

χ = w + βn
z− αn +

βn + βn+1

αn − αn+1
.

The point Pn = (zn,wn) ∈ � has the coordinates

zn = c1(αn + αn+1)+ αnαn+1(αn + αn+1)+ 2c2αnαn+1 + 2(c0 + βnβn+1)

(αn − αn+1)2
,

wn = βn+1(αn − zn)+ βn(αn+1 − zn)
αn − αn+1

.

If αn+N = αn, βn+N = βn, then

γ (n+N) = (αn+N , βn+N) = (αn, βn) = γ (n), Pn+N = Pn,

and the meromorphic function

λ(P ) = χ(0, P ) . . . χ(N − 1, P )

satisfies the conditions of Theorem 1.
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On the bi-Hamiltonian Structure
of the Trigonometric Spin
Ruijsenaars–Sutherland Hierarchy

L. Fehér and I. Marshall

Abstract We report on the trigonometric spin Ruijsenaars–Sutherland hierarchy
derived recently by Poisson reduction of a bi-Hamiltonian hierarchy associated with
free geodesic motion on the Lie group U(n). In particular, we give a direct proof of
a previously stated result about the form of the second Poisson bracket in terms of
convenient variables.

Keywords Integrable system · Spin Ruijsenaars and Sutherland models ·
bi-Hamiltonian Hierarchy · Hamiltonian reduction
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1 Introduction

The classical integrable many-body models of Calogero–Moser–Sutherland and
Ruijsenaars–Schneider as well as their extensions by internal degrees of freedom are
in the focus of intense investigations even today, many years after their inception.
See [1–4] and references therein. One of the sources of these models is Hamiltonian
reduction of obviously integrable ‘free motion’ on suitable higher dimensional
phase spaces, among which cotangent bundles and their Poisson–Lie analogues
are the prime examples. In this framework, the emergence of the internal degrees
of freedom, colloquially called ‘spin’, originates from the fact that symplectic
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reductions of cotangent bundles are in general not cotangent bundles, but more
complicated phase spaces.

We do not have a single, all encompassing framework for understanding
integrable Hamiltonian systems, but there exist several powerful approaches with
large intersections of their ranges of applicability. For example, the method of the
classical r-matrix incorporates many famous systems, like Toda lattices, that can be
derived by Hamiltonian reduction, too, as reviewed in [9, 10]. The r-matrix method
and Hamiltonian reduction also have several links to the bi-Hamiltonian approach
initiated by Magri [8].

It was pointed out in the recent paper [4] that one of the simplest finite-
dimensional integrable systems, the free geodesic motion on the unitary group
U(n), admits a natural bi-Hamiltonian structure, and a suitable reduction of this
free system gives rise to the so-called spin Ruijsenaars–Sutherland hierarchy. In
this contribution, we overview the results of [4], and give a new, direct proof of a
statement formulated in this reference without detailed proof.

2 Bi-Hamiltonian Hierarchy on T ∗U(n) and Its Reduction

In this section we present a terse review of the results of [4].
Our starting point is the manifold T ∗U(n), which we identify with the set

M := U(n)×H(n) := {(g, L) | g ∈ U(n), L ∈ H(n)}, (1)

using right-trivialization. Here, the vector space of Hermitian matrices,
H(n) = iu(n), serves as the model of the dual u(n)∗ of the Lie algebra u(n).

Consider the real Lie algebra gl(n,C) endowed with the non-degenerate bilinear
form

〈X,Y 〉 := ( tr(XY ), ∀X,Y ∈ gl(n,C). (2)

Then gl(n,C) is the vector space direct sum of its isotropic Lie subalgebras u(n)
and b(n), where b(n) contains the upper triangular matrices with real entries along
the diagonal. Consequently, we can decompose any X ∈ gl(n,C) as

X = Xu(n) +Xb(n), Xu(n) ∈ u(n), Xb(n) ∈ b(n). (3)

We also have another decomposition into isotropic linear subspaces,
gl(n,C) = u(n)+ H(n). Thus both b(n) and H(n) can serve as models of u(n)∗.

For any real function F ∈ C∞(M), introduce the derivatives

D1F,D
′
1F ∈ C∞(M, b(n)) and d2F ∈ C∞(M, u(n)) (4)
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by the relation

〈D1F(g,L),X〉 + 〈D′1F(g,L),X′〉 + 〈d2F(g,L), Y 〉

= d

dt

∣∣∣∣
t=0
F(etXgetX

′
, L+ tY ), (5)

for every X,X′ ∈ u(n) and Y ∈ H(n). The ‘free Hamiltonians’ of our interest are

Hk(g,L) := 1

k
tr(Lk), ∀k ∈ N. (6)

These feature in the ‘free bi-Hamiltonian hierarchy’ on M, which is given by the
next theorem.

Theorem 1 ([4]) The following formulae define two compatible Poisson brackets
on M:

{F,H }1(g, L) = 〈D1F, d2H 〉 − 〈D1H, d2F 〉 + 〈L, [d2F, d2H ]〉 , (7)

and

{F,H }2(g, L) = 〈D1F,Ld2H 〉 − 〈D1H,Ld2F 〉

+ 2
〈
Ld2F, (Ld2H)u(n)

〉− 1

2

〈
D′1F, g−1(D1H)g

〉
, (8)

where the derivatives are taken at (g, L) and (3) is applied. The Hamiltonians Hk
satisfy

{F,Hk}2 = {F,Hk+1}1, ∀F ∈ C∞(M), (9)

and {Hk,H�}1 = {Hk,H�}2 =0 for every k, � ∈ N. The bi-Hamiltonian flow
of the systems (M, { , }2,Hk) and (M, { , }1,Hk+1) is given by (g(t), L(t)) =(
exp(itL(0)k)g(0), L(0)

)
.

The first Poisson bracket is the canonical one carried by the cotangent bundle of
U(n), while the second one arises from the Heisenberg double [12] of the Poisson–
Lie group U(n). The latter point is explained in [4], where it is also noted that the
Lie derivative of the Poisson tensor of { , }2 along the infinitesimal generator of the
flow (g(t), L(t)) = (g(0), L(0) + t1n) is the Poisson tensor of { , }1. This implies
[13] compatibility, and the rest of the statements is readily checked as well.

The fact that the flow generated by the Hamiltonian H1 on the Heisenberg
double of U(n) projects to free motion on U(n) was pointed out long time ago by
S. Zakrzewski [14], which served as one of the motivations behind Theorem 1.
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The ‘conjugation action’ of U(n) on M associates with every η ∈ U(n) the
diffeomorphismAη of M that operates according to

Aη(g,L) := (ηgη−1, ηLη−1). (10)

A key property of the Poisson brackets on M is that they can be restricted to the set
of invariant functions with respect to this action, denoted C∞(M)U(n). This means
that if F,H ∈ C∞(M)U(n), then the same holds for their Poisson brackets {F,H }i
for i = 1, 2. Because the HamiltoniansHk are also invariant, we can restrict the ‘free
hierarchy’ to U(n)-invariant observables. This procedure, called Poisson reduction
[10], is an algebraic formulation of projection onto the quotient space M/U(n).

Any smooth function on M can be recovered from its restriction to the dense
open submanifold Mreg ⊂ M, which contains the points (g, L) with g having
distinct eigenvalues. Moreover, F ∈ C∞(Mreg)

U(n) is uniquely determined by its
restriction f on the manifold Tnreg ×H(n), where Tnreg is the set of regular elements
in the standard maximal torus of U(n). In fact, restriction engenders a one-to-one
correspondence

C∞(Mreg)
U(n)←→ C∞(Tnreg × H(n))N (n), (11)

where N (n) is the normalizer of Tn in U(n), whose action preserves Tnreg × H(n).
Note that N (n) is the semi-direct product of the permutation group Sn, naturally
embedded into U(n), with Tn. By taking advantage of the correspondence (11),
one can encode the Poisson brackets on C∞(Mreg)

U(n) by two compatible Poisson
brackets { , }red

i on C∞(Tnreg × H(n))N (n). The main result of [4] is the formula of
these reduced Poisson brackets.

For f ∈ C∞(Tnreg×H(n)), the b(n)0-valued derivativeD1f and the u(n)-valued
derivative d2f are defined by the equality

〈D1f (Q,L),X〉 + 〈d2f (Q,L), Y 〉 = d

dt

∣∣∣∣
t=0
f (etXQ,L+ tY ), (12)

for everyX ∈ u(n)0 and Y ∈ H(n), where b(n)0 and u(n)0 denote the subalgebras of
diagonal matrices in b(n) and u(n), respectively. Decompose gl(n,C) as the vector
space direct sum of subalgebras

gl(n,C) = gl(n,C)+ + gl(n,C)0 + gl(n,C)−, (13)

defined by means of the principal gradation. Accordingly, we can decompose any
X ∈ gl(n,C) as X = X+ + X0 + X−, where X0 is diagonal and X+ is strictly
upper-triangular. Then, forQ ∈ Tnreg, introduce R(Q) ∈ End(gl(n,C)) by setting it
equal to zero on gl(n,C)0 and defining it otherwise as

R(Q)|gl(n,C)++gl(n,C)− :=
1

2
(AdQ + id) ◦

(
(AdQ − id)|gl(n,C)++gl(n,C)−

)−1
,

(14)
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where AdQ(X) = QXQ−1 for all X ∈ gl(n,C). The definition makes sense
because of the regularity of Q. Note that 〈R(Q)X, Y 〉 = −〈X,R(Q)Y 〉, and
introduce the notation

[X,Y ]R(Q) := [R(Q)X, Y ] + [X,R(Q)Y ], ∀X,Y ∈ gl(n,C). (15)

Theorem 2 ([4]) For f, h ∈ C∞(Tnreg × H(n))N (n), the reduced Poisson brackets
have the form

{f, h}red
1 (Q,L) = 〈D1f, d2h〉 − 〈D1h, d2f 〉 + 〈L, [d2f, d2h]R(Q)〉, (16)

and

{f, h}red
2 (Q,L) = 〈D1f,Ld2h〉−〈D1h,Ld2f 〉+2〈Ld2f,R(Q)(Ld2h)〉, (17)

where the derivatives are evaluated at (Q,L), and the notations (14) and 15) are
applied.

The reduced system that descends from the free hierarchy generated the Hamilto-
nians Hk (6) is called spin Ruijsenaars–Sutherland hierarchy. The reason for this
terminology will become clear in the next section. For the reduced equations of
motion and remarks on their integrability, see [4].

3 Useful Changes of Variables

In the first subsection we introduce new variables that behave as canonically
conjugate pairs and ‘spin variables’ with respect to the second Poisson bracket, and
allow us to interpret tr(L) as a spin Ruijsenaars Hamiltonian. These new variables
go back to the papers [3, 4]. In the second subsection we describe another, in
this case well-known [5, 7], set of new variables, which convert the first Poisson
bracket into that of canonical pairs and (other kind of) spin variables, and lead to the
interpretation of tr(L2) as a spin Sutherland Hamiltonian.

3.1 Interpretation as Spin Ruijsenaars Model

We now discuss the change of variables that the underlie the interpretation of the
reduced free system as a spin Ruijsenaars model. For this purpose, we focus on the
second Poisson bracket (17), and restrict ourselves to the open submanifold

T
n
reg ×P(n) ⊂ T

n
reg × H(n), (18)
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where P(n) denotes the set of positive definite Hermitian matrices. It is a standard
fact of linear algebra that any L ∈ P(n) can be uniquely written in the form

L = bb† with b ∈ B(n), (19)

and b ∈ B(n) can be decomposed as

b = epb+ with p ∈ b(n)0, b+ ∈ B(n)+, (20)

where B(n)+ is the group of upper triangular matrices with unit diagonal. We define

λ := b−1+ Q−1b+Q, (21)

and obtain the change of variables

T
n
reg ×P(n) � (Q,L)←→ (Q,p, λ) ∈ T

n
reg × b(n)0 × B(n)+. (22)

A grade by grade inspection of the defining relation (21) shows that this is
a diffeomorphism between the respective spaces. Thus every function f (Q,L)
corresponds to a unique function F(Q,p, λ). The diffeomorphism (22) induces an
action of N (n) on Tnreg × b(n)0 × B(n)+, and we are interested in the invariant
functions. The action of the subgroup Tn < N (n) is especially simple, it is given
by

(Q,p, λ) 	→ (Q,p, τλτ−1), ∀τ ∈ T
n, (23)

since this corresponds to (Q,L) 	→ (Q, τLτ−1).
For any F ∈ C∞(Tnreg × b(n)0 × B(n)+), we define the derivatives DQF ∈

b(n)0, dpF = u(n)0 and DλF , D′λF ∈ u(n)⊥ by

d

dt

∣∣∣∣
t=0

F(etX0Q,p + tY0, e
tX+λetY+)

= 〈DQF ,X0〉 + 〈dpF , Y0〉 + 〈DλF ,X+〉 + 〈D′λF , Y+〉. (24)

Here, X0 ∈ u(n)0, Y0 ∈ b(n)0 and X+, Y+ ∈ b(n)+ are arbitrary, the argument
(Q,p, λ) is suppressed on the right hand side, and u(n)⊥ denotes the off-diagonal
linear subspace of u(n).

The next proposition was stated previously without elaborating its proof.



On the bi-Hamiltonian Structure of the Trigonometric Spin Ruijsenaars–. . . 81

Proposition 3 ([4]) Consider the functionsF ,H ∈ C∞(Tnreg×b(n)0×B(n)+)N (n)

that are related to f, h ∈ C∞(Tnreg ×P(n))N (n) according to

F(Q,p, λ) = f (Q,L), H(Q,p, λ) = h(Q,L) with

L = epb+b†
+ep, λ := b−1+ Q−1b+Q. (25)

In terms of the variables (Q,p, λ), the second Poisson bracket (17) takes the form

2{F ,H}red
2 (Q,p, λ) = 〈DQF , dpH〉 − 〈DQH, dpF〉 + 〈D′λF , λ−1(DλH)λ〉,

(26)

where the derivatives are evaluated at (Q,p, λ).

Proof Recall that (Q,L), (Q, b) and (Q,p, λ) are alternative sets of variables. In
particular, we have the invertible correspondences:

(Q,L)↔ (Q, b)↔ (Q,p, λ) with L = bb†, ep := bdiag, λ := b−1Q−1bQ.

(27)

Here, we suppressed that λ does not depend on p. Any tangent vector at a fixed
(Q, b) can be represented as the velocity vector at t = 0 of a curve of the form

(Q(t), b(t)) = (etξQ, betβ), with some ξ ∈ u(n)0, β = (β0 + β+) ∈ b(n).
(28)

In terms of the alternative variables, the corresponding curves are easily seen to
satisfy

L(t) = L+ tb(β + β†)b† + o(t),

λ(t) = λ exp
(
t
[
ξ −Q−1b−1ξbQ+Q−1βQ− λ−1βλ

]+ o(t)
)
,

p(t) = p + tβ0 + o(t).

(29)

Of course, the curve that appears in the exponent after λ lies in b(n)+. Let us now
consider a function on our space, which is either expressed as (Q,L) 	→ f (Q,L),
or equivalently as (Q,p, λ) 	→ F(Q,p, λ). By the definition of derivatives, we
obtain the equality

d

dt

∣∣∣∣
t=0
f
(
Qetξ , L+ tb(β + β†)b† + o(t)

)

= d

dt

∣∣∣∣
t=0

F
(
Qetξ , p+ tβ0, λ exp(t[ξ −Q−1b−1ξbQ+Q−1βQ−λ−1βλ]+o(t))

)
.

(30)
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This generates the following relations between the derivatives of f and F :

〈2b†d2f b − dpF −QD′λFQ−1 + (λD′λFλ−1)u(n) , β〉
+ 〈D1f −DQF −D′λF + bQD′λFQ−1b−1 , ξ〉 = 0, ∀ξ ∈ u(n)0, ∀β ∈ b(n).

(31)

The derivatives of f and F are taken at (Q,L) and at (Q,p, λ), respectively,
according to (12) and (24). We have 〈D′λF , ξ〉 = 0, and the conventions
D′λF , DλF ∈ u(n)⊥ imply

(λD′λFλ−1)u(n) = DλF + (λD′λFλ−1)im−diag. (32)

The matrix Xim−diag is obtained from the matrix X by setting to zero the off-
diagonal entries and the real parts of the diagonal entries of X, and (3) is used.

From the first term in (31) (the one involving arbitrary β), we must have

A := 2b†d2f b − dpF −QD′λFQ−1 + (λD′λFλ−1)u(n) ∈ b(n). (33)

But the formula of A shows that A ∈ u(n), and thence A = 0. It is convenient to
rewrite

2b†d2f b = QD′λFQ−1 − λD′λFλ−1 + [dpF + λD′λFλ−1 − (λD′λFλ−1)u(n)
]
,

(34)

and, conjugating by b and using bλ = Q−1bQ, we get

2Ld2f = bQD′λFQ−1b−1 − bλD′λFλ−1b−1

+ Adb[dpF + AdλD
′
λF − (λD′λFλ−1)u(n)]

= (AdQ − id)AdQ−1bQD
′
λF + Adb[dpF + AdλD

′
λF − (λD′λFλ−1)u(n)],

(35)

from which it is easy to obtain

2R(Q)(Ld2f ) = 1

2
(AdQ + id)AdQ−1bQD

′
λF − (bQD′λFQ−1b−1)diag

+R(Q)
(
Adb[dpF + AdλD′λF − (λD′λFλ−1)u(n]

)
. (36)

Of course, we could have written everywhere AdλD′λF − (λD′λFλ−1)u(n) ≡
(AdλD′λF)b(n). Note also that Adm denotes conjugation by m for any m ∈
GL(n,C).
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A glance at the last equation (36) shows that the expression in the second line
belongs to b(n)+, and this is crucial for the computation of 〈Ld2f,R(Q)(Ld2h)〉
(cf. (17)):

4〈Ld2f , R(Q)(Ld2h)〉 =
〈(AdQ − id)AdQ−1bQD

′
λF + Adb[dpF + AdλD

′
λF − (λD′λFλ−1)u(n)] ,

− (AdbQD′λH)diag + 1
2 (AdQ + id)AdQ−1bQD

′
λH

+R(Q)
(
Adb[dpH+ AdλD′λH− (λD′λHλ−1)u(n)]

)〉
= 1

2 〈AdbQD′λF , AdQ−1bQD
′
λH〉 + 1

2 〈dpF + AdλD′λF − (λD′λFλ−1)u(n) ,

AdQD′λH+ AdλD′λH − 2(AdbQD′λH)diag〉 − (F ↔ H)

= 1
2 〈AdQD′λF ,AdλD′λH〉 + 1

2 〈dpF ,AdλD′λH− 2bQD′λHQ−1b−1〉
+ 1

2 〈AdλD′λF ,AdQD′λH〉 + 〈(λD′λFλ−1)u(n) − AdλD′λF , (AdbQD′λH)diag〉
− 1

2 〈(λD′λFλ−1)u(n),AdλD′λH〉 − (F ↔ H). (37)

Notice that the terms at the beginning of the first two lines after the last equality sign
add up to

1
2 〈AdQD′λF ,AdλD′λH〉 + 1

2 〈AdλD′λF , AdQD′λH〉, (38)

and this is symmetric with respect to exchange of F and H; thereby it cancels.
Notice also that the second expression in the second line simplifies as follows:

〈(λD′λFλ−1)u(n) − AdλD′λF , (AdbQD′λH)diag〉
= 〈(λD′λFλ−1)u(n) − AdλD′λF , (AdbQD′λH)im−diag〉
= −〈AdλD′λF , (AdbQD′λH)im−diag〉,

(39)

which will be shortly shown to vanish. To summarize, we obtained

4〈Ld2f , R(Q)(Ld2h)〉 = − 1
2 〈AdλD′λF , dpH + 2(AdbQD′λH)im−diag〉

− 〈dpF ,AdbQD′λH〉 − 1
2 〈(λD′λFλ−1)u(n),AdλD′λH〉 − (F ↔ H). (40)

Next, we may look at the other terms, and return to the ξ -term of (31). This gives

D1f = DQF − (AdbQD′λF)real−diag, (41)
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which, together with (35)—discarding the term in the range of (AdQ − id) as this
is in the annihilator of b(n)0 – gives us

2〈D1f , Ld2h〉
= 〈DQF − (AdbQD

′
λF)real−diag , Adb[dpH + AdλD

′
λH− (λD′λHλ−1)u(n)]〉

= 〈DQF − (AdbQD′λF)real−diag , dpH〉 = 〈DQF − AdbQD′λF , dpH〉. (42)

Putting together now (40) and (42), the second term at the very end of (42) cancels,
and we arrive at

2{f, h}red
2 (Q,L) = 2〈D1f,Ld2h〉 − 2〈Ld2f,D1h〉 + 4〈Ld2f,R(Q)(Ld2h)〉

= 〈DQF , dpH〉 + 1
2 〈AdλD′λF , (λD′λHλ−1)u(n)〉
− 1

2 〈AdλD′λF , ηH〉 − (F ↔ H), (43)

where u(n)0 � ηH := dpH + 2(AdbQD′λH)im−diag represents the diagonal-
imaginary entities from the previous formulae. As explained below, for invariant
functions F and H, the term containing ηH vanishes, and we also have

〈AdλD′λF , (λD′λHλ−1)u(n)〉
= 〈AdλD′λF ,DλH+ (λD′λHλ−1)im−diag〉 = 〈AdλD′λF ,DλH〉, (44)

where we used (32) and the property (45).
By the above, the claim of the proposition follows from (43) if we can verify

that for any F ∈ C∞(Tnreg × b(n)0 × B(n)+)T
n

we have

〈X,λD′λFλ−1〉 = 0, ∀X ∈ u(n)0. (45)

In order to justify this, we remark that

〈X,λD′λFλ−1〉 = 〈λ−1Xλ−X,D′λF 〉. (46)

Since λ−1Xλ −X ∈ b(n)+, we may rewrite this as

〈X,λD′λFλ−1〉 = d

dt

∣∣∣∣
t=0

F
(
Q,p, λ exp(t[λ−1Xλ− X]))

= d

dt

∣∣∣∣
t=0

F
(
Q,p, etXλe−tX

)
. (47)

In the last step we used that d
dt

∣∣
t=0 λ exp(t[λ−1Xλ−X]) = [X,λ]. We see from (47)

that (45) follows from the Tn-invariance of F , and hence the proof is complete. ��
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Regarding the interpretation of Proposition 3, it is worth pointing out that one
may view the restriction to N (n)-invariant functions on Tnreg × b(n)0 × B(n)+ as
the result of a two step process. The first step consists in Hamiltonian reduction
of Tnreg × b(n)0 × B(n) by the normal subgroup Tn. The formula (26) defines a
Poisson bracket already on the Tn-invariant functions. In fact, its last term can be
identified as the result of reduction of the multiplicative Poisson bracket on B(n)
by the conjugation action of Tn, at the zero value of the pertinent moment map. In
other words, the last term of (26) corresponds to the Poisson space B(n)//0T

n. (Cf.
Theorem 4.3 in [3].) The second step consists in taking quotient by Sn = N (n)/Tn.

When expressed in the variables (Q,p, λ), the Hamiltonian tr(L) = tr(bb†) =
tr(e2pb+b†

+) can be written as

tr(L) =
n∑

i=1

e2piVi(Q, λ) with Vi(Q, λ) =
(
b+(Q, λ)b+(Q, λ)†

)

ii
, (48)

where λ is a ‘spin’ variable, and b+(Q, λ) denotes the solution of the equation (21)
for b+. An explicit formula of b+(Q, λ) can be extracted from Section 5.2 in [3].
Comparison of (48) with the light-cone Hamiltonians of the standard RS model [11]
justifies calling this a spin Ruijsenaars type Hamiltonian. A further justification is
that restriction of the system to a one-point symplectic leaf in B(n)//0T

n yields the
spinless trigonometric RS model [6].

3.2 Interpretation as Spin Sutherland Model

Concentrating on the first Poisson bracket (16), we present another set of useful
variables

(Q,p, φ) ∈ T
n
reg × H(n)0 ×H(n)⊥, (49)

where the subscripts 0 and ⊥ refer to diagonal matrices and off-diagonal matrices,
respectively. The relevant change of variables is encoded by the diffeomorphism

γ : Tnreg × H(n)0 × H(n)⊥ → T
n
reg ×H(n) (50)

operating according to

γ : (Q,p, φ) 	→ (Q,L(Q,p, φ)) with L(Q,p, φ) = p − (R(Q)+ 1

2
id)(φ).

(51)
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We now express the functions f, h ∈ C∞(Tnreg ×H(n))N (n) in the form

f ◦ γ = F , h ◦ γ = H, F ,H ∈ C∞(Tnreg ×H(n)0 × H(n)⊥)N (n), (52)

where N (n) acts in the natural manner inherited from the conjugation action. The
Poisson bracket { , }red

1 onC∞(Tnreg×H(n)0×H(n)⊥)N (n) is defined by the formula

{F ,H}red
1 ≡ {F ◦ γ−1,H ◦ γ−1}red

1 ◦ γ, (53)

where (51) is used and the right-hand side refers to the Poisson bracket (16).
For any F ∈ C∞(Tnreg × H(n)0 × H(n)⊥), we have the derivatives

DQF(Q,p, φ) ∈ b(n)0, dpF(Q,p, φ) ∈ u(n)0, dφF(Q,p, φ) ∈ u(n)⊥,
(54)

defined by

〈DQF(Q,p, φ),X〉 + 〈dpF(Q,p, φ), Y0〉 + 〈dφF(Q,p, φ), Y⊥〉

= d

dt

∣∣∣∣
t=0

F(etXQ,p + tY0, φ + tY⊥), (55)

for every X ∈ u(n)0 and Y = (Y0 + Y⊥) ∈ H(n).

Proposition 4 ([5, 7]) In terms of the variables (Q,p, φ) defined by (51), the
reduced first Poisson bracket (16) has the following form:

{F ,H}red
1 (Q,p, φ) = 〈DQF , dpH〉 − 〈DQH, dpF〉 + 〈φ, [dφF , dφH]〉. (56)

Here, F ,H ∈ C∞(Tnreg × H(n)0 × H(n)⊥)N (n) and the derivatives are taken at
(Q,p, φ).

The change of variables (Q,L)↔ (Q,p, φ) appeared in the construction of spin
Sutherland models via the method of Li and Xu [7], whose relation to Hamiltonian
reduction of free motion on Lie groups was clarified in [5]. The proof of Proposition
4 can be extracted from these references. One can also prove it by direct calculation,
which is much simpler than the one required for the proof of Proposition 3.

The reduced Hamiltonians Hred
k arising from those in (6) can be written in terms

of the variables (Q,p, φ) as

Hred
k (Q, p, φ) =

1

k
tr(L(Q,p, φ)k). (57)
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For k = 2, withQ = exp (diag(iq1, . . . , iqn)), and p = diag(p1, . . . , pn) this gives

Hred
2 (Q,p, φ) =

1

2

n∑

i=1

p2
i +

1

8

∑

j �=l

|φjl|2
sin2 qj−ql

2

, (58)

which is a standard spin Sutherland Hamiltonian. The last term in the Poisson
bracket (56) represents the Poisson space u(n)∗//0T

n, and only gauge invariant
functions of the spin variable φ appear in the model.
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Hermitian–Einstein Metrics from
Non-commutative U(1) Solutions

Kentaro Hara

Abstract We show that Hermitian–Einstein metrics can be locally constructed by
a map from (anti-)self-dual two-forms on Euclidean R4 to symmetric two-tensors
introduced in “Gravitational instantons from gauge theory” Yang and Salizzoni
(Phys Rev Lett 201602, 2006 [hep-th/0512215]). This correspondence is valid not
only for a commutative space but also for a noncommutative space. We choose
U (1) instantons on a noncommutativeC2 as the self-dual two-form, from which we
derive a family of Hermitian–Einstein metrics. We also discuss the condition when
the two-forms are not instantons but they are solutions to the Yang–Mills equations.

Keywords Noncommutative geometry · Gauge field theory

Mathematics Subject Classification (2010) Primary 53Z05; Secondary 83C05

1 Background: Gravity and Gauge Theory

The coordinate transformation on the coordinate neighborhood is

z1 := x2 + ix1, z2 := x4 + ix3.

1.1 Gravity/Einstein Manifold

Definition 1 Assume that (M, g) is a (semi)Riemannian manifold, Rμν is Ricci
curvature and R is Scalar curvature.If

Rμν (x)+ 1

2
R (x) gμν (x) = 0
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then (M, g) is called Einstein manifold.

Fact 2 If M = C2 and g is a Hermitian metric then Ricci curvature tensor with a
Hermitian connection is calculated as follows:

Rj̄k (x) = ∂j̄ ∂k log (det [g (x)]) . (1)

1.2 Electromagnetism (Gauge Theory)

Altn (R) is defined as the set of 4× 4 alternative matrices.

Altn (R) :=
{
F ∈ Mn (R) | FT = −F

}

.

Definition 3 An automorphism ∗ : Alt4 (R) −→ Alt4 (R) is defined as

∗

⎡

⎢⎢⎣

⎛

⎜⎜⎝

0 F̂12 F̂13 F̂14

−F̂12 0 F̂23 F̂24

−F̂13 −F̂23 0 F̂34

−F̂14 −F̂24 −F̂34 0

⎞

⎟⎟⎠

⎤

⎥⎥⎦ :=

⎛

⎜⎜⎝

0 F̂34 −F̂24 F̂23

−F̂34 0 F̂14 −F̂13

F̂24 −F̂14 0 F̂12

−F̂23 F̂13 −F̂12 0

⎞

⎟⎟⎠ .

Assume that F̂ (x) is a Alt4-valued function on R4 and define the 2-form on R4

as

F̂ (x) :=

⎛
⎜⎜⎝

0 F̂12 (x) F̂13 (x) F̂14 (x)

−F̂12 (x) 0 F̂23 (x) F̂24 (x)

−F̂13 (x) −F̂23 (x) 0 F̂34 (x)

−F̂14 (x) −F̂24 (x) −F̂34 (x) 0

⎞
⎟⎟⎠

F̂ (x)μν dxμ ∧ dxν,
(
∗F̂ (x)

)

μν
dxμ ∧ dxν

(using the Einstein summation convention).This F̂ (x) is assumed to be an electro-
magnetic tensor in electromagnetism. If

∗F̂ (x) = −F̂ (x)

then F̂ (x) is called instanton. This name means that it is the solution of a differential
equation. An instanton is a solution of a differential equation named Yang–Mills
equation as follows.
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Fact 4 If F̂ (x) is a instanton and F̂μν (x) dxμ ∧ dxν is closed then F̂ (x) is a
solution of Yang–Mills equation which means

∗F̂ (x) = −F̂ (x) , d
(
F̂μν (x) dxμ ∧ dxν

)
= 0 �⇒ d

((
∗F̂ (x)

)

μν
dxμ ∧ dxν

)
= 0.

It is well known that the Bianchi identity leads to Gauss’s law for magnetic fields
and Faraday’s law of induction, and the Yang–Mills equation leads to Gauss’s law
and Ampere’s law for electric fields.

2 Previous Research

With the result of [4] F (x) and g
(
F̂ (x)

)
are defined as

g
(
F̂ (x)

)
:= 2

(
E4 − F̂ (x) θ

)−1 − E4. (2)

and

F̂μν (x) =
(

1

1+ F (x) θ F (x)
)

μν

where E4 is the 4× 4 unit matrix and

θ :=

⎛

⎜⎜⎝

0 −η 0 0
η 0 0 0
0 0 0 −η
0 0 η 0

⎞

⎟⎟⎠ (3)

in [3]. It is shown that g
(
F̂ (x)

)
is the Eguchi Hanson metric if F is the solution

which satisfies the Bianchi identity and F̂ is a self-dual solution. This metric
is an example of the well-known Kähler–Einstein metric. It has been known

that g
(
F̂ (x)

)
is a Kähler metric when F satisfies the Bianchi identity, and we

generalize this result in [1]. We have shown that g
(
F̂ (x)

)
is Hermitian–Einstein

metric when F̂ is self-dual in [1].

Lemma 5 Assume that F̂− ∈ Alt4 (R) is an alternative matrix, θ is defined as (3)

and the symmetric matrix g
(
F̂ (x)

)
∈ M4R is defined as (2). If ∗F̂− (x) =

−F̂− (x) then

det
[
g
(
F̂− (x)

)]
= 1.
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Theorem 6 As a result if ∗F̂− (x) = −F̂− (x) then

Rj̄k

(
F̂− (x)

)
= 0

In other words, it means that g
(
F̂− (x)

)
is a Hermitian–Einstein metric.

As an example of self-dual F̂ , instanton solutions are well known, and instanton
solutions on noncommutative manifolds are calculated in [2]. The Hermitian–
Einstein metric corresponding to this instanton solution is calculated in [1].

3 Instantons from Ricci-Flat Metrics (Main Result)

Next, we will think of a converse of the last Theorem. That means “Is the F̂
instanton if the metric is Ricci flat?”.

First g
(
F̂ (x)

)
needs to be a metric. Since the metric matrix is a symmetric

matrix, therefore g
(
F̂ (x)

)
should be a symmetric matrix, in which case a condition

that is “fairly close” to an anti-self-dual condition is derived.
Then we consider “asymptotic to zero”. In conclusion, imposing a Ricci flat

condition on the metric when F̂ (x) satisfies this condition leads to F̂ (x) being
anti-self-dual.

Remark 7 In the last section F̂ was an instanton but this is not assumed in this
section. Since F̂ is an alternative matrix but not assumed to be an instanton now, F̂
is as follows.

F̂ (x) =

⎛

⎜⎜⎝

0 F̂12 (x) F̂13 (x) F̂14 (x)

−F̂12 (x) 0 F̂23 (x) F̂24 (x)

−F̂13 (x) −F̂23 (x) 0 F̂34 (x)

−F̂14 (x) −F̂24 (x) −F̂34 (x) 0

⎞

⎟⎟⎠ .

An anti-self-dual matrix θ is defined as (3) where η is a real number.

Definition 8 LetE4 be the 4×4 unit matrix and F̂ (x) be a 4×4 alternating matrix

valued function. Assume that det
[
E4 − F̂ (x) θ

]
�= 0, then 4× 4 matrix g

(
F̂ (x)

)

is defined as

g
(
F̂ (x)

)
:= 2

(
E4 − F̂ (x) θ

)−1 − E4. (4)

g
(
F̂ (x)

)
should be a symmetric matrix because we assume g

(
F̂ (x)

)
is a metric.
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Lemma 9 Assume that g
(
F̂ (x)

)
is a symmetric matrix. If g

(
F̂ (x)

)
=

2
(
E4 − F̂ (x) θ

)−1 − E4 then,

F̂ (x) =

⎛

⎜⎜⎝

0 F̂12 (x) F̂13 (x) F̂14 (x)

−F̂12 (x) 0 F̂14 (x) −F̂13 (x)

−F̂13 (x) −F̂14 (x) 0 F̂34 (x)

−F̂14 (x) F̂13 (x) −F̂34 (x) 0

⎞

⎟⎟⎠ . (5)

This lemma is proved by a direct calculation. This means that if F̂12 (x)+ F̂34 (x) =
0 then F̂ is an anti-self-dual matrix.

Now that the sufficient condition is “Ricci flat”, it is necessary to know how the
Ricci curvature is calculated by the gauge field. Before that,F̂C (x) is defined for
convenience.

F̂C (x) :=
(
F̂11̄ (x) F̂12̄ (x)

F̂21̄ (x) F̂22̄ (x)

)

= −1

2

(
iF̂12 (x) −F̂13 (x)+ iF̂14 (x)

F̂13 (x)+ iF̂14 (x) iF̂34 (x)

)
.

Then determinant of the metric matrix g
(
F̂ (x)

)
is calculated by the gauge field as

below.

Proposition 10 It is convenient to know det
[
g
(
F̂ (x)

)]
for calculating the Ricci

curvature because of (1). Suppose that the Hermitian matrix g
(
F̂ (x)

)
satisfies (4)

and (5).

det
[
g
(
F̂ (x)

)]
= 1+ 8iηTr

[
F̂C (x)

]
− 32η2

(
Tr
[
F̂C (x)

])2 +O
(
η3
)

As is well known, the Ricci curvature is calculated from the determinant of the
metric matrix.

Lemma 11 Suppose that the Hermitian matrix g
(
F̂ (x)

)
satisfies (4) and (5). Then

its Ricci curvature(1) is

Rj̄k

(
F̂ (x)

)
= η∂j̄ ∂k

(
F̂12 (x)+ F̂34 (x)

)
+O

(
η2
)
.
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Proof

Rj̄k (x) = ∂j̄ ∂k
[
log
{

det
[
g
(
F̂ (x)

)]}]

= 2iη∂j̄ ∂k Tr
[
F̂C (x)

]
− 8η2∂j̄ ∂k

(
Tr
[
F̂C (x)

])2

− 16η2 Tr
[
F̂C (x)

]
∂j̄ ∂k Tr

[
F̂C (x)

]
+ 16η2

(
∂j̄ Tr

[
F̂C (x)

]) (
∂k Tr

[
F̂C (x)

])

− 32iη2 Tr
[
F̂C (x)

]
∂j̄ ∂k Tr

[
F̂C (x)

]
+O

(
η3
)

��
In physics, “the field is almost zero at a far enough distance” is a natural setting.

Definition 12 (Asymptotic to Zero) “f (z1, z2) is asymptotically zero” is defined
as

lim
|z1|2+|z2|2→∞

f (z1, z2) = 0.

The following “Maximum principle” is a famous theorem in Harmonic analysis.

Fact 13 (Maximum Principle) If a function f : C2 −→ C satisfies the following
condition,

�f (z1, z2) = ∂1̄∂1f (z1, z2)+ ∂2̄∂2f (z1, z2) = 0

f is called a harmonic function. Harmonic functions satisfy the following maximum
principle: if K is a nonempty compact subset of U , then f restricted to K attains
its maximum and minimum on the boundary of K . If U is connected, this means
that f cannot have local maxima or minima, other than the exceptional case where
f is constant.

This fact leads to the following corollary.

Corollary 14 Assume that f ∈ C∞ (C2,R
)
.If f (z1, z2) is asymptotically zero and

∂j̄ ∂kf (z1, z2) = 0

for any j and k then

f (z1, z2) = 0

Proof This f is a harmonic function on C
2 because

�f (z1, z2) = ∂1̄∂1f (z1, z2)+ ∂2̄∂2f (z1, z2) = 0.
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And f is asymptotically zero hence

f (z1, z2) = 0.

��
Remark 15 Symmetry of g

(
F̂ (x)

)
means

F̂ (x) =

⎛
⎜⎜⎝

0 F̂12 (x) F̂13 (x) F̂14 (x)

−F̂12 (x) 0 F̂14 (x) −F̂13 (x)

−F̂13 (x) −F̂14 (x) 0 F̂34 (x)

−F̂14 (x) F̂13 (x) −F̂34 (x) 0

⎞
⎟⎟⎠

and F̂ij (x) is asymptotically zero and ∂j̄ ∂k
(
F̂12 (x)+ F̂34 (x)

)
= 0 means

F̂12 (x) = −F̂34 (x) .

Theorem 16 (Main Theorem) If F̂ij (x) is asymptotically zero and Rj̄k (x) ≡ 0

(mod η2) then F̂ is an anti-self-dual matrix.That means

Rj̄k

(
F̂ (x)

)
≡ 0 (mod η2), lim

|z1|2+|z2|2→∞
F̂ = 0

�⇒ ∗F̂− (x) = −F̂− (x)

Proof If

Rj̄k (x) ≡ 0 (mod η2)

then it means

∂j̄ ∂k

(
F̂12 (x)+ F̂34 (x)

)
= 0

and F̂ij (x) is asymptotically zero hence

∗F̂− (x) = −F̂− (x) .

��
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2-Hom-Associative Bialgebras and
Hom-Left Symmetric Dialgebras

Mahouton Norbert Hounkonnou and Gbêvèwou Damien Houndédji

Abstract From the definition and properties of unital hom-associative algebras,
and the use of the Kaplansky’s construction, we develop algebraic structures called
2-hom-associative bialgebras, 2-hom-bialgebras, and 2-2-hom-bialgebras. Besides,
we define and characterize the hom-associative dialgebras, hom-Leibniz algebra and
hom-left symmetric dialgebras, and discuss their main relevant properties. Explicit
examples are given to illustrate the developed formalism.

Keywords 2-hom-associative bialgebra · 2-hom-bialgebra · 2-2-hom-bialgebra ·
Hom-left symmetric dialgebra · Hom-Leibniz algebra
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1 Introduction

A theory of 2-associative algebras was developed by J-L. Loday and M. Ronco in
[8], where the operad of 2-associative algebras was also introduced as a Koszul
operad. The notion of infinitesimal bialgebra was given for the first time by S.
Joni and G.-C. Rota in [6]. The basic theory was developed by M. Aguiar in [1]
and in [2]. J-L. Loday in [7] also performed a non-antisymmetric version of Lie
algebras, called Leibniz algebras, whose the bracket satisfies the Leibniz relation.
The Leibniz rule, combined with the antisymmetry property, leads to the Jacobi
identity. Therefore, the Lie algebras are anti-symmetric Leibniz algebras. In the
same work, Loday formulated an associative version of Leibniz algebras, called
diassociative algebras, equipped with two bilinear and associative operations, which
satisfy three axioms, all of them being various forms of the associative law. Recently
[5], R. Felipe built the left-symmetric dialgebras which include, as a particular case,
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the notion of dialgebras.This gave a new impulse to the construction of Leibniz
algebras.

The hom-algebra structures first arose in quasi-deformations of Lie algebras
of vector fields. Discrete modifications of vector fields, via twisted derivations,
provide hom-Lie and quasi-hom-Lie structures, in which the Jacobi condition is
twisted. Other interesting hom-type algebras of classical structures were studied.
They include hom-associative algebras, hom-Lie admissible algebras[11], and,
more generally, G-hom-associative algebras [10], enveloping algebras of hom-
Lie algebras[12], hom-Lie admissible hom-coalgebras and hom-Hopf algebras [9],
hom-alternative algebras, hom-Malcev algebras and hom-Jordan algebras [14], L-
modules, L-comodules and hom-Lie quasi-bialgebras [3], and Laplacian of hom-Lie
quasi-bialgebras [4].

In this paper, we devise a hom-type generalization of 2-associative algebras,
2-bialgebras, 2-associative bialgebras, 2-2-bialgebras and left symmetric dial-
gebras, leading to the concepts of hom-bialgebras, 2-hom-associative algebras,
2-hom-bialgebras, 2-hom- associative bialgebras, 2-2-hom-bialgebras and hom-left
symmetric dialgebras, respectively. The hom-type algebras are usually defined by
twisting the defining axioms of a type of algebras by a certain twisting map. When
the twisting map happens to be the identity map, we get an ordinary algebraic
structure. A hom-counital condition can be given as follows:

(ε ⊗ α)�(x) = (α ⊗ ε)�(x) = α2(x), ∀x ∈ V.

This leads to new definitions of counital hom-coassociative coalgebra and unital
hom-bialgebra structures. A unital infinitesimal hom-bialgebra condition can be
formulated by the relation:

� ◦ μ = (μ⊗ α) ◦ (α ⊗�)+ (α ⊗ μ) ◦ (�⊗ α)− α2 ⊗ α.

This unital infinitesimal twisted condition permits to define the unital infinitesimal
hom-bialgebra structure. Then, we deal with the concepts of 2-hom-associative
bialgebras, 2-hom-bialgebras and 2-2-hom bialgebras. Besides, we provide a hom-
algebra version of Kaplansky’s construction of hom-bialgebras in order to build
unital analogs of 2-hom-associative bialgebras, 2-hom-bialgebras and 2-2-hom-
bialgebras. Finally, we define the notion of hom-left symmetric dialgebras gener-
alizing the classical left symmetric dialgebras, and discuss their relevant properties.

The paper is organized as follows. In Sect. 2, we give the definitions of
hom-bialgebra, 2-hom-associative algebra, 2-hom-associative bialgebra, 2-hom-
bialgebra, 2-2-hom-bialgebra, and derive their main properties. In Sect. 3, we
provide a hom-algebra version of Kaplansky’s constructions of hom-bialgebras
from a unital hom-associative algebra. We show that these constructions induce
a large class of 2-hom-bialgebras, 2-hom-associative bialgebras, and 2-2-hom-
bialgebras. In Sect. 4, we define and characterize the hom-associative dialgebras,
hom-Leibniz algebra and hom-left symmetric dialgebras, and discussed their main
relevant properties. Section 5 is devoted to concluding remarks.
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2 Definitions of Unital 2-Hom-Associative Bialgebras

2.1 Unital Hom-Bialgebra and Unital Infinitesimal
Hom-Bialgebra

Definition 1 ([10]) A hom-associative algebra is a triple (V ,μ, α) consisting of a
linear space V, a bilinear map μ : V × V → V and a homomorphism α : V → V

satisfying the multiplicativity and hom-associativity properties, i.e.

α ◦ μ = μ ◦ α⊗2 := μ ◦ (α ⊗ α), (1)

μ ◦ (α ⊗ μ) = μ ◦ (μ⊗ α), (2)

respectively.

Definition 2 ([15]) A unital hom-associative algebra is given by a quadruple
(A, μ, α, e), where e ∈ A, such that:

• (A, μ, α) is a hom-associative algebra,
• μ(x, e) = μ(e, x) = α(x),∀x ∈ A,
• α(e) = e.
Example Let A be an n-dimensional vector space, (n = 2, 3), over a field K with
a basis {ei}i=1,...,n. The following product μ and linear map α on A define a unital
hom-associative algebra in each of the following cases:

• μ(e1 ⊗ e1) = e1, μ(e2 ⊗ e2) = e2, μ(e1 ⊗ e2) = μ(e2 ⊗ e1) = 0, α(e1) =
e1 and α(e2) = 0.

• μ(e1 ⊗ e1) = e1, μ(e2 ⊗ e2) = e1, μ(e1 ⊗ e2) = μ(e2 ⊗ e1) = −e2, α(e1) =
e1 and α(e2) = −e2.

• μ(e1⊗e1) = e1, μ(e2⊗e2) = e2, μ(e1⊗e3) = −e3, μ(e3⊗e1) = −e3, μ(e3⊗
e3) = e1, α(e1) = e1 and α(e3) = −e3.

Definition 3 ([13]) A hom-coassociative coalgebra is a triple (V ,�, α) consisting
of a linear space V, a linear map� : V → V⊗V, and a homomorphismα : V → V

satisfying

α⊗2 ◦� = � ◦ α (comultiplicativity) (3)

(α ⊗�) ◦� = (�⊗ α) ◦� (hom-coassociativity). (4)
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Example Let A be a 3-dimensional vector space over K with a basis
{e1, e2, e3}. The following coproduct � and linear map α on A define a hom-
coassociative coalgebra:

�(e1) = e1 ⊗ e1, �(e2) = e2 ⊗ e2,

�(e3) =
√

5− 1

2
√

5
(e1 ⊗ e3 + e3 ⊗ e1)+ 1√

5
(−e1 ⊗ e1 + e3 ⊗ e3),

α(e1) = e1, α(e2) = 0 and α(e3) = e3.

Definition 4 A counital hom-coassociative coalgebra is defined as a quadruple
(V ,�, ε, α) such that the triple (V ,�, α) is a hom-coassociative coalgebra satis-
fying the hom-counital condition

(ε ⊗ α)�(x) = (α ⊗ ε)�(x) = α2(x),∀x ∈ V. (5)

Example Let A be a 3-dimensional vector space over K with a basis
{e1, e2, e3}. The following coproduct � and linear map α on A define a counital
hom- coassociative coalgebra:

�(e1) = e1 ⊗ e1, �(e2) = e2 ⊗ e2,

�(e3) =
√

5− 1

2
√

5
(e1 ⊗ e3 + e3 ⊗ e1)+ 1√

5
(−e1 ⊗ e1 + e3 ⊗ e3),

α(e1) = e1, α(e2) = 0, α(e3) = e3,

ε(e1) = 1, ε(e2) = 1 and ε(e3) = 1+√5

2
.

Definition 5 A unital hom-bialgebra is a system (V ,μ, η,�, ε, α), where μ : V ⊗
V → V (multiplication), η : K → V (unit), � : V → V ⊗ V (comultiplication),
ε : V → K (counit), and α : V → V (endomorphism) are linear maps satisfying
the following properties:

(1) the quadruple (V ,μ, η, α) is a unital hom-associative algebra;
(2) the quadruple (V ,�, ε, α) is a counital hom-coassociative coalgebra;
(3) the compatibility condition is expressed by the following three identities:

(a) �(μ(x ⊗ y)) = �(x) •�(y),∀x, y ∈ V ,
(b) α⊗2 ◦� = � ◦ α,
(c) ε(μ(x ⊗ y)) = ε(x)ε(y),
(d) ε ◦ α(x) = ε(x).
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Example Let A be a n-dimensional vector space, (n = 2, 3), over a field K with a
basis {ei}i=1,...,n. The following product μ, coproduct� and linear maps α, ε on A
define a unital hom-bialgebra:

• μ(e1 ⊗ e1) = e1, μ(e2 ⊗ e2) = 0, μ(e1 ⊗ e2) = μ(e2 ⊗ e1) = e2,

α(e1) = e1, α(e2) = e2,

�(e1) = e1 ⊗ e1, �(e2) = θe2 ⊗ e2,

ε(e1) = 1 and ε(e2) = 1

θ
(θ �= 0).

• μ(e1 ⊗ e1) = e1, μ(e1 ⊗ e3) = μ(e3 ⊗ e1) = e3, μ(e2 ⊗ e2) = e2,

μ(e3 ⊗ e3) = e1 + e3,

α(e1) = e1, α(e2) = 0, α(e3) = e3,

�(e1) = e1 ⊗ e1, �(e2) = e2 ⊗ e2,

�(e3) =
√

5− 1

2
√

5
e1 ⊗ e1 + 1√

5
(e1 ⊗ e3 + e3 ⊗ e1 − 2e3 ⊗ e3),

ε(e1) = 1, ε(e2) = 1 and ε(e3) = 1−√5

2
.

It is worth noticing that the conditions (3.a) and (3.b) of Definition 5 do not
lead to define a unital hom-bialgebra structure in (A, μ) given by μ(e1 ⊗ e1) =
e1, μ(e2 ⊗ e2) = e1, μ(e1 ⊗ e2) = μ(e2 ⊗ e1) = −e2, α(e1) = e1, α(e2) = −e2.

Definition 6 A unital infinitesimal hom-bialgebra (V ,μ, η,�, ε, α) is a K-vector
space V equipped with a unital hom-associative multiplication μ and a counital
hom-coassociative comultiplication �, which are related by the unital hom-
infinitesimal relation

� ◦ μ = (μ⊗ α) ◦ (α ⊗�)+ (α ⊗ μ) ◦ (�⊗ α)− α2 ⊗ α. (6)

Note that the unital hom-bialgebras, given in the previous example, are not unital
infinitesimal hom-bialgebras. The presence of the term α2⊗α in Eq. (6) complicates
the construction of non trivial examples of unital infinitesimal hom-bialgebras,
unital 2-hom-associative bialgebras and unital 2-2-hom-bialgebras. Finding such
more relevant examples is a task in the core of our current concerns. It deserves
further works, which will complete and enrich the present study.

Example Let A be a 2-dimensional vector space over K with a basis {e1, e2}.
The next product μ, coproduct � and linear maps α, ε on A define a unital hom-
bialgebra:

μ(e1 ⊗ e1) = e1, μ(e2 ⊗ e2) = e2, μ(e1 ⊗ e2) = μ(e2 ⊗ e1) = 0,

α(e1) = e1, α(e2) = 0,

�(e1) = e1 ⊗ e1, �(e2) = 0, ε(e1) = 1 and ε(e2) = 0.
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2.2 2-Hom-Associative Algebra

The 2-hom-associative algebras generalize the 2-associative algebras in the sense
where the associativity laws are twisted.

Definition 7 A 2-hom-associative algebra over K is a vector space equipped with
two hom-associative structures. A 2-hom-associative algebra is said to be unital if
there is a unit e, which is a unit for both operations.

Example Let A be a 3-dimensional vector space over K with a basis
{e1, e2, e2}. The following multiplications μ1, μ2 and linear map α on A define
a unital 2- hom-associative algebra:

μ1(e1 ⊗ e1) = e1, μ1(e3 ⊗ e3) = e3, μ1(e1 ⊗ e3) = μ1(e3 ⊗ e1) = e3,

μ2(e1 ⊗ e1) = e1, μ2(e3 ⊗ e3) = e1 + e3, μ2(e1 ⊗ e3) = μ2(e3 ⊗ e1) = e3,

μ2(e2 ⊗ e2) = e2 and α(e1) = e1, α(e2) = 0, α(e3) = e3.

Definition 8 Let (V ,μ1, μ2, α) and (V ′, μ′1, μ′2, α′) be two 2-hom-associative
algebras. A liner map f : V → V ′ is a morphism of 2-hom-associative algebras if

μ′1 ◦ (f ⊗ f ) = f ◦ μ1, μ
′
2 ◦ (f ⊗ f ) = f ◦ μ2 and f ◦ α = α′ ◦ f.

In particular, the 2-hom-associative algebras (V ,μ1, μ2, α) and (V ′, μ′1, μ′2, α′) are
isomorphic if f is a bijective linear map such that

μ1 = f−1 ◦ μ′1 ◦ (f ⊗ f ), μ2 = f−1 ◦ μ′2 ◦ (f ⊗ f ) and α = f−1 ◦ α′ ◦ f.

Theorem 9 Let (V ,μ1, μ2) be a 2-associative algebra, and α : V → V be an
associative algebra endomorphism. Then, Vα = (V , α ◦ μ1, α ◦ μ2, α) is a 2-hom-
associative algebra. Moreover, suppose that (V ′, μ′1, μ′2) is another 2-associative
algebra and α′ : V ′ → V ′ an associative algebra endomorphism. If f : V → V ′ is
an associative algebra morphism that satisfies f ◦ α = α′ ◦ f, then

f : (V , α ◦ μ1, α ◦ μ2, α)→ (V ′, α ◦ μ′1, α ◦ μ′2, α′)

is a morphism of 2-hom-associative algebra.

2.3 Unital 2-Hom-Associative Bialgebra

We give the notion of unital 2-hom-associative bialgebras generalizing unital 2-
associative bialgebras.
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Definition 10 A unital 2-hom-associative bialgebra (V ,μ1, μ2, η,�, ε, α) is a
vector space V equipped with two multiplications μ1 and μ2, a unit η, a comul-
tiplication�, a counit ε, and a linear map α : V → V such that

• (V ,μ1, η,�, ε, α) is a unital hom-bialgebra, and
• (V ,μ2, η,�, ε, α) is a unital infinitesimal hom-bialgebra.

Example Let A be a 2-dimensional vector space over K with a basis {e1, e2}. The
products μ1, μ2, the coproduct� and the linear maps α and ε given by

μ1(e1 ⊗ e1) = e1, μ1(e2 ⊗ e2) = e2, μ1(e1 ⊗ e2) = μ1(e2 ⊗ e1) = 0,

μ2(e1 ⊗ e1) = e1, μ2(e2 ⊗ e2) = 0, μ2(e1 ⊗ e2) = μ2(e2 ⊗ e1) = 0,

�(e1) = e1 ⊗ e1, �(e2) = 0,

α(e1) = e1, α(e2) = 0, ε(e1) = 1, ε(e2) = 0

define a unital 2-hom-associative bialgebra structure on A.

Definition 11 Let (V ,μ1, μ2, η,�, ε, α) and (V ′, μ′1, μ′2, η′,�′, ε′, α′) be two
unital 2-associative hom-bialgebras. A linear map f : V → V ′ is a morphism
of unital 2-associative hom-bialgebras if:

• μ′1 ◦ (f ⊗ f ) = f ◦ μ1,
• μ′2 ◦ (f ⊗ f ) = f ◦ μ2,
• f ◦ η = η′,
• (f ⊗ f ) ◦� = �′ ◦ f ,
• ε′ = ε ◦ f, f ◦ α = α′ ◦ f.

2.4 Unital 2-Hom-Bialgebra

Definition 12 A unital 2-hom-bialgebra (V ,μ1, μ2, η,�1,�2, ε1, ε2, α) is a
vector space V equipped with two multiplications μ1, μ2, the unit η, two
comultiplications �1,�2, two counits ε1, ε2, and a linear map α : V → V

such that: (V ,μ1, η,�1, ε1, α), (V ,μ2, η,�2, ε2, α), (V ,μ1, η,�2, ε2, α), and
(V ,μ2, η,�1, ε1, α) are unital hom-bialgebras.

Example Let A be a 2-dimensional vector space over K with a basis {e1, e2}. The
productsμ1, μ2, the coproducts� = �1 = �2 and the linear maps α and ε = ε1 =
ε2 given by

μ1(e1 ⊗ e1) = e1, μ1(e2 ⊗ e2) = e2, μ1(e1 ⊗ e2) = μ1(e2 ⊗ e1) = 0,

μ2(e1 ⊗ e1) = e1, μ2(e2 ⊗ e2) = 0, μ2(e1 ⊗ e2) = μ2(e2 ⊗ e1) = 0,

�(e1) = e1 ⊗ e1, �(e2) = 0,

α(e1) = e1, α(e2) = 0, ε(e1) = 1, ε(e2) = 0
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define a unital 2-hom-bialgebra structure on A.

Example Let A be a 3-dimensional vector space over K with a basis
{e1, e2, e3}. The products μ = μ1 = μ2, the coproducts �1,�2 and the linear
maps α and ε1, ε2 given by

μ(e1 ⊗ e1) = e1, μ(e2 ⊗ e2) = e1 + e2,

μ1(e1 ⊗ e2) = μ(e2 ⊗ e1) = e2, μ(e3 ⊗ e3) = e3,

�1(e1) = �2(e1) = e1 ⊗ e1, �1(e3) = �2(e3) = e3 ⊗ e3,

�1(e2) =
√

5− 1

2
√

5
(e1 ⊗ e2 + e2 ⊗ e1)+ 1√

5
(−e1 ⊗ e1 + e2 ⊗ e2),

�2(e2) =
√

5+ 1

2
√

5
(e1 ⊗ e2 + e2 ⊗ e1)+ 1√

5
(e1 ⊗ e1 − e2 ⊗ e2),

α(e1) = e1, α(e2) = e2, α(e3) = 0,

ε1(e1) = ε2(e1) = 1, ε1(e3) = ε2(e3) = 1,

ε1(e2) = 1+√5

2
, ε2(e2) = 1−√5

2

define a unital 2-hom-bialgebra structure on A.

The unital 2-hom-bialgebra is called of type (1-1), (resp. of type (2-2)), if the
two multiplications and the two comultiplications are identical, (resp. distinct).
The unital 2-hom-bialgebra is called of type (1-2), (resp. of type (2-1)), if the
two multiplications are identical, (resp. distinct), and the two comultiplications are
distinct, (resp. identical).

Proposition 13 Let (V ,μ, η,�, ε, α) be a unital hom-bialgebra. Then, we have
that (V ,μ,μ, η,�,�, ε, α) and (V ,μ,μop, η,�,�cop, ε, α) are unital 2-hom-
bialgebras, whereμop(x⊗y) = μ(y⊗x) and�cop(x) = τ ◦�(x),with τ (x⊗y) =
y⊗x. The first unital 2-hom-bialgebra is of type (1-1), and the second one is of type
(2-2).

Proof It comes from a direct computation. ��

2.5 Unital 2-2-Hom-Bialgebra

Definition 14 A unital 2-2-hom-bialgebra (V ,μ1, μ2, η,�1,�2, ε1, ε2, α) is a
vector space V equipped with two multiplications μ1, μ2, two comultiplications
�1,�2, two counits ε1, ε2, one unit η, and a linear map α : V → V such that

(1) (V ,μ1, η,�1, ε1, α) and (V ,μ2, η,�2, ε2, α) are unital hom-bialgebras,
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(2) (V ,μ1, η,�2, ε2, α) and (V ,μ2, η,�1, ε1, α) are unital infinitesimal hom-
bialgebras.

Example Let A be a 2-dimensional vector space over K with a basis {e1, e2}. The
productsμ1, μ2, the coproducts� = �1 = �2 and the linear maps α and ε = ε1 =
ε2 given by

μ1(e1, e1) = e1, μ1(e2, e2) = e2, μ1(e1, e2) = μ1(e2, e1) = 0,

μ2(e1, e1) = e1, μ2(e2, e2) = 0, μ2(e1, e2) = μ2(e2, e1) = 0,

�(e1) = e1 ⊗ e1, �(e2) = 0,

α(e1) = e1, α(e2) = 0, ε(e1) = 1, ε(e2) = 0

define a unital 2-2-hom-bialgebra structure on A.

A unital 2-2-hom-bialgebra is called of type (1-1), (resp. of type (2-2)), if the
two multiplications and the two comultiplications are identical, (resp. distinct).
A unital 2-2-hom-bialgebra is called of type (1-2), (resp. of type (2-1)), if the
two multiplications are identical, (resp. distinct), and the two comultiplications are
distinct, (resp. identical).

The definition of unital 2-2-hom-bialgebra morphism is similar to that of unital
2-hom-bialgebra morphism.

3 Kaplansky’s Construction of Hom-Bialgebras

In this section, we give a hom-algebra version of Kaplansky’s construction of
hom-bialgebras in order to build unital 2-associative hom-bialgebras, unital 2-hom-
bialgebras, and unital 2-2-hom-bialgebras. The following statement is in order.

Proposition 15 Let A = (V ,μ, η, α) be a unital hom-associative algebra, where
e2 := η(1) is the unit. Let Ṽ be the vector space spanned by V and e1, Ṽ =
span(V , e1). Then, K1(A) := (Ṽ , μ1, η1,�1, ε1, α1) is a unital hom-bialgebra
where the multiplication μ1 is defined by:

μ1(e1 ⊗ x) = μ1(x ⊗ e1) = α1(x) ∀x ∈ Ṽ ,
μ1(x ⊗ y) = μ(x ⊗ y) ∀x, y ∈ V,
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the unit η1 is given by η1(1) = e1, while the comultiplication�1, the counit ε1, and
the linear map α1 are defined by, ∀x ∈ V :

�1(e1) = e1 ⊗ e1

�1(x) = α(x)⊗ e1 + e1 ⊗ α(x)− e2 ⊗ α(x)
ε1(e1) = 1, ε1(x) = 0

α1(e1) = e1, α1(x) = α(x),

respectively.

Proof

- (V ,μ, η, α) is a unital hom-associative algebra. We have: ∀x ∈ V,

μ1(α1(x), μ1(e2, e1)) = μ1(α(x), e2) = μ(α(x), e2) = α2(x), and

μ1(μ1(x, e2), α1(e1)) = μ1(μ(x, e2), e1) = μ1(α(x), e1) = α2(x).

Then, μ1(α1(x), μ1(e2, e1)) = μ1(μ1(x, e2), α1(e1)) = α2(x).

By permuting x, e1, e2, we find the same result. Therefore,
∀x, y, z ∈ Ṽ , μ1(α1(x), μ1(y, z)) = μ1(μ1(x, y), α1(z)). Hence,
(Ṽ , μ1, η1, α1) is a unital hom-associative algebra.

- We have

(α1 ⊗�1) ◦�1(x) = (α1 ⊗�1)(α1(x)⊗ e1 + e1 ⊗ α1(x)− e2 ⊗ α1(x))

= �1(α1(x))⊗ e1 +�1(e1)⊗ α2
1(x)+�1(e2)⊗ α2

1(x)

= (�1 ⊗ α1) ◦�1(x),

and

(ε1 ⊗ α1) ◦�1(x) = 1⊗ α2
1(x) = α2

1(x)

(α1 ⊗ ε1) ◦�1(x) = α2
1(x)⊗ 1 = α2

1(x).

Then, (ε1⊗ α1) ◦�1(x) = (α1 ⊗ ε1) ◦�1(x) = α2
1(x). Hence, we can conclude

that (Ṽ ,�1, ε1, α1) is a counital hom-coassociative coalgebra.
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-

�1(x) •�1(y) = μ1(α(x), α(y))⊗ e1 + e1 ⊗ μ1(α(x), α(y))

− e2 ⊗ μ1(α(x), α(y)) = μ1 ◦ α⊗2

1 (x ⊗ y)⊗ e1 + e1 ⊗ μ1 ◦ α⊗2

1 (x ⊗ y)
− e2 ⊗ μ1 ◦ α⊗2

1 (x ⊗ y) = α1(μ1(x ⊗ y))⊗ e1 + e1 ⊗ α1(μ1(x ⊗ y))
− e2 ⊗ α1(μ1(x ⊗ y)) = �1(μ1(x ⊗ y));

�1(α1(x)) = α2
1(x)⊗ e1 + e1 ⊗ α2

1(x)− e2 ⊗ α2
1(x)

= α⊗2

1 (α1(x)⊗ e1 + e1 ⊗ α1(x)− e2 ⊗ α1(x)) = α⊗2

1 ◦�1(x).

Then,� is a homomorphism of the hom-associative algebras (V ,μ, α) and (V ⊗
V, •, α ⊗ α).

