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tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
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rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
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Preface

This book contains extended and revised versions of the highest quality papers, pre-
sented during the 27th edition of the IFIP/IEEE WG10.5 International Conference on
Very Large Scale Integration (VLSI-SoC 2019), a global System-on-Chip Design and
CAD conference. The 27th edition of the conference was held October 6–9, 2019, at
the Cuzco Convention Center, Cuzco, Peru. Previous conferences have taken place in
Edinburgh, Scotland (1981); Trondheim, Norway (1983); Tokyo, Japan (1985);
Vancouver, Canada (1987); Munich, Germany (1989); Edinburgh, Scotland (1991);
Grenoble, France (1993); Chiba, Japan (1995); Gramado, Brazil (1997); Lisbon,
Portugal (1999); Montpellier, France (2001); Darmstadt, Germany (2003); Perth,
Australia (2005); Nice, France (2006); Atlanta, USA (2007); Rhodes Island, Greece
(2008); Florianopolis, Brazil (2009); Madrid, Spain (2010); Kowloon, Hong Kong
(2011), Santa Cruz, USA (2012), Istanbul, Turkey (2013), Playa del Carmen, Mexico
(2014), Daejeon, South Korea (2015), Tallin, Estonia (2016), Abu Dhabi, UAE (2017);
and Verona, Italy (2018).

The purpose of this conference, which was sponsored by IFIP TC 10 Working
Group 10.5, the IEEE Council on Electronic Design Automation (CEDA), and the
IEEE Circuits and Systems Society, with the cooperation of ACM SIGDA, is to
provide a forum for the presentation and discussion of the latest academic and
industrial results and developments as well as the future trends in the field of
System-on-Chip (SoC) design, considering the challenges of nano-scale,
state-of-the-art, and emerging manufacturing technologies. In particular, VLSI-SoC
2019 addressed cutting-edge research fields like Heterogeneous Mobile Architectures,
Reliability and Security of MPSoCs, Radiation Effects, Binary Neural Networks,
Variability, Self-Test, and Test Generation. The chapters of this new book in the
VLSI-SoC series continue its tradition of providing an internationally acknowledged
platform for scientific contributions and industrial progress in this field.

For VLSI-SoC 2019, 28 papers out of 82 submissions were selected for oral pre-
sentation and 15 for poster presentation. Out of these 28 full papers presented at the
conference as oral presentations, 15 papers were chosen by a Selection Committee to
have an extended and revised version included in this book. The selection process
of these papers considered the evaluation scores during the review process as well as
the review forms provided by members of the Technical Program Committee and the
session chairs as a result of the presentations.

The chapters of this book have authors from Brazil, Canada, Cyprus, England,
Estonia, Germany, India, Israel, Italy, Portugal, Switzerland, Turkey, and England. The
Technical Program Committee for the regular tracks comprised 89 members from
29 countries.

VLSI-SoC 2019 was the culmination of the work of many dedicated volunteers:
paper authors, reviewers, session chairs, invited speakers, and various committee
chairs. We thank them all for their contributions.



This book is intended for the VLSI community at large, and in particular the many
colleagues who did not have the chance to attend the conference. We hope you will
enjoy reading this book and that you will find it useful in your professional life and for
the development of the VLSI community as a whole.

June 2020 Carolina Metzler
Pierre-Emmanuel Gaillardon

Giovanni De Micheli
Carlos Silva-Cárdenas

Ricardo Reis
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Software-Based Self-Test for Delay Faults

Michelangelo Grosso1, Matteo Sonza Reorda2(&),
and Salvatore Rinaudo3

1 STMicroelectronics s.r.l., AMS R&D, Turin, Italy
michelangelo.grosso@st.com

2 Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy
matteo.sonzareorda@polito.it

3 STMicroelectronics s.r.l., AMS R&D, Catania, Italy
salvatore.rinaudo@st.com

Abstract. Digital integrated circuits require thorough testing in order to guar-
antee product quality. This is usually achieved with the use of scan chains and
automatically generated test patterns. However, functional approaches are often
used to complement test suites. Software-Based Self-Test (SBST) can be used to
increase defect coverage in microcontrollers, to replace part of the scan pattern
set to reduce tester requirements, or to complement the defect coverage achieved
by structural techniques when advanced semiconductor technologies introduce
new defect types. Delay testing has become common practice with VLSI inte-
gration, and with the latest technologies, targeting small delay defects (SDDs)
has become necessary. This chapter deals with SBST for delay faults and
describes a case of study based on a peripheral module integrated in a System on
Chip (SoC). A method to develop an effective functional test is first described.
A comparative analysis of the delay faults detected by scan and SBST is then
presented, with some discussion about the obtained results.

Keywords: Software-Based Self-Test � Transition delay faults � Small Delay
Defects � VLSI � Microcontrollers � Peripherals

1 Introduction

Testing at the end of manufacturing is a mandatory requirement for digital integrated
circuits, to guarantee product quality and minimize the number of field returns. Its cost
constitutes a large part of the overall budget, and consequently designers and product
engineers collaborate to find the best solutions in terms of test coverage and application
costs for the products. The inclusion of additional Design-for-Testability (DfT) dedi-
cated structures within the chip is considered a valid approach to simplify and accel-
erate test generation and application: the most common approach, in digital logic, is the
use of scan chains, which provide direct controllability and observability to most flip-
flops in the circuit. Today’s scan chain-based methodologies overcome many limita-
tions of the basic approach. Some examples include:

• Scan compression, to reduce the test pattern size and alleviate the memory
requirement on the tester;
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• On-chip clock controllers, to use available on-chip oscillator and phase-locked loop
(PLL) for applying patterns at-speed, i.e., at the nominal circuit frequency;

• Power-aware pattern generation, to avoid the excessive energy dissipation during
test due to a switching activity higher than normal.

Alternative and complementary approaches to scan chain-based testing have been
developed and used in the past to provide a wider range of methods to designers and
product engineers. Among those, Software-Based Self-Testing (SBST) methods [1] are
based on the application of functional stimuli to an on-chip microprocessor, by forcing it
to run a specific piece of code. With such a kind of stimulation, it is possible to guarantee
the detection of structural faults within the logic, at the nominal circuit frequency (at
speed) and without extra power consumption; however, test generation and coverage
assessment processes are not as standardized, automated and widespread. The adoption
of advanced semiconductor technologies even for safety-critical applications, requiring
a high level of reliability, triggered the usage of SBST for in-field test, in the form of
Self-Test Libraries (STLs) developed by the semiconductor company manufacturing the
device and integrated by the system company in the application code [2].

While most of the papers describing techniques to generate SBST programs and
assess their effectiveness focused on stuck-at faults, some of them also dealt with delay
faults [3–8], whose importance is growing with shrinking semiconductor technologies.
Several researchers (e.g., [9]) highlighted the fact that the percentage of functionally
untestable delay faults (i.e., delay faults that cannot produce any failure when the
circuit works in the operational mode) may be significant in many cases, thus reducing
the achieved fault coverage. Clearly, the ideal approach would be to remove untestable
faults from the fault list when computing the achieved fault coverage [10]. Unfortu-
nately, given the complexity of modern processors, the task of identifying functionally
untestable faults with a scalable effort still remains an open problem [9, 11].

Delay defects are usually modeled as path delay faults or transition delay faults. Tran-
sition delay faults are more easily handled by Electronic Design Automation (EDA) tools
and test suites targeting stuck-at and transition delay faults in combination with scan are
quite common in the industry. However, with the continuous shrinking of geometries and
rising of frequencies, and as a direct consequence of process variations, the impact of more
subtle delay defects has been rising, and the specific case of Small Delay Defects (SDDs)
required in the last years the development ofmore advanced test generation techniques [12].

In this chapter, which extends a previously published paper [13], we propose a
SBST methodology for testing a digital communication peripheral embedded in a
mixed-signal ASIC device at the end of manufacturing focusing on both stuck-at and
transition delay faults. The manually developed test stimuli include a specific code to
be run by the embedded microcontroller, in parallel with the interaction from the
outside handled by an Automatic Test Equipment (ATE). The effectiveness of the
approach in detecting SDDs is also evaluated and discussed.

The goal of the chapter is first to demonstrate that SBST can be used to improve or
replace part of traditional test procedures for digital logic, thus improving test coverage
while containing test application cost. As a matter of fact, functional/embedded
software-driven testing parts are commonly employed for analog components in
mixed-signal circuits, disregarding the coverage that they may inherently obtain on the
digital logic. Secondly, we compared the list of faults detected by the proposed SBST
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technique with the faults detected using scan. Results show that due to designer
choices, some faults can only be detected resorting to a functional approach, while
some of the faults which are only detected by the scan test proved to be functionally
untestable, and hence their detection produces some overtesting. We also highlight the
specific effort and computational time required for the process of fault grading the
developed procedures, depending on the chosen fault model and observation strategy.
Finally, for the first time, we compare the transition delay coverage and small delay
defect coverage obtained with the use of the SBST approach.

