
Adoption of Requirements Engineering
Methods in Game Development:

A Literature and Postmortem Analysis

Miikka Lehtonen , Chien Lu , Timo Nummenmaa ,
and Jaakko Peltonen(B)

Tampere University, Tampere, Finland
{miikka.lehtonen,chien.lu,timo.nummenmaa,jaakko.peltonen}@tuni.fi

Abstract. As the game industry continues to grow in size and rev-
enue, the cost of creating games increases as well, and the successful
outcome of game development projects becomes ever more important. In
traditional software engineering, it is generally agreed that a successful
requirements engineering process has a significant impact on the project.
In game development, requirements engineering methods do not seem to
be commonly used. As the development of digital games includes special-
ized aspects of software development, it seems likely that game develop-
ers could benefit from adopting these techniques and processes. In this
paper, a thorough reading of central and current academic research on
the topic is performed to form a holistic picture of the central issues and
problems preventing the adoption and widespread use of requirements
engineering processes and methods in game development. Additionally,
algorithmic analysis of 340 post-mortems written by game developers and
published on industry websites is conducted. These post-mortems discuss
the factors which contributed to or hindered the successful outcome of
these game development projects, and the analysis further supports the
identified central issues.

Keywords: Requirements engineering · Game development ·
Postmortem analysis · Text mining · Literature analysis

1 Introduction

Requirements engineering is a process for handling hardware and software
requirements that has been a part of software development for decades, and
much has been written on its applications in various domains. One definition
for requirements engineering by Hull et al. [7] is “the subset of systems engi-
neering concerned with discovering, developing, tracing, analyzing, qualifying,
communicating and managing requirements that define the system at succes-
sive levels of abstraction”. Digital game development is no exception. As game
development is a specialized form of software development, it logically follows

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

A. Brooks and E. I. Brooks (Eds.): ArtsIT 2019/DLI 2019, LNICST 328, pp. 436–457, 2020.

https://doi.org/10.1007/978-3-030-53294-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53294-9_32&domain=pdf
http://orcid.org/0000-0002-1957-4173
http://orcid.org/0000-0002-3143-4202
http://orcid.org/0000-0002-9896-0338
http://orcid.org/0000-0003-3485-8585
https://doi.org/10.1007/978-3-030-53294-9_32

Adoption of Requirements Engineering Methods in Game Development 437

that at least some portions of requirements engineering could be applied to the
game development process. Several articles and papers have been written on this
topic, presenting problems, limitations and concerns which need to be addressed
if such an attempt were to be successful.

Academic research on the topic covers a wide spectrum from purely theo-
retical academic works to research focusing on the developers and their prac-
tices and concerns through questionnaires and interviews (e.g., [9,11,12,20]).
This study aims to form a holistic picture of this current research, and to tie
together knowledge from multiple sources to discover and present central prob-
lems and limitations. To verify the validity of these problems and limitations,
340 developer-written post-mortems were analyzed. Post-mortems are a common
industry practice where developers reflect on completed software development
projects and bring up problems, concerns and issues which affected the outcome
of the project, either positively or negatively.

The research questions of this study are (1) Based on a reading of current
academic research on the topic, can central problems, concerns and issues be
identified? (2) Can these findings be supported by analysing developer-written
post-mortems? The 340 post-mortems were analyzed algorithmically to deter-
mine whether keywords related to the discovered problems appear in them. In
addition, a word correlation analysis was conducted to determine the contexts
these keywords might be used in. Our analysis assesses if the problems related to
these concepts and keywords are common in the industry, as the expectation was
that if game developers are frequently encountering these issues and problems,
they would also mention them as contributing factors in post-mortems.

2 Game Development from a Software Development
Perspective

In the year 2018 the video games industry was bigger than ever. According to
a report by Newzoo [15], there are over 2.3 billion video game players across
the world. The games industry is expected to generate over 108 billion dollars
in revenue, representing a growth of 7.8% from 2016 [15]. This growth industry
contains innumerable game development studios ranging from lone developers to
small companies and large multinational corporations. According to the Enter-
tainment Software Association’s 2017 report on the American video game indus-
try [2], in 2016 there were over 2450 active game companies in the United States
alone. Among those, 99.7% of them are qualified as small businesses, meaning
they have under 250 employees and less than $7.5 million in annual revenue.
Similar numbers have been reported elsewhere in the world, as according to the
UK Interactive Entertainment Association (UKIE), there were 2261 active game
companies in the United Kingdom as of June 2018 [25].

These thousands of game developers are working on varied games ranging
from huge titles with budgets in the hundreds of millions to eSports titles, mobile
games, small independent projects and everything in between. Game develop-
ment presents a unique challenge from a software development perspective. Con-
trary to the more disciplined and theory driven world of traditional software

438 M. Lehtonen et al.

development, games development is a more fractured landscape. Whereas large
corporations such as Electronic Arts or Activision, or even larger independent
developers, might adhere to traditional software development roles and practices
– agile methodologies and Scrum being particularly popular in game develop-
ment – for smaller independent studios development is probably less regimented
and more free form [13].

Games as a form of software development also have several other unique
characteristics. As an example, whereas traditional software engineering teams
consist of software developers of various disciplines, a game development project
will usually have the normal complement of software developers, but additionally
artists, writers and other purely creative people. These disciplines do not often
share a vocabulary and might differ widely in their needs, methods and work
flows. Yet all these disciplines need to find common ground if the project is to suc-
ceed. Additionally, these highly multi-disciplinary teams seek to create software
which philosophically differs greatly from traditional software. Traditional soft-
ware development projects aim to create solutions to discrete problems, whereas
games are mass-marketed products aimed to entertain and prompt emotional
responses [9].

From this it follows that the models and theories which drive traditional
software development projects might not be directly and fully applicable to game
development. This is also true for requirements engineering.

3 Requirements Engineering in Game Development
Literature

Requirements engineering is a collection of different phases, processes and
methodologies, which seek to take in information from a variety of sources and
transform it into concrete requirements; singular and unambiguous physical or
functional needs that the product or service must be able to meet. Together,
these requirements form the specification of the project, essentially the blueprint
the engineers can design according to and refer to when there is ambiguity [6].
While requirements engineering in traditional software development is a heavily
covered field with academic publications, books, magazines and even conferences
dedicated to the subject, this is not the case for requirements engineering as part
of the game development process. We performed a literature survey to map the
current state of academic writing on requirements engineering and game devel-
opment. Our approach uses elements of the systematic literature review process
used in previous studies [1,16]. However, the search was executed specifically in
order for the results to be used as background information for our postmortem
analysis, and to be contrasted with the data-driven analysis of postmortems.