Therefore, we can conclude that K1(A) := (Ṽ , μ1, η1,�1, ε1, α1) is a unital hom-
bialgebra. ��
Proposition 16 Let A = (V ,μ, η, α) be a unital hom-associative algebra, where
e2 := η(1) is the unit. Let Ṽ be the vector space spanned by V and e1, Ṽ =
span(V , e1). K2(A) := (Ṽ , μ2, η2,�2, ε2, α2) is a unital hom-bialgebra, where
the multiplication μ2 is defined by:

μ2(e1 ⊗ x) = μ2(x ⊗ e1) = α2(x), ∀x ∈ Ṽ ,
μ2(x ⊗ y) = μ(x ⊗ y), ∀x, y ∈ V,

the unit η2 is given by η2(1) = e1, while the comultiplication�2, the counit ε2, and
the linear map α2 are defined as follows:

�2(e1) = e1 ⊗ e1,

�2(e2) = e2 ⊗ e1 + e1 ⊗ e2 − e2 ⊗ e2,

�2(x) = (e1 − e2)⊗ α(x)+ α(x)⊗ (e1 − e2) ∀x ∈ V \{e2},
ε2(e1) = 1, ε2(x) = 0 ∀x ∈ V,

α2(e1) = e1, α2(x) = α(x), ∀x ∈ V,

respectively.

Proof We have:

-

�2(α2(x)) = (e1 − e2)⊗ α2
2(x)+ α2

2(x)⊗ (e1 − e2)

= α⊗2

2 ((e1 − e2)⊗ α2(x)+ α2(x)⊗ (e1 − e2)) = α⊗2

2 (�2(x)).
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-

�2(x) •�2(y) = μ2[(e1 − e2); (e1 − e2)] ⊗ μ2[α2(x); α2(y)]
+ μ2[(e1 − e2); α2(y)] ⊗ μ2[α2(x); (e1 − e2)]
+ μ2[α2(x); (e1 − e2)] ⊗ μ2[(e1 − e2); α2(y)]
+ μ2(α2(x); α2(y))⊗ μ2[(e1 − e2); (e1 − e2)]

= (e1 − e2)⊗ α2(μ2(x, y))+ α2(μ2(x, y))⊗ (e1 − e2)

= �2(μ2(x, y)).

-

(α2 ⊗�2) ◦�2(x) = e1 ⊗ e1 ⊗ α2
2(x)− e1 ⊗ e2 ⊗ α2

2(x)− e2 ⊗ e1 ⊗ α2
2(x)

+ e2 ⊗ e2 ⊗ α2
2(x)+ e1 ⊗ α2

2(x)⊗ e1 − e1 ⊗ α2
2(x)⊗ e2 − e2 ⊗ α2

2(x)⊗ e2

+ α2
2(x)⊗ e1 ⊗ e1 − α2

2(x)⊗ e2 ⊗ e1 − α2
2(x)⊗ e1 ⊗ e2 + α2

2(x)⊗ e2 ⊗ e2

= (�2 ⊗ α2) ◦�2(x).

- The condition (5) is easily established.

Hence, K2(A) := (Ṽ , μ2, η2,�2, ε2, α2) is a unital hom-bialgebra. ��

3.1 Construction of Unital 2-Hom-Associative Bialgebras

Here, we construct (n + 1)-dimensional unital 2-hom-associative bialgebras from
n-dimensional unital hom-associative algebras.

Lemma 17 Let A = (V ,μ, η, α) be a unital hom-associative algebra. The unital
hom-bialgebra K1(A) = (Ṽ , μ1, η1,�1, ε1, α1) is a unital infinitesimal hom-
bialgebra.

Proof We know that K1(A) is a unital hom-bialgebra. Then, we only have to show
the unital hom-infinitesimal condition. For all x, y ∈ V, we have:

(μ⊗ α) ◦ (α ⊗�)(x ⊗ y)+ (α ⊗ μ) ◦ (�⊗ α)(x ⊗ y)− α2(x)⊗ α(y)
= μ(α(x), α(y))⊗ e1 + e1 ⊗ μ(α(x), α(y))− e2 ⊗ μ(α(x), α(y))
= α(μ(x, y))⊗ e1 + e1 ⊗ α(μ(x, y))− e2 ⊗ α(μ(x, y)) = �(μ(x, y)).

Hence, K1(A) is a unital infinitesimal hom-bialgebra. ��
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Let us point out the following:

(i) Let A = (V ,μ, η, α) be a unital hom-associative algebra. The unital hom-
bialgebra K2(A) is not a unital infinitesimal hom-bialgebra since the unital
hom-infinitesimal condition is not satisfied.

(ii) Let A2 = (V ,μ1, μ2, η, α) be a unital 2-hom-associative algebra. Then, we
have the same hom-coalgebra structure in the associated hom-bialgebra, (or
unital infinitesimal hom-bialgebra), related to unital hom-associative algebras
(V ,μ1, η, α) and (V ,μ2, η, α).

Proposition 18 Let A = (V ,μ, η, α) and A′ = (V ,μ′, η, α) be two unital
hom-associative algebras over an n-dimensional vector space V . Let K1(A) =
(Ṽ , μ1, η1,�1, ε1, α1) and K1(A′) = (Ṽ , μ′1, η1,�1, ε1, α1) be the above defined
associated hom-bialgebras. Then, we have that B1 = (Ṽ , μ1, μ

′
1, η1,�1, ε1, α1) is

an (n + 1)-dimensional unital 2-hom-associative bialgebra over the vector space
Ṽ = span(V , e1), where η1(1) = e1.

Proof From Lemma 17, K1(A′) is a unital infinitesimal hom-bialgebra, and K1(A)
is a unital hom-bialgebra, and hence B1 = (Ṽ , μ1, μ

′
1, η1,�1, ε1, α1) is a unital

2-hom-associative bialgebra. ��
Remark 19 Let (V ,μ, η,�, ε, α) be a unital hom-bialgebra. If the comultiplication
satisfies the unital hom-infinitesimal condition, then (V ,μ,μ, η,�, ε, α) is a unital
2-associative-hom-bialgebra.

3.2 Construction of Unital 2-Hom Bialgebras

Proposition 20 Let V be an n-dimensional vector space over K. Let A1 =
(V ,μ1, η1, α) and A2 = (V ,μ2, η2, α) be two unital hom-associative algebras,
and Kj (Ai ) = (Ṽ , μ̃i , η,�i, ε, α̃), i, j = 1, 2, the above defined associated hom-
bialgebras. Then,

B1 = (Ṽ , μ̃1, μ̃2, η,�1,�2, ε, α̃) and B2 = (Ṽ , μ̃1, μ̃2, η,�
cop

1 ,�2, ε, α̃)

are two (n + 1)-dimensional unital 2-hom bialgebras on Ṽ = span(V , e1), where
η(1) = e1

Proof From Proposition 13, we establish, by a straightforward computation, that
B1 and B2 are unital 2-hom-bialgebras. ��

The next corollary gives a unital 2-2-hom-bialgebra from two unital hom-
associative algebras.

Corollary 21 Under the above conditions, B1 = (Ṽ , μ̃1, μ̃2, η,�1,�2, ε, α̃) is an
(n + 1)-dimensional unital 2-2-hom bialgebra on Ṽ = span(V , e1), where η(1) =
e1.
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4 Hom-Left Symmetric Dialgebras

4.1 Hom-Associative Dialgebra

Definition 22 We call differential hom-associative algebra the quadruple
(A, ·, α, d) such that (A, ·, α) is a hom-associative algebra, d(a · b) = da · b + a ·
db,∀a, b ∈ A, d2 = 0, and d ◦ α = α ◦ d .

Let us immediately emphasize that this definition has a quite strong condition.
Indeed, using the Leibniz rule twice and noting the nilpotency of d leads to
2d(a)d(b) = 0, for all a, b ∈ A. If the ground field has characteristic different
from 2, this puts a restriction on the image of d .

Proposition 23 Let (A, ·, α, d) be a differential hom-associative algebra. Consider
the products . and / on A given by x / y = α(x)dα(y) and x . y = α(x)dα(y).
Then, (A,/,., α) is a hom-associative dialgebra.

Proof By hypothesis, (A, ·, α, d) is a differential hom-associative algebra. Hence
we have:

• α(x) / (y / z) = α(x) / (α(y)dα(z)) = α2(x)dα(α(y)dα(z))

= α2(x)dα2(y)dα2(z) = α2(x)d[α(dα(y))α2(z)] = α2(x) / α[dα(y)α(z)]
= α(x) / (dα(y)α(z)) = α(x) / (y . z);

• (x . y) / α(z) = (dα(x)α(y)) / α(z) = dα2(x)α2(y)dα2(z)

= α(x) . (α(y)dα(z)) = α(x) . (y / z);
• (x . y) . α(z) = (dα(x)α(y)) . α(z) = d[dα2(x)α2(y)]α2(z)

= d(α2(x)dα2(y))α2(z) = (α(x)dα(y)) . α(z) = (x / y) . α(z).
Therefore, (A,/,., α) is a hom-associative dialgebra. ��
Theorem 24 Let (D,/,.) be an associative dialgebra, and α : D → D be an
associative dialgebra endomorphism. ThenDα = (D,/α,.α, α), where/α= α◦ /
and .α= α◦ ., is a hom-associative dialgebra. Moreover, suppose that (D′,/′,.′)
is another associative dialgebra, and α′ : D′ → D′ is an associative dialgebra
endomorphism. If f : D → D′ is an associative dialgebra morphism that satisfies
f ◦ α = α′ ◦ f, then f : Dα → D′

α′ is a morphism of hom-associative dialgebras.

Proof We have:

•

α(x) /α (y /α z) = α(α(x) / (y /α z)) = α(α(x) / α(y / z))
= α2(x / (y / z)) = α2(x / (y . z)) = α(α(x) / (α(y . z)))
= α(α(x) / (y .α z)) = α(x) /α (y .α z);
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•

(x .α y) /α α(z) = α2((x . y) / z) = α2(x . (y / z))
= α(x) .α (y /α z);

•

(x .α y) .α α(z) = α2((x . y) . z) = α2((x / y) . z)
= (x /α y) .α α(z);

•

f ◦ /α= f ◦ (α◦ /) = (f ◦ α)◦ /= (α′ ◦ f )◦ /= α′ ◦ (f ◦ /)
= α′ ◦ (/′ ◦(f ⊗ f )) = (α′◦ /′) ◦ (f ⊗ f ) =/′α′ ◦(f ⊗ f ),

and we also obtain that f ◦ .α=.′α′ ◦(f ⊗ f ).

Hence, we can conclude that Dα is a hom-associative dialgebra, and f a morphism
of hom-associative dialgebras. ��

4.2 Hom-Leibniz Algebra

Definition 25 A hom-Leibniz algebra is a triple (L, [., .] α) consisting of a linear
space L, a bilinear product [., .] : L × L → L, and a homomorphism α : L → L

satisfying

[[x, y], α(z)] = [[x, z], α(y)] + [α(x), [y, z]]. (7)

Proposition 26 Let (A, ·, α, d) be a differential hom-associative algebra. Define
the bracket on A by

[x, y] := α(x) · dα(y)− dα(y) · α(x).

Then, the vector space A equipped with this bracket is a hom-Leibniz algebra.

Proof By direct computation, we obtain:

• [α(x), [y, z]] = α(x)dα(y)dα(z)− dα(y)dα(z)α(x)− α(x)dα(z)dα(y)
+dα(z)dα(y)α(x);

• [[x, y], α(z)] = α(x)dα(y)dα(z)− dα(z)α(x)dα(y)− dα(y)α(x)dα(z)
+dα(z)dα(y)α(x);

• [[x, z], α(y)] = α(x)dα(z)dα(y)− dα(y)α(x)dα(z)− dα(z)α(x)dα(y)
+dα(y)dα(z)α(x).



112 M. N. Hounkonnou and G. D. Houndédji

Then, [α(x), [y, z]] = [[x, y], α(z)] − [[x, z], α(y)]. Hence, the pair (A, [., .]) is a
hom-Leibniz algebra. ��
Theorem 27 Let (L, [., .]) be a Leibniz algebra, and α : L → L be a Leibniz
algebra endomorphism. Then, Lα = (L, [., .]α, α) is a hom-Leibniz algebra.
Moreover, suppose that (L′, [., .]′) is another Leibniz algebra, and α′ : L′ → L′
a Leibniz algebra endomorphism. If f : L → L′ is a Leibniz algebra morphism
satisfying f ◦ α = α′ ◦ f, then Lα → L′

α′ is a morphism of Leibniz algebras.

Proof Since

• [[x, y]α, α(z)]α = α([α([x, y]), α(z)]) = α2([[x, y], z])
= α2([[x, z], y] + [x, [y, z]]) = [[x, z]α, α(y)]α + [α(x), [y, z]α]α,
and

• f ◦ [., .]α = f ◦ (α ◦ [., .]) = (f ◦ α) ◦ [., .] = (α′ ◦ f ) ◦ [., .] = α′ ◦ (f ◦ [., .])
= α′ ◦ ([., .]′ ◦ (f ⊗ f )) = (α′ ◦ [., .]′) ◦ (f ⊗ f ) = [., .]′

α′ ◦ (f ⊗ f ).
Therefore, we have the results. ��
Theorem 28 Let (D,/,., α) be a hom-associative dialgebra. Consider a linear
map [., .] : D ⊗D→ D defined, for x, y ∈ D, by

[x, y] = x / y − x . y.

Then, (D, [., .], α) is a hom-Leibniz algebra.

Proof (D,/,., α) is a hom-associative dialgebra, then, we have:

α(y) . (z . x) = (y . z) . α(x) = (y / z) . α(x);
(x / z) / α(y) = α(x) / (z / y) = α(x) / (z . y).

Therefore, by direct computation, we obtain the identity (7). ��

4.3 Hom-Left Symmetric Dialgebras

Now, we generalize the notion of left symmetric dialgebra introduced by R. Felipe,
twisting the identities by a linear map, as well as some theorems established in [5].

Definition 29 Let S be a vector space over a field K . Let us assume that S is
equipped with two bilinear products /,.: S ⊗ S → S, and a homomorphism
α : S → S satisfying the identities:

α(x) / (y / z) = α(x) / (y . z), (8)

(x . y) . α(z) = (x / y) . α(z), (9)
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α(x) / (y / z)− (x / y) / α(z) = α(y) . (x / z)− (y . x) / α(z), (10)

α(x) . (y . z)− (x . y) . α(z) = α(y) . (x . z)− (y . x) . α(z). (11)

Then, we say that S is a hom-left symmetric dialgebra (HLSDA), or left disymmetric
hom-algebra.

Example Any hom-associative algebra (A, ·, α) is a hom-left symmetric dialgebra
with .=/= ·.
The definition of a hom-left symmetric dialgebra morphism is similar to that of a
hom-associative dialgebra morphism. Note also that we can construct a hom-left
symmetric dialgebra by the composition method from a classical left-symmetric
dialgebra (D,/,.) and an algebra endomorphism α, by considering (D,/α,.α
, α), where x /α y = α(x / y) and x .α y = α(x . y). Let us denote by HS
the set of all hom-left symmetric dialgebras, and HD the set of all hom-associative
dialgebras.

Proposition 30 Any hom-associative dialgebra is a hom-left symmetric dialgebra.
Then, HD ⊆ HS.

Proof Let (D,/,., α) be a hom-associative dialgebra. Then, Eqs. (8) and (9) are
satisfied. Since the products / and . are associative, then Eqs. (10) and (11) are
established. ��
Remark 31 Any hom-left symmetric algebra is a hom-left symmetric dialgebra
in which .=/ . A non associative hom-left symmetric algebra is not a hom-left
symmetric dialgebra. Hence, we have HD �= HS.

Proposition 32 A hom-left symmetric dialgebra S is a hom-associative dialgebra
if and only if both products of S are hom-associative.

Proof Let (S,/,., α) be a hom-left symmetric dialgebra. If S is a hom-associative
dialgebra, then the products / and . defined on S are hom-associative. Conversely,
suppose that the products / and . are hom-associative. Since S has a hom-left
symmetric dialgebra structure, then, from Eq. (10), S is a hom-associative dialgebra.

��
Theorem 33 Let (S,.,/, α) be a hom-left symmetric dialgebra. Then, the com-
mutator given by [x, y] = x / y−y . x defines a structure of hom-Leibniz algebra
on S. In other words, (S, [., .], α) is a hom-Leibniz algebra.

Proof We have:

• [[x, y], α(z)] = (x / y) / α(z)− α(z) . (x / y)− (y . x) / α(z)
+α(z) . (y . x);

• [[x, z], α(y)] = (x / z) / α(y)− α(y) . (x / z)+ (z . x) / α(y)
−α(y) . (z . x);

• [α(x), [y, z]] = α(x) / (y / z)− (y / z) . α(x)− α(x) / (z . y)
+(z . y) . α(x).
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From Eqs. (10) and (11), we obtain the condition (7). ��
Definition 34 Let (L, [., .], α) be a hom-Leibniz algebra. The pair of bilinear
mappings 01,02 : L × L → L is called an affine hom-Leibniz structure obeying
the relations:

02(x, y)−01(y, x) = [x, y], (12)

01(01(x, y), α(z)) = 01(02(x, y), α(z));
02(α(x),02(y, z)) = 02(α(x),01(y, z))

(13)

02(α(x),02(y; z))−01(α(y),02(x, z)) = 02([x, y], α(z)) (14)

and

01(α(x),01(y, z))−01(α(y),01(x, z)) = 01([x, y], α(z)) (15)

for all x, y, z ∈ L.
Theorem 35 Let (L, [., .], α) be a hom-Leibniz algebra, and let 01,02 define an
affine hom-Leibniz structure. Then, L is a hom-left symmetric dialgebra with . and
/ defined as

x . y = 01(x, y); x / y = 02(x, y). (16)

Proof (13) implies (8) and (9). Then, (10) and (11) follow from (14) and (15),
respectively. ��

5 Concluding Remarks

In this work, from the hom-counital and unital infinitesimal hom-bialgebra condi-
tions, and following Kaplansky’s construction based on unital hom-associative alge-
bras, we have built unital 2-hom-associative bialgebras, unital 2-hom-bialgebras,
and unital 2-2-hom-bialgebras, and derived their main relevant properties. Finally,
we have defined and characterized the hom-associative dialgebras, hom-Leibniz
algebra and hom-left symmetric dialgebras generalizing the ordinary left symmetric
dialgebras. The study of relevant properties of unital 2-hom-associative bialgebras,
unital 2-hom-bialgebras, and unital 2-2-hom-bialgebras will be in the core of our
forthcoming works.
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Laguerre–Gaussian Wave Propagation
in Parabolic Media

S. Cruz y Cruz, Z. Gress, P. Jiménez-Macías, and O. Rosas-Ortiz

Abstract We report a new set of Laguerre–Gaussian wave-packets that propagate
with periodical self-focusing and finite beam width in weakly guiding inhomoge-
neous media. These wave-packets are solutions to the paraxial form of the wave
equation for a medium with parabolic refractive index. The beam width is defined
as a solution of the Ermakov equation associated to the harmonic oscillator, so
its amplitude is modulated by the strength of the medium inhomogeneity. The
conventional Laguerre–Gaussian modes, available for homogeneous media, are
recovered as a particular case.

Keywords Paraxial wave equation · Nonlinear Ermakov equation · Angular
momentum of light · Self-focusing of light · Laguerre–Gaussian modes

Mathematics Subject Classification (2010) Primary 35Q60, 78A60;
Secondary 35Q40, 81V80

1 Introduction

The study of optical beams having complex structures is a subject of intense
activity in current times, mainly because the properties of structured light open new
possibilities for the manipulation of individual atoms and small molecules [11, 34].
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This subject represents a feedback pathway between theory and experiment:
theoretical advances suggest new experiments while significant experimental results
require either new theoretical models or improvements in our understanding of
the behavior of light. Remarkably, after realizing that azimuthally phased beams
carry angular momentum [1], it was understood that the concept of photon angular
momentum is not limited to spin [2], but it may include either extrinsic or intrinsic
orbital angular momentum [6] (for a recent discussion on the matter see e.g. [3]).
However, it is important to emphasize that, although spin and orbital angular
momentum behave quite similar in some instances, “orbital angular momentum
has its own distinctive properties and its own distinctive optical components” [25].
Such a subtlety is fundamental in the investigation of light-matter interactions
[9, 15, 20]. In this context it is notable that the wavefront structure of the Laguerre–
Gaussian beams allows the production of force fields that have no counterpart in
conventional optical beams [8, 14]. From the practical point of view, it has been
found that Hermite–Gaussian beams with no orbital angular momentum can be
transformed into Laguerre–Gaussian beams carrying orbital angular momentum
[4, 5, 12]. Thus, one can use either cylindrical lenses [5] or Fork diffractive gratings
[4, 12] to produce Laguerre–Gaussian beams in the laboratory (sophisticated spatial
light modulators can be used instead). Nevertheless, the propagation of Laguerre–
Gaussian beams in free (homogeneous) space implies that the corresponding beam
width diverges as the propagation variable increases, which may tie down the
usefulness of such beams.

In this paper we address the problem of finding Laguerre-Gauss wave-packets
with finite beam width along all the propagation axis. With this aim we solve the
paraxial form of the wave equation for a weakly guiding inhomogeneous medium,
the refractive index of which is quadratic (parabolic) in the coordinates transverse
to the propagation. Our method is based on the approach introduced in [10],
where a Gaussian wave-packet is used to solve the Schrödinger equation for time-
dependent and nonlinear Hamiltonian operators via complex Riccati equations. The
main point in [10] is that the width of the packet is defined as a solution of the
Ermakov equation [16] associated to the one-dimensional oscillator. Such approach
was already applied to study the propagation of waves in non-homogeneous media
[13, 18, 19], were the close relationship between the paraxial wave equation and
the Schrödinger equation is successfully exploited to construct Hermite–Gaussian
wave-packets for quadratic refractive index optical media. In the present case the
beam width is an oscillatory solution of the Ermakov equation that depends on
the propagation variable and such that its amplitude is modulated by the strength
of the medium inhomogeneity. The Laguerre–Gaussian wave-packets reported here
correspond to non-dispersive beams of finite transverse optical power (localized
beams) that propagate with periodical self-focusing profile in the medium. Our
approach generalizes the methods to define finite beam widths already reported by
other authors [7, 22–24, 26, 32], and confirm that the distinctive angular momentum
properties of the Laguerre–Gaussian modes are better prepared and exploited if the
related beam propagates in parabolic media.
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The generalities to construct the above described Laguerre–Gaussian wave-
packets are outlined in Sect. 2, where it is also shown that the conventional
Laguerre–Gaussian modes arise after turning-off the inhomogeneity of the medium,
just as a particular case. In Sect. 3 we summarize our results and provide some
directions for future work.

2 Paraxial Wave Equation for Parabolic Media

Consider the z-propagation of waves through a weakly guiding inhomogeneous
medium, the refractive index of which is quadratic in the transverse coordinates
(the xy-plane). Using polar coordinates to write the position vector transverse to
beam propagation as ρ = (ρ, θ), the refractive index we are dealing with is of the
form

n2(ρ) = n2
0

(
1−�2ρ2

)
, �2ρ2 1 1. (1)

Here, n0 stands for the refractive index at the optical axis and � ≥ 0 is a parameter
that characterizes the focusing properties of the medium. The corresponding
paraxial wave equation is given by

− 1

2k2
0n0

∇2⊥U +
n0

2
�2ρ2U = i

k0

∂U

∂z
. (2)

The solutions U = U(ρ, z) of (2) describe the transversal amplitude of the electric
field in the medium. Hereafter ∇2⊥ stands for the transversal component of the
Laplacian operator and k0 is the wave number in free space.

2.1 Lowest-Order Gaussian Mode

Following [10, 13, 18], as a fundamental non stationary solution of the paraxial wave
equation (2), we propose the Gaussian wave-packet

U(ρ, z) = N(z)eiS(z)ρ2
. (3)

The straightforward calculation shows that the normalization factor N(z) and the
coefficient S(z) are respectively given by

N(z) = N0

w(z)
e−iχ(z), S(z) = k0n0

2

d

dz
lnw(z)+ i

w2(z)
, (4)
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where N0 is a normalization constant, w(z) is a solution of the Ermakov equation
for the one-dimensional harmonic oscillator

d2w

dz2 +�2w = 4

k2
0n

2
0w

3
, (5)

and

χ(z) = 2

k0n0

∫ z 1

w2(x)
dx. (6)

It is a matter of substitution to verify that after the identification

1

R(z)
= d

dz
lnw(z), (7)

we can rewrite Eq. (3) in the ‘canonical’ form of the lowest-order Gaussian mode

U(ρ, z) = N0

w(z)
exp

( −ρ2

w2(z)

)
exp

(
i

[
k0n0ρ

2

2R(z)
− χ(z)

])
. (8)

In analogy with the homogeneous case [30, 31], we see that N0 refers to the
maximum electric field strength, w(z) corresponds to the beam width, R(z) to the
radius of curvature, and χ(z) to the Gouy phase. Notice however that the main
difference between the wave-packet (8) and the Gaussian mode of the homogeneous
case [30, 31] is the z-dependence of the beam width. Indeed, we have already
mentioned that w(z) in (8) is a solution of the Ermakov equation (5), so we follow
[29] to get

w(z) = w0

[
cos2 [�(z− z0)]+ 1

(�zR)
2 sin2 [�(z− z0)]

]1/2

, (9)

with z0 an integration constant, w0 = w(z0), and zR = 1
2k0n0w

2
0.

For � > 0 the amplitude of the beam width (9) oscillates with period π/�
between w0 and w0/(�zR). The latter values are respectively reached at the points

z =
(
n+ 1

2

)
π
�
+ z0 and z = nπ

�
+ z0, with n = 0, 1, 2, . . . Thus, in contraposition

to the homogeneous case wherew(z) diverges for large values of z (see Sect. 2.1.1),
the beam width introduced in (9) is finite over all the z-axis. Moreover, the maximum
amplitude reached by w(z) can be adjusted by varying�, see Fig. 1a.

Now let us write explicitly the expression for the radius of curvature. From (7)
and (9), one obtains

R(z) = z
2
R�

2 cot[�(z− z0)] + tan[�(z− z0)]
�(1−�2z2

R)
. (10)
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Fig. 1 The beam width defined in (9) and the corresponding radius of curvature (10) for parabolic
media, figures (a) and (b) respectively. In both cases z0 = 0 and w0 = 1, with� = 0.5 (red curve)
and � = 1 (blue-dashed curve). The divergences of R(z) identify the critical values of w(z), and
correspond to plane wavefronts

The latter expression diverges at the critical points of w(z), see Fig. 1b. Thus,
the wavefront of the Gaussian wave-packet (8) is plane at either the beam waist
(minimum beam width) or the beam ‘hip’ (maximum beam width).

On the other hand, the oscillatory profile of the beam width (9) is inherited to
the wave-packet (8). Indeed, the field intensity |U(ρ, z)|2 describes a spot centered
at ρ = 0 that increases its diameter till a maximum value as the wave-packet
propagates along the z-axis. Then, the spot starts to reduce its diameter up to recover
its initial configuration. This stretching and squeezing phenomenon is repeated over
and over along the propagation axis, see Fig. 2. Such behavior corresponds to the
self-focusing of the beam, which is a consequence of the parabolic profile of the
refractive index (1). The number of stretching and squeezing of the beam width in
a given interval z ∈ (a, b) ⊂ R is determined by the parameter �, in complete
agreement with the periodical profile of the beam width (9).

2.1.1 Recovering the Results for Homogeneous Media

The description of the propagation in homogeneous media is obtained at the limit
�→ 0+. For instance, at such a limit the beam width acquires the well known form
[30, 31]:

w(z)�→0+ = whom(z) = w0

√

1+
(
z− z0

zR

)2

. (11)

In this case w0 = whom(z0) corresponds to the beam waist. In turn, z = z0 defines
the focal plane and zR stands for the distance from such plane to the position at
which the spot of the beam doubles its size. On the other hand, for large values



122 S. Cruz y Cruz et al.

Fig. 2 Field intensity |U(ρ, z)|2 of the Gaussian wave-packet (8) for z0 = 0 and k0 = n0 = w0 =
1. The upper and lower rows correspond to � = 0.5 and � = 1, respectively. From left-to-right
the columns show the transversal plane where the beam width reaches the first of its maxima, the
longitudinal plane y = 0, and the propagation of the wave-packet along the z-axis. Compare with
Fig. 1

of z, Eq. (11) can be approximated as whom(z) ∼ w0
zR
(z − z0). Thus, the beam in

homogeneous media diverges as |z| → ∞, see Fig. 3a, and describes a cone of
half-angle defined by the beam angular divergency θ0 ∼ w0

zR
(it is subtended by the

gray-dashed line with respect to the horizontal axis in the figure). The corresponding
radius of curvature Rhom(z) is depicted in Fig. 3b, where it is compared with the
radius of curvature of a spherical wavefront produced by a point source located at
the center of the beam waist (gray-dotted line in the figure), and with the function
R(z) defined in (10) for� = 0.3 (magenta curve in the figure). Notice that Rhom(z)

has only a singular point, located at ρ = 0, which means that the wavefront of the
corresponding wave-packet is plane at the beam waist only, so no self-focusing is
predicted for homogeneous media, as expected.

2.2 Laguerre–Gaussian Wave-Packets

We wonder whether there are other wave-packet solutions to the paraxial wave
equation associated with a parabolic refractive index. The answer is positive (see,
e.g. [26] and [13]) and it may be shown that, using cylindrical coordinates, a
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Fig. 3 The beam widthwhom(z) defined in (11) and the corresponding radius of curvature Rhom(z)

for homogeneous media, Figures (a) and (b) respectively. In both cases z0 = 0 and w0 = 1.
The gray-dashed line in (a) identifies the beam angular divergency θ0. The gray-dotted line in
(b) represents the radius of curvature of a spherical wavefront. The magenta curves respectively
correspond to w(z), defined in (9), and to R(z), defined in (10), for � = 0.3. Both of them have
been included as a reference. The space between whom(z) and w(z), and the one between Rhom(z)

and R(z), has been filled by the sake of comparison. See also Fig. 1

particularly useful set of solutions can be cast in the form

U(ρ, z) = N
w(z)

exp

(
i

[
k0n0ρ

2

2R(z)
− βχ(z)

])
$(r(ρ, z), θ), (12)

where N and β are constants to be determined, θ stands for the polar coordinate in
the transversal plane, and r(ρ, z) = √2 ρ

w(z)
. The straightforward calculation shows

that the function$(r, θ) satisfies the differential equation

− ∇̃2⊥$+ r2$ = 2β$, (13)

where ∇̃2⊥ is the Laplacian in the (r, θ) plane. Equation (13) resembles the stationary
Schrödinger equation for a two dimensional oscillator in the radial variable r . The
resemblance is complete if one considers that square integrability in the Hilbert
space corresponds to finite transverse optical power P0 for localized beams in the
(r, θ)-plane. That is, we demand the field intensity of the wave-packets (12) to
satisfy the condition

P0 =
∫ 2π

0

∫ ∞

0

∣∣Up� (ρ, z)
∣∣2 ρdρdθ = 1.

The conventional approach used to face stationary problems in quantum mechan-
ics yields the eigenvalues

β
p

� = |�| + 2p + 1, � ∈ Z, p = 0, 1, 2, . . . , (14)



124 S. Cruz y Cruz et al.

together with the eigenfunctions

$
p
� (r, θ) =

(√
2ρ

w(z)

)|�|
L(|�|)p

(
2ρ2

w2(z)

)
exp

(
− ρ2

w2(z)
+ i�θ

)
, (15)

and the constant

N p

� = (−1)p
√

2�(p + 1)

π�(|�| + p + 1)
. (16)

The introduction of (14)–(16) into (12) gives the expressions Up� (ρ, z) we were
looking for. Hereafter they are referred to as Laguerre–Gaussian (LG) wave-packets.

The results discussed in Sect. 2.1 for the non stationary Gaussian wave-packets
are recovered from the above formulae after making p = 0 and � = 0, which
respectively means the lowest radial parameter and null orbital angular momentum.
For p = 0 and � �= 0 the field intensity |Up� (ρ, z)|2 describes a ring centered at
ρ = 0, see Fig. 4. In general, for � �= 0 and any allowed value of p, the field intensity
of the LG wave-packets (12) exhibits a well known ring-shaped distribution. The
size of the rings depends on � while p defines the number of nodes in the radial
coordinate, see Fig. 5 and compare with Figs. 2 and 4. Thus, controlling the values

Fig. 4 Field intensity |Up� (ρ, z)|2 of the Laguerre–Gaussian wave-packet (12) for p = 0 and
� = 1, with the same parameters and distribution as the panel shown in Fig. 2
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Fig. 5 Field intensity |Up� (ρ, z)|2 of the Laguerre–Gaussian wave-packet (12) for p = 1 and
� = 8, with the same parameters and distribution as the panel shown in Fig. 2

of p, �, and �, one can manipulate the profile as well as the collapse-revival (self-
focusing) properties of the LG wave-packets (12).

2.2.1 Recovering the Results for Guided Laguerre–Gaussian Modes

If the parameters w0 and � are related as k0n0� = 2/w2
0, then �zR = 1 and,

according to (9), the beam width becomes a constant w(z) = w0, see [19]. In
such a case the radius of curvature R(z) diverges and the Gouy phase turns into
a linear function of z. Thus, the wavefront of the LG wave-packets is plane. The
corresponding field amplitudes, known as guided LG modes, take the form

U
p
� (ρ, z) = (−1)p

√
2�(p + 1)

πw2
0�(|�| + p + 1)

(√
2ρ

w0

)|�|
L(|�|)p

(
2ρ2

w2
0

)

× exp

(
− ρ

2

w2
0

− iβp� �(z− z0)+ i�θ
)
, (17)
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and are stationary eigenmodes of the Schrödinger-like operator

H = − 1

2k2
0n0

∇2⊥ +
n0

2
�2ρ2, (18)

with the propagation constants

ε
p

� =
�

k0
β
p

� ≡
�

k0
(|�| + 2p + 1), � ∈ Z, p = 0, 1, 2, . . . (19)

3 Discussion of Results

We have shown that the beam width of the Laguerre–Gaussian wave-packets is
finite and periodic along all the propagation axis if it is a solution of the Ermakov
equation associated with the one-dimensional harmonic oscillator. The amplitude of
the beam width can be modulated by the strength of the medium inhomogeneity.
The wave-packets so constructed have finite transverse optical power and propagate
with periodical self-focusing in the medium. The conventional Laguerre–Gaussian
modes are recovered as a particular case, after turning-off the inhomogeneity.

Since the orbital angular momentum is a consequence of the mode structure of a
given beam, one would guess that such a property is also present in single photons
[3]. The statement seems to be strengthened by recalling that idealized plane waves
with only transverse fields do not carry angular momentum, no matter their degree
of polarization [21]. A clue may be found in the phenomenon of parametric-down
conversion [27, 28], where the quantum state of down-converted photon pairs is
entangled in at least one of their physical variables. As entanglement is a fingerprint
of the quantum world, the production of photon pairs entangled in their orbital
angular momentum states [17] bets on a quantum nature of structured light. It is
then interesting to formulate an approach based on operators in Hilbert spaces to
describe the propagation of structured light beams in diverse media. Some initial
steps on the matter were given in [33]. The complete operator-like description for
the propagation of Hermite–Gaussian wave-packets in parabolic media has been
provided in [13, 18, 19], where the Lie group formalism was addressed to construct
generalized coherent states as linear superpositions of Hermite–Gaussian modes.
The same approach can be applied to the Laguerre–Gaussian wave-packets reported
in this paper. Work in this direction is in progress.
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Abstract We describe sufficient maximality conditions for the classes of graph
surfaces on two-step Carnot groups with sub-Lorentzian structure. In particular, we
introduce a non-holonomic notion of variation of the area functional.
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1 Introduction

The aim of this paper is to describe the classes of maximal graph surfaces in
sub-Lorentzian geometry, namely, sufficient maximality conditions. The graph
mappings are constructed from mappings of two-step nilpotent graded groups.
These groups are a particular case of Carnot–Carathéodory spaces well-known in
various problems of pure and applied mathematics; see, e. g., [15] and references
therein. We also assume that the image and preimage are both subsets of another
nilpotent graded group possessing a sub-Lorentzian structure. This structure is a
sub-Riemannian generalization of Minkowski geometry. The main characteristic
of this geometry is that the distance between points (x1, t1) and (x2, t2), with
x1, x2 ∈ Rn and t1, t2 ∈ R, equals

√
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i.e., the squared distance along the time-like direction t is negative, while along
every space-like direction x ∈ Rn it is positive. If all tangent vectors to a surface
in R

n+1
1 have only positive lengths then this surface is called space-like and it is

locally representable as a graph, where the time-like variable depends on the space-
like variables: t = ψ(x) with x ∈ Rn. Under some additional assumptions it is
possible to deduce certain equations describing surfaces of maximal area; it follows
that their mean curvature vanishes a. e. According to Nielsen’s hypothesis, solutions
to Einstein’s gravity equations are physically meaningful if and only if they are
representable as such surfaces in R

n+1
1 . For the details concerning the properties,

applications and interpretations of Minkowski geometry, see [19] and references:
e.g., [20, 21] etc.

Sub-Lorentzian geometry is a relatively young branch of analysis; the first results
in this area were obtained in the 1990s; see [2]. Later, series of papers studied
some fine properties of geodesics together with their connection to relativity theory
problems; see, e. g., [5, 6, 16–18]. New cases of Minkowski geometry with multi-
dimensional time were studied recently in [1, 3] etc.

In [9], the author deduced necessary maximality conditions for classes of graph
surfaces and, moreover, the equations of maximal surfaces. Here the term “maximal
surface” means a surface of maximal area (under the assumption that a solution to
the corresponding boundary value problem exists). We emphasize that [9], in view
of certain fine properties of non-holonomic geometry, the definition of argument
increment of the area functional differs substantially from the classical one. Namely,
if the horizontal part of the argument changes arbitrarily to order ε then the other
part of the formula that corresponds to degree two fields depending on the horizontal
ones involves additional summands of order ε2. Consequently, when we take the
second differential of the area functional to obtain sufficient maximality conditions,
some new summands appear, which are absent in Riemannian geometry. Recall that
generally in non-holonomic structures the notions “maximal area” and “maximal
value of the area functional” are not the same. In the latter case, the functional can
take some maximal value but it need not correspond to any mapping defining a
surface of this area since the PDE problem may lack solutions.

The result of this paper was announced in [12].

2 Graphs on Carnot Groups

Let us recall necessary notions and results.

Definition 1 (See, e. g., [4]) A two-step Carnot group is a connected simply
connected stratified Lie group G with a graded Lie algebra V , that is, V = V1 ⊕ V2
with [V1, V1] = V2 and [V1, V2] = {0}. If we replace [V1, V1] = V2 by [V1, V1] ⊂
V2 and [V2, V2] = {0} then G is called a two-step nilpotent graded (Lie) group. A
basis in V is chosen so that each field belongs either to V1 or V2. The vector fields
in V1 are called horizontal and their degree is equal to one. Otherwise the degree is
equal to two.
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Definition 2 The derivatives along horizontal vector fields are called horizontal
derivatives.

The group operation is defined by the Baker–Campbell–Hausdorff formula.
Now, introduce the distance corresponding to the group structure.

Definition 3 (See, e. g., [12]) Take w = exp
( N∑
i=1
wiXi

)
(v) with w, v ∈ G.

Define d2(w, v) = max
{( ∑
j : degXj=1

w2
j

) 1
2
,
( ∑
j : degXj=2

w2
j

) 1
4
}

. The set {w ∈ G :
d2(w, v) < r} is called the radius r > 0 ball in d2 centered at v and is denoted by
Box2(v, r).

Definition 4 ([22]; See Also [23] for the General Case) A mapping ϕ : U →
K̃, U ⊂ K, where K and K̃ are nilpotent graded groups, is hc-differentiable
at x ∈ U if there exists a horizontal homomorphism Lx : K → K̃ such that
d2(ϕ(w),Lx〈w〉) = o(d2(x,w)), where U � w→ x. The hc-differential Lx at x is
denoted by D̂ϕ(x).

Definition 5 (See, e. g., [23]) If the horizontal derivatives of ϕ exist everywhere
and are continuous, while the images of horizontal vector fields are horizontal,
then ϕ is called a mapping of class C1

H , or C1
H -mapping.

Let us now give a precise description of the setup. To this end, we consider a
mapping ϕ : �→ G̃, where:

1. � ⊂ G is an open set and ϕ : �→ G̃ is a C1
H -mapping;

2. G is a Carnot group of topological dimension N with basis vector
fields X1, . . . , XN , Lie algebra V = V1 ⊕ V2, where X1, . . . , XdimV1 constitute
the basis of V1, and origin 0;

3. each degree two field on G can be uniquely expressed via the commutators of
horizontal fields:

Xk =
n∑

i,j=1

aki,j [Xi,Xj ], i < j, k = dimV1 + 1, . . . , N (1)

(this enables us to vary the argument arbitrarily; see the details in [10]);
4. G̃ is a two-step nilpotent graded group of topological dimension Ñ with basis

fields X̃1, . . . , X̃Ñ , Lie algebra Ṽ = Ṽ1 ⊕ Ṽ2, where X̃1, . . . , X̃dim Ṽ1
constitute

the basis of Ṽ1, structure constants [4] {clmq}l,m,q

[X̃l, X̃m] =
∑

q:deg X̃q=2

clmqX̃q, (2)

for l,m = 1, . . . , dim Ṽ1, and origin 0̃;
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5. G, G̃ ⊂ U, where U is a two-step nilpotent graded group of topological
dimension N + Ñ , and G ∩ G̃ = 0̂ = (0, 0̃);

6. the fieldsX1, . . . , XN and X̃1, . . . , X̃Ñ coincide with the restrictions of the basis
fields on U to the groups G and G̃ respectively; moreover, their degrees are equal
to those of the corresponding fields on U.

Note that the Cartesian product G × G̃ is a particular case of U. In general,
groupsG and G̃ are submanifolds of U intersecting at their origins. This intersection
coincides with the origin 0̂ of U.

The following property is used to obtain the main result.

Theorem 6 ([23]) Every C1
H -mapping ϕ of a Carnot group to a nilpotent graded

group is continuously hc-differentiable everywhere, that is, in a neighborhood of
each point x it is approximated by a horizontal homomorphism up to o(d2(x, ·)).
Moreover, the matrix of its hc-differential has a block-diagonal structure with
blocks (D̂ϕ)H and (D̂ϕ)H⊥ , where the first block corresponds to fields in V1 and Ṽ1,
and the second one, to fields in V2 and Ṽ2.

Definition 7 Given ϕ, the graph mapping ϕ� : � → U assigns to each x the

element ϕ�(x) = exp
( Ñ∑
j=1
ϕj (x)X̃j

)
(x), where exp

( Ñ∑
j=1
ϕj (x)X̃j

)
(̃0) = ϕ(x).

Straightforward calculations show that the graph mappings of C1
H -mappings

are neither hc-differentiable nor differentiable in the classical sense. Nevertheless,
a suitable tool, polynomial hc-differentiability, was created recently in [7, 8]. It
enables us to approximate graphs by smooth mappings. The main disadvantage of
graph mappings is that the differential of polynomial hc-differential does not have
block diagonal structure, which complicates the description of metric properties.
The solution is to introduce a new basis [8], called the intrinsic basis, close to initial
one but ensuring the desired structure of the polynomial hc-differential.

Theorem 8 ([14]) In a neighborhood of each ϕΓ (x), where x ∈ �, there exists an
intrinsic basis

Xi 	→ xXi = Xi +
∑

k:degXk=2

aikXk +
∑

l:deg X̃l=2

bilX̃l

such that the matrix of the differential of polynomial hc-differential has block lower
triangle with blocks equal to union of blocks in D̂ϕ and unit matrices.

3 Sub-Lorentzian Structures

To describe the sub-Lorentzian structure on U, we introduce the following notation.
Since we consider non-holonomic generalization of Minkowski geometry with
multi-dimensional time, the main idea is to divide basis fields into “positive” and
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“negative”. Here, the squared length of integral curves of “negative” fields is set to
be negative.

Definition 9 Put {X1, . . . , XN, X̃1, . . . , X̃Ñ } = {Y1, . . ., YN̂ }, where N̂ = N+ Ñ .
Moreover, let the Lie algebra V̂ on U be equal to V̂1 ⊕ V̂2 with

[V̂1, V̂1] ⊂ V̂2,

(X1, . . . , XdimV1 , X̃1, . . . , X̃dim Ṽ1
) = (Y1, . . . , Ydim V̂ +1

, Ydim V̂+1 +1, . . . , Ydim V̂1
),

{Ydim V̂ +1 +1, . . . , Ydim V̂1
} = {X̃1, . . . , X̃dim Ṽ1

},

(XdimV1+1, . . . , XN, X̃dim Ṽ1+1, . . . , XÑ )

= (Ydim V̂1+1, . . . , Ydim V̂1+dim V̂+2
, Ydim V̂1+dim V̂+2 +1, . . . , YN̂ ),

where (Ydim V̂1+dim V̂+2 +1, . . . , YN̂ ) = (X̃dim Ṽ1+1, . . . , XÑ ). Denote dim V̂2 = N̂ −
dim V̂1, dim V̂−1 = dim V̂1−dim V̂ +1 (= dim Ṽ1) and dim V̂ −2 = dim V̂2−dim V̂ +2 (=
dim Ṽ2).

Definition 10 For a vector field T =
N̂∑
j=1
yjYj with constant coefficients, set the

squared sub-Lorentzian norm to be

dSL
2

2 (T ) = max
{ dim V̂+1∑

j=1

y2
j −

dim V̂−1∑

k=1

y2
dim V̂+1 +k

,

sgn
( dim V̂+2∑

j=1

y2
dim V̂1+j −

dim V̂−2∑

k=1

y2
dim V̂1+dim V̂+2 +k

)

×
∣∣∣

dim V̂+2∑

j=1

y2
dim V̂1+j −

dim V̂−2∑

k=1

y2
dim V̂1+dim V̂+2 +k

∣∣∣
1/2}

.

If w = exp(T )(v) then the squared sub-Lorentzian distance d2
2(v,w) equals

dSL
2

2 (T ). The d2
2-ball of radius r centered at v is Boxd2

2
(v, r) = {x ∈ U : d2

2(v, x) <

r2}.
The intrinsic squared distance xd2

2(v,w) is defined similarly with Yj replaced by
xYj for j = 1, . . . , N̂ .

Definition 11 For each x ∈ ϕ�(�), consider a neighborhood U(ϕ−1
� (x)) ⊂ �

where o(1) from the definition of hc-differentiability is sufficiently small. Consider
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δ0 > 0 such that each ball in � of radius r < T δ0 lies in at least one of these
neighborhoods (since we study local property, we may assume without loss of
generality that � ⊂ G is a compact neighborhood), where T satisfies

1

T
d2(vj ,w) ≤ vj d2

2(ϕ�(vj ), ϕ�(w))
1/2 ≤ T d2(vj ,w).

Define the intrinsic measure SLHν� on S ⊂ ϕ�(�) as

ωdimV1ωdimV2 lim
δ→0

inf
{∑

j∈N
rνj :

⋃

j∈N
ϕ−1
� (xj ) Boxd2

2
(xj , rj ) ∩ ϕ�

(
U(ϕ−1

� (xj ))
) ⊃ S,

xj ∈ S, rj < δ < δ0, j ∈ N

}
. (3)

To this end, rows 1, . . . , dim Ṽ1 of the matrix of the hc-differential together
are denoted by (D̂ϕ)H (x). Assume that the squares of its column lengths are
at most 1

2 dimV 2
1
− c with c > 0. The block starting from row dim Ṽ1 + 1 is

denoted by (D̂ϕ)H⊥(x) and we assume that the squares of its column lengths are at
most 1

dimV2
− c with c > 0.

Remark 12 The above restrictions guarantee the space-like property of the surface
ϕ�(�); see the details in [14].

One of the main results of [14] is the following area formula for the graphs
of C1

H -mappings defined on a two-step Carnot group with values in a two-step
nilpotent graded group. We formulate it for our case.

Theorem 13 The surface ϕ�(�) is space-like and its SLHν�-measure is

∫

�

SLJ (ϕ, v) dHν(v) =
∫

ϕ�(�)

d SLHνb(y), (4)

where the sub-Lorentzian Jacobian SLJ (ϕ, v) equals

√
det
(
EdimV1 − (D̂ϕ)∗H(D̂ϕ)H

)√
det
(
EdimV2 − (D̂ϕ)∗H⊥(D̂ϕ)H⊥

)

and SLHνb is defined the same way as SLHν� , where ωdimV1ωdimV2r
ν
j is replaced by

b(xj , rj , ν), j ∈ N; see details in [13]. If the matrix ofD(D̂P ϕ�) has block diagonal
structure everywhere then SLHνb = SLHν� .

The following notions are important for our description of the main properties of
maximal surfaces.
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Definition 14 (cf. [11]) The area functional S(ϕ) defined on the class of graph
mappings constructed from C1

H -mappings is

∫

�

√
det
(
EdimV1 − (D̂ϕ)∗H(D̂ϕ)H

)√
det
(
EdimV2 − (D̂ϕ)∗H⊥(D̂ϕ)H⊥

)
dHν.

(5)

The area functional increment on ξ : � → Rdim Ṽ1 with ξ = (ξ1, . . . , ξdim Ṽ1
)

equals S(ϕ, ξ, ε)− S(ϕ), where S(ϕ, ξ, ε) is the integral over� of

√
det
(
EdimV1 −

(
(D̂ϕ)H + εDH ξ

)∗(
(D̂ϕ)H + εDH ξ

))

×
√

det
(
EdimV2 −

(
(D̂ϕ)H⊥ + εP1 + ε2P2

)∗(
(D̂ϕ)H⊥ + εP1 + ε2P2

))
,

DH denotes differentiation along the horizontal fields only, P1(x)〈Xk〉 and
P2(x)〈Xk〉 are equal to

2
dimV1∑

i,j=1

aki,j

∑

q>dim Ṽ1

dim Ṽ1∑

l,m=1

(
(D̂ϕ(x))liXj ξm(x)− (D̂ϕ(x))ljXiξm(x)

)
clmqX̃q,

(6)

and

dimV1∑

i,j=1

aki,j

∑

q>dim Ṽ1

dim Ṽ1∑

l,m=1

(
Xiξl(x)Xjξm(x)− Xiξm(x)Xjξl(x)

)
clmqX̃q, (7)

respectively, aki,j are from (1), clmq are from (2), i, j = 1, . . . , dimV1 with i < j ,

k, l,m = 1, . . . , dim Ṽ1, q = dim Ṽ1 + 1, . . . , Ñ (see the details in [10] and [11]).

Definition 15 Take � ⊂ G, ξ1, . . . , ξdim Ṽ1
∈ C1

H (�,R), and m ∈ N. Define the
norm ‖ξ‖m for ξ as

‖ξ‖m =
(∫

�

dim Ṽ1∑

k=1

|ξk(x)|m +
∑

β: |β|=m
|̂ξ(x)β | dHν(x)

) 1
m

,
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and the (semi)norm ‖ξ‖H,m for ξ = (ξ1, . . . , ξdim Ṽ1
) as

‖ξ‖H,m =
(∫

�

∑

β: |β|=m
|̂ξ(x)β | dHν(x)

) 1
m

,

where ξ̂ = (X1ξ1, . . . , X1ξdim Ṽ1
,X2ξ1, . . . , XdimV1ξdim Ṽ1

).

Definition 16 The domain � ⊂ G is called horizontally attainable if each interior
point of it can be connected to a boundary point by a curve consisting of a finite
number of integral lines of horizontal vector fields.

Theorem 17 The area functional (5) is differentiable twice with respect
to the norm ‖ · ‖max{6 dimV1,12 dimV2}. If � is horizontally attainable then
‖ · ‖H,max{6 dimV1,12 dimV2} is a norm, and (5) is also differentiable twice with
respect to it.

The proof follows the scheme of [10, Theorem 5] almost verbatim with
obvious changes. The main idea is to deduce the expression of the third
derivative of

√
f1(ε)

√
f2(ε) at ε and then to estimate the maximal degree of

X1ξ, . . . , XdimV1ξ in

√
det
(
EdimV1 −

(
(D̂ϕ)H + εDHξ

)∗(
(D̂ϕ)H + εDH ξ

))

and

f2(ε) =
√

det
(
EdimV2 −

(
(D̂ϕ)H⊥ + εP1 + ε2P2

)∗(
(D̂ϕ)H⊥ + εP1 + ε2P2

))

as well as their derivatives at ε.

Theorem 18 Assume that aki,j in (1), clmq in (2), i, j = 1, . . . , dimV1 with i < j ,

k, l,m = 1, . . . , dim Ṽ1, q = dim Ṽ1 + 1, . . . , Ñ , are sufficiently small. If there
exists K > 0 such that

∫

�

‖DHξ‖2
(
√

det
(
EdimV2 − (D̂ϕ)∗H⊥ (D̂ϕ)H⊥

)

√
det
(
EdimV1 − (D̂ϕ)∗H (D̂ϕ)H

)

+
√

det
(
EdimV1 − (D̂ϕ)∗H (D̂ϕ)H

)

√
det
(
EdimV2 − (D̂ϕ)∗H⊥(D̂ϕ)H⊥

)
)
dHν(x) ≥ K‖ξ‖2

max{6 dimV1,12 dimV2},
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and the necessary maximality condition

∫

�

D1(ϕ, ξ)

√
det
(
EdimV2 − (D̂ϕ)∗H⊥(D̂ϕ)H⊥

)

√
det
(
EdimV1 − (D̂ϕ)∗H(D̂ϕ)H

) dH
ν

+
∫

�

D2(ϕ, ξ)

√
det
(
EdimV1 − (D̂ϕ)∗H(D̂ϕ)H

)

√
det
(
EdimV2 − (D̂ϕ)∗H⊥(D̂ϕ)H⊥

) dH
ν = 0 (8)

holds (cf. [11]), where D1(ϕ, ξ, x) and D2(ϕ, ξ, x) are equal to

dimV1∑

i=1

dimV1∑

j=1

〈
DHξi(x), (D̂ϕj )H (x)

〉(
EdimV1 − (D̂ϕ)∗H (x)(D̂ϕ)H (x)

)
ij

+
dimV1∑

i=1

dimV1∑

j=1

〈
(D̂ϕi)H (x),DH ξj (x)

〉(
EdimV1 − (D̂ϕ)∗H (x)(D̂ϕ)H (x)

)
ij
,

and

dimV2∑

i=1

dimV2∑

j=1

〈
(P1)i (x),

(
(D̂ϕ)H⊥

)
j
(x)
〉(
EdimV2 − (D̂ϕ)∗H⊥(x)(D̂ϕ)H⊥(x)

)
ij

+
dimV2∑

i=1

dimV2∑

j=1

〈(
(D̂ϕ)H⊥

)
i
(x), (P1)j (x)

〉(
EdimV2 − (D̂ϕ)∗H⊥ (x)(D̂ϕ)H⊥(x)

)
ij
,

respectively, then (5) takes maximal value at ϕ on its neighborhood. For a
horizontally attainable domain �, we may use ‖ · ‖H,max{6 dimV1,12 dimV2} instead
of ‖ · ‖max{6 dimV1,12 dimV2}.

Proof This statement is actually a reformulation of the following condition of
strong positivity of the area functional: if the functional F is differentiable twice,
its first variation at ζ ∗ equals zero, and the second variation is strongly positive in
the sense that there exists K > 0 such that δ2F(ζ ∗, δζ ) ≥ K‖δζ‖2 then F has
minimum at ζ ∗. The necessary condition (8) is deduced in the same way as in [10,
Theorem 6]. To describe sufficiency estimates, put

f1(ε) = det
(
EdimV1 −

(
(D̂ϕ)H + εDH ξ

)∗(
(D̂ϕ)H + εDH ξ

))
,

f2(ε) = det
(
EdimV2 −

(
(D̂ϕ)H⊥ + εP1 + ε2P2

)∗(
(D̂ϕ)H⊥ + εP1 + ε2P2

))
.
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Then

(√
f1(ε)

√
f2(ε)

)′′ = f
′′
1

√
f2

2
√
f1

+ f
′′
2

√
f1

2
√
f2

+ f ′1f ′2
2
√
f1
√
f2
− (f

′
1)

2√f2

4f 3/2
1

− (f
′
2)

2√f1

4f 3/2
2

≤ f
′′
1

√
f2

2
√
f1

+ f
′′
2

√
f1

2
√
f2
.

Consequently, it suffices to estimate the values f ′′1 and f ′′2 in terms of DHξ . For
f ′′1 , we see that it coincides with the sum of determinants of the modified matrices
EdimV1 − (D̂ϕ)∗H(D̂ϕ)H where row k is replaced by −2Xkξ ·DHξ or rows i and j
with i �= j are replaced by −Xiξ · (D̂ϕ)H − Xiϕ · DHξ and −Xjξ · (D̂ϕ)H −
Xjϕ · DHξ respectively, for i, j, k = 1, . . . , dim Ṽ1. Here Xiϕ stands for row i of
(D̂ϕ)TH .

Applying, if necessary, orthogonal transformations OH = OH(x) and OH⊥ =
OH⊥(x), where x ∈ �, we may assume without loss of generality that
(D̂ϕ)∗H(D̂ϕ)H and (D̂ϕ)∗

H⊥(D̂ϕ)H⊥ are diagonal matrices. Note that this
transformation corresponds to orthogonal transformation of bases within V1(x)

and within V2(x), thus, all lengths and scalar products are the same at x. Fix
x ∈ �. The assumption on the column lengths of these matrices implies that
the (diagonal) elements 1 − a1, . . . , 1 − adimV1 of EdimV1 − (D̂ϕ)∗H(D̂ϕ)H are
positive and strictly separated from 0 everywhere in �. Thus, if we replace row k
of EdimV1 − (D̂ϕ)∗H(D̂ϕ)H by −2Xkξ · DHξ then the corresponding determinant
equals

−2〈Xkξ,Xkξ〉
∏

m:m�=k
(1− am) = −2

∏

m:m�=k
(1− am)‖Xkξ‖2 < 0,

since max
j=1,...,dimV1

{aj } ≤ 1
3 dimV1

− c with c > 0 for k = 1, . . . , dim Ṽ1. Next,

consider the first group of dimV1(dimV1 − 1) determinants. Each of them equals
the sum of four determinants of the modified matrixEdimV1−(D̂ϕ)∗H (D̂ϕ)H , where
rows i and j with i �= j are replaced by only one term. Consider the corresponding
cases and estimate each value.

Case 1 Rows i and j are replaced by−Xiξ · (D̂ϕ)H and−Xjξ · (D̂ϕ)H . Then, the
determinant is estimated as

∏

m:m�=i,j
(1− am)〈Xiξ · (D̂ϕ)H ,Xjξ · (D̂ϕ)H 〉

≤ 1

2

∏

m:m�=i,j
(1− am)‖(D̂ϕ)H ‖2(‖Xiξ‖2 + ‖Xjξ‖2).
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Case 2 Rows i and j are replaced by−Xiϕ ·DHξ and−Xjξ ·(D̂ϕ)H . The estimate
is

∏

m:m�=i,j
(1− am)〈Xiϕ ·DHξ,Xj ξ · (D̂ϕ)H 〉

≤ 1

2

∏

m:m�=i,j
(1− am)

(
ai

dimV1∑

q=1

‖Xqξ‖2 + ‖(D̂ϕ)H‖2‖Xjξ‖2
)
.

Case 3 If rows i and j are replaced by −Xiξ · (D̂ϕ)H and −Xjϕ ·DHξ , then the

estimate equals 1
2

∏
m:m�=i,j

(1− am)
(
aj

dimV1∑
q=1

‖Xqξ‖2 + ‖(D̂ϕ)H‖2‖Xiξ‖2
)

.

Case 4 If rows i and j are replaced by−Xiϕ ·DHξ and−Xjϕ ·DHξ then we have

1
2

∏
m:m�=i,j

(1− am)
(
ai

dim Ṽ1∑
q=1

‖Xqξ‖2 + aj
dim Ṽ1∑
q=1

‖Xqξ‖2
)

.

Fix i and recall that ‖(D̂ϕ)H‖2 =
dimV1∑
q=1

aq as the trace of D̂Hϕ∗D̂Hϕ. We infer

that the coefficient at ‖Xiξ‖2 is equal to

dimV1∑

q=1

aq
∑

j :j �=i

∏

m:m�=i,j
(1− am)+

dimV1∑

q=1

∑

j :j �=q

∏

m:m�=q,j
(1− am)aq

− 2
∏

m:m�=i
(1− am) ≤ −

∏

m:m�=i
(1− am)− ĉ < 0

with ĉ > 0 since 0 < max
q=1,...,dimV1

{aq} ≤ 1
2 dimV 2

1
− c with c > 0 for i =

1, . . . , dimV1.
Consider now f ′′2 and its estimates. It coincides with the sum of determinants

of the modified matrices EdimV1 − (D̂ϕ)∗H⊥(D̂ϕ)H⊥ where row k is replaced by

−2(P ∗2 )k · (Dϕ)H⊥ − 2(P ∗1 )kP1 − 2
(
(D̂ϕ)H⊥

)
k
P2, or rows i and j with i �= j are

replaced by−(P ∗1 )i · (D̂ϕ)H⊥ − (D̂ϕi)H ·P1 and −(P ∗1 )j · (D̂ϕ)H⊥ − (D̂ϕj )H ·P1
respectively, for i, j, k = 1, . . . , dimV2. In contrast to the horizontal case, each
summand depending on the horizontal derivatives of ξ has coefficients depending
on the entries of D̂Hϕ. Thus, the absolute value of the coefficient at ‖DHξ‖2 can
be considered strictly less than

∏
m:m�=i

(1 − am). Since each summand also contains

products of aki,j and clmq , we can easily see that if they are sufficiently small then

|f ′′2 | ≤ ‖DHξ‖2 ·
∏

m:m�=i
(1− am),
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and finally

(√
f1(ε)

√
f2(ε)

)′′ ≤ f
′′
1
√
f2

2
√
f1

+ f
′′
2
√
f1

2
√
f2

≤ −ĉ‖DHξ‖2
(√f2√
f1
+
√
f1√
f2

)
, ĉ > 0.

Thus, the functional −S(ϕ) has minimum since its second variation is strongly
positive; and therefore the area functional (5) has maximum at ϕ. The theorem
follows. ��
Remark 19 We may replace strong restrictions on |aki,j | and |clmq | by adding some

restrictions to ‖(D̂ϕ)H‖ since all coefficients at the horizontal derivatives of ξ
contain the horizontal derivatives of ϕ. Moreover, it is possible to deduce restrictions
on (D̂ϕ)H basing on the given values of aki,j and clmq for i, j = 1, . . . , dimV1 with

i < j and k, l,m = 1, . . . , dim Ṽ1, q = dim Ṽ1 + 1, . . . , Ñ .
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Following the Trail of the Operator
Geometric Mean

Jimmie D. Lawson and Yongdo Lim

Abstract This paper traces the development of the theory of the matrix geometric
mean in the cone of positive definite matrices and the closely related operator
geometric mean in the positive cone of a unital C∗-algebra. The story begins with
the two-variable matrix geometric mean, moves to the n-variable matrix setting,
then to the extension to the positive cone of the C∗-algebra of operators on a Hilbert
space, and even to general unital C∗-algebras, and finally to the consideration of
barycentric maps on the space of integrable probability measures on the positive
cone. Besides expected tools from linear algebra and operator theory, one observes
a substantial interplay with operator monotone functions, geometrical notions in
metric spaces, particularly the notion of nonpositive curvature, some probabilistic
theory of random variables with values in a metric space of nonpositive curvature,
and the appearance of related means such as the inductive and power means.

Keywords Geometric mean · Operator mean · Operator monotone function ·
Nonpositively curved metric spaces · Contractive barycentric map
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They appear as “data points” in a diverse variety of settings: covariance matrices
in statistics, elements of the search space in convex and semidefinite programming,
kernels in machine learning, observations in radar imaging, and diffusion tensors in
medical imaging, to cite only a few. A variety of computational algorithms have
arisen for approximation, interpolation, filtering, estimation, and averaging. Our
interest focuses on the last named, the process of finding an average or mean, which
is again positive definite.

A simple computation would be to take the arithmetic mean of a given finite set
of positive definite matrices. However, researchers have learned that to find a mean
or average that performs well and exhibits desirable properties, one needs to take
into account the underlying geometric structure of �n, the space of n × n-positive
definite matrices.

Formally a mean of order n, or n-mean for short, on a set X is a function μ :
Xn → X satisfying the idempotency condition ∀x ∈ X, μ(x, x, . . . , x) = x. It is
frequently assumed in the definition of a mean that a mean is invariant under any
permutation of variables; we call these symmetric means. The mean μ : Xn → X

is continuous or a topological mean if X is a topological space and μ is continuous.
Typically a mean represents some type of averaging operator.