In summary, the contribution of the chapter lies on the one side in proposing a
technique to guide the test engineer in the generation of suitable SBST tests for a
peripheral module, on the other on reporting detailed experimental results related to the
stuck-at and delay (transitions and small delay) fault coverage figures achievable with
SBST and scan on a real industrial case study.

This chapter is structured as follows: Sect. 2 provides an essential background to
appreciate details and motivations of the work; Sect. 3 describes the flow used to
develop the test set and to evaluate its test coverage. Experimental results on a case
study are reported in Sect. 4, and conclusions are drawn in Sect. 5.

2 Related Works

This chapter focuses on the end-of-manufacturing test of a case study corresponding to a
peripheralmodulemanaging communicationswith the outside of a System onChip (SoC).

Test development for digital circuits relies on the definition of fault models, abstract
models that represent the behavior of the circuit in the presence of a manufacturing
defect. This kind of modeling provides a mathematical method to analyze and measure
the effectiveness of a test in detecting the defect effects, and hence in discriminating
good and faulty devices, using a logic netlist representation of the circuit. The fault
coverage of a set of stimuli is represented by the ratio of faults that cause a difference
between the real circuit outputs and the expected ones, and the total number of faults.

The most common and widely used fault model for digital blocks of logic is the stuck-
at, corresponding to each single node in the circuit being fixed at the 0 (stuck-at-0) or 1
(stuck-at-1) logic level. The number of stuck-at faults is simply the number of nodes
multiplied by two. To complement the effectiveness of a test targeting stuck-at faults, other
fault models are used that consider other defect effects, such as bridging and delay faults.

Delay faults represent the behavior of a block of logic that is slower than expected,
due, e.g., to the increased resistivity or capacitance of a circuit structure. Delay defects
are usually modeled as path delay faults or transition delay faults. The former model is
defined as the cumulative delay of a combinational path that exceeds some specified
duration (e.g., the maximum propagation delay). The latter consists in a larger than
normal delay in the toggling of the logic value of a node (slow-to-rise or slow-to-fall);
such additional delay is considered to be large enough to cause an error on an output or
on the next clock front, when data sampling occurs. The transition delay fault model is
widely used due to its inherent simplicity, as it does not require timing models for
pattern generation, and Automatic Test Pattern Generation (ATPG) algorithms are
based on the ones for stuck-at faults.
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Experimental data [14, 15] shows that the smaller delay defects are more likely to
happen in the circuits. However, the transition delay fault coverage does not guarantee
the detection of subtle defects that cause small delays within a combinational path. In
fact, ATPG tools usually aim at covering the transition delay fault on a specific node
with the lowest effort, i.e., not necessarily activating the worst path passing through that
node. The detection of Small Delay Defects (SDDs) requires more specific patterns,
and therefore more sophisticated ATPG and fault simulation flows [12, 16].

With respect to traditional transition delay fault ATPG flows, this kind of analysis
requires timing analysis data – usually expressed in the Standard Delay Format (SDF).
Figure 1.a (adapted from [16]) shows how a specific transition delay fault can be acti-
vated through different paths. Considering the endpoint flip flop always observable and
the launch and capture clocks perfectly balanced, the delay fault on the combinational
logic will be detected by the test activating the transition only if the additional delay is
larger than the path slack (Fig. 1.b). Therefore, to detect a smaller delay defect, the
transition has to be activated on a path with smaller slack, and thus this information has to
be computed by the ATPG tool. This translates into additional algorithm complexity.

clock

Q

Q

D

D

Q

Path 1

Path 2

Path 3

Path 1

clock

Path 2

Path 3
slack

time

(a)

(b)

error sampled

fault

Fig. 1. In a) three different logic paths through which a fault can be activated in a sample circuit.
In b) the timing diagram of the three paths showing the slack in each case: a small additional
delay (highlighted in orange) causes an observable effect only along Path 1. (Color figure online)
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The size of the delay to be considered is strictly correlated with the implementation
technology and on slack distribution in the circuit. ATPGs usually address faults within
a maximum timing margin (max_tmgn), representing the slack limit for targeting faults
at their minimum slacks. To provide more expressive test quality measures with respect
to fault coverage, different metrics are described in the literature, such as Delay
Effectiveness (DE, [16, 17], which takes into account the size of the delay fault and the
minimum slack of a path that can activate it, and probabilistic models considering slack
and fault size distributions (e.g., [18, 19]). DE is defined as the ratio between the
integral of the cumulative distribution of detected fault slacks FD and the integral of the
cumulative distribution of total fault slacks FT within max_tmgn:

DE ¼
R
FD tð Þdt

R
FT tð Þdt ð1Þ

Test of digital modules is typically performed resorting to DfT techniques, such as
scan. While it guarantees an easy to apply and effective solution for stuck-at faults, scan
is known to have some criticalities when delay faults are considered. In such a case,
Launch on Capture (LoC) and Launch on Shift (LoS) can be used [20], which are
widely supported by commercial tools. Both LoC and LoS are known to produce some
overtesting, since they perform the test with full freedom in controlling and observing
the flip-flop state. In normal operational conditions this is clearly not the case. When
considering path delay faults, the overtesting issue can be tamed by identifying
functionally untestable paths and removing them from the target fault list [21, 22].
While exact solutions are hardly scalable, approximate ones have also been proposed
[10]. The role of temperature when facing delay faults has been explored in [23].

As an alternative to DfT solutions, functional ones (based on stimulating the circuit
acting on the functional inputs and observing the functional outputs, only, without any
DfT support) provide the advantage of not requiring any hardware overhead nor pro-
ducing any overtesting. On the other side, test stimuli generation is not automated in
this case, and its cost is clearly much higher. This solution may be particularly
attractive for SoCs including at least one processor, where a functional test takes the
form of a program suitably written to excite the target faults and make their possible
presence visible on the circuit outputs (Software-based Self-Test, or SBST) [1]. Pre-
vious papers explored techniques to guide the test engineer in the development of
suitable SBST programs targeting stuck-at and delay faults [4–6, 24]. Others focused
on a comparison between the Fault Coverage achievable with scan with respect to the
one of SBST, taking also into account the untestable delay faults [9]. Some works also
tried to provide techniques allowing to automate the generation of such programs [3,
7], possibly resorting to a hybridization between DfT and SBST [25]. Finally, some
recent works focused on new techniques to speed up the assessment of the quality of
the developed test programs [26]. Once again, the issue of preliminarily identifying
untestable delay faults to reduce the test generation effort and more precisely assess the
achieved test effectiveness plays a key role [11]. Clearly, removing functionally
untestable faults from the considered fault list allows to increase the achieved coverage,
as it is routinely done when adopting standards (e.g., ISO 26262 in automotive) and
performing Failure Modes, Effects and Diagnostic Analysis (FMEDA). On the other
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side, detecting them anyway may increase the overall quality of the product. The
experimental results we report in this chapter allow to quantitatively assess the impact
of functionally untestable faults and to better understand their origin.

In this chapter we do not focus on the usage of SBST for testing the faults in the
CPU, but rather consider the test of a communication peripheral core, building over the
techniques overviewed in [27]. We extend them to an interface based on the SPMISM

standard, and analyze the results gathered on a test case where both the scan and SBST
solutions were developed. For the first time, comparative results related to a peripheral
component are reported with respect to both stuck-at and transition delay faults. An
analysis of the results obtained with the two techniques provides the reader with some
better understanding of their advantages and limitations. Furthermore, we present an
evaluation of SDD coverage of the developed test set.

3 Proposed Approach

In order to test a peripheral module within a SoC with a functional approach, such as in
SBST, a specific code for the embedded CPU needs to be written, accessing the
peripheral registers by means of the system bus. In addition, in case of communication
peripherals or modules interacting with the outside of the chip, further stimuli need to
come from the external world, i.e., by the ATE. The operations of the embedded
microcontroller and the external tester must be synchronized by means of precise
timing control or handshake protocols.

For the validation of a SBST set and the assessment of test coverage, a hardware
description language (hdl) testbench is used to activate the system and emulate external
devices in simulation and fault simulation. The general flow is described in Fig. 2.
After the code is written and the testbench is prepared, a functional simulation is
performed to ascertain that the Unit Under Test (UUT) performs as planned. Then, fault
simulation is required to assess the coverage on a list of faults on the peripheral logic
structure.

Test development (CPU 
code+ATE stimuli)

Functional simulation

Expected 
behavior?

Fault simulation End

NO NO

YESYES

Is coverage
sufficient?

Fig. 2. Test generation flow.

6 M. Grosso et al.



3.1 Generation of the Test Program and External Stimuli

The development of a SBST set usually starts with a series of small program sections
able to access each of the peripheral registers and activate all its functionalities (e.g.,
transmitting and receiving data in different configurations). Any available design val-
idation code can be fruitfully employed in this step. Usually, each part is composed of a
preliminary “setup” or configuration phase, and an operational step. It is possible to
assume that the available code is already “short enough”, i.e., avoids redundant parts,
so as not to increase simulation time and also to limit test application duration/costs.

