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Abstract. Look-Up Table (LUT) implementation of complicated func-
tions often offers lower latency compared to algebraic implementations
at the expense of significant area penalty. If the function is smooth,
MultiPartite table method (MP) can circumvent the area problem by
breaking up the implementation into multiple smaller LUTs. However,
even some of these smaller LUTs may be big in high accuracy MP imple-
mentations. Lossless LUT compression can be applied to these LUTSs to
further improve area and even timing in some cases. The state-of-the-art
in the literature decomposes the Table of Initial Values (TIV) of MP into
a table of pivots and tables of differences from the pivots. Our technique
instead places differences of consecutive elements in the difference tables
and result in a smaller range of differences that fit in fewer bits. Con-
straining the difference of consecutive input values, hence semi-random
access, allows us to further optimize designs. We also propose variants of
our techniques with variable length coding. We implemented Verilog gen-
erators of MP for sine and exponential using conventional LUT as well
as different versions of the state-of-the-art and our technique. We syn-
thesized the generated designs on FPGA and found that our techniques
produce up to 29% improvement in area, 11% improvement in timing,
and 26% improvement in area-time product over the state-of-the-art.

1 Introduction

Computationally complex functions often need to be efficiently implemented in
hardware so that they can be part of real-time systems. Look-Up Table (LUT)
based methods (see [1] for a comprehensive survey) offer a good balance between
latency and area in comparison to algebraic methods by a priori computing of the
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function values. LUT-based methods usually have shorter latency as compared
to algebraic methods. A straight-forward LUT method, where function value
f(x) is stored in (read-only) memory’s location z, and the input z is tied to the
address port of the memory and the output f(x) is tied to the dataOut port
of the memory (without any additional logic) is what we call the Conventional
LUT (ConvLUT) method shown in Fig.1. However, for large bit widths of x,
the area of a ConvLUT blows up.

What we are proposing in this work is a “lossless LUT compression method”
that can shrink the hardware area of complex functions (sometimes even with
improvements in latency) when applied to:

— ConvLUTsSs or
— the below smarter methods with multiple LUTs

ConvLUT
£(0)
f(1)
f(2)

f(zlé-1)

Fig. 1. LUT contents of a ConvLUT.

When a ConvLUT blows up due to large input bit width, “multi-LUT meth-
ods” (including ours) come to rescue. Although our lossless compression method
can be directly applied to ConvLUT, better results are obtained if a lossy multi-
LUT method is used first, and our method is applied to the LUTs within. Multi-
LUT methods use some arithmetic logic to combine the values in multiple tables.
These methods do not produce the exact same output as the ConvLUT method
but can stay within a prescribed error range. Some such popular methods are
BiPartite method (BP) [2,3], Symmetric Bipartite Method (SBTM) [4], Sym-
metric Table Addition Method (STAM) [5], MultiPartite method (MP) [6,7],
and Hierarchical MultiPartite method (HMP) [8].

BP [2,3] uses approximation by the first two terms of the Taylor expansion
of a function using two LUTSs: i. Table of Initial Values (TIV) and ii. Table of
Offsets (TOs). The microarchitecture in Fig. 2 becomes BP, when the three TOs
are combined into a single TO. BP uses an adder to add TIV and TO outputs.
TIV downsamples the function values and hence stores a subset of them (at x0
values), whereas TO stores the derivative times Az(= z — z0).

For further reduction in TO size, TO can be partitioned into multiple smaller
LUTs, which thus leads to the MP method. MP combines STAM [5] and the app-
roach in [9]. In MP, there are multiple TOs and a single TIV. Figure 2 depicts an MP
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Fig. 2. MP microarchitecture.

microarchitecture with 3 TOs. A smaller Ax can work with a derivative with fewer
bits, hence the smaller the Az the narrower the x0 bits (subset) it uses. Each addi-
tional table reduces the total number of bits in all of the tables but then increases
the combinational logic complexity - all in all reduces the total area.

In the recently proposed HMP method [8], the TIV is further decomposed
into the sum of another TIV and TOs. HMP also performs global bit width
optimization over all LUTs.

Figure 3 sketches the LUT compression approach within the context of MP.
For any given function f, with any given input bit resolution (w;), i.e., bit width,
output resolution (w,), and m value (which represents the number of TOs to be
generated), MP can be implemented as shown in Fig. 3, where TIV ., is anew TIV
with fewer entries than TIV, while TIV 4;¢5’s store differences of missing entries
from the entries TIV ;¢,. Our lossless LUT compression and the one in [11] can
actually be applied to any LUT, hence TIV or TOs or both. However, we applied
it on TIV, as there is more compression opportunity in TIV because it is bigger.
Also, [11] is applied on TIV, and we wanted to compare our work to theirs.

The concept of general-purpose lossless LUT compression for hardware design
was first introduced in [10]. The work in [10] proposes what we here classify
as Semi-Random Access differential LUT (SR-dLUT), where differential LUT
(dLUT) is asort of TIV 4, r. Note that [10] calls the dLUT in this chapter as cLUT,
short for “compressed LUT”. SR-dLUT can output any LUT location within the
range [i — k,i + k] in a given cycle if location i is output in the previous cycle
and k is the number of difference tables (ALUT'). Note that there is no TIV,,¢,, in
SR~dLUT, there are only difference tables (cLUT in the case of [10]).
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function f wp W, m
( MP method
| | I
| TIV | | TO, | | TO,, |
1
C Compression >
I I !
| TIVhew | | TIVaiterr | | TIVaitee |

Fig. 3. MP method combined with LUT compression for TIV.

In [11], a lossless LUT compression approach was proposed and was used to
compress the TIV of MP method. Two schemes were proposed in [11], namely,
2-table decomposition and 3-table decomposition. We abbreviate them as 2T-
TTV and 3T-TIV, respectively. Details of both methods are discussed in Sects. 2.1
and 2.2. Furthermore, in [8] an improvement over the 2T-TIV method was intro-
duced, which we call 2T-TIV-IMP and discuss in detail in Sect. 2.3.

In this chapter, we propose four lossless LUT compression methods, namely,
Fully-Random Access differential LUT (FR-dLUT) and Semi-Random Access
differential LUT (SR-dLUT), “Variable Length” encoded FR-dLUT (FR-dLUT-
VL), and “Variable Length” encoded SR-dLUT (SR-dLUT-VL). Note that FR-~
dLUT and FR-dLUT-VL microarchitectures were first proposed in our earlier
paper [16] and an earlier version of SR-dLUT (cLUT) was introduced in [10].
SR-dLUT-VL is unique to this chapter. Also, SR-dLLUT is here used as a building
block of MP. Note that although this chapter targets hardware implementation,
software implementation of our proposed methods are also possible.

Section 2 below covers the details of the state-of-the-art, namely, 2T-TIV
[11], 3T-TIV [11], and 2T-TIV-IMP [8] (which we call T-TIV methods), while
Sect. 3 presents our proposed methods. Section4 gives synthesis results (area,
time, and area-time product) of all of the above methods and compares them,
and Sect. 5 concludes the chapter.

2 State-of-the-Art

In this section, previous state-of-the-art of fully-random access lossless LUT
compression are outlined, namely, T-TIV methods.