The subject of (binary) means for positive numbers or line segments has a rich
mathematical lineage dating back into antiquity. The Greeks, motivated by their
interest in proportions and musical ratios, defined at least eleven different means
(depending on how one counts), the arithmetic, geometric, harmonic, and golden
being the best known. A geometric construction for the geometric mean

√
ab of

a, b > 0 is given by Euclid in Book II in the form of “squaring the rectangle,” i.e.,
constructing a square of the same area as a given rectangle of sides a and b. The
study of various means and their properties on the positive reals has remained an
active area of investigation up to the present day.

2 Positive Definite Matrices

Let Mn(C), or simply Mn, denote the set of n × n complex matrices. We may
identify Mn with the set of linear operators on C

n, where we consider Cn to be a
complex Hilbert space of column vectors with the usual Hermitian inner product.
Denoting the conjugate transpose of A ∈Mn by A∗, we recall that A is Hermitian
if A = A∗ and unitary if A∗ = A−1. The Hermitian matrix A is positive definite
if ∀u �= 0, 〈u,Au〉 > 0. These notions readily generalize to B(H), the algebra of
operators on an arbitrary Hilbert space.

The following are well-known equivalences for a Hermitian matrix A to be
positive definite:

1. 〈Ax, x〉 > 0 for all 0 �= x, where 〈·, ·〉 is the Hilbert space inner product on Cn.
2. A = BB∗ for some invertible B.
3. A has all positive eigenvalues.
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4. A = expB =∑∞
n=0 B

n/n! for some (unique) Hermitian B.
5. A = UDU∗ for some unitary U and diagonalD with positive diagonal entries.

The positive definite n×n-matrices form an open cone in Hn, the n×n Hermitian
matrices, with closure the positive semidefinite matrices (equivalently, 〈Ax, x〉 ≥ 0
for all x). We denote the open cone of positive definite matrices by � (or �n if we
need to distinguish the dimension).

We define a partial order (sometimes called the Loewner order) on the vector
space Hn of Hermitian matrices by A ≤ B if B − A is positive semidefinite. We
note 0 ≤ A iff A is positive semidefinite and write 0 < A if A ∈ � iff A is positive
definite. The matrix A is sometimes called strictly positive in this setting.

Every positive definite (Hermitian) matrix operator has a unique spectral decom-
position

A =
n∑

i=1

λiEi,

where λi > 0 (λi ∈ R) is the ith-eigenvalue and Ei is the orthogonal projection
onto the eigenspace of λi . One then has

Ak =
n∑

i=1

λki Ei,

from which one can easily deduce that every positive definite matrix has a unique
positive definite kth-root.

The arithmetic and harmonic means readily extend fromR>0 to the set of positive
definite matrices:

A(A,B) = 1

2
(A+ B); H(A,B) = 2(A−1 + B−1)−1.

The geometric mean is not so obvious (e.g.,
√
AB need not be positive definite for

A,B positive definite). One approach is to rewrite the equation x2 = ab (which
has positive solution the geometric mean of a and b) in its appropriate form in the
noncommutative setting:

XA−1X = B
A−1/2XA−1/2A−1/2XA−1/2 = A−1/2BA−1/2

A−1/2XA−1/2 = (A−1/2BA−1/2)1/2

X = A1/2(A−1/2BA−1/2)1/2A1/2.
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We write A#B(= A1/2(A−1/2BA−1/2)1/2A1/2) for the matrix geometric mean.
Other connections between the matrix geometric mean and the one for positive real
numbers may be found in [8].

3 Operator Monotone Functions and the Kubo–Ando
Theorem

ForM1,M2 ⊆ R and a mapping f : M1 → M2, we define a function on the set of
all Hermitian A with spectrum contained in M1 by f (A) = ∑n

i=1 f (λi)Ei , where
A = ∑n

i=1 λiEi is the spectral decomposition (functions constructed in this way
are called primary matrix functions and provide a simple example of the functional
calculus). A continuous function f : M1 → M2 is operator monotone if f (A) ≤
f (B) whenever A ≤ B. Operator monotone functions defined on some interval are
continuous, monotone (nondecreasing), and concave.

IfMμ(A,B)M∗ = μ(MAM∗,MBM∗) for all invertibleM , the mean μ : �×
� → � is said to be invariant under congruence transformations. The mean μ is
monotonic if A1 ≤ A2, B1 ≤ B2 implies μ(A1, B1) ≤ μ(A2, B2). The next result
is a major 1980 result of F. Kubo and T. Ando [6].

Theorem Every operator monotone function f : R>0 → R>0 with f (1) = 1 gives
rise to a congruence-invariant, monotonic mean μ defined by

μ(A,B)[= A 1
2μ(I,A−1/2BA−1/2)A

1
2 ] = A 1

2 f (A−1/2BA−1/2)A
1
2 .

The association f → μf is a bijection between the operator monotone functions
and the congruence-invariant, monotonic continuous means. (For the converse, one
defines f from μ(I, λI) = f (λ)I .)

To illustrate we apply the Kubo–Ando roadmap for passing from numeric to
matrix means for certain important examples:

1. The Geometric Mean A#B and Weighted Geometric Mean A#tB:

γ (a, b) = √
ab→ f (x) = γ (1, x) = x1/2

→ G(A,B) = A#B = A1/2(A−1/2BA−1/2)1/2A1/2

γt (a, b) = a1−t bt → Gt (A,B) = A#tB = A1/2(A−1/2BA−1/2)tA1/2

2. The Arithmetic Mean:

α(a, b) = (a + b)/2 → f (x) = α(1, x) = (1/2)(1+ x)
→ A(A,B) = A1/2((1/2)(I + A−1/2BA−1/2))A1/2

= (1/2)(A+ B)
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The Kubo–Ando Theorem provided the foundation for the rapid development
of the theory of matrix and operator means of two variables. However, no such
analogous theorem has been discovered for multivariable means, even when the
extension is known for the case of the positive reals. Some means, such as the
arithmetic and harmonic, admit rather obvious extensions to the n-variable matrix
case. But the problem of extending the geometric mean to the multivariable matrix
setting remained unsolved for a number of years. An important step along the way
was the gradual realization that the geometric matrix mean of two variables had an
important alternative geometric/metric characterization, apparently first appearing
in print in an article of the authors in 2001 [8].

4 Means of Several Variables and NPC-Spaces

In 2004 Ando et al. [2] gave the first extension of the binary geometric mean to n-
variables, which came to be called the ALM mean. They listed desirable axiomatic
properties for such an n-variable extension g and showed they were satisfied by their
extension. The proofs typically involved extending from the known case of n = 2
by induction.

Let A = (A1, . . . , An),B = (B1, . . . , Bn) ∈ �n.
(P1) (Consistency with scalars) g(A) = (A1 · · ·An)1/n if the Ai’s commute;
(P2) (Joint homogeneity) g(a1A1, . . . , anAn) = (a1 · · · an)1/ng(A);
(P3) (Permutation invariance) g(Aσ ) = g(A), where Aσ = (Aσ(1), . . . , Aσ(n));
(P4) (Monotonicity) If Bi ≤ Ai for all 1 ≤ i ≤ n, then g(B) ≤ g(A);
(P5) (Continuity) g is continuous;
(P6) (Congruence invariance) g(MAM∗) = Mg(A)M∗ for M invertible, where

M(A1, . . . , An)M
∗ = (MA1M

∗, . . . ,MAnM∗);
(P7) (Joint concavity) g(λA+ (1− λ)B) ≥ λg(A)+ (1− λ)g(B) for 0 ≤ λ ≤ 1;
(P8) (Self-duality) g(A−1

1 , . . . , A
−1
n )

−1 = g(A1, . . . , An);
(P9) (Determinantal identity) Det g(A) =∏ni=1(DetAi)1/n; and

(P10) (AGH mean inequalities) n(
∑n
i=1 A

−1
i )

−1 ≤ g(A) ≤ 1
n

∑n
i=1 Ai.

But a better candidate soon appeared. To understand it, we need some back-
ground. The parallelogram law in Hilbert spaces is given by

sum of 2 diagonals squared = sum of 4 sides squared

d2(x1, x2)+ 4d2(x,m)(= (2d(x,m))2) = 2d2(x, x1)+ 2d2(x, x2)



148 J. D. Lawson and Y. Lim

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
���

�
�

�
�

�
�

�
�

�
�� �����������������������

xx 2

x1

m

Replacing the equality by an inequality in a general metric space yields the more
general semiparallelogram law: for all x1, x2 ∈ X, there exists m ∈ X such that for
any x ∈ X,

d2(x1, x2)+ 4d2(x,m) ≤ 2d2(x, x1)+ 2d2(x, x2) (NPC)

One can show that m = m(x1, x2) is unique and is the unique metric midpoint
between x1 and x2.

(Global) NPC-spaces are complete metric spaces satisfying the semiparallelo-
gram law (NPC). They have been intensely studied in recent years, often under
alternative names such as CAT(0)-spaces or Hadamard spaces.

Condition (NPC) is a metric version of NonPositive Curvature, since the
distance metric of a simply connected Riemannian manifold satisfies (NPC) iff the
Riemannian metric has nonpositive curvature in the usual sense.

Example The open cone �n of n × n positive definite matrices becomes a
Riemannian manifold when equipped with the trace Riemannian metric: 〈X,Y 〉A =
trA−1XA−1Y, where A ∈ �n and X,Y are n × n Hermitian matrices. The
corresponding distance metric on�n is given by d(A,B) = ‖ log(A−1/2BA−1/2‖2,
where ‖ · ‖2 is the Frobenius (or Hilbert-Schmidt) norm. The cone �n equipped
with the metric d is an NPC-space. Furthermore, the unique midpoint between
A,B ∈ �n is the geometric mean A#B.

Let (M, d) be a metric space. Given a weight w = (w1, . . . , wn) (each wi ≥ 0 and∑n
i=1 wi = 1), the weighted least squares mean&(w; a1, . . . , an) of (a1, . . . , an) ∈

Mn is defined as the solution to the optimization problem of minimizing the
weighted sum of distances squared:

argmin
x∈M

n∑

i=1

wiδ
2(x, ai),
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provided the solution uniquely exists. This is the case for NPC spaces, since the
function defined by x 	→ ∑n

i=1 wiδ
2(x, ai) is uniformly convex in this case. E.

Cartan considered such “barycenters” in the case of Riemannian manifolds, where
they uniquely exist for the ones of nonpositive curvature, and M. Fréchet considered
them in more general metric spaces. Thus the least squares mean is also called the
Cartan mean or Fréchet mean.

First M. Moakher [13] and independently R. Bhatia and J. Holbrook [3, 4]
studied the uniformly weighted least squares mean for the set of positive definite
matrices � equipped with the trace metric as a multivariable generalization of
the two-variable geometric mean. They established its (unique) existence and
verified several of the axiomatic properties (P1)–(P10) satisfied by the Ando–Li–
Mathias geometric mean: consistency with scalars, joint homogeneity, permutation
invariance, congruence invariance, and self-duality (the last two being true since
congruence transformations and inversion are isometries). Further, based on com-
putational experimentation, Bhatia and Holbrook conjectured monotonicity for the
least squares mean, but this was left as an open problem.

5 Monotonicity, Probability, and the Inductive Mean

One other mean will play an important role in what follows, one that we shall call
the inductive mean, following the terminology of K.-T. Sturm [15]. It appeared
elsewhere in the work of M. Sagae and K. Tanabe [14] and Ahn et al. [1]. It
is defined inductively for NPC spaces (or more generally for metric spaces with
weighted binary means x#t y) for each k ≥ 2 by S2(x, y) = x#y and for k ≥
3, Sk(x1, . . . , xk) = Sk−1(x1, . . . , xk−1)# 1

k
xk . (Here x#ty is the unique point z

such that d(x, y) = (1− t)d(x, z)+ td(y, z) for 0 ≤ t ≤ 1.) Note that this mean at
each stage is defined from the previous stage by taking the appropriate two-variable
weighted mean, which is monotone. Thus the inductive mean is monotone.

Let (X, d) be an NPC metric space, {x1, . . . , xm} ⊆ X. Set Nm = {1, 2, . . . ,m}
and assign to k ∈ Nm the probability wk , where 0 ≤ wk ≤ 1 and

∑m
k=1 wi = 1.

For each ω ∈ ∏∞
n=1 Nm, define a sequence σ = σω in X by σ(1) = xω(1), σ (k) =

Sk(xω(1), . . . , xω(k)), where Sk is the inductive mean. (The sequence σω may be
viewed as a “walk” starting at σ(1) = xω(1) and obtaining σ(k) by moving from
σ(k − 1) toward xω(k) a distance of (1/k)d(σ (k − 1), xω(k)).) The following is a
special case of Sturm’s main results in [15].

Theorem 1 (Sturm’s Theorem) Giving
∏∞
n=1 Nm the product probability, the set

{ω ∈
∞∏

n=1

Nm : lim
n
σω(n) = &(w; x1, . . . , xm)}

has measure 1, i.e., σω(n)→ &(w; x1, . . . , xm) for almost all ω.
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More generally, Sturm establishes a version of the Strong Law of Large Numbers
for random variables into an NPC metric space, with limit the least squares mean.

Using Sturm’s Theorem, the authors were able to show (2011) [8]:

Theorem 2 Let � be the open cone of positive definite matrices of some fixed
dimension n.

(1) The least squares mean & on � is monotone: Ai ≤ Bi for 1 ≤ i ≤ n implies
&(A1, . . . , An) ≤ &(B1, . . . Bn).

(2) All ten of the ALM axioms hold for&.
(3) In a natural way & can be extended to a weighted mean, and appropriate

weighted versions of the ten properties hold.

Note The ALM mean is typically distinct from the least squares mean for n ≥ 3.
Thus the ALM axioms do not characterize a mean. The latter fact had already been
noted by Bini et al. [5], who introduced a much more computationally efficient
variant of the ALM mean [5].

6 The Karcher Equation

The uniform convexity of the trace metric d on � yields that the least squares mean
is the unique critical point for the functionX 	→∑n

k=1 d
2(X,Ak). The least squares

mean is thus characterized by the vanishing of the gradient, which is equivalent to
its being a solution of the following Karcher equation:

n∑

i=1

wi log(X−1/2AiX
−1/2) = 0. (1)

The Karcher equation (1) can be used to define a mean on the cone� of positive
invertible bounded operators on an infinite-dimensional Hilbert space (where one no
longer has an NPC-space), called the Karcher mean. As we just previously noted,
restricted to the matrix case it yields the least squares mean.

Power means for positive definite matrices were introduced by Lim and Palfia
[11].

Theorem 3 Let A1, . . . , An ∈ � and let w = (w1, . . . , wn) be a weight. Then
for each t ∈ (0, 1], the following equation has a unique positive definite solution
X = Pt (w;A1, . . . , An), called the weighted power mean:

X =
n∑

i=1

wi(X#tAi).
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When restricted to the positive reals, the power mean reduces to the usual power
mean

Pt(w; a1, . . . , an) =
(
w1a

t
1 + · · · +wnatn

) 1
t .

In 2014 the authors showed [9] that the preceding notion of power mean extended
to the setting of bounded operators on a Hilbert space [9] and established that the
power means are decreasing, s < t implies Ps(· ; ·) ≤ Pt (· ; ·). Using power means
we were able to establish the existence and uniqueness of the Karcher mean in the
C∗-algebra of bounded operators on a Hilbert space.

Theorem 4 In the strong operator topology

&(· ; ·) = lim
t→0+

Pt (· ; ·) = inf
t>0
Pt (· ; ·),

where & is the Karcher mean, the unique solution of the Karcher equation

X = &n(A1, . . . , An)⇔
n∑

i=1

log(X−1/2AiX
−1/2) = 0.

Via this machinery many of the axiomatic properties of the least squares mean in
the finite-dimensional setting were extended to the corresponding Karcher mean in
the infinite-dimensional setting.

Recent work by Lim and Palfia [12] and independently by Lawson [7] shows that
the preceding constructions and results remain valid for the open cone of positive
invertible elements in any unital C∗-algebra.

7 Barycenters

A Borel probability measure on a metric space (X, d) is a countably additive non-
negative measure μ on the Borel algebra B(X), the smallest '-algebra containing
the open sets, such that μ(X) = 1. We denote the set of all probability measures
on (X,B(X)) by P(X). Let P0(X) be the set of all uniform finitely supported
probability measures, i.e., all μ ∈ P(X) of the form μ = 1

n

∑n
j=1 δxj for some

n ∈ N, where δx is the point measure of mass 1 at x.
A measure μ ∈ P(X) is said to be integrable if

∫

X

d(x, y)dμ(y) <∞.

The set of integrable measures is denoted by P1(X).
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The Wasserstein distance (alternatively Kantorovich–Rubinstein distance) dW

on P1(X) is a standard metric for probability measures. It is known that dW is a
complete metric on P1(X) whenever X is a complete metric space and that P0(X)

is dW -dense in P1(X).
One can view the Karcher mean (A1, . . . , An) 	→ &(A1, . . . , An) on �, the

open cone of positive invertible operators, alternatively as yielding a barycenter
for the probability measure with weight 1/n at each Ak. It turns out that this
barycentric map is contractive from P0(�) to �, and hence extends uniquely to
a contractive barycentric map & : P1(�) → �. We call this extended map the
Karcher barycentric map. It is characterized by

X = &(μ)⇔
∫

�

log(X−1/2AX−1/2)dμ(A) = 0.

The existence and basic theory and properties of the Karcher barycentric map can
be found in [10]. We note that from its definition it extends the Karcher mean.

8 Summary

In the preceding we have attempted to trace out how the matrix/operator geometric
mean has strikingly developed over the past 15 years from a two-variable mean
to a multivariable matrix mean (the least squares mean) to an operator mean in
unital C∗-algebras (the Karcher mean) to a barycentric map on integrable Borel
probability measures. Whatever future developments may hold, it is clear that a
substantial theory has already emerged.
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On Hom-Lie–Rinehart Algebras

Ashis Mandal and Satyendra Kumar Mishra

Abstract We describe the notion of hom-Lie–Rinehart algebras as an algebraic
analogue of hom-Lie algebroids. We consider modules (left and right) over this
hom-structure and describe homology and cohomology complexes by considering
coefficient modules. In the sequel, we consider some special classes of hom-
Gerstenhaber algebras and their relationship with hom-Lie algebroids by Mandal
and Mishra (J Geom Phys 133:287–302, 2018; Commun Algebra 46(9):3722–3744,
2018).
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1 Introduction

The notion of Lie–Rinehart algebras plays an important role in many branches of
mathematics. The idea of this notion goes back to the work of N. Jacobson to study
certain field extensions. Over the years, this notion appeared with different names
in several areas which include differential geometry and differential Galois theory.
J. Huebschmann described Lie–Rinehart algebras as an algebraic counterpart of Lie
algebroids in [2] and developed systematically through a series of papers. There is
also a growing interest in twisted algebraic structures or hom-algebraic structures.
The first appearance of a hom-algebra was the notion of hom-Lie algebra, in the
context of some particular deformation called q-deformations of Witt and Virasoro
algebra of vector fields. Later on, many essential results on hom-Lie algebras and
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hom-associative algebras followed in the works of A. Makhlouf, Y. Sheng, D. Yau
and coauthors. In [3], C. Laurent-Gengoux and J. Teles introduced the notion of
hom-Lie algebroids through a formulation of hom-Gerstenhaber algebras, following
the one-one correspondence between Lie algebroid structures on a vector bundle
and Gerstenhaber algebra structures on the exterior algebra of multisections of
the vector bundle. In fact, this one-one correspondence is an outcome of a more
general categorical result for the algebraic counterpart, namely the existence of
adjoint functors between the category of Lie–Rinehart algebras and the category
of Gerstenhaber algebras. This adjunction leads us to define the notion of hom-Lie–
Rinehart algebras and to construct a pair of adjoint functors between the category
of hom-Gerstenhaber algebras and the category of hom-Lie–Rinehart algebras (for
details see [4, 5]).

2 Hom-Lie–Rinehart Algebras

LetR be a commutative ring with unity,A be an associative commutativeR-algebra,
and φ : A→ A be an algebra endomorphism.

Definition 1 A hom-Lie–Rinehart algebra over (A, φ) is given by a tuple
(A,L, [−,−], φ, α, ρ) where L is an A-module, [−,−] : L × L → L is a
skew symmetric bilinear map, α : L → L is a φ-function linear map satisfying
α([x, y]) = [α(x), α(y)], and the map ρ : L→ Derφ A is a φ-function linear map
such that following conditions hold.

1. The triplet (L, [−,−], α) is a hom-Lie algebra.
2. (ρ, φ) is a hom-Lie algebra representation of (L, [−,−], α) on A.
3. [x, a.y] = φ(a)[x, y] + ρ(x)(a)α(y) for all a ∈ A, x, y ∈ L.

A hom-Lie–Rinehart algebra (A,L, [−,−], φ, α, ρ) is said to be regular if the map
φ : A→ A is an algebra automorphism and α : L→ L is a bijection.

Example

1. Let L be a Lie–Rinehart algebra over an associative commutative algebra A, and
(α, φ) be an endomorphism of L, then the tuple (A,L, [−,−]α, φ, α, ρφ) is a
hom-Lie–Rinehart algebra, where [−,−]α := α ◦ [−,−], and ρφ := φ ◦ ρ.

2. Hom-Lie–Rinehart algebra associated to the space of φ-derivations: Let φ :
A → A be an algebra automorphism. Then (Derφ A, [−,−]φ, αφ) is a hom-
Lie algebra, with αφ(D) = φ ◦D ◦ φ−1 and the bracket [D1,D2]φ = φ ◦D1 ◦
φ−1 ◦D2 ◦ φ−1 − φ ◦D2 ◦ φ−1 ◦D1 ◦ φ−1, for any D1,D2,D ∈ Derφ(A). In
fact, the tuple (A,Derφ A, [−,−]φ, αφ, αφ) is a hom-Lie–Rinehart algebra over
(A, φ) with the anchor ρ = αφ .

3. The hom-Lie–Rinehart algebras associated to a Poisson algebra equipped with
an automorphism is described in [4].
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2.1 Homomorphisms of Hom-Lie–Rinehart Algebras

Definition 2 Let (A,L, [−,−]L, φ, αL, ρL) and (B,L′, [−,−]L′, ψ, αL′ , ρL′) be
hom-Lie–Rinehart algebras, then a hom-Lie–Rinehart algebra homomorphism is a
pair of maps (g, f ), satisfying the following identities:

1. f ◦ αL = αL′ ◦ f, g ◦ φ = ψ ◦ g;
2. f ([x, y]) = [f (x), f (y)]L′ for all x, y ∈ L;
3. g(ρL(x)(a)) = ρL′(f (x))(g(a)) for all x ∈ L, a ∈ A,

where the map g : A → B is a R-algebra homomorphism and f : L → L′ is a
g-function linear map

Let us denote by hLR the category of hom-Lie-Rinehart algebras and by hGR the
category of hom-Gerstenhaber algebras.

Theorem 3 There are adjoint functors between the categories hLR and hGR.

3 Modules of Hom-Lie–Rinehart Algebras

Let (L, α) := (A,L, [−,−], φ, α, ρ) be a hom-Lie–Rinehart algebra over (A, φ).
Also, letM be an A-module and β : M → M be a φ-function linear map.

3.1 Left Modules Over Hom-Lie–Rinehart Algebras

Definition 4 A pair (M, β) is said to be a left module over a hom-Lie Rinehart
algebra (L, α) if the following conditions hold for all X ∈ L, a ∈ A, m ∈ M .

• There is a map θ : L⊗M → M , such that the pair (θ, β) is a hom-Lie algebra
representation of (L, [−,−], α) onM . Let {x,m} := θ(x,m);

• {a.X,m} = φ(a){X,m};
• {X, a.m} = φ(a){X,m} + ρ(X)(a).β(m).
Example

1. If α = IdL and β = IdM then (L, α) is a Lie–Rinehart algebra and M is a left
Lie–Rinehart algebra module over L.

2. The pair (A, φ) is a left module over (L, α).



158 A. Mandal and S. K. Mishra

Let (L, α) be a regular hom-Lie–Rinehart algebra. We define a cochain complex
(AltA(L,M), δ), where AltA(L,M) :=⊕n≥0HomA(∧nAL,M). The coboundary

map δ : AltnA(L,M)→ Altn+1
A (L,M) is defined as follows:

δf (x1, · · · , xn+1)

=
n+1∑

i=1

(−1)i+1θ(α−1(xi))(f (α
−1(x1), · · · , x̂i , · · · , α−1(xn+1))

+
∑

1≤i<j≤n+1

(−1)i+jβ(f (α−2([xi, xj ]), α−1(x1), ·, x̂i , ·, x̂j , ·, α−1(xn+1))

for f ∈ AltnA(L,M), and xi ∈ L, for 1 ≤ i ≤ n + 1. The cohomology of a
regular hom-Lie–Rinehart algebra (L, α) with coefficients in the left module (M, β)
is given by the associated cohomology of the cochain complex (AltA(L,M), δ).

Theorem 5 Let (L, α) be a regular hom-Lie–Rinehart algebra over (A, φ). If
L is a projective A-module of rank n, then there is a bijective correspondence
between right (L, α)-module structures on (A, φ) and left (L, α)-module structures
on (∧nAL, α̃).
Corollary 6 Let (L, α) be a regular hom-Lie–Rinehart algebra over (A, φ). If
L is a projective A-module of rank n, then there is a bijective correspondence
between left (L, α)-module structures on (∧nAL, α̃) and exact generators of the hom-
Gerstenhaber algebra bracket on ∧∗AL.

3.2 Right Modules Over Hom-Lie–Rinehart Algebras

Definition 7 The pair (M, β) is a right module over a hom-Lie Rinehart algebra
(L, α) if the following conditions hold for all X ∈ L, a ∈ A, m ∈ M .

• There is a map θ : M ⊗ L → M such that the pair (θ, β) is a hom-Lie algebra
representation of (L, [−,−], α) onM . Let {m,X} := θ(m,X);

• {a.m,X} = {m, a.X} = φ(a).{m,X} − ρ(X)(a).β(m).
Remark 8 There is no canonical right module structure on (A, φ).

For n ≥ 0, we take Cn(L,M) := M ⊗A ∧nAL and define a boundary map d :
Cn(L,M)→ Cn−1(L,M) as

d(m⊗ (x1 ⊗ · · · ⊗ xn))

=
n∑

i=1

(−1)i+1{m, xi} ⊗ (α(x1)⊗ · · · ⊗ ˆα(xi)⊗ · · · ⊗ α(xn))

+
∑

i<j

(−1)i+jβ(m)⊗ ([xi, xj ], α(x1)⊗· · ·⊗ ˆα(xi)⊗· · ·⊗ ˆα(xj )⊗· · ·⊗α(xn)).
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Then it follows that (C∗(L,M), d) is a chain complex. The homology of (L, α) with
coefficient in the right module (M, β) is given by H hLR∗ (L;M) := H∗(C∗(L,M)).
Example If α = IdL and β = IdM , then H hLR∗ (L;M) is the Lie–Rinehart algebra
homology with coefficients in M . For A = R, the pair (θ, β) is a representation
of hom-Lie algebra (L, [−,−], α) on M and H hLR∗ (L;M) is the homology of a
hom-Lie algebra with coefficients inM .

Theorem 9 Let (L, α) be a hom-Lie–Rinehart algebra over (A, φ). Then there is
a bijective correspondence between right (L, α)-module structures on (A, φ) and
exact generators of the associated hom-Gerstenhaber algebra bracket on ∧∗AL.

Corollary 10 The homology H hLR∗ (L, A) is isomorphic to the homology of the
chain complex associated to the hom-Gerstenhaber algebra structure on ∧∗AL.

4 Representation of a Hom-Lie Algebroid

In this section, we consider hom-Lie algebroids as a particular case of hom-Lie–
Rinehart algebras. Let A := (A, φ, [−,−], ρ, α) be a hom-Lie algebroid and
(E, φ, β) be a hom-bundle over a smooth manifold M . A bilinear map ∇ :
�A ⊗ �E → �E, denoted by ∇x(s) := ∇(x, s), is a representation of A on the
hom-bundle (E, φ, β) if it satisfies the following properties:

1. ∇f.x (s) = φ∗(f ).∇x(s) for all x ∈ �A, s ∈ �E and f ∈ C∞(M);
2. ∇x(f.s) = φ∗(f ).∇x(s) + ρ(x)[f ].β(s) for all x ∈ �A, s ∈ �E and f ∈
C∞(M);

3. The pair (∇, β) is a hom-Lie algebra representation of (�A, [−,−], α) on �E.

Example

1. Let A = (A, φ, [−,−], ρ, α) be a hom-Lie algebroid over M . Then ∇φ∗ is
a canonical representation of A on the hom-bundle (M × R, φ, φ∗), given by
∇φ∗(x, f ) = ρ(x)[f ] for all x ∈ �A and f ∈ C∞(M).

2. Let A = (A, φ, [−,−], ρ, α) be a hom-Lie algebroid overM and (E, φ, β) be
a hom-bundle overM , where E is a trivial line bundle over M with s ∈ �E, a
nowhere vanishing section of E over M such that β(s) = c.s for some c ∈ K.
Define a map ∇ : �A⊗�E → �E by ∇(x, f.s) = ρ(x)[f ].β(s) for all x ∈ �A
and f ∈ C∞(M). Then the map ∇ is a representation of A on (E, φ, β).

Proposition 11 ([5]) Let A = (A, φ, [−,−], ρ, α) be a regular hom-Lie alge-
broid. Then there is a one-one correspondence between representations of A on the
hom-bundle (∧nA, φ, α̃) and exact generators of the associated hom-Gerstenhaber
algebra A := (⊕k≥0� ∧k A∗,∧, [−,−]A, α̃) (here, α̃ is extension of the map α to
higher degree elements).

Example Cohomology of regular hom-Lie algebroids: Let A := (A, φ, [−,−], ρ, α)
be a regular hom-Lie algebroid over M and the map ∇ be a representation
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of A on the hom-bundle (E, φ, β). Then we define a cochain complex
(C∗(A;E), dA,E) for A with coefficients in this representation as follows:
C∗(A;E) := ⊕n≥0�(Hom(∧nA,E)), and the coboundary map dA,E is defined as
follows for * ∈ �(Hom(∧nA,E)), xi ∈ �A and 1 ≤ i ≤ n+ 1.

(dA,E*)(x1, · · · , xn+1)

=
n+1∑

i=1

(−1)i+1∇(α−1(xi ))
(*(α−1(x1), · · · , x̂i , · · · , α−1(xn+1)))

+
∑

1≤i<j≤n+1

(−1)i+jβ(*(α−2([xi, xj ]), α−1(x1), · · · , x̂i , · · · , x̂j , · · · , α−1(xn+1))).

• We denote the cohomology of the resulting cochain complex (C∗(A;E), dA,E)
by H ∗(A, E).

• If α = IdA and φ = IdM , then A is a Lie algebroid and H ∗(A, E) is the
usual de-Rham cohomology of the Lie algebroid A with coefficients in the
representation on the vector bundle E.

Theorem 12 (Dual Description of a Hom-Lie Algebroid, see [1, 5]) Let (A, φ, α)
be a regular hom-bundle over M , i.e. the map φ : M → M is a diffeo-
morphism and α : �A → �A is an invertible map. Then a hom-Lie alge-
broid structure A := (A, φ, [−,−], ρ, α) on the hom-bundle (A, φ, α) is equiv-
alent to a (α̂, α̂)-differential graded commutative algebra on ⊕n≥0�(∧nA∗),
where the map α̂ : �(∧nA∗) → �(∧nA∗) is defined by α̂(ξ)(x1, · · · , xn) =
φ∗(ξ(α−1(x1), · · · , α−1(xn))) for ξ ∈ �(∧nA∗), and xi ∈ �A, for 1 ≤ i ≤ n.

5 Strong Differential Hom-Gerstenhaber Algebras

A hom-Gerstenhaber algebra A := (⊕i∈ZAi ,∧, [−,−], α) is called a differential
hom-Gerstenhaber algebra if it is equipped with a degree 1 map d : A → A such
that

1. the map d is a (α, α)-derivation of degree 1 with respect to the graded
commutative and associative product ∧, i.e. for X,Y ∈ A,

d(X ∧ Y ) = d(X) ∧ α(Y )+ (−1)|X|α(X) ∧ d(Y ).

2. d2 = 0 and the map d commutes with α, i.e. d ◦ α = α ◦ d .
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The hom-Gerstenhaber algebra A is said to be a strong differential hom-
Gerstenhaber algebra if d also satisfies the equation:

d[X,Y ] = [dX, α(Y )] + [α(X), dY ]

for X,Y ∈ A. A strong differential hom-Gerstenhaber algebra A is called regular if
the map α : A→ A is an invertible map.

Example

1. For any hom-Poisson manifold, the hom-Gerstenhaber algebra associated to the
tangent hom-Lie algebroid (and to the cotangent hom-Lie algebroid) is a strong
differential hom-Gerstenhaber algebra.

2. For any purely hom-Lie bialgebra (g, g∗), the associated hom-Gerstenhaber
algebras are equipped with a strong differential.

3. Given a Gerstenhaber algebra (A, [−,−],∧) with a strong differential d and an
endomorphism α : (A, [−,−],∧) → (A, [−,−],∧) satisfying d ◦ α = α ◦ d ,
the tuple (A,∧, [−,−]α = α ◦ [−,−], α, dα = α ◦ d) is a strong differential
hom-Gerstenhaber algebra.

Theorem 13 The tuple (
⊕
i∈Z+ �(∧iA),∧, [−,−], α, d) is a strong differential

regular hom-Gerstenhaber algebra if and only if (A,A∗) is a hom-Lie bialgebroid
(see [1, 5]).
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One Step Degeneration of Trigonal
Curves and Mixing of Solitons and
Quasi-Periodic Solutions of the KP
Equation

Atsushi Nakayashiki

To the memory of Victor Enolski

Abstract We consider certain degenerations of trigonal curves and hyperelliptic
curves, which we call one step degeneration. We compute the limits of correspond-
ing quasi-periodic solutions using the Sato Grassmannian. The mixing of solitons
and quasi-periodic solutions is clearly visible in the obtained solutions.

Keywords KP equation · Soliton · Quasi-periodic solution · Sato
Grassmannian · Trigonal curve
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1 Introduction

The aim of this paper is to compute explicitly the limits of quasi-periodic solutions
of the KP (Kadomtsev-Petviashvili) equation according to certain degenerations of
trigonal and hyperelliptic curves, which we call one step degeneration.

The KP equation is the 2+ 1 dimensional equation given by

3ut2t2 + (−4ut3 + 6uut1 + ut1t1t1)t1 = 0, (1)

where (t1, t2) and t3 are space and time variables respectively. It can be rewritten in
the Hirota bilinear form:

(D4
t1
− 4Dt2Dt3 + 3D2

t2
)τ · τ = 0, (2)
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whereDti ’s are Hirota derivatives defined by

f (t + s)g(t − s) =
∞∑

n=0

Dnt f · g
sn

n! .

For a solution τ of (2) u = 2(log τ )t1t1 gives a solution of (1). The KP hierarchy is
the infinite system of differential equations which contains the KP equation (2) as
its first member [6]. It is given by

∫
τ (t − s − [z−1])τ (t + s + [z−1])e−2

∑∞
j=1 sj z

j dz

2πi
= 0, (3)

where t = (t1, t2, . . .), s = (s1, s2, . . .), [z−1] = [z−1, z−2/2, z−3/3, . . .] and
the integral signifies taking the coefficient of z−1 in the series expansion of the
integrand. Expanding (3) by s we get differential equations for τ (t) in the Hirota
bilinear form. A solution τ (t) is sometimes called a tau function. The introduction
of the infinitely many variables is indispensable to the Sato theory which we use in
this paper.

The KP hierarchy has a variety of solutions. Among them soliton solutions and
algebro-geometric solutions are relevant to us. Soliton solutions are the solutions
expressed by exponential functions given as follows (see [11] for example). Take
positive integers N < M , non-zero parameters κj , 1 ≤ j ≤ M and an N × M-
matrix A = (ai,j ). Then soliton solution is given by

τ (t) =
∑

I=(i1<···<iN )
�IAIe

η(κi1 )+···+η(κiM ), (4)

�I =
∏

p<q

(κiq − κip ), AI = det(ap,iq )1≤p,q≤N, η(κ) =
∞∑

i=1

tiκ
i .

Recently it was discovered that the shapes of soliton solutions form various web
patterns and that they are related with the geometry of Grassmann manifolds, cluster
algebras (see [11] and references therein).

Quasi-periodic solutions, which is also called algebro-geometric solutions,
constitute a class of solutions expressed by theta functions of algebraic curves with
positive genus. Periodic solutions are contained in this class. Soliton solutions can
be considered as the limits of quasi-periodic solutions when periods go to infinity.
In terms of curves soliton solutions are the genus zero limits of quasi-periodic
solutions. Our original motivation of the research was to take these limits and
compare the structure of the quasi-periodic solutions and that of solitons described
in [11]. However in the course of study [2] we come to the recognition that the limits
to positive genus solutions are more fundamental. Anyhow the difficulty here is that
to take a limit of a theta function or, in other words, to take a limit of the period
matrix of an algebraic curve, is not very easy.
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In [2, 18, 19] we have demonstrated that the Sato Grassmannian (UGM) approach
to this kind of problem is very effective. The reason, roughly speaking, is explained
as follows. There is a one to one correspondence between points of UGM and
solutions of the KP-hierarchy up to constants. Using UGM an algebro-geometric
solution can be described as a series whose coefficients are constructed from some
rational functions on an algebraic curve. In this way the difficult problem on taking
limits of period matrices reduces to much easier problem on taking limits of rational
functions. In this paper we develop the UGM approach further.

We consider the following degeneration of algebraic curves, which we call one
step degeneration, given by

ym =
mn+1∏

j=1

(x − αj ) −→ ym = (x − α)m
m(n−1)+1∏

j=1

(x − αj ), (5)

for m = 2, 3. Fix m and denote by Cn the non-singular curve before taking the
limit. We define some canonical tau function τn,0(t) (see (35)) corresponding to the
curveCn. Then we express the limit of τn,0(t) in terms of τn−1,0(t) with the variable
t being appropriately shifted. Then a solitonic structure can be seen clearly in the
degeneration of the algebro-geometric solution τn,0(t). This is another crucial idea
in this paper.

The results are as follows. For m = 2, that is, the case of a hyperelliptic curve,
we have (Theorem 24),

lim τn,0(t) = Ce−2
∑∞
l=1 α

lt2l

×
(

eη(α
1/2)τn−1,0(t − [α−1/2])+ (−1)neη(−α1/2)τn−1,0(t − [−α−1/2])

)
, (6)

for some constant C. It is observed that the soliton factors eη(±α1/2) pop out from
τn,0(t). Then the solution (6) looks like a mixture of solitons and quasi-periodic
solutions. Using the formula repeatedly and noting that τ0,0(t) = 1 if α1 = 0 we get
well known soliton solutions of the KdV equation.

For m = 3 we have (Theorem 18)

lim τn,0(t) = e−6
∑∞
l=1 α

lt3l

×
∑

0≤i<j≤2,0≤k≤2

∂

∂β

(
C̃i,j,k(α, β)eη(zi (α)

−1)+η(zj (α)−1)+η(zk(β)−1)

× τn−1,0(t − [zi(α)] − [zj (α)] − [zk(β)])
)∣∣∣
β=α ,

zi(α) = ω−iα−1/3, ω = e2πi/3, (7)
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for some constants C̃i,j,k(α, β). A new feature in this case is the appearance of the
derivative with respect to the parameter β. This corresponds to the fact that the limit
of τn,0 to genus zero curve in this case is not a soliton but a generalized soliton [18].
The constants C̃i,j,k (α, β) should be expressed by some derivatives of the sigma
function. The explicit formulas for them are important for the further analysis of the
solutions.

We remark that the formula of the forms (6), (7) can be generalized for m ≥ 4
in (5). They should be treated in a subsequent papers. A generalization of the results
in this paper to other class of curves such as that treated in [1] is also interesting.

The paper is organized as follows. In Sect. 2 we first review the theory of the
Sato Grassmannian (UGM). Then we explain how to embed the space of functions
on an algebraic curve to UGM. Next we apply the general theory to our concrete
examples and define the frame ξ̃n of a point of UGM corresponding to the space
of regular rational functions on Cn\{∞}. Then we study the degeneration of ξ̃n
and define the frame ξn as a gauge transformation of ξ̃n. In order to express ξn
by an object associated with the curve Cn−1 we study the frame associated with
the space of rational functions on Cn−1\{∞} which are singular at three points.
Decomposing some rational functions we derive the degeneration formula of the tau
function τ (t; ξ̃n) corresponding to ξ̃n in terms of some tau functions associated with
the curveCn−1 in the final subsection of Sect. 2. In Sect. 3 we first review the sigma
function of a so called (N,M) curve. Then we recall the sigma function expression
of τ (t; ξ̃n). Next we express the tau function corresponding to the space of functions
with additional singularities as a shift of τ (t; ξ̃n). By substituting these formulas to
the degeneration formula derived in Sect. 2 we express the limit of τ (t; ξ̃n) in terms
of the shift of τ (t; ξ̃n−1). In Sect. 4 we derive a similar degeneration formula for
hyperelliptic curves based on the results of [2].

2 Sato Grassmannian and τ -Function

In this section we briefly recall the definition and basic properties of the Sato
Grassmannian.

2.1 Sato Grassmannian

Let V = C((z)) be the vector space of Laurent series in the variable z and Vφ =
C[z−1], V0 = zC[[z]] two subspaces of V . Then V is isomorphic to Vφ ⊕ V0.
Let π : V −→ Vφ be the projection map. Then the Sato Grassmannian UGM is
defined as the set of subspaces U of V such that the restriction π |U has the finite
dimensional kernel and cokernel whose dimensions coincide.
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To an element
∑
anz

n ∈ V we associate the infinite column vector (an)n∈Z. Then
a frame of a pointU of UGM is expressed by a Z×N≤0 matrix ξ = (ξi,j )i∈Z,j∈N≤0 ,
where columns, and therefore a basis of U , are labeled by the set of non-positive
integers N≤0. A frame ξ is written in the form

ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

· · · ξ−1,−1 ξ−1,0

· · · ξ0,−1 ξ0,0

−−− −−− −−−
· · · ξ1,−1 ξ1,0

· · · ξ2,−1 ξ2,0
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

It is always possible to take a frame satisfying the following condition, there exists
a negative integer l such that

ξi,j =
{

1 if j < l and i = j
0 if (j < l and i < j) or (j ≥ l and i < l).

(9)

In the sequel we always take a frame which satisfies this condition, although it is
not unique.

A Maya diagram M = (mj )∞j=0 is a sequence of decreasing integers such that
mj = −j for all sufficiently large j . For a Maya diagram M = (mj )

∞
j=0 the

corresponding partition is defined by λ(M) = (j +mj)∞j=0. By this correspondence
the set of Maya diagrams and the set of partitions bijectively correspond to each
other.

For a frame ξ and a Maya diagramM = (mj )∞j=0 define the Plücker coordinate
by

ξM = det(ξmi ,j )−i,j≤0

Due to the condition (9) and the condition of the Maya diagram M this infinite
determinant can be computed as the finite determinant det(ξmi ,j )k≤−i,j≤0 for
sufficiently small k.

Define the elementary Schur function pn(t) by

e
∑∞
n=1 tnκ

n =
∞∑

n=0

pn(t)κ
n.

The Schur function [13] corresponding to a partition λ = (λ1, . . . , λl) is defined by

sλ(t) = det(pλi−i+j (t))1≤i,j≤l .
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Assign the weight j to the variable tj . Then it is known that sλ(t) is homogeneous
of weight |λ| = λ1 + · · · + λl . To a point U of UGM take a frame ξ and define the
tau function by

τ (t; ξ) =
∑

M

ξMsλ(M)(t). (10)

If we change the frame ξ τ (t; ξ) is multiplied by a constant. We call τ (t; ξ), for
any frame ξ of U , a tau function corresponding to U . So tau functions of a point of
UGM differ by constant multiples to each other.

Then

Theorem 1 ([24]) The tau function τ (t; ξ) is a solution of the KP-hierarchy.
Conversely for a formal power series solution τ (t) of the KP-hierarchy there exists
a point U of UGM such that τ (t) coincides with a tau function of U .

The point U of UGM corresponding to a solution τ (t) in Theorem 1 is given as
follows [10, 16, 23, 24].

Let �∗(t; z) be the adjoint wave function [6] corresponding to τ (t) which is
defined by

�∗(t; z) = τ (t + [z])
τ (t)

e−
∑∞
i=1 tiz

−i
. (11)

Define �∗i (z) by the following expansion

(
τ (t)�∗(t; z)) |t=(x,0,0,0,...)

= τ ((x, 0, 0, 0, . . .)+ [z])e−xz−1 =
∞∑

i=0

�∗i (z)xi. (12)

Then

U =
∞∑

i=0

C�∗i (z). (13)

By this correspondence between points of UGM and tau functions the following
property follows. Let U be a point of UGM, τ (t) be a tau function corresponding to

U and f (z) = e
∑∞
i=1 ai

zi

i be an invertible formal power series. Then f (z)U belongs
to UGM and the corresponding tau function is given by

e
∑∞
i=1 ai ti τ (t). (14)

It is sometimes called the gauge transformation of τ (t).
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2.2 Embedding of Algebro-Geometric Data to UGM

In this section we recall the construction of points of UGM from algebraic curves
(see [14, 19] for more details).

Let C be a compact Riemann surface of genus g, p∞ a point on it, z a local
coordinate around p∞. For m ≥ 0 and points pi , 1 ≤ i ≤ m, on C, such that
pj �= ∞ for any j , we denote by

H 0(C,O(
m∑

j=1

pj + ∗p∞)) (15)

the vector space of meromorphic functions on C which have a pole at each pj of
order at most 1 and have a pole at p∞ of any order. By expanding functions in the
local coordinate z we can consider H 0(C,O(

∑m
j=1 pj + ∗p∞)) as a subspace of

V = C((z)). Then

Proposition 2 ([14, 19]) The subspace zg−mH 0(C,O(
∑m
j=1 pj + ∗p∞)) belongs

to UGM.

Remark 3 This Proposition was proved in [19] from the general results [14], for
m ≤ g. But the case m > g can be proved in the same way.

2.3 Tau Function Corresponding to Zero Point Space

For n ≥ 1 and mutually distinct complex numbers {αi}3ni=1 consider the compact
Riemann surface Cn corresponding to the algebraic curve defined by the equation

y3 =
3n+1∏

j=1

(x − αj ). (16)

The genus of Cn is g = 3n and there is a unique point on Cn over x = ∞ which we
denote by ∞.

Consider the space H 0(Cn,O(∗∞)) which corresponds to m = 0 in (15). It is
the space of meromorphic functions on C which are regular on Cn\{∞}. It can be
easily proved that it coincides with the vector space C[x, y] of polynomials in x, y.
A basis of this vector space is given by

xi, xiy, xiy2 i ≥ 0. (17)
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We take the local coordinate z around∞ such that

x = z−3, y = z−(3n+1)Fn(z), Fn(z) =
⎛

⎝
3n+1∏

j=1

(1− αj z3)

⎞

⎠
1/3

. (18)

In the following we denote by z this local coordinate unless otherwise stated. The
function Fn(z) is considered as a power series in z by the Taylor expansion at z = 0.

By Proposition 2 zgH 0(Cn,O(∗∞)) determines a point of UGM. Writing (17)
in terms of z and multiplying them by zg we get a basis of it,

z3n−3i , z−1−3iFn(z), z−3n−2−3iFn(z)
2 i ≥ 0. (19)

We define the frame ξ̃n from this basis as follows.
For an element v(z) =∑n≤i aizi , an �= 0, define the order of v(z) to be −n and

write ord v(z) = −n.

Definition 4 Label the elements of (19) by ṽi , i ≤ 0, in such a way that ord ṽ0 <

ord ṽ−1 < ord ṽ−2 < · · · and define the frame ξ̃n of zgH 0(Cn,O(∗∞)) by

ξ̃n = (. . . , ṽ−2, ṽ−1, ṽ0). (20)

By the construction of ξ̃n the tau function τ (t; ξ̃n) has the following expansion
(see [16])

τ (t; ξ̃n) = sλ(n) (t)+ h.w.t, (21)

where h.w.t means the higher weight terms, λ(n) is the partition determined from the
gap sequence w1 < · · · < wg at ∞ of Cn and is given by

λ(n) = (wg − (g − 1), . . . , w2 − 1, w1).

Example 5 λ(1) = (3, 1, 1), λ(2) = (6, 4, 2, 2, 1, 1), λ(3) = (9, 7, 5, 3, 3, 2, 2, 1, 1).

2.4 Degeneration

Let us take a complex number α which is different from αi , 1 ≤ i ≤ 3n − 2 and
consider the limit

α3n+1, α3n, α3n−1 → α, (22)
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which means that the curve Cn degenerates to

y3 = (x − α)3
3n−2∏

j=1

(x − αj ). (23)

which we call one step degeneration of Cn.
In the limit

Fn(z) −→ (1− αz3)Fn−1(z),

and the basis (19) tends to

z3n−3i , z−1−3i (1− αz3)Fn−1(z), z
−3n−2−3i (1− αz3)2Fn−1(z)

2, i ≥ 0. (24)

LetWn be the point of UGM generated by this basis. Multiply (24) by (1− αz3)−2

we have

z3n−3i

(1− αz3)2
,

z−1−3i

(1− αz3)
Fn−1(z), z−3n−2−3iFn−1(z)

2 i ≥ 0. (25)

By taking linear combinations we have

Lemma 6 The following set of elements gives a basis of (1− αz3)−2Wn.

z3n−6−3i , z−4−3iFn−1(z), z−3n−2−3iFn−1(z)
2, i ≥ 0,

z3n

(1− αz3)2
,

z3n−3

1− αz3 ,
z−1

1− αz3Fn−1(z).
(26)

We arrange the basis elements of this lemma according as their orders and define
the frame ξn as follows.

Definition 7 Define the frame ξn ofWn by

ξn = (. . . , v−2, v−1, v0),

with

v0 = z3n

(1− αz3)2
,

v−1 = z3n−3

1− αz3 ,

v−(2+i) = z3n−6−3i , 0 ≤ i ≤ n− 2,
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v−(n+1) = z−1

1− αz3Fn−1(z),

v−(n+2+2i) = z−3−3i , 0 ≤ i ≤ n− 1,

v−(n+3+2i) = z−4−3iFn−1(z), 0 ≤ i ≤ n− 1,

v−(3n+2+3i) = z−3n−2−3iFn−1(z)
2, i ≥ 0,

v−(3n+3+3i) = z−3n−3−3i , i ≥ 0,

v−(3n+4+3i) = z−3n−4−3iFn−1(z), i ≥ 0.

Since we have the expansion

log(1− αz3)−2 = 6
∞∑

l=1

αl
z3l

3l
,

the following relation holds by (14),

τ (t; ξn) = e6
∑∞
l=1 α

lt3l lim τ (t; ξ̃n), (27)

where the lim signifies taking the limit (22).

2.5 Three Point Insertion

Consider the curve Cn−1 defined by (16) where n is replaced by n − 1. The genus
of Cn−1 is g′ = 3n− 3 = g − 3. Let

Qj = (cj , Yj ), j = 0, 1, 2, (28)

be points on Cn−1. We assume cj �= αi for any i, j . Define ϕj by

ϕj =
y2 + Yjy + Y 2

j

x − cj .

The pole divisor of this function is Qj + (2g′ − 1)∞. Consider the space
H 0(Cn−1,O(Q0 +Q1 +Q2 + ∗∞)). A basis of it is given by

xi, xiy, xiy2, ϕj , i ≥ 0, j = 0, 1, 2.
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Write this basis in terms of the local coordinate z and multiply it by zg
′−3 we have

z3n−6−3i , z−4−3iFn−1(z), z
−3n−2−3iFn−1(z)

2, z3n−6ϕj , i ≥ 0, j = 0, 1, 2.
(29)

By Proposition 2 zg
′−3H 0(Cn−1,O(Q0 + Q1 + Q2 + ∗∞)) is a point of UGM

and the set of functions (29) is a basis of it. Using this basis define the frame of
zg

′−3H 0(Cn−1,O(Q0 +Q1 +Q2 + ∗∞)) by

ξn−1(Q0,Q1,Q2)

= (. . . , v−(n+3), v−(n+2), v−n, . . . , v−2, z
3n−6ϕ0, z

3n−6ϕ1, z
3n−6ϕ2),

where vj is the same as that in ξn.

2.6 Degeneration Formula in Algebraic Form

Corresponding to the parameter α in (22) let Pi(α) = (α, ωiy0(α)), i = 0, 1, 2
be points on Cn−1, where ω = e2πi/3. Take Qj = Pj (α) in (28) and denote the
function ϕj by ϕj (α). Then

ϕj (α) = y
2 + (ωj y0(α))y + (ωjy0(α))

2

x − α .

Lemma 8 For 0 ≤ i ≤ 2 we have

yi

x − α =
1

3y0(α)2−i
2∑

j=0

ω(i+1)j ϕj (α)

The lemma can be verified by direct computation. From these relations we have

v−1 = z3n−3

1− αz3 =
1

3y0(α)2

2∑

i=0

ωiz3n−6ϕi(α) (30)

v−(n+1) = z
−1Fn−1(z)

1− αz3
= 1

3y0(α)

2∑

i=0

ω2iz3n−6ϕi(α) (31)

v0 = z3n

(1− αz3)2
= ∂

∂β

(
1

3y0(β)2

2∑

i=0

ωiz3n−6ϕi(β)

)∣∣∣∣∣
β=α

. (32)

The third equation is obtained by differentiating the first equation in α.
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Let λ be a partition and consider the Plücker coordinate of (ξn)λ. Substitute the
above expression to the definition of (ξn)λ of ξn. Then Eqs. (30)–(32) mean that each
of the column vectors of ξn corresponding to v0, v−1, v−(n+1) is a sum of vectors.
So we have

(ξn)λ = (−1)n

27yn−1,0(α)5

∑

0≤i<j≤2,0≤k≤2

ωi+k+2j (1− ωi−j )

× ∂

∂β

(
ξn−1(Pi(α), Pj (α), Pk(β))λ

) |β=α.

Multiplying this equation by sλ(x) and summing up in λ we get

τ (t; ξn) = (−1)n

27yn−1,0(α)5

∑

0≤i<j≤2,0≤k≤2

ωi+k+2j (1− ωi−j )

× ∂

∂β

(
τ (t; ξn−1(Pi(α), Pj (α), Pk(β)))

) |β=α.

Finally using (27) we obtain

Theorem 9 Consider the limit (22). Then the limit of the tau function of the frame
ξ̃n defined by (20) is given by the following formula:

lim τ (t; ξ̃n) = (−1)n

27yn−1,0(α)5
e−6

∑∞
l=1 α

lt3l
∑

0≤i<j≤2,0≤k≤2

ωi+k+2j (1− ωi−j )

× ∂

∂β

(
τ
(
t; ξn−1(Pi(α), Pj (α), Pk(β))

) )∣∣∣
β=α .

Remark 10 The new feature of the trigonal case compared with the hyperelliptic
case studied in [2] (see Theorem 20) is the existence of a derivative in the parameter
β. In [18] the degeneration to genus zero curve in the trigonal case was directly
studied. The obtained solutions are not solitons but generalized solitons. The
appearance of the derivative corresponds to this phenomenon.

3 Analytic Expression of Tau Functions

In this section we derive the analytic expression of tau functions appeared in The-
orem 9 in terms of the multivariate sigma function [3–5, 15, 16]. The fundamental
idea behind constructing the expression is due to Krichever [12].
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3.1 The Sigma Function of an (N,M) Curve

We consider the general (N,M)-curve [5] defined by f (x, y) = 0 with

f (x, y) = yN − xM −
∑

Ni+Mj<NM
λij x

iyj , (33)

where N,M are relatively prime integers such that 1 < N < M . We assume that
the curve is non singular. We denote the corresponding compact Riemann surface
by C. Then the genus of C is given by g = 1/2(N − 1)(M − 1). There is one point
on C over x = ∞ which is also denoted by ∞. Here we recall several necessary
facts related with the curve C. See [15, 16] for details.

We assign the order Ni + Mj to the monomial xiyj , i, j ≥ 0, and define fi ,
i ≥ 1, to be the i-th monomial in this order. For example f1 = 1, f2 = x. Then the
set of differentials

dui = −fg+1−idx
fy

, 1 ≤ i ≤ g

constitutes a basis of holomorphic one forms. We choose an algebraic fundamental
form ω̂(p1, p2) on C × C as in [15]. It has the decomposition of the form

ω̂(p1, p2) = dp2�(p1, p2)+
g∑

i=1

dui(p1)dri(p2),

where �(p1, p2) is a certain meromorphic one form on C × C and dri(p) is a
certain differential of the second kind on C with a pole only at∞ (see [15] for more
precise form of ω̂, �, dri ). Taking a symplectic basis {αi, βi}gi=1 of the homology
group of C we define the period matrices ωk , ηk , k = 1, 2, by

2ω1 =
(∫

αj

dui

)
, 2ω2 =

(∫

βj

dui

)
,

−2η1 =
(∫

αj

dri

)
, −2η2 =

(∫

βj

dri

)
,

and = ω−1
1 ω2. Define Riemann’s theta function by

θ [ε](z, ) =
∑

m∈Zg
eπi

t (m+ε′) (m+ε′)+2πit (m+ε′)(z+ε′′),
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where ε = t (ε′, ε′′) ∈ R
2g, ε′, ε′′ ∈ R

g . Let  δ′ + δ′′, δ′, δ′′ ∈ (1/2)Zg, be a
representative of Riemann’s constant with respect to the choice of the base point∞
and {αi, βi}gi=1, and δ = t (δ′, δ′′) ∈ (1/2)Z2g.

Let (w1, . . . , wg), w1 < · · · < wg, be the gap sequence of the curveC at∞ (see
[7, 15] for example). Define the partition λ(N,M) by

λ(N,M) = (wg − (g − 1), . . . , w2 − 1, w1).

By the definition λ(n) = λ(3,3n+1).

Definition 11 The sigma function is defined by

σ(u) = Ce
1
2
t uη1ω

−1
1 uθ [−δ]((2ω1)

−1u, ),

u = t (u1, . . . , ug)

for some constant C.

Assign the weightwi to ui . Then the constantC is specified by the condition that
σ(u) has the expansion of the form

σ(u) = sλ(N,M)(t)|twi=ui + h.w.t.

It is known that C is explicitly expressed by some derivatives of the Riemann’s
theta function [17, 20]. The sigma function satisfies the following quasi-periodicity
property:

σ(u+
2∑

i=1

2ωimi)

= (−1)
tm1m2+2(t δ′m1−t δ′′m2)e

t (
∑2
i=1 2ηimi)(u+∑2

i=1 ωimi )σ (u). (34)

3.2 Sigma Function Expression of Tau Functions

Here we derive sigma function expressions for the tau functions corresponding to
the spaces in Proposition 2 in the case of (N,M) curves.

We take the local coordinate z around∞ such that

x = z−N, y = z−M(1+O(z)).
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Expand dui , ω̂ in z as

dui =
∞∑

j=1

bi,j z
j−1,

ω̂(p1, p2) =
⎛

⎝ 1

(z1 − z2)2
+
∑

i,j≥1

q̂i,j z
i−1
1 z

j−1
2

⎞

⎠ dz1dz2,

where zi = z(pi). The differential dug has a zero of order 2g − 2 at ∞ and has the
expansion of the form

dug = z2g−2(1+
∞∑

j=2g

bg,jz
j−2g+1)dz.

Define ci by the expansion

log

(√
z−2g+2

dug

dz

)
=

∞∑

i=1

ci
zi

i
.

In [16] there is a misprint, cizi should be cizi/i as above. Define g × N matrix B
and the quadratic form q̂ by

B = (bi,j )1≤i≤g,j≥1, q̂(t) =
∞∑

i,j=1

q̂i,j ti tj .

The following theorem is proved in [16].

Theorem 12 ([16]) A tau function corresponding to zgH 0(C,O(∗∞)) is given by

τ0(t) := e−
∑∞
i=1 ci ti+ 1

2 q̂(t )σ (Bt). (35)

It has the expansion of the form

τ0(t) = sλ(N,M)(t)+ h.w.t. (36)

Remark 13 In [16] it is proved that τ0(t) defined by (35) is a solution of the N-
reduced KP-hierarchy [6].

More generally the tau function corresponding to the m-point space with m ≥ 1
given by Proposition 2 is described in terms of the shift of τ0(t).
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Theorem 14 Let pi , 1 ≤ i ≤ m, be points on C\{∞} and zi = z(pi). A tau
function corresponding to zg−mH 0(C,O(

∑m
i=1 pi + ∗∞)) is given by

τ (t|p1, . . . , pm) := e
∑∞
i=1 η(z

−1
i )τ0(t −

m∑

i=1

[zi]), (37)

where η(κ) =∑∞
i=1 tiκ

i , [w] = [w,w2/2, w3/3, . . .].
By (14) and by that the KP-hierarchy is the system of autonomous equations, if

τ (t) is a solution of the KP-hierarchy, so is e
∑∞
i=1 γi ti τ (t+ζ ) for any set of constants

{γi} and a constant vector ζ . Therefore τ (t|p1, . . . , pm) is a solution of the KP-
hierarchy.

Then the theorem is proved by calculating the adjoint wave function using (13).
To this end we need some notation.

Let E(p1, p2) be the prime form [8] (see also [10]). Define E(z1, z2), E(q, p)
with zi = z(pi) and q being a fixed point on C by

E(p1, p2) = E(z1, z2)√
dz1

√
dz2
, E(q, p) = E(z(q), z(p))√

dz(p)
.

Define Ẽ(q, p) for q fixed by

Ẽ(q, p) = E(q, p)
√
dug(p)e

1
2

∫ p
q
t du(η1ω

−1
1 )

∫ p
q du,

du = t (du1, . . . , dug).

In [15] two variables Ẽ(p1, p2) and one variable Ẽ(∞, p) were introduced and
studied. It should be noticed that Ẽ(q, p) is a multiplicative function of p while
E(q, p) is a −1/2 form. Similarly to the case of Ẽ(∞, p) in [15] the following
lemma can be proved.

Lemma 15

(i) The function Ẽ(q, p) has the expansion in z = z(p) near∞ of the form

Ẽ(q, p) = (z− z(q))zg−1(1+O(z)).

(ii) Let γ be an element of π1(C,∞) and its Abelian image be∑g
i=1(m1,iαi +m2,iβi). Then

Ẽ(q, γ (p))/Ẽ(q, p)

= (−1)
tm1m2+2(t δ′m1−t δ′′m2)e

t (
∑2
i=1 2ηimi)(

∫ p
q du+

∑2
i=1 ωimi ), (38)

where mi = t (mi,1, . . . ,mi,g).
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By (i) of this lemma Ẽ(∞, p) has a zero of order g at ∞.
Let dr̃i be the normalized differential of the second kind with a pole only at ∞,

that is, it satisfies

∫

αj

dr̃i = 0, 1 ≤ j ≤ g, dr̃i = d(z−i +O(1)).

Define

dr̂i = dr̃i +
g∑

j,k=1

bj,i (η1ω
−1
1 )j,kduk.

By the construction their periods can be computed as (Lemma 5 in [16])

∫

αj

dr̂i =
(
t (2η1)B

)
j,i
,

∫

βj

dr̂i =
(
t (2η2)B

)
j,i
. (39)

In Lemma 5 of [16] there is a misprint: the right hand side is not the (i, j) component
but the (j, i) component.

Proof of Theorem 14 The adjoint wave function (11) corresponding to the tau
function (37) is computed as

�∗(t, z) = C(z1, . . . , zm)z
g−m Ẽ(∞, p)m−1σ

(∫ p
∞ du−

∑m
i=1

∫ pi
∞ du+ Bt

)
∏m
i=1 Ẽ(pi, p) σ

(−∑m
i=1

∫ pi
∞ du+ Bt

)

× e−
∑∞
i=1 ti

∫ p
dr̂i ,

C(z1, . . . , zm) = (−1)m(
m∏

i=1

zi)e
1
2

∑m
i=1
∫ pi∞ t du(η1ω

−1
1 )

∫ pi∞ du.

By Lemma 15 and (39) we can check that z−g+m�∗(t, z) is, as a function of
p ∈ C, π1(C,∞) invariant. Then the same is true for any expansion coefficient
of �∗(t, z) in t . Expansion coefficients in t are regular except pi , 1 ≤ i ≤ m, ∞
and have at most a simple pole at pi . Therefore the point U of UGM corresponding
to τ (t|p1, . . . , pm) is contained in zg−mH 0(C,O(

∑m
i=1 pi + ∗∞)). Since a strict

inclusion relation is impossible for two points of UGM [2, Lemma 4.17], these two
points of UGM coincide. ��
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3.3 Degeneration Formula in Analytic Form

In this section we apply the results in the previous section to the curves Cn, Cn−1
and associated tau functions in Theorem 9. So, in this section τn,0(t) denotes the
function defined by (35) for the curve Cn.