However, two important test-specific points have to be considered. First, the tar-
geted fault model has an impact on the required stimuli: as an example, whereas a
stuck-at test only requires that each register is written and then read first with ‘0’ and
then with ‘1’ logic values, when dealing with delay-dependent fault models, such as the
transition delay one, the sequence and the timing of operations is fundamental as well.
In this case, a sequence of ‘0’-to-‘1’ and ‘1’-to-‘0’ operations are needed for each node.
In this way, stuck-at faults are inherently covered.

Second, while validation usually requires the monitoring of a limited amount of
functional results of an operation, in case of test, in order to guarantee high test
coverage, the observation of fault effects requires more pervasive data sampling
operations. The fault effects need to be propagated either to the outside of the device (to
be read by the ATE) or to a bus or memory area readable by the embedded
microprocessor.

After a preliminary all-encompassing functional stimulation, if additional coverage
is required, it is possible to address the composing elements of the peripheral one at a
time, with specific techniques for activating the logic of each part. The most common
elements within a digital peripheral are controllers, combinational units such as com-
parators and algebraic units, sequential devices with a regular structure such as
counters, and data buffers.

Controllers are the circuit sections used to handle the control signals regulating the
datapath, and are typically implemented using Finite State Machines (FSMs), which are
mathematical models of computation. An FSM is composed by a finite number of
states; the current state evolves from one to another depending on the external inputs.
A test procedure normally aims at activating all possible states and transitions between
them, and then making the performed operations visible.

To maximize test coverage in combinational units, available ATPG tools can be
fruitfully used to generate a sequence of stimuli on limited parts of the logic. Such
sequences need then to be brought to the unit interface by means of microprocessor
instructions or external interaction, and then test results have to be propagated to
observable points. It may not be always possible to apply any pattern to inner circuitry:
this will be further discussed in Subsect. 3.3.

Regular sequential units such as counters need to be approached taking into account
the fact that their test can be quite time-consuming. For this reason, it can be useful to
concentrate on applying transitions on the output of each sequential element and
propagating them towards observable points, exploiting programmable features. For
instance, a 32-bit programmable counter can be set to count in different shorter ranges
to activate transitions in all register bits without waiting for 232 clock cycles: this can be
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accomplished by targeting the elementary increment/decrement operations with the
related generation and propagation of carry/borrow bits. Similarly, when testing a data
buffer, it is needed to know its characteristics (byte/word accessibility, LIFO/FIFO
architecture, etc.) and its implementation in order to develop the most suitable sequence
of write and read operations.

3.2 Test Coverage Evaluation

The evaluation of test coverage requires the fault simulation process, i.e., a gate-level
simulation reproducing the effect of faults and enabling to determine if the applied
stimuli produce a difference between the good and the faulty circuitry. Fault simulation
can be performed by suitably instrumenting a model in a logic simulator, and com-
mercial tools are also available. Functional fault simulators aimed at validating fault-
tolerant designs and at evaluating the effectiveness of test sets are becoming increas-
ingly popular. A fault simulator may require to provide the sequence of input/output
signals at the periphery of the module under test (e.g., in the form of a value change
dump – vcd – file), and hence a previous functional simulation run is needed; others
may directly handle the complete simulation of the testbench and any other circuit parts
not currently addressed for the computation of fault coverage. The latter case, repre-
sented by, to name but a few, Cadence Incisive Safety Simulator, Z01X by Synopsys
and Silvaco HyperFault, is more convenient for the problem described in this work.

Due to the potentially large number of faults within the logic under test and the non-
direct logic monitoring of SBST procedures, which may require many clock cycles to
propagate fault effects to observable points, the management and the running time of
fault simulation can get critical also when using state-of-the-art tools.

The key factors are the number of observation points and the timing when these are
actually sampled. In fact, the simulator will check the observation points only in certain
instants (decided by the designer). The more frequent is the check, the larger is the time
required by the simulation. On the other hand, a more frequent check may detect a larger
number of faults, which may increase the overall speed of the process. This is linked to
the algorithm used by the fault simulator: generally, once a fault is excited, the fault
simulator creates a new simulation instance to keep track of all the evolutions of the
faulty circuit. This simulation instance will be closed once the fault is detected, freeing
the resource allocated for that instance (fault dropping). The larger the number of sim-
ulation instances is, the higher the amount of resources required by the fault simulator is
and, consequently, the slower the fault simulation is. A similar discussion can be done
regarding the number of observation points. The larger their number is, the slower the
simulation is, but the higher the chance to detect a fault is. It is important to recall that, in
the end, the observation point must be chosen in order to get a coverage indication as
close as possible to the real test application; different solutions may be employed within
the same flow in order to get a fast albeit approximate information when designing the
test and a more precise one at the end. As an example, it may be useful to run experiments
while sampling data on all flip-flops, even if they may not be directly observable, to
iteratively evaluate the effectiveness of the pattern set in exciting faults (controllability);
then, switch to more realistic approaches to improve fault propagation to monitorable
points (observability), possibly with minor changes on the test.
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Another important point to take into account is related to how to model circuit
timing. When simulating the pure logic functionality of a circuit, or when evaluating
delay-independent fault models such as the stuck-at or transition delay, zero-delay
models are sufficient. In this case, the circuit states are usually updated with an event-
driven approach at each clock front, resulting in a relatively low computational effort
and therefore in a fast simulation. When verifying timing performance of specific
operations, to complement static timing analysis, or when verifying immunity or
coverage of delay-dependent faults, such as path delay or small delay defects, precise
timing simulation are required. This approach implies the use of timing data (SDF) and
a more complex event scheduler, which, as it will be shown later on, may have a
relevant impact on simulation performance.

3.3 Functional Testability

To correctly assess test coverage on a circuit, an important concept has to be intro-
duced. A fault is physically testable if there exists a test for the fault which can be
applied on the hypothesis of full accessibility to all circuit nets. Even when using full-
scan test approaches, not all input sequences can be applied to the combinational parts
of the circuit: therefore, not all faults are testable even under full-scan. For example, a
delay fault may not be testable, because no one of the vector pairs able to test it can be
applied to the inputs of the combinational block where it is located using LoC and LoS
techniques. A fault is functionally testable if there exists a functional test for exciting
that fault: when delay testing a circuit using SBST (or during the normal behavior of
the system), the signals feeding the addressed path are determined by the program
running on the processor and on the stimuli on the interfaces. These impose temporal
and spatial correlations among registers/flip-flops and thus among inputs/outputs of the
addressed logic. These correlations result in a smaller set of testable faults (Fig. 3).

Functionally untestable (redundant) faults cannot be activated and/or observed
during normal operations of the circuit, therefore they have no impact on circuit
behavior and performances. SBST focuses on functionally testable faults, intrinsically
avoiding overtesting the circuit’s redundant logic [11]. Two definitions are hence used:
fault coverage is the ratio between tested faults and the total number of faults; test
coverage is computed using the number of testable faults as denominator.

Fig. 3. Fault testability categorization.
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The identification of functionally untestable faults is still an open problem; how-
ever, during the analysis of the peripheral under test and during the generation of the
SBST set, the fault list can be pruned to exclude parts of the logic that cannot be
functionally operated, e.g., modules deactivated due to hardwired configuration values,
any DfT structures that cannot be activated in functional mode, such as scan chain-
related signals, or error-handling logic (e.g., redundant paths).

When considering small delay defects, the computation of effectiveness metrics
such as DE should take into account the actual possibility of functionally activating the
required transition along the minimum slack path, thus increasing the complexity of the
problem.

4 Case Study

To demonstrate the feasibility of the functional approach and to analyze its perfor-
mance with respect to stuck-at and delay faults, a communication peripheral based on
the System Power Management Interface (SPMISM) specifications by the MIPI Alli-
ance is used as a case study. The peripheral can handle two-wire serial communications
up to 26 MHz and includes functions such as bus arbitration, data serialization, error
detection and an automated ack/nack protocol.

4.1 Case Study Description

The selected peripheral acts as request-capable slave, i.e., a slave which can initiate
sequences on the two-wire SPMI bus (SCLK and SDATA). Figure 4 shows its basic
architecture. The processor system is connected by means of the AMBA AHB bus, and
the master/slave AHB interface (equipped with a FIFO mailbox) handles communi-
cations. The Control and Status Register (CSR) module includes byte-addressable
registers used to control and monitor the peripheral functions. Two finite state machines
(FSMs) manage the arbitration (Request FSM) and the general peripheral behavior.

The synthesized peripheral counts about 21,500 equivalent gates and is equipped
with full-scan. We underline that scan chains are not used when applying SBST.

ARM
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SLCK

SDATA

MEM
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FSM
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Data Out

Fig. 4. Architecture of the case study.