2.1 2T-TIV Microarchitecture

2T-TIV [11] decomposes TIV of the MP method into 2 LUTs, TIV,., and
TIVgiss (ie., a form of dLUT) as shown in Fig. 4, where the original TIV can
be recovered from TIV,,, and TIVy;¢s without introducing any errors.
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Fig. 4. LUT contents of 2T-TIV for s = 2.

In Fig.4, we have w; = 16 and s = 2 such that for every 2° consecutive
entries, TIV,,c,, stores one TIV value (i.e., the one in the middle of 2¢). That
is why TIV e has 2% entries. TIVy; rf is used to store differences between
the original TTV values and their corresponding entries in TIV,,,,. Equation (1)
shows how TIV is reconstructed back from TIV ¢, and TIVg;¢y.

TIV (i) = TIVpew (i) + TV ai5 (i)
where i/ = integer (5) (1)
and TIV ., (i) = TIV (if %25 4 2571)

Note that every 2° entries of TIV ;s contains one zero entry (i.e., entries 2,
6, 10, etc. in Fig. 4).

2.2 3T-TIV Microarchitecture

3T-TIV [11] exploits the “almost symmetry” of function values around the
entries of TIV,,¢,. 3T-TIV has 3 LUTs as shown in Fig.5 for a given func-
tion with w; = 16 and s = 3. In 3T-TIV, TIV,,, serves the same purpose as in
2T-TIV. Figure5 shows an example, where w; = 16 and s = 3. Hence, there is
one entry in TIV ., for every 8(= 25=3) entries of the original TIV. The entries
in TIV e, correspond to f(4), £(12), £(20), and so on. The values of £(0), (1),
and up to f(7) need to be computed from f(4) in TIV,,¢,. Half of those values,
ie., £(0), (1), up to £(3) are calculated using the differences stored TIV ;551 as
in 2T-TIV, hence (2) where ¢’ is the same as in (1).

TIV (Z) =TIV, ew (Z/) + TIVdiffl (2571 x4 + ]) (2)
for j < 2571 where j = mod (i,2°)

However, for f(4) through f(7), the second-order differences in TIV ;s are
also added on top of TIV .., and TIVy;ss1. The value of £(7) is computed from
f(1), while £(6) is derived from f(2), and so on. That can be expressed as in (3).
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Fig.5. LUT contents of 3T-TIV for s = 3.

TIV (i) = TIV pew (') + TV gip 1 (2571 %4 + 5)
+TIVgifpa (2571 %4’ + j — 2571 for j > 2571
where TIV ;172 (k) = TIV (K + 25-1) (3)
~TIV (K — 2571)
and k' = 2 x integer ( E) + mod (k,2571)

ss—1

In summary, when we group values of function f in groups of 2°; the first
25~ values in every group of 2° use TIV ¢, and TIV 4 ff1, while the second 251
values use all three tables. Note that every 2°~! entries of TIV 4 ff2 contains one
zero entry (i.e., entry 0, 4, 8, etc. in Fig.5).

2.3 2T-TIV-IMP Microarchitecture

2T-TIV-IMP [8] improves 2T-TIV [11] by reducing the bit width of TIV,,¢,,. This
is possible when every TIVgr entry is summed offline with least significant
wqify bits of the corresponding TIV,., entry. As a result of this, the least
significant wgq; sy bits of all TIV,,.,, entries can be zeroed out, hence do not need
to be stored, which leads to a bit width of wyey — wqirs bits as shown in Fig. 6.
On the other hand, TIVy; ;s entries become 1-bit larger (the wg;s; + 1 in Fig. 6)
if any TIVg;¢¢ entry overflows when summed with wg; s bits of TIV ¢, If there
is no overflow, then the bit width of TIV,,.,, stays the same (wa;fy).

This optimization not only reduces the bit width of TIV,,,, but also makes
the subcircuit that sums TIV,., and TIV4; smaller, when there is overflow
resulting in 1 overlap bit, hence TIVg;¢¢ with wg;fr + 1 bits. The optimization
can even completely eliminate summing when there is no overflow during offline
addition performed to compute the new TIV 4 values. In that case, summing
TIVyew and TIVg ¢ ¢ can simply be realized by concatenating them.

One thing that is not addressed in [11] is that if TIV ¢, entries are truncated,
TIVg4i¢5 entries may have to be 2-bit larger. For a guarantee on at most 1-bit
larger TIV g5 ¢, TIV ey entries have to be rounded down to wpew — Wairs bits
from wy,eq bits.

Note that the described improvement on 2T-TIV cannot be applied to 3T-
TIV because this optimization breaks the symmetry property 3T-TIV uses.
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Fig. 6. 2T-TIV-IMP version of Fig. 4.

3 Proposed Methods

In this section, our proposed microarchitectures, FR-dLUT and SR-dLUT as well
as their variable length coded variants, namely, FR-dLUT-VL and SR-dLUT-
VL, are presented. The critical difference between our approach and the previous
state-of-the-art (2T-TIV and variants) is that TIVg s, (which we call dLUT)
entries store the difference from the neighboring function value instead of the
difference from the corresponding value in TIV ., as shown in (4) and (5). This
allows elimination of TTV,,¢,, if what is desired is only semi-random access [10]. If
fully-random access is desired, we still need a TIV ., table but our dLUTS store

smaller differences compared to the above explained state-of-the-art. Below, we
will describe FR-dLUT, SR-dLUT, FR-dLUT-VL, and SR-dLUT-VL.

3.1 FR-dLUT Microarchitecture

FR-dLUT can be implemented with any number of dLUTSs. Figure7 shows an
FR-dALUT with 4 dLUTSs, which implements a function f with w; = 16 and s = 3
(hence 23 = 8 difference values per each TIV,,.,, entry). If TIV ¢ in 2T-TIV
and variants contain differences, dLUTs in FR-dLUT, in a way, contain difference
of differences. More specifically, the entries in the dLUTs that correspond to
points that neighbor TIV,,, entries (shown as shaded in Fig.7) contain the
same values as in 2T-TIV, while the other differences are equal to the differences
of neighboring TIV ;s entries in 2T-TIV (see (4) and (5)).

This allows us to store smaller values (i.e., fewer bits) in our difference tables.
However, there is a tradeoff since the summation circuit gets bigger because we
have to sum multiple difference values in our case. Note that, in the actual
implementation, the last dLUT (i.e., dLUT3 in Fig.7) has half the number of
entries of the other dLUTSs. (If logic synthesis is used, logic minimization would
do area reduction when unused entries are specified as don’t cares.)
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TIVhew dLUT3 dLUT2 dLUT1 dLUTO
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13 f(12) 1:  unused f()—f(6) | f(6)—f(5) | f(5)—f(4)
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l f(zlé 5 3:  unused | f(15)—f(14) | f(14)—f(13) | f(13)—f(12) l

Fig. 7. LUTs of FR-dLUT for w; = 16, s = 3 (i.e., A = 2371 = 4).

Equations (4) and (5) are two specific examples of how original TIV values
are constructed from TIV,,,, and dLUTs in FR-dLUT. They are based on the
tables in Fig. 7.