Lemma 16 We have

τ (t; ξ̃n) = τn,0(t). (40)

Proof Since ξ̃n is a tau function corresponding to zgH 0(Cn,O(∗∞)), we have, by
Theorem 12,

τ (t; ξ̃n) = Cτn,0(t),

for some constant C. Comparing the expansions (21) and (36) we have C = 1. ��
Next we consider tau functions appearing in the right hand side of the equation

in Theorem 9. We need a point (α, y0(α)) of Cn−1. To specify y0(α) is equivalent
to specify one value of z such that z−3 = α, that is, α−1/3. In fact, if z = α−1/3 is
given the value of y0(α) is determined by (18) as

y0(α) = αn−1α1/3Fn−1(α
−1/3). (41)

Since Pi(α) = (α, ωiy0(α)), we have

z(Pi(α)) = ω−iα− 1
3 . (42)

For simplicity we set

zi(α) = ω−iα− 1
3 . (43)

Since, in general ξn−1(Q0,Q1,Q2) is a frame of the point

zg
′−3H 0(Cn−1,O(

2∑

i=0

Qi + ∗∞)) ∈ UGM

we have, by Theorem 14,

τ (t; ξn−1(Pi(α), Pj (α), Pk(β)))

= Ci,j,k (α, β)eη(zi(α)−1)+η(zj (α)−1)+η(zk(β)−1)

× τn−1,0(t − [zi(α)] − [zj (α)] − [zk(β)]), (44)
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for some constant Ci,j,k(α, β).

Remark 17 The explicit forms of the constants Ci,j,k(α, β) are not yet determined.
They should be calculated by comparing the Schur function expansions and are
expected to be expressed by some derivatives of the sigma function.

Substituting (40), (44) into the relation in Theorem 9 we get

Theorem 18 Let τn,0(t) be defined by the right hand side of (35) for the curve Cn
and zi(α) defined by (43). Then, in the limit αj → α for j = 3n, 3n± 1, we have

lim τn,0(t)

= (−1)n

27y0(α)5
e−6

∑∞
l=1 α

lt3l
∑

0≤i<j≤2,0≤k≤2

ωi+k+2j (1− ωi−j )

× ∂

∂β

(
Ci,j,k (α, β)eη(zi(α)

−1)+η(zj (α)−1)+η(zk(β)−1)

× τn−1,0(t − [zi(α)] − [zj (α)] − [zk(β)])
)∣∣∣
β=α . (45)

for the constants Ci,j,k(α, β) in (44), where y0(α) is given by (41).

Remark 19 In the right hand side of (45) the exponential factor, which is character-
istic to soliton solutions, is clearly visible. Since it can be shown that τ0,0 = 1 for the
genus zero curve y3 = x which corresponds to the case α1 = 0, using repeatedly the
formula (18) we obtain the formula which contains only exponential functions and
their derivatives with respect to parameters. The formulas for them were computed
in [18] independently of Theorem 18, where all constants are explicitly given as
functions of {αj }. These solutions are called generalized solitons in [18].

4 The Case of Hyperelliptic Curves

In this section, based on the results of [2], we derive the corresponding formula
to (45) in the case of hyperelliptic curve Xg defined by

y2 =
2g+1∏

j=1

(x − αj ) (46)

and its degeneration

α2g+1, α2g−1 → α, (47)
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where α �= αj for 1 ≤ j ≤ 2g − 2. The curve Xg has the unique point over x = ∞
which we also denote by∞. We take the local coordinate z around∞ such that

x = z−2, y = z−2g−1Fg(z), Fg(z) =
⎛

⎝
2g+1∏

j=1

(1− αiz2)

⎞

⎠
1/2

. (48)

Let

μ(g) = (g, g − 1, . . . , 1)

be the partition and ξ̃g a frame of zgH 0(Xg,O(∗∞)) such that the corresponding
tau function has the expansion of the form

τ (t; ξ̃g) = sμ(g) (t)+ h.w.t. (49)

Fix one of the square root α−1/2 and define y0 by

y0 = αg−1/2Fg−1(α
−1/2). (50)

Then (α, y0) is a point of Xg−1. Set

p± = (α,±y0). (51)

Then the values of the local coordinates of p± are

z(p±) = ±α−1/2.

Let ξg−1(p±) be a frame of zg−2H 0 (Xg−1,O(p± + ∗∞)
)

such that their tau
functions have the following expansions

τ (t; ξg−1(p±)) = sμ(g−2) (t)+ h.w.t. (52)

The following theorem is proved in [2] in a similar way to Theorem 9.

Theorem 20 ([2]) The following relation holds.

lim τ (t; ξ̃ )
= (−1)g−1(2y0)

−1e−2
∑∞
l=1 α

lt2l
(
τ (t; ξg−1(p+))− τ (t; ξg−1(p−))

)
, (53)

where lim in the left hand side means the limit taking α2g+1, α2g to α.

Let τg,0(t) denote the function defined by the right hand side of (35) for Xg.
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Lemma 21

(i) τ (t; ξ̃g) = τg,0(t).
(ii) For some constant Cε(α)

τ(t; ξg−1(pε)) = Cε(α)e
∑∞
l=1(εα

−1/2)−l tl τg−1,0(t − [εα−1/2]), ε = ±.

Proof

(i) Both τ (t; ξ̃g) and τg,0(t) are tau functions corresponding to zgH 0(Xg,O(∗∞)).
By comparing the expansions (36) and (49) we get the result.

(ii) Since the right hand side and the left hand side without Cε(α) of the equation
in the assertion are the tau functions corresponding to zg−2H 0(Xg−1,O(pε +
∗∞)) by the definition of ξg−1(pε) and Theorem 14, the assertion follows.

��
This lemma is proved in [2] in a different form. The explicit form of the constant

Cε(α) can be extracted from there. Let us give the formula.

Let m(g) =
[
g+1

2

]
. Define the sequence A(g) and s(g) ∈ {±1} by

A(g) = (a(g)1 , . . . , a
(g)

m(g)
) = (2g − 1, 2g − 5, 2g − 9, . . .),

s(g) = (−1)(g−1)m(g).

Example 22 A(1) = (1), A(2) = (3), A(3) = (5, 1), A(4) = (7, 3).
s(1) = 1, s(2) = −1, s(3) = 1, s(4) = 1.

The following property of A(g) is known [20, 22],

|A(g)| :=
m(g)∑

j=1

a
(g)
j = 1

2
g(g + 1). (54)

Denote the sigma function of Xg−1 by σ (g−1)(u). Set

bi = (a(g−2)
i + 1)/2 ∈ {1, 2, . . . , g − 2}, 1 ≤ i ≤ m(g−2),

and define

σ
(g−1)
A(g−2)(u) =

∂m
(g−2)

∂ub1 · · · ∂ubm(g−2)

σ (g−1)(u).
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Then, by Theorem 4.14 of [2], we can deduce that

Cε(α) = s(g−2)σ
(g−1)
A(g−2) (−

∫ pε

∞
du)−1, du = t (du1, . . . , dug). (55)

Lemma 23 The following relation is valid.

C−(α) = (−1)g−1C+(α). (56)

Proof It is known that the sigma function satisfies the following relation [15, 22]

σ (g−1)(−u) = (−1)
1
2 g(g−1)σ (g−1)(u).

By differentiating it we get

σ
(g−1)
A(g−2) (−u) = (−1)

1
2 g(g−1)+m(g−2)

σ (g−1)(u). (57)

We can easily verify that

1

2
g(g − 1)+m(g−2) = g − 1 mod.2. (58)

For the hyperelliptic curve Xg−1 the following relation holds,

∫ p−

∞
du = −

∫ p+

∞
du. (59)

The assertion of the lemma follows from (55), (57), (58), (59). ��
Substituting the equations of (i), (ii) in Lemma 21 into (53) and using (56) we

get

Theorem 24 Let τg,0(t) be given by the right hand side of (35) for the hyperelliptic
curve Xg defined by (46). Then in the limit α2g+1, α2g → α we have the following
formula,

lim τg,0(t) = (−1)g(2y0)
−1C+(α)e−2

∑∞
l=1 α

lt2l

×
(

eη(α
1/2)τg−1,0(t − [α−1/2])+ (−1)geη(−α1/2)τg−1,0(t − [−α−1/2])

)
,

where y0, p±, C+(α) are given by (50), (51), (55) respectively.

Remark 25 The tau function τg,0(t) gives a solution of the KdV hierarchy (see
Remark 13). Again it can be shown that τ0,0 = 1 for the genus zero curve y2 = x
which corresponds to α1 = 0. Using the formula repeatedly we get the well known
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soliton solution [9, 21]. For α1 �= 0 we can show that τ0,0(t) = eL(t)+Q(t), where
L(t) andQ(t) are certain linear and quadratic functions of t .
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Abstract The aim of this work is to explain the role played by the Fock quanti-
zation of canonical transformations in the construction of the global semiclassical
(high-frequency) asymptotic approximation. This role may well pass unnoticed as
long as one deals with nondegenerate differential equations. However, the situation
is different for some classes of equations with degeneration, where the Fock
quantization of canonical transformations becomes instrumental in the construction
of asymptotic solutions.
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1 Introduction

Maslov’s canonical operator [14, 15] is a powerful tool for constructing global semi-
classical asymptotics of solutions of differential equations with a small parameter
multiplying the derivatives. The asymptotic solutions produced by this operator have
the form of sums of WKB elements1 in coordinate and momentum representations,
with the 1/h-Fourier transform F1/h

p→x applied to the latter to make them functions

Supported by the Russian Science Foundation, project no. 16-11-10282.
1See Sect. 4 for more details.

S. Dobrokhotov · V. Nazaikinskii (�)
Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia

© The Editor(s) (if applicable) and The Author(s), under exclusive licence
to Springer Nature Switzerland AG 2020
P. Kielanowski et al. (eds.), Geometric Methods in Physics XXXVIII,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-53305-2_13

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53305-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-53305-2_13


188 S. Dobrokhotov and V. Nazaikinskii

of the coordinate rather than the momentum.2 The operator F1/h
p→x is actually the

Fock quantization of the rotation by an angle of π/2 in the phase plane; however,
this, in a sense, works behind the scenes, and one may not know that but still apply
the canonical operator successfully to problems with nondegenerate characteristics.
Things become more difficult when one deals with degenerate operators to which
the standard scheme of the canonical operator does not apply. In that case, to de-
singularize the problem, one may need more complicated canonical transformations
than mere rotations by π/2, and then the Fock quantization rule gives the right
recipe of what to do with the WKB elements arising in the new variables and how
to construct a modified canonical operator suitable for the degeneration in question.

This is exactly what happens for the class of operators with boundary degenera-
tion arising in the linear theory of run-up of long waves on a shallow beach [19, 21].
The theory of global semiclassical asymptotics for this class of problems has
been developed in the recent years by the authors and their colleagues [1, 2, 5–
10, 16, 17]. The aim of the present note is to explain how the Fock quantization
of canonical transformations enters the construction of semiclassical asymptotics.
As an example, we use the simplest problem of this class in dimension 1, that is, a
problem for an ordinary differential equation (ODE).

2 Degenerate Boundary Value Problem

Let D(x) ∈ C∞([−1, 1]) be a function such that D(x) > 0 for x ∈ (−1, 1),
D(−1) = D(1) = 0, D′(−1) > 0, andD′(1) < 0. Further, consider the operator

L0 = − d
dx
D(x)

d

dx
with domain D(L0) = C∞0 ((−1, 1))

in the space L2([−1, 1]). The operator L0 degenerates at the endpoints of the
interval (−1, 1), and hence one cannot define any self-adjoint extensions of L0
with the use of classical boundary conditions such as the Dirichlet or Neumann
conditions [18]. Thus, one has to use “generalized boundary conditions.” Define the
operator L in L2([−1, 1]) as the Friedrichs extension [3, Sec. 10.3] of L0, which
is equivalent to the finiteness of the energy integral [22, Sec. 33.1]. Consider the
eigenvalue problem

Lη = λη, (1)

2For simplicity, we only deal here with the case of one spatial variable x (i.e., x ∈ R1); if
x = (x1, . . . , xn) ∈ Rn, then the construction also involves partial Fourier transforms (Fourier
transforms with respect to part of the variables).
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which naturally arises in the approximation given by the linearized shallow water
equations as the one-dimensional model of harmonic water waves (such as seiches)
in a basin of variable depth D(x). Here η(x)eiωt , ω = √

λ, has the meaning of the
free surface elevation at the point x at time t . The motion of water is assumed to be
potential, and we use a system of units in which the acceleration due to gravity has
the value g = 1.

We will be interested in the behavior of solutions of this eigenvalue problem
with large λ. One defines an asymptotic series of solutions as a sequence λn →
∞ of numbers (called asymptotic eigenvalues) and a sequence of functions ηn ∈
D(L) such that ‖ηn‖ ≥ C > 0 (where the norm is taken in L2([−1, 1])) and these
functions are almost eigenfunctions in the sense that ‖Lηn − λnηn‖ = O(1) as
n → ∞. By the well-known estimates for the resolvent of a self-adjoint operator,
an asymptotic series satisfies the relation dist(λn, σ (L)) = O(1), where σ(L) is the
spectrum of L, and has other useful properties.

Equation (1) is an ODE with singular points, and there is a vast literature
concerning the theory of such equations (e.g., see the books by Fedoryuk [11]
and Slavyanov [20] and references therein). Needless to say, problem (1) can be
solved by methods of that theory; for example, one can use the method of standard
equations with the Bessel equation serving as a standard equation (see [6, Sec. 2]).
However, these methods have a drawback in that they cannot be transferred to
the multidimensional case automatically; for us, Eq. (1) only serves as a simple
example, and we will use an approach is free from this drawback. This approach
is based on the geometry of the characteristics of the problem and extends Maslov’s
canonical operator.

3 Quantization of Canonical Transformations

The idea of quantization of canonical transformations is apparently due to Dirac,
who wrote [4, Sec. 26]:

. . . for a quantum dynamic system that has a classical analogue, unitary transformation in
the quantum theory is the analogue of contact transformation in the classical theory.

The definition of quantization of canonical transformations was given by Fock [12].
Since then, there have been an extensive literature on the topic. In particular, a
comprehensive theory including global aspects and featuring far-reaching general-
izations was developed by Karasev and Maslov [13]. We will need the simplest local
version essentially defined by Fock himself. In this paper, we restrict ourselves to
the one-dimensional case. Consider a canonical transformation g : R2

(x,p)→ R2
(y,q).

The quantized canonical transformation is given by

T (g) : L2(Ry) −→ L2(Rx), [T (g)u](x) =
∫
Kg(x, y)u(y) dy,
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where the kernel Kg depends on the small parameter h > 0 and is defined via the
generating function of g as follows.

1. If g is defined by a generating function$(x, y) by the formulas q = −$y(x, y),
p = $x(x, y), where, by definition,$′′xy(x, y) �= 0, then the kernel is given by

Kg(x, y) =
( −i

2πh

)1/2
e
i
h
$(x,y)

√
$′′xy(x, y), arg i = π

2
.

2. If g is defined by a generating function $(x, q) by the formulas y = $q(x, q),
p = $ x(x, q), where, by definition,$′′xq(x, q) �= 0, then

Kg(x, y) = 1

2πh

∫
e
i
h
($(x,q)−yq√

$′′xq(x, q) dq.

The choice of the argument of the radicand is irrelevant to our discussion.
Let us present two examples.

1. Let $(x, y) = −xy, so that p = $x = −y, q = −$y = x, and the
transformation is the counterclockwise rotation by π/2. Then the quantized
transformation has the kernel

Kg(x, y) =
( −i

2πh

)1/2

e−
i
h xy, [T (g)u](x) =

( −i
2πh

)1/2 ∫
e−

i
h xyu(y) dy;

thus, T (g) = F1/h
y→x is the 1/h-Fourier transform.

2. Now let $(x, q) = qf (x) (where f ′(x) �= 0); then y = f (x), p = (f ′(x))−1q

is the classical canonical transformation associated with a change of variables.
The kernel has the form

Kg(x, y) =
√
f ′(x)
2πh

∫
e
i
h q(f (x)−y) dq = √f ′(x)δ(y − f (x)),

and the transformation T (g) itself is the same change of variables in a function
followed by the multiplication by a factor ensuring the unitarity of T (g) in L2.

4 Semiclassical Asymptotics

The semiclassical theory deals with equations of the form Ĥu = 0, where
Ĥ = H(x, p̂), p̂ = −ih ∂

∂x
, is a differential operator with a small parameter

h > 0 multiplying the derivatives. Semiclassical asymptotic theory provides rapidly
oscillating asymptotic solutions of the equation Ĥu = 0 as h→ 0. Let us recall the
standard construction of the canonical operator [14, 15], again sticking to the case of
n = 1. To define the canonical operator, we need a Lagrangian manifold& ⊂ R2

(x,p)
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with a smooth measure dμ (volume form) on it. The canonical operator Kh& takes
smooth functions on& to rapidly oscillating functions on Rx . The manifold&must
be compact (or at least the projection&→ Rx must be proper).

The functionKh&φ is pasted together from local elements corresponding to parts
of & with “good” projection onto one of the coordinate axes. There can be two
possible cases:

(i) Assume that the projection of suppφ ⊂ & onto the x-axis is good. Then
[Kh&φ](x) is the WKB element

[Kh&φ](x) = exp

(
iS(x)

h

)
φ(x)

(
dμ

dx

)1/2

, where & =
{
p = ∂S

∂x
(x)
}
.

(ii) Assume that the projection of suppφ ⊂ & onto the p-axis is good. Then we
can in a similar way define the WKB element

exp

(
iS̃(p)

h

)
φ(p)

(
dμ

dp

)1/2

, where & =
{
x = −∂S̃

∂p
(p)
}
,

but we cannot make it the value of the canonical operator, because it depends on
the wrong variable! To obtain a function of x, we transpose the axes by rotating
the picture by an angle of π/2. The Fock quantization of this rotation gives the
Fourier transform, and we obtain

[Kh&φ](x) =
(
i

2πh

)1/2 ∫
exp

(
i(S̃(p)+ px)

h

)
φ(p)

(
dμ

dp

)1/2

dp.

Now, to define Kh&φ for an arbitrary compactly supported smooth function φ on &,
one uses a partition of unity to split φ into a sum of terms each of which can
be treated with the use of (i) or (ii). The consistency of (i) and (ii) in case they
both apply is ensured by additional unimodular factors; in turn, these can be chosen
consistently if & satisfies the quantization conditions (see [14, 15]).

5 Solution of the Degenerate Problem

5.1 Geometric Construction

We rewrite problem (1) in the semiclassical form

Ĥη = η, Ĥ = p̂D(x)p̂,
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with Hamiltonian H(x, p) = D(x)p2. The semiclassical asymptotics is associated
with a Lagrangian manifold &0 contained in the set {(x, p) : H(x, p) = 1}. In the
one-dimensional case, this set is a curve, and the Lagrangian manifold necessarily
coincides with it. The difficulty is that the Lagrangian manifold is singular (namely,
the projection onto the base is improper). The solution is to extend the phase space.

The geometric construction was suggested in [16] based on the idea in [23]
that one should proceed from the momentum variable p to its reciprocal, 1/p.
The natural next step (which however was not made in [23]) is to accompany this
transformation with a transformation of the variable x so as to obtain a canonical
transformation. This was done in [16]. The desired change of variables in the phase
space T ∗((−1, 1)) over a neighborhood of the left end x = −1 of the interval
(−1, 1) has the form

θ = p2(x + 1), q = − 1

p
⇔ x = q2θ − 1, p = − 1

q
. (2)

This transformation is canonical, dp ∧ dx = dq ∧ dθ . We add the open half-line
{q = 0, θ > 0} to this chart of the phase space in the new coordinates and carry
out a similar construction near the right end x = 1. The resulting new phase space
$ is diffeomorphic to a plane with two deleted points, $ � R2 \ {(−1, 0), (1, 0)}.
The closure & of the manifold &0 in the phase space $ is obtained by the addition
of two points; it is a smooth Lagrangian manifold diffeomorphic to a circle. To
construct asymptotic eigenfunctions, we must define the canonical operator on& in
the vicinity of the newly added points.

5.2 Modified Canonical Operator

Consider a neighborhood of a point in & \ &0. This point is projected into
one of the endpoints of [−1, 1] and is defined by the equation q = 0 in the
corresponding new coordinates. Thus, the endpoints are a special kind of caustic.
To define the canonical operator near these points, we use the same idea as earlier
for the “standard” canonical operator. Namely, we write a WKB element that is
a function of q and then define a function of the variable x by applying the
Fock quantized canonical transformation corresponding to the classical canonical
transformation (2). To be definite, consider a neighborhood of the left endpoint x =
−1. Then the canonical transformation (2) can be defined by the generating function
$(x, q) = −x/q , and accordingly the quantized canonical transformation is

[T (g)u](x) =
∫
K(x, θ)u(θ) dθ,
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where

K(x, θ) = 1

2πh

∫ ∞

−∞
e
− i
h

(
x
q
+θq
)
dq

q
= − i

h
J0

(2
√
xθ

h

)

and J0(z) is the Bessel function of the first kind and zero order. Thus, we have
the Hankel transform instead of the usual Fourier transform in the definition of the
canonical operator. In other words, the canonical operator in a neighborhood of the
boundary point acts as an application of the Hankel transform (composed with the
Fourier transform) to a WKB element. The corresponding integral formulas can
be found in [17]; the kernels of these integrals are products of K(x, θ) by certain
rapidly oscillating exponentials. Computing these Bessel type integrals according
to [5], we arrive at the form of the modified canonical operator given in [1]. In the
one-dimensional case, these formulas do not contain any integrals and hence express
the asymptotic solution in closed form. We refer the reader for the general formulas
to [1, 6] and restrict ourselves in the present paper to the solution formulas for our
specific problem.

5.3 Formulas for the Asymptotic Eigenfunctions

The final answer in problem (1) reads [6, Eq. (1.6)]

ηn(x) 3

⎧
⎪⎪⎨

⎪⎪⎩

√
2πωnJ0(ωnS(−1, x))

(S(−1, x)

c(x)

)1/2
, x ∈ [−1, 1− ε],

(−1)n
√

2πωnJ0(ωnS(x, 1))
(S(x, 1)
c(x)

)1/2
, x ∈ [−1+ ε, 1],

where ε > 0 is fixed,

c(x) = √D(x), S(x0, x) =
∫ x

x0

dξ

c(ξ)
, −1 ≤ x0, x ≤ 1,

and

ωn = π

S(−1, 1)

(
n+ 1

2

)
, n = 1, 2, . . . ,

are the asymptotic eigenvalues of the problem.
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Abstract We introduced some contact potentials that can be written as a linear
combination of the Dirac delta and its first derivative, the δ-δ′ interaction. After a
simple general presentation in one dimension, we briefly discuss a one dimensional
periodic potential with a δ-δ′ interaction at each node. The dependence of energy
bands with the parameters (coefficients of the deltas) can be computed numerically.
We also study the δ-δ′ interaction supported on spheres of arbitrary dimension.
The spherical symmetry of this model allows us to obtain rigorous conclusions
concerning the number of bound states in terms of the parameters and the dimension.
Finally, a δ-δ′ interaction is used to approximate a potential of wide use in nuclear
physics, and estimate the total number of bound states as well as the behaviour of
some resonance poles with the lowest energy.

Keywords Contact potentials · Periodic potentials · Nuclear potentials · Atomic
potentials
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1 Introduction

Contact potentials are interactions supported on manifolds of lower dimension than
the dimension of the overall space [1, 3, 11, 16]. Along the present manuscript,
we shall consider the time independent one dimensional Schrödinger equation and
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contact potentials supported on isolated points (this is why we shall also use the
term of point interactions to refer to them) or on lower dimensional varieties. The
simplest case of a one dimensional contact potential is the Dirac delta interaction
δ(x) supported at a point. In this case the Schrödinger equation comes from a one
dimensional Hamiltonian of the formH = −d2/dx2+V (x), where V (x) accounts
for the contact potential. This study is important in quantum mechanics and here are
a few reasons:

• Many of these models are exactly solvable and are very suitable to study
scattering properties [2, 21, 31]. In particular, they are good toy models to study
resonances and antibound states and their properties [4, 5].

• They may serve to model point defects in materials, topological insulators [10,
28] and heterostructures, which may be represented by abrupt mass changes [20,
30].

• In nanophysics: to mimic sharply peaked impurities inside quantum dots.
• In scalar QFT on a line: used to show the influence of impurities and external

singular backgrounds [33].
• Point interactions of the type Dirac delta, δ(x) or δ′(x), can be understood

as perturbations of a free kinetic Schrödinger Hamiltonian, but they could be
also combined with other type of interactions such as the harmonic oscillator,
a constant electric field, the infinite square well, the conical oscillator, etc.
[19, 22, 23, 27, 39].

• Double δ-δ′ barriers have been used to study the Casimir effect [8, 17, 24, 35].
• Chains of periodic δ-δ′ interactions have been considered in order to analyze

a solvable Kronig-Penney model in solid state, where the behaviour of band
spectrum has been thoroughly analyzed in order to obtain a better comprehension
of dielectric and conducting phenomena [15, 25].

• Although in principle we focused our attention in one dimensional non-
relativistic problems, work has been done also in the study of contact potentials
in higher dimensions [36], or as perturbations of the Dirac equation or the
Salpeter Hamiltonian [18]. There is a wide range of problems in this field that
will be studied in a near future.

In one dimension, it has been proven the existence of families depending on
four real parameters of contact potentials at each point compatible with the self-
adjointness of the Hamiltonian. There are some discussion on the physical meaning
of these families that are obtained through the formalism of self-adjoint extensions
of symmetric operators on Hilbert spaces.

Along this presentation, we shall consider the following forms for V (x):

• V (x) = −aδ(x)+ bδ′(x), where a and b are real numbers with a > 0.
• The Kronig-Penney model V (x) =∑∞

n=−∞(V0δ(x − na)+ aV1δ
′(x − na)).

• The radial potential V (r) = aδ(r − r ′)+ bδ′(r − r ′) with a and b real.
• An application to nuclear physics, considering the previous radial potential plus

a finite spherical well V0[θ(r − R)− 1].
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2 A δ-δ′ Perturbation of the One Dimensional Free
Hamiltonian

We start with the one dimensional Hamiltonian of the form

H = H0 + V (x) = p2

2m
− aδ(x)+ bδ′(x) , with a > 0 , b ∈ R , (1)

where H0 = p2/(2m) and V (x) := −aδ(x) + bδ′(x). Here, we need a definition
of the potential V (x) such that the Hamiltonian H in (1) be self-adjoint. While a
perturbation of the type −δ(x) is well defined on H0, the point is to add the term
containing the δ′(x). There is not a unique definition for perturbation of this kind,
but we need one compatible with the term on δ(x). This is sometimes called the
local δ′(x) and the interaction V (x) has to be defined via the self-adjoint extensions
of symmetric (Hermitian) operators.

A self-adjoint determination of the Hamiltonian (1) can be provided through
the theory of self-adjoint extensions of symmetric (Hermitian) operators with
equal deficiency indices. First of all, we define the domain of the “free” operator
H0 = −d2/dx2 as the Sobolev spaceW 2

2 (R\{0}) of absolutely continuous functions
ψ(x) : R\{0} 	−→ C, on the real line excluded the origin, such that:

(1) The first derivative ψ ′(x) is absolutely continuous on R\{0} (note that an
absolutely continuous function admits derivative at almost all points);

(2) Both ψ(x) and ψ ′′(x) are square integrable:

∫ ∞

−∞
{|ψ(x)|2 + |ψ ′′(x)|2} dx <∞ . (2)

(3) ψ(0) = ψ ′(0) = 0.

With this domain,H0 is a symmetric operator with deficiency indices (2, 2), which
means that it has a set of self-adjoint extensions depending on 4 real parameters.
Note that Conditions (1) and (2) give the domain of the adjoint, H †

0 , of H0. Self-

adjoint extensions of H0 have domains included in the domain of H †
0 and are

characterized by matching conditions at the origin. They have been classified in
[9, 31]. In our case, we propose for V (x) = −a δ(x) + b δ′(x) the following
matching conditions:

⎛

⎝
ψ(0+)

ψ ′(0+)

⎞

⎠ =

⎛
⎜⎜⎜⎝

h̄2 +mb
h̄2 −mb 0

−2h̄2am

h̄4 −m2b2

h̄2 −mb
h̄2 +mb

⎞
⎟⎟⎟⎠

⎛

⎝
ψ(0−)

ψ ′(0−)

⎞

⎠ , (3)



200 L. M. Nieto et al.

where f (0+) and f (0−) are the right and left limits, respectively, of the function
f (x) at the origin. The corresponding Schrödinger equation forH = H0 + V (x) is

− h̄2

2m
ψ ′′(x)− a δ(x)ψ(x)+ b δ′(x) ψ(x) = Eψ(x) . (4)

Since neither the functionsψ(x) in the domain ofH nor their first derivatives are
continuous at the origin, we need to give a determination of the products δ(x)ψ(x)
and δ′(x) ψ(x) that replace the usual ones and that were somehow compatible
with (3). Following [31], we propose

δ(x)ψ(x) := ψ(0
+)+ ψ(0−)

2
δ(x) , (5)

δ′(x) ψ(x) := ψ(0
+)+ ψ(0−)

2
δ′(x)− ψ

′(0+)+ ψ ′(0−)
2

δ(x) . (6)

Some conclusions will be presented next. This includes bound states and
scattering coefficients.

2.1 Bound States and Scattering Coefficients

It is well known that the Hamiltonian (1) has a bound state for b = 0, since −a is
negative. When b �= 0, it is easy to prove that a bound state must exist. Furthermore,
we can find its energy and its wave function by solving the Schrödinger equation (4).
Note that outside the origin, this is the Schrödinger equation for the free particle, so
its solution should be of the form

ψ(x) = α eκx θ(−x)+ β e−κx θ(x) , κ =
√
−2mE/h̄2 , (7)

with E < 0, θ(x) is the Heaviside step function, α = ψ(0−) and β = ψ(0+). In
addition, the functionψ(x) in (7) must belong to the domain of the Hamiltonian (1),
so that it must satisfy the matching conditions (3). Taking into account (3), the final
form of (7) is

ψ(x) =
√
ma h̄

h̄4 +m2b2
[(h̄2 −mb) eκx θ(−x)+ (h̄2 +mb) e−κx θ(x)] . (8)

Note that the function (8) is square integrable and, therefore, represents the
wave function for the unique bound state of the system. Then, we plug (8) into
the Schrödinger equation (4), which after some algebra gives the energy value for
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the unique bound state,

E = −1

2

ma2h̄6

(h̄4 + b2m2)2
. (9)

It is a simple task to obtain the scattering coefficients. Assume that a monochro-
matic wave eikx , k = √

2mE/h̄2, E ≥ 0, comes from the left to the right. After
scattering with the potential V (x), the resulting wave function has different forms
on the regiones x < 0 or x > 0, which are given by

for x < 0 : ψ(x) = eikx + R e−ikx ; for x > 0 : ψ(x) = T eikx, (10)

where R and T are the reflection and transmission coefficients, respectively. These
coefficients are easily obtained by using matching conditions (3), where we now
choose h̄ = 1 for simplicity:

⎛

⎜⎜⎝
T

ikT

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1+mb
1−mb 0

−2am

1−m2b2

1−mb
1+mb

⎞

⎟⎟⎠

⎛

⎜⎜⎝
1+ R

ik(1− R)

⎞

⎟⎟⎠ , (11)

so that,

R(k) = −(am+ 2mbki)

am+ (1+m2b2)ki
, T (k) = (1−m2b2)ki

am+ (1+m2b2)ki
, (12)

where i is the imaginary unit. Note that |R(k)|2 + |T (k)|2 = 1. At the exceptional
values b = ±1/m, there is no transmission. This case will not be treated in the
sequel, but it was carefully considered in [24, 34].

3 The Dirac δ-δ′ Comb

The correspondence between boundary conditions and surface interactions in
quantum field theory was established by Symanzik some time ago [38]. One the
most interesting examples of these surface interactions is given by the Casimir effect
[14]. It was in [34] where an interpretation of the Casimir effect using a δ-δ′ type of
potential was proposed. The idea in [34] was mimicking the plates in the Casimir
effect as two point interactions, so that the Hamiltonian becomes

H = H0 + V (x) = − h̄
2

2m

d2

dx2
+ a1 δ(x + q)+ b1 δ

′(x + q)+ a2 δ(x − q)+ b2 δ
′(x − q) ,

(13)

where q > 0 and the meaning of H0 and V (x) is obvious.
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A generalization of the Hamiltonian (13) is given by the Dirac δ-δ′ comb.
This is a modification of the Kronig-Penney model, which is an exactly solvable
periodic potential, used in Solid State Physics, which describes electron motion
in a periodic array of rectangular barriers. The most obvious generalization of the
Kronig-Penney model is to replace the rectangular barriers by Dirac deltas of the
same amplitude, something that can be obtained by a formal limit procedure. Now,
the one dimensional Hamiltonian H = H0 + V (x) is given by a periodic potential
of the form V (x) = V0

∑∞
n=−∞ δ(x − na), with V0 > 0 and a > 0.

Inspired in the above mentioned analysis of the Casimir effect, we propose the
study of the Dirac δ-δ′ comb, in which the potential takes the form:

V1(x) =
∞∑

n=−∞
(V0 δ(x − na)+ a V1 δ

′(x − na)) , a, V0 > 0 , V1 ∈ R . (14)

so that it is a second generalization of the Kronig-Penney model. From the point
of view of physics, this chain may model a periodic array of charges and dipoles.
The objective is to solve the one dimensional Schrödinger equation using (14) as
potential.

Now, we operate on a neighbourhood of the origin, see Fig. 1. If we call ψI (x)
and ψII (x) to the wave functions in the region I (left) and II (right), respectively,

they have the following form (k =
√

2mE
h̄

> 0):

ψI (x) = AI eikx + B1 e
−ikx , ψII (x) = AII eikx + BII e−ikx ,

ψ ′I (x) = ik AI eikx − ik B1 e
−ikx , ψ ′II (x) = ik AII eikx − ik BII e−ikx .

(15)

Equations (15) can be written in simplified matrix form as

ψJ (x) :=
⎛

⎝
ψJ (x)

ψ ′J (x)

⎞

⎠ = KMx

⎛

⎝
cAJ

BJ

⎞

⎠ , J = I, II , (16)

0

region I

V0d (x) + aV1d ′(x)

V0d (x + a) + aV1d ′(x + a) V0d (x – a) + aV1d ′(x – a)

region II

a–a

Fig. 1 Periodic potential (14) near the origin
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with

K =
(

1 1

ik −ik

)
, Mx =

(
eikx 0

0 e−ikx

)
. (17)

In order to include the perturbation of the form δ-δ′ at the origin, we have to use
the matching conditions, as before. The resulting equation has the form ψII (0

+) =
TU ψI (0

−), with

TU =

⎛

⎜⎜⎝

1+ U1

1− U1
0

2U0/a

1− U2
1

1− U1

1+ U1

⎞

⎟⎟⎠ , U0 = maV0

h̄2 , U1 = maV1

h̄2 . (18)

Again, (18) is valid provided that V1 �= ±h̄2/(ma), otherwise the origin becomes
opaque. After some algebra, we finally arrive to the following relation between the
coefficients of the wave function to both sides of the origin:

⎛

⎝
AII

BII

⎞

⎠ = K
−1

TUK

⎛

⎝
AI

BI

⎞

⎠ . (19)

Then, we use the periodicity properties of the potential in order to obtain the
wave function over all the real line R and some other properties. First of all, the
Floquet-Bloch theorem imposes the following condition (x ∈ (−a, a)):

ψ(x + a) = eiqa ψ(x) �⇒ ψ ′(x + a) = eiqa ψ ′(x) , (20)

where q is a constant called the quasi-momentum and it is a characteristic of the
periodic potential given, and a is the distance between the nodes or points supporting
the contact potential. We may write relation (20) in matrix form, which for x ∈
(−a, 0) is

ψII (x + a) = eiqa ψ I (x) �⇒ KMxMa

⎛

⎝
AII

BII

⎞

⎠ = eiqa KMx

⎛

⎝
AI

BI

⎞

⎠ . (21)

From (17), the matrices Mx and K are invertible, so that (21) implies that

[MaK
−1

TUK− eiqa I]
⎛

⎝
AI

BI

⎞

⎠ = 0 ⇔ det[TU − eiqa KM
−1
a K

−1] = 0 , (22)
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where I is the 2× 2 identity matrix. The cancellation of the determinant in (22) has
some important consequences. With the definitions q̃ = aq and k̃ = ka, Eq. (22)
gives

cos q̃ = f (U1)

[
cos k̃ + U0 g(U1)

sin k̃

k̃

]
, f (U1) = 1+ U2

1

1− U2
1

, g(U1) = 1

1+ U2
1

,

(23)

andU0 andU1 are as in (18). The first equation in (23) is often known as the secular
band equation and determines the dispersion relation in each energy band k̃ =
k̃n(q). It is an even function of U1, or equivalently, of aV1 the coefficient of δ′. The
main interest of the dispersion relation comes from the fact that that it provides the
band spectrum of the Hamiltonian (14). The case U1 = 0, i. e., no δ′ term is present,
has been previously studied. If U1 �= 0, the δ′ term appears and the structure of the
band spectrum changes drastically and must be obtained numerically. The graphical
results can be seen in Fig. 2.

3.1 A Two Species Dirac δ-δ′ Comb

Let us now consider a Hamiltonian of the form H = H0 + V1(x) + V2(x), where
H0 = −h̄2/(2m) d2/dx2, V1(x) is as in (14) and V2(x) is given by

V2(x) =
∞∑

n=−∞

(
W0 δ(x − na − b)+ a W1 δ

′(x − na − b)) , a > 0,W0,W1 ∈ R.

We called this model the two species Dirac δ-δ′ comb in comparison with the model
discussed just above in relation to the Hamiltonian with periodic potential V1(x).
The objective is again to study the band spectrum. Now, the discussion is quite
similar to the precedent one, albeit a bit more complicated, but it is carried out
under the same premises. We arrive to a band secular equation of the form

cos(qa) = F(k; a, b,W0,W1, U0, U1) , (24)

where the explicit form of the function F is rather complicated and has been
obtained in [25]. A numerical analysis gives the behaviour of the band spectrum.
There are interesting differences in the behaviour of band spectrum as compared
with this band spectrum for the one species Dirac δ-δ′ comb. Now the band shape is
completely deformed and, for certain values of the parametersU1 andWw , the band
shape is the reverse of what is for the one species comb. See details in [25]. This
effect is particularly notorious for high values of |U1| and |W1|. In addition, there
are critical values of the parameters, typically U1 = ±1 and W1 = ±1, for which
impenetrable barriers appear.
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Fig. 2 Band structure for different values of U0. From left to right U0 = 0.1, U0 = 1, U0 = 10
and U0 = 30. In all the cases, the band structure of the standard Dirac comb corresponds toU1 = 0

4 Hyperspherical δ-δ′

One of the most obvious generalizations of the Dirac δ-δ′ potentials is a homoge-
neous d-th dimensional potential supported on a hull sphere of radius r0. Due to
the symmetry of this model, this potential would be equivalent to a one dimensional
contact potential at the point r = r0 > 0 plus an impenetrable barrier at the origin.
Let us pose the problem from the very beginning and consider the d-th dimensional
Hamiltonian of the form [35]

H := − h̄
2

2m
�̂d + V̂ (x) , (25)
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with

V̂ (x) = a δ(x − x0)+ b δ′(x − x0), x = |x|. (26)

Here it is convenient to introduce the following dimensionless quantities:

h := 2

mc2
H w0 := 2a

h̄c
, w1 := bm

h̄2
, r := mc

h̄
|x| , (27)

where c is the speed of light in the vacuum. After (27), the new Hamiltonian reads:

h = −�d +w0 δ(r − r0)+ 2w1 δ
′(r − r0) = −�d + V (r) . (28)

Here,�d is the d-dimensional Laplace operator, which expressed in hyperspher-
ical coordinates, (r,�d := {θ1, θ2, . . . , θd−2, φ}) reads:

�d = 1

rd−1

∂

∂ r

(
rd−1 1

rd−1

)
+ �Sd−1

r2 , (29)

�Sd−1 being the Laplace-Beltrami operator on functions defined on the hull hyper-
sphere Sd−1 with dimension d−1. This operator satisfies the identity�Sd−1 = −L2

d ,
where Ld is the generalized d-dimensional angular momentum operator.

The eigenvalue equation for h is separable, so that there are factorizable solutions
of the form ψλ�(r,�d) = Rλ�(r) Y�(�d), where Rλ�(r) is the radial wave function
and Y�(�d) are the hyperspherical harmonics. These are eigenfunctions of the
Laplace-Beltrami operator �Sd−1 with eigenvalues χ(d, �) = −�(�+ d − 2) [29].
The radial wave function is given by

[
− d

2

dr2 −
d − 1

r

d

dr
+ �(�+ d − 2)

r2 + V (r)
]
Rλ�(r) = λRλ�(r) , (30)

where V (r) was defined in (28).
Next, we introduce the reduced radial function,

uλ�(r) := r d−1
2 Rλ�(r) . (31)

The effect of this change of indeterminate is to remove the term with the first
derivative in (30). The resulting equation is

(h0 + V (r)) uλ�(r) = λ� uλ�(r) , (32)

where,

h0 = − d
2

dr2 +
(d + 2�− 3)(d + 2�− 1)

4r2 . (33)
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In order to define the potential V (r) using the theory of self-adjoint extensions of
symmetric operators, we need to define a domain for h0, in which h0 be symmetric
with equal deficiency indices (2, 2). Then, the domain D(h0) is the space of
functions ϕ(r) ∈ L2(R+) with the following properties:

1. Any ϕ(r) ∈ D(h0) is in the Sobolev space W 2
2 (R

+) of absolutely continuous
functions with absolutely continuous first derivative and which second derivative
is in L2(R+).

2. They vanish at the origin, ϕ(0) = 0.
3. At the point r = r0, they satisfy the property: ϕ(r0) = ϕ′(r0) = 0.

The domain D(h†
0) of the adjoint, h†

0, of h0 is the space verifying some changes
in the above conditions: in Condition (1), we replace W 2

2 (R
+) by W 2

2 (R
+\{r0}),

which is the space satisfying the same properties, except that its functions and their
first derivatives have finite jumps at r0 and, then, Condition (3) is not fulfilled. The
domain D(h0 + V (r)) that makes the operator h0 + V (r) self-adjoint is the space
of all functions ϕ(r) in D(h†

0) satisfying the following matching conditions at r0:

(
ϕ(r+0 )
ϕ′(r+0 )

)
=
(
α 0

β α−1

)(
ϕ(r−0 )
ϕ′(r−0 )

)
, (34)

where ϕ(r±0 ) are the right (+) and left (−) limits of ϕ(r) at r = r0. Also,

α = 1+w1

1−w1
, β = w0

1−w2
1

. (35)

These matching conditions determine the boundary conditions that should be
verified by the radial wave functions Rλ�(r). In fact, (31) and (34) give:

(
Rλ�(r

+
0 )

R′λ�(r
+
0 )

)
=
(
α 0

β̃ α−1

)⎛

⎝
Rλ�(r

−
0 )

R′λ�(r
−
0 )

⎞

⎠ , (36)

with

β̃ := β − (α
2 − 1)(d − 1)

2αr0
= w̃0

1−w2
1

, w̃0 = 2(1− d)w1

r0
+ w0 . (37)

These matching conditions are well defined, except at the exceptional values w1 =
±1. These two cases have to be treated separately, see [24, 31].
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4.1 Bound States

Here, we present some results concerning the existence of bound states for the model
under consideration. The eigenvalue equation for bound states is (30) with λ < 0.
Then, it is convenient to use the parameter κ > 0 with λ = −κ2. The general
solution of (30) is

Rκ�(r) =

⎧
⎪⎨

⎪⎩

A1 I�(κr)+ B1 K�(κr) if r ∈ (0, r0) ,

A2 I�(κr)+ B2 K�(κr) if r ∈ (r0,∞) .
(38)

Then,Rκ�(r) can be written in terms of modified hyperspherical Bessel functions
of the first (I�(z)) and second (K�(z)) kind, respectively, where,

I�(κr) = 1

(κr)ν
I�+ν(κν) , K�(κν) = 1

(κr)ν
K�+ν(κν) , ν := d − 2

2
.

The form of the solution in terms of the functions uκ�(r) defined in (31) comes
straightforwardly from (38). The square integrability condition of the radial wave
function for bound states imposes that A2 = 0. Furthermore, the term multiplied
by B1 is not square integrable, except for zero angular momentum in two and three
dimensions. In three dimensions, the condition uκ�(0) = 0 implies that B1 = 0.
There are other type of arguments that show that in two dimensions, we also have
B1 = 0 [26]. After these considerations, (36) can be written as

B2

⎛

⎝
K�(κr0)

κ K′�(κr0)

⎞

⎠ = A1

⎛

⎝
α 0

β̃ α−1

⎞

⎠

⎛

⎝
I�(κr0)

κ I ′�(κr0)

⎞

⎠ . (39)

If we divide the identity obtained with the lower component of (39) with that
found with the first component, we get the following expression called the secular
equation:

α
d

dr
logK�(κr)|r=r0 = β̃ + α−1 d

dr
logI�(κr)|r=r0 . (40)

Solutions for κ > 0 of (40) give the energies for the bound states of the model
under consideration. If we denote by y0 = κr0, (40) takes the form

F(y0) = −y0

(
Iν+�−1(y0)

Iν+�(y0)
+ αKν+�−1(y0)

Kν+�(y0)

)
−(α−α−1)� = 2ν(α−α−1)+ β̃r0 .

Observe that the right hand side is independent on the energy and the angular
momentum. This equation cannot be solved analytically. However, it may be used to
obtain some properties concerning the number of bound states, Nd� = nd� deg(d, �),
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that exist for given values of d and �. Here nd� is the number of negative energy
eigenvalues and deg(d, �) the degeneracy associated with � in d dimensions. We
listed here below these results without proofs that may be found in [26]:

1. In the d-dimensional quantum system described by the Hamiltonian (28), the
number nd� defined above is at most one. This is, nd� ∈ {0, 1}.

2. The d-dimensional quantum system described by the Hamiltonian (28) admits
bound states with angular momentum � if and only if

�max �= Lmax , and � ∈ {0, 1, . . . , �max} , �max > −1 , (41)

with

�max := 4Lmax5 , Lmax := w1 − r0w0/2

w2
1 + 1

+ 2− d
2

, (42)

where 4A5 denotes the integer part of the real number A. In addition, if λ� =
−κ2

� is the energy of the bound state with angular momentum �, the following
inequality holds:

λ� < λ�+1 < 0 , � ∈ {0, 1, . . . , �max − 1} . (43)

3. The quantum Hamiltonian (28) admits a bound state for any ω0 > 0, only if
d = 2 and � = 0.

5 An Application to Nuclear Physics

The δ-δ′ is an approximation that serves to obtain interesting results concerning
realistic models in physics. Next, we want to introduce one of these examples
coming from nuclear physics. Let us consider a model for atomic nuclei based on
a mean field potential with volume, surface and spin orbits parts, for which the
Hamiltonian is given by

H(r) = − h̄
2

2μ
∇2

r + U0(r)+ USO(r)(L · S)+ Uq(r) , (44)

where r = |r|, μ is the reduced mass and the terms U0(r), USO(r) and Uq(r) have
their origin in the Wood-Saxon potential:

U0(r) = −V0 f (r) := −V0
1

1+ e(r−R)/a , (45)
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USO(r) = VSO
h̄2 f ′(r) = −VSO

ah̄2

e(r−R)/a

(1+ e(r−R)/a)2 , (46)

Uq(r) = Vq f i ′′(r) = −Vq
a2

e(r−R)/a (1− e(r−R)/a)
(1+ e(r−R)/a)3 . (47)

Here, V0, VSO and Vq are positive constants, R is the nuclear radius and a is the
thickness of the nuclear surface.

The kinetic term in (44) can be written in terms of the orbital angular momentum
L as

− h̄2

2μ
∇2

r = − h̄
2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2/h̄2

r2

]
. (48)

Then, there exist factorizable solutions for the Schrödinger equation associated
to (48). This factorization is of the form,

ψ(r) = un�j (r)
r

Y�jm(θ, φ) , (49)

where the angular part, satisfies the following relations:

L2 Y�jm(θ, φ) = h̄2 �(�+ 1)Y�jm(θ, φ) , (50)

and

(L · S)Y�jm(θ, φ) = h̄2ξ�,jY�jm(θ, φ), with ξ�,j :=
⎧
⎨

⎩

�
2 for j = �+ 1

2 ,

− �+1
2 for j = �− 1

2 .

Note that � ∈ N ∪ {0}. The functions denoted as Y�jm(θ, φ) are linear combination
of spherical harmonics Ym� (θ, φ), which are simultaneous eigenfunctions of the
operators L2, S2 and J2 = (L + S)2. The radial part of the three dimensional
Schrödinger equation has the form

H(r) un�j (r) = En�j un�j (r) , (51)

where,

H(r) = − h̄
2

2μ

[
d2

dr2 −
�(�+ 1)

r2

]
−V0 f (r)+VSO ξ�,j f ′(r)+Vq f i ′′(r) . (52)
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Our approximation can be obtained by taking the limit a → 0+ in the potential
terms. This limit makes proper mathematical meaning in a distributional sense.
From this point of view, we have that (r ≥ 0)

lim
a→0+

U0(r) = V0[θ(r − R)− 1] , (53)

lim
a→0+

VSO(r) = −VSO ξ�,j δ(r − R) , (54)

lim
a→0+

Uq(r) = −Vq δ′(r − R) , (55)

where θ(x) in (53) is the Heaviside step function. After this limit procedure, we
finally obtain our model, which is given by the following radial Hamiltonian with
contact potential:

Hc = − h̄
2

2μ

[
d2

dr2 −
�(�+ 1)

r2

]
+ V0[θ(r − R)− 1] − VSOξ�,j δ(r − R)− Vqδ′(r − R).

(56)

The advantage of the Hamiltonian in (56) over that in (48) is that the Schrödinger
equation,Hs(r) un�j (r) = En�j un�j , associated to the former can be exactly solved
for all values of � and j . If we use, α := (2μ/h̄2)VSOξ�,j and β = (2μ/h̄2)Vq , this
Schrödinger equation becomes, were we omit the subindices in u(r) for simplicity:

d2u(r)

dr2 +
{

2μE

h̄2 − 2μV0

h̄2 [θ(r − R)− 1]

+ α δ(r − R)+ β δ′(r − R)− �(�+ 1)

r2

}
u(r) = 0 .

Square integrable solutions inside the nucleus are

u�(r) = A�√γ r J�+ 1
2
(γ r) , γ =

√
2μ(V0 + E)

h̄
, r ∈ [0, R) , (57)

and outside the nucleus,

u� = D�√κr K�+ 1
2
(κr) , κ =

√
2μ|E|
h̄

, r ∈ (R,∞) . (58)

Then, we impose the condition that the above solution be in the domain of the
Hamiltonian (52). To do it, we need to find a relation between the coefficients A�
and D� such that (57) and (58) verify the precise matching relations at r = R so
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that (52) be self-adjoint. These relations are

⎛

⎝
u�(R

+)

u′�(R+)

⎞

⎠ =

⎛

⎜⎜⎝

2− β
2− β 0

4α

4− β2

2− β
2+ β

⎞

⎟⎟⎠

⎛

⎝
u�(R

−)

u′�(R−)

⎞

⎠ . (59)

This gives a system of two equations, which permits to find a relation which is
independent of the coefficients A� and D� and is

ϕ(χ) := χ J�+3/2(χ)

J�+1/2(χ)
= (2+ β)

2

(2− β)2
σ K�+3/2(σ )

K�+1/2(σ )
− 8β(�+ 1)

(2− β)2 + w0

(2− b)2 =: φ(σ ),
(60)

with

χ := v0
√

1− ε , σ := v0
√
ε , ε := |E|

V0
∈ (0, 1) , (61)

v0 =
√

2μR2V0

h̄2
> 0 , w0 = 8μVSO ξ�,j R

h̄2
. (62)

Equation (60) if often called the secular equation. It is useful in order to obtain
results concerning bound states. These results have been derived and proven in [26].
Here, we listed some of which we consider the most interesting:

1. If for any value � ∈ N0 such that � ≤ �max the following inequality holds

w0 > −
(
(β − 2)2 + 2�

(
β2 + 4

))
, (63)

there exists one, and only one, energy level with relative energy

εs ∈
(

1− j
2
�+1/2,s

v2
0

, 1− j
2
�+3/2,s−1

v2
0

)
⊂ (0, 1), s ∈ N. (64)

For w0 ∈ R the final number of bound states, N� = (2�+ 1)n�, is determined by

n� = M +m1 −m2, (65)

whereM is

M = min{s ∈ N0 | j�+1/2,s+1 > v0}, (66)
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and, using the functions ϕ(χ) and φ(σ) defined in (60), we obtain

m1 =
⎧
⎨

⎩
1 if ϕ(v0) > φ(0+),

0 if ϕ(v0) < φ(0+) or v0 = j�+1/2,M,
m2 =

⎧
⎨

⎩
1 if 0 > φ(v0),

0 if 0 < φ(v0).

2. The quantum system governed by the Hamiltonian (56) does not admit bound
states with angular momentum � > �max, where

�max := max{� ∈ N0 | j�+1/2,1 < v0 or ϕ(v0) > φ(0+)}.

If there exist s0 ∈ N and �0 ∈ N0 such that v0 = j�0+1/2,s0 the second condition
in the previous set cannot be evaluated. Nonetheless, it is not necessary since the
existence of at least one bound state for �0 is guaranteed.

3. If there exist bound states with relative energies εn�j , ε(n+1)�j , εn(�+1)j for n, � ∈
N0 the following inequalities hold:

(a) εn�j > ε(n+1)�j , (b) εn�j > εn(�+1)j , (c) εn��+1/2 > εn��−1/2 .

Notice that the second inequality only applies for j = �+ 1/2.
4. There are two special cases, in which β = ±2. Now, the contact potential at
r = R becomes opaque in the sense that the transmission coefficient is equal
to zero. Here, we expect the existence of bound states alone, without resonances
or scattering states. This specific problem has been discussed in [26], where the
proposed nuclear model is tested with experimental and numerical data in the
double magic nuclei 132Sn and 208Pb with an additional neutron.

5.1 Resonances

Apart from bound states, we may analyze scattering states or the possibility of
the existence of resonances or even antibound states. Here, we briefly discuss the
existence of resonances, which are unstable quantum states [12, 13]. Contrary to the
case of bound states, wave functions (usually called Gamow functions) for unstable
quantum states are not square integrable. Moreover, in the coordinate representation,
they show an asymptotically exponential grow at the infinity. In our case, this have
the following consequence: Although for consistency reasons, we should keep the
expression (57) for the wave function inside the nucleus (r < R), we should use
the complete solution for the Schrödinger equation outside the nucleus, i.e., in the
region r > R. This is

u�(r) =
√
κr

(
C� H

(1)
�+ 1

2
(κr)+D� H(2)

�+ 1
2
(κr)

)
, κ :=

√
2μE

h̄
, E > 0 ,

(67)
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where H(i)(κr) are the Hänkel functions of first (1) and second (2) kind, respec-
tively, and C� and D� are coefficients depending solely on κ . In the search for
resonances, the knowledge of the asymptotic forms of the Hänkel functions for large
values of r is essential. These are:

H
(1)
�+ 1

2
(κr) ≈

√
2

πκr
e−i(κr−(�+1)π/2) , H

(2)
�+ 1

2
(κr) ≈

√
2

πκr
ei(κr−(�+1)π/2) .

(68)

These asymptotic forms show that H(1)
�+ 1

2
(κr) is an outgoing wave function while

H
(2)
�+ 1

2
(κr) is an incoming wave function. Resonances are determined by the often

called purely outgoing boundary conditions, which assumes that only the outgoing
wave function survives. This implies that D�(κ) = 0, and this is a transcendental
equation for which the solutions coincide with the resonance poles of the S-matrix
[13]. The determination of D� comes after the use of the matching conditions (59)
and the expression (57) for the wave function inside the nucleus, where without
lack of generality we may choose A� = 1. This gives D�(κ) = 0. The latter
is a complicated transcendental equation, which depends on Hänkel and Bessel
functions with different indices, see [26]. The solutions of this equation should be
classified in three categories:

1. Simple solutions on the positive imaginary axis correspond to bound states.
2. Simple solutions on the negative imaginary axis correspond to virtual states also

called antibound states.
3. Pairs of solutions on the lower half plane, symmetrically located with respect

to the imaginary axis that correspond to resonances. Both members of each pair
determine the same resonance and must have the same multiplicity. Usually, this
multiplicity is one, although models with resonance poles with multiplicity two
have been constructed [7, 32].

This model shows resonance poles. Due to the complexity of the relation
D�(κ) = 0 these resonances can only be obtained numerically in most of cases.
It is important to remark that the imaginary part of the resonance poles is always
negative. This implies that the asymptotic form on r of the first expression in (68) is
exponentially growing, as previously noted.

General arguments [37] show that the number of resonance poles should be
infinite. In order to give an idea on how these poles look like, we show a few in
Fig. 3. Resonance poles lie at the intersection of two curves. Here, we have chosen
the following values of the parameters: � = 0, v0 = 5, w0 = 10 and β = 1.
Observe that resonance poles are rather close to the real axis, so that their imaginary
part is rather small. Since the mean life of an unstable quantum state is related with
the inverse of the imaginary part of its resonance pole, this means that the unstable
states corresponding to the poles shown in Fig. 3 are rather stable. Some other cases
with � = 1, 2, 3, 4 have been also considered and we have seen a similar pattern for
resonance poles [26]. Exact analytical results were also obtained.
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Fig. 3 Resonance poles are
located at the intersection of
curves below the real axis.
here, � = 0, v0 = 5, w0 = 10
and β = 1

5.2 A Comment on the Self-adjointness
of the Hamiltonian (56)

Take the Hamiltonian Hc(r) in (56) and fix for simplicity h̄2/2μ = 1, which shall
not alter our results. Then, write Hc(r) = H� + V (r), with

H� := − d
2

dr2 +
�(�+ 1)

r2 + V0[θ(r − R)− 1] , V (r) = aδ(r − R)+ bδ′(r − R) .
(69)

We study the cases � = 0 and � �= 0 separately. Let us discuss � = 0, first. To begin
with, take Hr := −d2/dr2 with domain, Dc, the subspace of functions f (r) ∈
L2[0,∞) such that: (1) f (r) is absolutely continuous with absolutely continuous
first derivative; (2) The second derivative f i ′′(r) ∈ L2[0,∞) is square integrable;
(3) For all functions f (r) in this domain, either f (0) + cf ′(0) = 0 for some fixed
real number c or f ′(0) = 0. Each of these choices gives a self-adjoint determination
of Hr .

Next, define the subdomain Dc(Hr) of all f (r) ∈ Dc such that f (R) =
f ′(R) = 0. Choosing Dc(Hr) as domain of Hr , we conclude that Hr is symmetric
(Hermitian) with deficiency indices (2, 2). When Hr is define on this domain, then
the domain of the adjoint of Hr , Dc(H †

r ), is the space of functions f (r) fulfilling
conditions 1 and 2 above with one modification: they and their first derivatives have
arbitrary although finite jumps at r = R. Self-adjoint extensions of Hr are given
by imposing the functions f (r) ∈ Dc(H †

r ) the matching conditions (59) at r = R.
The exceptional cases β = ±2 also give respective self-adjoint extensions. These
extensions determine self-adjoint operators of the form −d2/dr2 + aδ(r − R) +
bδ′(r −R). Since the term V0[θ(r −R)− 1) is bounded, adding it does not change
anything.
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Let us consider now the case � �= 0. In this case, we do not need to establish
boundary conditions at the origin of the type f (0) = cf ′(0), since the Hamiltonian
H� in (69) with � �= 0 is already essentially self-adjoint when its domain is the
Schwartz space of functions supported on R+ ≡ [0,∞), S(R+), for which we
always have that f (0) = f ′(0) = 0. In this case−d2/dr2+�(�+1)/r2 is essentially
self-adjoint on the mentioned domain [6] and the same condition for H� comes
trivially, since V0[θ(r − R)− 1 is bounded.

Then for any � �= 0, let us define a domain D�,0 of functions f (r) ∈ L2(R+)
fulfilling the following conditions:

1. f (r) and f ′(r) are absolutely continuous;
2. The function−f i ′′(r) = [�(�+ 1)/r2]f (r) belongs to L2(R+);
3. f (0) = 0;
4. f (R) = f ′(R) = 0.

The conclusion is that H� on D�,0 is symmetric with deficiency indices (2, 2).
In order to add to H� the perturbation V (r) = aδ(r − R) + bδ′(r − R), we

define the domain of the adjoint ofH� on D�,0 as the subspace of L2(R+) satisfying
the above conditions 1, 2 and 3 and replacing 4 by: 4′ f (r) and f ′(r) have finite
discontinuities at r = R. Then, imposing the matching conditions (59) to these
functions, we obtain the domain in which Hc(r) = H� + V (r) is self-adjoint for
any value of a and b. For � �= 0, the subindex c is irrelevant. This completes our
discussion on the self-adjoint of the Hamiltonian.

6 Concluding Remarks

Contact potentials are quite interesting in quantum mechanics because they provide
of simple models to analyze the behaviour of quantum systems. Along this presen-
tation, we were concerned with perturbations of the type aδ(x − x0)+ bδ′(x − x0)

either in one dimension or in arbitrary dimensions with spherical symmetry, so that
the model could be projected to a one dimensional one. This is what we call δ-δ′
interactions.

In the first place, we have introduced a very simple one-dimensional model with
a unique δ-δ′ interaction on the free Hamiltonian. This interaction can be easily
studied and serves as a basis for more complicated models. The contact interaction
can be mathematically well defined using the theory of self-adjoint extensions of
symmetric operators with equal deficiency indices. The possible existence of a
bound state is investigated and scattering coefficients are determined.

This is used for the construction of a sort of Kronig-Pennery model in which
rectangular barriers are replaced by δ-δ′ interactions with identical coefficients, so
that the resulting potential is periodic. The behaviour of the energy bands can be
studied in terms of the variations of the coefficients of the delta and the delta prime.
We have also considered an hybrid potential with two types of δ-δ′ interactions.
The study of the energy bands requires powerful numerical estimations and the use
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of the software Mathematica. A detailed description of this model, which could be
interesting in Condensed Matter, can be just briefly summarized in this short review
and has been published in [25].

Spherically symmetric models in quantum mechanics are often studied as one
dimensional models with an infinite barrier at the origin, after separation of radial
and angular variables. This is also the case of the δ-δ′ interactions supported on hull
spheres of arbitrary dimensions. Here, we have determined matching conditions that
make the Hamiltonian with this type of interaction self-adjoint and have obtained
some results concerning the number of bound states. These results depend on the
dimension as well as the angular momentum.

Finally, we have used one type of δ-δ′ interaction as an approximation of a mean
field potential of wide use in nuclear physics. The objective is double. In one side,
we have obtained results concerning the existence and number of bound states in
the considered model in terms of the given parameters. For two exceptional cases,
the model shows no transmission through the δ-δ′ barrier, so that the number of
bound states is infinite. Otherwise this number is finite. Outside the exceptional
cases, the model shows resonances that are manifested as pairs of poles of the
analytic continuation to the complex plane of the S-matrix, S(k), in the momentum
representation. These resonance poles can be obtained numerically as solutions of
a transcendental equation. There is an infinite in number, so that in Fig. 2, we have
depicted some resonance poles with the lowest real part. We have also discussed the
construction of a self-adjoint Hamiltonian for such purpose.
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1 Introduction

In the work [41] it was shown that integrals of tau functions, namely the expectation
values of tau functions in ensembles of random matrices, are equal to the special
sums over partitions (Young diagrams) which can be related to the correlation
functions of the Wilson loops W∗

i , i = 1, . . . , V of quantum 2D gauge theory
on a Riemann surface', see [55, 62]:

E
U
⊗n1
N

E
GL

⊗n2
N

[
LI1ULI2Z (τ(p(W1), . . . ,p(W2D))

]

= 1+
∑

d>0

∑

λ.d

(d!)n2

Nnd
A(λ) (dimGL λ)

−n1 (dimS λ)
−n2

V∏

i=1

sλ
(
W∗
i

)
(1)

Here, E
U
⊗n1
N

E
GL

⊗n2
N

[τ ] denotes the expectation value of the tau function in a certain

ensemble of random matrices, sλ(W∗
i ) is the GLN ( UN ) character, andW∗

i ∈ GLN

(or. respectively,W∗
i ∈ UN ). The details and notations will be explained in the next

section.
The right hand side also generates Hurwitz numbers with completed cycles [42]

HE for covers of the base surface' where the n1+n2−V is the Euler characteristic
of '.