10 M. Grosso et al.



4.2 SBST Test Suite

The complete test set is composed of a series of small program/external stimuli sequence
pairs, each targeting some specific functionalities or modules within the peripheral:

• Reset, write 0/1 and read 0/1 (Reset). This segment is operated by the microcon-
troller, which requests a peripheral reset and then reads the registers. After this, a
comprehensive sequence of 0-to-1 and 1-to-0 write operations is done on the CSR,
each followed by the needed reads, as in the following pseudo-code

// The MCU resets the peripheral (all flip-flops=0)

mcu.SPMI_reset();

for each register in CSR {// write 1 in each register bit

mcu.ahb.write(reg_addr, 0xFF); // 0->1 transition

mcu.ahb.read(reg_addr); // read register content and

// store the value in RAM

}

for each register in CSR {// 1->0 transition

mcu.ahb.write(reg_addr, 0x00);

mcu.ahb.read(reg_addr);

}

for each register in CSR {

mcu.ahb.write(reg_addr, 0xFF);

mcu.ahb.read(reg_addr);

}

mcu.SPMI_reset();

for each register in CSR {

mcu.ahb.read(reg_addr);

}

• Mailboxes test (WR-fifo and RD-fifo). For each FIFO buffer (from AHB and from
the outside), a sequence of write and read operations is performed to stimulate 0-to-
1 and 1-to-0 transitions in the registers, and the “flush” operations are tested as well.

• Request commands (Request). In this segment, bus access request commands are
programmed to be executed by the peripheral under test, while the external tester
will emulate other peripheral on the SPMI bus.

• All commands (Commands). In this case, the external tester acts as a bus master and
sends a sequence of all possible commands to the peripheral. For read and write
commands, all possible payload sizes (1 to 16) are used, and addresses are selected
so as to stimulate each bit in the address field with both 0 and 1 values. When
writing to the CSR module some care has to be taken to avoid requesting unwanted
peripheral operations, by carefully selecting write register addresses and data words
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(e.g., when writing to Register 0). Tests for the authentication mechanism and for
activating all states of the state machine are also applied.

• AHB access control test (AHB access). This part of the test targets the AHB
interface, whose accessible addresses can be programmed. Read/write operations
are used aiming at stimulating the address comparators within the module.

• Counters. The last part of the test aims at activating the embedded timers for
protocol management and timeout condition evaluation.

The results of each segment are read by the CPU, compressed using a software
Multiple-Input Signature Register (MISR) sequence and stored in the system memory;
then, they are read from the tester with a Read transaction on the SCLK/SDATA pins.

4.3 Fault Simulation

For the case study, Z01X by Synopsys was employed as fault simulator. In general, the
tool can be used for two purposes: functional safety assurance, i.e., to check the
efficacy of robust design strategies, and for manufacturing assurance, i.e., to evaluate
the effectiveness of a functional test set. The synthesized or post-layout circuit netlist in
Verilog can be directly simulated using testbenches (also in RTL), libraries and macro
models in Verilog and SystemVerilog, thus resorting on the same simulation envi-
ronment used for design validation.

Three different fault monitoring (strobe) methodologies were compared for cov-
erage and speed:

• All flip-flops. Coverage values are computed while monitoring all flip-flops at each
clock cycle, as well as the peripheral external I/Os. These data are overestimated
since they do not take into account the whole process of fault effect propagation to
an observable output, but help evaluating the effectiveness of the test in terms of
fault controllability.

• RAM bus. Coverage is computed while monitoring transactions on the system
RAM, where results are stored after each test operation, and the peripheral external
I/Os. The obtained coverage is a good approximation of the one obtainable on the
ATE, and the running time is reduced.

• SDATA. Coverage is computed monitoring what is sampled by the ATE (i.e.,
external bus transactions); some coverage is lost with respect to the previous
approaches due to the reduced fault observability of the method. This is, however,
the slowest and the most memory-intensive methodology.

Regarding the modeling of circuit timing, as most logic simulators, Z01X allows the
user to choose how it is handled between the following options:

• delay mode zero, ignoring all module path delay information and setting to zero all
delay expressions in the code;

• delay mode unit, ignoring all module path delay information and converting all non-
zero structural and continuous assignment delay expressions to a unit delay of one
simulation time unit;
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• delay mode distributed, ignoring all module path delay information and using
distributed delays on nets, primitives and continuous assignments;

• delay mode path, deriving timing information from specify blocks within the
libraries.

Stuck-at and transition delay faults can be analyzed resorting to the simplest timing
models, hence increasing fault simulation speed. However, higher precision is needed
to handle small delay defects. More realistic data can be derived from static analysis
tools, which export cell and path delays taking into account the circuit structures and
parasitic elements in SDF files. When importing an SDF file, the simulation complexity
increases substantially. Z01X enables setting the size of the delay when injecting
transition delay faults with the +trans+delay+<value> parameter.

4.4 Experimental Results

Table 1 presents the application time required for each of the previously described
SBST test segments. The most time-consuming ones are the AHB access test, requiring
the application of a large number of patterns for thoroughly testing the combinational
logic, and the counter test.

Table 2 reports fault simulation results on the stuck-at fault set, which includes
80,640 faults. Among these, at least 11,963 are deemed as functionally untestable,
belonging to IP circuitry that cannot be functionally activated in this SoC context, and
thus removed from test coverage computation. The test segments are applied
sequentially on the fault list, with fault dropping. The CPU time column reports the
duration of fault simulation, performed on an Intel Xeon CPU clocked at 3.00 GHz (a
single core is used), while the Detected column shows the number of faults covered by
the test set. When a test is applied to a sequential circuit, certain faults produce an
unknown state at the output when a deterministic result is expected in the fault-free
circuit. This condition is known as potential detection (numbers in parentheses) and
each fault belonging to this category is weighted 0.5 for coverage computation.

It is noteworthy to observe that a significant number of faults produce internal effects
on the flip-flops, but cannot be observed on the external circuit outputs, and thus remain

Table 1. Duration of each SBST test segment

Test segment Duration [ms]

Reset 0.926
WR-fifo 0.760
RF-fifo 1.154
Request 1.284
Commands 1.513
AHB access 11.630
Counters 128.390
Total 145.658
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undetected. Moreover, the selection of different strobe methodologies may significantly
affect the required fault simulation computational effort. The observation on the RAM
bus provides a reasonable compromise between accuracy and required CPU time.

Table 3 reports the same data for transition delay faults. In this case, 80,632 faults
are considered, out of which 15,452 are functionally untestable. Interestingly, a number
of untestable transition delay faults belong to finite state machines, and specifically to
transitions from functional to “safe” states corresponding to the default branch of case
statements of hdl languages, which can be taken only in presence of errors in the circuit
behavior.

In order to provide a comparison about the coverage achievable by scan and SBST,
another experiment was performed. A scan pattern set was generated with TetraMAX
by Synopsys for transition delay and stuck-at faults. The scan test application takes
about 120 ms with 10 MHz shift frequency and at-speed launch/capture, considering a
single scan chain entirely committed to the peripheral under test. Fault coverage is
provided for the scan pattern set in the Scan chains row of Table 4. In the following
rows we report fault coverage for SBST and for the application of both test method-
ologies in sequence. The total number of stuck-at faults is 80,640, while transition
delay faults are 70,207: faults on clock or scan-enable logic are not considered in the
latter case, since it is not meaningful to test faults in such logic at functional speeds
with scan-based patterns.

Fault simulation shows that the SBST test set uniquely covers 1,335 (1.66%) stuck-
at faults and 4,631 (6.60%) transition delay faults in addition to the ones detected by
the scan tests. Regarding transition delay faults, the scan test has a higher overall
coverage, detecting 9,337 more faults than SBST, but only 6,538 out of these have
been classified as functionally testable. Conversely, of the 59,032 detected faults, 5,972
belong to the functionally untestable category.

Results show that, even covering a lower number of faults, the SBST set obtains a
better test coverage on transition delay faults in a comparable time. The reader must
also note that most of the SBST application time is taken by the Counters segment,
which contributes with 2,824 faults to the SBST set coverage, or 361 faults if run after
the scan test. In other words, if the SBST set is applied after the scan test excluding the
Counters segment, it is possible to increase fault coverage by more than 6% (or test
coverage by 7%) in 17.27 ms.

SBST test is especially effective, obtaining higher fault coverage than the scan test,
on the AHB interface, on the FSMs, on the logic that connects the peripheral to the
external world and on the logic used by the Request commands.

By further inspection it is possible to see that most of the logic covered only by the
functional test procedure is directly linked to clock gating circuitry or to other functions
that are not available while the circuit is in scan-test mode. As a matter of fact, due to
the unpredictable functional behavior during shift and capture operations, the circuit is
usually brought by hardware to a “safe” state for the application of the scan test,
isolating the digital logic from the external world and analog circuitry in mixed-signal
devices, and avoiding possible critical configurations of system registers (whose output
may be set to fixed values during test). SBST can be fruitfully employed to extend the
coverage range of scan test in such cases, even after the circuit is manufactured.

14 M. Grosso et al.



The coverage of small delay defects was evaluated for one of the SBST test
segments, Commands, which is the one obtaining the highest transition delay test
coverage, as it can be seen in Table 5. Obviously, the total coverage is not the simply
the sum of the coverage obtained by each segment, since each fault can be covered by
more than one test. The following analysis is done using the strobe on the RAM bus
and the peripheral external I/Os.