£(10) = £(12) +£(11) — £(12) +£(10) — £(11) (4)
——

TIV TIV pew dLUT3 dLUT2
£(13) = £(12) +£(13) — £(12) (5)
~—~— ~—~— ———
TIV TIVpew dLUTO

The generalized construction of TTV from TIV,.,, and dLUTs for FR-dLUT
method is given in (6) and (7). There are separate construction formulae for
odd (7) and even (6) rows of dLUTs. Note that i’ and TIV,,e,, (i) below use the
definitions given earlier in (1). Also, in the summations of (6) and (7), if the
upper index (finish index) is smaller than the lower index (start index), then the
summation returns zero.

TIV (i) = TIV ey (i') + Y dLUTE(2i") for j < 2571

where j = mod (i,2%), and (6)
dLUTE (2¢') =TIV (i’ % 2° + k) = TIV (i’ * 2° + k + 1)
TIV (i) = TIV pew (i) + SF_o ALUTK(2i" + 1) for j > A = 2571
where j = mod (i,2°),q = j — 2°~!, and (7)

dLUTk (20 + 1) = TIV (' %2° + 2571 + k4 1) — TIV (i’ % 2° + 2571 4+ k)

The top-level of FR-dLUT microarchitecture is shown in Fig.8 for a func-
tion f with n-bit input (w; = n), hence 2™ possible output values, k-bit output
resolution (w, = k), A dLUTs (A = 2%), and d-bit differences. The top-level of
FR-dLUT consists of 5 submodules, namely, AddressGenerator, TTV ., a set
of dLLUTs, DataSelection, and SignedSummation.

If there are A dLUTs, where A is a power of 2 (to make address gener-
ation is simple), TIV,,c, stores k-bit TIV(«), where o = A, 3A,5ATA, ...,
2" — A. The number of locations in TIV,,¢q, 1S 2(”_1)/A. We denote the output
of TIV ¢y with mwal (short for main value). The address line of TIV ¢y, named
as direct Address, has a bit width of n — 1 —[gA (lg denotes logs). dLUTS store
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mval | dsel[A—1]| dsel[A-2] dsel[1]| dsel[0]
| SignedSummation |
k
f(a)

Fig. 8. Top module of FR-dLUT microarchitecture.

d-bit 2’s complement differences. The number of locations in “dLUT A — 17 is
half the number of locations in the other dLUTs and is the same as in TIV ¢, .
“dLUT of index A — 1”7 shares the same address bus as TIV,,.,,. The bit width
of the address lines of other dLUTSs, named as indirectAddress, is n —lgA. The
output of a dLUT is named dval (stands for “difference value”).

AddressGenerator, detailed in Fig. 9, generates three signals: direct Address,
indirect Address, and select. For every 2A value in TIV, there is only one entry in
TIV,ew (as well as in “dLUT A—1"), thus direct Address signal is the n—1—1gA
most significant bits of the n-bit input « part-selected as afn — 1 : lgA + 1].
Moreover, for each value in TIV ¢, there are two entries in each dLUT (except
“dLUT A —17), that is why indirectAddress signal is the higher n — lgA bits
of n-bit input a(an —1:IgA]).

aln—1:1gA+1] n-lga-1

a[n—1:1gA] nlign” directAddress
7 {A{a]lgA]}} » indirectAddress
“ \D »select

allgA—1:0]

{A{1'b1}}

Fig. 9. AddressGenerator module.
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Signal named select is a thermometer vector, which consists of A consecutive
ones, each bit representing whether the corresponding dval will be summed (by
SignedSummation module). Consider (4), which shows how we compute f(10)
using the differences in the dLUTSs. In the case of (10), signal select is 1100, i.e.,
select[3] = 1 (the MSB) and select[2] = 1. Therefore, the outputs of dLUT3 and
dLUT2 (find the terms in (4) in Fig. 7) are summed. Positions of signal select’s
bits match the dLUT locations in Figs. 7 and 8, and the related figures to follow.

Now, consider f(13), which is given by (5). Its select vector is 0001 because
only dLUTO’s output is summed with TIV,,c,,. If we were computing f(15), select
would be 0111. Note that unused dLUT entries always have a select bit of 0. On
the other hand, f(9) and f(8) would have select of 1110 and 1111, respectively. If
the « of f(a) we are computing corresponds to an even row of dLUTs (i.e., row
0, 2, 4, etc.), then select is a contiguous block of 1’s starting with the LSB. On
the other hand, If the « corresponds to an odd row (i.e., row 1, 3, 5, etc.), then
select is a contiguous block of 1’s starting with the MSB.

Let us now look at how we generate select from «. Figure9 shows how. Let
us apply Fig.9 to f(10), where A is 4, and hence lgA is 2. 10 in base 10 is 1010
in binary and aflgA — 1 : 0], lower lgA bits of « is binary 10(= 2). We start
with A1’b1, i.e., A 1’s in Verilog notation. That is, binary 1111. Left-shift it by
2 positions to get A = 4 bits, and we get 1100. Bitwise XOR, that with a[lgA]
(bit 2 of ), which is 0, and we get 1100. That is indeed the select signal.

Let us do the same for f(13). 13 («) in base 10 is 1101 in binary. Left-shift
1111 by binary 01 (af[lgA —1 : 0]) positions, and we get 1110. Bitwise XOR that
allgA] = 1, and all bits flip, resulting in 0001, which is the correct value.

DataSelection module shown in Fig. 10 is quite straight forward. It is prac-
tically a vector-multiplication unit or some sort of multiplexer as expressed in
(8). It multiplies every dval (i.e., dLUT output) with the corresponding select
bit, resulting in signal dsel. This can be done with an AND gate provided that
each select bit duplicated d times (i.e., dselect[i]), which happens to be the bit
width of dval as well as dsel.

. dvalld], if select[i] =1 . ose1
dselli] = { 0, otherwise where i < A =2 (8)

After masking out some dval’s and obtaining dsel’s, we need to sum dsel’s
and the corresponding entry from TIV,,,. That is best done with a Column
Compression Tree (CCT). In our work, the summation is done by SignedSum-
mation shown in Fig. 11, which is based on the CCT generator proposed in [13]
(called RoCoCo). RoCoCo handles only the summation of unsigned numbers,
which is why the following conversion had to be done.

Consider the summation when muwal is 16 bits, hence a and 15 x’s in (9).
The dsel’s are 4 bits each, and there are 4 dLUTs. That is why we have four
4-bit numbers in (9). These numbers are 2’s complement, which is why their
MSBs are negative. The underbar a, b, ¢, d, e show that these numbers are

—0 = 0 or —1. In summary, we need to perform the summation in (9), where



Semi- and Fully-Random Access LUTSs for Smooth Functions 289

dval [A—1] dval[A-2] ... dval[1] dval[0] select
d d d d A
T {d{selec{A—1]}}
{d{selec{A—-2]}}
{d {se[ect[:l]}}
{d{select{0]}}

d d d d
dsel[A—1] dsel[A—2] - dsel[1] dsel[0]

Fig. 10. DataSelection module.

mval dsel[A—1]  dsel[A-2] ... dsel[1] dsel[0] to[0] to[1]...to[m—1]
d d d Wtoo Wto1 Wtom

—-
T2 5] s

5 5 > |REIL[E

= = S ERISE

| I... E ,-.:: ; %

= = REEIEE

N S v == S

® ® =

=2 =

Fig. 11. SignedSummation module.

most bit positions have 0 and 1, while two bit positions have 0, 1, and —1. We
can apply unsigned summation techniques only when —1 can be present in the
highest bit position, that is, bit position 15 (the bit position a). For this, we may
sign-extend the 4-bit 2’s complement numbers in (9) to 16 bits. Then, the result
will also be 16-bit 2’s complement, that is, a binary number with negative bit
15. We also have to make sure that the summation does not overflow. If it may,
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we need to sign-extend all numbers to 17 bits. However, in our case, the sum is
also guaranteed to be 16-bit 2’s complement.