3.1 Survey Process

Academic search engines such as Google Scholar and the library search engine
of the University of Tampere were utilized. The latter allowed access to various

Adoption of Requirements Engineering Methods in Game Development 439

digital libraries, which further widened the field of possible results. The goal
of these searches was to discover peer reviewed articles, academic publications,
conference proceedings and published books which dealt with games develop-
ment and requirements engineering. No specific time constraints were placed on
the results. Software development is a fast moving field, which means that some
of the older findings might be outdated. However, they could also reveal newer
research which builds upon their findings or expands it. Initial searches were
performed using the search term “game development” together with the terms
“requirement”, “requirements engineering”, “formal specification”, “methods”
and “processes”, both in singular and plural forms, and with wildcards.

Together, these searches produced a pool of over 16 000 results. As is to
be expected with such broad search terms, most of these results were either
marginally related to the actual research question, or not at all related. Even
after discarding most of the less applicable results, the pool still contained several
hundred articles which might be tangentially related to the research questions.
At this point any articles with titles or abstracts which seemed promising were
stored in a separate list to be more carefully examined later.

As this list of promising articles was read and processed, references to new
papers which seemed relevant to the topic were noted down and added to the list,
as were author names who had written relevant works. They were then read, and
the process was repeated. In this recursive process new papers that were much
more relevant to the topic than those found in the initial search process were
discovered, and most of the actual sources used in the literature survey came
from this phase of the process.

3.2 Overall Findings From the Literature Survey

Based on this study, the state of research on the topic proved to be rather
healthy, if not comprehensive. There is certainly a larger volume of research
than anticipated, and requirements engineering proved to be a central topic: as of
2014, 39% of papers submitted on the topic dealt with requirements engineering
in some way [3]. This does not mean there are no gaps to be found in current
research.

Whereas traditional software development and its issues are a topic of some
40+ years of discussion, the same is not true for games. It is generally accepted
that there are similarities and unique factors between the two areas. In recent
years more studies have been conducted as to what actual problems game devel-
opers are facing, which is a crucial area of research [9,11,12,20]. However, con-
crete solutions and suggestions are still few and far between: one notable prob-
lem area is that many articles bring up problems in processes and methods, but
rarely offer any concrete suggestions beyond vague calls to adapt best practices
from the world of traditional software engineering. Due to the central differences
between traditional software development and games development, this adapta-
tion would have to be handled with care and consideration, so academic research
on the topic would be beneficial.

440 M. Lehtonen et al.

We found that a central type of data used for the research was developer inter-
views and surveys, however, as an alternative data source Petrillo and Pimenta
[19] explored post-mortems published on Gamasutra, an industry-focused web-
site by developers for developers. Developer communication in post-mortems can
be a useful complementary information source and we will use it ourselves later
in this paper.

Studies, such as those conducted by Kasurinen et al. [9,11,12] have been con-
ducted on industry practices among various groups of developers. They highlight
issues developers grapple with, as well as the methods and practices used to deal
with these issues. Kasurinen’s large scale surveys and interviews among Finnish
industry professionals found that there are several similarities, but also meaning-
ful differences which mean that traditional software development methods and
lines of thinking will not apply directly.

We identified four key problems, which we introduce below and will discuss
in more detail in separate subsections. The first of these deals with the incompa-
bility of the game design document and the requirements document. Kanode and
Haddad [10] talk about an important topic, the game design document. In game
development, the game design document is a repository of information about
the game. It details the setting, plot, gameplay, characters and themes of the
game. It is not a formal document, and as such is poorly suited for actual soft-
ware development. However, the findings of Kanode and Haddad seem contrary
to evidence presented in other papers: they suggest that a game designer needs
to capture all the requirements from a game design document before the actual
production work on the game can begin. Callele et al. [4] counter this by stating
that translating this informal document into something resembling a require-
ments document is a massive and complicated process. Even a short, simple
gameplay description in the game design document can generate dozens of pages
of requirements, and even more problematically generating those requirements
requires unrealistically strong and specialized domain knowledge in many fields.
Callele et al. [4] have studied this issue through analyzing real-life game design
documentation, discussions with actual game developers and observing actual
development processes. They conclude that this transition from pre-production
to production (taking informal and often very casual documentation, turning it
into a formal document suitable for development, and then beginning to realize
the vision outlined in that document) is one of the biggest problems in game
development and alone responsible for many project failures.

Another common theme in the discussion of requirements engineering and
games is the unique nature of requirements in games. Traditional software devel-
opment places a heavy emphasis on functional requirements (i.e. concrete fea-
tures in a project), whereas in game development these are almost standardized
among games of the same genre. Instead, the differences between games come
largely from non-functional requirements, which play a heavier role. Of special
interest are so called affective, or emotional requirements [4]. Games are intended
to prompt emotional responses in their players, and these should also be mod-
elled through requirements engineering. However, the tools and techniques to do
so are still in their infancy.

Adoption of Requirements Engineering Methods in Game Development 441

As a third problem, Kasurinen et al. [9,11,12] point out that whereas change
to the original specification is something needs to be very carefully managed in
traditional software development, in game development changes through itera-
tion are a desired outcome. As the developers try to “find the fun”, i.e. create
the combination of gameplay and features which makes the game fun, they must
be prepared to make even drastic changes late in the project. We will discuss
the issue of iteration, scope, and change management in more detail in a later
subsection. Based on these findings, Kasurinen [11] concludes that while some
common traditional software development methods such as Scrum can very eas-
ily work with game development, others are not so easily compatible and need
special consideration.

As a fourth problem, the literature also suggests [13,14] that currently game
developers do not make widespread use of formal, theory-based methods and
processes. At the same time there is evidence to for the presence of problems
traditionally thought to be fixed by these methods and processes, which suggests
that developers could benefit from a less informal development process [20].

Based on this literature survey, several key concerns and problems were iden-
tified, which will be analyzed and discussed in more detail in the following
section.

4 Key Differences Between Game Developers
and Traditional Software Developers

Game development and traditional software development methods and tools, for
instance requirements engineering, are not fundamentally incompatible. There
is evidence that game developers make use of these methods, and get benefits
from them [9].

That being said, there do seem to exist some fundamental differences and
problems, which make adapting these traditional processes and methods to game
development difficult. Game developers do seem to suffer from many problems
which could be alleviated or eliminated through better requirements engineering
processes and methods. For example, in post-mortems published on Gamasu-
tra.com, game developers cite factors such as “inadequate planning”, “under-
estimating the scope of tasks” and a schedule that was “too aggressive” [4] as
aspects of the project which went wrong and hindered them.

It is worth noting that these findings are not universal. Game development
is a wildly varied field, with studios ranging from one-person teams to massive
international companies. Many developers, especially larger companies, tend to
regard their methods and practices as trade secrets and are not open to dis-
cussing them with journalists or academics. Despite this, from merely reading
recruitment posts and requirements for open positions, it is clear that at least
larger companies do value degrees and formal training when seeking to hire
developers.