Table 2. SBST stuck-at coverage results with different strobe methodologies

Strobe methodology CPU time [s] Detected (potentially) Fault coverage Test coverage

All flip-flops 72,151 65,720
(1,928)

82.69% 97.10%

RAM bus 32,915 59,796
(1,345)

74.99% 88.05%

SDATA 1,429,180 59,494
(1,346)

74.61% 87.61%

Table 3. SBST delay fault coverage results with different strobe methodologies.

Strobe methodology CPU time [s] Detected (potentially) Fault coverage Test coverage

All flip-flops 88,933 63,142
(73)

78.35% 96.93%

RAM bus 35,968 57,099
(302)

71.00% 87.83%

SDATA 1,761,990 56,748
(310)

70.57% 87.30%

Table 4. Fault coverage of scan, SBST and both tests (strobe on SDATA).

Test Stuck-at faults Transition delay faults
Detected
(pot.)

Fault
coverage

Detected
(pot.)

Fault
coverage

Test
coverage

Scan
chains

78,562
(0)

97.42% 59,032
(0)

84.08% 81.40%

SBST 59,494
(1,346)

74.61% 56,748
(310)

70.57% 87.30%

Both 79,897
(67)

99.12% 63,663
(42)

90.71% 88.57%
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As aforementioned, a small delay defect on a logic path can be detected only when
its size is larger than the minimum slack. Figure 5 reports the distribution of minimum
slack values on the paths where the faults are located. The histogram shows two distinct
peaks, due to paths related to the two different clocks used by the module under test:
one corresponds to the AHB clock frequency, synchronizing the control state machines
that interact with the rest of the SoC, and the other to the external SPMI clock which
runs at a lower speed.

Transition delay and SDD coverages, with varying defect sizes, are reported in
Table 6. As expected, test coverage rises with larger delay fault sizes; it must be noted
that the maximum achievable value with the analyzed test is 44.97%, corresponding to

Table 5. Transition fault coverage of each SBST test segment, and
according to each strobe methodology.

Test segment Transition delay test coverage/strobe
methodology
All flip-flops RAM bus SDATA

Reset 44.24% 36.99% 36.15%
WR-fifo 39.07% 30.63% 30.12%
RF-fifo 36.93% 29.71% 29.23%
Request 38.15% 28.24% 27.41%
Commands 51.82% 44.97% 44.09%
AHB access 38.07% 27.83% 27.02%
Counters 38.49% 31.95% 31.43%
Total 96.93% 87.83% 87.30%

0.0

0.2

0.4

0.6

0.8

1.0

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%
4.5%

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Slack [ns]

Fig. 5. Minimum slack histogram on the fault paths and cumulative distribution (in red). (Color
figure online)
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the indefinitely large transition delay fault model. Defect Effectiveness is at all times
larger than test coverage; however, its value decreases after the 20 ns delay size. This
effect can be due to two causes. Firstly, while test coverage is computed on a fixed
number of faults for the all experiments, the DE denominator grows together with fault
size, and this can lead to a lower effectiveness even when the absolute number of
covered faults is larger. Secondly, since SDDs are emulated in a timing simulation, the
presence of hazards and glitches may in some occasions mask the effect of a fault when
changing the defect size [28].

CPU time for a fault simulation run is on the order of 12 min for transition delay
faults, while it rises up to 1.5 h for small delay faults. This is due to the need of
performing more accurate timing simulations using SDF data.

5 Conclusions

This chapter describes a case study corresponding to a peripheral module within a SoC,
for which tests targeting both stuck-at and transition delay faults have been developed
resorting to the scan approach and to a functional one, based on SBST. We outlined a
specific approach to develop the latter test targeting both stuck-at and transition delay
faults. Extensive results have been presented, showing that the two methods have
different and complementary characteristics. While scan test generation is fully auto-
mated, the functional test must be manually built. The fault coverage achieved by scan
is higher, but some faults (especially numerous when considering delay faults) are only
detected resorting to the functional approach. Moreover, we showed that some of the
faults which are only detected by scan are functionally untestable. Hence, scan is likely
to produce a higher degree of overtesting. We also reported some preliminary exper-
imental results about the coverage that the functional approach can provide with respect
to Small Delay Defects. Our results may allow test engineers to better understand the
impact of functionally untestable faults on the achieved yield, reliability and quality of
the product. We discussed the above points, providing examples for each category.

Work is currently being done in order to further improve the method to develop
functional test programs targeting delay defects. Moreover, we are working to devise
solutions to identify functionally untestable faults, extending to peripheral modules
some of the ideas proposed in [29].

Table 6. Small delay defect coverage of the commands test; the strobe is on the RAM bus.

SDD fault size Transition faults
10 ns 15 ns 20 ns 25 ns 30 ns

Detected 1,497 5,315 13,924 14,480 14,554 29,057
Pot. detected 335 339 370 426 427 515
Not detected 78,800 74,978 66,338 65,726 65,651 51,060
Fault coverage 2.06% 6.80% 17.50% 18.22% 18.31% 36.68%
Test coverage 2.55% 8.41% 21.65% 22.54% 22.66% 44.97%
Defect effectiveness 3.81% 17.79% 27.93% 26.34% 25.97% –

Software-Based Self-Test for Delay Faults 17



Acknowledgements. The authors wish to thank Andrea Casalino and Calogero Brucculeri for
helping in the setup of the experimental campaigns.

References

1. Psarakis, M., Gizopoulos, D., Sanchez, E., Reorda, M.S.: Microprocessor software-based
self-testing. IEEE Des. Test Comput. 27(3), 4–19 (2010)

2. Bernardi, P., Cantoro, R., De Luca, S., Sanchez, E., Sansonetti, A.: Development flow for
on-line core self-test of automotive microcontrollers. IEEE Trans. Comput. 65(3), 744–754
(2016)

3. Shaheen, A.-U.-R., Hussin, F.A., Hamid, N.H., Ali, N.H.Z.: Automatic generation of test
instructions for path delay faults based-on stuck-at fault in processor cores using assignment
decision diagram. In: IEEE International Conference on Intelligent and Advanced Systems
(ICIAS), pp. 1–5 (2014)

4. Singh, V., Inoue, M., Saluja, K.K., Fujiwara, H.: Instruction-based delay fault self-testing of
processor cores. In: IEEE International Conference on VLSI Design, pp. 933–938 (2004)

5. Hage, N., Gulve, R., Fujita, M., Singh, V.: On testing of superscalar processors in functional
mode for delay faults. In: IEEE International Conference on VLSI Design and International
Conference on Embedded Systems (VLSID), pp. 397–402 (2017)

6. Psarakis, M., Gizopoulos, D., Hatzimihail, M., Paschalis, A., Raghunathan, A., Ravi, S.:
Systematic software-based self-test for pipelined processors. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 16(11), 1441–1453 (2008)

7. Christou, K., Michael, M.K., Bernardi, P., Grosso, M., Sanchez, E., Reorda, M.S.: A novel
SBST generation technique for path-delay faults in microprocessors exploiting gate- and rt-
level descriptions. In: IEEE VLSI Test Symposium, pp. 389–394 (2008)

8. Wen, C.H.-P., Wang, L.-C., Cheng, K.-T., Yang, K., Liu, W.-T., Chen, J.-J.: On a software-
based self-test methodology and its application. In: IEEE VLSI Test Symposium, pp. 107–
113 (2005)

9. Lai, W.-C., Krstic, A., Cheng, K.-T.: Functionally testable path delay faults on a
microprocessor. IEEE Des. Test Comput. 17(4), 6–14 (2000)

10. Fukunaga, M., Kajihara, S., Takeoka, S.: On estimation of fault efficiency for path delay
faults. In: IEEE Asian Test Symposium, pp. 64–67 (2003)

11. Bernardi, P., Grosso, M., Sanchez, E., Reorda, M.S.: A deterministic methodology for
identifying functionally untestable path-delay faults in microprocessor cores. In: IEEE
International Workshop on Microprocessor Test and Verification, pp. 103–108 (2008)

12. Goel, S.K., Chakrabarty, K.: Testing for Small-Delay Defects in Nanoscale CMOS
Integrated Circuits. CRC Press, Boca Raton (2017)

13. Grosso, M., Rinaudo, S., Casalino, A., Reorda, M.S.: Software-based self-test for transition
faults: a case study. In: IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), pp. 76–81 (2019)

14. Nigh, P., Gattiker, A.: Test method evaluation experiments & data. In: IEEE International
Test Conference, pp. 454–463 (2000)

15. Park, E.S., Mercer, M.R., Williams, T.W.: Statistical delay fault coverage and defect level
for delay faults. In: IEEE International Test Conference, pp. 492–499 (1988)