AXXXXXXXXXXXXXXX + bXXX + cXXX + dXXX + exxx (9)
= axxxxxxxxxxxxxxx + 1000000000000000 + bxxx (10)
+ 1000 + ¢xxx + 1000 + dxxx + 1000 + exxx + 1000
= AXXXXXXXXXXXXXXX + bxxx + txxx + dxxx + exxx (11)
+10111111111100000

= AXXXXXXXXXXXXXXX + bxxx + exxx + dxxx + 10111111111108xxx (12)
= AXXXXXXXXXXXXXXX + bxxx + exxx + dxxx + 0111111111108xxx (13)

Having said all that, a smarter (more area and speed efficient) approach,
is to use the identity in Table1, and hence, to replace the a in (9) with a +
1, where a is an unsigned 0 or 1 and is the NOT of a. Through this we get
(10), which is a summation of variable unsigned numbers and some 2’s comple-
ment constant numbers with still varying positions for the negative bits. How-
ever, these 2’s complement constants can be summed offline to obtain a single
16-bit 2’s complement number, hence (11). Then, we happen to have negative
bits only in bit position 15. Equation (12) does a little optimization by adding
the rightmost two numbers in (10) offline and hence combining them into a sin-
gle number (1011111111110exxx). Equation (13), on the other hand, eliminates
bit position 16 of that combined number as the sum is guaranteed to be 16 bits
(bit positions 0 through 15).

Table 1. Proof of a = a + 1.

a a+1l
0[04+1=1+(-1)=0
UT+1=0+(-1)= -1

The SignedSummation module in Fig. 8 is detailed in Fig. 11. It is composed
of CCT and a Final Adder. The little cones in Fig. 11 expose bits of signals
and recombine them. The bit-level manipulation before the CCT is a pictorial
representation of equations (9) through (13). Note that the number of zeros to
the left of € does not have to be one as in (13) in the general case. It is lgA — 1
zeros (assuming A is a power of 2) as in Fig. 11 (look under dsel[0]). Also, note
that the CCT in Fig. 11 not only sums TIV,,.,, and dLUT outputs but also the
outputs of TOs (shown in Fig.2). There is no reason why we should do two
separate summations.
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3.2 FR-dLUT-VL Microarchitecture

FR-dLUT-VL has a similar microarchitecture to FR-dLUT. They both have
A dLUTs and a TIV,,.,. The contents of TIV,,.,, are the same for both archi-
tectures. The difference between FR-dLUT-VL and FR-dLUT is the dLUT con-
tents (compare Fig. 12 with Fig. 7). FR-dLUT-VL’s dLUTSs store the compressed
versions of the differences stored in the FR-dLUT’s dLUT. Due to the nature
variable length coding, dLUTs of FR-dLUT-VL are wider than those of FR-
dLUT. However, unused bits of those dLUTSs’ entries are don’t care, and logic
synthesis can optimize them out.

Figure 12 shows the entries of the FR-dLUT-VL with 4 dLUTs for a function
with w; = 16 and w, = 16.

TIVhew

dLUT3

dLUT2

dLUT1

dLUTO

T f(4)
f(12)

| H(EG3)=f(4))

H(f(2)—f(3))

H(f(1)—f(2))

H(f(0)—f(1))

£(20)

unused

H(f(7)—f(6))

H(f(6)—f(5))

H(f(5)=f(4))

JHEAD—f(12))

H(f(10)—f(11))

H(f(9)—£(10))

H(f(8)—f(9))

l f(21;—4)

unused

H(f(15)—f(14))

H(f(14)—f(13))

H(f(13)—f(12))

214

Fig.12. LUT contents of FR-dLUT-VL implementation for A = 4.

It is obvious that one can apply any compression method on dLUT contents.
In this work, Huffman coding [12] is chosen for this purpose. For each dLUT,
the frequency of the values is calculated. According to the frequency, each value
is assigned a Huffman code. Frequency for each value in a dLUT is calculated
separately from the other dLUTs. Additionally, due to the encoded values stored
in the dLUTs, after each value is read from its respective dLUT, it needs to go
through a Decoder module before it can be used in SignedSummation module.

In FR-dLUT-VL microarchitecture, instead of encoding the whole value, a
portion of the entry is taken and then the encoding method is applied. For
example, if three MSBs are selected, each entry’s three MSBs are encoded. To
determine the separation point in a dLUT, starting from the two MSBs of an
entry to all bits of entry, each possible combination is tested. For each combi-
nation, dLUT sizes and the decoder sizes are calculated. Calculation of dLUT
sizes are done by adding encoded values’ bit width and the bit width of the
remaining bits that are not used in the encoding. Among these combinations,
the one with the lower bit count is selected for implementation. Pseudocode of
separation point selection is shown in Algorithm 1.
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Algorithm 1. MSB calculation of FR-dLUT-VL design.
Input: w; : input bit width, w, : output bit width

1: LUTsizeMin «— 2" x w,

2: M SBcountMin < 0

3: for M SBcountMin «— 2 to w, do
compute encoded representation of every entry
LUTsize — 0
DecoderSize — 0
for all unique encoded value do

LUTsize «— LUTsize+ (encoded value bit length) * (frequency of the value)

9: DecoderSize — DecoderSize + (encoded value bit length)
10:  end for
11:  LUTsize < LUTsize + 2%  (w, — M SBcount) + DecoderSize
12:  if LUTsize < LUTsizeMin then

13: LUTsizeMin «— LUTsize

14: M SBcountMin «— M S Bcount
15: end if

16: end for

Encoded part of the accessed dLUT entry is sent to the Decoder module.
After the encoded value is decoded, output bits and the non-encoded segment of
the stored value in dLUT is concatenated and sent to the DataSelection module.
Top module of FR-dLUT-VL method is shown in Fig.13. As shown in Fig. 13,
after the values are read from the dLUT (dwvals), part of dval goes through the
Decoder, then the decoded value merges with the rest of the dval and becomes
the decoded difference value (ddval) which is the input for the DataSelection
module.

3.3 SR-dLUT Microarchitecture

The main idea in SR-dLUT is to eliminate the TIV ., in FR-dLUT and instead
add dLUT entries on top of the previous function value. This can be done when
not only the function f is smooth but also the input (x in f(x)) is smooth.
Smoothness of x means the consecutive values of x are close to each other. This
is, for example, the case when x comes from a sensor for example in a closed-
loop control application, or when x is a timer tick or a smooth function of time.
Elimination of TIV ¢, makes SR-dLUT quite competitive in terms of area.