442 M. Lehtonen et al.

It is also worth noting that these issues are heavily linked and could also be
thought of as different aspects of the same problem. After all, any differentiation
between “a lack of formal processes and methods” and “poor change control” is
going to be somewhat arbitrary, as the latter could easily be considered a part
of the former.

What, then, could be some of these key differences that need to be considered,
and key problems that need to be overcome?

4.1 The Incompatibility of the Game Design Document
and Requirements Engineering Documentation

In traditional software engineering projects which utilize requirements engineer-
ing methods and processes, a common guideline for the design work is the
requirement documentation. It is essentially the blueprint against which the
product and its features are compared for specifications and verification.

In game development, a similar role is played by the game design document
[4]. While its contents and size vary from team to team and project to project,
commonly it includes descriptions for plot, characters and events as well as
gameplay mechanics, puzzles and so on. Much like the requirement document,
the game design document is often created during pre-production [4].

While these two documents share a similar role, they are not stylistically
equal or even similar. A game design document is usually more free form and
written in natural language [4]. Since it is the primary design document for game
development, it has been proposed that the game design document would also
be a major source for requirements [4,10]. This is logically sound, after all if the
document contains descriptions of gameplay mechanics and elements, it stands
to reason that requirements could be generated from these descriptions. In fact,
some have gone as far as stating that all of the game design document should
be captured as requirements before production should start [10].

Evidence has shown this to be an unrealistic expectation, however. Even
a single paragraph length description of a game design element from the game
design document could produce several pages of requirements. Even worse, many
of these requirements are merely implied, and capturing them requires high level
domain knowledge in game design, genre conventions, technical matters and
many other fields [4]. A skilled and experienced game developer will be able to
pick up on some of these cues and implications, depending on how well versed
they are in the different disciplines of game development (e.g. programming, art
and sound design, writing), their team’s own culture, the capabilities, features
and limitations of the game engine the team is using, and the genre of the game
they are working on.

Expecting this kind of expertise from a single person is unrealistic, as is
the expectation of being able to generate good requirements based on heavily
implicational natural language. The latter half of the problem could possibly be
alleviated by employing technical writers, who are skilled in writing precise and
unambiguous language, but they would probably not have the required domain
knowledge. The common feeling is that it is “easier to do it myself than to

Adoption of Requirements Engineering Methods in Game Development 443

explain it to someone else” [4] which may be true, but does not help eliminate
the problem.

Even if suitable candidates could be found, or if the job of capturing the
implied requirements were divided among a versatile group of skilled developers,
the process would be extremely time consuming. Game development projects are
usually executed under extremely tight, publisher-driven deadlines, and extend-
ing the pre-production phase to accommodate a lengthier requirements engineer-
ing process would probably not be welcomed [4]. For example, according to a
study conducted in Finland, most Finnish game development projects last under
12 months, with many of them lasting less than 6 months [13].

It would therefore seem that there is a base level incompatibility between
traditional requirements engineering documentation and the artefacts of game
development.

4.2 Emphasis on Non-functional Requirements and Affective
Requirements

In traditional software engineering, the emphasis is on functional requirements.
They describe the key features of the system to be implemented, and are what
ultimately distinguishes it from its competition and allows it to fulfill its stated
and desired goals. In game development, non-functional requirements are con-
sidered much more important. In what is called “horizontal differentiation”, it is
claimed that the functional requirements for games of a particular genre of game
are often quite similar to begin with, and non-functional requirements make the
difference and help distinguish a game from its peers [4,18].

Additionally, unlike in traditional software engineering, more and more game
developers are using pre-made game engines such as Unity1, Unreal Engine2 or
CryEngine3, which further removes emphasis from functional requirements, as
these requirements are already fulfilled by the pre-packaged engine [9].

This in and of itself might not be a problem, as tools for capturing and
modelling non-functional requirements have existed for decades. In game devel-
opment, however, non-functional requirements deal with more difficult concepts.
In traditional software engineering, requirements generally refer to concrete and
measurable real-world conditions, whereas game-domain specific requirements
are more abstract and harder, if not impossible, to measure [12]. Requirements
related to concepts such as fun, storytelling, aesthetics and so on are key in
video game projects, but of course not at all relevant in traditional software
engineering [4]. These requirements also vary from genre to genre [18]. What is
important in a racing game might not be at all relevant in a puzzle game, or an
adventure game.

Unlike traditional software projects, games are intended to produce emotional
responses in their users. Requirements relating to these emotions are referred to

1 https://unity3d.com. Retrieved 27.11.2018.
2 https://www.unrealengine.com. Retrieved 27.11.2018.
3 https://www.cryengine.com. Retrieved 27.11.2018.

https://unity3d.com
https://www.unrealengine.com
https://www.cryengine.com

444 M. Lehtonen et al.

as emotional, or affective, requirements and they are viewed as a key component
in creating an engaging gaming experience [4]. The tools and techniques for
capturing and modelling these requirements either do not exist, or are not as
developed as they should be. Additionally, validating these requirements is also
extremely difficult, as they deal with highly subjective concepts. Traditional
validation methods such as testing are not easy to implement or very reliable [4].

4.3 Iteration, Scope and Change Management

Change is an inevitable part of almost any software product. No matter how
thorough the pre-production planning, how well executed the requirements engi-
neering process and how accurate the model, something will eventually change.
Change control and management are considered essential parts of the require-
ments engineering process, and significant work both during pre-production and
production is carried out to ensure changes can be tracked and managed as
efficiently as possible [5,17,22].

Despite this, change is not seen as an outright goal, and instead more of an
unavoidable necessity. This is in contrast with game development, where change
is often outright desired. Game development is a heavily iterative endeavor, as
the developers try to find the magical formula of features and gameplay executed
just right to make the game as fun as possible [12,24]. This will inevitably lead
to many and in some cases quite drastic changes to the design and scope of the
project.

Due to the emphasis on non-functional and affective requirements, change is
also often the outcome of testing. A version of the game is given to testers, and
based on their feedback changes can be made. Sometimes these changes can be
quite drastic, and in many cases these iterations will carry on quite late in the
actual development phase of the game and changes will occur very close to the
end of the project. This is in part due to the fact that this user-driven testing
is not only a tool for validation, but also defining the quality of the product
[12,24].

With this in mind, it would stand to reason that game development could
benefit from more robust change management procedures and methods. A com-
mon problem in game development is scope management. The game will be
designed to have a certain set of features, and time and resources are budgeted
to fulfill these design criteria in the available time.

During development features get added either due to outright planning,
because testing suggested they might work well in the game, or sometimes even
because individual developers felt they were “cool”. Suddenly there are no longer
enough resources or time to finish the game as specified, and sometimes the
revised and changed version of the game no longer works as well as originally
planned. This process is referred to as “feature creep”, and according to some
sources, it is one of the biggest problems in game development [20].