16. Mattiuzzo, R., Appello, D., Allsup, C.: Small-delay-defect testing. EDN (Electr. Des. News)
54(13), 28 (2009)

18 M. Grosso et al.



17. Metzler, C., Todri-Sanial, A., Bosio, A., Dilillo, L., Girard, P., Virazel, A.: Timing-aware
ATPG for critical paths with multiple TSVs. In: IEEE International Symposium on Design
and Diagnostics of Electronic Circuits and Systems, pp. 116–121 (2004)

18. Yilmaz, M., Tehranipoor, M., Chakrabarty, K.: A metric to target small-delay defects in
industrial circuits. IEEE Des. Test Comput. 28(2), 52–61 (2011)

19. Uzzaman, A., Tegethoff, M., Li, B., Mc Cauley, K., Hamada, S., Sato, Y.: Not all delay tests
are the same - SDQL model shows truetime. In: IEEE Asian Test Symposium (ATS),
pp. 147–152 (2006)

20. Bushnell, M., Agrawal, V.: Essentials of Electronic Testing for Digital, Memory, and
Mixed-Signal VLSI Circuits. Kluwer Academic Publisher, Dordrecht (2000)

21. Cheng, K.-T., Chen, H.-C.: Classification and identification of nonrobust untestable path
delay faults. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(8), 845–853 (1996)

22. Liu, X., Hsiao, M.S.: On identifying functionally untestable transition faults. In: IEEE
International High-Level Design Validation and Test Workshop, pp. 121–126 (2004)

23. Zhang, Y., Peng, Z., Jiang, J., Li, H., Fujita, M.: Temperature-aware software-based self-
testing for delay faults. In: IEEE Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 423–428 (2015)

24. Touati, A., Bosio, A., Girard, P., Virazel, A., Bernardi, P., Reorda, M.S.: Improving the
functional test delay fault coverage: a microprocessor case study. In: IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pp. 731–736 (2016)

25. Touati, A., Bosio, A., Girard, P., Virazel, A., Bernardi, P., Reorda, M.S.: Microprocessor
testing: functional meets structural test. World Sci. J. Circuits Syst. Comput. 26(8), 1–18
(2017)

26. Floridia, A., Sanchez, E., Reorda, M.S.: Fault grading techniques of software test libraries
for safety-critical applications. IEEE Access 7, 63578–63587 (2019)

27. Apostolakis, A., Gizopoulos, G., Psarakis, M., Ravotto, D., Reorda, M.S.: Test program
generation for communication peripherals in processor-based SoC devices. IEEE Des. Test
Comput. 26(2), 52–63 (2009)

28. Wang, J., Li, H., Min, Y., Li, X., Liang, H.: Impact of hazards on pattern selection for small
delay defects. In: IEEE Pacific Rim International Symposium on Dependable Computing,
pp. 49–54 (2009)

29. Cantoro, R., Carbonara, S., Floridia, A., Sanchez, E., Reorda, M.S., Mess, J.-G.: An analysis
of test solutions for COTS-based systems in space applications. In: IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pp. 59–64 (2018)

Software-Based Self-Test for Delay Faults 19



On Test Generation for Microprocessors
for Extended Class of Functional Faults

Adeboye Stephen Oyeniran(B), Raimund Ubar, Maksim Jenihhin,
and Jaan Raik

Centre for Dependable Computing Systems, Department of Computer Systems,
Tallinn University of Technology, Akadeemia 15a, 12618 Tallinn, Estonia

{adeboye.oyeniran,raimund.ubar,maksim.jenihhin,jaan.raik}@taltech.ee
http://www.ttu.ee/institutes/department-of-computer-systems/

Abstract. We propose a novel strategy of formalized synthesis of Soft-
ware Based Self-Test (SBST) for testing microprocessors with RISC
architecture to cover a large class of high-level functional faults. This
is comparable to that used in memory testing which also covers a large
class of structural faults such as stuck-at-faults (SAF), conditional SAF,
multiple SAF and bridging faults. The approach is fully high-level, the
model of the microprocessor is derived from the instruction set and archi-
tecture description, and no knowledge about gate-level implementation is
needed. To keep the approach scalable, the microprocessor is partitioned
into modules under test (MUT), and each MUT is in turn partitioned
into data and control parts. For the data parts, pseudo-exhaustive tests
are applied, while for the control parts, a novel generic functional con-
trol fault model was developed. A novel method for measuring high-level
fault coverage for the control parts of MUTs is proposed. The measure
can be interpreted as the quality of covering the high-level functional
faults, which are difficult to enumerate. We apply High-Level Decision
Diagrams for formalization and optimization of high-level test generation
for control parts of modules and for trading off different test character-
istics, such as test length, test generation time and fault coverage. The
test is well-structured and can be easily unrolled online during test exe-
cution. Experimental results demonstrate high SAF coverage, achieved
for a part of a RISC processor with known implementation, whereas the
test was generated without knowledge of implementation details.

Keywords: Microprocessor testing · High-level functional fault
model · Test generation · High-level fault coverage

1 Introduction

The growing density of integration in the semiconductor industry make today’s
chips more sensitive to faults while the mechanisms of the latter become more
complex. New types of defects need to be considered in test generation to achieve
high test quality. Similar to memory testing, broader classes of faults depen-
dent on the neighboring logic, should be used as test targets in case of general
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logic circuits. To make the tests less independent on particular implementation
details, functional fault models and functional test approaches provide a good
perspective to make the test development more efficient and to achieve higher
test quality.

Software-Based Self-Test (SBST) [1–16] is an emerging paradigm in the test
field. The major problem with SBST is usually the not sufficient test quality,
measured by the single Stuck-at-Fault (SAF) coverage, let alone considering
broader fault classes.

The quality of SBST is mainly affected by test data used in test programs.
One of the ways to obtain test data is executing an Automated Test Pattern Gen-
erator (ATPG) [17,18]. In [17] it was shown that the processor can be divided
into Modules under Test (MUT) to ease the task of ATPG. The difficulties arise
from the need of guiding ATPGs by functional constraints to produce function-
ally feasible test patterns. The method [18] requires enforcing constraints during
ATPG test generation. The run-time for generating test using the complete set
of SBST constraints is, however, high. An alternative is to use random test
patterns for MUTs [3]. However, these approaches need the knowledge about
implementation.

SBST can be structural and functional. Structural approaches [4–6] use infor-
mation from lower level of design, whereas functional approaches use mainly
information of instruction set architecture (ISA). Hybrid SBST was proposed for
combining deterministic structural SBST with verification-based test [4,5,19,20].
In addition to Hybrid SBST [7,21], there are methods that achieve comparable
results and improved scalability when generating SBST using only RTL [4–6].
The structural approach cannot be used when structural information about the
processor is not available. In [7], for high-level generation of SBST, the imple-
mentation details are not required, however, the low-level fault cover is not
sufficiently high.

One of the first ISA based methods, using pseudo-random test sequences
was proposed in [22]. Another solution, FRITS (Functional Random Instruction
Testing at Speed) [23], was based on test generation using random instruction
sequences with pseudo-random data. Alternative cache-resident method for pro-
duction testing [24,25] using random generation mechanism proves that high
cost functional testers can be replaced by low-cost SBST without significant loss
in fault coverage. Another approach, based on evolutionary technique was pro-
posed in [26]. Test is being composed of the most effective code snippets with
good Stuck-at-fault (SAF) coverage, which were distinguished by constant re-
evaluation. The method needs structural information. Later research has been
concentrated on developing dedicated test approaches for specific processor parts
like pipeline, branch prediction mechanism [11,21], caches [22,23].

The drawbacks of the known methods vary in the need of knowledge
about implementation details, fault coverage is measured traditionally only with
respect to SAF, without considering broader fault classes, and no attempts have
been made to evaluate the test coverage regarding multiple faults.
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In this paper, to cope with the complexity of gate or RT level representations of
microprocessors (MP), we consider the SBST generation with focus on modeling
functional faults fully at the behavioral-level using only high-level information.
We propose a deterministic high-level test generation method for SBST of pro-
cessor cores, based on a novel implementation-independent high-level functional
fault model. To compare the results with state-of-the-art, the quality of tests is
measured by single SAF cover, however, at the same time, we target broader class
of faults than single SAF, considering structural logic level faults such as condi-
tional SAF [27,28], bridging and multiple faults, as well as the functional fault
classes used traditionally in memory testing. For formal high-level functional fault
modeling and test generation we use the idea of representing the instruction set
and architecture of the microprocessor in form of High-Level Decision-Diagrams
(HLDD) [29,30]. The HLDDs can be used as well for trading off different test char-
acteristics such as test length, test generation time and fault coverage.

We generate tests separately for MUTs and in each MUT separately for its
control and data parts [31]. The main contribution in the paper is related to test
generation for the control parts, whereas for testing the data parts independently
of the implementation details, we use the known pseudo-exhaustive test approach
[32], not considered here in details.