Figure 15 shows the top level of the proposed SR-dLUT microarchitecture,
which consists of AddressGenerator (Fig.16), dLUTSs, DataSelection (Fig.19),
and SignedSummation (Fig. 20).
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| AddressGenerator |
direct address indirect address select
n—lgA—-1 n—IgA
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| SignedSummation |
K
f(a)

Fig. 13. Top module of FR-dLUT-VL microarchitecture.

Note that A of SR-dALUT is not the same as A of FR-dLUT. For FR-dLUT,
A is a purely internal parameter stating the number of dLUTSs, and hence, it has
nothing to do with how it functions. For SR-dLUT, A is not only an internal
parameter but also shows how smooth x is, that is the maximum amount of
change between consecutive x values.

AddressGenerator module calculates the required addresses of dLUTs for
input «. One register stores the previous input value. The previous input is sub-
tracted from the current input to find magnitude and diff_sign that determines
whether the shift direction may be forward or backward. The thermo vector is
shifted in direction of diff-sign as the amount of the magnitude. (Fig. 18) shows
the ThermoRegulator block that resolves the overflow issue due to the shift oper-
ation. The thermo vector is XOR’ed with the shifted thermo vector. Then, the
output of the first XOR is shifted by 1 in a backward direction, and the resulting
signal is named ¢tmp0. The specific bit portion of tmpO is XOR’ed to determine
select signals. Similarly, the specific bit portion of thermo is ORed to determine
dLut_Out_En which is used in control mechanisms of both ThermoRegulator and
DataSelection modules. (Fig.17) shows the AddressSelection module that uses
a conditional control mechanism by using tmp_a signals as input tmpO signals
as select to determine addresses of dLUTs.
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Note that SR-ALUT has access to much more than +A values, since each
TIV value is coupled with multiple TO tables in MP. In Fig. 2, we can see that
the same TIV value is used for 2(4%1+4z2+423) in the case of m = 3. While
we can access 2 x A different entries in dLUTSs, we can compute the function
for 2 % A % 2(Az1+ Az + Azs) different x values. For the reasons explained above,
A =1 is a meaningful case for SR-ALUT unlike FR-dLUT.

There are A parallel dLUTSs that store difference values in SR-dLUT microa-
chitecture. Figure 14 shows an example of SR-dLUT with 4 dLUTs, which imple-
ments a function f with w; = 16. SR-dLUTSs store subsequent differences values
in-order and each dLUT stores same amount of data with a length of 2("—94)
Since the SR-dLUT method does not require a TIV,,,, table, we can no longer
have half entries for one of the dLUTs like in Fig. 7. In other words, there is no
unused memory location in dLUTs.

[ f(13)=f(12)

f(14)—f(13)

f(15)—f(14)

dLUTO dLUT1 dLUT2 dLUT3
0:| f(H—f(0) | f)—f1) | f(3)—f(2) | f(4)—f(3)
1:| f(5)—f4) | f(6)—f(5) | f(7)—f(6) | f(8)—f(7)
2:| £f(9)—f(8) | f(10)—f(9) | f(11)—f(10) | f(12)—f(11) |21%
3

f(16)—f(15) l

Fig.14. LUT contents of SR-dLUT implementation for w; = 16 and A = 4.

DataSelection module of SR-dLUT is similar to DataSelection module of FR-
dLUT. The difference from FR-dLUT is that there is an extra control mechanism
that determines which signal is multiplied by the select signal. The multiplication
is implemented using an AND gate. The results of multiplication are dsel signals
that are connected to the SignedSummation module.

SignedSummation module of SR-dLUT is different from the FR-dLUT’s
SignedSummation. Since it needs to hold the previous value of the TIV out-
put in a register, and it could not use a single CCT to add dLUT outputs and
the TOs output from MP method. Therefore, there is an additional CCT. The
first CCT uses the current values of dsel and the previous outputs of the CCT.
It outputs two values, which are the values generated just before going through
the second CCT. The outputs of the first CCT are saved in registers for the next
iteration, at the same time used in the second CCT as inputs together with the
TOs outputs. As a conclusion, a final adder sums outputs of the second CCT.

One of the differences between SR-dLUT and the earlier version of this
work [10] is the form of thermo vector. While the size of thermo vector is 3A-
bit SR-dLUT, the size of the thermo vector is A-bit in [10]. The advantage of
using this new form of thermo vector is to find the dLUT addresses easier. In
other words, the AdressSelection module in our proposed SR-dLUT is simpler
than in [10]. Additionally, we used CCTs for the summation of dsels in our pro-
posed SR-dLUT. On the other hand, conventional addition units are used in [10].
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Our proposed summation module has an advantage in terms of area when A
increases because the addition unit in [10] is proportional to A.

a
n
addressGenerator
addr [A—-1] addr [1]| addr 0]
n—-IgA n—-IgA n—-IgA
=
g1 8§l «
+ B Q
dLUT | | dLUT [ [ dLUT | 3 i’:l 3
A-1 1 0 g F| @
—
S|
d d d
dval [A—1] dval [1]| dval [0] 1y A
[ DataSelection |
d d d
dsel [A—1] dsel [1]| dsel[0]
| SignedSummation |
K
f(a)

Fig. 15. Top module of SR-dLUT microarchitecture.

3.4 SR-dLUT-VL Microarchitecture

Difference between SR-dLUT-VL and SR-dLUT is similar to the difference
between FR-dLUT and FR-dLUT-VL, where values inside dLUTs are partially
compressed according the algorithm shown in Algorithm 1. As in FR-dLUT-VL,
partial output of dLUTS’ (dval) in SR-dLUT-VL first go through a decoder,
then output of the decoder is concatenated with the remaining part of the dval.
The concatenated value represents the actual dval from the SR-dLUT microar-
chitecture, which can now be used in the SignedSummation module.

4 Results

In this section, we compare our proposed microarchitectures with the state-of-
the-art (T-TIV methods) as well as ConvLUT (i.e., RegularTIV). For each of
the 8 TIV construction methods listed above, we wrote a code generator in Perl
that generates Verilog RTL for a complete MP design. The code generators take
in w;, w,, and m (number of MP’s TOs) as well as parameters related to the
specific TIV construction method such as A for our methods.



296 Y. S. Gener et al.

apmjuSewr

tmpO [3A-1:24]

Bitwise

——select
OR |A

Thermometer

Regulator
n n—lgA Address | n-lgaA address
3 reg o i tmp_a Selection

{ thermo[3A-1] ... thermo[3A-2] | thermo[24A], 3
thermo[2A-1] ... thermo[2A-2] | thermo[A], —s—~— dLut_Out_En
thermo[A-1] ... thermo[A-2] | thermo[0] }

3A

Fig. 16. SR-dLUT AddressGenerator module.