Feature creep is seen as a large problem not only because it creates scheduling
problems, causes games to be delayed and costs money, but also because of its
human cost. Game development is a massive industry, and publishers will often

Adoption of Requirements Engineering Methods in Game Development 445

not be willing to delay projects significantly. Instead what happens is, game
developers will work longer and longer days as deadlines approach. From an
International Game Developers Association (IGDA) report [8], there are stories
of people literally living at work, sleeping under their desks for a few hours
when they can. Burnouts and people quitting the games industry inevitably
follow because of these heavy periods of crunch, as it is called.

However, at the same time, this iteration and change is both desired and
necessary. Often developers will “find the fun” quite late in the development
process, which means that if change and experimentation were to be avoided,
these games might never have been finished, or at least not in their final condi-
tions. This issue is compounded by game development being notoriously difficult
for scheduling in general. Evidence suggests many possible factors as the reasons.
One popular suggestion is the multidisciplinary nature of games development.
Different types of developers (e.g. artists, coders, writers, designers) have dif-
ferent workflows and different types of “production pipelines”, which can cause
delays when some parts of the development team must wait for dependencies to
be completed [20].

In traditional software development, several processes and methods exist for
managing changes and maintaining scope and product integrity despite changes.
Therefore, it seems that game development could benefit from more robust
change and scope control and scheduling mechanisms. Unfortunately, it seems
that right now these mechanisms either do not exist, or are not utilized fre-
quently, in game development.

4.4 Lack of Formalized Methods and Processes

According to two studies conducted in Austria [14] and Finland [13], game devel-
opers do not make good or widespread use of typical methods and processes. In
Finland, 61% of the respondents to the survey indicated that they did not use
any systematic development methods. In Austria, 23% of respondents indicated
they did not use any kind of formalized methods or processes. Even those who did
self-report using theory-based methods and processes mostly used adapted and
flexible processes which were said to be comparable to Scrum and XP (Extreme
Programming) [11,14]. Further, according to the Finnish study, developers do
not collect metrics or document their activities [11].

This kind of laissez-faire approach permeates all levels of development. For
instance, developers prefer to not engage with traditional requirements engi-
neering activities and instead prefer the approach of “test and tune” to replace
it. This testing is largely user-driven, as feedback received from users is used to
gauge quality and drive development. Despite this, the feedback is not commonly
collected in any kind of formal or systematic fashion [9].

Some of this approach can be explained by base level incompatibilities in
game development and traditional software engineering. Whereas traditional
software engineering projects are launched to answer specific problems, game
development can be iterative even at the ideation stage. It is common for devel-
opers to briefly explore tens of ideas initially, but only choose a few for detailed

446 M. Lehtonen et al.

implementation, at which point the project has already moved at least partially
to production and any kinds of pre-production processes are incompatible [9].
There could also be other explanations. A lack of formal training and the ten-
dency to promote from within could play a role. If a project manager does not
have any training or knowledge about theory-based methods and processes, how
could they hope to make use of them?

Despite this, there is evidence to support the claim that game development
could benefit from adopting more formal, theory-based methods and processes
based in established software development theories. According to research con-
ducted in Finland, many developers do already utilize some aspects of project
management processes, but do so informally and in an ad-hoc fashion [9]. This
would seem to indicate that the need for these processes and their benefits exists
within the developer community. The problems formal processes and methods
are intended to fix are observable within the game development community: dif-
ficulty transitioning from pre-production to production, difficulty in capturing
requirements, difficulty in change and scope management and so on [20].

According to research, game development falls into two broad and informal
categories. Larger, more traditional developers still make use of more linear
processes which bear a strong resemblance to the traditional waterfall model,
whereas increasingly especially smaller developers are making use of agile and
flexible methods. These agile methods are often self-created to some degree and
might mostly draw inspiration from more formal schools of thought such as
Scrum, Kanban and XP [9,14].

Both styles of development could benefit from requirements engineering pro-
cesses. For the more traditional project style, structured requirements engineer-
ing processes could be utilized in largely the same way as in traditional soft-
ware engineering projects, hopefully with similar results. Even the more infor-
mal projects, which are driven by iteration and user feedback, could benefit from
structured processes and methods to capture and document this feedback and
the requirements it generates [9].

5 Post-mortem Analysis

Based on the literature analysis conducted, certain key problem areas and prob-
lems could be identified. As some of these academic writings leaned on industry-
focused studies and were based on the thoughts and opinions of game develop-
ers, it can be assumed that these problems do in fact exist in game development
at least to some degree. It was felt, however, that it would be beneficial to get
more context for these findings. How common are these problems in actual game
development?

Adoption of Requirements Engineering Methods in Game Development 447

Developer-written post-mortems on websites such as Gamasutra.com4 and
Gamecareerguide.com5 offer insight to industry professionals’ opinions and
thoughts on game development. It was felt that they could provide a reveal-
ing and adequate source for data on the issue, and an alternative to conducting
large scale interviews. For examples, Petrillo et al. [21] tried to understand prob-
lems in the development process of electronic games through analyzing 20 post-
mortems. Petrillo & Pimenta [19] further analyzed the same 20 postmortems to
investigate the adoption of agile methods in game development. Washburn et al.
[26] have analyzed 155 public postmortems qualitatively to outline the charac-
teristics of game development. Post-mortems are a common industry practice,
where a developer who served a central role in the project is invited to reflect on
their project. According to Gamasutra.org’s instructions [23], each post-mortem
should include a few aspects that went right in the project, as well as a few
aspects that went wrong. These should be unique to the project, and should
offer concrete thoughts other developers can learn from.

Due to their nature, these post-mortems were assumed to provide a valuable
and reliable insight to the pros and cons of a wide variety of game development
projects. They were therefore fetched and analyzed algorithmically using simple
data mining and natural language processing scripts. The purpose of this analysis
was to see if key topics and words related to what were perceived as central
problems in the field, were present in these post-mortems.

The tests were conducted to test two assumptions.

1. If, for instance, requirements engineering methods and practices are not
widely used in game development, keywords related to the topic would not
appear frequently (or at all) in post-mortems.

2. If game development could benefit from requirements engineering methods
and practices, common problems believed to be alleviated using these meth-
ods would appear at least relatively frequently.

This approach does have some limitations. As each developer is instructed to
only include a few problems in each article, post-mortems are not exhaustive.
Problems may not have been brought up among the few listed in a post-mortem
despite influencing the actual development process. An interview or even a survey
would give more focused information on the topics of this paper, but this is not
necessarily a weakness. As these post-mortems are not guided or directed by
research questions or prompts, they do offer a view into what the developers
themselves viewed as central and significant factors in the success or failure of
their games.