The rest of the paper is organized as follows. In Sect. 2, we propose a novel
concept of considering the control parts of the modules under test as generic
abstract multiplexers, and in Sect. 3 we elaborate a concept of the novel high-
level test generation for the control parts of processor modules. In Sect. 4, we
develop a new general high-level functional fault model for control parts of mod-
ules. Section 5 describes a general scheme of test execution flow for the control
parts of MUT. In Sect. 6, we compare the test flow with traditional memory
March test, and introduce relationships between the proposed fault model with
known functional and structural fault classes. In Sect. 7, we introduce High-Level
Decision Diagrams for formalization of test generation and test optimization.
Sections 8 is devoted to demonstrating of experimental results, and Sect. 9 com-
pletes the paper with conclusions.

2 High-Level Representation of Microprocessors

The main concept of the proposed method is based on partitioning the processor
under test into functional entities – MUT, representing them as disjoint control
and data parts. In this paper, we focus on the executing module and the pipeline
forwarding unit as such entities, however showing that the approach is more
general, and can be used always, when the MUT can be functionally represented
as a set of well-defined functions.

In Fig. 1, a part of the pipelined structure of the miniMIPS microprocessor
[33] is depicted. In yellow colour, the executing unit is highlighted, whereas the
rest on the figure shows the main components of the pipeline architecture –
pipeline registers, hazard detection circuitry, and the forwarding unit shown
in grey colour. We consider the selected modules as consisting of disjoint
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control (decoder with MUX-s) and data parts, presented as hypothetical struc-
tures without knowing their implementation details.

Fig. 1. A part of a RISC type microprocessor with executing unit in the pipeline and
data forwarding environment (Color figure online)

The executing module in Fig. 1 (shown in yellow) consists of the data part
concentrated into the ALU/MULT block, whereas the control functions are
located in the decoder/multiplexer block MUX. The data part of the pipeline
circuitry consists of the pipeline registers separating the different pipeline stages:
instruction fetch (IF), instruction decoding (ID), executing module (EX), mem-
ory access (MEM), and write back stage (WB). The control part of the pipeline
forwarding unit (shown in gray) consists of two multiplexer modules, MUXA

and MUXB , which are fed by 4 comparators C1–C4 for calculation the values of
control signals of multiplexers. The comparators C5 and C6 are used for hazard
detection in case of “load-use” situations in pipeline circuits [34].

Note, the high-level functionality of the ALU/MULT module (the set of exe-
cutable functions) is derived from the instruction set of the microprocessor,
whereas the high-level functionality of the forwarding unit is derived from the
description of the architecture of the microprocessor – a set of executable func-
tions, which will be selected by the multiplexers MUXA and MUXB . In this
paper, we concentrate on the ALU/MULT module.

We classify two types of high-level functional faults for the modules: control
faults (for control part), and data faults (for data part). We do not consider
data faults explicitly, rather we apply for data manipulation functions bit-wise
pseudo-exhausting tests, which guarantee high fault coverage of a broad class of
faults, whereas knowledge of implementation details is not needed.

For the high-level control faults, we introduce a novel functional fault model,
as a general model, which covers a broad set of possible low-level structural
faults, and also a set of traditional high-level functional fault models used in
memory testing.
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Fig. 2. Generic DNF based control structure of the executing unit

For developing the high-level functional control fault model, we introduce a
generic representation of the control part in a form of high-level multiplexer.
Consider the executing unit, shown in yellow in Fig. 1, and in detailed view in
Fig. 2, where implementation details are abstract.

Assume, the data part in Fig. 2 executes n different functions yi = fi (Di)
controlled by a set F = {Fi} of instructions (functions), where D is the set of
given data operands to be manipulated with fi ∈ F . The length of data word is
m, and the number of control signals p must satisfy the constraint

log2 n ≤ p ≤ n (1)

and hence, depends on how the instructions are coded. However, the number of
1 − bit control signals p and the mapping of control vector signals to n instruc-
tions, where n = |F |, is considered as unknown. Let us keep for a while the
coding of the control signals and the value of p in the model of MUTopen.

The control part consists of the multiplexer MUX, p control lines control-
ling the MUX, and an unknown circuit for mapping the instruction operation
codes into the functional signals p. The high-level n AND blocks in MUX have
each p control and a single m-bit data input, whereas the OR block in MUX
has n data inputs from the outputs of AND blocks. Each AND block consists
of m AND gates with p control inputs, and a single 1-bit data input. Hence,
the described control module, represented in a form of a high-level multiplexer,
consists of m different 1-bit logic level AND-OR multiplexers, used for decoding
the instructions, and for extracting the results of executed instructions.

As it can be seen from Fig. 2, the border between the control part and the
data part is determined by the AND gates, where the 1-bit control signals and
1-bit data signals are joining. The number of the AND gates on this border is
equal to

n × m × p (2)
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By introducing the described hypothetical MUX-based executing module,
we have functionally separated the data and control parts by the border of
n×m×p gates, and transformed the function of the control block from “active”
controlling of the manipulations in the data part to “passive” selection of the
results of data manipulations in the data part. In other words, we have neglected
all possible optimizations, which may have been carried out during the design
of the execution unit.

Let us introduce now the following abstraction, in accordance to Fig. 2, as a
set of m equivalent disjunctive normal forms (EDNF) representing an imple-
mentation independent design of the MUT at the expense of possible over-
dimensioning the real logic design. The disjoint presentation of the control and
data parts allows to create an implementation-independent high-level functional
control fault model.

The justification of the proposed abstraction results from the fact that a
test TEDNF developed for detecting all non-redundant faults in the EDNF, will
detect also all faults in the real optimized circuit of the executing unit [35]. On
the other hand, if the implementation details of the real circuit equivalent to
EDNF were known, then the test TRC of the real circuit, in general case, may
have shorter length than TEDNF .

The second abstraction will concern the control signal decoding, which, in
general, is highly depending on the details of implementation. To allow the test
generation for the control part be implementation independent, and as simple
as possible, we introduce the one-to-one coding between the control signals and
instruction, so that to each functions fi ∈ F the control signal ci will correspond,
and C = {ci}, where |F | = |C|, will represent the full set of control signals. In
this case, each control signal ci ∈ C selects the related function fi ∈ F . In other
words, by this way, we have introduced a hypothetical and simple coding scheme
of int ructions, where p = n, which represents, according to (1) the higher bound
of the value p. On the other hand, it provides the minimal length n×m for the
border between the control and data parts of the MUT, determined by (2).

This second abstraction allows to overcome the problem of illegal instruction
codes and to make easier the identification of redundant faults in any of the
further real implementations of the control part.

The justification of the proposed abstractions will be given in the next
section, where we introduce the new control fault model.

3 Basic Concepts of Generating High-Level Tests

Consider a simplified MUT in Fig. 3a, derived using the two described above
abstractions, and consisting of the data and control parts. Figure 3a presents a
k − th bit slice of the m-bit control module, where m is the width of the data
word carrying the value of fi. The data manipulation block (e.g. ALU) executes
n different functions fi, selected by the control codes c denoted by symbolic
integers ci, i = 0, 1, . . . n.



About Test Generation of Microprocessors 27

Each bit-slice of the control part consists of MUX with n control lines (control
inputs to each AND). The 1− bit data lines from the data manipulation module
(ALU) are the data inputs to each AND. The OR gate has n data inputs.

Consider testing of the MUX in Fig. 3. Let us concentrate on testing the
control code for the k−th bit slice, which selects from ALU the result of the high-
level defined operation fi,k, producing the expected output value yk = fi,k, (D).
Consider the high-level symbolic (pseudo) control signals ci,k, which may be
applied (ci,k = 1) or not applied (ci,k = 0) as Boolean variables. From ci,k = 1,
it follows cj,k = 0 for all j �= i due to the mutual exclusion of each other.

Fig. 3. A module consisting of data and control parts and its HLDD

The graph in Fig. 3b represents a High-Level Decision Diagram (HLDD)
which describes the mapping “if C = i then y = fi”, meaning that if ci = 1
then y = fi. About the role of using the HLDD model for representing the MUT
we discuss in Sects. 7.

Definition 1. Introduce a test T ∗
i as a structure T ∗

i = (Ii,Di) where Ii is an
instruction, which performs the function fi ∈ F in the MUT represented by a
set of functions F , and Di is a set of data operands used by the instruction Ii.
The data Di may consist of one or more patterns d ∈ Di. If Di will consist of t
patterns, the instruction Ii will be repeated in the test T ∗

i for each pattern d ∈ Di.

Definition 2. Let us introduce a notation T ∗
i,k = {ci,k, fi,k}, where ci,k ∈ {0, 1}

and fi,k ∈ {0, 1}, for a single bit test, in accordance to Fig. 3.

Consider a test T ∗
i,k = {ci,k = 1, fi,k = 1}, which targets the detection of

stuck-at-0 faults ci,k ≡ 0 and fi,k ≡ 0, in other words, the test is proving that
the function fi ∈ F is controllable by ci,k = 1, in the k − th bit. However,
this test is targeting the detection of single faults only, and the test may fail
in proving the controllability of fi,k, if there exists any multiple fault of type
{ci,k ≡ 0, cj,k ≡ 1}, j �= i, because of mutual masking of these two faults. This
masking situation is illustrated in Fig. 3a.
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Lemma 1. There will be no masking of the fault ci,k ≡ 0 by any other fault
cj,k ≡ 1, j �= i, if the test T ∗

i,k = {ci,k = 1, fi,k = 1} will be applied under the
constraints fj,k = 0, for all j �= i.