The goal of the present note is to present a short review of results of [41, 42]
and to pick up all cases where the right hand side of (1) is also a tau function. The
results of the work are presented in Sect. 3. We show that integrals of tau functions
are also integrable in the sense of [24] and may be related to quantum models as
two-dimensional Yang–Mills theory on orientable [31, 55, 62] and non-orientable
[62] surfaces.

The works [40–42] and the present one appear as a result of the cross study of
three topics: integrable hierarchies [14, 22, 23, 32, 33, 49, 53, 54, 56, 58–60, 63–65],
matrix models [17, 20, 24, 25, 38, 45, 66, 67] products of random matrices [2–4, 12]
and Hurwitz numbers in case of orientable surfaces [15, 18, 43, 44], [7, 8, 13, 21,
26, 34–37] and also of non orientable ones [5, 6, 10, 11, 39, 40]. See also [9, 16, 19],

2 Random Matrices, Graphs and Tau Functions

2.1 Notations and Preliminaries

Mixed Ensembles of Random Matrices E
U
⊗n1
N

E
GL

⊗n2
N

[f ] is the notation for

the expectation values of a function f that depends on the entries of matrices
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Z1, . . . , Zn1 ∈ GLN(C) and of matrices U1, . . . , Un2 ∈ UN , which are defined
as

E
U
⊗n1
N

E
GL

⊗n1
N

[f ] =
∫
f (U1, . . . , Un2 , Z1, . . . , Zn1)

n2∏

i=1

d∗Ui
n1∏

i=1

dμ(Zi) (2)

where d∗Ui (i = 1, . . . , n2) is the Haar measure on UN and dμ(Zi) =
c
∏
a,b e

−|(Zi)a,b|2d2(Zi)a,b is the Gauss measure. Each set of Zi and of
dμ(Zi) is called complex Ginibre ensemble, and the whole set Z1, . . . , Zn1 ,
dμ(Z1), . . . , dμ(Zn1) is called n1 independent complex Ginibre ensemble. The
set U1, . . . , Un2 , d∗U1, . . . , d∗Un2 is called n2 independent circular ensemble. We
assume each

∫
d∗U = ∫ dμ(Zi) = 1. The ensemble given by (2) we call the mixed

ensemble.

Partitions: Schur Functions, Characters Then, λ = (λ1, . . . , λ�) denotes a
partition of d (this fact is written as λ . d), that is λ1 ≥ · · · ≥ λ� > 0 are natural
numbers and λ1+ · · ·+λ� := |λ| = d . The number of non-vanishing parts is called
the length of the partition: � = �(λ).

The sum in the right hand side of (1) ranges over set of all partitions �(λ) ≤ N .
Given λ and a matrix X ∈ GLN(C), the multi-variable polynomial

sλ(X) =
det
(
x
λi−i+N
i

)

i,j

det
(
x−i+Ni

)

i,j

(3)

where x1, . . . , xN denote the eigenvalues of X, is called the Schur function, or the
Schur polynomial, indexed by λ. Here we suppose �(λ) ≤ N , otherwise we put
sλ(X) = 0. The polynomial (3) is also known as the character of the group GLN

and also the character of the unitary group in case X ∈ UN . The Schur polynomial
is the polynomial also in the entries of X:

sλ(p(X)) := sλ(X) = dimS λ
∑

�.d
ϕλ(�)p�(X) (4)

where the sum ranges over all partitions of d = |�|, � = (�1,�2, . . . ), then we
consider the sets and the variables (the so-called power sums [29])

p = (p1, p2, . . . ), p� := p�1p�2 · · ·

and the notation p�(X) means

p�(X) = (p1(X), p2(X), . . . ) , pm(X) =
N∑

a=1

xma = tr
(
Xm
)

(5)
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or, the same

p�(X) = tr
(
X�1

)
tr
(
X�1

) · · ·

which is a polynomial function in the entries of the matrix X. The variables pm(X)
are also known as Newton sums.

The notation dimS λ serves for the dimension of the irrep λ of the symmetric
group Sd , it is known that

dimS λ = d!sλ(p∞), p∞ := (1, 0, 0, . . . )

Lastly, ϕλ(�) are certain rational numbers which are the normalized irrep characters
of the group Sd indexed by λ and evaluated on the cycle class �, more precisely,

ϕλ(�) = |C�|
dimS λ

χλ(�)

where |C�| is the cardinality of the class� (here, let me recall that each element of
the symmetric group is the product of the non-intersecting cycles of lengths �1 ≥
�2 ≥ · · · ) and χλ(�) is the irreducible character evaluated on any element of C�.
The cardinality of C� can be written as follows

|C�| = |Sd |
z�
, z� =

∏

i≥1

imimi ! (6)

where mi is the number of times the number i occurs in the partition (and
sometimes, partitions are written as � = 1m12m23m3 · · · ), |Sd | = d!.

The relation (4) is also known as the character map relation because it relates the
characters of linear groups to the characters of the symmetric group. The dimension
of the representation of the linear group indexed by λ is

dimGL λ = sλ(Id) = dimS λ
∏

(i,j)∈λ
(N − j + i)

where IN is the identity N × N matrix.

Tau Functions In the seminal work [64, 65], Vladimir Zakharov and Alexei Shabat
discovered a way to build integrable (2+1)-dimensional systems together with their
representations of Lax type. This work has opened a huge field in science. Integrable
systems found unexpected applications in mathematics, physics and in technology.
The main example was the Kadomtsev-Petviashvili (KP) equation, which naturally
arises immediately along with the infinite number of different “higher KP equations”
compatible with each other, and this fact can be reformulated as the existence of
higher commuting flows; the group parameters of these flows were later named
higher KP times and we denote the infinite set of times p = (p1, p2, p3, . . . ). In
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applications of the KP equation to the sea waves, the parameters p1, p2 and p3
play the role of horizontal coordinates x, y and of time, respectively. Later, starting
with the works of S.P. Novikov, the important role of the whole set of commuting
flows of higher KP emerged (see chapter 2 in [63]). An important next step was
taken by Sato and his school where the higher KP times were crucial in the vertex-
operator approach to the theory of solitons [22, 56]. Matrix generalizations of the KP
equation were also obtained in [64, 65] as part of a general approach. In the works of
the Kyoto school, such systems were called multi-component KP hierarchies. The
sets of the higher times of a multi-component hierarchy, I denote p1, . . . ,pk , where
k is the number of the components. In a series of works by the Sato school, the tau-
function approach was developed. The tau function is a kind of universal potential
that describes the entire set of higher multi-component equations. A well-known
example of a tau function is the Riemann theta function, where flows are flows on
Jacobian.

For our purpose we choose special tau functions which we call round dance tau
functions.

Example: Round Dance Tau Functions Let us use Frobenius coordinates α1 >

· · · > ακ > 0 and β1 > · · · > βκ > 0 for partitions λ = (α|β) =
(α1, . . . , ακ |β1, . . . , βκ). (We recall that Frobenius coordinates αi and βi are the
lengths of respectively arms and legs of the hooks on the Young diagram λ where
the corner of the i-th hook is the i-th node on the main diagonal, and i = 1, . . . , κ ,
where κ is the number of the nodes on the main diagonal of λ, see [29]. Frobenius
coordinates can also be viewed as the pairs of strict partitions (namely partitions
with strictly decreasing parts) of the same length �(α) = �(β) = κ , this length
being the length of the main diagonal of the Young diagram λ = (α|β)).

Let me introduce the round dance tau function. The round dance tau function is
the special tau function of the multi-component KP hierarchy that can be written as
follows:

τ (p1, . . . ,p2D) = 1+
∑

κ>0

∑

α1,...,α2D

�(α1)=···=�(α2D)=κ

2D∏

j=1

s(αj |αj+1)(p
j )

κ∏

i=1

fj (α
j
i ) (7)

where the sum ranges over 2D sets of strict partitions: αj =
(
α
(j)
1 , . . . , α

(j)
κ

)
,

α(j1) > · · · > α(j)κ > 0, and where the prime above the sum means that we set
α2D+1 = α1 (for me, this necklace resembles a painting by Matisse called “Dance”
[30], although there are 5 dancers, which is not an even number as in my case). We
choose an even number of components, 2D, for further purposes. Let us note that
this tau function is also the tau function for the k-component KP hierarchy where
k ≤ 2D. To get it one just “freezes” extra higher times, keeping only the k sets, say,
p1, . . . ,pk as the variables.
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The round dance tau function generalizes the so-called hypergeometric tau
function [27, 49]

e−
∑
m>0

1
mp

(1)
m p

(2)
m = 1+

∞∑

κ=1

∑

α1,α2

�(α1)=�(α2)=κ

(−1)|α1|+|α2|+κ

× s(α1|α2)(p
1)s(α2|α1)(p

2)

κ∏

i=1

f1(α
1
i )f2(α

2
i ) (8)

(that is the case D = 1 in (7)) where the sum range over the pairs of strict partitions
α1 and α2 are the Frobenius coordinates of the partition λ = (α1|α2) and |α1| +
|α2| + κ = |λ| is the total number of nodes in the Young diagram λ = (α1|α2).

In turn, the hypergeometric tau function generalizes the simplest non-trivial two-
component KP tau function

e
∑
m>1

1
m
p
(1)
m p

(2)
m =

∑

λ

sλ(p1)sλ(p2) =
∑

�

1

z�
p1
�p2
� (9)

where the last two sums over, respectively, partitions λ and � range over the set of
all partitions. The first equality is also known as Cauchy-Littlewood equality.

BKP Tau Functions We need also the simplest non-trivial hypergeometric BKP
tau function which is [53]

τB(p) = 1+
∞∑

κ=1

∑

α1,α2

s(α2|α1)(p)
κ∏

i=1

f1(α
1
i )f2(α

2
i ) (10)

which generalizes

τB1 (p) := 1+
∞∑

κ=1

∑

α1,α2

s(α2|α1)(p) = e
∑
m>0

1
2mp

2
2m+ 1

2m−1p2m−1 (11)

Here we have in mind the BKP hierarchy of Kac-van de Leur introduced in [23]. In
[61], it was shown that the BKP hierarchy can be treated as the orthogonal reduction
of the two-component KP hierarchy which implies that the square of a BKP tau
function is equal to a certain tau function of the two-component KP.

Remark 1 The series over partitions can be considered as formal ones according to
the grading deg sλ = |λ|. However, there are open domains of convergency in the
space of higher times pi = (p(i)1 , p

(i)
2 , . . . ), i = 1, . . . , 2D. Notice that thanks to
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the infinite number of these parameters one can write

sλi (p
i ) = 0 if p(i)m = ±

k∑

j=1

xmj

for �(λ) > k in the case of “+” factor and for λ(i)1 > k in the case of “−” factor.
For tau functions of multi-component KP and BKP equations there exist recursion
equations.

The fermionic expression for the tau functions (7) and for that of BKP (11)
(and (10) below) one can find in Appendix B.

Content Product For a given number x and a given Young diagram λ the content
product is defined as the product

(x)λ :=
∏

(i,j)∈λ
(x + j − i) (12)

The number j − i, which is the distance of the node with coordinates (i, j) to the
main diagonal of the Young diagram λ is called the content of the node. For one-row
λ, the content product is the Pochhammer symbol (a)λ1 . For a given function of one
variable r , we define the generalized content product (the generalized Pochhammer
symbol) as

rλ(x) =
∏

(i,j)∈λ
r(x + j − i) (13)

The content product plays an important role in the representation theory of the
symmetric groups. Let us note that (13) may be re-written in Frobenius coordinated
of λ = (α1|α2) and yields

∏κ
i=1 f1(α

1
i )f2(α

2
i ) where fi, i = 1, 2 are defined in

terms of r(x). It was used in [49] to define the family of tau functions which we
called hypergeometric tau functions, see (8) and BKP hypergeometric tau functions
[53] (10)

Content Products in Terms of the Schur Functions Evaluated at Special Points
Examples from this paragraph were widely used in [21, 45, 47, 49, 52]. The example
of the generalized content product may be constructed purely in terms of the Schur
functions: if we choose

r(x) =
∏

i

(
1− tiq

x
i

1− qxi

)di
(14)
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where ti ,qi ,di are parameters, we obtain

rλ(x) =
∏

i

(
sλ(p(ti ,qi ))
sλ(p(0,qi ))

)di

(15)

One can take a limit (14) to a rational function and obtain

rλ(x) =
∏p
i=1(ai )λ∏q
i=1(bi )λ

=
p∏

i=1

sλ(p(ai ))
sλ(p∞)

q∏

i=1

sλ(p∞)
sλ(p(bi ))

(16)

Above we used the following special notations:

p∞ = (1, 0, 0, . . . ), p(a) = (a,a,a, . . . ) (17)

pm(t,q) = 1− tm

1− qm
(18)

Actually, any reasonable content product can be interpolated by expressions (16).

Remark 2 Notice, that p(qN,q) = 1+q+ · · · +qN−1 which allows to interpret it
as p(X) where 1, . . . ,qN−1 are eigenvalues of X.

Let us also write down the known formulae [29]

sλ(p(a)) = sλ(p∞)
∏

(i,j)∈λ
(a + j − i) ,

sλ(p∞) = dimS λ

d! =
∏N
i<j (hi − hj )∏N

i=1 hi !

(19)

sλ(p(t,q)) = sλ(p(0,q))
∏

(i,j)∈λ

(
1− tqj−i

)
,

sλ(p(0,q)) = qn(λ)
∏N
i<j (1− qhi−hj )
∏N
i=1(q;q)hi

(20)

where n(λ) :=∑�(λ)
i=1 (i − 1)λi

(a;q)n := (1− a)(1− aq) · · · (1− aqn−1) (21)

and where d = |λ| :=∑N
i=1 λi is the weight of λ, and hi = λi−i+N, i = 1, . . . , N

are called the shifted parts of the partition λ, we imply N ≥ �(λ).
Remark 3 Formulae (19) and (20) possess the saturation property: they do not
depend on the choice of N if N is large enough.
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2.2 Graphs and Words

This subsection summarizes the joint works [41] and [42].

Decorated Embedded Graph: Words and Dual Words Consider an alphabet
consisting of the characters Ai and Bi , i = 1, . . . , n. Symbols Ai,Bi we call dual
pair for each i = 1, . . . , n, and we call this alphabet the alphabet of pairs.

Next, we consider the oriented compact surface ' without boundary with a
given embedded graph with F faces, n edges and V vertices. We assume that the
complement to the graph on ' is a union of disks, therefore the Euler characteristic
of ' is E = F − n+ V.

Let us decorate the graph as follows. First, we number each edge, and place Ai
andBi from both sides of the edge number i in any fixed way. Second, we number all
faces by c = 1, . . . , F. Let us go around the boundary of the face numbered c in the
clockwise direction and assign to each boundary edge, say ei , either the symbol Ai
in case the edge is directed positively, or Bi in case the edge is directed negatively.
We get the formal product of symbols written from the left to the right according
to the clockwise round trip. This product defined up to the cyclic permutations
of the characters in it we call the word Wc. Thus, each symbol of the collection
{Ai,Bi, i = 1, . . . , n} is assigned to an edge and each word is assigned to a face.

Notice that each symbol of the alphabet of pairs enters once and only once in the
set of words.

Such graph we call decorated and is denoted (�,W1, . . . ,WF). The given full
set of words W = (W1, . . . ,WF) gives rise to the set of dual words W∗ =
(W∗

1 , . . . ,W
∗
V ) as follows:

Let us enumerate the vertices i = 1, . . . , V. Let us go in the counterclockwise
direction around a given vertex and (from the left to the right) write down symbols
which we meet prior to each outgoing edge. This product defined up to cyclic
permutations of the characters in the product we call dual word W∗

i assigned to
the vertex number i.

We recall that the graph �∗ dual to � has V faces, n edges and F vertices, where
each face of �∗ contains a single vertex of � and each face of � contains a single
vertex of �∗. Each edge of �, say ei , crosses a single edge of �∗, denoted as e∗i .
We assign the orientation to each e∗i in a way that ei crosses it form the left to the
right. The rule to assign the word to the dual graph is the same, however now we
write the words from the right to the left. The collection of the words of the dual
graph obtained in such a way coincides withW∗

1 , . . . ,W
∗
V presented above. We have

one-to-one correspondence

W1, . . . ,WF ↔ W∗
1 , . . . ,W

∗
V

The decorated graph dual to (�,W1, . . . ,WF) is denoted
(
�∗,W∗

1 , . . . ,W
∗
V

)
.
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One can start from the alphabet of pairs Ai,Bi, i = 1, . . . , n and the set of
productsW1, . . . ,WF where each letter is used only once. Then one can consider the
set of F polygons: the wordWc, c = 1, . . . , F gives rise to the polygon numbered c
whose edges are labeled in clockwise direction by symbols of the word read from
the left. Then, by gluing each pair of edges labeled by a pairAi,Bi, i = 1, . . . , nwe
obtain the decorated embedded graph (�,W1, . . . ,WF) and also

(
�∗,W∗

1 , . . . ,W
∗
V

)
.

We call sets of words isomorphic if one can be obtained from another by
transpositions of dual pairs ai ↔ bi , by a re-enumeration of edges and by re-
enumeration of faces.

Chord Diagrams and Decorated Chord Networks In the previous paragraphs,
words were introduced with the help of a decorated graph drawn on a Riemann
surface '.

In this paragraph, we “forget” about the surface and the embedded graphs and
treat a word simply as a product of characters where each product is defined up to
cyclic permutations. As before, we consider the alphabet of pairs, which consists of
n pairs of dual characters ai, bi, i ∈ I, and require that each character enter only
once in the word set w = (W1, . . . ,WF). We call the set of words connected if there
is no subset of words which contains only characters from a sub-alphabet of pairs.

A set of words can be drawn on paper in a natural way as a set of F oriented
polygons with the total number of edges equal to 2n, where symbols are assigned
to edges of the polygons: each word is obtained by going clockwise around the
polygon related to the word and multiplying from left to right all the characters
along the way. We draw lines which we call chords whose endpoints are placed on
the edges with dual symbols.

For further purposes, it is convenient to draw not single chords, but dual chords:
two directed arrows that together with arrows Ai and Bi form (topologically) a 4-
polygon as follows. Let the arrow Ai start at the point 1 and end at the point 2, and
the arrow Bi start at point 3 and end at the point 4, then the chord A∗i starts at the
point 1 and ends at the point 4 and the chord B∗i starts at the point 3 and ends at
the point 2. Notice that arrows-characters and arrows-chords are directed oppositely
on the polygon 1234: both characters are directed positively and both chords are
directed negatively.

Let us call this set decorated set of polygons.
We recall that a chord diagram is an oriented circle S1 with a certain number of

pairs of points connected by lines called chords. A network of chord diagrams is a
set of oriented loops and a set of lines, also called chords, each chord connecting
a pair of points belonging to any circle. We call a chord internal if its endpoints
belong to the same circle, and otherwise we call it external.

Decorated sets of polygons (networks) we call isomorphic if they correspond to
isomorphic sets of words.

Below we consider only connected networks. Thus, we also ask the set of words
to be connected (which means that there is no subset of words constructed with a
sub-alphabet of pairs).
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Consider a network with F loops and n chords. One can naturally identify such
network with the set of F polygons with n pairs of edges, where edges of polygons
are segments of loops which contains endpoints of the chords.

Let us number the chords and decorate the network assigning matrices ai and bi
to the segments of loops containing the endpoints of the i-th chord. Then, up to the
Z
n
2 action Ai ↔ bi, i = 1, . . . , n we have a one-to-one correspondence between

the set of words w = (W1, . . . ,WF) and the decorated network or, the same, the
decorated set of polygons.

A well-known fact (see, for instance [28]) is that any set of oriented polygons
with the total number of (the oriented) edges equal to 2n gives rise to an embedded
graph drawn on a Riemann surface. It is obtained by the identification of the pair of
oriented edges in such a way that the origin of one oriented edge coincides with the
end point of the other. These identified oppositely oriented edges of polygons turn
out to be edges of the embedded graph.

A connected set of words gives rise to a connected decorated graph drawn on the
connected Riemann surface and, therefore to the dual set of words:

W = (W1, . . . ,WF)→ (�,W1, . . . ,WF)↔ (�∗,W∗
1 , . . . ,W

∗
V ) (22)

Operations mi and H(i) with Words and Networks Consider the decorated
network as the symmetric tensor product of W1 ⊗ · · · ⊗ WF. Select any pair
Ai,Bi, i ∈ I. This pair is either in different words, sayWa = AiX andWb = BiY ,
or in one word, sayWc = AiXiBiY . Introduce the involutive map mi which acts on
the tensor products of words: it acts identically on all words except these (or this,
according to the subscript forW ) that contain(s) symbols Ai and Bi as follows:

mi : AiX ⊗ BiY → AiXBiY (23)

in the first case, and as

mi : AiXBiY→AiX ⊗ BiY (24)

in the second case. One should pay attention to the coordination of the order of
factors on the left and right sides of the maps (23) and (24) and remember that thanks
to the fact that words are defined up to a cyclic permutations of the characters, the
left hand side of (23) can be also written asXAi⊗YBi = AiX⊗YBi = XAi⊗BiY ,
and the left hand side of (24) can be written as YAiXBi = BiYAiX = XBiYAi .

We see that m2
i is the identity map. One can check that mi

(
mj (W)

) =
mj (mi (W)) , i, j = 1, . . . n.

We recall that having the set of wordsW and polygons we construct the Riemann
surface with the decorated graph in a unique way, and then we have the geometric
construction for the dual set of wordsW∗, see (22). It was the geometric construction
of dual words.
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The algebraic construction is given by

Proposition 1

(
n∏

i=1

mi

)
W1 ⊗ · · · ⊗WF = W∗

1 ⊗ · · · ⊗W∗
V

As for the decorated network of chord diagrams, each operation mi , i ∈ I means
the following. We represent the chord and a pair of directed edges, on which it
rests, in the form of the letter H, where the middle line denotes the chord, and
the directionality of the edges is depicted as 1

2 ↓ − ↑ 3
4 . Operation mi means the

transposition of the endpoints 2 and 3: now new directed edges connect not points 12
and 43, but points 13 and 42 (notice that points 1 and 4 are origins of directed edges
in both cases). And these new edges are connected by the new chord (the middle
line of the letter H lying on its side). One may call it H-rotation, or, H(i)-rotation
having in mind that the chord and the edges are numbered by i.

The proof of the Proposition 1 is based on the realization of the fact that
composition of H(1),. . . ,H(n) describes the passage from the decorated graph � to
the dual decorated graph �∗. It is clear because each vertex of the ribbon graph is
the face of the graph formed by pointed arrows, while the faces of the ribbon graph
� are the vertices of the dual graph.

Example 1 W = A1A2B1B2 · · ·An−1AnBn−1Bn. Then

W∗ = A2A1B2B1 · · ·AnAn−1BnBn−1.

Example 2 W = A1B1A2B2 · · ·AnBn. Then

W∗ = A1 ⊗ · · · ⊗ An ⊗ BnBn−1 · · ·B1.

Example 3 W = A1 · · ·AnBn · · ·B1. Then

W∗ = An ⊗ BnAn−1 · · · ⊗ B3A2 ⊗ B2A1 ⊗ B1.

The Surface 'H,M. Let us remove H pairs of faces of the decorated embedded
graph � and glue each pair by a handle.

Next, we remove M faces of � and glue Möbius strips to the boundary of these
faces. The surface of the Euler characteristic E − 2H − M obtained from ' by the
manipulation described above we denote 'H,M. The complement to the graph � of
this surface is a union of F − 2H − M disks, H cylinders and M Möbius strips.

We will denote the words on the boundary of cylinders as W+
i ,W

−
i , i =

1, . . . , H, where i is the number of the handle. The words on the boundary of Möbius
we will denoteW ′

i , i = 1, . . . ,M.
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Thus, in our new notations the set of all words of the decorated � consists of
W+
i ,W

−
i , i = 1, . . . , H, W ′

i , i = 1, . . . ,M and the set W1, . . . ,WF−2H−M which
corresponds to the faces which we do not remove.

Dressing and Dressed Words Consider any function f of matrices Ai,Bi, i =
1, . . . , n. One can split the index set I = {i = 1, . . . , n} into two groups: I = I1∪I2.
One defines dressed function which we denote LI1

ULI2
Z [f ], c = 1, . . . , F by the

following replacement:

Ai,Bi → UiAi, U
†
i Bi if i ∈ I1

and

Ai,Bi → ZiAi, Z
†
i Bi if i ∈ I2

in f . In particular, dressed words are denoted LI1
ULI2

Z (Wc) c = 1, . . . , F.

Integrals of Products of Schur Functions

Proposition 2 ([41, 42]) Consider a set of partitions λ1 = λ, λ2, . . . , λF and the
set of words W = (W1, . . . ,WF). Suppose the set 1, . . . , n is split into two sets I1
and I2, |Ii | = ni, i = 1, 2. We get

E
U
⊗n1
N

E
GL

⊗n2
N

(
LI1ULI2Z

[
F∏

i=1

sλi (Wi)

])

= δλ (|λ|!)
n2

Nn|λ| (
dimGL λ)

−n1 (dimS λ)−n2

V∏

i=1

sλ
(
W∗
i

)
(25)

and

E
U
⊗n1
N

E
GL

⊗n2
N

(
LI1ULI2Z

[
V∏

i=1

sλi
(
W∗

i

)
])

= δλ (|λ|!)
n2

Nn|λ| (dimGL λ)
−n1 (dimS λ)

−n2

F∏

i=1

sλ (Wi) (26)

There are two ways to prove the Proposition. The first one is based on integration
of the characters, see [41] and few introductory facts in the Appendix A. The other
way [42] is to use the combinatorics of the Feynman diagrams of the matrix integrals
and the relation of this combinatorics to Hurwitz numbers.
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3 The Meaning of Integrals of Tau Functions: Integrals
of Tau Functions as Tau Functions

3.1 Tau Functions as Integrands: The Meaning
of the Integrals—Orientable Case

We recall that we start with the embedded graph � with V vertices, n edges and
F faces homeomorphic to discs. Imagine that F coincides with the number of
arguments of the round dance tau function (7): F = 2D. Then we shall use the
following notation

τ (W1, . . . ,W2D) := τ (p1, . . . ,p2D) (27)

where, in the right hand side, we put the round dance tau function given by (7) and
where

pi = (−1)i+1p(Wi) =
(
(−1)i+1p1(Wi), (−1)i+1p2(Wi), . . .

)
, i = 1, . . . , 2D

(28)

Proposition 3 Consider tau function (7) where higher times are given by

pi = pi (Wi) =
(
pi1(Wi), p

i
2(Wi), p

i
3(Wi), . . .

)
,

p(i)m = tr
(
(Wi)

m
)
i = 1, . . . , 2D

(29)

Then

E
U
⊗n1
N

E
GL

⊗n2
N

(
LI1ULI2Z [τ (W1, . . . ,W2D)]

)

= 1+
∑

d>0

∑

λ|λ|=d

(d!)n2

Nnd
A(λ) (dimGL λ)

−n1 (dimS λ)−n2

V∏

i=1

sλ
(
W∗
i

)
, (30)

where

A(λ) =
κ∏

i=1

2D∏

j=1

f2j−1(αi)f2j (βi)
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For the proof one should use Proposition 2, the explicit form of the tau
function (7) where the higher times are chosen by (28) and the known relation

s(α|β)(−p) = (−1)|α|+|β|+κs(β|α))(p) (31)

see [29]).
In what follows we will consider two different special choices of the sets of

functions fj , j = 1, . . . , 2D.

(A)

f1 = f1(t1, t2, . . . ) = e
∑
m>0 tm

[(
α1
i + 1

2

)m−
(
−α2

i − 1
2

)m]

= e
∑
m>0 tm

(
hi+ 1

2

)m
, fj = 1, j > 1 (32)

(B)

f1 = f1(t
∗
1 , t

∗
2 , . . . ) = e

∑
m>0 t

∗
m

(
q
m
(
αi+ 1

2

)

−qm
(
−βi− 1

2

))

= e
∑
m>0 t

∗
mq
m
(
hi+ 1

2

)

, fj = 1, j > 1, (33)

where, in both cases, hi = λi − i + N, i = 1, . . . , N are shifted parts of the
partition λ = (α|β). (the second equality in both (32) and (33) was used in [49]
the proof is easy). The sets t = (t1, t2, . . . ) and t∗ = (t∗1 , t∗2 , . . . ) are the sets
of free parameters.

Remark 4 Let us consider the surface 'D,0 in the notation of Sect. 2.2, denoted '′
below. We recall that it is constructed with the help of the Riemann surface' and the
graph � that has n edges, V vertices and F faces homeomorphic to discs. In the case
considered in Proposition 3, we choose F = 2D. Then, we glue up all faces by H = D

handles. The Euler characteristic of '′ is equal to E′ = n− V. In [42] we presented

the generating function for general Hurwitz numbers HE′
(
�̃1, . . . , �̃V

)
with base

surface'′ with Euler characteristic V−n and ramification profiles �̃1, . . . , �̃V and
this function is (30), the case (A) where tm = 0:

1+
∑

d>0

∑

λ|λ|=d

(d!)n
Nnd

(dimS λ)−n
V∏

i=1

sλ
(
W∗
i

)

= 1+
∑

�̃1,...,�̃V

HV−n
(
�̃1, . . . , �̃V

) V∏

p=1

p�̃p
(
W∗
p

)
(34)
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It is reasonable to write down a more general case where F < 2D (we recall that
F is the number of faces and words, and 2D is the number of sets of higher times in
the round dance tau function, or the number of components in the multi-component
KP hierarchy):

Proposition 4 Consider tau function (7) where 2D = F+H and where higher times
are chosen as follows: according to

τ
(

p1,W1,p2,W2, . . . ,pF−2H,WF−2H,WF−2H+1,WF−2H+2, . . . ,WF

)
(35)

where an argument of the tau functionWk on an even place (if one counts arguments
from the left to the right) denotes −p(Wk) and the argument Wi on an odd place
denotes p(Wi). Here pi , i = 1, . . . , F − 2H are free parameters. Then

E
U
⊗n1
N

E
GL

⊗n2
N

(
LI1ULI2Z

[
τ
(

p1,W1,p2,W2, . . . ,pF−2H,

WF−2H,WF−2H+1,WF−2H+2, . . . ,WF)
])

= 1+
∑

d>0

∑

λ|λ|=d

(d!)n2

Nnd
A(λ) (dimGL λ)

−n1 (dimS λ)−n2

×
F−2H∏

i=1

sλ

(
pi
) V∏

i=1

sλ
(
W∗
i

)
, (36)

where

A(λ) =
κ∏

i=1

2D∏

j=1

f2j−1(αi)f2j (βi)

Remark 5 Now we get the surface 'H,0 in notations of Sect. 2.2 and, now, H < D.
We recall that it is constructed with the help of the Riemann surface', whose Euler
characteristic is E = F − n + V, and the graph � that has n edges, V vertices and
F faces homeomorphic to discs. In the case considered in Proposition 4, we choose
F − H = D. Then, we glue up randomly selected 2H faces by H handles. The Euler
characteristic of 'H,0 is equal to E′ = E − 2H. In [42] we presented the generating

function for general Hurwitz numbers HE′
(
�1, . . . ,�F−2H, �̃1, . . . , �̃V

)
with

base surface 'H,0 with Euler characteristic E′ = F − n + V − 2H and ramification
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profiles�1, . . . ,�F−2H and �̃1, . . . , �̃V and this generating function is (36) where
A(λ) = 1:

E
GL

⊗n
N

(
LZ
[
τ
(
p1,W1,p2,W2, . . . ,pF−2H,

WF−2H,WF−2H+1,WF−2H+2, . . . ,WF

)])

= 1+
∑

d>0

∑

λ|λ|=d

(d!)n
Nnd

(dimS λ)−n
F−2H∏

i=1

sλ

(
pi
) V∏

i=1

sλ
(
W∗
i

)

= 1+
∑

�1,...,�F−2H

�̃1,...,�̃V

HE′
(
�1, . . . ,�F−2H, �̃1, . . . , �̃V

) F−2H∏

p=1

p�p
V∏

p=1

p�̃p
(
W∗
p

)

(37)

Remark 6 Put pi = pi (W̃i ), i = 1, . . . , F−2H, where W̃i ∈ UN are given matrices.
In the case of the choice (A), n2 = 0, and tm = t2δm,2, the right hand side of (36)
coincides with the correlation function of the Wilson loops W̃i = P exp

∮
xi
Adz ∈

UN and W∗
i = P exp

∮
yi
Adz ∈ UN around the points xi, i = 1, . . . , F − 2H and

yi, i = 1, . . . , V in the two-dimensional gauge theory on the Riemann surface'H,0
(with the same Euler characteristic E′ as in Remark 5) found in [55, 62]

〈
W̃1, . . . , W̃F−2H,W

∗
1 , . . . ,W

∗
2D

〉2D−YM
'H,0

=

1+
∑

d>0

∑

λ|λ|=d

1

Nnd
e
t2

(
hi+ 1

2

)2

(dimU λ)
−n

F−2H∏

i=1

sλ

(
W̃i

) V∏

p=1

sλ

(
W∗
p

)
(38)

(In gauge theory, the parameter t2 has a meaning of −ρe2 where ρ is the area of
'H,0 and e is the coupling constant, see [62]).

In case (A) and tm �= 0, m > 0 the right hand side of (36) was considered as
certain generalization of 2D YM theory, see [62]. In this case the Lagrangian is not
quadratic in the curvature F = dA+ A ∧ A any more.

The choice (B) is related to q-deformations of 2D YM theory considered in some
papers, e.g., [1, 57].

Remark 7

(i) Consider the choice (A) and n1 = 0, D = 1, H = 0. Let us take tm = t2δm,2,
then, the right hand side of (36) coincides with the generating function for the
double Hurwitz numbers found by A. Okounkov in [43].
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(ii) In the previous case where however tm �= 0, m > 0, the right hand side
of (36) gives rise to the Hurwitz numbers evaluated on complete cycles found
by Okounkov and Pandparihander in [44]:

1+
∑

d>0

∑

λ|λ|=d

(d!)n2

Nnd
e

∑
m>0 tm

(
hi+ 1

2

)m
(dimS λ)−n2 sλ(p1)sλ

(
W∗

1

)
(39)

(iii) The case (B) where n1 = 0, D = 1, H = 0 and where t∗m = δm,1 was also
considered as the generating function for complete cycles.

3.2 Integrals of Tau Functions as Tau Functions

Proposition 5 Consider the case E′ = E = 2 (E′ as in Remark 5).

(1) If each W∗
p except two, say W∗

1 ,W
∗
2 , is proportional to the identity matrix IN ,

and each of pi is fixed in form (17) with arbitrary parameters, then (36) is the
hypergeometric two-component KP tau function (see (8)) where p(W∗

i ), i =
1, 2 are higher times and N is the discrete time of the two-component KP
hierarchy

(2) If eachW∗
p except a single one, sayW∗

1 , is proportional to the identity matrix IN
and each of pi except a single one, say p1, is fixed in form (17) with arbitrary
parameters, then (36) is the hypergeometric two-component KP tau function
(see (8)) where p(W∗

1 ) and p1 are higher times, and where the matrix size N
has a meaning of discrete time of the two-component KP hierarchy

(3) If eachW∗
p , is proportional to the identity matrix IN , and each of pi except two,

say pi , i = 1, 2 is fixed in form (17) with arbitrary parameters, then (36) is the
hypergeometric two-component KP tau function (see (8)) where pi , i = 1, 2
are higher times andN is the discrete time of the two-component KP hierarchy.

Let us recall that (8) solves not only bilinear Hirota equations (see appendix section
“Hirota Equation for the TL and for the Two-Component KP Tau Functions”) but
also linear differential equations, see [49–51].

Sketch of proof. It follows from the fact that sλ(IN)dimS λ
is the content product, see (19)

and can be presented in form (8).

Proposition 6 Consider case (A) and E′ = E = 2.

(1) If eachW∗
p is proportional to the identity matrix IN , and each of pi except, say,

p1 has form (17), then the sum (36) is the infinite-soliton tau function of the
two-component KP equation where the sets of parameters t and p1 play the role
of the KP higher times and the matrix size N is the discrete time

(2) If each W∗
p , except a single one, say, W∗

1 is proportional to the identity matrix

IN , and each of pi has form (17), then the sum (36) is the infinite-soliton tau
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function of the two-component KP equation where the sets of parameters t and
p(W∗

1 ) play the role of the KP higher times and the matrix size N is the discrete
time.

The proof follows from the analysis given in [46, 48].

Proposition 7 Consider case (B) and E′ = E = 2.

(1) If each W∗
p is proportional to the identity matrix IN , and each of pi except

two, say, pi , i = 1, 2, has form (17), and p2 is given by (18) with q as in the
condition (B), then the sum (36) is the infinite-soliton tau function of the two-
component KP equation where the sets of parameters t∗ and p1 play the role of
the KP higher times and the matrix size N is the discrete time

(2) If each W∗
p except a single one, say, W∗

1 , is proportional to the identity matrix

IN , and each of pi except a single one, say, p1, has form (17), and p1 is given
by (18) with q as in the condition (B), then the sum (36) is the infinite-soliton
tau function of the two-component KP equation where the sets of parameters t∗
and p(W∗

1 ) play the role of the KP higher times and the matrix size N is the
discrete time

(3) If each W∗
p , except a single one, say W∗

1 , is proportional to the identity matrix
IN , and

SpectW∗
1 = 1,q,q2, . . . ,qN−1

and each of pi except a single one, say, p1, has form (17), then the sum (36)
is the infinite-soliton tau function of the two-component KP equation where the
sets of parameters t∗ and p1 play the role of the KP higher times and the matrix
size N is the discrete time

(4) If eachW∗
p , except two, sayW∗

i , i = 1, 2, is proportional to the identity matrix
IN , and

SpectW∗
1 = 1,q,q2, . . . ,qN−1

and each of pi has form (17), then the sum (36) is the infinite-soliton tau
function of the two-component KP equation where the sets of parameters t∗
and p(W∗

2 ) play the role of the KP higher times and the matrix size N is the
discrete time

The proof follows from Remark 2 and the results of work [46, 48].

3.3 Non-orientable Case

In this subsection we shall use notations of the previous subsections.
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Consider the simplest nontrivial tau function of the one component BKP which
is

τB1 (W) =
∑

λ

sλ(p(W)) (40)

see (11). Then, we get

Proposition 8 Consider the tau function (7) where 2D = F + H − 1 and where
higher times are chosen as follows:

τ
(

p1,W1,p2,W2, . . . ,pF−2H−1,WF−2H−1,WF−2H,WF−2H+1, . . . ,WF−1

)

(41)

where an argument of the tau functionWk on an even place (if one counts arguments
from the left to the right) denotes −p(Wk) and the argument Wi on an odd place
denotes p(Wi). Here pi , i = 1, . . . , F − 2H − 1 are free parameters. Then

E
U
⊗n1
N

E
GL

⊗n2
N

(
LI1ULI2Z

[
τ
(
p1,W1,p2,W2, . . . ,pF−2H−1,

WF−2H−1,WF−2H,WF−2H+1, . . . ,WF−1
)
τB1 (WF)

])

=
∑

λ
�(λ)≤N

(|λ|!)n2

Nn|λ|
A(λ) (dimGL λ)

−n1 (dimS λ)−n2

F−2H−1∏

i=1

sλ(pi )
V∏

i=1

sλ
(
W∗
i

)

(42)

where A(λ) is the same as in Proposition 3.

This sum can be considered in a way similar to the orientable case.

Remark 8 ([41, 42]) Now we get the surface 'H,1 in notations of Sect. 2.2. We
recall that it is constructed with the help of the Riemann surface ', whose Euler
characteristic is E = F − n + V, and the graph � that has n edges, V vertices
and F faces homeomorphic to discs. In the case considered in Proposition 8, we
choose 2F − 2H − 1 = 2D. Then, we glue up randomly selected 2H + 1 faces by
H handles and one Möbius strip, and the Euler characteristic of 'H,1 is equal to
E′ = E − 2H − 1. In [42] we presented the generating function for general Hurwitz

numbers HE′
(
�1, . . . ,�F−2H−1, �̃1, . . . , �̃V

)
with base surface 'H,1 with Euler
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characteristic E′ and ramification profiles �1, . . . ,�F−2H−1 and �̃1, . . . , �̃V, and
this generating function is (42) where A(λ) = 1:

E
GL

⊗n
N

(
LZ
[
τ
(
p1,W1,p2,W2, . . . ,pF−2H−1,

WF−2H−1,WF−2H,WF−2H+1, . . . ,WF−1
)
τB1 (WF)

])

= 1+
∑

d>0

∑

λ|λ|=d

(d!)n
Nnd

(dimS λ)−n
F−2H−1∏

i=1

sλ

(
pi
) V∏

i=1

sλ
(
W∗
i

)

= 1+
∑

�1,...,�F−2H−1

�̃1,...,�̃V

HF−n+V−2H−1

(
�1, . . . ,�F−2H−1, �̃1, . . . , �̃V

)

×
F−2H−1∏

p=1

p�p
V∏

p=1

p�̃p
(
W∗
p

)
(43)

Remark 9 Put pi = pi (W̃i), i = 1, . . . , F − 2H − 1, where W̃i ∈ UN are
given matrices. In case of the choice (A), n2 = 0, and tm = t2δm,2, the right
hand side of (36) coincides with the correlation function of the Wilson loops
W̃i = P exp

∮
xi
Adz ∈ UN and W∗

i = P exp
∮
yi
Adz ∈ UN around points

xi, i = 1, . . . , F − 2H − 1 and yi, i = 1, . . . , V in two-dimensional gauge theory
on the Riemann surface 'H,0 (with the same Euler characteristic E′ as in Remark 8)
found in [55, 62]

〈
W̃1, . . . , W̃F−2H−1,W

∗
1 , . . . ,W

∗
2D

〉2D−YM
'H,1

= 1+
∑

d>0

∑

λ|λ|=d

1

Nnd
e
t2

(
hi+ 1

2

)2

(dimU λ)
−n

F−2H−1∏

i=1

sλ

(
W̃i

) V∏

p=1

sλ

(
W∗
p

)
(44)

The right hand side of (42) generates both (1) Hurwitz numbers with non-
orientable base surface 'H,1 (and one can replace it by 'H−k,1+2k with the same
result) with Euler characteristic E′ = F−n+V−2H−1 and (2) correlation function
for Wilson loops for the gauge theory on 'H,1 (and/or on 'H−k,1+2k), see [62].

By results of [53] we can show that there are similar cases where the right hand
side of (42) is equal to the hypergeometric function of BKP equation (10) which
generates projective Hurwitz numbers as it was shown in [40].
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Proposition 9 Consider the case E′ = E = 1 (E′ as in Remark 8).

(1) If each W∗
p except a single one, say W∗

1 , is proportional to the identity matrix

IN , and each of pi is fixed in form (17) with arbitrary parameters, then (36)
is the hypergeometric BKP tau function (see (10)) where p(W∗

1 ) is the set of
higher times and N is the discrete time of the BKP hierarchy

(2) If each W∗
p is proportional to the identity matrix IN . and each of pi except a

single one, say p1 is fixed in form (17) with arbitrary parameters, then (42) is
the hypergeometric BKP tau function (see (10)) where p1 is the set of higher
times, and where the matrix size N has a meaning of discrete time of the BKP
hierarchy

Proposition 10 Consider the case (A) and E′ = E = 1.

(1) If each W∗
p is proportional to the identity matrix IN , and each of pi has

form (17), then the sum (42) is the infinite-soliton tau function of the two-
component KP equation where the set of parameters t plays the role of the
BKP higher times and the matrix size N is the discrete time

(2) If each W∗
p , except a single one, say, W∗

1 is proportional to the identity matrix

IN , and each of pi has form (17), then the sum (42) is the infinite-soliton tau
function of the two-component KP equation where the set of parameters p(W∗

1 )

plays the role of the BKP higher times and the matrix size N is the discrete time

Proposition 11 Consider the case (B) and E′ = E = 1.

(1) If each W∗
p is proportional to the identity matrix IN , and each of pi except a

single one, say, p1, has form (17), and p1 is given by (18) where q is the same
as written down in the condition (B), then the sum (42) is the infinite-soliton tau
function of the BKP equation where the set of parameters t∗ plays the role of
the BKP higher times and the matrix size N is the discrete time

(2) If each W∗
p , except a single one, say W∗

1 , is proportional to the identity matrix
IN , and

Spect W∗
1 = 1,q,q2, . . . ,qN−1

and each of pi has form (17), then the sum (42) is the infinite-soliton tau
function of the two-component KP equation where the set of parameters t∗ plays
the role of the BKP higher times and the matrix size N is the discrete time

The proof follows from the consideration in [53].
Let us recall that (10) solves not only bilinear Hirota equations (see [23]) but also

linear differential equations, see [53].
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Appendix A: Integration of the Schur Functions

The Expectation of sλ(ZAZ†B) and of sλ(ZA)sν(Z†B)

Lemma 1 For any N × N complex matrices A and B we have

EGLN

(
sλ(ZAZ

†B)
)
= N−d sλ(A)sλ(B)

sλ(p∞)
(A.1)

where d = |λ|.
In the case when A and B are Hermitian matrices, the first relation (A.1) is well-

known and written down in textbooks, see for instance Example 5 in [29, Section
VII]. (The only difference with the well-known formula is the factor N−d which
results from the fact that we replace the Gauss weight e− trZZ†

(see [29]) in the
definition of the measure dμ by e−N trZZ†

, see (2). Then, the factorN−d is obtained
by the rescaling of the Schur function sλ which is the homogeneous polynomial of
the weight d = |λ|). However, thanks to the fact that we can present Schur functions
in form (4) where each p� = p�(X) is a polynomial in the entries of matrix X.
Then, the both sides of (A.1) are analytic functions in the entries of the matrices
and, therefore, (A.1) is true for A,B ∈ GLN(C).
Lemma 2 For any N × N complex matrices A and B the following equality is
correct:

EGLN

(
sλ(ZA)sν(Z

†B)
)
= N−dδλν sλ(AB)

sλ(p∞)
(A.2)

where d = |λ|.
The Expectation of sλ(UAU†B) and of sλ(UA)sν(U†B)

Proposition 12 For any N × N complex matrices A and B the following two
equalities are correct:

EUN

(
sλ(UAU

†B)
)
= sλ(A)sλ(B)

sλ(IN)
(A.3)

where

EUN

(
p∗�(UAU†B)

)
= z� N

−�(�) ∑

�a,�b

UH
CP

1(�,�
a,�b) p∗�a(A) p∗

�b
(B)

(A.4)
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where the summation in the right hand side ranges over all partitions�a,�b of the
weight d = |�| and where

UH
CP

1(�,�a,�b) :=
∑

λ|λ|=d

(
dimU λ

d!
)2
ϕλ(�)ϕλ(�

a)ϕλ(�
b)

((N)λ)
3 (A.5)

Lemma 3 For any N ×N complex matrices A and B the following two equalities
are correct and equivalent:

EUN

(
sλ(UA)sν(U

†B)
)
= δλν sλ(AB)

sλ(IN)
(A.6)

where

EUN

(
p�a (UA) p�b(U

†B)
)

= z�az�b N−�(�
a)−�(�b) ∑

�

H
CP

1(�a,�b,�) p�(AB) (A.7)

where the summation in the right hand side ranges over all partitions � of the
weight d = |�a| = |�b| and where H

CP
1(�,�a,�b) is the same three-point

Hurwitz number with the base CP1.

The Sketch of Proofs

We use

∫

CN
2
sλ(AZBZ

+)e−N trZZ+
N∏

i,j=1

d2Zij = sλ(A)sλ(B)
sλ(Np∞)

(A.8)

and

∫

CN
2
s�(AZ)sλ(Z

+B)e−N trZZ+
N∏

i,j=1

d2Zij = sλ(AB)

sλ(Np∞)
δ�,λ . (A.9)

These relations are used for step-by-step integration (Gaussian in the case of
complex matrices).
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As we can see, these relations perform the procedure of cutting and joining loops
in a network of chord diagrams, and also create edges of embedded graph (each
edge is a coupled pair of conjugate random matrices). Namely, the equation (A.8)
performs the splitting of the loop AZBZ† into two loops, A and B, for complex
Ginibre ensembles (the resulting equation performs the union of two loopsA and B
for complex Ginibre ensembles. Every time we apply some of the relations (A.8)–
(A.9), we get the factor (the “propagator” of the edge of the embedded graph), which
is 1
sλ(Np∞) in the case of complex Ginibre ensemble.

Hirota Equation for the TL and for the Two-Component
KP Tau Functions

The TL tau function was introduced in [22] and may be defined by

τTL
n (t, t̄) = 〈n|e

∑
i>0 tiαi gTLe−

∑
i>0 t̄iα−i |n〉 (A.10)

This tau function solves Hirota equation, [22, 60]

∮
dz

2πi
zn

′−neV(t ′−t,z)τTL
n′
(
t ′ − [z−1], t̄ ′

)
τTL
n

(
t + [z−1], t̄

)

=
∮
dz

2πi
zn

′−neV
(
t̄ ′−t̄ ,z−1

)
τTL
n′+1

(
t ′, t̄ ′ − [z]) τTL

n−1

(
t, t̄ + [z]) (A.11)

(see [22, 60]) which includes

∂2τTL
n

∂t1∂t̄1
τTL
n − ∂τ

TL
n

∂t1

∂τTL
n

∂t̄1
= −τTL

n+1τ
TL
n−1 (A.12)

The two-component KP tau function

τ 2KP
n (t, t̄ ) = 〈n,−n|e

∑
i>0

(
t ′iα
(1)
i +t̄ ′iα(2)i

)

g2KP|0〉 (A.13)

solves Hirota equation

∮
dz

2πi
(−)−n′−nzn′−neV(t ′−t,z)τ 2KP

n′
(
t ′ − [z−1], t̄ ′

)
τ 2KP
n

(
t + [z−1], t̄

)

=
∮
dz

2πi
zn−n′−2eV (t̄

′−t̄ ,z)τ 2KP
n′+1

(
t ′, t̄ ′ − [z−1]

)
τ 2KP
n−1

(
t, t̄ + [z−1]

)
(A.14)
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which up to the sign factor (−)n+n′ in the first integral is (A.11) if we change z→
z−1 in the second integral in (A.14).

Appendix B: Fermionic Formulae for Tau Functions

Details may be found in [49, 53]. Let {ψi , ψ†
i , i ∈ Z} be Fermi creation and

annihilation operators that satisfy the usual anticommutation relations and vacuum
annihilation conditions

[ψi, ψj ]+ = δi,j , ψi |n〉 = ψ−i−1|n〉 = 0 , i < n .

In contrast to the DKP hierarchy introduced in [22], for the BKP hierarchy
introduced in [23], we need an additional Fermi mode φ which anticommutes with
all the other Fermi operators except itself, for which φ2 = 1/2, and φ|0〉 = |0〉/√2
[23]. Then the hypergeometric BKP tau function introduced in [53] may be written
as

g(n)τBKP
r (N, n,p)

=
〈
n
∣∣e
∑
m>0

1
m
Jmpme

∑
i<0 Uiψ

†
i ψi−

∑
i≥0 Uiψiψ

†
i e
∑
i>j ψiψj −

√
2φ
∑
i∈Z ψi

∣∣n−N
〉

=
∑

λ
�(λ)≤N

e−Uλ(n)sλ(p) = g(n)
∑

λ
�(λ)≤N

rλ(n)sλ(p) , (B.1)

where Jm =∑i∈Z ψiψ
†
i+m, m > 0, Uλ(n) =∑i Uhi+n, r(i) = eUi−1−Ui , and

g(n) :=
〈
n
∣∣e
∑
i<0 Uiψ

†
i ψi−

∑
i≥0 Uiψiψ

†
i

∣∣n
〉
=

⎧
⎪⎪⎨

⎪⎪⎩

e−U0+···−Un−1 if n > 0 ,

1 if n = 0 ,

eU−1+···Un if n < 0 .

(B.2)

In (B.1) the summation runs over all partitions whose lengths do not exceed N .

Remark 10 Note that, without the additional Fermi mode φ, the summation range
in (B.1) does include partitions with odd partition lengths. One can avoid this
restriction by introducing a pair of DKP tau functions, which seems unnatural.

Apart from (B.1), the same series without the restriction �(λ) ≤ N gives the BKP
tau function. However, it is related to the single value n = 0. The n-dependence
destroys the simple form of this tau function [53].
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Round Dance Tau Function The fermionic representation for the round trip tau
functions is as follows

τ (p1, . . . ,p2D) = 〈0|
2D∏

i=1

e
∑
m>0

1
mJ

j
mp

(j)
m e

∑
(−1)if (1)(i)ψ(1)i ψ

†(2)
−i−1

· · · e
∑
i∈Z(−1)if (2D)(i)ψ

(2D)
i ψ

†(1)
−i−1 |0〉 (B.3)

where ψ(j)i = ψ2Di+j and ψ†(j)
i = ψ†(j)

2Di+j and J jm =∑i∈Z ψ
(j)

i ψ
†(j)
i+m, m > 0.

The round dance tau function solves Hirota equations for the multicomponent
KP hierarchy which generalize Hirota equations for the two-component case written
down in appendix section “Hirota Equation for the TL and for the Two-Component
KP Tau Functions”, see [22].
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Abstract We develop G. A. Goldin and D. H. Sharp’s quantum current algebra
approach to many-particle Hamiltonian operators. We demonstrate its deep rela-
tionship to the Hamiltonian operators’ factorized structure. We investigate this for
completely integrable spinless systems, showing the connection with the classical
Bethe ansatz ground state representation. The quantum Hamilton operators are
considered for integrable delta-potential and oscillatory Caloger-Moser-Sutherland
models.
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tonian systems. The main technical ingredient of the current algebra symmetry
representation approach consists in the weak equivalence of the initial many-particle
quantum Hamiltonian operator to a suitably constructed quantum Hamiltonian
operator in the factorized form, strictly depending only on its ground state vector.
The latter makes it possible to reconstruct the initial quantum Hamiltonian operator
in the case of its strong equivalence to the related factorized Hamiltonian operator
form, thereby constructing, as a by-product, the corresponding N-particle ground
state vector for arbitrary N ∈ Z+. Being uniquely defined by means of the Bethe
ground state vector representation in the Hilbert space, the analyzed factorized
operator structure of quantum completely integrable many-particle Hamiltonian
systems on the axis proves to be closely related to their quantum integrability by
means of the quantum inverse scattering transform.

The analytical studies in modern mathematical physics are strongly based on
the exactly solvable physical models which are of great help in the understanding
of their mathematical and often hidden physical nature, the solvable models are of
great importance in quantum many particle physics, among which one can single
out such as the oscillatory systems and Coulomb systems, modeling phenomena in
plasma physics, the well known Calogero-Moser and Calogero-Moser-Sutherland
models, describing system of many particles on an axis, interacting pair wise
through long range potentials, modeling both some quantum-gravity and frac-
tional statistics effects. As examples we have studied in detail the factorized
structure of Hamiltonian operators, describing such quantum integrable spatially
one-dimensional models as the delta-potential and the generalized oscillatory
Calogero-Moser-Sutherland dynamical Schrödinger type quantum systems of spin-
less Bose-particles.

2 Preliminaries: The Representation Fock and Hilbert
Spaces and Nonrelativistic Quantum Currents Algebra
Symmetry Structure

2.1 The Fock Space and Nonrelativistic Quantum Current
Algebra

Let us consider the canonical Fock space [6–9, 14, 16, 18, 28–30, 35], that is the
direct sum

$F = ⊕n∈Z+$⊗n(s) , (1)
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where subspaces $⊗n(s) , n ∈ Z+, are the symmetrized tensor products of a Hilbert
space H � L2(R

m;C). If a vector ϕ := (ϕ0, ϕ1, . . . , ϕn, . . .) ∈ $F , its norm

‖ϕ‖$F :=
⎛

⎝
∑

n∈Z+
‖ϕn‖2

n

⎞

⎠
1/2

, (2)

where ϕn ∈ $⊗n(s) � L2,(s)((R
m)⊗n;C) and ‖ . . . ‖n is the corresponding norm in

$⊗n(s) for all n ∈ Z+. Note here that there holds the corresponding rigging [6, 7] of

the Hilbert spaces$⊗n(s) , n ∈ Z+, that is

Dn(s) ⊂ $⊗n(s),+ ⊂ $⊗n(s) ⊂ $⊗n(s),− (3)

with some suitably chosen dense and separable topological spaces of symmetric
functions Dn(s), n ∈ Z+, allowing to describe both point wise particle objects in

Rm by means of the corresponding generalized positive$⊗n(s),+ the adjoint negative

Hilbert spaces $⊗n(s),− and the corresponding Hamiltonian operator H : $ → $,

governing the quantum states and their evolution. Concerning expansion (1) one
obtains by means of projective and inductive limits [3–7] the quasi-nucleus rigging
of the Fock space $F exactly in the form (3).

Consider now any vector |(α)n) ∈ $⊗n(s) , n ∈ Z+, which can be written [7, 9, 12,
16, 30] in the following canonical Dirac ket-form:

|(α)n) := |α1, α2, . . . , αn), (4)

where, by definition,

|α1, α2, . . . , αn) := 1√
n!
∑

σ∈Sn
|ασ(1))⊗ |ασ(2)) . . . |ασ(n)) (5)

and vectors |αj ) ∈$⊗1
(s) (R

m;C) � H, j ∈ Z+, are bi-orthogonal to each other, that
is (αk|αj )H = δk,j for any k, j ∈ Z+. The corresponding scalar product of base
vectors (5) is given as follows:

((β)n|(α)n) := (βn, βn−1, . . . , β2, β1|α1, α2, . . . , αn−1, αn)

=
∑

σ∈Sn
(β1|ασ(1))H . . . (βn|ασ(n))H := per{(βi |αj )H}i,j=1,n,

where “per” denotes the permanent of matrix and < ·|· > is the corresponding
scalar product in the Hilbert space H. Based now on the representation (4) one can
define an operator a+(α) :$⊗n(s) −→$⊗(n+1)

(s) for any |α) ∈ H as follows:

a+(α)|α1, α2, . . . , αn) := |α, α1, α2, . . . , αn), (6)
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which is called the “creation” operator in the Fock space $. The adjoint operator
a(β) := (a+(β))∗ :$⊗(n+1)

(s) −→$⊗n(s) with respect to the Fock space$F (1) for any
|β〉 ∈ H, called the “annihilation” operator, acts as follows:

a(β)|α1, α2, . . . , αn+1) :=
∑

j=1,n+1

(β|αj )|α1, α2, . . . , αj−1, α̂j , αj+1, . . . , αn+1),

(7)

where the “hat” over a vector denotes that it should be omitted from the sequence.
It is easy to check that the commutator relationship

[a(α), a+(β)] = (α|β)H (8)

holds for any vectors |α) ∈ H and |β) ∈ H. Expression (8), owing to the quasi-
nucleus [6, 7] rigged Fock space (1), can be naturally extended to the general case,
when vectors |α) and |β) ∈ H−, where H− denotes the corresponding negative
Hilbert space of generalized functions, conserving its usual form. In particular,
taking |α) := |α(x)) = 1√

2π
ei〈λ|x〉 ∈ H− := L2,−(Rm;C) for any x ∈ Rm,

one easily gets from (8) that

[a(x), a+(y)] = δ(x − y) (9)

where we put, by definition, < ·|· > the usual scalar product in the m-dimensional
Euclidean space (Rm;< ·|· >), a+(x) := a+(α(x)) and a(y) := a(α(y)) for all
x, y ∈ Rm and denoted by δ(·) the classical Dirac delta-function.

The construction above makes it possible to observe that if there exists the so
called unique vacuum vector |0) ∈ $⊗0

(s) , such that for any x ∈ Rm

a(x)|0) = 0, (10)

and the set of vectors
⎛

⎝
n∏

j=1

a+(xj )

⎞

⎠ |0) ∈ $⊗n(s) (11)

is total in $⊗n(s) , that is their linear integral hull over the functional spaces H⊗s is

dense in the Hilbert space $⊗n(s) for every n ∈ Z+. This means that for any vector
ϕ ∈ $ the following canonical representation

ϕ =
⊕∑

n∈Z+

1√
n!
∫

Rm×n
ϕn(x1, . . . , xn)a

+(x1)a
+(x2) . . . a

+(xn)|0) (12)
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holds with the Fourier type coefficients ϕn ∈ $⊗n(s) for all n ∈ Z+ with $⊗1
(s) � H =

L2(R
m;C). The latter is naturally endowed with the Gelfand type quasi-nucleus

rigging, dual to

D ⊆ H+ ⊂ H ⊂ H− ⊆ D′, (13)

where D := S(Rm;R) is the Schwartz space on R
m,making it possible to construct

a quasi-nucleus rigging of the dual Fock space $ := ⊕n∈Z+ $⊗n(s) , where H+
denotes the corresponding positive Hilbert space of testing functions. Thereby, the
chain (13) generates the dual Fock space quasi-nucleus rigging

DF ⊂ $F,+ ⊂ $F ⊂ $F ,− ⊂ D′
F (14)

with respect to the central Fock $F , easily following from (1) and (13).
Construct now the following self-adjoint operator ρ(x) : $F → $F as

ρ(x) := a+(x)a(x), (15)

called the density operator at a point x ∈ Rm, satisfying the commutation properties:

[ρ(x), ρ(y)] = 0,

[ρ(x), a(y)] = −a(y)δ(x − y),
[ρ(x), a+(y)] = a+(y)δ(x − y)

(16)

for any x, y ∈ Rm.

Choose now a many-particle quantum Hamilton operator H : $F −→ $F in the
following secondly quantized [9, 10, 18, 21, 28, 35] representation

H : = 1

2

∫

Rm

〈∇xa+(x)|∇xa(x)
〉
dx + V(ρ), (17)

where the sign “∇x” means the usual gradient operation with respect to x ∈ Rm in
the Euclidean space Rm � (Rm; 〈·|·〉) and, by definition,

V(ρ) :=
∫

Rm

dxV1(x)ρ(x)+ 1

2!
∫

Rm

dx1dx2V2(x1, x2) : ρ(x1)ρ(x2) :

+ 1

3!
∫

Rm

dx1dx2dx3V3(x1, x2, x3) : ρ(x1)ρ(x2)ρ(x3) : + · · · , (18)

is the potential energy operator with suitably determined a one-particle interaction
potential V1 : Rm → R, a two-particle interaction symmetric potential V2 : Rm ×
Rm→ R, a three-particle interaction symmetric potential V3 : Rm×Rm×Rm→ R

and so on.
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Based on the Fock space $F , defined by (1) and generated by the creation-
annihilation operators (6) and (7), one can easily construct the local current operator
J (x) : $F −→ $mF , x ∈ Rm, as

J (x) = 1

2i
[a+(x) ∇xa(x)−∇xa+(x) a(x)], (19)

satisfying jointly with the density operator ρ(x) : $F −→ $F , x ∈ Rm,

defined by (15), the following quantum current symmetry algebra [2, 10, 18–23, 29]
relationships:

[J (g1), J (g2)] = iJ ([g1,g2]), [ρ(f1), ρ(f2)] = 0,

[J (g1), ρ(f1)] = iρ(〈g1|∇f1〉),
(20)

holding for all f1, f1 ∈ F and g1, g2 ∈ Fm, where we put, by definition,

[g1,g2] := 〈g1|∇〉 g2 − 〈g2|∇〉 g1, (21)

being the usual commutator of vector fields 〈g1|∇〉 and 〈g2|∇〉 on the configuration
space Rm.

2.2 The Nonrelativistic Quantum Current Algebra and Its
Hilbert Space Cyclic Representation

If the energy spectrum density of the Hamiltonian operator (17) in the Fock space
$F is bounded from below, the expression (17) can be rewritten algebraically as

H = 1

2

∫

Rm

〈
K+(x)|ρ−1(x)K(x)

〉
dx + V(ρ), (22)

being equivalent [18, 19, 21–23] in the corresponding current algebra symmetry
representation Hilbert space $, modulo the ground state energy eigenvalue, to the
positive definite gauge type operator form

Ĥ = 1

2

∫

Rm

〈
(K+(x)− A(x; ρ))|ρ−1(x)(K(x)− A(x; ρ))

〉
dx, (23)

satisfying conditions (30) and (31), where A(x; ρ) : $ → $m, x ∈ Rm, is some
specially constructed [26, 27] linear self-adjoint operator, satisfying the condition

K(x)|�) = A(x; ρ)|�) (24)
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for any x ∈ Rm and the ground state |�) ∈ $, corresponding to the chosen above
potential operators V(ρ) : $ −→ $, defined by (18).

Remark 1 Here we mention that the operator K(x) : $ −→ $m, x ∈ R
m, defined

by (24), relates to that from the work [18, 21, 26] via scaling K(x) → K(x)/2,
x ∈ R

m.

The operator K(x) : $ −→ $m, acting already on the representation Hilbert
space $, is given by the expression

K(x) := ∇xρ(x)/2+ iJ (x), (25)

where the self-adjoint current operator J (x) : $ −→ $m, acting now on the Hilbert
space $, can be naturally defined (but non-uniquely) from the continuity equality

∂ρ/∂t = −i[H, ρ(x)] = − < ∇|J (x) >, (26)

holding for all x ∈ Rm. Such an operator J (x) : $ −→ $m, x ∈ Rm, exists
owing to the commutation condition [Ĥ, N̂] = 0, giving rise to the continuity
relationship (26), if additionally to take into account that supports suppρ of the
density operator ρ(x) : $ −→ $, x ∈ Rm, can be chosen arbitrarily owing
to the independence of the evolution relationship (26) on the potential operator
V (ρ) : $ −→ $, but its strict dependence on the existence of the corresponding
Hilbert space representation (24).