Additionally, it is worth noting that correlation does not necessarily equal
causation. Even if both assumptions turned out to be true, it does not auto-
matically mean that all these problems are caused by the lack of requirements
engineering methods and processes, nor that would they be fixed merely by
4 https://www.gamasutra.com/features/post-mortem/. Retrieved 27.11.2018.
5 https://www.gamecareerguide.com/archives/postmortems/1/index.php. Retrieved

27.11.2018.

https://www.gamasutra.com/features/post-mortem/
https://www.gamecareerguide.com/archives/postmortems/1/index.php

448 M. Lehtonen et al.

adopting these methods and processes. A much more exhaustive study would be
required for conclusive results, but that does not detract from the value of this
study.

5.1 Data Gathering

Post-mortem articles are collected with a self-made crawler from Gamasutra.com
and GamecareerGuide.com. By March 2018, we had gathered 218 and 129 post-
mortem articles respectively from the above-mentioned websites. The 347 post-
mortems retrieved in total from the two websites range from 1997 to 2018, and
cover everything from small independent teams to large studios, and everything
from small browser games to large, big budget productions. Games from a vari-
ety of different genres are included. Not all the post-mortems are suitable for
this study, as some of them are small “post cards” from industry events. After
eliminating these obviously non-related articles, there were 340 post-mortems
left for analysis. These post-mortems cover roughly 300 unique games, as a few
projects were discussed from different perspectives, such as general design and
audio design.

5.2 Initial Analysis

Based on the central problems in game development presented in Sect. 3.2, a list
of keywords was created. These keywords were thought to be related to these
central problems based on existing domain knowledge on the topic. There was no
specific methodology for creating this initial list of keywords, and instead it was
always intended as a simple jumping off point which would hopefully generate
interesting and promising articles, based on which additional keywords could be
discovered.

– Project management: crunch, schedule, management, overtime, estima-
tion, feature creep, creep, feature, scope, communicationm, multi-disciplinary.

– Methods and processes: agile, process, method, Scrum, Kanban, engineer-
ing, development, transition, extreme programming, backlog, formal.

– Requirements engineering: requirement, emotional, affective, game
design, document, pre-production, production, requirement engineering,
requirements engineering, specification.

The initial intent was to narrow down the list of 340 post-mortems to find
which post-mortems should be studied more closely, and which could be dis-
carded, as analysing all the post-mortems would not have been practical and
quite probably also not useful. Therefore, the intent was to prioritize the post-
mortems based on how many of these keywords appeared in them. This analysis
was conducted using a self-built programming script, which iterated through all
340 post-mortems. The script searched for instances of keywords, noting down
the articles in which they appeared, and the results were exported into a file for
analysis.

Adoption of Requirements Engineering Methods in Game Development 449

As the scripts were being refined, the study evolved beyond simply trying to
narrow down the list of post-mortems. It became apparent that getting statistical
information about how often given keywords appeared in articles would be easy,
and the focus was shifted towards this approach.

This approach has some limitations. The first of these is the list of keywords
used. If some relevant or useful term was not thought of, it would not be included
on the list of search terms. As this part of the study was conducted by a single
researcher, albeit with some supervision, it is quite probable that something
was overlooked. This problem was probably compensated at least in part for by
repeated versions the keyword list and repeated analysis of the subject text. The
list of keywords grew significantly over time as additional terms were discovered
through further readings of the source texts, or derived from results of earlier
iterations of the analysis.

Additionally, this approach offers next to no context. While the algorithm
will find all instances of a keyword such as “scope”, it has no way of knowing the
context the term was used in. Did the article refer to the scope of the project,
or was the author talking about a physical scope item in the game? Many of
the terms used have multiple meanings, only some of which are relevant to this
paper, so this could have been a real problem. To compensate for this lack of
context, a second test was devised and run.

5.3 Extended Analysis

Our aim in this extended analysis was to 1) gather occurrences of keywords
in a more relaxed fashion allowing multiple word forms of each keyword to be
detected, and 2) find context of the keywords by statistical analysis to detect
other keywords that tend to often appear together with them.

To detect keywords in a permissive manner, a natural language processing
script was written. The script first breaks the input text into smaller, sentence
length chunks. Next, the text was lemmatized (i.e. the inflected forms of each
word were grouped together in their dictionary form), and so called “stop words”,
or common, short function words such as the, is, that and which, were removed.
After these steps the remaining text was analyzed. Next, simple statistical analy-
sis was done to detect co-occurring keywords. For this analysis, sentences which
contained words from the keyword list were kept, while the others were dis-
carded. The remaining sentences were analyzed for word correlation: correlation
of occurrence of one keyword and occurrence of another keyword across the sen-
tences. The analysis produced a list of found search terms as well as lists of
words they appear together with. This would then give context to these results.

Due to the way the algorithm parses words, it will distinguish between mul-
tiple word keywords such as “feature creep” and individual components of the
keyword, in this case “feature” and “creep”. Thus, the algorithm will not produce
skewed false hits for these component words.

As with the first test, this test was also run several times, first using co-
occurrence analysis, and later with improved correlation analysis. The original

450 M. Lehtonen et al.

list of keywords grew and changed after each iteration as new keywords were dis-
covered externally, prompting repetitions of the first study as well. Additionally,
the results of this test also helped refine the list of keywords, as interesting or
relvant terms are actually correlated to original keywords and were subsequently
included as keywords themselves.

5.4 Findings

The two studies have produced : a full list of all 340 post-mortems, and the key-
words which appear in them, the total count of how often any keyword appears
in each post-mortem, a list of all the keywords and the most common words
that appear near them, and statistical information about the total number of
occurrences for each keyword across all 340 articles, as well as the percentage of
articles each keyword appears in Table 1.

Table 1. Occurrences across all articles for a given keyword.

Keyword Frequency Pct. Count Keyword Frequency Pct. Count

Development 321/340 art. 94.41% 3156 Emotional 39/340 art. 11.47% 149

Feature 278/340 art. 81.76% 1582 Formal 35/340 art. 10.29% 41

Process 270/340 art. 79.41% 1160 Feature-creep 33/340 art. 9.71% 43

Document 228/340 art. 67.06% 453 Scrum 33/340 art. 9.71% 84

Schedule 206/340 art. 60.59% 811 Agile 27/340 art. 7.94% 41

Production 205/340 art. 60.29% 961 Overtime 25/340 art. 7.35% 43

Communication 146/340 art. 42.94% 402 Specification 22/340 art. 6.47% 35

Management 143/340 art. 42.06% 332 Game-design-document 19/340 art. 5.59% 41

Scope 134/340 art. 39.41% 306 Creep 19/340 art. 5.59% 23

Method 108/340 art. 31.76% 205 Engineering 15/340 art. 4.41% 28

Requirement 94/340 art. 27.65% 179 Estimation 8/340 art. 2.35% 11

Engineer 92/340 art. 27.06% 308 Backlog 6/340 art. 1.76% 6

Crunch 88/340 art. 25.88% 198 Multi-disciplinary 3/340 art. 0.88% 3

Pre-production 56/340 art. 16.47% 166 Affective 1/340 art. 0.29% 3

Discipline 47/340 art. 13.82% 76 Kanban 0/340 art. 0.29% 0

Transition 45/340 art. 13.24% 58 Requirement engineering 0/340 art. 0.29% 0

It becomes apparent that some terms were too broad especially for the initial
intent of the studies even from a cursory glance at the list of keywords. The words
“development”, “feature” and “process” appear in almost all of the articles.
However, due to the word co-occurrence analysis, it is apparent that they do not
appear without context and were as such deemed interesting enough to be left
in the pool of keywords.