{ tmpO[3A-1] | tmpO[24-1] | tmpO[A-1]}  {tmpO[2A+1] | tmpO[A+1] |tmpO[1]}  {tmpO[24] | tmpO[A] | tmpO[0] }

tmp_a+1 tmp_o-1 tmp_a tmp_a+1 tmp_a-1 tmp_a tmp_a+1 tmp_o-1 tmp_a
n—lghA n—lghA nflgA'j/ n—lgh n—1ghA n—lgAi/ n—lgA/t n—lgA'f n—IgAi/
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Fig.17. SR-dLUT AddressSelection module.
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- 3N

default 3’110 3'b110 3'b111

Fig. 18. SR-dLUT ThermometerRegulator module.
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dLut Out_En
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Fig.19. SR-dLUT DataSelection module.

Generation of the original TIV (RegularTIV) and TOs, i.e., the MP method
[6], is done using a tool [14], which is also part of FloPoCo [15]. This tool (written
in Java) generates RTL code in VHDL targeting various mathematical functions
and parameters W;, W,, and m. Our Perl script runs the Java MP generator
with W;, W,, and m, where W, shows the precision of the output rather than
the bit width of any of the embedded tables. MP generator decides what sizes
RegularTTV and TOs have to be for the given set of w;, w,, and m. This infor-
mation is embedded into Table 2 of [6] which, for example, shows that w; = 10
and w, = 17 for the RegularTTV part, when the function is sine and w; = 16,
w, = 16, and m = 1. Our Perl takes in w;, w,, and m, runs the Java MP
generator with the input parameters. Then, it parses the VHDL produced by
the MP generator, extracts w; and w,, and runs the TTV generator. Then, our
script produces Verilog, in which we have an MP design equivalent to the input
VHDL but the RegularTIV is replaced with our TIV of choice (one of FR-dLUT,
FR-dLUT-VL, SR-dLUT, SR-dLUT-VL, 2T-TIV, 2T-TIV-IMP, 3T-TIV). Our
script automates verification as well as design. We exhaustively test all function
values by comparing the output of the VHDL and Verilog designs.

We generated the above listed 8 designs for sin(z) (z = [0,7/2]) and 2*
(x = 10,1[) functions with w; = 16, w, = 16 and w; = 24, w, = 24, both with
various m for each resolution. We then synthesized them on to a Xilinx Artix-7
FPGA (more specifically XC7A100T-3CSG324). FR-dLUT and FR-dLUT-VL
were synthesized for four A values (2, 4, 8, and 16) where SR-dLUT and SR-
dLUT-VL synthesized for an additional A value, where A = 1. For 24-bit res-
olution, m values of 1, 2, 3, and 4 were implemented. For 16-bit resolution, m
values (number of TOs) of 1, 2, and 3 were implemented, since the Java tool at
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Fig. 20. SR-dLUT SignedSummation module.

[14] gave an error and did not produce any VHDL. Note that all LUTs (Regu-
larTIV, dLUTS, TIV e, TIVgirs, TIVair 1, and TIV g, 5 r2) are logic-synthesized
instead of instantiating memory blocks. This yields designs with smaller area for
all methods including the original TIVs. The synthesis option of Area with High
effort is selected for better area minimization in Xilinx ISE.

Tables2, 3, and 4 show the Area, Time, and Area-Time Product (ATP)
results we obtained for sine and exponent function (2%) for 16-bit resolutions,
respectively. Similarly, Tables 5, 6, and 7 show the Area, Time, and ATP results
we obtained for 24-bit versions of sine and exponent function. Area results are
in terms of FPGA LUTSs. Time (also called timing) is the latency (i.e., critical
path) of the circuit measured in terms of nanoseconds (ns). ATP simply shows
the product of Area (#LUTs) and Time (ns) columns divided by 10%. ATP
of a design shows the tradeoff between area and timing, also ATP is usually
correlated with power consumption. The best Area, Time, and ATP results are
shaded for each m value in the tables.

In Table2 through 7, all designs (60 for 16-bit and 80 for 24-bit) are
equivalent at MP level. That is, they all produce the same function with the
same resolution. However, the TTV microarchitectures are equivalent within the
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Table 2. Area results for 16-bit resolution

Function | m| RegularTIV| 2T-TIV | 2T-TIV-IMP | 3T-TIV Full Random Semi Random
A [ FR-dLUT| FR-dLUT-VL| & | SR-dLUT| SR-dLUT-VL

2| 249 277 | 1| 245 268

1 sae | s e 157 [4] 249 271 | 2| 285 306

8| 313 329 | 4| 368 380

16| 435 454 | 8| 521 547

2| 208 215 | 1| 253 257

i 4

Sine 58 | 10 15 - 245 245 | 2| 287 203

16-bit 8| 320 320 | 4| 362 364

16] 451 248 | 8| 606 610

2| 181 187 | 1| 205 210

N . 150 185 [ 2] 220 22 | 2| 242 244

8| 277 277 | 4| 317 325

16] 402 206 | 8| 550 555

2| 255 262 | 1] 251 258

1 sa | s wa | aes |4 265 283 | 2| 293 306

8| 323 320 | 4| 375 382

16| 438 238 | 8| s21 551

2| 215 214 | 1] 259 262

7 1,0 06 | 100 196 )30 |41 247 242 | 2| 290 295

16-bit 8| 321 320 |4] 368 372

16| 443 442 | 8| 591 588

2] 191 188 | 1] 217 21

N 21 | 2] 252 257

3 165 200
250 = 8| 292 288 | 4| 331 330
16| 420 416 | 8| 553 552

Table 3. Timing results for 16-bit resolution

Full Random Semi Random
FR-dLUT | FR-dLUT-VL SR-dLUT | SR-dLUT-VL

Function|m| RegularTIV | 2T-TIV| 2T-TIV-IMP | 3T-TIV

16| 10.97 16.13
2| 7.60 7.50
4| 757 7.95
8] 9.90 12.36
16| 11.14 13.61

15.72 15.38
10.45 10.50
12.55 12.70
13.61 12.43
15.62 15.90

A A
2 8.46 8.16 1 9.94 11.30
1 6.60 8.22 6.67 0.66 4| 9.09 8.85 2| 10.62 15.90
8| 10.58 10.02 4| 12.77 12.69
16| 10.97 11.25 8| 14.28 14.75
2 7.82 8.09 1| 10.32 10.04
Slne- 734 0.02 7.68 0.47 4| 835 7.94 2| 11.75 11.27
16-bit 8| 9.16 9.16 4| 1238 12.71
16| 10.98 12.83 8| 14.70 15.07
2 7.73 8.09 1| 10.95 10.40
3 739 8.62 773 915 4 7.77 7.60 2| 11.76 12.07
8| 9.70 10.50 4| 12.69 12.35
16| 10.40 13.49 8| 15.02 14.73
2 8.32 7.88 1| 10.19 11.11
1 6.69 8.31 N/A 981 4| 9.08 9.08 2| 10.94 11.42
8| 9.38 9.45 4| 12.57 11.42
16| 10.78 11.38 8| 14.97 15.20
2 8.14 8.14 1 9.45 10.07
2" 2 7.77 014 7.65 9.7 4| 870 8.66 2| 12.34 11.81
16-bit 8| 10.16 12.92 4| 12.96 13.08
8
1
2
4
8
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Table 4. ATP results for 16-bit resolution