It is easy to observe that the current algebra (20) is the Lie algebra G,
corresponding to the Banach Lie groupG = Diff(Rm)� F , the semidirect product
of the Banach Lie group of diffeomorphisms Diff(Rm) of the m-dimensional space
Rm and the abelian group F subject to the multiplicative operation Banach group
of smooth functions F. Its properties can be effectively studied by means of the
corresponding continuous unitary representations [17, 19, 21–23, 31] of the unitary
density family U : = {exp[iρ(f ) : f ∈ F } in a suitable Hilbert space $ generated
by a cyclic vector |�) ∈ $. Then we can put, by definition,

L(f ) := (�|U(f )|�) (27)

for any f ∈ F and observe that functional (27) is continuous on F owing to the
continuity of the representation. Therefore, this functional is the generalized Fourier
transform of a cylindrical measure μ on F ′ :

(�|U(f )|�) =
∫

S ′
exp[iη(f )]dμ(η). (28)

From the spectral point of view, there is an isomorphism between the Hilbert
spaces $ and L(μ)2 (F ;C), defined by |�) −→ �(η) = 1 and U(f )|�) −→
exp[iη(f )] and the extended by linearity upon the whole Hilbert space $. Thus,
having constructed the nonlinear functional (27) in an exact analytical form, one
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can retrieve the representation of the unitary family U in the corresponding Hilbert
space $. The cyclic vector |�) ∈ $ can be, in particular, obtained as the ground
state vector of some unbounded self-adjoint positive definite Hamilton operator
Ĥ : $ −→ $, commuting in addition with the self-adjoint non-negative particle
number operator

N :=
∫

Rm

ρ(x)dx, (29)

that is [Ĥ,N] = 0. Moreover, the conditions

Ĥ|�) = 0 (30)

and

inf
ϕ∈DĤ

(ϕ|Ĥ|ϕ) = (�|Ĥ|�) = 0 (31)

hold for the operator Ĥ : $ −→ $, where DĤ denotes its dense in $ domain of
definition.

To find the functional (27), which is called the generating Bogolubov type
functional for moment distribution functions

Fn(x1, x2, . . . , xn) := (�| : ρ(x1)ρ(x2) . . . ρ(xn) : |�), (32)

where xj ∈ Rm, j = 1, n, and the normal ordering operation : · : is defined
[6, 9, 10, 19–23] as

: ρ(x1)ρ(x2) . . . ρ(xn) : =
n∏

j=1

⎛

⎝ρ(xj )−
j−1∑

k=1

δ(xj − xk)
⎞

⎠ , (33)

Remark 2 The self-adjointness of the operator A(g; ρ) : $ −→ $, g ∈ F, can
be stated, following schemes from works [2, 10, 18], under the additional existence
of such a linear anti-unitary mapping T : $ −→ $ that the following invariance
conditions hold:

Tρ(x)T−1 = ρ(x), T J (x) T−1 = −J (x), T|�) = |�) (34)

for any x ∈ Rm. Thereby, owing to conditions (34), the following equalities

K(x)|�) = A(x; ρ)|�) (35)

hold for any x ∈ Rm, giving rise to the self-adjointness of the operator A(g; ρ) :
$ −→ $, g ∈ F.
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It is easy to observe that the time-reversal condition (34) imposes the real
value relationship for the ground state �N = �N ∈ $N� L(s)2 (R

m×N ;C) of

the canonically represented N-particle Hamiltonian HN : $(s)N → $
(s)
N for arbitrary

N ∈ Z+, existing [9, 31] owing to the commutativity condition [H,N] = 0.
Moreover, taking into account the relationship (35), one can easily observe that
on the invariant Fock subspace $(s)N ⊂ $F the operator K(x) : $F −→ $F is
representable as

KN(x) =
∑

j=1,N

δ(x − xj ) ∂
∂xj
, (36)

entailing the following expression for the related operator AN(x; ρ) : $(s)N → $
(s)
N

on the subspace$(s)N ⊂ $F :

(AN(x; ρ) =
∑

j=1,N

δ(x − xj )∇xj ln |�N(x1, x2, . . . , xN)|. (37)

The latter makes it possible to derive its secondly quantized [7, 9] expression as

A(x; ρ) =
∫

Rm×N
dx2dx3 . . . dxN : ρ(x)ρ(x2)ρ(x3)× · · ·

× ρ(xN−1)ρ(xN) : ∇x ln |�N(x1, x2, . . . , xN)| (38)

which holds for any x ∈ Rm and arbitrary N ∈ Z+. Being interested in the infinite
particle case when N → ∞, the expression (38) can be naturally decomposed
[11, 15, 27] as

A(x; ρ) =
∑

n∈Z+

1

n!
∫

Rm×n
dy1dy2 · · · dyn : ρ(x)ρ(y1)ρ(y)ρ(y3)× · · ·

× ρ(yn−1)ρ(yn) : ∇xWn+1(x; y1, y2, . . . , yn), (39)

where the corresponding real-valued coefficients Wn ∈ H(1)2 (Rm×n;R) should be
such functions that the series (39) were convergent in a suitably chosen representa-
tion Fock space$F , for which the resulting ground state limN→∞ �N � |�) ∈ $F
is necessarily cyclic and normalized.
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3 The Density Operator Representation of the Nonrelativistic
Local Current Algebra and the Factorized Structure of
Quantum Integrable Many-Particle Hamiltonian Systems

3.1 The Calogero-Moser-Sutherland Quantum Model: The
Density Operator Current Algebra Symmetry
Representation, the Hamiltonian Reconstruction
and Integrability

The Calogero-Moser-Sutherland quantum bosonic model on the axis R is governed
by the N-particle Hamiltonian

HN := −
∑

j=1,N

(
∂2

∂x2
j

− ω2x2
j )+

∑

j �=k=1,N

β(β − 1)

(xj − xk)2 (40)

in the symmetric Hilbert space L(s)2 (R
N ;C), where N ∈ Z+ and the interaction

constants ω ≥ 0, β ∈ R are such that β(β − 1) ≥ −1/4, when the model (40) is
stable and has no bound eigenstates. As it was stated in a very interesting and highly
speculative works [25, 32], there exists linear differential operators

Dj := ∂

∂xj
− ωxj − β

∑

k=1,N,k �=j

1

xj − xk (41)

for j = 1, N, such that the Hamiltonian (40) is factorized as the bounded from
below symmetric operator

HN =
∑

j=1,N

D+
j Dj + EN, (42)

where

EN = 1

3
β2Nρ̄2 + ω

2
ρ̄N (43)

is the ground state energy of the Hamiltonian operator (40) with the average
particle density per length unite ρ̄ > 0, that is there exists such a vector |�N) ∈
L
(s)
2 (R

N ;C), satisfying for N →∞+ the eigenfunction condition

HN |�N) = EN |�N) (44)
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and equals

|�N) =
∏

j<k=1,N

(xj − xk)β exp(−
∑

j=1,N

ω

2
x2
j ), (45)

coinciding at ω = 0 with the corresponding Bethe ansatz representation [24, 33] for
the ground state of the standard quantum Calogero-Moser-Sutherland model.

Being interested additionally in proving the quantum integrability of the gen-
eralized Calogero-Moser-Sutherland model (40), we will proceed to its second
quantized representation [7, 9, 10, 28, 33–35] and studying it by means of the density
operator representation approach to the current algebra, described above in Sect. 2
and devised before in [18, 19, 21–23, 26, 27].

The secondly quantized form of the generalized Calogero-Moser-Sutherland
Hamiltonian operator (40) looks as

H =
∫ l

0
dx
[
ψ+x (x)ψx(x)+ ω2x2ψ+(x)ψ(x)

]

+ β(β − 1)
∫ l

0
dx

∫ l

0
dy
ψ+(x)ψ+(y)ψ(y)ψ(x)

(x − y)2 , (46)

acting in the corresponding Fock space $F := ⊕n∈Z+$(s)n , $(s)n � L(s)2 (R
n;C),

n ∈ Z+. To proceed to the current algebra representation of the Hamiltonian
operator (46), it would useful to recall the factorized representation (42) and con-
struct preliminarily the following singular Dunkl type [1, 13, 25, 32] symmetrized
differential operator

DN(x) :=
∑

j=1,N

δ(x − xj )( ∂
∂xj

− ωxj )

− 1

2

∑

j �=k=1,N

β
∑

k=1,N,k �=j
(
δ(x − xj )
xj − xk + δ(x − xk)

xk − xj (47)

in the Hilbert spaceL(s)2 (R
N ;C),N ∈ Z+, parameterized by a running point x ∈ R.

The corresponding secondly quantized representation of the operator (47) looks as
for any x ∈ R, or in the density operator ρ : $F → $F representation form as

D(x) = ∇xρ(x)/2+ iJ (x)− ωxρ(x)

− β
2

∫

R

dy

( : ρ(x)ρ(y) :
x − y − : ρ(y)ρ(x) :

y − x
)
, (48)
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which is equivalently representable in a suitable current algebra symmetry represen-
tation Hilbert space $, as

D(x) = K(x)− ωxρ(x)−
∫

R

dy
β

(x − y) : ρ(x)ρ(x) : . (49)

Now, based on the operator (48), one can formulate the following proposition.

Proposition 1 The secondly quantized Calogero-Moser-Sutherland Hamiltonian
operator (46) in a suitable current algebra symmetry representation Hilbert space
$ is weakly equivalent to the factorized Hamiltonian operator

Ĥ =
∫

R

dxD+(x)ρ(x)−1D(x) (50)

modulo the ground state energy operator E : $→ $, where

E = 1

3
β2Nρ̄2 + ω

2
ρ̄N, (51)

where, as before,

N :=
∫

R

ρ(x)dx (52)

is the particle number operator, and satisfies the determining conditions

(H− E)|�) = 0, D(x)|�) = 0 (53)

on the suitably renormalized ground state vector |�) ∈ $ for all x ∈ R. Moreover,
for any integerN ∈ Z+ the corresponding projected vector |�N) := |�)|$N exactly
coincides with the related Bethe ground state vector for the generalized N-particle
Calogero-Moser-Sutherland model (40) and satisfies the following eigenfunction
relationships:

N|�N) = N |�N),

E|�N) =
(

1

3
β2Nρ̄2 + ω

2
ρ̄N

)
|�N) := EN |�N),

ensuing exactly the result (43).

Remark 3 When deriving the expression (1), we have used the identities

ρ(x)ρ(y) = :ρ(x)ρ(y) : +ρ(y)δ(x − y),
ρ(x)ρ(y)ρ(z) = :ρ(x)ρ(y)ρ(z) : + : ρ(x)ρ(y) : δ(y − z) (54)

+ :ρ(y)ρ(z) : δ(z− x)+ :ρ(z)ρ(x) : δ(x − y)+ ρ(x)δ(y − z)δ(z− x),
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which hold [6, 9, 18, 27] for the density operator ρ : $ → $ at any points x, y, z
∈ R.

Observe now that the operator (48) can be rewritten down in $ as

D(x) = K(x)− A(x), (55)

where, by definition,

K(x) := ∇xρ(x)/2+ iJ (x), A(x) := ωx + β
∫

R

dy
: ρ(x)ρ(y) :
x − y (56)

for all x ∈ R/{[0, l]Z}. Recalling now the second condition of (53), one can rewrite
it equivalently as

K(x)|�) = A(x)|�) (57)

on the renormalized ground state vector |�) ∈ $ for all x ∈ R/{[0, l]Z}. On the
other hand, owing to the expression (50), we obtain the searched for current algebra
representation

Ĥ =
∫

R

dx(K+(x)− A(x))ρ(x)−1(K(x)− A(x)) (58)

of the Calogero-Moser-Sutherland Hamiltonian operator (40) in the suitably renor-
malized Hilbert space $, as it was already demonstrated in the work [26, 27], using
the condition (57) in the form (38).

Let us discuss now shortly the quantum integrability of the Calogero-Moser-
Sutherland model (40). Owing to the factorized representation (58) one can easily
observe that for any integer p ∈ Z+ the suitably symmetrized Hamiltonian operator
densities h(x) := D+(x)ρ(x)−1D(x) : $→ $, x ∈ R, commute to each other and
with the particle number operator N : $→ $, that is

[h(x), h(y)] = 0, [h(x),N] = 0 (59)

for any x, y ∈ R/[0, l]Z. As a result of the commutation property (59) one easily
obtains that for any integer p ∈ Z+ the symmetric operators

Ĥ(p) :=
∫

R

dxh(x)p (60)



264 D. Prorok and A. Prykarpatski

also commute to each other

[Ĥ(p), Ĥ(q)] = 0 (61)

for all integers p, q ∈ Z+, and in particular, commute to the Calogero-Moser-
Sutherland Hamiltonian operator (50):

[Ĥ(p), Ĥ] = 0. (62)

Concerning the related N-particle differential expressions for the operators (60), it
is enough to calculate their projections on the N-particle Fock subspace $(s)N ⊂
$F ,N ∈ Z+. Namely, let an arbitrary vector |ϕN) ∈ $(s)N is representable as

|ϕN) :=
∫

RN

fN (x1, x2, . . . , xN)
∏

j=1,N

dxjψ
+(xj )|0) (63)

for some coefficient function fN ∈ L(s)2 ([0, l]N ;C). Then, by definition,

H(p)|ϕN) := |ϕ(p)N ), (64)

where

|ϕ(p)N ) =
∫

RN

(H
(p)
N fN)(x1, x2, . . . , xN)

∏

j=1,N

dxjψ
+(xj )|0) (65)

for a given p ∈ Z+ any N ∈ Z+. In particular, for p = 2, when Ĥ(2) + E =
H : $F → $F , one easily retrieves the shifted Calogero-Moser-Sutherland
Hamiltonian operator (40):

H
(2)
N = −

∑

j=1,N

∂2

∂x2
j

+
∑

j �=k=1,N

β(β − 1)

(xj − xk)2 −
(
β2ρ̄2

3
+ ωρ̄/2

)
N. (66)

Respectively for higher integers p > 2 the resultingN-particle differential operator
expressions H(p)N : L(s)2 (R

N ;C) → L
(s)
2 (R

N ;C),N ∈ Z+, can be obtained the
described above way by means of simple yet well cumbersome calculations, and
which will prove to be completely equivalent to those, calculated before at ω = 0 in
the work [25].
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3.2 Quantum Many-Particle Hamiltonian Dynamical System
on Axis with δ-Interaction, Its Quantum Symmetries
and Integrability

In this section we will consider a quantum non-relativistic many-particle Bose-
system on the axis R, governed by the Hamiltonian operator:

HN := −
∑

j=1,N

∂2

∂x2
j

+ α
∑

j �=k=1,N

δ(xj − xk), (67)

where α ∈ R+ is an interaction constant, and acting in the symmetric Hilbert space
L
(s)
2 (R

N ;C), N ∈ Z+. The corresponding secondly quantized expression [6, 8,
9, 14, 29, 35] for the Hamiltonian operator (67) in the related Fock space $F �∑⊕
n∈Z+ L

(s)
2 (R

n;C) equals

H =
∫

R

dx(ψ+x ψx + αψ+ψ+ψψ), (68)

where the creation ψ+− and annihilation ψ− operators satisfy the canonical
commutator relationships

[ψ(x),ψ+(y)] = δ(x − y),
[ψ+(x), ψ+(y)] = 0 = [ψ(x),ψ(y)]

(69)

for any x, y ∈ R. The Hamiltonian operator (68) via the Heisenberg recipe [9, 28,
35] naturally generates on the creationψ+ :$F → $F and annihilationψ : $F →
$F operators the following quantum Schrödinger type evolution flow:

dψ/dt := 1

i
[H, ψ] = −iψxx + 2iαψ+ψ2,

dψ+/dt := 1

i
[H, ψ+] = iψ+xx − 2iα(ψ+)2ψ

with respect to the temporal parameter t ∈ R. Subject to the quantum Schrödinger
type evolution flow above the particle number operator N = ∫

R
ρ(x)dx and the

Hamiltonian operator (68) in the Fock space $F are its conservative symmetries,
that is

d

dt
N = 0,

d

dt
H = 0 (70)

for any t ∈ R. The quantum model (68), as is well known [8, 33, 35], presents
a completely integrable quantum Schrödinger type dynamical system, possessing
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an infinite hierarchy of quantum commuting to each other operators in the Fock
space $F . This result was proved by means of the quantum inverse scattering
transform [33], based on existence of a special so called Lax type quantum
operator linearization in the associated operator-valued space C∞(R;End $2

F ).

In what follows below we will prove the quantum integrability of the quantum
Schrödinger type evolution flow (3.2), making use of the local quantum current
algebra representation technique, devised in [18, 19, 21, 23, 26], similar the way
this was done in sections above.

Let us define in the Fock space $F the following structural operator:

D(ε)(x) := K(x)− α
∫

R

dyϑε(x − y) : ρ(x)ρ(y) :, (71)

where for any ε > 0 the expression ϑε(x − y) := ϑ(x − y − ε) = {1, if x >
y − ε} ∧ {0, if x ≤ y + ε} for x, y ∈ R denotes the shifted classical Heaviside
ϑ-function, and construct the following quantum operator:

Ĥ(ε) :=
∫

R

dxD(ε),+(x)ρ(x)−1D(ε)(x). (72)

The next proposition (72) states an equivalence of the quantum Hamiltonian
operator (68) and the weak operator limit limε→0 Ĥ(ε).

Proposition 2 The many-particle quantum operator (68) in a suitably chosen Fock
space $F is weakly equivalent, as ε → 0, to the operator expression (72), and
satisfies the following regularized limiting relationship:

reg lim
ε→0

H(ε) := lim
ε→0

(
H(ε) − α2N3/3

)
= Ĥ. (73)

Proof Having taken into account that ϑε(x−y)δ(x−y) = 0 = ϑε(x−y)δ′(x−y)
and ϑ ′ε(x − y) = δ(x − y − ε) for any x, y ∈ R, one can calculate the operator
expression (72) and obtain:

H(ε) =
∫

R

dxψ+x (x)ψx(x)+ α
∫

R2
dxρ(x)ρ(x − ε)+ α2N3/3. (74)

��
Insomuch as from the latter expression (74) one easily ensues that

lim
ε→0

(
H(ε) − α2N3/3

)
= H, (75)

the weak operator relationship (73) in the Fock space $ is proved.
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It is important to mention now the quasi-local operators D(ε),+(x)ρ(x)−1D(ε)(x)
: $→ $, x ∈ R, owing to their construction, are commuting to each other, that is

[D(ε),+(x)ρ(x)−1D(ε)(x),D(ε),+(y)ρ(y)−1D(ε)(y)] = 0 (76)

for any x, y ∈ R. The latter makes it possible to construct a countable hierarchy of
operators

Ĥ(ε,p) :=
∫

R

dx
(

D(ε),+(x)ρ(x)−1D(ε)(x)
)p

(77)

for p ∈ Z+, commuting to each other, that is

[Ĥ(ε,p), Ĥ(ε,q)] = 0 (78)

for any p, q ∈ Z+. Applying to the hierarchy of operators (77) the standard weak
regularization procedure as ε → 0, one can construct, respectively, a countable
hierarchy of quantum operators

Ĥ(p) := reg lim
ε→0

Ĥ(ε,p) (79)

on the Fock space $ for p ∈ Z+, also commuting to each other, that is

[Ĥ(p), Ĥ(q)] = 0 (80)

for any p, q ∈ Z+, as this naturally follows from the commutator relationship (78).
The latter then means that the quantum Schrödinger type dynamical system (3.2) is
integrable, other way confirming the classical result of [34].

Remark 4 It is worthy to mention that the following generalized quantum many-
particle Hamiltonian Bose system

HN := −
∑

j=1,N

∂2

∂x2
j

+ α
∑

j �=k=1,N

δ(xj − xk)

+ iβ
∑

j �=k=1,N

(
∂

∂xj
◦ δ(xj − xk)+ δ(xj − xk) ◦ ∂

∂xk

)
,

where α, β ∈ R+ are interaction constants, and acting on the symmetric Hilbert
spaceL(s)2 (R

N ;C),N ∈ Z+, (that is with (αδ+βδ′)-interaction potential) generates
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the corresponding secondly quantized quantum Hamiltonian system

dψ/dt := 1

i
[H, ψ] = −iψxx + 2αψ+ψψ + 2βψ+ψψx,

dψ+/dt := 1

i
[H, ψ+] = iψ+xx − 2iα(ψ+)2ψ + 2βψ+x ψψ

(81)

with the quantum Hamiltonian operator

H =
∫

R

dx[ψ+x ψx + αψ+ψ+ψψ + iβ(ψ+ψ+ψxψ − ψ+x ψ+ψψ)] (82)

on the Fock space $F , which is completely integrable, as it was proved before
in [8, 28, 29] by means of the quantum inverse scattering transform. This fact,
eventually, allows us to speculate that there exists a suitable local current algebra
cyclic representation space $, allowing to construct a related structural operator
D(x) : $ → $, x ∈ R, factorizing the quantum Hamiltonian operator Ĥ = ∫

R

D+(x)ρ(x)−1D(x), and reducing, up to some renormalizing constant operator,
to (82) on the corresponding Fock space $F .

4 Conclusion

In the work we succeeded in developing an effective algebraic scheme of con-
structing density operator and density functional representations for the local
quantum current algebra and its application to quantum Hamiltonian and symmetry
operators reconstruction. We analyzed the corresponding factorization structure for
quantum Hamiltonian operators, governing spatially many- and one-dimensional
integrable dynamical systems. The quantum delta-potential and generalized oscil-
latory Calogero-Moser-Sutherland models of spin-less Bose-particle systems were
analyzed in detail. The central vector of the density operator current algebra
representation proved to be the ground vector state of the corresponding completely
integrable factorized quantum Hamiltonian system in the classical Bethe ansatz
form. The latter makes it possible to classify quantum completely integrable
Hamiltonian systems a priori allowing the factorized form and whose ground state is
of the Bethe ansatz from. These and related aspects of the factorized and completely
integrable quantum Hamiltonian systems are planned to be studied in other place.
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Quantum Master Equation
for the Time-Periodic Density
Operator of a Single Qubit Coupled
to a Harmonic Oscillator

C. Quintana, P. Jiménez-Macías, and O. Rosas-Ortiz

Abstract The reduced density operator of a single qubit coupled to a quantum
oscillator is time-periodic even for stationary Hamiltonians. We construct some
quantum master equations for such density operator and show that they can be
expressed in the Lindblad form. Although the qubit is treated as an open system
that exchanges information with the oscillator (environment), the dynamics of the
entire system is unitary and such that no information is lost at any time. The time-
evolution of the qubit is therefore developed with balanced gain and loss profile.
Some subtleties arise since the appropriate master equation must include not only
the decay (diffusion) process but also the excitation of the qubit. The advances
reported in this work are addressed to cover the decay process only.

Keywords Quantum master equation · Jaynes–Cummings model · Lindblad
superoperator

Mathematics Subject Classification (2010) Primary 81S22; 81R15;
Secondary 81V80

1 Introduction

The study of open quantum systems finds a diversity of applications to construct
realistic dynamical models in quantum physics [2, 3, 5, 19]. The efforts are
addressed to describe the non-unitary behavior that results from the interaction of a
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given quantum system with its environment. Special attention has been payed to the
non-equilibrium features of driven quantum systems during the last decades. The
latter motivated by the spectacular improvements in the experimental manipulation
of atoms and photons [10, 16]. Formal approaches to the dynamics of open quantum
systems use the construction of master equations for the related density operator
of either Markovian (the characteristic times of the system are no longer than
those of the environment) or non-Markovian systems [2, 19]. In the former case
the environment may be represented by complete positive trace-preserving maps
acting on the system to describe the time-evolution in Lindblad form [7, 11, 12].
Complete positivity ensures unitary time-evolution for the “system + environment”
entity while positivity guarantees the statistical interpretation of the density matrix.
For non-Markovian systems the Lindblad form of the related master equation is not
granted (one of the reasons is that positivity can be violated, see e.g. [14]) and, in
general, it is more difficult to find solutions of the dynamics, even numerically. As
a matter of fact, the number of exactly solvable models of open quantum systems is
small since the exchange of information between system and environment usually
involves a large number of degrees of freedom.

The purpose of this contribution is to gain an understanding of the construction
of exactly solvable master equations for time-periodic density operators where the
existence of a unique generator for the stroboscopic dynamics is a major problem
(see e.g. [4, 8, 13, 17]). With this aim we shall focus on the simplest quantum optical
example: a two-level atom embedded in a cavity with a single-mode quantized
electromagnetic field. Although the simplicity of the model, the coupling between a
qubit and a harmonic oscillator, it is commonly used to study many atomic systems
in quantum optics (for instance, interesting effects can be found in ion traps and
cavity QED experiments [10, 16]). As the “qubit + oscillator” system is exactly
solvable by unitary time-evolution, we already know the state of the qubit by tracing
over the degrees of freedom of the oscillator (environment). The reduced density
operator is therefore time-dependent and defined by periodic functions that rule
the population inversion of the energy levels. Considered as an open system, using
dipole and rotating-wave approximations, and assuming weak atom-field couplings,
the interaction of the qubit with its environment must be associated with a master
equation. In the sequel we provide a diversity of master equations for the related
time-periodic density operator and show that they can be written in the Lindblad
form.

The paper is organized as follows. In Sect. 2 some generalities concerning the
Lindblad master equation are provided and the problem we are dealing with is
defined. Section 3 deals with the explicit derivation of the master equation, some
concrete realizations are provided as examples and the corresponding solutions are
analyzed. A summary of our results and some concluding remarks are given in
Sect. 4.
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2 Statement of the Problem

Let S and H respectively denote a given quantum system and the corresponding
Hilbert space. The quantum state of S is described by a positive operator in H,
denoted ρ and called density operator, which has trace one [15]. For closed quantum
systems the density operator at time t ≥ t0 arises from the unitary transformation of
the initial state ρ(t) = U(t, t0)ρ(t0)U

†(t, t0). In general, to study the dynamics
of the system, one may consider an additional Hilbert space MH in which the
operators serve as vectors and the inner product is defined as A ·B = Tr(A†B) [19].
In this context, a superoperator is a map from MH into itself. Of special interest,
the superoperator &(t, t0) that maps the density operator at initial time t = t0 into
the density operator at time t ≥ t0,

ρ(t) = &(t, t0) [ρ(t0)] , (1)

satisfies the initial condition &(t0, t0) : ρ(t0) → ρ(t0). The time-evolution
superoperator &(t, t0) is generated by the Liouville superoperator L, which is
defined through the generalized Liouville–von Neumann equation:

d

dt
ρ = L(ρ). (2)

For closed (non-dissipative) quantum systems the superoperator &(t, t0) defines a
unitary time-evolution while the Liouville superoperator takes its Hamiltonian form

LH(ρ) = −i[H,ρ], (3)

with H the Hamiltonian of the system and [A,B] the commutator between A and
B.

For open (dissipative) quantum systems it is necessary to impose the Markov
property

&(t, t1)&(t1, t0) = &(t, t0), 0 < t0 < t1 < t. (4)

Equation (4) means that the time-evolution of ρ in the interval (t0, t) can be
constructed by evolving it in the intervals (t0, t1) and (t1, t), where t1 is an arbitrary
point between t0 and t . In other words, the time-evolution superoperator &(t, t0)
forms a two-parameter semi-group and defines a dynamical map of the system [19].

The linear operator differential equation (2) is usually called master equation
and constitutes a standard tool to describe the dynamics of open quantum systems.
All the information about the time-evolution of the system is encoded in the
Liouville superoperator L, which generates infinitesimal changes in ρ and may be
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decomposed into its Hamiltonian and purely dissipative parts L = LH +LD [7, 11],
with LH given in (3) and

LD(ρ) =
d2−1∑

i,j=1

gi,j (t)

(
FiρF

†
j −

1

2

{
F

†
j Fi, ρ

})
. (5)

Here d stands for the dimension of H, {Fi}d2

i=1 is a set of orthonormal operators
Fi · Fj = δi,j that are traceless for i �= d2, and Fd2 = 1√

d
I.

Clearly, LH is characterized by the Hamiltonian H while LD is determined by
the positive semidefinite matrixG(t) = [gi,j (t)] [7, 11]. Using a diagonalized form
ofG(t), the jump operatorsFj account for relevant elementary dissipative processes
having a relaxation time Tj ∼ g−1

jj (t), where gjj (t) ≥ 0 ∀t ≥ t0 [18]. Note that the
spectrum of LH is pure imaginary, defined by differences between the eigenvalues
of the Hamiltonian, so LH generates unitary time-evolution. On the other hand, the
spectrum of LD includes negative real eigenvalues that are associated with decay
(dissipation) as the system evolves in time (see e.g. [1]).

Equation (2) can be faced in two different forms. Assume first that the effect of
the environment has been properly encoded in the dynamical generator L. That is,
the matrix G(t) and the operators Fi are already known (without explicit reference
to a given model) or they have been guessed to construct an effective model. Only
a very small number of this kind of problems can be solved in closed form and
numerical resources are required in general. Other option considers the construction
of the Liouville superoperator L from a model that includes information of the
system, the environment and the corresponding interaction, after tracing over the
environment degrees of freedom. However, there is not a general rule to define
neither the operators Fj nor the matrix G(t).

2.1 The Model

Hereafter we assume that the whole system S is closed and divided into a subsystem
SA and its environment SE . Let HA and HE be respectively the Hamiltonians of
SA and SE . As they act on their corresponding Hilbert spaces HA,E , we promote
them to act on the Hilbert space H of the entire system S by means of the tensor
products HA ⊗ IE and IA ⊗ HE , with IA,E the identity operator in HA,E [6]. We
also assume that the initial state is separable ρ(t0) = ρA(t0) ⊗ ρE(t0), and that
the subsystem SA interacts with its environment SE at time t ≥ t0 through the
interaction Hamiltonian HI , which acts on H. Hence, the Hamiltonian of the entire
system is given by H = HA ⊗ IE + IA ⊗HE +HI .

Provided an explicit form of H we are able to obtain the states ρ(t) of the
entire system S in closed form. To analyze the dynamics of SA we trace over
the environment degrees of freedom to get the reduced operator ρA = TrE(ρ).
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Similarly, ρE = TrA(ρ) represents the state of the environment. After evaluating
d
dt
ρA(t), we shall look for the Liouville superoperator L such that the following

equation holds

d

dt
ρA = L(ρA). (6)

Thus, we face the inverse problem of an open quantum system: given the state ρA(t),
we look for the dynamical generator L that produces the time-evolution ρA(t0) →
ρA(t).

It is clear that the solution of the inverse problem described above is not unique,
so we address the model to the identification of the simpler forms of L that include
the state ρA(t) as a solution of the master equation (6).

We shall consider that ρA represents the state of a system SA interacting with
a controlled environment SE . That is, as the time-evolution of the entire (closed)
system S = SA + SE is unitary, the information interchanged between SA and SE
is never lost. The excitations and decays of SA are correlated with the decays and
excitations of SE , and vice versa.

3 Effect of Environment Interactions

The simplest model to study is a two-level system that interacts with a single-mode
quantized electromagnetic field in an isolated QED cavity. Using notation free of
units we write HA = 1

2σ3 and HE = a†a + 1
2 for the qubit and field Hamiltonians,

respectively. Note that the atomic transition frequency and the field frequency are
on resonance. Hereafter, a† and a stand for the conventional ladder boson operators
while

σ3 =
(

1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (7)

are respectively the Pauli z-matrix and ladder operators:

[σ+, σ−] = σ3, [σ3, σ±] = ±2σ±, σ 2
3 = I, σ 2+ = σ 2− = 0, σ †

+ = σ−. (8)

In the dipole and rotating-wave approximations the interaction Hamiltonian reads
HI = γ

(
σ+ ⊗ a + σ− ⊗ a†

)
, with γ the atom-field coupling constant. The

dynamics of the entire system is therefore governed by the Jaynes–Cummings model
[9].
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3.1 Environment with Definite Energy

Let us consider that the qubit interacts with a field of definite energy. That is, the
state of the environment is represented by a Fock state at any time. Let us take |+〉⊗
|r〉 ≡ |+, r〉 as the initial state of S, where |+〉 is the excited state of the qubit and
|r〉 the Fock state representing the field with exactly r photons. The straightforward
calculation shows that, at time t ≥ 0, the state of the entire system S is given by

ρ(t) = cos2(γ t
√
r + 1)|+, r〉〈+, r| + sin2(γ t

√
r + 1)|−, r + 1〉〈−, r + 1|

+ i sin(γ t
√
r + 1) cos(γ t

√
r + 1) [|+, r〉〈−, r + 1| − |−, r + 1〉〈+, r|] .

So we arrive at the time-periodic density operator

ρA(t) = cos2(γ t
√
r + 1)|+〉〈+| + sin2(γ t

√
r + 1)|−〉〈−|, (9)

which has period τ = π

γ
√
r+1

, ρA(t + τ ) = ρA(t). Thus, although the Jaynes-

Cummings Hamiltonian H is not time-dependent, the unitary evolution of ρ(t)
provides a concrete form for the time-dependence of ρA(t) that is defined by the
parameters of the field (the number of photons r) and the atom-field coupling (the
constant γ ). From (9) it is immediate to get the population inversion

〈σ3〉(t) = cos( 2π
τ
t), (10)

which is also of period τ . Thus, the first transition ρ+ → ρ− is produced at t = τ/2,
with ρ+ = |+〉〈+| and ρ− = |−〉〈−|. Given r we have τ →∞ as γ → 0, meaning
that the above transition is almost improbable for very weak couplings. On the other
hand, considering thatHA does not depend on time, one finds that the periodicity of
ρA(t) is a consequence of the controlled exchange of information between SA and
SE (no information is lost in S at any time!). The dynamical evolution of ρA(t) is
therefore a periodic transition between ρ+ and ρ− where information is transferred
to, and taken from, the environment with no loss.

Using (9) we obtain a periodic equation of motion

d

dt
ρA(t) = f (t)σ3, (11)

where the time-dependent function

f (t) = −π
τ

sin( 2π
τ
t) (12)

is of period τ . It is remarkable that the time-periodicity of Eqs. (11)–(12) is not
provided by the Hamiltonian HA, which is time-independent, but by the interaction
of SA with SE after the partial trace.
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To express the dynamical equation (11)–(12) in the form of the master equa-
tion (6) we first notice that [HA, ρA(t)] = 0, so the Hamiltonian part LH of the
dynamical generator L is equal to zero. Thus, only the purely dissipative part of L
contributes to the time-evolution of the subsystem SA. On the other hand, from the
relationships (8) one realizes that the set {σ3, σ±} is appropriate to construct LD .
We make the identification F1 = 1√

2
σ3, F2 = σ+, F3 = σ−, and F4 = 1√

2
I. In this

form the dissipative generator LD includes three elementary processes: two finite
temperature amplitude damping (represented by the jump operators F2 and F3), and
a dephasing in the σ3 basis (represented by the jump operator F1) [18]. Using the
above identification, for the state ρA(t) given in (9) one finds the time-dependent
dissipative matrix

G(t) =
⎛

⎝
0 g12(t) g13(t)

−g12(t) g22(t) 0
−g13(t) 0 g33(t)

⎞

⎠ , (13)

where g12(t) and g13(t) are functions to be determined, and

g22(t) sin2(π
τ
t)− g33(t) cos2(π

τ
t) = −π

τ
sin( 2π

τ
t). (14)

Depending on the nontrivial matrix elements gij (t), the eigenvalues of G(t) are
either all-real or one complex (together with its complex-conjugate) and one real. In
the former case one can writeG(t) = diag[λ1(t), λ2(t), λ3(t)] to get a diagonalized
version of the dissipative generator (5). However, although we can pay attention
to the elementary dissipative processes associated with the diagonalized form of
G(t), the eigenvalues λj are time-dependent in general and they could even acquire
negative values. The time-dependence of λj , as well as its possible time-periodicity,
arises from the controlled exchange of information between SA and SE via the
matrix elements gij (t) �= 0 (compare with [4, 8, 13, 17]).

3.1.1 Diagonalized form of the Dynamical Generator

For all-real eigenvalues, without loss of generality, let us consider the following
cases:

• Case I. If g12 = g13 = 0 the dissipative matrix (13) is diagonal with eigenvalues
λ1 = 0, λ2 = g22, and λ3 = g33. The dynamical generator is therefore

L(I)D (ρ) = g22

[
σ+ρσ− − 1

2
{σ−σ+, ρ}

]
+ g33

[
σ−ρσ+ − 1

2
{σ+σ−, ρ}

]
.

(15)
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To gain additional insight into the physics of this case one may consider
the mean-field equations of the Hamiltonian HA = 1

2σ3 and the Pauli ladder
operators σ±. The straightforward calculation leads to

d

dt
〈HA〉 = −2 (g22 + g33) 〈HA〉 + g22 cos2(π

τ
t)− g33 sin2(π

τ
t), (16)

and

d

dt
〈σ±〉 = −1

2
(g22 + g33) 〈σ±〉. (17)

Remark that 〈HA〉 is equal to half the population inversion (10).
• Case II. For g13 = 0 the dynamical generator is given by

L(II)D (ρ) = L(I)D (ρ)+ g12

[
σ3ρσ− − σ+ρσ3 − 1

2
{σ−σ3, ρ} + 1

2
{σ3σ+, ρ}

]
.

(18)

In turn, the eigenvalues of the dissipative matrix (13) are given by

λ3 = g33, λ± = 1

2

[
g22 ±

√
g2

22 − 4g2
12

]
. (19)

The simplest root g12 = 0 reduces the above results to those of Case I.
• Case III. For g12 = 0 the dynamical generator is of the form

L(III)D (ρ) = L(I)D (ρ)+ g13

[
σ3ρσ+ − σ−ρσ3 − 1

2
{σ+σ3, ρ} + 1

2
{σ3σ−, ρ}

]
.

(20)

The eigenvalues of the dissipative matrix (13) are in this case

λ3 = g22, λ± = 1

2

[
g33 ±

√
g2

33 − 4g2
13

]
. (21)

The simplest root g13 = 0 reduces the above results to those of Case I.

As indicated above, the time-dependence (and possible time-periodicity) of the
eigenvalues λj is determined by the analytic expressions of the matrix elements
gij (t) �= 0. Some insights are given below, where we discuss concrete realizations
of the dissipative matrix (13).
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3.1.2 Examples

Let us analyze the already diagonalized form of LD given in (15). We distinguish
four immediate cases:

• Case 1. Making g22 = g0 = const in Eq. (14) one gets the time-periodic
eigenvalue

g33(t) = 2π

τ
tan
(
π
τ
t
) + g0 tan2 (π

τ
t
)
, (22)

which is of period τ , g33(t + τ ) = g33(t), and acquires negative values as
t → τ−. Integrating (17) one gets an expression for 〈σ+(t)〉 that is nonnegative
(and represents decay) in the time-interval (0, 1

2τ ), just the values of t for which
the eigenvalue (22) is positive in one cycle. In ( 1

2τ, τ ) both functions acquire
negative values. That is, 〈σ+(t)〉 and g33(t) are not useful as the dipole moment
and eigenvalue of the dissipative matrixG(t) in the time-interval ( 1

2τ, τ ).
• Case 2. For g33 = g1 = const, we arrive at the expression

g22(t) = g1 cot2(π
τ
t)− 2π

τ
cot(π

τ
t). (23)

Here g22(t + τ ) = g22(t). In this case (17) produces a decaying function 〈σ+(t)〉
that diverges at t = 0 and is undefined at t = τ . In turn, the eigenvalue
g22(t) acquires negative values in the cycle. For g1 = 0 the function 〈σ+(t)〉 is
nonnegative in the cycle but the eigenvalue g22(t) is negative in the time-interval
(0, 1

2τ ).
• Case 3. Assuming g22(t) = g33(t) �= const we obtain the time-periodic function

g22(t) = g33(t) = π
τ

tan( 2π
τ
t), (24)

which is of period 1
2τ . In this case the eigenvalues g22(t) and g22(t) are

nonnegative in (0, 1
4τ ), where 〈σ+(t)〉 is real and nonnegative.

• Case 4. If g22(t) and g33(t) are both time-dependent and g22(t) �= g33(t), then

g22(t) = −π
τ

cot
(
π
τ
t
)
, g33(t) = π

τ
tan
(
π
τ
t
)
. (25)

The time-periodic functions (24) have the period τ . The function 〈σ+(t)〉 is real
and nonnegative in (0, 1

2τ ), where g22(t) and g33(t) are negative and positive,
respectively.
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4 Discussion

Despite the simplicity of the (Jaynes–Cummings) model used in the previous
sections to describe the entire (closed) system S = SA + SE , the derivation of the
master equation for the qubit SA-interacting with the quantized single-mode field
SE-is nontrivial. For the system discussed in this work the Liouville superoperator
L contains only the purely dissipative part LD .

In contrast with the dissipative models where the environment permanently takes
energy from the system under study, our approach is such that the environment SE
takes energy from SA at some intervals of time while it supplies energy to SA at the
complementary time-intervals. The time-evolution of SA is therefore described by
a time-periodic density operator ρA(t + τ ) = ρA(t), which implies a balanced gain
(acceptor) and loss (donor) profile since the entire system S is closed. However,
some subtleties must be attended in order to get a completely satisfactory approach.
To be concrete, the construction of the Lindblad superoperator presented here is
useful to describe the transition ρ+ → ρ− only, which is developed during half the
period of one cycle (recall that we have taken ρ+ = |+〉〈+| as the initial state of
the qubit). At the present stage we would like to emphasize that the weak coupling
γ << 1 could be useful since the period τ acquires large values. In general, in order
to cover the entire period, the excitation process ρ− → ρ+ must be also included.
Then, it is necessary an additional construction of the master equation in which the
information is taken from the environment by the system. It is expected that both
constructions will be complementary to describe the entire transition ρ+ → ρ− →
ρ+, developed in one-cycle evolution (the approach has been successfully applied
to study Floquet-like open quantum systems [4, 8, 13, 17]). Work in this direction is
in progress and will be reported elsewhere.
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Abstract The energy spectra of two different quantum systems are paired through
supersymmetric algorithms. One of the systems is Hermitian and the other is char-
acterized by a complex-valued potential, both of them with only real eigenvalues
in their spectrum. The superpotential that links these systems is complex-valued,
parameterized by the solutions of the Ermakov equation, and may be expressed
either in nonlinear form or as the logarithmic derivative of a properly chosen
complex-valued function. The non-Hermitian systems can be constructed to be
either parity-time-symmetric or non-parity-time-symmetric.
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[5, 12, 21]. Sustained by the factorization method [2, 20], the supersymmetric
approach is basically algebraic [3] and permits the pairing between the spectrum
of a given (well-known) Hamiltonian H0 to the spectrum of a second (generally
unknown) Hamiltonian H1. In terms of differential operators, it has been found
that the factorization of either H0 or H1 is not unique [20] and that the pairing
of H0 with H1 is ruled by a Darboux transformation [1], which was introduced
in 1882 [13] (see historical details in e.g. [21, 28]). The keystone is a solution
u (not necessarily normalizable) of the eigenvalue equation H0u = εu that is
used to generate the Darboux transformation V1(x) = V0(x) + 2 d

dx
β(x) [2, 20],

where β(x) = − d
dx

lnu(x) is called superpotential and ε the factorization energy.
Remarkably, not only Hermitian but also non-Hermitian Hamiltonians H1 can be
produced as supersymmetric partners of a given exactly solvable (either Hermitian
or non-Hermitian) Hamiltonian H0. Indeed, depending on the properties of V0(x)

and β(x), the new potentialV1(x)may be either real or complex-valued. In any case,
the spectrum of the new Hamiltonian H1 includes either all-real eigenvalues or a
combination of real and complex eigenvalues, see e.g. [4, 6–8, 10, 11, 16, 17, 19, 23–
27].

Quite recently, a complex-valued superpotential defined by the nonlinear expres-
sion

β(x) = − d
dx

lnα(x)+ i λ

α2(x)
, λ ∈ R, (1)

has been provided to produce new classes of non-Hermitian Hamiltonians H1 with
all-real spectra [25]. The function α(x) is a solution of the Ermakov equation [15]:

− d2

dx2α(x)+ V0(x)α(x) = εα(x)+ λ2

α3(x)
, (2)

which is reduced to the eigenvalue equation H0α = εα for λ = 0. The eigen-
functions of the resulting non-Hermitian Hamiltonians H1 satisfy some properties
of interlacing of zeros that permit the study of the related systems as if they were
Hermitian [19]. Indeed, a bi-orthogonal basis can be introduced to facilitate the
construction of coherent states for such a class of systems [27]. Moreover, the
factorization energy ε can be placed at any arbitrary position in the spectrum of H1
[10]. Notedly, the eigenvalues of the non-Hermitian Hamiltonians H1 are all-real
regardless of whether H1 is parity-time-symmetric [9] or not.

In this communication we briefly revisit the method developed in [10, 19, 25, 27]
and show that the nonlinear superpotential (1) can be also expressed in the
‘canonical form’ β(x) = − d

dx
ln u(x), where u is an eigenfunction of H0 with very

concrete profile. The results presented here generalize the approach introduced in
[11], where it is guessed that a complex linear-combination of eigenfunctions ofH0
may be useful to construct complex-valued potentials V1(x). We provide a pair of
examples where the new potentials are either parity-time-symmetric or non-parity-
time-symmetric.
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2 Factorization Method and Non-Hermitian Hamiltonians

Consider an initial Hamiltonian

H0 = − d
2

dx2
+ V0(x), (3)

with V0(x) a real-valued potential defined in DomV0 ⊆ R. We assume that the
energy eigenvalues E(0) ∈ R and eigenfunctions φ(x) of the related eigenvalue
equation H0φ(x) = E(0)φ(x) are already known. In particular, the bounded
solutions φn(x) belong to the discrete eigenvalues E(0)n , n = 0, 1, . . . Let us
introduce a pair of non-mutually adjoint operators, A and B, such that

H0 = AB + ε, A = − d
dx

+ β(x), B = d

dx
+ β(x), (4)

where β(x) is in general a complex-valued function and ε is a real constant. After
comparing (4) with (3) one arrives at the Riccati equation

− β ′ + β2 = V0(x)− ε, β ′ = dβ
dx
. (5)

Provided a solution of (5), reversing the order of the factors in (4) gives

H1 = BA+ ε = − d
2

dx2 + V1(x), V1(x) = V0(x)+ 2β ′(x). (6)

Notice that the new operator H1 is not self-adjoint since V1 is complex-valued in

general. Indeed, H †
1 = A†B† + ε = − d2

dx2 + V ∗1 �= H1. Nevertheless, the pair H0
and H1 satisfies the intertwining relationships

BH0 = H1B, H0A = AH1, (7)

so that the eigenvalue equation H1ψn = E
(1)
n ψn, n = 0, 1, . . ., is automatically

solved by the set

ψn+1 = 1√
E
(0)
n − ε

Bφn , Aψ0 = 0 , E
(1)
n+1 = E(0)n , E

(1)
0 = ε . (8)

The functions ψn(x) are complex-valued and such that the zeros of their real and
imaginary parts satisfy some theorems of interlacing [19].
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2.1 Complex-Valued Potentials with All-Real Spectra

In the conventional supersymmetric approaches the solution of the Riccati equa-
tion (5) is usually taken to be real-valued. However, complex-valued solutions are
feasible even for real-valued potentials V0 and real factorization energies ε. Indeed,
the real and imaginary parts of Eq. (5) lead to a coupled system which is solved by
the complex-valued superpotential (1). Assuming, with no loss of generality, that
α(x) is real-valued, it may be shown that the solution of the Ermakov (2) can be
written as [25]:

α(x) =
[
au2

1(x)+ bu1(x)u2(x)+ cu2
2(x)

]1/2
, (9)

where u1,2 are solutions of the system

− u′′1,2 + V0u1,2 = εu1,2, W(u1, u2) = u1u
′
2 − u′1u2 = W0, (10)

with W0 = const. The function α is free of zeros in DomV0 if the set {a, b, c} is
integrated by positive numbers that are constrained as follows

b2 − 4ac = −4λ2/W 2
0 . (11)

Using the superpotential (1), with α given in (9), the new potential (6) is now given
by the nonlinear expression

V1(x) = V0(x)− 2 (ln α(x))′′ + i
(

2λ

α2(x)

)′
, λ ∈ R. (12)

Notice that the results of the conventional supersymmetric approaches [5, 12, 21]
are automatically recovered for λ = 0. On the other hand, it may be shown that the
imaginary part of V1(x) satisfies the condition of zero total area [19]:

∫

DomV0

ImV1(x)dx = 2λ

α2(x)

∣∣∣∣
DomV0

= 0, (13)

so that the total probability is conserved. The latter means that the potentials (12)
can be addressed to represent open quantum systems with balanced gain (acceptor)
and loss (donor) profile [14].

2.1.1 Parity-Time-Symmetric Potentials

Potentials featuring the parity-time symmetry [9] represent a particular case of the
applicability of the condition of zero total area (13). Such potentials are invariant
under parity (P) and time-reversal (T) transformations in quantum mechanics, so
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that a necessary condition for PT-symmetry is V (x) = V ∗(−x), where ∗ stands for
complex conjugation. For initial potentials V0(x) such that V0(x) = V0(−x), one
can show that making b = 0 in (9) is sufficient to get V1(x) = V ∗1 (−x). In other
words, the parity-time symmetry is a consequence of the condition of zero total area
in our approach.

2.1.2 Non-parity-Time-Symmetric Potentials

For V0(x) �= V0(−x) the property V1(x) = V ∗1 (−x) does not hold anymore, so the
complex-valued potentials (12) have all-real spectra although they are non-parity-
symmetric. Diverse examples have been already discussed in e.g. [10, 19, 25, 27].
Quite recently the pseudo-Hermiticity and supersymmetric approaches have been
combined to get new classes of non-parity-time-symmetric potentials with all-
real spectra [6]. Interestingly, such potentials can be manipulated to induce phase
transitions where conjugate pairs of complex eigenvalues emerge in the spectrum.
Similar results have been reported in [18], where the condition of zero total area (13)
plays a relevant role. The discussion on the subject is out of the scope of the present
work and will be reported elsewhere.

2.2 Recovering the Canonical form of the Superpotential

We wonder if the nonlinear expression (1) can be reduced to the canonical form
β = − d

dx
ln u(x). Keeping this in mind, we first rewrite (1) as

β = −
1
2 (α

2)′ − iλ
α2 . (14)

Using (9) and (11) we factorize the α-function in the form

α2 = 1

a

[
au1 +

(
b

2
+ i λ
W0

)
u2

] [
au1 +

(
b

2
− i λ
W0

)
u2

]
. (15)

In turn, expanding the numerator of Eq. (14) yields

1

2

(
α2
)′ − iλ = au1u

′
1 + cu2u

′
2 + bu′1u2 +

(
bW0

2
− iλ

)
, (16)

where we have used the Wronskian defined in (10). The latter result is now
factorized:

(C0u
′
1 + C1u

′
2)(D0u1 +D1u2). (17)
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The coefficients C0, C1,D0,D1 are defined by comparing the expanded version
of (17) with (16). One gets

1

2

(
α2
)′ − iλ = 1

a

[
au′1 +

(
b

2
− i λ
W0

)
u′2
] [
au1 +

(
b

2
+ i λ
W0

)
u2

]
. (18)

Finally, the substitution of (15) and (18) into (14) produces

β = −α
′(x)
α(x)

+ i λ

α2(x)
= − d

dx
ln

[
au1 +

(
b

2
− i λ
W0

)
u2

]
. (19)

Thus, the function we are looking for is given by the linear superposition

u = au1 +
(
b

2
− i λ
W0

)
u2, (20)

where the constants a, b and λ are linked by the condition (11). If λ = 0 the con-
straint (11) becomes b = ±2

√
ac, so that the coefficients of the superposition (20)

are real numbers, u = √a (√au1 +√cu2
)
, as expected.

The expression (19) shows that the superpotential β(x) can be written in
either the nonlinear form (1), or as the logarithmic derivative of the function u
defined in (20). The latter is a linear superposition of the solutions of (10) with
complex coefficients that are uniquely defined by the condition (11). Notice that the
derivation of the u-function (20) generalizes the approach introduced in [11], where
it is guessed that a linear combination of u1,2 would give rise to complex-valued
potentials V1 whenever the appropriate complex coefficients have been included.
As an example, in [11] the authors provide the coefficients that produce a family
of oscillator-like complex-valued potentials. They also apply their method to study
the potential V1(x) = − 1

2 (ix)
N , N ≥ 2, introduced in [9], and describe some

other potentials that can be studied within their approach. However, no general
rule to fix the appropriate complex coefficients is given in [11]. In contrast, the
linear superposition (20) is general in the sense that the rule (11) applies for
any differentiable and exactly solvable real-valued initial potential V0(x). Diverse
examples have been already provided in [10, 19, 25, 27].

3 Examples and Discussion of Results

As immediate examples let us discuss the regular complex-valued potential V1(x)

generated by the following initial potentials:

• Free particle. Given V0(x) = 0, the basis set is u1 = eikx and u2 = e−ikx ,
with W0 = −2ik. To get a real-valued α-function we take k = i κ2 , with κ > 0.
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Fig. 1 The real and imaginary parts of the complex-valued potentials with all-real spectra (12)
derived from the expressions of the free particle provided in (21) with b �= 0, a = 1.5 (red curve),
and b = 0, a = 1 (dotted-blue curve). In all cases λ = κ = 1. (a) ReV1(x). (b) ImV1(x)

Without loosing generality we now make a = c. Then,

α(x) = [2a cosh κx + b]1/2 , u(x) = ae−κx/2+
(
b

2
− i λ
κ

)
eκx/2. (21)

The potentials V1(x) are depicted in Fig. 1, they are of the Pöschl–Teller
type, generalize the well known family of regular (real-valued) supersymmetric
partners of the free particle [22], and satisfy the condition of zero total area (13).
These potentials include only one bound state of energyE(0) = − 1

4κ
2. The effect

of b �= 0 is to slide the potential to the right (red curve in Fig. 1), so that V1(x)

is parity-time-invariant after the appropriate shift. The latter is just because the
initial potential V0(x) = 0 satisfies the condition V0(x) = V0(−x) and exhibits,
at the same time, translational symmetry V0(x) = V0(x+ x0). One may say that,
in the present case, the translational symmetry is invariant under the Darboux
transformations (12).

• Morse potential. It is clear that the conditionV0(x) = V0(−x) cannot be applied
on the Morse potential

V0(x) = �0(1− e−γ x)2, x ∈ R, γ ∈ R, �0 > 0. (22)

Then, the potentials (12) associated to (22) are non-parity-time-symmetric for
any values of the set {a, b, c}. The condition �0 > γ

2/2 ensures that at least one
bound state exists. It may be shown [10] that two linear independent solutions
of (10) for ε ∈ R are given in terms of confluent hypergeometric functions as
follows

u1(x) = e−y/2yσ 1F1

(
σ + 1

2
− d; 1+ 2σ ; y

)
,

u2(x) = e−y/2y−σ 1F1

(
−σ + 1

2
− d; 1− 2σ ; y

)
,

(23)
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where

y = 2de−γ x, d2 = �0

γ 2 , σ 2 = �0 − ε
γ 2 , W0 = 2

√
�0 − ε. (24)

The physical energy eigenvalues are given by

En = γ
[
(2n+ 1)

√
�0 − γ (n+ 1/2)2

]
, n = 0, 1, . . . N, (25)

where N is given by the floor function N = 4
√
�0
γ

− 1
25. The related

eigenfunctions can be recovered from (23) after substituting En for ε and the
appropriate boundary conditions. In Fig. 2 we show the potential (22) and two of
its supersymmetric partners for γ = 1 and �0 = 4. In such case, the initial
potential admits two bound states with energy eigenvalues E(0)0 = 7/4 and

E
(0)
1 = 15/4. Notice that, besides the above energies, potentials V1(x) include

the eigenvalueE(1)0 = ε = 1 in their spectra. Moreover, they satisfy the condition
of zero total area (13).

In summary, the method introduced in [25] and developed in [10, 19, 27]
provides complex-valued potentials with all-real spectra that includes the parity-
time-symmetric case as a particular result. The keystone of the approach relies on
the solutions to the Ermakov equation (2) and the nonlinearity of the imaginary
part of the superpotential (1). The latter permits to introduce the constraint (11)
as an universal rule to choice the complex parameters that are required in the
superposition (20) to get properly defined complex potentials in supersymmetric
quantum mechanics.

Fig. 2 The real and imaginary parts of the complex-valued potential with all-real spectra (12)
derived for the expressions of the Morse potential provided in (23) with a = c = 1 (red curve),
and a = 1, c = 1/3, b = 0 (dotted-blue curve). In all cases λ = 2 and ε = 1. The gray area
delimitates the initial Morse potential. (a) ReV1(x). (b) ImV1(x)
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Toeplitz Quantization of an Analogue
of the Manin Plane

Stephen Bruce Sontz

Abstract The theory of the Toeplitz quantization of non-commutative algebras,
that has been developed in several recent papers by the author, is applied to the
specific example of an algebra which is a multi-variable generalization of the Manin
plane (sometimes known as the quantum plane). Then a holomorphic sub-algebra is
defined, and a sesqui-linear form is used to define a projection of the algebra onto
the sub-algebra. Using all of this, Toeplitz operators are introduced with symbols
in the algebra. These Toeplitz operators are linear maps from the holomorphic sub-
algebra to itself, which is a pre-Hilbert space. Consequently, the Toeplitz operators
are densely defined, linear operators in the Hilbert space completion of the sub-
algebra. The Toeplitz quantization of the algebra is defined to be the linear mapping
of a symbol to its Toeplitz operator. Creation and annihilation operators are defined
as Toeplitz operators with certain symbols, and their commutation relations are
studied.
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1 Introduction

The topic of this paper concerns a multi-variable analogue of the Toeplitz quantiza-
tion of the non-commutative complex Manin plane. The approach here is to define
and study Toeplitz operators in this new setting. Then this generalizes the material
in [3]. While this paper has been motivated by a construction in [2], the method of
coherent state quantization used there is distinct from the Toeplitz quantization used
here. Further discussion of this topic can be found in [3, 4] and [5].
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2 Main Results

Let F denote the free algebra on the 2n generators θ1, θ1, . . . , θn, θn. This is a ∗-
algebra, where the ∗-operation (or conjugation) satisfies θ∗i = θ i and θ i∗ = θi for
i = 1, . . . , n. We define A to be the quotient of the free algebra F divided by the
bilateral ∗-ideal I generated by these elements:

θiθj − rij θj θi 1 ≤ i < j ≤ n, (1)

θiθj − sij θj θi 1 ≤ i ≤ j ≤ n. (2)

for non-zero, complex numbers rij and sij . Since I is a ∗-ideal, it also contains these
elements:

θj θ i − r∗ij θ iθj 1 ≤ i < j ≤ n, (3)

θj θ i − s∗ij θ iθj 1 ≤ i ≤ j ≤ n. (4)

We let λ∗ denote the complex conjugate of the complex number λ. In order to make
the relations (2) and (4) consistent, we must require s∗ii = sii , that is sii ∈ R. The
algebra A is a multi-variable analogue of the Manin (or quantum) plane studied in
[3], where the case n = 1 is considered. Then we claim that A has a vector space
(Hamel) basis given by the set {θaθb}. Here

a = (a1, a2, . . . , an) ∈ N
n

is a length n multi-index. Also we put θa := θa1
1 θ

a2
2 · · · θann . Similarly, we put θb :=

θ
b1
1 · · · θbnn , where b = (b1, . . . , bn) is also a multi-index of length n. From now on

all multi-indices will have length n. One point is that the relations allow us to push
all occurrence of θ ’s in a monomial in A to the right of all occurrences of θ ’s. Then
within each of these two groupings of θ ’s and θ ’s we can order the sub-scripts so
that they increase when read from left to right. This shows that the set

{θaθb = θa1
1 · · · θann θb1

1 · · · θbnn | a, b ∈ N
n}

spans the vector space A. To show the linear independence of this set is mildly
trickier. Basically, the idea is that each relation in (1)–(4) preserves the number of
θi’s and the number of θj ’s in an expression that is a scalar multiple of a word.
So the word θaθb minus any linear combination of words of the form θcθd with
(c, d) �= (a, b) can not be an element in the ideal I of relations defining A.

The ∗-operation (or conjugation) on F passes to the quotient A and is given on
the standard basis elements θaθb where a = (a1, . . . , an) and b = (b1, . . . , bn) by

(θaθb)∗ := θbnn · · · θb1
1 θ

an
n · · · θa1

1 = θbT θaT, (5)
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where aT := (an, . . . , a1) is the multi-index that is the transpose of the multi-index
a and similarly for bT .

Clearly, (θaθb)∗ = C(a, b) θbθa , where the constant C(a, b) is non-zero and
computable in terms of products of the constants rij . Then the definition (5) is
extended anti-linearly to finite linear combinations of these basis elements. Taking
a = b = (0, . . . , 0), the zero multi-index of length n, we see that 1∗ = 1.

The space P of ‘holomorphic polynomials’ (which is one motivation for using
the notation P) is defined to be the sub-algebra (but not ∗-algebra) generated by the
elements θ1, . . . , θn of A.

Next a sesqui-linear form on A is defined on pairs of elements of the standard
basis and then extended sesqui-linearly to A. Our convention is that a sesqui-linear
form is anti-linear in its first entry and linear in its second entry. The definition on
these basis elements is given for multi-indices a, b, c, d by

〈θaθb, θcθd 〉 := w(a + d)δa+d,b+c = w(a + d)δa−b,c−d, (6)

wherew(a) > 0 is a positive weight defined for every multi-index a. Here a+ d :=
(a1+d1, . . . , an+dn) is the usual sum of multi-indices of length n. Similarly for b+c
as well as for the differences a− b and c− d . Also, δa,b is the Kronecker delta. It is
straightforward to show that this sesqui-linear form is complex symmetric. The case
n = 1 is studied in detail in [3], where a necessary and sufficient (and messy, though
computable) condition is given for this sesqui-linear form to be non-degenerate. It
is expected that a similar result holds here.

Proposition 1 The identity 〈f, g〉∗ = 〈f ∗, g∗〉 holds for all f, g ∈ A if and only if
the identityw(a) = w(aT ) holds for all multi-indices a. In this case the conjugation
map ∗ : A→ A is anti-unitary.

Proof It suffices to consider the case f = θaθb and g = θcθd . Then

〈f, g〉∗ = 〈θaθb, θcθd 〉∗ = (w(a + d)δa+d,b+c
)∗ = w(a + d)δa+d,b+c

by evaluating with (6). Next we have that

〈f ∗, g∗〉 = 〈θbT θaT , 〈θdT θcT 〉 = w(bT + cT )δ(bT+cT ),(aT+dT )
= w((b + c)T )δ(b+c)T , (a+d)T = w((a + d)T )δa+d,b+c,

giving the first result. The second follows from 〈f, g〉∗ = 〈g, f 〉. ��
Of course, for n = 1 every multi-index a satisfies a = aT . Next by taking

b = d = (0, . . . , 0) in the above definition (6), we find that

〈θa, θc〉 = w(a)δa,c
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for all multi-indices a and c. This implies that the sesqui-linear form of A when
restricted to P is a positive definite inner product. This makes P into a pre-Hilbert
space (which is another motivation for using the notation P). Moreover, the set

$ := {ϕa = w(a)−1/2θa | a ∈ N
n}

is an orthonormal set in P , which is also a Hamel basis of P . We let H denote the
Hilbert space completion of the pre-Hilbert space P . Then H plays the role of the
Segal-Bargmann space in this example. See [1].

Definition 1 Define the linear map P : A→ A by

P(f ) :=
∑

c∈Nn
〈ϕc, f 〉ϕc for all f ∈ A, (7)

provided that this infinite sum makes sense. Using Dirac notation we have P =∑
c∈Nn |ϕc〉〈ϕc|, a formal expression for the moment.

It remains to show the infinite sum in (7) converges. First we consider the case
f = θaθb where a, b are multi-indices. Then for any multi-index c we consider the
coefficient of ϕc in (7), namely

〈ϕc, f 〉 = 〈ϕc, θaθb〉 = w(c)−1/2〈θc, θaθb〉 = w(c)−1/2w(a)δc,a−b. (8)

So there is at most one value of the multi-index c ∈ Nn for which this is non-zero,
namely for c = a− b in the case when a ≥ b. Of course, a ≥ b means that aj ≥ bj
for every j = 1, . . . , n. So (7) makes sense in this case. Since any f ∈ A is a finite
linear combination of the basis elements θaθb it follows that only a finite number of
terms in the infinite sum (7) are non-zero.