The word correlation analysis produced a list of each keyword and the most
correlated words they appear together with in the analyzed material. In order
to avoid spurious correlations, we remove infrequent terms and verify remaining
correlations with a student-t based significance test, the t-statistic is computed

Adoption of Requirements Engineering Methods in Game Development 451

as ρ
√

N−1
1−ρ2 where ρ is the correlation coefficient and N is the sample size. In the

final list, we keep the top 10 correlated words that co-occur (document-level)
more than or equal to 5 times with the keyword. We also conducted the associa-
tion test, the p-value is provided in the parentheses. Correlations for 4 terms are
listed in Table 2. The term schedule is correlated to terms such as “tight”, “slip”
and “milestone”. This indicates that the underestimation of the schedule is a
common issue in game development. The term communication is correlated to
different words that represent different perspectives such as frequency (“occur-
rence”), target (“team”) and method (“verbal”). Words that are correlated to
the term development are related to scheduling (“cycle” and “length”) or appli-
ance (“software”). However, many of the words that are correlated to the term
requirement do not seem to be related with requirements engineering. The full
list can be found online via the link https://bit.ly/2FeQ42U.

Table 2. Words correlated to search terms, shown for four example terms. ρ: correlation
coefficient, n: number of co-occurrences.

Search term Word ρ p-value n Other correlated words

Schedule Tight 0.116 2.63e-175 60 Occasional, task, behind,

Slip 0.095 1.22e-117 45 project, budget, aggressive,

Milestone 0.069 1.73e-62 79 instructor

Communication Occurrence 0.124 2.77e-198 7 Skype, lack, facilitate,

Team 0.079 2.46e-81 143 inter, proximity, constant,

Verbal 0.078 1.09e-79 5 apart

Development Cycle 0.170 0.00e+00 139 Month, ram, date, photoshop,

Length 0.130 5.12e-218 137 platform, hardware,

Software 0.114 1.30e-168 186 process

Requirement Mock 0.126 5.82e-206 6 Experimental, viable, nail,

Fulfill 0.126 2.85e-204 9 skin, export, nature,

Playback 0.110 3.95e-155 9 application

In general, terms thought to be related to the requirements engineering pro-
cess and its methods appear either very rarely or not at all. “Requirements engi-
neering” (and its alternative spelling “requirement engineering”) do not appear
once. The broader keyword “requirement” appears in 27.65% of the articles, but
it is practically always used in the non-requirements engineering sense. “Affec-
tive” is used precisely once, and while the keyword “emotional” does appear in
11.47% of the articles, it is not used to talk about emotional requirements.

Terms related to agile methods and Scrum appear relatively frequently in
more recent postmortems: “Agile” or “Scrum” are mentioned in 17.86% of
postmortems from 2006 onwards. “Extreme programming” is mentioned once.
Theory-based methods and specifications in general do not seem to be a frequent

https://bit.ly/2FeQ42U

452 M. Lehtonen et al.

topic in post-mortems, as the keyword “formal” is used in 8.82 % of the articles.
Context analysis suggests that when the term is used, it is rarely used in the con-
text of formal processes: it appears three times close to the term “process”, and
three times close to the term “development”. “Specification” is used in 6.47% of
the articles, and is usually used in the context of formal design methods.

These findings would seem to back up the arguments presented in current
academic research, and suggest that formal methods and practices, requirements
engineering and other accepted industry best practices are not widely used in
game development.

The problems these methods and processes are thought to alleviate appear
in the post-mortems quite frequently. The keyword “crunch” appears in 25.88%
of the post-mortems, and when it appears it is often mentioned several times
in the same post-mortem. Additionally, the term “overtime” appears in 7.35%
of the post-mortems, usually in the context of having to work overtime. The
algorithm does not guarantee that there is no crossover between these results,
so both keywords could appear together in at least some of the post-mortems.
Phrases such as “It was an expensive lesson, given the amount of overtime we
had to work to finish the game”, “building several levels, working a tremendous
amount of overtime” and “others were totally fried from the tremendous amount
of overtime” indicate that “overtime” usually appears in the intended sense
rather than describing, for instance, a system working overtime.

“Feature creep” is used in 9.71% of the post-mortems, and additionally
“creep” is used in 5.59% of the articles, often in a context which suggests it
is used to describe feature creep rather than an action by a game character.
Terms such as “schedule” (60.59%), “management” (42.06%), “communication”
(42.94%) and “document” (67.06%) appear very often, both in positive and neg-
ative contexts, indicating they are factors in the successes or failures of game
development projects.

6 Discussion

The topic of requirements engineering and game development is by no means a
new one. As game development is a specialized field of software development, and
requirements engineering is an accepted and commonly used part of the software
engineering process, the assumption that game development could benefit from
requirements engineering processes and methods is only natural.

Along with this long-standing interest in the topic comes a lot of previous
research. This body of work varies greatly in scope and style. As game develop-
ment is a practical real-world problem, it stands to reason that for it to truly be
useful, research carried out on the topic should be conducted with the realities
of the discipline in mind, if the goal is to solve real problems faced by developers.

It is worth stressing that the findings in this paper apply mostly to smaller
independent developers. Larger and more organized studios may have their own
methods and processes for dealing with these issues and approach the devel-
opment process much in the same ways as a traditional software development

Adoption of Requirements Engineering Methods in Game Development 453

project would, but as these larger studios and corporations tend to regard their
practices and methods as trade secrets, little information is available on the
subject.

6.1 Discussion of the Literature Survey Results

Key problems and issues were identified based on academic research conducted
through interviews and studies conducted among game developers and game
publishers. Some of these problems make it harder to adopt requirements engi-
neering processes as a part of the game development process, while some are
areas where game development could clearly benefit from adopting these pro-
cesses.

Of the problems discovered, the general lack of formal processes and methods
among developers seems to be the most fundamental one. While the emphasis
on non-functional requirements and the lack of tools for capturing and modelling
affective requirements are also significant problems, they can be overcome with
work.

That work will not be conducted if developers are not interested in utiliz-
ing theory-based methods and processes, or applying requirements engineering
techniques to their work. The reasons for this perceived lack of interest and its
remedies are beyond the scope this paper, and a large survey would be needed to
chart attitudes and problems before educated guesses could be made. It could be
that developers are interested in utilizing more formal methods, but do not have
the knowledge and skills needed, or they might not be aware of the possibility,
having grown used to doing things their own way.