Full Rand Semi Rand
Function | m| RegularTIV| 2T-TIV | 2T-TIV-IMP | 3T-TIV U Random emi Random

2 [FR-dLUT]| FR-dLUTVL| A | SR-dLUT] SRALUT-VL

2| 211 226 | 1| 244 3.03

1 asr Lasr | ast | sas |2l 226 240 | 2] 3.03 4.86

8| 331 350 |4| 470 4.82

16| 4.77 511 | 8| 744 8.07

2| 163 172 | 1| 261 258

sine |, yag | 173 | 14s | 201 4] 205 195 |2 337 330

16-bit 8| 293 203 | 4| 448 463

16] 4.95 575 | 8| so1 9.19

2| 140 151 |1 224 218

sl 100 | 135 | 123 | 160 [A] 171 169 |2 285 295

8| 269 201 | 4] 402 4.01

16| 4.18 548 | 8| 826 8.18

2| 212 206 | 1| 256 2.87

| a2s | 278 | wa | sss 2241 257 | 2] 321 3.50

8| 3.03 302 | 4] 471 436

16| 4.72 498 | 8| 7.8 838

2| 175 172 | 1| 245 2.64

;

2 150 | 180 | 180 | 243 [A] 215 210 | 2] 358 3.48

16-bit 8| 3.6 213 | 4| 477 4.87

16| 4.86 713 | 8| 9.29 9.04

2| 145 141 1] 227 232

sl 127 13| 122 | 160 21176 184 |2| 316 3.26

8| 2.89 356 | 4] 451 2.10

16] 4.68 566 | 8| 864 878

same m. Therefore, it is best to compare the 8 microarchitectures separately for
every m. However, out of curiosity we compare all solutions for each of the 4
cases (16-bit sine, 16-bit 2%, 24-bit sine, 24-bit 2%).

Tables 2, 3, and 4 implement 16-bit sine and 2% 60 different ways each, where
57 comes from (RegularTIV + 2T-TIV + 2T-TIV-IMP + 3T-TIV + 4xFR-
dLUT + 4xFR-dLUT-VL 4 4xSR-dLUT + 4xSR-dLUT-VL) X (3 m values).
In the above tables, one result is missing for 2T-TIV-IMP because TIV ¢, and
TIVg¢s in the corresponding 2T-TIV have equal bit width, hence no optimiza-
tion is possible.

Tables 5, 6, and 7 implement 24-bit sine and 2% for an additional 20 different
ways due to the m = 4 case. The Time and ATP of RegularTIV for m = 1 are
missing for both functions and for 2T-TIV-IMP for 2% function in Table 6 and 7
because the synthesis tool was not able to complete routing. The tool reported
the Area but did not report the timing (Time).

Looking at Tables 2, 3, and 4, we can see that, except for 5 cases (2 in Area, 1
in Timing, and 2 in ATP), the proposed method is surpassed by the RegularTTV
and the T-TIV variants for 16-bit implementations. Though in a few cases, our
proposed methods offer up to 29%, 4%, 9% improvement in area, timing, ATP,
respectively over the state-of-the-art and RegularTIV. The area improvements
come from SR-dLUT. Time and ATP improvements come from FR-dLUT and
FR-dLUT-VL.

Looking at Tablesb, 6, and 7 show the results for 24-bit implementations
of sine and 2%. In area, SR-ALUT (and a few times SR-dLUT-VL) gives the
best results. In timing, FR-dLUT gives the best result in 3 out of the 8 cases
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Table 5. Area results for 24-bit resolution

Full Random Semi Random
FR-dLUT | FR-dLUT-VL SR-dLUT | SR-dLUT-VL
30907 30801 28175 29776
29402 29643 28132 29131
28755 29525 28088 28240
16| 28461 28942 28502 28702
3468 3579 2923 2956
4| 3291 3378 2968 3024
8| 3172 3208 3235 3317
Sine 16| 3575 3628 3589 3652
24-bit 2| 2468 2490 2248 2293
4| 2379 2405 2376 2424
8| 2525 2545 2528 2570
16| 2797 2821 2901 2977
2| 2083 2103 1849 1871
4| 1934 1965 1939 1993
8| 2073 2097 2099 2135

Function | m| RegularTIV| 2T-TIV | 2T-TIV-IMP | 3T-TIV A
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4

16| 2345 2993 8| 2466 2538
1
2
4
8
1
2
4
8
1
2
4
8
1
2
4
8

1| 54045 |36068| 51145 |30472

co|hH[N|

N

2 4922 4064 4687 3817

3 3015 2673 2890 2572

4 2583 2225 2500 2156

2| 45849 45721 46925 46888
4| 44484 44649 43715 45061
8| 43910 43989 43371 43271
16| 43765 44004 43655 43694
2| 4594 4626 4126 4126
4| 4283 4331 4157 4179
8| 4234 4415 4427 4480

2 16| 4545 4626 4798 4880
24-bit 2| 3071 3090 2862 2883
4| 3004 3037 2989 3022
8| 3117 3120 3154 3198
16| 3267 3265 3526 3591
2| 23% 2413 2206 2217
4| 2325 2363 2281 2312
8| 2441 2453 2452 2492
16| 2345 2572 2822 2886

1| 57511 |57400| 55059 |48156

2 5845 4703 5658 4970

3 3512 3341 3434 3235

4 2844 2614 2804 2515

(2 different designs and 4 different ms for each design). FR-dLUT-VL, on the
other hand, is the best in 3 cases. 2T-TIV and RegularTIV each are the best
in 1 case. In ATP, FR-dLUT, FR-dLUT-VL, and SR-dLUT are best in 4, 3,
and 1 case, respectively. Our proposed methods offer up to 23%, 11%, 26%
improvement in area, timing, ATP, respectively over the state-of-the-art and
RegularTTV.

In summary, proposed methods offer, in greater bit widths, significant
improvement in all of Area, Time, and ATP even beyond the state-of-the-art
T-TIV methods.

The bar graphs (Fig.21) summarize the results by comparing RegularTIV,
the best of T-TIV methods, the best of FR-ALUT methods, and the best of
SR-dLUT methods. RegularTIV and T-TIV methods combined are, on the aver-
age, superior to proposed FR-dLUT and SR-dLUT methods in 16-bit results.
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Table 6. Timing results for 24-bit resolution