Now we evaluate the projection map P on a basis element θaθb using the result
in (8):

P(θaθb) =
∑

c

〈ϕc, θaθb〉ϕc =
∑

c

w(c)−1/2w(a) δc,a−b ϕc (9)

= w(a − b)−1/2w(a)ϕa−b,

provided that a ≥ b. Otherwise, P(θaθb) = 0 if a ≥ b does not hold. Clearly,
P(ϕ) ∈ P holds for all ϕ ∈ A and P , when restricted to the pre-Hilbert space P, is
the identity. So P is a projection in the sense that P 2 = P holds. But P : A → A
is not always an orthogonal projection, since A is not necessarily a Hilbert space.
However, as the reader can check, 〈f, Pg〉 = 〈Pf, g〉 does hold for all f, g ∈ A.
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We are now ready for a central definition.

Definition 2 For any g ∈ A the (right) Toeplitz operator with symbol g, denoted
Tg, is defined for all ϕ ∈ P by

Tg(ϕ) := P(ϕg) ∈ P .

Then the linear map g 	→ Tg is called the Toeplitz quantization.

Clearly, Tg : P → P is a linear map. Left Toeplitz operators are defined by
T̂g(ϕ) := P(gϕ) ∈ P . They will not be considered here.

We next define L(P) := {A : P → P | A is linear}. Since P is only a pre-
Hilbert space, and not a Hilbert space, the set L(P) is not a standard object studied
in analysis. However, it is easy to show that with the standard definitions of addition
and scalar multiplication it is a vector space over the complex numbers and that
it is closed under composition of mappings. In short, L(P) is an algebra. Notice
that the elements of L(P) are densely defined linear operators in H, the completion
of P , and they may be either bounded or unbounded. Of course, Tg ∈ L(P) for
every symbol g ∈ A. Whether Tg is bounded or unbounded is a question for further
analysis for every symbol g ∈ A.

Definition 3 For each j = 1, . . . , n we define the creation operator A†
j = Tθj and

the annihilation operator Aj = Tθj .
We define the canonical commutation relation (CCR) algebra to be the sub-

algebra of L(P) generated by the operatorsA†
j , Aj for 1 ≤ j ≤ n. The CCR algebra

is a quotient of the free algebra on 2n non-commuting variables. The two-sided ideal
R of that quotient map is called the ideal of canonical commutation relations and
any minimal set of generators of the ideal R is called a set of canonical commutation
relations.

Theorem 1 The creation operator A†
j for j = 1, . . . , n is given for every multi-

index a by

A
†
j (ϕa) = Rj (a)

(
w(a + εj )
w(a)

)1/2

ϕa+εj , (10)

where Rj (a) is given as the product

Rj (a) =
n∏

l=j+1

r
−al
j,l �= 0. (11)

Proof We see for 1 ≤ j ≤ n that

A
†
j (ϕa) = Tθj (ϕa) = P(ϕaθj ) = ϕaθj = w(a)−1/2 θaθj

= Rj (a)w(a)−1/2 θa+εj = Rj (a)
(
w(a + εj )
w(a)

)1/2

ϕa+εj , (12)
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where εj = (0, . . . , 0, 1, 0, . . . , 0), the multi-index with zeros in all of its entries
except the j -th entry which is equal to 1. Also, the formula for Rj (a) given as
in (11) follows by commuting θj past the factors θall for l = j + 1, . . . , n using the
relation (1). ��

In our previous paper [3], where the case n = 1 was considered, the factor (11) is
not written explicitly since it is 1. As the reader can readily check, the formula (12)
implies that the kernel of A†

j is zero. For the case j = n we have Rn(a) = 1 and so

A†
n(ϕa) =

(
w(a + εn)
w(a)

)1/2

ϕa+εn,

which is more in line with results in previous papers such as [3].

Theorem 2 The annihilation operatorAj for j = 1, . . . , n is given for every multi-
index a by

Aj(ϕa) =

⎧
⎪⎨

⎪⎩

(
w(a)

w(a − εj )
)1/2

ϕa−εj if aj ≥ 1,

0 if aj = 0.

(13)

Proof We see by using (9) that

Aj(ϕa) = Tθj (ϕa) = P(ϕaθj ) = w(a)−1/2P(θaθj ) = w(a)−1/2P(θaθεj )

= w(a)−1/2w(a − εj )−1/2w(a) ϕa−εj =
(

w(a)

w(a − εj )
)1/2

ϕa−εj ,

provided that aj ≥ 1. Otherwise Aj(ϕa) = 0 for aj = 0. ��
In particular, Aj(1) = 0 for all j = 1, . . . , n. Also, for n ≥ 2 the kernel of Aj is

infinite dimensional.
As the reader may have already realized, these computations imply that for

1 ≤ j < n the operators A†
j and Aj are not in general adjoints of each other.

For example, consider the case j = 1 and n = 2. Take f1 = θ2, f2 = θ1θ2 and
compute

〈f1, A1f2〉 = 〈θ2, P (θ1θ2θ1)〉 = 〈Pθ2, θ1θ2θ1〉 = 〈θ2, θ1θ2θ1〉 = w
(
(1, 1)

)
,

where we used (6) with multi-indices a = (0, 1), b = (0, 0), c = (1, 1) and d =
(1, 0). On the other hand

〈A†
1f1,f2〉=〈P(f1θ1),f2〉 = 〈θ2θ1,θ1θ2〉 = 〈r−1

12 θ1θ2,θ1θ2〉 = r−1
12 w

(
(1, 1)

)
,

where we used (6) with multi-indices a = (1, 1), b = (0, 0), c = (1, 1) and d =
(0, 0). So A1 and A†

1 are not adjoints exactly when r12 �= 1, that is when θ1 and
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θ2 fail to commute. Basically, the same argument applies for n > 2 to any pair of
non-commuting θ ’s. However, for n = 1 we do have that A1 and A†

1 are formal

adjoints, that is, A∗1 ⊃ A†
1 as densely defined operators in H.

We now are going to consider the commutation relations of the creation and
annihilation operators. It is a straightforward exercise to prove for the annihilation
operators that

AjAk − AkAj = 0 (14)

for all j and k. This commutation relation is classical in the sense that it says that
Aj and Ak commute. The case of creation operators is decidedly more delicate. For
starters we do not wish to fall into the trap of thinking that all we have to do is take
the adjoint of the relation (14) for annihilation operators.

Theorem 3 For j, k = 1, . . . , n the creation operators A†
j and A†

k satisfy

A
†
jA

†
k − r−1

jk A
†
kA

†
j = 0 for j < k (15)

and

A
†
jA

†
k − rjkA†

kA
†
j = 0 for j > k, (16)

where rjk is the non-zero complex number in (1).

Proof Clearly, explicit computations are called for. Suppose first that j < k. Then
using (12) twice we see that

A
†
jA

†
k(ϕa) = Rk(a)

(
w(a + εk)
w(a)

)1/2

A
†
j (ϕa+εk )

= Rk(a)
(
w(a + εk)
w(a)

)1/2

Rj (a + εk)
(
w(a + εk + εj )
w(a + εk)

)1/2

ϕa+εk+εj

= Rk(a) Rj (a + εk)
(
w(a + εk + εj )

w(a)

)1/2

ϕa+εk+εj .

Taken in the other order, we calculate again for j < k that

A
†
kA

†
j (ϕa) = Rj (a)

(
w(a + εj )
w(a)

)1/2

A
†
k(ϕa+εj )

= Rj (a)
(
w(a + εj )
w(a)

)1/2

Rk(a + εj )
(
w(a + εj + εk)
w(a + εk)

)1/2

ϕa+εj+εk

= Rj(a) Rk(a + εj )
(
w(a + εj + εk)

w(a)

)1/2

ϕa+εj+εk .
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So it comes down to evaluating the four R factors. Note that Rl(b) for a multi-index
b = (b1, . . . , bn) depends only on the entries bl+1, . . . , bn in a right tail of the
multi-index b. Using the hypothesis j < k we find that

Rk(a + εj ) = Rk(a) and Rj (a + εk) = r−1
jk Rj (a).

It follows for j < k that A†
jA

†
k − r−1

jk A
†
kA

†
j = 0 which is (15). Multiplying this by

−rjk and interchanging subscripts yields (16). ��
Equation (15) is to be understood as a classical commutativity relation (which

means that the corresponding element in the ideal of CCR in the free algebra on
2n generators is homogeneous, in this case of degree 2), even though (15) does
not necessarily give the commutativity of the operators A†

j and A†
k . Notice that in

general (15) is not the same relation as the defining classical relation for the algebra
A, which is

θj θk − rjkθkθj = 0 for j < k.

The remaining commutation relations are for Aj and A†
k. Here are the relevant

formulas for j, k ∈ {1, . . . , n} obtained from (10) and (13):

AjA
†
k ϕa = Rk(a)

w(a + εk)
(
w(a)w(a + εk − εj )

)1/2 ϕa+εk−εj ,

and

A
†
kAj ϕa = Rk(a − εj )

(
w(a)w(a + εk − εj )

)1/2

w(a − εj ) ϕa+εk−εj .

However, unless the weights satisfy some extra restrictions, there seems to be
nothing simple to be said in general about the commutator [Aj ,A†

k] in this case, not
even when j = k. This is unfortunate since it is precisely with these commutation
relations that there is the possibility of finding non-zero ‘quantum correction’ terms
that would include Planck’s constant h̄. See [5] for the details on how this is done.

3 Concluding Remarks

While the example in this paper does not satisfy all the properties of the general
theory in [3], it still has reasonable Toeplitz operators, including the creation
and annihilation operators. So the CCR algebra in this example, while difficult
to describe completely, does provide an interesting quantum theory which merits
further study. Moreover, by putting all rij = 1 in the relations (1), we get an example
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more in line with the general theory. But the algebra still is not factorizable as a
product of 2n sub-algebras, each generated by one element, due to the remaining
non-trivial relations (2).

There are many other papers that consider Toeplitz quantization with non-
commutative symbols. See [6] for references to that literature. It is worth noting
that the Toeplitz quantization presented here does not use a measure. Also, it does
not start out with some abstract commutation relations which one tries to realize
as operators acting in a Hilbert space. Rather here, the commutation relations arise
naturally within the context of the theory.
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on a Discrete Phase Space
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Abstract A phase space approach to systems with both: classical degrees of free-
dom and purely quantum discrete ones is discussed. Formulas for the Stratonovich–
Weyl quantizer and star product for such systems are proposed. The Wigner
function, its properties and the time evolution are presented.

Keywords Quantum mechanics in continuous and discrete phase space · Wigner
function · Spin
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1 Introduction

The Hilbert space formulation of quantum mechanics constitutes mathematical
frames for description of physical phenomena in systems localized in configuration
space Rn. For such systems effects related to discrete internal degrees of freedom,
especially spin, are also modeled in some Hilbert spaces. The crucial difference
between the Hilbert space applied to represent quantities with classical counterparts
and the space to model internal properties lies in the dimension of space. While
position, momentum, angular momentum etc are represented by linear operators
acting in infinite dimensional separable Hilbert spaces, spin is represented in a finite
dimensional Hilbert space.
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Problems appear when one tries to a phase space counterpart of model of
quantum system. Representation of classical degrees of freedom modeled in the
Hilbert space formulation on infinite dimensional space is well known (for review
see [1, 6]) and there are some indications suggesting what to do with non classical
discrete degrees of freedom (see Refs. [5–40] in [3]).

Our contribution is devoted to this question. First we perform construction of
lattice �(s+1) being a phase space analog of (s + 1)-dimensional Hilbert space
H(s+1). Then we discuss physically acceptable correspondences between operators
acting in H(s+1) and functions on grids �(s+1) and star products representing
multiplication of operators on �(s+1). Finally we consider representation of states
on this lattice building respective Wigner functions.

The current article is based on our paper [4].

2 The Stratonovich–Weyl Quantizer for Systems with Phase
Space R2n

In order to deduce a solution of problem of representation quantum internal
degrees of freedom on a phase space we will analyse a relationship between phase
space description and Hilbert space model for degrees of freedom having classical
counterparts first.

Let a Hilbert space of our system be a space isomorphic to the space of square
integrable functionsL2(R). As a basis of it one can choose a system of orthonormal
generalised vectors

〈
q
∣∣q ′
〉 = δ(q ′ − q), q, q ′ ∈ R. (1)

In physics these objects can be identified with eigenstates of operator of position
but this fact is irrelevant to our construction. Strictly speaking kets

∣∣q
〉
,
∣∣q ′
〉

are not
elements of space L2(R). However, it is well known that they may be used in order
to decompose functions from L2(R) i.e.

L2(R) � ∣∣�〉 =
∫

R

〈
q
∣∣�
〉∣∣q
〉
dq.

An alternative decomposition can be done with the use of vectors

∣∣p
〉 =

∫

R

1√
2πh̄

exp

(
ipx

h̄

) ∣∣q
〉
dq,

〈
p
∣∣p′
〉 = δ(p′ − p), p, p′ ∈ R.

(2)
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Analogously

L2(R) � ∣∣�〉 =
∫

R

〈
p
∣∣�
〉∣∣p
〉
dp

and

〈
q
∣∣�
〉 = 1√

2πh̄

∫

R

exp

(
ipx

h̄

) 〈
p
∣∣�
〉
dp.

Collecting operators of projection on all directions
∣∣q
〉
, q ∈ R and

∣∣p
〉
, p ∈ R we

introduce self-adjoint operators

q̂ =
∫

R

q
∣∣q
〉
dq
〈
q
∣∣ , p̂ =

∫

R

p
∣∣p
〉
dp
〈
p
∣∣ (3)

with the commutation relation

[q̂, p̂] = ih̄1̂.

Applying these operators we build two families of unitary operators:

exp(iλp̂) and exp(iμq̂), λ, μ ∈ R (4)

indexed by real parameters λ,μ.
They satisfy the following commutation rule

exp

(
− ih̄λμ

2

)
exp(iλp̂) exp(iμq̂) = exp

(
ih̄λμ

2

)
exp(iμq̂) exp(iλp̂). (5)

As it is easy to calculate, expressions standing at both sides of equality in formula (5)
are equal to the series exp{i(λp̂ + μq̂)}. To shorten notation we will simply write

Û(λ, μ) := exp{i(λp̂ + μq̂)}.

One can establish a correspondence between some linear operators acting in the
Hilbert space L2(R) and functions on R2. This correspondence is of the form

f (p, q) = h̄

2π

∫

R×R
dλdμP−1

(
h̄λμ

2

)
exp{i(λp+μq)}Tr

{
f̂ Û+(λ, μ)

}
. (6)

As one can see from (6) there exist several correspondences. They are determined by

a function P
(
h̄λμ

2

)
which refers to the operator ordering [2, 5]. For example if P =

1 then we deal with the Weyl ordering. For the symmetric orderingP = cos
(
h̄λμ

2

)
.
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Since in formula (6) the inverse of P
(
h̄λμ

2

)
appears, it must be different from zero

almost everywhere.
Relation (6) indicates that the phase space used for representation of classical

degrees of freedom is R2.

This observation can be easily generalised for the Hilbert space L2(Rn) and the
phase space R2n. There exists a formula inverse to (6)

f̂ = 1

2πh̄

∫

R2
dpdqf (p, q)�̂[P](p, q), (7)

where

�̂[P](p, q) := h̄

2π

∫

R2
dλdμP

(
h̄λμ

2

)
exp{−i(λp + μq)}Û(λ, μ) (8)

denotes the Stratonovich–Weyl quantizer. Thus indeed for classical degrees of free-
dom the Hilbert space formulation and the phase space description are equivalent
and the explicit form of this equivalence is given by expressions (6) and (7).

Formulas derived in this section can be easily generalised for the Hilbert space
of functions L2(Rn) and its respective phase space R2n.

3 Representation of Discrete Degrees of Freedom

Let us assume that a quantum system under consideration is characterised also by
internal discrete degrees of freedom. Thus in order to deal with effects referring
to those internal features we need to introduce a finite dimensional Hilbert space
H(s+1) ∼= Cs+1, where s + 1, s = 0, 1, . . . is equal to the number of degrees of
freedom.

Following the pattern introduced in the previous section we construct an
orthonormal basis

{∣∣0
〉
,
∣∣1
〉
, . . . ,

∣∣s
〉}
,
〈
n
∣∣n′
〉 = δnn′ , n, n′ = 0, 1, . . . , s (9)

in H(s+1). But this Hilbert space can be spanned by another system of vectors

∣∣φm
〉 := 1√

s + 1

s∑

n=0

exp(inφm)
∣∣n
〉
,

〈
φm
∣∣φm′

〉 = δmm′ , m,m′ = 0, 1, . . . , s

(10)

with

φm = φ0 + 2π

s + 1
m, m = 0, 1, . . . , s, φ0 ∈ R

which is also a basis.



The Weyl–Wigner–Moyal Formalism on a Discrete Phase Space 307

Having at disposal two hermitian operators

n̂ :=
s∑

n=0

n
∣∣n
〉〈
n
∣∣ , φ̂ :=

s∑

m=0

φm
∣∣φm
〉〈
φm
∣∣ (11)

we construct families of unitary operators:

V̂ := exp

(
i

2π

s + 1
n̂

)
(12)

satisfying property V̂ s+1 = 1̂ and

Û := exp(iφ̂) (13)

fulfilling the equality Û s+1 = exp
{
i(s + 1)φ0

}
1̂.

These operators obey the commutation relation

exp

(
−i πkl
s + 1

)
Û kV̂ l = exp

(
i
πkl

s + 1

)
V̂ lÛ k, k, l ∈ Z. (14)

In order to simplify formulas we put

D̂(k, l) := exp

(
i
πkl

s + 1

)
V̂ lÛ k.

Now we are able to assign a function f (φm, n) of two discrete real arguments φm
and n to some operator f̂ acting in the Hilbert space H(s+1) by relation

f (φm, n)

= 1

s + 1

s∑

k,l=0

K−1(k, l) exp

{
i

(
kφm + 2π

s + 1
ln

)}
× Tr

{
f̂ D̂+(k, l)

}
. (15)

Function f (φm, n) is defined on a discrete phase space (a grid)
{
(φm, n)

}s
m,n=0

denoted by �(s+1). Therefore we see that a phase space counterpart of H(s+1) is a

lattice �(s+1). K(k, l) plays the same role as P
(
h̄λμ

2

)
in the continuous case and is

responsible for the choice of ordering.
The inverse formula is of the form

f̂ = 1

s + 1

s∑

m,n=0

f (φm, n)�̂[K](φm, n), (16)
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where the Stratonovich–Weyl quantizer is given by

�̂[K](φm, n) := 1

s + 1

s∑

k,l=0

K(k, l)D̂(k, l) exp

{
−i
(
kφm + 2π

s + 1
ln

)}
. (17)

Let us discuss some properties of function K(k, l) which is called a kernel. For
simplicity we assume that the kernel depends on the product of numbers k and l so

we put K
(
πkl
s+1

)
.

Moreover to assure existence of a one to one correspondence between functions
and operators there must be

K
(
πkl

s + 1

)
�= 0 ∀k, l ∈ {0, . . . , s}. (18)

For any function f on which depends on one variable i.e. f = f (φm) or f = f (n)
the associated operator should be of the form f̂ = f (φ̂) or f̂ = f (̂n), respectively.
Therefore

K(0) = 1. (19)

One expects that for any real function f (p, q, φm, n) the corresponding operator f̂
is Hermitian. Thus

K∗
(
πkl

s + 1

)
= (−1)s+1−k−lK

(
π(s + 1− k)(s + 1− l)

s + 1

)
, 1 ≤ k, l ≤ s

(20)

and K∗(0) = K(0) which is in agreement with condition (19).
Sometimes one adds the constraint

Tr
{
�̂[K](φm, n)�̂[K](φm′, n′)

} = (s + 1)δmm′δnn′

implying

∣∣∣∣K
(
πkl

s + 1

)∣∣∣∣ = 1 ∀ 0 ≤ k, l ≤ s. (21)

Lets us take a look at some possible choices of the kernel. Please notice that one

cannot put K
(
πkl
s+1

)
= 1 for all 0 ≤ k, l ≤ s.

Thus the simplest acceptable form of the kernel seems to be K(0) = 1 and

K
(
πkl
s+1

)
= ±1 for kl �= 0. These requirements are fulfilled e.g. when K

(
πkl
s+1

)
=

(−1)kl for s + 1 being an odd number. The case when s + 1 is an even number, is
more complicated.
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Putting together results obtained for continuous and discrete degrees of freedom
one can observe that expressions relating operators from the Hilbert space L2(R)⊗
H(s+1) and functions on the phase space R×R×�(s+1) are given by the following
formulas

f (p, q, φm, n) = h̄

2π

1

s + 1

s∑

k,l=0

∫

R×R
dλdμ

(
P
(
h̄λμ

2

)
K
(
πkl

s + 1

))−1

× exp{i(λp + μq)} exp

{
i

2π

s + 1
(km+ ln)

}
Tr
{
f̂ Û+(λ, μ)D̂+(k, l)

}
(22)

and

f̂ = 1

(2π)2(s + 1)2

s∑

k,l,m,n=0

∫

R×R×R×R
dλdμdpdqP

(
h̄λμ

2

)
K
(
πkl

s + 1

)
×

exp{−i(λp + μq)} exp

{
−i 2π

s + 1
(km+ ln)

}
f (p, q, φm, n)Û(λ, μ)D̂(k, l).

(23)

4 Star Product on the Grid �(s+1)

An interesting question is construction of star product on a phase space mixing both
continuous and discrete degrees of freedom. As an object of study we choose a spin
1
2 nonrelativistic particle. The orthonormal basis {|n〉}n=0,1 in H(2) is spanned by
eigenvectors of third component of spin i.e.

σ̂3|0〉 = 1 · |0〉, σ̂3|1〉 = −1 · |1〉.

The phase space representation of our quantum system is the Cartesian productR3×
R3 × {(φm, n)}m,n=0,1. Therefore now p = (p1, p2, p3), q = (q1, q2, q3), λ =
(λ1, λ2, λ3) and μ = (μ1, μ2, μ3). A scalar product is denoted by ‘·’.

As kernels we choose

P
(
h̄ λ · μ

2

)
= 1, K

(
πkl

2

)
= (−1)kl, k, l = 0, 1. (24)
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Then the ∗- product of two functions f and g has the following form

(f ∗ g)(p, q, φm, n)

= 1

16

1∑

m′,n′,m′′,n′′=0

f (p, q, φm′ , n
′) exp

{
ih̄

2
←→P
}
g(p, q, φ′′m, n′′)

×
{
(1+ (−1)m

′+m′′ )(1+ (−1)n
′+n′′ )+ (−1)m((−1)m

′ + (−1)m
′′
)

+ (−1)m+n((−1)m
′+n′ + (−1)m

′′+n′′ )+ (−1)n((−1)n
′ + (−1)n

′′
)

+ i
[
(−1)m(−1)n

′+n′′ ((−1)m
′ − (−1)m

′′
)+ (−1)m+n((−1)m

′′+n′

− (−1)m
′+n′′)+ (−1)n(−1)m

′+m′′ ((−1)n
′′ − (−1)n

′
)
]}
. (25)

The continuous component of this product is of course the Moyal product where←→P denotes the Poisson operator which for systems of 3-dimensional configuration
space equals

←→P :=
3∑

j=1

(←−
∂

∂qj

−→
∂

∂pj
−
←−
∂

∂pj

−→
∂

∂qj

)
.

5 Representation of States on the Discrete Phase Space

In the Hilbert space formulation of quantum mechanics information about a state of
system is encoded in a density operator ρ̂. Thus the average value of an observable
f̂ is calculated as

〈f̂ 〉 = Tr{f̂ ρ̂} (26)

Since the state is determined by an operator we can easily find its phase space analog
with the use of correspondence (22).

We define the Wigner function of the state ρ̂ in 3-D space associated to the
kernels (P,K) as

ρW [P,K](p, q, φm, n) := 1

(2πh̄)3(s + 1)
Tr
{
ρ̂ �̂[P,K](p, q, φm, n)

}
.
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Consequently, the mean value of a function f (p, q, φm, n) can be found from the
formula

〈f (p, q, φm, n)〉 =
s∑

m,n=0

∫

R3×R3
dpdqf (p, q, φm, n)ρW [P,K](p, q, φm, n).

Let us mention some properties of Wigner function. Like density of probability, it
is a real function

ρ∗W [P,K] = ρW [P,K] (27)

Moreover it is normalised in a sense that its trace equals 1

s∑

m,n=0

∫

R3×R3
dpdqρW [P,K](p, q, φm, n) = Tr{ρ̂} = 1. (28)

Although the Wigner function itself is not a density probability, it leads to marginal
distributions being true densities of probability

s∑

m,n=0

∫

R3
dpρW [P,K](p, q, φm, n) = Tr{ρ̂|q〉〈q|},

s∑

m,n=0

∫

R3
dqρW [P,K](p, q, φm, n) = Tr{ρ̂|p〉〈p|},

s∑

m=0

∫

R3×R3
dpdqρW [P,K](p, q, φm, n) = Tr{ρ̂|n〉〈n|},

s∑

n=0

∫

R3×R3
dpdqρW [P,K](p, q, φm, n) = Tr{ρ̂|φm〉〈φm|}.

(29)

On the other hand, the time evolution for the Wigner function ρW [P,K](p, q, φm,
n; t) reads

∂ρW [P,K]
∂t

+ 1

ih̄

(
ρW [P,K] ∗H −H ∗ ρW [P,K]

)
= 0, (30)

where the HamiltonianH = H(p, q, φm, n) is defined as

H(p, q, φm, n) = Tr
{
Ĥ �̂[P,K](p, q, φm, n)

}
.

Formula (30) is known as the Liouville-von Neumann-Wigner equation.
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6 Conclusions

We show that it is possible to build phase space version of non relativistic quantum
mechanics also for discrete purely microscopic degrees of freedom like spin. But in
this case the phase space is not a symplectic differentiable manifold but a lattice.
Physical applications of the method can be found in our paper [4], where we
calculate the Landau levels, the corresponding Wigner functions for a spin 1

2 particle
and the magnetic resonance for a spin 1

2 uncharged particle.
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systems and their isospectral deformations. The problem of classification of such
systems or the problem of finding new examples of such systems is thus reduced to
a problem of finding algebraic projective surfaces with special properties.

Keywords Commuting differential operators · Quantum integrable systems ·
Moduli space of coherent sheaves

Mathematics Subject Classification (2010) Primary 13N15, 37K20; Secondary
14H70

1 Introduction

In [1] the quantum analogue of the classical definition of an integrable Hamiltonian
system was defined. By a Quantum Completely Integrable System (QCIS) on an
algebraic variety X the authors understand a pair (&, θ), where & is an irreducible
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By definition, a QCIS S = (&, θ) is said to be algebraically integrable if it is
dominated by another QCIS S′ with rk(S′) = 1 (see loc. cit.), where the rank of
QCIS is the dimension of the space of formal solutions of the system

θ(g)ψ = g(λ)ψ, g ∈ O&

near a generic point of X. In [1] these definitions were also generalized to
the case of integrable systems on a formal polydisc. Thus, in this case X is
Spec(K[[x1, x2, . . . , xn]]) and the symbols OX,K(X),D(X) denote respectively
K[[x1, . . . , xn]], K((x1, . . . , xn)), OX[∂1, . . . , ∂n], where ∂i = ∂/∂xi .

Recall that for a commutative K-algebra R the filtered ring D(R) is generated
by DerK(R) and R inside the ring EndK(R)

(D(R))0 ⊂ (D(R))1 ⊂ (D(R))2 ⊂ . . . , (D(R))i · (D(R))j ⊂ (D(R))i+j ,

where (D(R))i are defined inductively. So, QCIS for a formal polydisc are just
subrings of commuting operators in OX[∂1, . . . , ∂n]. The case n = 1 is well
known: the theory of commuting ordinary differential operators has a rich history;
in mathematical physics it appears as an algebro-geometric tool in the theory of
integrating non-linear soliton systems and the spectral theory of periodic finite-zone
operators (see [5, 6, 9]). The theory of commuting partial differential operators is
much more complicated and is not yet completed, though many articles have been
published on this theme.

In this paper we briefly review all already known, recently discovered and also
some conjectured properties of spectral surfaces of two-dimensional quantum inte-
grable systems and their isospectral deformations. Unlike the theory in dimension
one, there are strong restrictions on the geometry of algebro-geometric spectral data
of commutative subrings. Consequently, the problem of classification of QCIS or the
problem of finding new examples of such systems can be reformulated as a problem
of finding algebraic projective surfaces with special properties.

This short review is based on earlier works on this theme [2, 11, 13, 21–23], and
on two works in preparation [12, 19].

Let’s recall some important points from these works. Investigating the theory of
commuting operators with scalar coefficients, in [21] the author offered an analogue
of the Krichever classification theorem for commutative subalgebras in a certain
completion D̂2 of the algebra of partial differential operators in two variables. In
the approach of [21] the subalgebras in D̂2 appears quite naturally, in particular
as isospectral deformations of subalgebras in D2 (unlike the theory in dimension
one, where isospectral deformations still belong to the same ring of differential
operators).

However, there are several versions of completion. In most papers cited above a
non-symmetric version D̂2 was used. The advantage of this version is the existence
of analogues of the Schur theory, an important tool of the classification theory. The
classification offered in [21] dealt with subrings B ⊂ D̂2 satisfying certain mild
conditions, and these subrings are classified in terms of certain geometric spectral
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data, but the conditions and the definition of spectral data are quite technically
difficult. With the help of special properties of spectral data investigated in [13, 23],
a refined classification of rank one subrings in D̂2 (for an appropriately defined
notion of rank) was proved in [22]. In that refinement the definition of spectral data
becomes simpler and leads to a purely geometric notion of pre-spectral data.

On the other hand, there is a “symmetric” version of completion introduced
in [2, Def. 5.1], which is more convenient in some cases (e.g. for finding explicit
iso-spectral deformations, see [2, §6] and Sect. 7), and which contains the non-
symmetric one. In this paper we present the following result: the refined classifica-
tion of rank one subrings can be extended to certain rank one subrings (including
the old ones, and satisfying weaker conditions) and even rank r subrings in the
symmetric version of completion, see Sect. 7. The final classification is somewhat
simpler than in [22, Th. 2.1], however the price is a hidden huge group of units. We
expect that this is a final most convenient form of classification theorems. It helps
to investigate further properties of spectral surfaces discussed in Sect. 8.

The paper is organized as follows. In Sect. 2 we recall the definition of
the “symmetric” version of completion D̂sym

n of the ring of partial differential
operators, and its basic properties. In Sect. 3 we recall the non-symmetric version
of completion. In Sect. 4 we recall the notion of spectral module and its basic
properties. In Sect. 5 we describe 1-quasi-elliptic subrings—commutative subrings
in D̂sym

n that admit effective description in terms of algebro-geometric spectral data.
These rings are subrings in D̂n, but considered up to conjugation by a unity in D̂sym

n .
In Sect. 6 we describe basic algebraic properties of quasi-elliptic rings. In Sect. 7
we present new form of the classification theorem of 1-quasi-elliptic rings in D̂sym

2 ,
recall two explicit examples of such rings and their isospectral deformations, and
describe the necessary conditions that the spectral data of the rings in D2 satisfy.
Conjecturally, these conditions are also sufficient (see Sect. 7.1). In Sect. 8 we
present several results and conjectures about normal forms, i.e. normal spectral
surfaces from classification Theorem 27.

Everywhere in this paper we assume that K is a field of characteristic zero.

2 The Ring D̂
sym
n and Its Order Function ord

In this subsection we define a symmetric version of completion of the algebra of
PDOs Dn = K[[x1, . . . , xn]][∂1, . . . , ∂n]. It can be thought of as a simple purely
algebraic analogue of the algebra of (analytic) pseudodifferential operators on a
manifold. It was defined first in [2]. Here we’ll use a slightly different notation than
in loc. cit.

Denote R̂ := K[[x1, . . . , xn]]. Consider the K-vector space

M := R̂[[∂1, . . . , ∂n]] =
⎧
⎨

⎩
∑

k≥0

ak∂
k
∣∣∣ ak ∈ R̂ for all k ∈ Nn0

⎫
⎬

⎭ ,
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where k is the multi-index, ∂k = ∂k1
1 . . . ∂

kn
n , and k ≥ 0 means that ki ≥ 0 for all

1 ≤ i ≤ n.
Let υ : R̂ → N

n
0 ∪∞ be the discrete valuation defined by the unique maximal

ideal m = (x1, . . . , xn) of R̂. Denote by |k| = k1 + . . .+ kn.
Definition 1 For any element 0 �= P := ∑

k≥0
ak∂

k ∈M we define its order to be

ord(P ) := sup
{|k| − υ(ak)

∣∣ k ∈ Nn0
} ∈ Z ∪ {∞}, (1)

and define ord(0) := −∞. Define

D̂
sym
n := {Q ∈M

∣∣ ord(Q) <∞}.

Let P ∈ D̂sym
n . Then we have uniquely determined αk,i ∈ K such that

P =
∑

k,i ≥ 0

αk,i x
i∂k. (2)

For any m ≥ −d we put:

Pm :=
∑

|i|−|k|=m
αk,i x

i∂k

to be the m-th homogeneous component of P . Note that ord(Pm) = −m and we

have a decomposition P =
∞∑

m=−d
Pm.

Remark 2 Note that for a partial differential operator P with constant highest
symbol the order ord(P ) and the usual order coincide.

Definition 3 Define the highest symbol of P ∈ D̂sym
n as σ(P ) := Pord(P ) = P−d .

We say that P ∈ D̂sym
n is homogeneous if P = σ(P ).

Theorem 4 ([2, Th.5.3]) There are the following properties of D̂sym
n :

1. D̂sym
n is a ring (with natural operations ·, + coming from Dn); D̂

sym
n ⊃ Dn.

2. R̂ has a natural structure of a left D̂sym
n -module, which extends its natural

structure of a leftDn-module.
3. We have a natural isomorphism of K-vector spaces

F := D̂sym
n /mD̂

sym
n → K[∂1, . . . , ∂n].

4. Operators from D̂sym
n can realize arbitrary endomorphisms of the K-algebra R̂

which are continuous in the m-adic topology.
5. There are Dirac delta functions, operators of integration, difference operators.
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Remark 5 Unlike the usual ring of PDOs the ring D̂sym
n contains zero divisors.

There are the following properties of the order function (contained in the proof
of [2, Th. 5.3]):

1. ord(P ·Q) ≤ ord(P ) + ord(Q), and the equality holds if σ(P ) · σ(Q) �= 0,
2. σ(P ·Q) = σ(P ) · σ(Q), provided σ(P ) · σ(Q) �= 0,
3. ord(P +Q) ≤ max{ord(P ), ord(Q)}.
In particular, the function− ord determines a discrete pseudo-valuation on the ring
D̂

sym
n .

Remark 6 There are other possible ways to define a “symmetric” completion of the
ringDn (see [21, §2.1.5]). E.g. we can define for each sequence in mDn, {(Pn)n∈N},
such that Pn(R) converges uniformly in R̂ (i.e. for any k > 0 there is N > 0 such
that Pn(R̂) ⊆ mk for n ≥ N) a k-linear operator P : R̂→ R̂ by

P(f ) = lim−→
n→∞

n∑

v=0

Pv(f ), P :=
∑

n

Pn,

and define a completion to be the ring consisting of such operators. This completion
is bigger, but D̂sym

n has finer properties sufficient for many aims. In particular, the
classification theory from [21] deals with commutative subrings belonging to the
more narrow ring D̂sym

n .

3 The Ring D̂n and Its Order Function ordn

From technical point of view it is more convenient to deal with a more narrow
non-symmetric version of completion D̂n (it is well adapted for the classification of
commutative subrings).

Definition 7 We define D̂1 = D̂sym
1 and define D̂n = D̂sym

n−1[∂n]. Obviously, D̂n ⊂
D̂

sym
n .

Definition 8 We define the order function ordn on D̂n as ordn(P ) = l if D̂n � P =∑l
s=0 ps∂

s
n.

The coefficient pl is called the highest term and will be denoted by HTn(P ) (as
the term naturally associated with the function ordn).

The order function ordn and the highest term HTn behave like the ord-function
and highest symbol. Namely, the following properties obviously hold:

1. HTn(P ·Q) = HTn(P ) ·HTn(Q) providedHTn(P ) ·HTn(Q) �= 0;
2. ordn(P ·Q) ≤ ordn(P )+ordn(Q), and the equality holds ifHTn(P )·HTn(Q) �=

0,
3. ordn(P +Q) ≤ max{ordn(P ), ordn(Q)}.
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In particular, the function− ordn determines a discrete pseudo-valuation on the ring
D̂n.

4 Commutative Subrings in D̂
sym
n and Their Spectral

Modules

Let B ⊂ D̂sym
n be a commutative subring.

Definition 9 TheB-moduleF = D̂sym
n /mD̂

sym
n � K[∂1, . . . , ∂n] is called spectral

module of the ring B.

Note that F is actually a right D̂sym
n module. However, since the ring B is

commutative, we will view F as a left B-module, having the natural right action
in mind. The following proposition explains the term “spectral”.

Proposition 10 Let B ⊂ D̂sym
n be a finitely generated commutative subring such

that the spectral module F is finitely generated.
For any character χ : B → Kχ , where Kχ is an extension of K , consider the

vector space

Sol(B, χ) = {f ∈ Kχ [[x1, x2]]
∣∣ Q ◦ f = χ(Q)f ∀Q ∈ B}.

Then there exists a canonical isomorphism of vector spaces

F |χ := (B/ kerχ)⊗B F � Sol(B, χ)∗

assigning to a class ∂p ∈ F |χ the linear functional f 	→ 1

p!
∂ |p|f

∂x
p1
1 . . . ∂x

pn
n

∣∣∣∣∣
(0,0)

on

the vector space Sol
(
B,χ

)
. In particular, dimK

(
Sol
(
B,χ

))
<∞ for any χ .

The proof is verbally the same as in [2, Th. 4.5 item 2] (by replacing the ringsD
and C[[x1, x2]] there with D̂n, Kχ [[x1, x2]] here), cf. [13, Rem. 2.3].

5 �-Order and Quasi Elliptic Rings

In this subsection we describe commutative subrings in D̂sym
n that admit effective

description in terms of algebro-geometric spectral data. Below we give a review of
the most investigated case, when n = 1 or 2. Even in these cases there are many
nontrivial open questions.

First we introduce the notion of �-order. This order is defined on some elements
of the ring D̂sym

n .
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Definition 11 Let’s denote by D̂
i1,...,iq
n the subring in D̂sym

n consisting of operators
not depending on ∂i1 , . . . , ∂iq . The �-order is defined recursively.

We say that a nonzero operator P ∈ D̂2,3,...n
n has �-order k1 if P =∑k1

s=0 ps∂
s
1,

where 0 �= pk1 ∈ R̂.
We say that a nonzero operator P ∈ D̂i+1,i+2,...,n

n has �-order (k1, . . . , ki) if
P =∑ki

s=0 ps∂
s
i , where ps ∈ D̂i,i+1,...,n

n , and the �-order of pki is (k1, . . . , ki−1).

We say that a nonzero operator P ∈ D̂sym
n has �-order

ord�(P ) = (k1, . . . , kn)

if P =∑kn
s=0 ps∂

s
n, where ps ∈ D̂nn , and the �-order of pkn is (k1, . . . , kn−1).

In this situation we say that the operator P is monic if the highest coefficient
(defined recursively in analogous way) pk1,...,kn is 1.

Definition 12 The subring B ⊂ D̂n ⊂ D̂sym
n of commuting operators is called 1-

quasi elliptic (or just quasi elliptic for short) if there are n operatorsP1, . . . , Pn such
that

1. ord�(Pi) = (0, . . . , 0, 1, 0, . . . , 0, li) for 1 ≤ i < n, where 1 stands at the i-th
place and li ∈ Z+;

2. ord�(Pn) = (0, . . . , 0, ln), where ln > 0;
3. For 1 ≤ i ≤ n ord(Pi) = | ord�(Pi)|;
4. Pi are monic.

We call operators P1, . . . , Pn formally 1-quasi elliptic if they satisfy the condi-
tions 1–3 above and the highest coefficients of Pi are constants, and we call them
monic 1-quasi elliptic, if they satisfy the conditions 1–4 above.

6 Properties of Quasi Elliptic Rings

6.1 Case n = 1: Commuting Ordinary Differential Operators

Immediately from Definition 12 it follows that 1-quasi-elliptic subalgebras in D̂1
are exactly elliptic subalgebras of ordinary differential operators.

Definition 13 An ordinary differential operator P = an∂n+an−1∂
n−1+· · ·+a0 ∈

D1 of positive order n is called (formally) elliptic if an ∈ K∗. A ring B ⊂ D1
containing an elliptic element is called elliptic.

Recall several basic properties of elliptic subrings. The following useful obser-
vation is due to Verdier [18, Lemme 1].

Lemma 14 Let B be a commutative subalgebra of D1 containing an elliptic
element P . Then all elements of B are elliptic.
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Proposition 15 ([3, Prop. 3.1]) Let P = an∂n+an−1∂
n−1+· · ·+a0 ∈ D1, where

an(0) �= 0. Then there exists ϕ ∈ Aut(D1) such that

Q := ϕ(P ) = ∂n + bn−2∂
n−2 + · · · + b0 (3)

for some b0, . . . , bn−2 ∈ K[[x]].
Theorem 16 Let B be a commutative subalgebra of D1.

1. Then B is finitely generated integral domain of Krull dimension one. In particu-
lar, B determines an integral affine algebraic curve C0 := Spec(B).

2. Moreover, C0 can be compactified to a projective algebraic curve C by adding a
single smooth point p, which is determined by the valuation

valp : Quot(B)→ Z,
P

Q
	→ ord(Q)− ord(P )

r
,

where Quot(B) is the quotient field of B and r is the rank of B:

r = GCD{ord(P ), P ∈ B}

Comment to the Proof In the stated form, this result can be found in the articles of
Mumford [16, Section 2] and Verdier [18, Proposition 1]. Note that ord = ord in
this theorem.

Theorem 17 LetB ⊂ D1 be a commutative subalgebra of rank r . Then the spectral
module F is finitely generated and torsion free over B. Moreover,Quot(B)⊗B F ∼=
Quot(B)⊕r .

Comment to the Proof In the stated form, this result can be found in [18,
Proposition 3] and [16, Section 2].

Elliptic commutative subrings admit an effective description in terms of their
algebraic-geometric spectral data.

Definition 18 The (one-dimensional) algebraic-geometric spectral data of rank r
consist of

• C is an integral projective curve over K;
• p ∈ C is a closed regularK-point;
• F is a coherent torsion free sheaf of rank r on C with

h0(C,F) = h1(C,F) = 0;

• z is a local coordinate (a formal local parameter) at p;
• φ : F̂p � (K[[z]])⊕r is a trivialisation (i.e. an Ôp � K[[z]]-module

isomorphism).

There is a naturally defined notion of an isomorphism of spectral data.
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Theorem 19 There is a one-to-one correspondence

[B ⊂ D1 of rank r] ←→ [(C, p,F , z, φ) of rank r]/ �

[B ⊂ D1 of rank 1]/ ∼←→ [(C, p,F) of rank 1]/ �

where

• [B] means a class of equivalent commutative elliptic subrings, where B ∼ B ′ iff
B = f−1B ′f , f ∈ D∗1 .

• ∼ means “up to linear changes of variables”
• (C, p,F , z, φ) means the algebraic-geometric spectral data of rank r

Comment to the Proof In the case C is a smooth Riemann surface, the classification
theorem has been proven by Krichever [9, 10]. Singular curves and torsion free
sheaves which are not locally free were included into the picture by Mumford [16,
Section 2] and Verdier [18, Proposition 4]. Mumford’s approach was further
developed by Mulase [14, Theorem 5.6] and Quandt [17]. We use here the most
generic algebraic form of the classification theorem convenient for our presentation.

Remark 20 The major interest concerns those commutative subalgebras of D1
which belong to the subalgebra C{x}[∂] of ordinary differential operators, whose
coefficients are convergent power series. If P = an∂

n + an−1∂
n−1 + · · · + a0 is

such an operator then shifting the variable x 	→ x + ε with ε ∈ C such that |ε| is
sufficiently small, we may always achieve that an(0) �= 0. Note that this operation
can not be extended on the whole D1. Nonetheless, one can show that all elements
of B belong to C{x}[∂] (this follows for example from Schur’s theory) and one
can choose a common radius of convergence for all coefficients of all elements
of B. According to proposition 15, we can transform P into a normalized elliptic
differential operator.

6.2 Case n = 2: Commutative Subalgebras in D̂2

In this section we give a description of basic properties of 1-quasi elliptic subrings
in D̂2.

Proposition 21 Let B be a 1-quasi elliptic commutative subring in D̂sym
2 . Then

1. B and gr(B) are integral, where gr denotes the associated graded ring with
respect to the filtration defined by the function ord, and the function − ord
induces a discrete valuation of rank one on B and on its field of fractions
Quot(B);

2. the �-order is defined on all elements of B, in particular, the function − ord� is
a discrete valuation of rank two;
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3. the natural map

$ : gr(D̂sym2 )→ gr(D̂
sym

2 )/mgr(D̂
sym

2 ) � K[ξ1, ξ2]

induces an embedding of vector spaces on gr(B);
4. the spectral module F is torsion free;
5. for any P ∈ B holds: ord(P ) = k + l, where (k, l) = ord�(σ (P )).
6. trdegK(Quot(B)) = 2, the field Quot(B) is finitely generated over K and the

localisation Quot(B) · F is a finitely generated Quot(B)-module.

Remark 22 Unlike the case n = 1 1-quasi elliptic rings are not necessarily finitely
generated. The most simple example is the subringK[1, ∂i1∂j2 , i ≥ 0, j > 0] ⊂ D̂2.
More interesting examples see in [8].

Comment to the Proof The first item follows from [21, Cor. 3.1], the second follows
from lemma [23, L. 2.6], items 3–5 are contained in [22, Lemma 2], two first
assertions of item 6 are contained in [24, Lemma 2], the last assertion follows from
the same arguments as in loc. cit. A more detailed proof will appear in [19].

7 Classification Problem for Commutative Subalgebras in D̂2

Finitely generated quasi elliptic subrings admit a similar, though much more com-
plicated, classification in terms of their spectral data. In [21] such a classification
was given for quasi elliptic subrings with an extra property (strongly admissibility).
In [22, Th. 1] it was shown that for rank one subrings (see the definition below) this
classification can be refined, in particular, the corresponding spectral data become
much easier. Here we present the most pleasant refinement of the classification
for quasi elliptic subrings whose algebraic and analytical ranks are coincide.
Surprisingly the proof needs a significant improvement of the technique used in
earlier papers; the details will appear in [19].

Definition 23 Let B ⊂ D̂n be a commutative subring. Then we define the
analytical rank as

An. rank(B) := rk(F ·Quot(B)) = dimQuot(B)(F ·Quot(B)).

We define the algebraic rank of B as

Alg. rank(B) := GCD{ord(P )| P ∈ B}

We say that B is of rank r if An.rank(B) = Alg.rank(B) = r and the spectral
module F is finitely generated.
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Remark 24 It is not difficult to see that An.rank(B) ≥ Alg.rank(B) (cf. [13,
Rem. 3.3]). Moreover, if B is a finitely generated ring over K , then the following
conditions are equivalent: 1) F is a finitely generated B-module and An. rank(B) =
Alg. rank(B) = r , 2) dimK Brn/Br(n−1) ∼ rn for all n9 0. In case r = 1 this was
proved in [22, Cor. 1], and in general case the details will appear in [19].

Definition 25 The (two-dimensional) algebraic-geometric spectral data of rank r
consist of

1. X is an integral projective algebraic surface over K;
2. C is an integral ample Q-Cartier divisor on X. Moreover, C2 = r .
3. p ∈ C is a closed K-point, which is regular on C and on X;
4. local K-algebra homomorphism1

π : ÔX,P −→ K[[u, t]]

satisfying the following property. If f is a local equation of the curve C at P ,
then π(f )K[[u, t]] = trK[[u, t]] and the induced map π : ÔC,P = ÔP /(f )→
K[[u]] = K[[u, t]]/(t) is an isomorphism. (The definition of π does not depend
on the choice of appropriate f . Besides, from this definition it follows that π is
an embedding,K[[u, t]] is a free ÔX,P -module of rank r with respect to π .)

5. F is a coherent torsion free sheaf of rank r on X, which is Cohen-Macaulay
along C;

6. an OP -module embedding

φ : FP ↪→ K[[u, t]]

subject to the following condition for any n ≥ 0. By item 2 there is the minimal
natural number d such that C′ = dC is a very ample divisor on X. Let γn :
H 0(X,F(nC′)) ↪→ F(nC′)P be an embedding (which is an embedding, since
F(nC′) is a torsion free quasi-coherent sheaf on X). Let εn : F(nC′)P → FP
be the natural OP -module isomorphism given by multiplication to an element
f nd ∈ OP , where f ∈ OP is chosen as in item 4. Let τn : K[[u, t]] →
K[[u, t]]/(u, t)ndr+1 be the natural ring epimorphism. We demand that the map

τn ◦ φ ◦ εn ◦ γn : H 0(X,F(nC′)) −→ K[[u, t]]/(u, t)ndr+1

is an isomorphism. (These conditions on the map φ do not depend on the choice
of the appropriate element f .)

1Recall that ÔX,P � K[[f, g]] by the Cohen structure theorem.
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Remark 26 The last three most difficult items of this definition can be replaced by
the following items of “more geometric nature” (see details in [19]):

• F is a coherent torsion free sheaf of rank r on X, which is endowed with a chain
of coherent torsion free subsheaves

F = F0 ⊃ F−1 ⊃ . . . ⊃ F−r+1 ⊃ F−dr � F(−C′)

such that the sheaves (Fi/Fi−1) have support on C, (Fi/Fi−1)|C are torsion free
sheaves of OC -modules of rank one, χ((Fi/Fi−1)|C) = 1+i for 0 ≥ i ≥ 1−dr ,
and for n ≥ 0

h0(X,F(nC′)) = (ndr + 1)(ndr + 2)

2
,

• π : ÔX,P � K[[u, t]] is an isomorphism of local K-algebras such that t
corresponds to a local equation f of C at p, and u corresponds to a local equation
of p on C; φ : F̂p � Ô⊕r

X,p is a trivialisation at p defined up to composition with

a permutation isomorphism Ô⊕r
X,p � Ô⊕r

X,p, which is given by a permutation
matrix, i.e. a matrix with only zeros and units as entries and such that each row
and each column contains exactly one unit.

There is a naturally defined notion of an isomorphism of spectral data (see [21,
Def. 3.11]).

Theorem 27 There is a one-to-one correspondence

[B ⊂ D̂sym
2 of rank r] ←→ [(X,C, p,F , π, φ) of rank r]/ �

[B ⊂ D̂sym
2 of rank 1]/ ∼←→ [(X,C,F) of rank 1]/ �

where

• [B] means a class of equivalent commutative finitely generated 1-quasi-elliptic
subrings, where B ∼ B ′ iff B = f−1B ′f , f ∈ D̂∗2 .

• [(X,C, p,F , π, φ)] means a class of isomorphic algebro-geometric spectral
data of rank r:

• ∼ in the second row means a stronger equivalence: B1 ∼ B2 if there is a linear
change of variables ϕ and a unity U ∈ D̂sym

2 , ord(U) = 0 such that B1 =
U−1ϕ(B2)U .

• [(X,C,F)] means a class of isomorphic triples (simplified spectral data of rank
one), where an isomorphism of triples is just an isomorphism of surfaces that
induces an isomorphism of corresponding curves and sheaves.

Remark 28 The geometric part of the spectral data can be easily described: X �
Proj B̃, C � Proj(grB), F � Proj F̃ , where B̃, F̃ are the Rees ring and Rees
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module with respect to the filtration defined by the function ord (and grB is the
associated graded ring).

We can additionally assume that X is Cohen-Macaulay because of the following
result:

Proposition 29 If B ⊂ D̂2 is a finitely generated 1-quasi-elliptic commutative
subring, then there exist a Cohen-Macaulay commutative subring B̃ ⊃ B with the
same properties.

Moreover, if B ⊂ D2, then B̃ ⊂ D2.

Comment to the proof. The proof is based on the following facts. If B is additionally
strongly admissible, then both statements follow from [21, Th. 3.2] combined
with [21, Th. 4.1]. If B ⊂ D2 is not strongly admissible, then it becomes strongly
admissible after a generic linear change of variables [21, Prop.2.4]. If B ⊂ D̂2 is
not strongly admissible, then the same is true up to conjugation by a unity in D̂sym

2
(as in Theorem 27, item 3), the details will appear in [19].

Remark 30 There is the following analogy with n = 1 case. Recall that isospectral
deformations of rank one commutative rings of ODOs determine the KP flows on the
Jacobian (or on its compactification) of the spectral curve, see e.g. [15]. Isospectral
deformations of rank one commutative rings of PDOs determine some flows on the
moduli space Mχ of stable torsion free coherent sheaves on the spectral surface X
with fixed Hilbert polynomial χ(n) = (nd+1)(nd+2)

2 with respect to the ample line
bundle OX(dC), cf. [2, §6], or on the Picard scheme of a formal punctured ribbon,
cf. [13, Introduction].

An open subset of this moduli space parametrises Cohen-Macaulay sheaves
(see [7, Th. 12.2.1]). Cohen-Macaulay sheaves on Cohen-Macaulay surfaces can
be effectively described with the help of matrix-problem approach due to Burban
and Drozd, see [2] and references therein. Then the higher-dimensional version of
the Sato theory (“algebraic inverse scattering method”, see loc. cit.) is used to obtain
explicit examples or explicit deformations of known examples of commuting PDOs.

Below we’ll recall some examples obtained with the help of these techniques.

Example This is an example of explicit equations of isospectral deformations and
their explicit solution obtained in [21, Ex. 4.2].

Consider a commutative subring B ⊂ D̂2 generated by 3 operators:

P = ∂2
2 − 2

1

(1− x2)2
δ1,

Q = ∂1∂2 + 1

1− x2
δ1∂1,

P ′ = ∂3
2 − 3

1

(1− x2)2
δ1∂2 − 3

1

(1− x2)3
δ1,
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where δ1 is the Dirac delta-function: δ1(f (x1, x2)) = f (0, x2) (these operators were
obtained in [21, Ex. 4.2] with the help of the higher-dimensional Sato theory starting
with the simplest Schur pair). The (projective) spectral surface of the ring B =
K[P,P ′,Q] is a rational singular surface, with normalisation P2. More precisely,
it can be obtained by gluing two lines 2P1 on P2 (see [20, Ex.30]).

The system of isospectral deformations for these operators is a modified Parshin
system (cf. [25] or [20, §6.3]; the detailed description will appear in a separate paper)

∂N

∂tij
= V ijN , i, j ≥ 0

where

V
ij

N = ([(LiMj )+, L], [(LiMj )+,M]),

with initial conditions M = √
P , L = QP−1 (these operators belong to an

appropriately defined ring of pseudo-differential operators Ê, see [21]). This system
is equivalent to the modified Sato-Wilson system

∂S

∂tij
= −(S∂i1∂j2 S−1)−S,

where S = 1 + s1∂−1
2 + s2∂−2

2 + . . . ∈ ˆE(t), si ∈ D̂1, and L = S(0)∂1S(0)−1,
M = S(0)∂2S(0)−1 (S(0) means S|tij=0), and first equations of this system can be
transformed to the following equations:

∂s1

∂t1
= 1

4
(s1)x2x2x2 −

3

2
(s1)

2
x2
,
∂s1

∂t2
= −(s1)x2(s1)x1 −

1

2
(s1)x2x2∂1,

∂s1

∂t3
= −(s1)2x1

− (s1)x1x2∂1 − (s1)x2∂
2
1 ,

(4)

where s1 = s1(x1, x2, t1, t2, t3) is the first coefficient of the operator S(t).
Notably, s1(0) = 1

1−x2
δ1 is a solution of the equations above (cf. with the rational

stationary solution u(x) = −1/x2 of the KdV equation).

Example This is an example of explicit isospectral deformations of the quantum
(algebraically) completely integrable Calogero-Moser system obtained in [2, §6].

Consider the Calogero–Moser operator with rational potential

H =
(
∂2

∂x2
1

+ ∂2

∂x2
2

)
− 2

(
1

(x1 − ξ1)2 +
1

(x2 − ξ2)2
)
,
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where (ξ1, ξ2) ∈ C
2 is such that ξ1ξ2 �= 0. Then (cf. e.g. [4]) H can be included

into a large ring of pairwise commuting differential operators BH ⊂ D2, where
BH � A = C[z2

1, z
3
1, z

2
2, z

3
2], and the isomorphism is given with the help of the

Berest BA-function:

�Be = z1z2 + z1

ξ2 − x2
+ z2

ξ1 − x1
+ 1

(ξ1 − x1)(ξ2 − x2)
,

i.e. for any q ∈ A there exists a unique Lq ∈ BH s.t.

Lq�Be = q�Be.

Explicit calculations of the corresponding algebro-geometric spectral data and
of the moduli space of coherent torsion free sheaves with fixed Hilbert polynomial
leads to the following deformed BA-function (which encodes a dense open part of
the moduli space):

�(x1, x2, z1, z2) = �Be + β�,

where

� =
1+ β

(
z1

ξ2
+ z2

ξ1

)

(ξ1ξ2 − β)(ξ1 − x1)(ξ2 − x2)

+ 1

(ξ1 − x1)(ξ2 − x2)ξ2

(
exp(x1z1)z1 + (ξ1 − x1) exp(x1z1)z

2
1

)

+ 1

(ξ1 − x1)(ξ2 − x2)ξ2

(
exp(x2z2)z2 + (ξ2 − x2) exp(x2z2)z

2
2

)
.

The simplest deformations of differential operators from BH can be described as
follows. For any q ∈ z2

1z
2
2A denote q ′(z1, z2) := q/(z2

1z
2
2). Then

D̂
sym
2 � Lq = Sq ′(∂1, ∂2)(∂1 − 1

1− x1
)(∂2 − 1

1− x2
), where

S = S0 + βT ,

S0 = ∂1∂2 + 1

ξ2 − x2
∂1 + 1

ξ1 − x1
∂2 + 1

(ξ1 − x1)(ξ2 − x2)
,
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T = 1

(ξ1 − x1)(ξ2 − x2)

(
1

ξ2

(
δ2∂1 + (ξ1 − x1)δ2∂

2
1

)

+ 1

ξ1

(
δ1∂2 + (ξ2 − x2)δ1∂

2
2

))

+ 1

(ξ1ξ2 − β)(ξ1 − x1)(ξ2 − x2)
δ1δ2

(
1+ β

(
∂1

ξ2
+ ∂2

ξ1

))

(here, as above, δi denote the Dirac delta functions with respect to the variable xi).

7.1 Spectral Data of Subrings in D2

Which geometric data describe commutative subrings B ⊂ D2 of PDOs? We give
here the answer in the case of rank one rings.

Theorem 31 If B ⊂ D2 is a finitely generated 1-quasi-elliptic commutative ring of
rank 1 with constant highest symbols, then

1. The sheaf F is coherent Cohen-Macaulay of rank 1;
2. The divisor C is a rational curve;
3. If n : P1 → C is the normalisation map, then F |C � (n∗(O

P
1)).

Remark 32 By [13, L. 2.1], if quasi-elliptic operators Pi form Definition 12 have
constant highest symbols, then all operators from B have constant highest symbols.

Proof By remark 24 we have dimK Bn/Bn−1 = n + c for all n 9 0, where c ∈
Z is a constant. Then the ring B must contain two operators P,Q such that the
intersection of their characteristic divisors is empty. Indeed, if there are no such
operators, then symbols of all operators should belong to a proper ideal generated
by a homogeneous polynomial in the polynomial ringK[∂1, ∂2]. Since the ring grB
is finitely generated (cf. [21, L. 3.8] or [19, L. 3.5] in general case), there exists
some positive integer d such that the Veronese ring (grB)(d) is generated by its first
homogeneous component over K . Since all elements of this component belong to
the proper ideal of the polynomial ring, we must have dimK(grdn B) ≤ dn− n+ 1
for all n9 0, a contradiction with dimK(grdn B) = dn+ c.

Then by [21, L. 2.6, P. 2.4] for almost all linear changes of variables applied to
the ring B it will satisfy conditions of theorem 4 in [23], i.e. in combination with
Theorem 27 we get item 1 of our theorem.

Item 2 is proved in [13, Th.2.1]. To prove item 3 note that F |C � Proj(grF) (as
it follows from the proof of Theorem 27, cf. also [20, Corol. 23]). Since grB ⊂ grF
in our case, it follows that F |C � (n∗(O

P
1)). ��

Conjecture 33 The conditions from theorem are sufficient, i.e. if the spectral triple
(X,C,F) satisfies the conditions of theorem, then the corresponding commutative
ring B from Theorem 27 will belong to D2.
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8 Normal Forms

In the matrix problem approach it is important to know what are the Cohen-
Macaulay sheaves with special properties on the normalisation of the spectral
surface. So, it is important to know what are the possible normal surfaces X
such that a pre-spectral datum (X,C,F) from classification Theorem 27 exists.
We’ll call such surfaces normal forms. In this section we present several results and
conjectures about smooth normal forms.

Proposition 34 IfX is a smooth normal form of a finitely generated 1-quasi-elliptic
commutative ring B ⊂ D2 of rank 1, then X � P

2 (and then C � P
1, F � OX).

Comment to the Proof If the ring B consists of operators with constant highest
symbols (cf. remark 32), then proposition immediately follows from Theorem 31,
since all Cohen-Macaulay sheaves on smooth surfaces are locally free. In general
case it follows from two facts: first, any commutative ring of PDOs has a non-
trivial family of iso-spectral deformations; second, any commutative ring with a
smooth spectral surface can not have non-trivial iso-spectral deformation, because
H 1(X,OX) = 0. The details will appear in [12].

Are there smooth normal forms of commutative subrings from D̂2? In [22] the
following sufficient conditions were formulated.

Proposition 35 ([22, Cor. 3]) Assume that K is uncountable and algebraically
closed. The following conditions on a smooth projective surface X are sufficient
for the existence of a commutative subring of rank one in D̂2:

1) there is an ample integral curve C with C2 = 1 and h0(X,OX(C)) = 1;
2) there is a divisorD with (D,C)X = g(C)−1 (here g(C) means the arithmetical

genus of C), hi(X,OX(D)) = 0, i = 0, 1, 2, and h0(X,OX(D + C)) = 1.

Remark 36 It would be interesting to clarify whether these conditions are also
necessary. In general, the spectral sheaf of a ring B ⊂ D̂2 is not necessary Cohen-
Macaulay, see e.g. [2, Rem 6.2]. However, no examples of not CM spectral sheaves
on a smooth spectral surface (i.e. sheaf and surface from definition of spectral data)
is known yet.

Remark 37 The conditionh0(X,OX(C)) = 1 means that we are looking for normal
forms of “non-trivial” commutative subrings.

Definition 38 The subring B ⊂ D̂2 is “trivial”, if it contains the operator ∂1 or the
operator ∂2, i.e. B consists of operators not depending on x1 or x2.

The examples of such algebras naturally arise from examples of commuting
ordinary differential operators just by adding one extra derivation.

Proposition 39 Let X be a smooth normal form. Then the corresponding commu-
tative subring B ⊂ D̂2 is “trivial” iff h0(X,OX(C)) ≥ 2.
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Comment to the proof. The proof essentially follows from the classification The-
orem 27. Since X is smooth, the curve C is a Cartier divisor. If B is trivial, then
H 0(X,OX(C)) � B2 by the classification theorem, and dimK B2 ≥ 2. Conversely,
if dimK B2 ≥ 2, then by the construction from the proof of theorem B contains
either ∂2 or ∂1 (up to a linear change of variables B contains ∂1, cf. [22, Th. 1], [23,
Th. 7]).

Theorem 40 ([22, Th. 5]) Assume that K is algebraically closed. Let (X,C,F)
be a pre-spectral data of rank one with a smooth surface X and g(C) ≤ 1. Then
h0(X,OX(C)) ≥ 2.

Conjecture 41 If X is a smooth normal form, then it is either rational (and
corresponds to a “trivial” subring) or of general type.

Theorem 42 ([11]) There is an eight-dimensional family of pairwise non-
isomorphic Godeaux surfaces X such that on each X from this family there are
at least 840 different divisors Dj and four curves Ci satisfying the conditions from
proposition 35.

Each of these Godeaux surfaces is a factor of a quintic in P3
(C) by the group Z5.

Conjecture 43 All normal forms have the property q = H 1(X,OX) = 0. There
are no other smooth normal forms of general type corresponding to “non-trivial”
subrings.

According to the last conjecture, the commutative rings of operators corresponding
to the smooth normal forms do not have isospectral deformations!

On the other hand, we expect there are many non-smooth normal forms:

Conjecture 44 For any smooth curve C there is a normal cone X (with the only
singularity at the cone top) which is a normal form.

A solution to some of these conjectures is expected to appear in a paper [12].
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The aims of the course were as follows.
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Second, discuss a number of special classes of solutions from this point of view
(this was omitted from the real lectures for reasons beyond my control).