Note that these are not the only significant challenges or problems game
developers are facing, nor are they the only factors making it harder to adapt
requirements engineering methods and processes to game development. As an
example, game development is a much more multi-disciplinary activity than nor-
mal software development. Game development teams employ software engineers,
designers, producers, project managers and other computer science professionals
just like traditional software engineering teams, but additionally make use of
different types of artists (e.g. writers, graphical artists, musicians, animators,
sound technicians) and others. Merely finding common vocabulary among these
wildly varied disciplines can be challenging, but their variety alone introduces
difficulties into the requirements engineering process. Capturing and modelling
requirements specific to each of these disciplines requires strong domain knowl-
edge.

Beyond the need for specialized knowledge, all the disciplines of game devel-
opment may have their own considerations that need to be taken into account,
and scheduling can also be challenging. Not all of these components might
even be actively worked on during the pre-production phase, where most of
the requirements engineering work takes place. While a significant problem, this
is not unique to game development, as traditional software development projects
need specialized domain knowledge for requirements engineering work as well.

454 M. Lehtonen et al.

For instance, experts on legal concerns, data privacy or sociology might have
specialized domain knowledge needed in the project.

As so many different problems could be discovered so easily, the topic is
clearly ripe for further research, discussion and future work.

6.2 Discussion of the Postmortem Analysis

The postmortem analysis further supported the finding that requirements engi-
neering methods and processes are not commonly used in game development.
The analysis shows an almost complete lack of keywords relating to require-
ments engineering in the postmortems. The topic itself was not mentioned once
in the 340 post-mortems, which include everything from big budget games to
smaller indie products, games created using traditional waterfall methods to
agile projects and so on.

As post-mortems deal with factors which contributed, positively or nega-
tively, to the outcome of each individual project, the total lack of mentions
could mean that requirements engineering is simply not a concern to any of these
developers. This result is not conclusive, of course, as post-mortems are not all-
inclusive lists of all contributing factors. However, the fact that no developer
mentioned requirements engineering as a factor in the outcome of the project,
does give validity to the claim that game developers do not utilize, nor even
think to utilize, requirements engineering methods or processes.

As there is next to no discussion on keywords related to requirements engi-
neering, this study did not reveal any conclusive evidence for or against the
incompatibility between requirements engineering and the game design docu-
ment. Keywords such as scope (39.41%) and document (67.06%) are often men-
tioned in post-mortems, so clearly some kind of issue exists, but based on this
study little can be said on the topic.

One notable finding could be the relative low frequency at which terms
related to crunch appear in the post-mortems. Crunch is generally considered
a widespread problem in the industry. According to a 2016 survey conducted
among the International Game Developers Association members [27], 65% of
developers reported having experienced crunch, with 52% reporting having expe-
rienced it more than twice in the previous year, and the topic has been heav-
ily discussed in media as well. Despite this, the keyword “crunch” appeared in
25.88% of the articles, and the clearly related term “overtime” appeared in 7.35%
of the articles.

This inconsistency could be explained by several factors. The post-mortems
deal with individual projects, rather than individual developers, the contrary of
which is true on the IGDA survey. Thus, even a project where multiple devel-
opers reported experiencing crunch would only represent a single item in the
post-mortem data. The post-mortems also include many smaller indie projects,
which might be more loosely scheduled and could afford to postpone the project
rather than crunch to finish it on an external schedule. Finally, the post-mortems
include material from 1997 to 2018, and it could be that in the earlier material

Adoption of Requirements Engineering Methods in Game Development 455

crunch simply was considered an inevitable part of working in the game industry
and not worth reporting as a factor.

Terms related to formal project management processes and methods appear
in the post-mortems quite often, and in contexts which relate to project man-
agement: document (67.06%), production (60.29%), schedule (60.59%), man-
agement (42.06%), communication (42.94%), scope (39.41%). This means that
these issues were considered by developers to be a key factor in the success of
the project, whether a positive or negative one. This would seem to be in line
with Kasurinen’s claim that game development would benefit from more formal,
commonly used methods and practices, as they are generally agreed to improve
and facilitate these key areas of the development process [9].

These findings demonstrate that there is clearly need for further and deeper
studies on the issue. Game development is a growth industry where ever-
increasing amounts of money are on the line, depending on the successful out-
come of large, expensive and extremely complex software development projects.
It is clear that game development could benefit from additional formalization,
but in order for that to happen, several hurdles need to be crossed.

Developers need training, and methods and processes need to be adapted and
created to better suit the needs of the industry. While these initiatives probably
need to be driven by developers themselves, academic research has an important
role to play as well. Studies conducted by academics could hopefully breach the
wall of secrecy surrounding many developers and help discover both the causes
and eventual fixes for these problems.

7 Conclusions

This paper explored the question of adapting requirements engineering meth-
ods and processes to game development projects. Based on a thorough reading
of state-of-the-art academic research, key problems and limitations were iden-
tified. These included: (1) a general lack of formal processes and methods in
game development (2) the emphasis on non-functional, affective requirements,
which traditional requirements engineering methods and processes are not well
suited to (3) emphasis on change as a central development tool, and the need
for better change control, which requirements engineering could provide (4) the
incompatibility between the requirements document and the game development
document, central artefacts in requirements engineering and game development
respectively.

To study the validity of these claims, 340 developer-published post-mortems
were analyzed algorithmically, using custom programs created for the purposes
of this study. Keywords based on academic findings were searched for, and their
total number of appearances, as well as the frequency of these appearances,
were noted. Additionally, they were analyzed for word correlation to discover,
which words the keywords commonly appeared with. This analysis would seem
to support the key problems and limitations identified in the literature survey,
although due to the limitations of the analysis, and the scope of the identified

456 M. Lehtonen et al.

issues, more research is needed. Possible avenues for future research could include
a similar study on traditional software development projects, to measure preva-
lence of requirements engineering methods and processes in these projects and
use of the related terms in developer communication regarding the projects, and
to contrast such prevalences with the ones found here in game development.

Acknowledgement. The work was supported by Academy of Finland decisions
312395 and 313748, and the Business Finland funded Virpa D project.