Full Rand Semi Rand
Function |m| RegularTIV | 2T-TIV| 2T-TIV-IMP | 3T-TIV uZ tandom emi Random
2 [FR-dLUT | FR-dLUT-VL| A | SR-dLUT | SR-dLUT-VL
2| 1477 | 1478 | 1| 1749 | 17.94
1|can'tRoute| 14.72| 2448 | 1640 |2 162 | 1602 |2} 1646 | 1737
8| 1639 | 1727 |4 1626 | 17.47
16| 1751 | 1745 |8| 1739 | 1845
2] 1070 | 1079 | 1] 1350 | 1241
2| 1248 |1146| 1163 |1218| 22045 1116 | 2] 1375 | 1378
8 11.01 11.73 4 14.98 15.49
Sine 16| 12.27 11.96 8 16.08 16.73
24-bit 2| 1001 | 1016 |1| 1179 | 1315
sl 1171 |1008| 1121 | 1150 [ 4|Z9800] 1013 [2] 1360 | 1448
8| 1116 | 1098 |4 1440 | 1444
16| 1121 | 1129 |8| 1655 | 16.69
2] 1011 | 1057 | 1| 1258 | 12.73
ol 1245 l10s2| 1153 | 108y A1 1129 [11989 2] 1472 | 1436
8| 1089 | 1102 |4] 1517 | 1578
16| 1151 | 1298 |8| 1800 | 17.93
2] 1614 | 1509 | 1| 1785 | 1866
1| Can'tRoute| 16.11 | Can't Route| 17.92 4] 16.95 16.80 2| 1638 17.27
8| 1743 | 1663 |4 1710 | 1741
16| 1845 | 1866 |8| 1765 | 17.82
2] 1113 | 1168 | 1| 1335 | 1258
o1 1086 | 1176 1207 | 1245 |41 1098 | 1121 2] 1205 | 1282
8| 1242 | 1219 |4] 1553 | 1513
> 16| 1237 | 1221 | 8| 1548 | 1520
24-bit 2] 1038 | 1025 | 1| 1217 | 12.19
3| 1106 |1198| 1154 |1221} 2 1071 | 1049 2] 1308 | 1305
8| 1135 | 1132 |4 1420 | 1438
16| 11.59 11.88 8 16.00 15.79
2| 972 | 1008 |1| 1242 | 1257
ol 1215 |100a| 1128 |114p |41 1027 | 1038 [2] 1402 | 1877
8| 1158 | 1077 |4 1457 | 1509
16| 1151 | 1184 |8| 1706 | 1677

However, in 24-bit results either FR-dLUT or SR-dLUT method ore their vari-
ants (-VL) are superior. Only with one m value, we lose to our competition for
each function (sine and 2%), and that is in time metric. In each of the two 24-bit
functions, there are 4 cases (i.e., 4 different m’s), and 3 metrics (Time, Area,
ATP). Therefore, we are speaking of 12 ways to compare the TTV microarchi-

tectures. Ours are better in 11 out of 12.

Figure21(a) and (b) shows the 16-bit results. For 16 bits, RegularTIV has
the best outcome in 8 out of 18 cases, 2T-TIV-IMP is the best in 7 cases, and
our proposed metods are the best in 5 cases. Te total is 20, not 18, because there

are 2 cases with a tie.
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Table 7. ATP results for 24-bit resolution

Full Random Semi Random
FR-dLUT | FR-dLUT-VL SR-dLUT | SR-dLUT-VL

Function | m| RegularTIV| 2T-TIV | 2T-TIV-IMP | 3T-TIV 2
2 | 456.56 455.18 492.75 534.15
4
8

459.20 474.73 462.91 505.86

456.68 493.38

495.65 529.49
39.46 36.70
40.80 41.66
48.47 51.38
57.69 61.08
26.50 30.16
3231 35.10
36.40 37.11
48.00 49.70
23.25 23.81

1 N/A 530.85| 1252.13 |502.36
471.15 509.84

A
1
2
4
16| 498.27 505.12 8
2| 37.12 38.60 1
4| 3438 37.69 2
8| 34.93 37.63 4
Sine 16| 43.87 43.37 8
24-bit 2| 24.70 25.30 1
2331 24.36 2
8| 28.17 27.95 4
16| 31.35 31.83 8
2| 21.07 22.23 1

21.83 19.63 2| 28.53 28.62

8| 22.58 23.10 4| 31.84 33.68

16| 26.98 38.84 8| 44.40 45.51

1

2

4

8

1

2

4

8

1

2

4

8

1

2

4

8

2| 6124 46.57 54.53 46.51

3 35.29 29.38 32.40 29.81

4 32.26 23.41 28.81 2343

2 | 740.09 731.08 837.38 875.02
4| 75391 750.06 716.14 778.11
8| 765.44 731.63 741.64 753.18
16| 807.55 820.94 770.69 778.80
2| 51.14 54.01 55.07 51.88
47.04 48.55 53.84 53.59
8| 52.58 53.82 68.76 67.76
2 16| 56.24 56.48 74.25 74.19
24-bit 2| 31.89 31.66 34.83 35.15
32.17 31.85 39.09 39.43
8| 3537 35.33 44.77 45.99
16| 37.87 38.78 56.42 56.69
2| 23.24 24.33 27.39 27.86
23.88 24.44 31.98 34.15
8| 28.28 26.42 35.72 37.59
16| 26.98 30.44 48.13 48.40

1 N/A 924.66 N/A 862.91

2 63.47 55.32 68.27 60.37

3 38.84 40.04 39.63 39.50

4 34.55 28.60 31.52 28.72

In Fig.21(c) and (d), due to the routing errors we removed the results of
m =1 from the bar graphs. From the remaining m values (2, 3, and 4) we can
see that proposed method is the best in terms of area, time, and ATP except for
one case where m = 2, in which RegularTIV shows better timing results. When
comparing FR-dLUT and SR-dLUT, we can see that SR-dLUT has the best
performance in terms of area, and FR-dLUT has the best timing. In the current
implementation of SR-dLUT, FR-dLUT shows much better timing performance
but only falls behind a little in terms of area, that is why for almost all cases,
FR-~dLUT outperforms SR-dLUT in terms of ATP.
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(a) Bar graph of sine for 16-bit input resolution.
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(b) Bar graph of 2% for 16-bit input resolution.
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(c) Bar graph of sine for 24-bit input resolution.
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(d) Bar graph of 2% for 24-bit input resolution.

Fig. 21. Bar graphs of Area, Time, and ATP for sine and 2.

5 Conclusion

In this chapter, we have presented lossless LUT compression methods, called
FR-dLUT and SR-dLUT as well as their variants FR-dLUT-VL and SR-
dLUT-VL, which can be used to replace TIVs of Multi-Partite (MP) function
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evaluation method among other applications. It is possible to use our methods
and the previous state-of-the-art within the context of any LUT-based method
for evaluation of smooth functions. Although it is possible to implement these
techniques in software, we implemented our proposed methods in hardware (i.e.,
low-level Verilog RTL) and benchmarked at 16-bit and 24-bit resolutions within
MP implementations of sine and exponential.

It was observed that our four methods yield significant and consistent
improvements at high resolution (i.e., 24 bits) over the previous state-of-the-
art, which we also implemented through design generators for fair comparison.
We synthesized the generated designs on FPGA and found that our methods
result in up to 29% improvement in area, 11% improvement in latency, and 26%
improvement in ATP over the previous state-of-the-art.

This chapter introduces SR-dLUT-VL for the first time. SR-dLUT is, on the
other hand, is based on [10]. Yet, it is optimized and plugged into MP here,
besides getting compared with the other methods in many cases. Moreover, FR-
dLUT and FR-dLUT-VL are presented in greater detail compared to [16].

In future work, SR-dLUT can be modified to utilize pre-fetching. That may
make SR-dLUT better than all other techniques in latency at the expense of
some additional area. Since SR-dLUT is already efficient in area, it can afford
some additional area. However, pre-fetching can also allow memory packing,
which can lower area at the expense of some additional latency.
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