Third, give a criterion for solubility of the local holomorphic Cauchy problem
for such equations in terms of the scattering data of the initial condition and discuss
what this criterion says about admissible initial conditions.

Fourth, sketch a proof of the Painlevé property: all local holomorphic solutions of
any soliton equation of parabolic type are globally meromorphic and monodromy-
free in the spatial variable.

The class of local holomorphic solutions contains (but not reduces to) the class of
algebro-geometric (or finite-gap) solutions. Thus the subject of the course is strictly
larger (in the sense of equations and solutions) than in the beautiful monograph of
Gesztesy and Holden [10] with a similar title, although we do not go in such detail
for concrete equations. See [7] for more details and references.

1 Lecture I: Riemann Problem and Soliton Equations

Let � ⊂ C
2
xt be a simply connected domain (x is the spatial variable, t is the

temporal variable) and U,V : �→ gl(n,C) holomorphic maps. The system

Ex = UE, Et = VE (1)

has a holomorphic solution E : �→ GL(n,C) if and only if

Ut − Vx + [U,V ] = 0 everywhere in �. (2)

We define a (1+1)-dimensional soliton equation as an equation of the form Ut −
Vx + [U,V ] = 0 where U,V : � × CP 1

z → gl(n,C) are rational functions of an
auxiliary variable z ∈ CP 1 (called the spectral parameter) such that the expression
Ut − Vx + [U,V ] is independent of z ([9, Part II, Ch. 1, § 3]).

Unknown functions are the entries of the gl(n,C)-valued coefficients of the
partial fraction decompositions of U,V . Some of them can be expressed in terms of
the others from the condition “Ut − Vx + [U,V ] is independent of z”. For example,
let U and V be polynomials in z with degU = 1 and degV = m ≥ 2. There is no
loss of generality in assuming that

U(x, t, z) = az+ q(x, t), V (x, t, z) = bzm + r1(x, t)zm−1 + · · · + rm(x, t),

where a, b ∈ gl(n,C) are diagonal matrices, a has simple spectrum (i.e. all its
eigenvalues are distinct), q : � → gl(n,C) is holomorphic and off-diagonal,
r1, . . . , rm : �→ gl(n,C) are holomorphic. Then the condition “Ut −Vx + [U,V ]
is independent of z” determines r1, . . . , rm as differential polynomials rj = Fj (q)
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(i.e. polynomials in q and its derivatives with respect to x) uniquely up to diagonal
constants of integration c1, . . . , cm ∈ gl(n,C), and the Eq. (2) with U = az+q and
V = azm + F1(q)z

m−1 + · · · + Fm(q) takes the form

qt = [a, Fm+1(q)]. (3)

Special cases of (3) with a= b=
[

1/2 0
0 −1/2

]
and q(x, t)=

[
0 u(x,t)

v(x,t) 0

]
are the

heat equation and its hierarchy ut = (∂mx + γ1∂
m−1
x + · · · + γm)u (when v ≡ 0 and

γj is the difference of the diagonal entries of cj ), the Korteweg–de Vries equation
ut − uxxx + 6uux = 0 (when m = 3, v ≡ 1) and the modified Korteweg–de Vries
equation ut−uxxx−6u2ux = 0 (whenm = 3, v ≡ u). Taking a = diag(−i/2, i/2),
m = 2 and v(x, t) = u(x, t), we obtain the non-linear Schrödinger equation iut +
uxx + 2u|u|2 = 0 for real x, t . In the last three examples, c1 = c2 = · · · = 0.

Let D be the set of all holomorphic GL(n,C)-valued germs3 f (z) at ∞ with
f (∞) = I . Suppose that a, b, c1, c2, · · · ∈ gl(n,C) are diagonal matrices and a has
simple spectrum. Fix an integer m ≥ 2 and a point (x0, t0) ∈ C2.

Theorem 1 ([5, 15, 17]) For every f ∈ D there is an open neighborhood�(f ) of
(x0, t0) in C2 such that for all (x, t) ∈ �(f ) the function

γ (x, t, z) := exp{az(x − x0)+ (bzm + c1z
m−1 + · · · + cm)(t − t0)}f−1(z)

possesses the following property: one can find a holomorphic map γ+(x, t, ·) :
C1
z → GL(n,C) and an element γ−(x, t, ·) ∈ D such that

γ (x, t, z) = γ−1− (x, t, z)γ+(x, t, z), R0 < |z| < +∞. (4)

Moreover, the gl(n,C)-valued function

qf (x, t) := lim
z→∞ z[γ−(x, t, z), a], (x, t) ∈ �(f ) (5)

is off-diagonal, holomorphic and satisfies the soliton equation (3) on �(f ).

The proof is based on the fact that E = γ+ is a solution of (1). The solution γ±
of the Riemann factorization problem (4) has the following geometrical meaning:
γ+(x, t) is a parallel frame field with respect to the flat connection ∇(qf ) := d −
U(qf ) dx − V (qf ) dt (this is equivalent to (1) for E = γ+) and γ−(x, t) is a gauge
transformation of the trivial flat connection ∇(0) = d − az dx − bzm dt to the

3The elements f ∈ D (or rather their equivalence classes modulo right multiplication by diagonal
elements of D) will be the scattering data of the potentials qf (x, t0) constructed below. Hence the
notation D.



338 A. V. Domrin

connection ∇(qf ). In other words, putting μ = γ−, we have

μx = U(qf )μ− μU(0), μt = V (qf )μ− μV (0), (6)

where U(q) := az+ q and V (q) := bzm + F1(q)z
m−1 + · · · + Fm(q).

Examples of the solutions (5) constructed by means of the Riemann problem (4)
include the solution of the Cauchy problem for the heat equation by means of the
Laplace–Borel transform4 (put t = t0 for simplicity):

f (z) =
[

1 ϕ(z)
0 1

]
⇒ qf (x) =

[
0 uf (x)
0 0

]
, ϕ(z) = −

∫ ∞

0
e−xzuf (x) dx, (7)

the N-soliton solutions (N = 1, 2, 3, . . . ) are obtained in the case when f (z) is the
product of N non-trivial Blaschke factors

BαβP (z) := I + β − α
z − β P = k(z)P + (I − P), k(z) = z − α

z − β ,

where α, β ∈ C and P ∈ gl(n,C) satisfies P 2 = P and, finally, all algebro-
geometric solutions are obtained in the case when the columns of f (z) are the
eigenvectors of R(z), where R(z) is a rational gl(n,C)-valued function and the
matrix R(∞) has simple spectrum. These three types of examples were considered
from our point of view in [5, 15] and [4], respectively.

2 Lecture II: The Local Inverse Scattering Method

Not all local (and even global) holomorphic solutions of (3) are of the form (5).5

We suggest a generalization of the Riemann problem (4) which gives all local
holomorphic solutions of (3) in the form (5). Before doing this, we define the direct
scattering transform (that is, a procedure for recovery of f from qf ) using the first
equation (6) as a hint.

Let O(x0)
od be the set of all gl(n,C)-valued off-diagonal holomorphic germs at

a point x0 ∈ C. Then for every q ∈ O(x0)
od there is a unique formal series

μ(x, z) = I + μ1(x)

z
+ μ2(x)

z2 + . . . with μj ∈ O(x0) such that

μx = (az+ q)μ− μaz and the series μ(x0, z)− I is off-diagonal.

4The initial condition must necessarily be an entire function of exponential type.
5For example, the Cauchy problem u(x, t0) = u0(x) for the heat equation ut = uxx has a local
holomorphic solution if and only if u0 ∈ O(C) and |u0(x)| ≤ A exp(B|x|2) for some A,B > 0;
but a solution of the form (5) exists if and only if u0 ∈ O(C) and |u0(x)| ≤ C exp(D|x|) for some
C,D > 0.
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We define the local scattering data of any potential q ∈ O(x0)
od as the formal power

series

Lq(z) := μ(x0, z)− I = μ1(x0)

z
+ μ2(x0)

z2 + · · · .

Its radius of convergence will be zero for almost all potentials q . To measure the
rate of its divergence, we introduce the so-called Gevrey class α for every α ≥ 0:

Gevα := {all formal power series ϕ =
∞∑

k=1

ϕk

zk
with off-diagonal

ϕk ∈ gl(n,C) such that
∞∑

k=1

|ϕk|
k!α A

k <∞ for some A > 0}.

Theorem 2 ([6]) The correspondence q0 	→ Lq0 is a one-to-one mapping of
O(x0)

od onto Gev1. Moreover, the Cauchy problem q(x, t0) = q0(x) for the Eq. (3)
has a local holomorphic solution q(x, t) at the point (x0, t0) ∈ C2 if and only if
Lq0 ∈ Gev1/m.

We recall that m ≥ 2 is the degree of the polynomial V in (1) and (2) or,
equivalently, the highest order of derivative with respect to x in (3).

Proof This is only a sketch of proof. We define

Entm := {all holomorphic maps $ : C→ GL(n,C) such that

|$(z)| ≤ AeB|z|m for some A,B > 0}

and consider the following Riemann factorization problem: given any ϕ ∈ Gev1/m
and$ ∈ Entm, find ψ ∈ Gev1/m and � ∈ Entm such that

$(z)(I + ϕ(z))−1 = (I + ψ(z))−1�(z) (8)

as formal Laurent series. If we choose $(x, t, z) = exp{az(x − x0) + (bzm +
c1z

m−1 + cm)(t − t0)} for all (x, t) ∈ C2 (as before (4)) and take any element
f (z) = I + ϕ(z) ∈ I + Gev1/m, then (8) takes the form

$(x, t, z)f−1(z) = γ−1− (x, t, z)γ+(x, t, z) (9)

completely analogous to (4). It has a solution γ±(x, t, z) for all (x, t) in some
neighborhood� = �(ϕ) of the point (x0, t0) in C2. This is because (9) is equivalent
to solving a linear equation (I+K(x, t))u(x, t) = u0(x, t) in an appropriate Banach
space, where K(x, t) is a holomorphic family of bounded linear operators with
K(x0, t0) = 0. Then we define qf ∈ O(x0, t0)

od by the formula (5), verify that
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E = � is a solution of (1) with q = qf and deduce (3). The same argument for
m = 1 and t = t0 yields that the maps L : O(x0)

od → Gev1 and

B : Gev1 → O(x0)
od, Bϕ(x) := lim

z→∞ z[γ−(x, z), a], (10)

are inverse to each other: B ◦ L = Id, L ◦ B = Id. ��
Thus, the largerm, the smaller is the class of initial data for which (3) has a local

holomorphic solution.
Using the criterion in the theorem, one can easily construct, for every positive

integer M , examples of initial data such that (3) is soluble for m = 1, . . . ,M , but
not for m = M + 1,M + 2, . . . . One can also construct initial data which are not
algebro-geometric but make (3) soluble (globally meromorphically in x and t) for
every m.

To give a concrete example, take any integers k, l ≥ 0 and note that

q0(x) =
[

0 (x − x0)
k

(x − x0)
l 0

]
has Lq0 ∈ Gevα ⇐⇒ α ≤ k + l

k + l + 2
. (11)

Hence the Cauchy problem u(x, 0) = xk for the Korteweg–de Vries equation ut +
uxxx + uux = 0 or the nonlinear Schrödinger equation iut + uxx + u|u|2 = 0 has a
local holomorphic solution at the origin of C2 if and only if k = 0 or k = 1 (here l =
0,m = 3 in the first case and l = k,m = 2 in the second). Another corollary of (11)
is the divergence of the Kontsevich-Witten series (a formal power series solution
of the whole KdV hierarchy whose coefficients are certain intersection numbers on
the moduli space of plane curves) with respect to all time variables except the first
one [8].

When the entries of q0 ∈ O(x0)
od are rational functions with a finite value at

infinity (or, more generally, elliptic functions with a common period lattice) and the
size n of matrices in question is 2, we encounter a kind of “zero-one law”: either
Lq0 ∈ Gev0 or Lq0 /∈ Gevα whatever α < 1. (This can be deduced by combining
the theorem in Lecture III and Theorem 4.8 in [11].) The solutions of (3) resulting
from the first case are the so-called Calogero-Moser rational solutions. It seems to
be an open question whether this zero-one law holds for n ≥ 3.

3 Lecture III: Painlevé Property

It was known already in the nineteenth century [16] that every local holomorphic
solution of the heat equation ut = uxx is an entire function of x for every fixed t .
We say that an equation has holomorphic (resp. meromorphic) extension property
(abbreviated to HEP or MEP respectively) if, for every solution u ∈ O(B), where
B = {(x, t) ∈ C2 | |x − x0| < δ1, |t − t0| < δ2}, there is a holomorphic
(resp. meromorphic) function U ∈ O(S) with S = {(x, t) ∈ C2 | |t − t0| < δ2}
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such that U = u on B. For example, consider the equations

ut = P(∂x)u, ut = uxx +Q(u)ux, ut = uxx + R(ux), (12)

ut = uxxx + S(u)ux, ut = uxxx + T (ux) (13)

where P,Q,R, S, T are polynomials. These equations possess HEP if and only
if they are linear (i.e. P may be arbitrary, Q and S must be constants, and R, T
must be of degree ≤ 1). They possess MEP if and only if P is any polynomial,
degQ ≤ 1, degR ≤ 1, deg S ≤ 2, degT ≤ 2. There are reasons for believing
that MEP is characteristic for soliton equations and equations related to them by
differential-polynomial changes of unknown functions. See, for example, [1, 2, 12–
14] for various approaches to this and other Painlevé-type properties,

The only known proof that the Eqs. (13) with degS ≤ 2 and deg T ≤ 2 possess
MEP is by means of the local inverse scattering method. These equations can be
reduced to KdV (when degS = 1), mKdV (when deg S = 2) or potential KdV
(when deg T = 2). Hence MEP for them follows from MEP for the Eqs. (3).

Theorem 3 ([6]) All equations of the form (3) (with anym ≥ 2) possess MEP. More
generally, let q0 ∈ O(x0)

od be any holomorphic germ with Lq0 ∈ Gevα for some
α < 1. Then q0 extends to a meromorphic gl(n,C)-valued function on C which is
monodromy-free in the sense that the first-order system Ex = (az + q0(x))E has
a globally meromorphic fundamental system of solutions E : C → GL(n,C) for
every z ∈ C.

Proof Let q(x, t) be any local holomorphic solution of (3) near a point (x0, t0) ∈
C2. Put q0(x) = q(x, t0). By the criterion in Lecture II,Lq0 ∈ Gevα for some α < 1
(namely, α = 1/m). Consider the Riemann problem (9) with m = 1 and t = t0:

ea(x−x0)z(I + Lq0(z))
−1 = γ−1− (x, z)γ+(x, z).

It is equivalent to solving a linear equation (I + K(x))u(x) = u0(x) in an
appropriate Banach space (see after (9)), but now K(x) is a holomorphic family of
compact linear operators (we use the inclusion Lq0 ∈ Gevα , α < 1) parametrized
by C1

x withK(x0) = 0. Hence, by the so-called meromorphic Fredholm alternative,
there is an entire function τ ∈ O(C) (playing the role of det(I + K(x))) such that
τ (x0) = 1 and

I +K(x) is invertible ⇐⇒ τ (x) �= 0.

Moreover, the map x 	→ τ (x)(I+K(x))−1 extends to C as a holomorphic operator-
valued map. Hence the map γ−(x, ·) = (I+K(x))−1u0(x) is a meromorphic Gev1-
valued map on C1

x with denominator τ (x) and, therefore, the matrix-valued function

Q0(x) := BLq0(x) = lim
z→∞ z[γ−(x, z), a]
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is meromorphic on C
1
x with denominator τ (z). By the results in Lecture II

(after (10)), Q0(x) = q0(x) in a neighborhood of x0. Hence Q0 is the desired
meromorphic extension of q0. This proves MEP since t0 is arbitrary. The zero-
monodromy property follows since E = γ+ satisfies the first equation in (1). ��
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1 Local Symmetry and Infinite-Dimensional Groups

It is well-known that symmetry groups describe transformations under which the
kinematics or dynamics of a physical system may be invariant or partially invariant.
Locality is the concept that “action at a distance” does not occur in physics, and that
what we measure is always in the “here and now.” To express this, we must make
use of points or regions in a manifoldM (of space or of spacetime). These ideas are
joined to describe local symmetry by means of local current groups or gauge groups,
diffeomorphism groups, their semidirect products, and (sometimes) their extensions.
Local current groups (or their extensions) may describe kinematical or dynamical
symmetries or partial symmetries; gauge groups typically describe transformations
under which the outcomes of measurements remain invariant [1–4].

A local current group or gauge group S associates a Lie group L with points in
a smooth manifoldM . The group elements are compactly-supported C∞ functions
f : M → L, with the group operation in S defined pointwise by the operation in
L. Restricting the support of the functions f to a compact region B ⊂ M defines a
subgroup SB for each (local) region B, consisting of functions which take the value
of the identity in L outside of B. Thus locality is encoded in the group.

The diffeomorphsim groupG = Diff 0(M) is the group of compactly-supported,
invertible C∞ maps φ : M → M (with C∞ inverse). The group operation is
composition. The support of a diffeomorphism φ is defined as the intersection of
all closed sets outside of which φ(x) = x, for x ∈ M . A subgroup of G is defined
for a compact region B ⊂ M as the set of diffeomorphismsGB with support in B.
Again, the groupG encodes locality.

Both S and G may be endowed with the topology of uniform convergence in all
derivatives. Letting M be the manifold of physical space, we consider the natural
semidirect product of S with G. We thus have local (spatial) commutativity as a
property of the group operation.

2 Quantum Mechanics and Statistical Physics
from the Group Representations

These lectures focus on the easiest case, where L = R (under addition), so the map
group S is just the function-space D of C∞, compactly-supported functions onM .
So we consider the semidirect product D �G. For f1, f2 ∈ D, and φ1, φ2 ∈ G, the
semidirect product group law is

(f1, φ1) (f2, φ2) = (f1 + φ1f2, φ1φ2), (1)

where φ1f2 = f2 ◦ φ1, and φ1φ2 = φ2 ◦ φ1.
A continuous, irreducible unitary representation U(f )V (φ) of D �G in Hilbert

space H describes a quantum system in the physical spaceM . The diffeomorphism
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group describes its local kinematical symmetry. The distinct (inequivalent) irre-
ducible unitary representations of D �G describe different quantum systems. This
leads to a unification describing a wide variety of possible quantum configurations
and exchange statistics, as described below.

In (classical) statistical physics, we may have an infinite gas of (non-interacting
or interacting) identical point particles in R3, in equilibrium at a given temperature.
There may also be an external potential acting on the positions of individual
particles. The probability distribution for the particle locations (canonical ensemble)
is described by an ergodic Poisson or Gibbs measure on the configuration space
of infinite but locally finite particle configurations. This situation, too, corresponds
to a rich class of irreducible unitary representations of the local symmetry group
D � G. In particular, different two-body interaction potentials lead to inequivalent
measures, and corresponding inequivalent group representations.

3 Self-Adjoint Generators and Local Current Algebra

The corresponding infinite-dimensional Lie algebra is the semidirect sum of the Lie
algebras of D and of G. Unitary representations of D � G, satisfying appropriate
conditions, determine self-adjoint representations of this Lie algebra by (generally
unbounded) operators ρ̂(f ) and Ĵ (g). Here f ∈ D, while g ∈vect 0(M) is a
compactly-supported (tangent) vector field onM . These operators act on a common
dense invariant domain of essential self-adjointness, and are the generators of
continuous 1-parameter unitary subgroups:

U(sf ) = exp i(s/m)ρ̂(f ), V (φ g
s ) = exp i(s/h̄)Ĵ (g) (s ∈ R), (2)

where m is a unit mass and φ g
s is the flow onM generated by g. The Lie algebra of

local currents is:

[ρ̂(f1), ρ̂(f2)] = 0 , [ρ̂(f ), Ĵ (g)] = ih̄ρ̂(g · ∇f ), (3)

[Ĵ (g1), Ĵ (g2)] = −ih̄Ĵ ([g1, g2]) , (4)

where g · ∇f is the Lie derivative of f in the direction of g, and [g1, g2] =
g1 · ∇g2 − g2 · ∇g1 is the Lie bracket of the vector fields.

This local current algebra is very natural and geometrical. In a representation,
ρ̂(f ) is interpreted physically as the mass density (spatially averaged with the scalar
function f ), and Ĵ (g) as the momentum density (spatially averaged with the vector
field g). Formally ρ̂(x) and Ĵ(x) are operator-valued distributions over test-function
spaces of scalar functions and vector fields (respectively). Free nonrelativistic or
(perhaps surprisingly) relativistic Hamiltonians can be expressed explicitly in terms
of the local density and current.
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For example with M = Rd , a single quantum particle is described by a state �
in the Hilbert space H = L2

dx(R
d ), and the unitary representation

U(f )�(x) = exp[if (x)]�(x), V (φ)�(x) = �(φ(x))√Jφ(x) , (5)

where Jφ is the Jacobian of the diffeomorphism φ. The current algebra is repre-
sented by the self-adjoint operators,

[ρ̂(f )ψ](x) = mf (x)ψ(x), [Ĵ (g)ψ](x) = (h̄/2i){g·∇ψ+∇·[gψ]}(x) , (6)

wherem is the particle mass.

4 Representations Describing Distinct Quantum Systems

A wide variety of quantum-mechanical possibilities are unified in their description
by classifying the inequivalent, irreducible unitary representations of D �G. Some
new, unexpected ones were predicted by this method!

Systems with finitely many degrees of freedom include (a) N-particle quantum
mechanics, with particles distinguished by their masses; (b) systems of N indistin-
guishable particles obeying Bose or Fermi exchange statistics (in two or more space
dimensions); (c) systems of indistinguishable particles (or excitations) obeying
intermediate, anyon statistics in two space dimensions (for given anyonic phase
shift under counterclockwise exchange) [5]; (d) systems of distinguishable anyonic
particles in two-space with distinct relative phase shifts under counterclockwise
exchange; (e) systems of particles obeying parastatistics (in two or more space
dimensions); (f) systems of nonabelian anyons in two space dimensions; (g) systems
of tightly bound charged particles—point dipoles, quadrupoles, etc.; (h) particles
with spin, arranged in spin towers according to representations of the general linear
group; and (i) particles with fractional spin, in two space dimensions.

Infinite systems described by unitary representations of the semidirect product
group D � G include (j) systems of infinitely many particles, in locally finite
configurations, corresponding to a free or interacting Bose gas; (k) systems of
infinitely many particles obeying Fermi statistics, or (in two-space) exotic statistics;
(l) systems of infinitely many particles having accumulation points; (m) quantized
vortex systems in incompressible fluids (restricting the group elements to area-
or volume-preserving diffeomorphisms), with filaments and patches of vorticity in
two space dimensions or ribbons and tubes of vorticity in three dimensions [7];
and (n) configurations of extended quantum objects, including loops and strings,
knotted configurations, and configurations of objects with nontrivial topology and/or
nontrivial internal symmetry.

By choosingM and redefining G appropriately, one also describes (o) quantum
mechanics on physical spaces that themselves are manifolds with boundary, with
singularities, or with nontrivial topology. And a certain class of representations leads
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to (p) a consistent quantum theory of particles with nonlinear time-evolutions, which
may be equivalent to linear theories via nonlinear gauge transformations, or else
may violate the “no signal” property.

The mathematical theory behind some of the above descriptions is incomplete
or only partially developed. There are many unanswered questions, opportunities
for new constructions, and (probably) new predictions to be made of a fundamental
nature [6].

5 Measures, Cocycles, and Topology

Under very general conditions a unitary representation ofG may be written,

[V (φ)�](γ ) = χφ(γ )�(φγ )

√
dμφ

dμ
(γ ) , (7)

where: γ belongs to a configuration space � carrying a group action of G inherited
naturally from M; μ is a measure on � which is quasi-invariant (i.e., the class of
measure zero sets is preserved) under the action of G; and � is a function from
� to an inner product space W (a complex Hilbert space), with 〈�(γ ),�(γ )〉W
integrable with respect to μ—i.e. � ∈ H = L2

dμ(�,W), where the inner product
in H is given by ($,�) = ∫

�
〈$(γ ),�(γ )〉W dμ(γ ). It may be, of course, that �

is just complex-valued. Finally, χ is a unitary 1-cocycle acting on � ∈ W ; i.e., it
satisfies the cocycle equation,

χφ1φ2(γ ) = χφ1(γ )χφ2(φ1γ ) . (8)

It is important to note that χφ(γ ) is defined only up to sets of μ-measure zero in �
that can depend on φ; also, Eq. (8) holds only outside sets of measure zero that can
depend on φ1 and φ2.

The system of Radon–Nikodym derivativesαφ(γ ) = [dμφ/dμ](γ ), which exists
due to the quasi-invariance of μ, is likewise a real 1-cocycle. It too is defined and
satisfies the cocycle equation (8) only up to measure zero sets.

To represent the full semidirect product group, we also need to associate
configurations γ with (continuous) linear functionals on D. For example, N-point
configurations may be identified with sums of N δ-functionals at distinct points in
M . Then for f ∈ D, we have 〈γ, f 〉 ∈ R; and Eq. (7) is augmented with

[U(f )�](γ ) = exp i〈γ, f 〉�(γ ) . (9)

Then U(f )V (φ) provides the desired representation of D �G in H.
Given �, the group action of G on � and a quasi-invariant measure μ on �, we

may always set W = C and χφ(γ ) ≡ 1 to obtain a unitary representation of D�G
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on complex-valued wave functions. But inequivalent 1-cocycles describe inequiv-
alent representations. These are constructed by “inducing” from the fundamental
group (first homotopy group) of �. Thus does the topology of configuration space
establish the possibilities for quantum exchange statistics (as well as other exotic
possibilities) arising from kinematical symmetry.

The references below are only partial [1–7]; the reader is referred to many
additional, important sources for the results described here.

References

1. Albeverio, S., Kondratiev, Y.G., Röckner, M.: Analysis and geometry on configuration spaces.
J. Funct. Anal. 154(2), 444–500 (1998). MR 1612725

2. Albeverio, S., Kondratiev, Y.G., Röckner, M.: Diffeomorphism groups and current algebras:
configuration space analysis in quantum theory. Rev. Math. Phys. 11(1), 1–23 (1999). MR
1668063

3. Goldin, G.A.: Lectures on diffeomorphism groups in quantum physics. In: Govaerts, J.,
Hounkonnou, M.N., Msezane, A.Z. (eds.), Contemporary Problems in Mathematical Physics.
World Scientific, Hackensack (2004), pp. 3–93. MR 2441348

4. Goldin, G.A.: Current algebra. In: Francoise, J.P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia
of Mathematical Physics (Elsevier, Amsterdam, 2006), pp. 674–679

5. Goldin, G.A., Sharp, D.H.: The diffeomorphism group approach to anyons. In: Wilczek, F. (ed.)
Fractional Statistics in Action. World Scientific Publishing, Singapore (1991), Int. J. Modern
Phys. B 5(16–17), 2625–2640 (1991)

6. Goldin, G.A., Sharp, D.H.: Diffeomorphism group representations in relativistic quantum field
theory. In: Kielanowski, P., Odzijewicz, A., Prevato, E. (eds.), Geometric Methods in Physics
XXXVI: Workshop and Summer School, Bialowieża, Poland, 2017. Trends in Mathematics.
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1 Motivation

The study of systems endowed with position-dependent mass (PDM) is a subject
of great interest in many branches of physics. Among others, the examples include
dynamical systems in curved spaces with either constant curvature [12, 31] or non-
constant curvature [55], geometric optics [61], semiconductor theory [8, 9], motion
of rockets [59], raindrop problem [32], variable mass oscillators [27], inversion
potential for NH3 in density theory [4], evolution of binary systems [29], effects
of galactic mass loss [56], neutrino mass oscillations [10], and the problem of a
rigid body against a liquid free surface [54].

Despite the large number of models used to describe the dynamics of PDM
systems, the principles of the underlying theory are not fully understood. In the
classical picture a position-dependent mass function m(x) gives rise to ‘forces
quadratic in the velocity’ which lead to nonlinear differential equations of motion
in the Newtonian approach [19, 36]. In turn, the Hermiticity of the Hamiltonian
of a quantum system is part of the problem to solve if the mass depends on the
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position [17]. Nevertheless, the difficulties appearing in both pictures can be faced
by using the factorization method together with Lie algebraic tools [16–24, 33, 58].

The present work is an extended abstract from a series of lectures addressed
to introduce elements of the theory of position-dependent mass systems in both,
classical and quantum mechanics.

2 Classical Picture

The one-dimensional dynamical law for a system with position-dependent mass
m(x) > 0 that is acted by a force F depending on position x, velocity ẋ, and time t ,
may be written as [19]:

F(x, ẋ; t) = dp
dt

= m′(x)ẋ2 +m(x)ẍ, (1)

where p = m(x)ẋ is the linear momentum. Hereafter ḟ and f ′ stand for time and
position derivatives of f , respectively. Let us rewrite the Newton equation (1) in the
standard form

m(x)ẍ = Fnet(x, ẋ; t) ≡ F(x, ẋ; t)−m′(x)ẋ2. (2)

We immediately see that the term quadratic in the velocity corresponds to the thrust
of the system, so that Eq. (2) indicates how this term alters the velocity. Indeed,
as ẋ2 ≥ 0, the system is accelerated (decelerated) if the rate m′(x) is negative
(positive). Thus, a particle suffering a spatial variation of its mass is acted by a net
force Fnet that results from the combination of the external force F and the thrust
−m′(x)ẋ2.

Applying the D’Alembert principle and assuming that the external force is
derivable from a scalar potential function V(x) that does not depend on either
velocity or time, from (1) we arrive at the Lagrange equation

d

dt

(
∂L

∂ẋ

)
− ∂L
∂x

= R̃, L = T − V, (3)

where R̃ and T are the reacting thrust and kinetic energy, given by

R̃(x, ẋ; t) := −1

2
m′(x)ẋ2, T := 1

2
m(x)ẋ2.
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In turn, the Hamiltonian H can be obtained from the Legendre transformation

H(x, p; t) = pẋ − L(x, ẋ; t) = p2

2m(x)
+ V(x). (4)

However, as the Hamiltonian’s time rate of change Ḣ = R̃ẋ is cubic in the velocity,
the variable mass system is dissipative [40]. That is, the Hamiltonian (4) is not a
constant of motion. Yet, it may be shown [19] that the proper invariant acquires the
form

I = p2

2m0
+
∫ x m

m0

(
∂V
∂r

)
dr, (5)

where the constant m0 is in mass units to get I expressed in energy units. Using
integration by parts in the latter result we arrive at the expression

(m0

m

)
I = H(x, p; t)− m0

m

∫ x ( m
m0

)′
Vdr. (6)

Clearly, the second term at the right hand side of (6) is just what the Hamiltonian H
lacks to be a constant of motion. The invariant I can be expressed as a modification
of the Hamiltonian (4) due to an effective potential

I := Heff ≡ m

m0

[
p2

2m
+ Veff

]
, (7)

with

Veff = V − m0

m

∫ x ( m
m0

)′
Vdr. (8)

For the sake of completeness let us introduce a new “mass” term μ(x) = m2(x)/m0
as well as a new “momentum” variable π = μẋ. The invariant (7) is simplified to

Heff = π2

2μ + Veff, and the equations of motion can be expressed in conventional
form

ẋ = {x,Heff}x,π = ∂Heff

∂π
, π̇ = {π,Heff}x,π = −∂Heff

∂x
, (9)

where the Poisson bracket

{f, g}x,π =
∂f

∂x

∂g

∂π
− ∂f
∂π

∂g

∂x
(10)
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defines the time-variation of any smooth function h depending on x and π :

d

dt
h = {h,Heff}x,π + ∂h

∂t
. (11)

In particular, if h = Heff, from (11) we have d
dt
Heff = 0. Besides, from (10) one

gets {x, π}x,π = 1, so that x and π are conjugate variables.
To summarize the results of this section let us emphasize that, although the

dynamical law for a particle that suffers a spatial variation of its mass includes
forces quadratic in the velocity, the Lagrangian can be written in the standard

form L = p2

2m(x) − V(x), in correspondence with the conditions studied in [40].
The construction of the related Hamiltonian also leads to the standard form H =
p2

2m(x) + V(x). That is, a simple description of this kind of systems starts by
replacing the (constant) mass m0 by the appropriate function of the position m(x)
in the conventional expressions of L and H. Moreover, although H is not time-
independent, it is possible to construct an energy constant of motion I = Heff
leading to dynamical equations that have the form of the Hamilton ones. Further
details concerning the Lagrangian and Hamiltonian formulations for PDM systems
can be consulted in [19, 40]. Additional results on the matter can be found
in [26, 37, 44–47].

2.1 Algebraic Approach

The dynamical problem (9) may be studied in two general forms [19]. First, given
a specific potential V(x) acting on the mass m(x), the related phase trajectories
are found. Second, given an algebra which rules the dynamical law of the mass,
the potential and phase trajectories are constructed in a purely algebraic form.
The second approach has been successfully applied in previous works [16, 19–
24, 33, 58] and will be revisited in this section. The keystone is to notice that
the factorization method introduced in [23, 33] can be extended to the case of
PDM classical systems that obey the dynamical law (1). Indeed, working in the
(x, π)-plane, the factorization of the Hamiltonian (7) leads in a natural form to
the identification of a pair of time-dependent integrals of motion Q± which, in
turn, allows the construction of the phase trajectories (x(t), π(t)) associated to the
canonical equations. Following [19], let us look for a couple of complex functions
A+(x, π; t), A−(x, π; t), and a constant ε such that the Hamiltonian (7) becomes
factorized

Heff = A+A− + ε = A−A+ + ε, (12)

where

A± = ∓if (x) π√
2μ(x)

+ g(x)√γHeff. (13)



Position-Dependent Mass Systems 355

Now, we ask the functions (13) to close a deformed Poisson algebra by demanding
that {A−,A+} be expressed in terms of powers of

√
γHeff. In the simplest case we

have

i
{
A−,A+} = 2α

√
γHeff, i

{
Heff,A±} = ±2α

√
γHeffA±, (14)

{Heff,A+A−} = {Heff,A−A+} = 0, (15)

with

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

sin

[√
2α2m0

∫ x

c

J (t)dt

]
, γ = 1, Heff > 0,

sinh

[√
2α2m0

∫ x

c

J (t)dt

]
, γ = −1, Heff < 0,

(16)

and J (x) = √
μ(x)/m0. The function f is obtained from (16) through f 2(x) =

1 − γg2(x). However, the potential allowing the above equations is not arbitrary
since it depends on the g-function as follows

Veff(x) = ε

1− γg2(x)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε

cos2
[√

2α2m0
∫ x
c J (t)dt

] , Heff > 0,

ε

cosh2
[√

2α2m0
∫ x
c
J (t)dt

] , Heff < 0.
(17)

In other words, given the mass μ(x), the Pöschl–Teller potential (17) is such that the
factors (13) satisfy the deformed Poisson algebra (14)–(15). Details concerning the
time-dependent integrals of motion Q± as well as further properties of the poten-
tials (17) can be consulted in [19]. For other systems see, e.g. [16, 20, 21, 23, 24, 58].

3 Quantum Picture

Let us consider the one-dimensional Hamiltonian

Ha = 1

2
maPm2bPma + V ≡ Ka + V, 2a + 2b = −1 (18)

where the mass m > 0 and the potential V are functions of the position, Ka is
the kinetic term of Ha and P fulfills [X,P ] = ih̄, with X the position operator.
As indicated above, the Hermiticity of the Hamiltonian Ha is part of the problem
to solve. In the present case the parameter a defines the ordering of the mass
and momentum operators, so it must be properly chosen [16, 19, 22, 34, 38, 50].
Following [16, 17], the parameter a is kept arbitrary, with no more assumptions on
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a particular ordering of P andm. In position-representation, the eigenvalue equation

Haψ(x) = Eψ(x) (19)

can be reduced to a simpler form by considering the point transformation

ψ(x) = eg(x)ϕ(x), x 	→ y := s(x), (20)

where s stands for a bijection that defines the Jacobian of the transformation J :=
s′(x) = √

m(x)/m0, and

∫

Dom(Ha)
|ψ(x)|2dx =

∫

Dom(Ha)
| eg(x)ϕ(x)|2dx < +∞. (21)

The straightforward calculation gives rise to the Hamiltonian

H
(a)
eff ϕ(y) :=

[
−
(
h̄2

2m0

)
d2

dy2 + V (a)eff (y)

]
ϕ(y) = Eϕ(y), (22)

with an effective potential

V
(a)
eff := V −

(
h̄2

2m3

)[(
1

4
+ a
)
mm′′ −

{
7

16
+ a(2+ a)

}
(m′)2

]
(23)

that depends on the explicit expressions for the mass m and the initial potential V ,
both of them in the y-representation. Besides,

y = s(x) =
∫
e2g(x)dx + y0, g(x) = ln

[
J 1/2(x)

]
= ln

[
m(x)

m0

]1/4

. (24)

At this stage the main simplification is the avoiding of the mass ordering in the
kinetic term of the effective Hamiltonian. Then, the techniques used to solve the
eigenvalue equation of the constant mass systems may be applied to investigate the
spectral problem defined by Eq. (22).

A further simplification is obtained if either (1) a = −1/4 or (2) the mass
function m(x) is such that V (a)eff − V = 0. As the former case produces the identity

V
(a)
eff = V for any well defined mass function m(x), one says that the Hamiltonian

H
(−1/4)
eff is defined by mass-independent null terms [17]. On the other hand, when

the identity V (a)eff = V depends explicitly on the mass function m(x), for a �= −1/4

we say that H(−1/4)
eff is defined by mass-dependent null terms [17]. In particular, a

constant mass m(x) = m0 reduces the effective potential (23) to the initial one V in
y-representation.
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3.1 Algebraic Approach

Let us factorize the Hamiltonian (18) in the form

Ha = AB + ε, (25)

with ε a constant (in energy units) to be determined,

A = − i√
2
maPmb + β, B = i√

2
mbPma + β, A† = B, (26)

and β a solution of the Riccati equation

V − ε = h̄√
2m

[
2

(
a + 1

4

)(
m′

m

)
β − β ′

]
+ β2. (27)

For arbitrary m and β the product between the factorization operators obeys the
commutation rule:

[A,B] = −
[
h̄

m3/2

(
a + 1

4

)
m′
]2

−
√

2h̄2

m
β ′. (28)

Demanding the commutator (28) to close a given algebra we are in position of
getting concrete realizations of the operatorsA, B.

In the simplest case one has [A,B] = −h̄ω0, so that the β-function is defined in
terms of the ordering parameter and the mass function:

β = ω0√
2

∫ x
m1/2dr − h̄√

2

(
a + 1

4

)(
m′

m3/2

)
+ β0. (29)

Therefore

V = ω
2
0

2

[∫ x
m1/2dr

]2

= m0ω
2
0

2

[∫ x
J (r)dr

]2

. (30)

Notice that m(x) = m0 produces the harmonic oscillator potential V (x) = m0ω
2
0

2 x2,

with β(x) =
(
m0ω

2
0

2

)1/2

x + β0. Then, up to an additive constant, the operators A

and B are reduced to the conventional ladder operators of the harmonic oscillator,
as expected. For other forms of the mass functionm(x) and the appropriate ordering
parameter a, the potential (30) represents a wide family of PDM potentials with the
energy spectrum of the harmonic oscillator [17]. On the other hand, the introduction
of (29) into (26) generates the ladder operators for such PDM oscillators. The
construction of the corresponding generalized coherent states is also feasible [17].
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Other PDM quantum systems can be studied through the commutator (28) by
identifying the appropriate algebra. For instance, we may look for operators A and
B such that the commutator (28) is associated with the su(1, 1) Lie algebra. The
potential (30) is in such a case associated with a family of singular oscillators [18].
Additional constructions of coherent states for PDM systems have been reported in
Refs. [1–3, 11, 14, 57, 62–64]. Further details concerning the properties of quantum
systems with position-dependent mass can be consulted in, e.g. [5–7, 13, 15, 25, 28,
30, 35, 39, 41–43, 48, 49, 51–53, 60].
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Introduction to the Algebraic Bethe
Ansatz

N. A. Slavnov

Abstract We introduce the reader to the basic concepts of the Quantum Inverse
Scattering Method and the algebraic Bethe ansatz. We describe a method for
constructing integrable systems in this framework. In particular, we obtain the
Hamiltonian of the XXX Heisenberg spin chain by this method. We also describe
a procedure for finding eigenvectors and the spectrum of quantum integrable
Hamiltonians.
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1 Introduction

This is a very short introduction to the method of the algebraic Bethe ansatz (ABA).
It is based on the lectures [2]. Interested readers are referred to this course of lectures
in which a much more detailed and extended description of the ABA can be found.
There one also can find references to numerous publications devoted to this method.
In the text below, we only formulate the main statements of the ABA. All the proofs
can be found in [2].

The ABA is a part of the Quantum Inverse Scattering Method (QISM) developed
in the works of the Leningrad School under the leadership of L. D. Faddeev [1].
This method allows one to effectively describe the spectrum of quantum integrable
models. The main advantage of the ABA is that this method deals with a special
operator algebra describing a rather wide class of quantum systems. Then different
physical systems are nothing but different representations of this algebra.
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2 Construction of Integrable Systems

Here we describe a general procedure for constructing quantum integrable systems,
which is used within the framework of the QISM. One of the main objects of the
QISM is a monodromy matrix:

T (u) =
(
A(u) B(u)

C(u) D(u)

)
. (1)

It’s matrix elements are operators. They depend on the complex variable u and act
in a Hilbert space H. The latter is called quantum space, while the space in which
T (u) acts as a 2× 2 matrix is called an auxiliary space.

The commutation relations between the monodromy matrix entries are given by
an RT T -relation:

R(u, v)
(
T (u)⊗ I)(I ⊗ T (v)) = (I ⊗ T (v))(T (u)⊗ I)R(u, v). (2)

Here R(u, v) is called an R-matrix. This is a c-number matrix, acting in the tensor
product of the auxiliary spaces.

Let we have some T (u) which satisfies Eq. (2). Then, multiplying (2) with
R−1(u, v) from the right and taking the trace with respect to the auxiliary spaces
we obtain

T (u)T (v) = T (v)T (u), (3)

where

T (u) = tr T (u) = A(u)+D(u). (4)

Let us expand the operator T (u) into power series over u centered in some point
u0

T (u) =
∞∑

k=0

(u− u0)
kIk. (5)

Here the coefficients Ik are operators acting in the quantum space H. Then it follows
from (3) that all these operators commute

[Ik, In] = 0, ∀k, n. (6)

If we now set one of Ik to be the Hamiltonian of a quantum system, then we get
a model with, generally speaking, an infinite set of integrals of motion, that is, an
integrable system. This is the general scheme for constructing integrable models in
the framework of the QISM.
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The operator T (u) = trT (u) is called the transfer matrix. The main task of
the QISM is to find the eigenvectors of the transfer matrix. These vectors are
simultaneously common eigenvectors of the Hamiltonian of the corresponding
quantum model and all integrals of motion.

2.1 Yang–Baxter Equation

One might have impression that R(u, v) can be any invertible matrix. However,
there are restrictions which follow from the compatibility condition. The RT T -
relation allows us to permute two monodromy matrices. We can reorder three or
more monodromy matrices using the RT T -relation successively. However, in this
case, the result may depend on the order in which the permutations are made. It
can be shown that the result is independent of the permutation order if the R-matrix
satisfies a relation

R23(u2, u3)R13(u1, u3)R12(u1, u2) = R12(u1, u2)R13(u1, u3)R23(u2, u3) ,

(7)

which is called Yang–Baxter equation. This equation takes place in the tensor
product C2 ⊗ C2 ⊗ C2. The subscripts show in which two of the free spaces the
R-matrix acts non trivially.

One of the simplest nontrivial solutions to the Yang–Baxter equation (7) is given
by

R(u, v) = (u− v)1 + cP, (8)

where 1 is the identity matrix, P is the permutation matrix, and c is a constant.

2.2 Hilbert Space

Recall that the elements of the monodromy matrix act in the quantum space H,
which we have not yet discussed. In the framework of the QISM, very small
requirements are imposed on this space. Namely, it is necessary that there exists
a vacuum vector |0〉 ∈ H such that

A(u)|0〉 = a(u)|0〉, D(u)|0〉 = d(u)|0〉, C(u)|0〉 = 0. (9)

Here a(u) and d(u) are some functions of u. Their explicit form depends on the
specific model. The action of the operator B(u) on the vacuum is free. It is assumed
that acting with this operator on |0〉 we generate all the space H.
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Fig. 1 XXX Heisenberg chain

3 XXX Heisenberg Chain

As we have already mentioned, the main advantage of the ABA is that within this
method various physical models can be treated as different representations of the
same operator algebra. However, to clarify the main idea of this method, we consider
an example of a specific quantum system.

Consider a chain ofN spin-1/2 particles (see. Fig. 1) and assume that the nearest
neighbors in this chain interact with each other. For simplicity, we also assume that
the strengths of the interaction along the axis x, y, and z are the same. This model
is called the XXX Heisenberg chain (magnet).1

To describe this model at the mathematical language we first introduce a Hilbert
space of the corresponding Hamiltonian. For this, we associate a local quantum
space Vk with k-th site of the chain. Each of these spaces is isomorphic to C2:
Vk ∼ C2. The whole quantum space H of the model is a tensor product of the local
spaces Vk: H = V1 ⊗ · · · ⊗ VN .

The spin-1/2 operators are given by the standard Pauli matrices

σx = 1

2

(
0 1
1 0

)
, σ y = 1

2

(
0 −i
i 0

)
, σ z = 1

2

(
1 0
0 −1

)
. (10)

In the case under consideration, the Pauli matrices corresponding to the particle at
the k-th site of the chain have an additional subscript: σαk , where α = x, y, z. This
means that σαk acts non trivially in Vk only. In other words,

σαk = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗ σα ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−k

, α = x, y, z. (11)

Thus, these operators are the matrices of the size 2N × 2N .
Then the Hamiltonian of this quantum system can be written in the form

H =
N∑

k=1

(
σxk σ

x
k+1 + σyk σ yk+1 + σzk σ zk+1

)
, (12)

1If the strengths of the interaction along different axis are different, then the model is called XYZ
Heisenberg chain.
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where we assumed periodic boundary conditions σx,y,zN+1 = σx,y,z1 .
The standard problem of the quantum mechanics is to find the spectrum of the

Hamiltonian. Since in our case the Hamiltonian is a matrix of the size 2N × 2N , we
are dealing with linear algebra. Therefore, we could find the eigenvalues of H by
solving the characteristic equation

det(H − λ1) = 0. (13)

Let us, however, assume that the chain under consideration is a model of a one-
dimensional macroscopic crystal. This means that the number of sites of the chain
N is equal to the number of atoms in this macroscopic crystal, say, N ∼ 106. Then
the Hamiltonian is a matrix of the size 2106 × 2106

, and Eq. (13) is an algebraic
equation of degree 2106

. This number is so huge that there is nothing to compare it
with. Clearly, no computer can cope with such a task. We come to the conclusion that
the standard methods of the linear algebra in this case are useless, and, therefore, we
need to look for some alternative ways. One of these ways is provided by the QISM.

4 XXX Chain via QISM

The model of the XXX Heisenberg chain can be formulated within the framework
of the QISM. For this, we introduce a set of operator-valued matrices

Lk(u) =
(
u+ c

2σ
z
k cσ−k

cσ+k u− c
2σ
z
k

)
, k = 1, . . . , N, (14)

where σ±k = 1
2 (σ

x
k ± iσ yk ). Then we define the monodromy matrix as follows:

T (u) = LN(u) . . . L2(u)L1(u). (15)

This matrix satisfies theRT T -relation (2) with theR-matrix (8). The corresponding
transfer matrix T (u) = tr T (u) generates a set of commuting operators. In
particular, the Hamiltonian of the XXX chain (12) can be written in the form

H = c dT (u)
du

T −1(u)

∣∣∣
u= c2

−N, (16)

where we omitted the identity operator at N for brevity.
It is easy to check that a state with all spins up (ferromagnetic state)

|0〉 = ( 1
0

)
1 ⊗ · · · ⊗

(
1
0

)
N

(17)
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satisfies all the properties of the vacuum vector (9). The corresponding functions
a(u) and d(u) have the form

a(u) = (u+ c
2 )
N, d(u) = (u− c

2 )
N . (18)

Thus, we have the complete description of the XXX chain on the language of the
QISM.

5 Eigenvectors of the Transfer Matrix

The ABA is a procedure for constructing the eigenvectors of the transfer matrix. We
formulate this procedure within the abstract scheme described in Sect. 2. We only
need an explicit formula for the R-matrix (8) and the action formulas (9), however,
we do not use formulas (14) and (15) for the monodromy matrix.

The main idea of the ABA is that we look for the eigenvectors of the transfer
matrix in the form

|�(ū)〉 =
n∏

k=1

B(uk)|0〉, n = 0, 1, . . . . (19)

In general, the set ū = {u1, . . . , un} can contain an arbitrary number of elements,
and the parameters uk can take arbitrary complex values.

We should act with the transfer matrix T (v) = A(v) + D(v) on the vector (19)
and check whether |�(ū)〉 is an eigenvector of this operator. We have all necessary
tools for this. First of all, the commutation relations between the monodromy matrix
entries follow from the RT T -relation. We need only three of them:

[B(u), B(v)] = 0, (20)

A(v)B(u) = f (u, v)B(u)A(v) + g(v, u)B(v)A(u),
D(v)B(u) = f (v, u)B(u)D(v) + g(u, v)B(v)D(u), (21)

where

f (u, v) = u− v + c
u− v and g(u, v) = c

u− v . (22)

We shall call the first term in the rhs of (21) the first commutation scheme (when the
operators keep their arguments). The term, in which the operators exchange their
arguments, will be called the second commutation scheme.

Using these commutation relations we can move the operators A and D through
the product of the operatorsB to the extreme right position. After this, it remains to
act with A and D on the vacuum vector via (9).
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Let us compute the action of the operator A(v) on the vector |�(ū)〉. When the
operator A is permuted with the operator B, it can either keep its argument, or
borrow the argument of the operator B. As a result, we obtain

A(v)|�(ū)〉 = a(v)&0(v|ū)|�(ū)〉 +
n∑

k=1

a(uk)&k(v|ū)|�({v, ūk})〉. (23)

Here &k(v|ū) are some unknown coefficients to be determined and ūk = ū \ uk .
Let us compute the coefficient &0(v|ū). Obviously, this coefficient arises in

(23) if and only if we use only the first commutation scheme when permuting the
operators A(v) and B(uj ). Then, after all permutations we obtain a product of the
functions f (uj , v) over uj , while the operator A(v), approaching the extreme right
position and acting on the vacuum, gives the function a(v). As the result we have

&0(v|ū) =
n∏

j=1

f (uj , v). (24)

Let us find now &k(v|ū) with k > 0. Since, |�(ū)〉 is symmetric over the set ū
(due to (20)), it is enough to find &1(v|ū). Then, in order to obtain a contribution
proportional to a(u1), it is necessary to use the second commutation scheme when
permuting A(v) and B(u1). After this, when moving further to the right, A(u1)

must keep its argument, therefore, we should use the first commutation scheme only.
Thus, we arrive at

&1(v|ū) = g(v, u1)

n∏

j=2

f (uj , u1), (25)

leading to

&k(v|ū) = g(v, uk)
n∏

j=1
j �=k

f (uj , uk). (26)

The action of the D-operator can be computed exactly in the same way, and we
find

T (v)|�(ū)〉 =
⎛

⎝a(v)
n∏

j=1

f (uj , v)+ d(v)
n∏

j=1

f (v, uj )

⎞

⎠ |�(ū)〉

+
n∑

k=1

g(v, uk)

⎛
⎜⎜⎝a(uk)

n∏

j=1
j �=k

f (uj , uk)− d(uk)
n∏

j=1
j �=k

f (uk, uj )

⎞
⎟⎟⎠ |�({v, ūk})〉.

(27)
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We see that generically |�(ū)〉 is not an eigenvector of the transfer matrix because
of the presence of new vectors |�({v, ūk})〉 in the second line of (27). However, if
we impose conditions

a(uk)

d(uk)
=

n∏

j=1
j �=k

f (uk, uj )

f (uj , uk)
, k = 1, . . . , n, (28)

then the sum in the second line of (27) vanishes. Then the vector |�(ū)〉 becomes
an eigenvector of the operator T (v) with an eigenvalue

τ (v|ū) = a(v)
n∏

j=1

f (uj , v) + d(v)
n∏

j=1

f (v, uj ). (29)

The system (28) is called the system of Bethe equations.
Thus, the transfer matrix eigenvectors have the form (19), where the parameters

ū = {u1, . . . , un} are the roots of Bethe equations (28).
Applying this scheme to the XXX Heisenberg chain we should only substitute

the functions a(u) and d(u) (18) into the Bethe equations

(
uk + c

2

uk − c
2

)N
=

n∏

j=1
j �=k

f (uk, uj )

f (uj , uk)
= −

n∏

j=1

uk − uj + c
uk − uj − c , k = 1, . . . , n. (30)

The Hamiltonian eigenvalues then can be found via (16)

E = c d log
(
τ (v|ū))
dv

∣∣∣
v= c2

− N = 1

2

n∑

j=1

c2

u2
j − c2/4

. (31)

Thus, the spectrum of the XXX Heisenberg chain is completely determined by
the solutions of the Bethe equations (30). Of course, the Bethe equations admit an
exact analytic solution only in exceptional cases. This is to be expected, because
having an exact solution to the system (30) would mean that we were able to find an
exact solution to the algebraic equation (13). It would be naive to hope so. However,
the system (30) is easily amenable to numerical analysis even at n and N large
enough. Furthermore, in the limit of the chain of large length, the Bethe equations
can be replaced by a linear integral equation for the density of roots, which admits
an explicit solution.
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Abstract In this note, we give a concise introduction to the noncommutative
framework for a generalization of the classical concept of compact, locally trivial
fiber bundle.
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1 From Classical to Noncommutative Bundles

Let T , B, F be topological spaces (throughout these notes always assumed compact
and Hausdorff), then the structure of a locally trivial fiber bundle F −→ T −→ B

consists of a continuous surjection π : T → B such that for each point b ∈ B
the fiber π−1(b) is homeomorphic with F , and a finite cover of B by open subsets
Uj such that each set π−1(Uj ) is homeomorphic to Uj ×F by a map which carries
fibers onto fibers. Instead of purely topological, one may also consider differentiable
bundles.
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In order to make transition from the commutative to the noncommutative world,
one trades spaces for algebras in the spirit of Gelfand’s duality. Thus each space
T , B, F is replaced by the corresponding C∗-algebra of continuous, complex-
valued functions on it C(T ), C(B), C(F). Remembering that Gelfand’s duality
is a contravariant functor, the projection π : T → B is replaced by a unital
embedding C(B) ⊆ C(T ). From this embedding of algebras one may also recover
the algebra of functions on the fiber C(F), see [9, Remark 3.5]. In order to account
for the differentiable structure one considers dense ∗-subalgebras of differentiable
(or polynomial) functions O(T ), O(B), O(F ). A detailed account of how exactly
classical theory of differentiable fiber bundles may be developed in the language
of algebras rather than spaces is presented in [1]. The next step is to allow for
noncommutative algebras and develop an analogous theory.

2 Principal Bundles

In the classical setting, principal bundle arises when the fiber F is a compact group,
called the structure group, acting freely on the total space T in such a way that
the projection π identifies the base space B with the orbit space for this action.
When F is a Lie group, freeness of action automatically implies local triviality of
the corresponding bundle.

For applications to noncommutative geometry, we need to deal with structure
groups with noncommutative algebras of “functions”, that is with compact quantum
groups, whose theory was developed in the eighties by Woronowicz, [26], and by the
Russian school, [11, 21]. See [17] for a comprehensive account. A compact quantum
group G consists of a unital C∗-algebra C(G) (possibly noncommutative!) and a
unital ∗-homomorphism

� : C(G)→ C(G)⊗ C(G),

comultiplication, which is coassociative (�⊗ id)� = (id⊗�)� and such that both
{(x ⊗ 1)�(y) | x, y ∈ C(G)} and {(1⊗ x)�(y) | x, y ∈ C(G)} are linearly dense
in the minimal C∗-algebraic tensor product C(G)⊗ C(G). This definition implies,
in a non-obvious way, existence of a dense ∗-subalgebra O(G) ⊆ C(G) carrying
the comultiplication � and equipped with two linear maps: counit ε : O(G) → C

and antipode S : O(G)→ O(G) such that

m(ε ⊗ id)� = id = m(id⊗ε)� and m(S ⊗ id)� = ε = m(id⊗S)�.

Here m : O(G) ⊗ O(G) → O(G) denotes the algebraic multiplication. Fur-
thermore, there exists a unique faithful state h on C(G), the Haar measure,
characterized by the identity

(h⊗ id)� = h = (id⊗h)�.
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The ∗-algebra O(G) equipped with the comultiplication �, counit ε, and antipode
S, is a Hopf ∗-algebra, [19]. O(G) is spanned by matrix elements of irreducible
representations of the (quantum) groupG.

An action of a compact quantum group G on a unital C∗-algebra A is a unital,
injective ∗-homomorphism

ρ : A −→ A⊗ C(G)

which is coassociative (ρ ⊗ id)ρ = (id⊗�)ρ, and such that the set {ρ(a)(1⊗ x) |
a ∈ A, x ∈ C(G)} is linearly dense in the minimal C∗-algebraic tensor product
A⊗ C(G). Then AG := {a ∈ A | ρ(a) = a ⊗ 1} is the fixed point algebra, a unital
C∗-subalgebra of A. In the classical case, one defines the corresponding crossed
productA�ρ G as the C∗-algebra generated byA and the groupC∗-algebraC∗(G),
which interact non-trivially so that ∗-representations of A �ρ G are in one-to-one
correspondence withG-covariant representations ofA. A similar construction of the
crossed product is also possible for actions of compact quantum groups, see [10] for
details.

Now, by a noncommutative principal bundle we simply understand a unital C∗-
algebra A playing the role of the total space, equipped with a free action of a
compact quantum structure group G, with the corresponding fixed point algebra
AG playing the role of the base space. Classically freeness means that a group
G acts with trivial stabilizers on the primitive ideal space of A. This definition is
inapplicable to the noncommutative case, since then the primitive ideal space of A
may carry little information. At least two different noncommutative generalizations
of freeness have been proposed. First one, due to Rieffel, requires that the fixed
point algebra AG and the crossed product A �ρ G be strongly Morita equivalent
via a natural imprimitivity bimodule contained in A �ρ G. This condition is called
saturatedness. See [10] for details, and [23] for a discussion of the special case
of finite quantum groups (with C(G) finite dimensional). The second one, due to
Ellwood, [12], requires that the image of the linear map

χ : A⊗AG A −→ A⊗ C(G), χ(a1 ⊗ a2) := (a1 ⊗ 1)ρ(a2) (1)

be dense in the minimal C∗-algebraic tensor product. As shown in [10], these two
seemingly different definitions of freeness actually coincide.

In order to account for differentiable structure in noncommutative setting, one
needs to consider dense ∗-subalgebras of the ambient C∗-algebras, playing the role
of smooth or polynomial functions. To this end, letH := O(G), a Hopf algebra, and
choose an A ⊆ A invariant under the action, so that ρ : A −→ A⊗H . Let AH be
the corresponding fixed point subalgebra of A. One says that the inclusion AH ⊆ A
is Hopf-Galois if the canonical Galois map χ : A⊗AH A −→ A⊗H , defined as in
(1), is bijective. If, in addition, A is a faithfully flat AH -module then the extension
is called principal, [22]. It turns out that principality is equivalent to existence of a
strong connection � : H −→ A ⊗A, that is a unital splitting of the multiplication
map m on A, i.e. m ◦ � = ε, satisfying some additional properties, see [4–6, 13].
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Finding a strong connection is a good practical way of showing principality of an
extension.

In classical geometry, every representation of the structure group of a principal
bundle gives rise to an associated bundle for which the corresponding module of
sections is projective over the algebra of functions on the base space. There is a
perfect analogy of this construction in the noncommutative setting as well. Namely,
let V be a left H -comodule, equipped with the coassociative action λ : V −→
H ⊗ V . The corresponding cotensor product

A�HV :=
{∑

aj ⊗ vj ∈ A⊗ V |
∑
ρ(aj )⊗ vj =

∑
aj ⊗ λ(vj )

}

plays the role of the module of sections of the associated bundle. In fact, if the
extension AH ⊆ A is principal then A�HV is a projective AH -module (finitely
generated if V is finite dimensional). In particular, A is a projective AH -module
(typically infinitely generated).

3 Examples and Outlook

3.1 Subgroups

Let G and K be compact quantum groups, and assume there exists a surjective
∗-homomorphism φ : C(G) −→ C(K) such that �Kφ = (φ ⊗ φ)�G. Thus K is
quantum subgroup ofG. In that case, ρ = (id⊗φ)�G yields a principal action ofK
onC(G). For a concrete example, let [uij ] be the fundamental matrix of the quantum
SU(N) group, [28], and let zi be the standard unitary generators for C(U(1)). Then
the assignment uij 	→ δij zi extends to such a �-commuting homomorphism φ :
C(SUq(N)) −→ C(U(1)N ). In this way, the classical group U(1)N can be viewed
as the maximal torus of the quantum group SUq(N).

3.2 Gauge Actions on Graph Algebras

EveryC∗-algebraC∗(E) of a directed graphE comes equipped with a gauge action
of the circle groupU(1). This action is principal if and only if the graph has no sinks
and no sources, [24]. On the other hand, C∗-algebras of functions on quantum odd-
dimensional spheres, [25], are known to be isomorphic to graph algebras, [15]. This
leads to construction of noncommutative analogues of classical complex projective
spaces, [15, 25], and provides a convenient setting for the quantum Hopf fibration,
[14]. It is possible to consider generalized gauge actions as well, with different
“coordinates” rotated at different speeds. Fixed point algebras of such actions on
the Vaksman-Soibelman quantum spheres give rise to quantum weighted projective
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spaces, [7]. Restricting the generalized gauge action to cyclic subgroups one obtains
a large class of examples of free actions of finite cyclic groups on noncommutative
C∗-algebras, [24]. In particular, fixed point algebras for such actions on quantum
odd-spheres give rise to quantum lens spaces, [7, 16].

3.3 Generalizations: The Instanton Bundle

Other approaches to noncommutative principal bundles exist in the literature,
besides the one described in these notes. In particular, one may talk about principal
bundles involving actions ρ that are not multiplicative (i.e. not algebra homomor-
phisms) but only coassociative, see [6]. An interesting example of such an approach
is the construction of the quantum instanton bundle SUq(2) −→ S7

q −→ S4
q in

[3] and [2]. Here SUq(2) is the Woronowicz quantum SU(2) group, [27], and S7
q

is the Vaksman-Soibelman quantum 7-sphere, [25]. It should be noted that other
constructions of quantum instanton bundles have been proposed as well, including
the one from [18], where the action ρ is actually multiplicative on the polynomial
algebra of the quantum 7-sphere defined therein.

3.4 Sphere Bundles

It is not obvious how to construct a noncommutative analogue of a general locally
trivial fiber bundle. We would like to point out two sources of immediate difficulties.
Firstly, local triviality is typically defined with reference to points of the base space
B of the fiber bundle, that is to characters of the corresponding algebra of functions
C(B). This approach is inapplicable in the noncommutative setting due to possible
lack of (sufficiently many) characters on noncommutative algebras. Secondly, in
order to recover the fiber F from the inclusion C(B) ⊆ C(T ) in the classical case,
once again one has to resort to characters of C(B).

Recently, a case study of a noncommutative sphere bundle has been undertaken
in [8, 9]. Classically the full flag manifold of the SU(3) group has a natural
structure of a 2-sphere bundle over the complex projective 2-space. The total space
of this bundle admits a natural q-deformation, namely as the fixed point algebra
for the natural action of the maximal torus T

2 on the quantum SUq(3) group
of Woronowicz. This algebra C(SUq(3)/T2) contains a copy of the C∗-algebra
C(CP 2

q ). It turns out that the inclusion C(CP 2
q ) ⊆ C(SUq(3)/T2) can be viewed

as a noncommutative fibration, with a typical fiber quantum complex projective 1-
space CP 1

q , i.e. the standard Podleś sphere, [20]. In fact, on the level of polynomial
algebras, one obtains the desired cotensor product decomposition mimicking the
classical situation:

O(SUq(3)/T2) ∼= O(SUq(3))�Uq(2)O(CP 1
q ).
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20. Podleś, P.: Quantum spheres. Lett. Math. Phys. 14(3), 193–202 (1987). MR 919322



Noncommutative Fiber Bundles 379

21. Reshetikhin, N.Yu., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie
algebras. Algebra i Analiz 1(1), 178–206 (1989). MR 1015339

22. Schneider, H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Isr. J. Math. 72(1–
2), 167–195 (1990). Hopf algebras. MR 1098988

23. Szymański, W., Peligrad, C.: Saturated actions of finite-dimensional Hopf ∗-algebras on C∗-
algebras. Math. Scand. 75(2), 217–239 (1994). MR 1319732
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