References

1. Aleem, S., Capretz, L.F., Ahmed, F.: Game development software engineering pro-
cess life cycle: a systematic review. J. Softw. Eng. Res. Dev. 4(1), 1–30 (2016).
https://doi.org/10.1186/s40411-016-0032-7

2. of America, E.S.: Entertainment Software of America: Analysing the American
Video Game Industry 2016 (2017). http://www.theesa.com/wp-content/uploads/
2017/02/ESA-VG-Industry-Report-2016-FINAL-Report.pdf

3. Ampatzoglou, A., Stamelos, I.: Software engineering research for computer games:
a systematic review. Inf. Softw. Technol. 52(9), 888–901 (2010)

4. Callele, D., Neufeld, E., Schneider, K.: Requirements engineering and the creative
process in the video game industry. In: 13th IEEE International Conference on
Requirements Engineering (RE 2005), pp. 240–250. IEEE (2005)

5. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study.
IEEE Softw. 25(1), 60–67 (2008)

6. Hofmann, H.F., Lehner, F.: Requirements engineering as a success factor in soft-
ware projects. IEEE Softw. 18(4), 58–66 (2001)

7. Hull, E., Jackson, K., Dick, J.: Requirements Engineering, 3rd edition (2011)
8. IGDA Quality of Life Committee: Quality of Life in the Game Industry: Challenges

and Best Practices. Technical Report, International Game Developers’ Association
(2004)

9. Kasurinen, J., Maglyas, A., Smolander, K.: Is requirements engineering useless in
game development? In: Salinesi, C., van de Weerd, I. (eds.) REFSQ 2014. LNCS,
vol. 8396, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05843-6 1

10. Kanode, C.M., Haddad, H.M.: Software engineering challenges in game develop-
ment. In: ITNG 2009–6th International Conference on Information Technology:
New Generations (2009)

11. Kasurinen, J.: Games as software. In: Proceedings of the 17th International Con-
ference on Computer Systems and Technologies 2016 - CompSysTech 2016 (2016)

12. Kasurinen, J., Risto Laine: Games from the viewpoint of software engineering. In:
Proceedings of the Federated Computer Science Event, pp. 23–26 (2014)

13. Koutonen, J., Leppänen, M.: How are agile methods and practices deployed in
video game development? a survey into finnish game studios. In: Baumeister, H.,
Weber, B. (eds.) XP 2013. LNBIP, vol. 149, pp. 135–149. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38314-4 10

14. Musil, J., Schweda, A., Winkler, D., Biffl, S.: Improving video game development:
facilitating heterogeneous team collaboration through flexible software processes.
In: Riel, A., O’Connor, R., Tichkiewitch, S., Messnarz, R. (eds.) EuroSPI 2010,
CCIS, vol. 99, pp. 83–94. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15666-3 8

https://doi.org/10.1186/s40411-016-0032-7
http://www.theesa.com/wp-content/uploads/2017/02/ESA-VG-Industry-Report-2016-FINAL-Report.pdf
http://www.theesa.com/wp-content/uploads/2017/02/ESA-VG-Industry-Report-2016-FINAL-Report.pdf
https://doi.org/10.1007/978-3-319-05843-6_1
https://doi.org/10.1007/978-3-319-05843-6_1
https://doi.org/10.1007/978-3-642-38314-4_10
https://doi.org/10.1007/978-3-642-15666-3_8
https://doi.org/10.1007/978-3-642-15666-3_8

Adoption of Requirements Engineering Methods in Game Development 457

15. Newzoo: Mobile Revenues Account for More Than 50% of the Global Games
Market as It Reaches $137.9 Billion in 2018 (2018). https://newzoo.com/insights/
articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-
half/

16. Osborne O’Hagan, A., Coleman, G., O’Connor, R.V.: Software development pro-
cesses for games: a systematic literature review. In: Barafort, B., O’Connor, R.V.,
Poth, A., Messnarz, R. (eds.) EuroSPI 2014. CCIS, vol. 425, pp. 182–193. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43896-1 16

17. Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agile software
development. In: Proceedings of the Workshop on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, WETICE (2003)

18. Paschali, M.E., Ampatzoglou, A., Chatzigeorgiou, A., Stamelos, I.: Non-functional
requirements that influence gaming experience. In: Proceedings of the 18th Interna-
tional Academic MindTrek Conference on Media Business, Management, Content
& Services - AcademicMindTrek 2014 (2014)

19. Petrillo, F., Pimenta, M.: Is agility out there? agile practices in game develop-
ment. In: SIGDOC 2010: Proceedings of the 28th ACM International Conference
on Design of Communication (2010)

20. Petrillo, F., Pimenta, M., Trindade, F.: Houston, we have a problem...: a survey
of actual problems in computer games development. In: Proceedings of the 2008
ACM symposium on Applied computing (2008)

21. Petrillo, F., Pimenta, M., Trindade, F., Dietrich, C.: What went wrong? a survey
of problems in game development. Comput. Entertainment (CIE) 7(1), 13 (2009)

22. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques,
1st edn. Springer, Heidelberg (2010)

23. Shirinian, A.: Dissecting The Postmortem: Lessons Learned From Two Years
Of Game Development Self-Reportage (2011). https://www.gamasutra.com/view/
feature/134679/dissecting the post-mortem lessons .php

24. Stacey, P., Nandhakumar, J.: Opening up to agile games development. Commun.
ACM 51(12), 143–146 (2008)

25. UKIE: The games industry in numbers (2018). https://ukie.org.uk/research.
Accessed 08 Jan 2019

26. Washburn, M.J., Sathiyanarayanan, P., Nagappan, M., Meiyappan, T., Bird, C.:
What went right and what went wrong: an analysis of 155 postmortems from game
development. In: Proceedings of the 38th International Conference on Software
Engineering (2016)

27. Weststar, J., Legault, M.J.: Developer Satisfaction Survey 2016 Sum-
mary Report. Technical Report, International Game Developers Associ-
ation (2016). https://cdn.ymaws.com/www.igda.org/resource/resmgr/ortfiles
2016 dss/IGDA DSS 2016 Summary Report.pdf

https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://doi.org/10.1007/978-3-662-43896-1_16
https://www.gamasutra.com/view/feature/134679/dissecting_the_post-mortem_lessons_.php
https://www.gamasutra.com/view/feature/134679/dissecting_the_post-mortem_lessons_.php
https://ukie.org.uk/research
https://cdn.ymaws.com/www.igda.org/resource/resmgr/ortfiles__2016_dss/IGDA_DSS_2016_Summary_Report.pdf
https://cdn.ymaws.com/www.igda.org/resource/resmgr/ortfiles__2016_dss/IGDA_DSS_2016_Summary_Report.pdf

	Adoption of Requirements Engineering Methods in Game Development: A Literature and Postmortem Analysis
	1 Introduction
	2 Game Development from a Software Development Perspective
	3 Requirements Engineering in Game Development Literature
	3.1 Survey Process
	3.2 Overall Findings From the Literature Survey

	4 Key Differences Between Game Developers and Traditional Software Developers
	4.1 The Incompatibility of the Game Design Document and Requirements Engineering Documentation
	4.2 Emphasis on Non-functional Requirements and Affective Requirements
	4.3 Iteration, Scope and Change Management
	4.4 Lack of Formalized Methods and Processes

	5 Post-mortem Analysis
	5.1 Data Gathering
	5.2 Initial Analysis
	5.3 Extended Analysis
	5.4 Findings

	6 Discussion
	6.1 Discussion of the Literature Survey Results
	6.2 Discussion of the Postmortem Analysis

	7 Conclusions
	References