Proof. The expected value of yk for the test T ∗
i,k in case of no faults will be

yk = 1. In case of a single fault ci,k ≡ 0, the value of fi,k = 1 will not propagate
to the output yk, due to ci,k ≡ 0 and all cj,k = 0, j �= i, causing in such a way
response yk = 0, which means that the fault ci,k ≡ 0 is detected. The response
yk = 1 would be the proof, that the function fi,k is controllable. However, this
proof will be valid only for the case of assuming the single fault ci,k ≡ 0. In
case of any double fault {ci,k ≡ 0, cj,k ≡ 1}, j �= i, instead of fi,k = 1, which
is blocked by ci,k ≡ 0, the value of another function fj,k = 1 is propagated by
cj,k ≡ 1 to the output yk. Hence, as the response to the test, we will get the
same value yk = 1 as expected, which means that the fault ci,k ≡ 0 is masked
by cj,k ≡ 1, and we still will not know if the function fi,k is controllable by the
signal ci,k or not.

Let us introduce a notation for multiple faults of type {ci,k ≡ 0, cj,k ≡ 1},
where j �= i, and {cj,k ≡ 1} represents any subset of faults cj,k ≡ 1 for different
combinations of j �= i.

Lemma 2. To detect any multiple fault of type {ci,k ≡ 0, {cj,k ≡ 1}} in the
MUT represented by a set of functions F , a test T ∗

i must be generated, so that
the constraint fj,k = 0 were satisfied for each fj ∈ F , j �= i, by at least one
pattern d ∈ Di in T ∗

i .

Proof. Since from ci,k = 1 the value cj,k = 0 follows for all j �= i due to the
mutual exclusion of control signals, we have satisfied automatically the condi-
tions of sensitizing the faults cj,k ≡ 1 on the lines j ∈ i. On the other hand,
the constraint fj,k = 1 for all j �= i will serve as the condition of propagating
the faults cj,k ≡ 1, j �= i, to the output yk, to make all control faults cj,k ≡ 1
detectable.

There may be two border cases in generating the test T ∗
i . First, a single data

operand d ∈ Di may be generated, which allows detection of all possible multiple
faults of type {ci,k ≡ 0, {cj,k ≡ 1}} in the same time by the same data d ∈ Di.
In this case, the pattern d has to satisfy the constraints fj,k = 0 simultaneously
for all j �= i, which may be a seldom case. Second, as a general case, a set of
data Di must be generated, so that each constraint fj,k = 0, j �= i, was satisfied
at least by one pattern d in the set of data Di.

From Lemma 1 the following corollary directly results.

Corollary 1. The test T ∗
i generated in accordance with conditions of Theorem1

for all bits k, detects the control faults ci,k ≡ 0, and the data faults fi,k ≡ 0, which
both belong to the fault class of SAF. The functional high-level meaning of the
test T ∗

i is that it proves that the function fi, is controllable by the control signals
ci,k in all bits k without masking due to possible additional faults cj,k ≡ 1 on
other control lines j �= i.
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The added value of test T ∗
i,k = {ci,k = 1, fi,k = 0} that, a lot of data part

faults, causing the change of the value of fi,k , 1 → 0, will also be detected.
From Lemma 2 the following corollary directly results.

Corollary 2. A test T ∗
i,k = {ci,k = 1, fi,k = 0}, which targets the detection of

the data fault fi,k ≡ 1, will detect simultaneously also all control faults cj,k = 1,
j �= i, if the constraints fj,k = 1 for all j �= i, will be satisfied at least by one
pattern d ∈ Di in T ∗

i .

The added value of the test T ∗
i,k = {ci,k = 1, fi,k = 0}, which has the goal of

detecting the SAF cj,k ≡ 1 on other control lines j �= i, detects also a lot of data
part SAF, which cause the change of the value of fi,k, 0 → 1.

Table 1. SAF faults detection of 1-bit control signals

Test Detected faults Proof

ci, k fi, k cj, k fj, k

1 1 0 0 ci, k ≡ 0
(with no fault masking)

Corollary 1

0 1 cj,k ≡ 1
(of any multiplicity)

Corollary 2

From the previous discussion, it follows, that it would be very easy to test
the control part of MUT if it would be implemented according to the proposed
abstract model, represented by EDNF and using direct mapping ci → fi. By the
proposed two methods, the both types of SAF faults can be detected: ci,k ≡ 0,
using Corollary 1, and ci,k ≡ 1, using Corollary 2. This result is illustrated also
in Table 1.

In the following, in Sects. 4, 5 and 6, we show that Corollary 2 can be
extended for a very broad class of faults and used as the basis for develop-
ing an implementation-independent test generation method for the control part
of MUT.

4 A New High-Level Functional Control Fault Model

From Lemmas 1–2 and Corollaries 1–2, a strategy of testing follows. When apply-
ing the test T ∗

i,k = {ci,k = 1, fi,k = 1}, it is recommended to generate data
operands for applying the values fj,k = 0 for as many j �= i as possible, to
avoid mutual masking of ci,k ≡ 0 by multiple faults cj,k ≡ 1. On the other hand,
when applying the test T ∗

i,k = {ci,k = 1, fi,k = 0}, it is recommended to apply
the values fj,k = 1 for all j �= i to increase the efficiency of testing the faults
cj,k ≡ 1.

In functional testing, if two arguments or functions in the MUT model will
due to physical defects interfere, then the resultant value of the interference can
be calculated either by AND or OR function, depending on the technology.

Assume for the further discussion that we have OR-technology.
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Definition 3. Introduce a high-level functional control fault fi,k → (fi,k, fj,k),
which means that instead of the function fi, in the k − th bit of the data word,
both functions fi,k and fj,k will be selected and executed simultaneously. In case
of the OR –technology, the result of activation of the function fi in the presence
of the fault fi,k → (fi,k, fj,k) in the k − th bit will be yk = fi,k ∨ fj,k.

Lemma 3. To detect the fault fi,k → (fi,k, fj,k) in a MUT, represented as map-
ping (ci ∈ C) → (fi ∈ F ), a test pattern T ∗

i (ci = 1, d) must be applied with
constraint fi,k (d) < fj,k (d), where d ∈ Di.

Proof. The proof results directly from Definition 3, because only if fi,k (d) = 0,
and fj,k (d) = 1, the expected result fi,k (d) = 0 and the faulty result fi,k (d) ∨
fj,k (d) = 1 will be distinguishable.

Definition 4. Introduce modifications of the high-level functional fault intro-
duced in Definition 3, such as

1. fi,k → fj,k, where instead of a function fi,k another function fj,k, j �= i, will
be selected and executed, and

2. fi,k → {fj,k}, where instead of a function fi,k, a group of functions fj,k will
be selected and executed.

From Lemma 3 and Definitions 3 and 4, the following corollaries result:

Corollary 3. To detect the fault fi,k → (fj,k), a test pattern T ∗
i (ci = 1, d) must

be applied with constraint fi,k (d) < fj,k (d), where d ∈ Di.

Corollary 4. To detect the fault fi,k → {fj,k}, a set of test patterns
T ∗
i (ci = 1, d), d ∈ Di must be applied, so that for each fj,k → {fj,k}, a data

pattern d ∈ Di exists, where fi,k (d) < fj,k (d).

Definition 5. Let us call the set of all high-level functional control faults CF =
{fi,k → (fi,k, fj,k)}, for all pairs of fi,k, fj,k ∈ F , as functional control fault
model of the MUT, represented as mapping (ci ∈ C) → (fi ∈ F ). The size of the
fault model is |CF | = (n − 1)2 × m. Let us call the subset CF (fi,k) ⊂ CF as
functional control fault model of the function fi ∈ F .

Theorem 1. To detect all functional faults introduced in Definitions 3 and 4,
for each function fi ∈ F , a set of data operands must be generated, which satisfy
the constraints:

∀k ∈ (1,m)∃d ∈ Di

(
fi/k(d) < fj/k(d)

)
(3)

The proof of theorem results from Lemma 3 and Corollaries 3 and 4.

Definition 6. Introduce a high-level control fault table R =
∥
∥ri,j/k

∥
∥as a 3-

dimensional array for a given set of data patterns D, where the entries ri,j/k
represent k-bit vectors and ri,j/k = 1, if there exists a pattern d ∈ Di, which
satisfies the constraint fi,k (d) < fj,k (d), otherwise ri,j/k = 0. The size of the
fault model R is equal to the size |CF | = (n − 1)2 × m.
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The high-level control fault coverage is measured by the ratio of 1-s in the
array to the size of R.

Calculation of the high-level fault coverage can be carried out by high-level
fault simulation with the goal of checking if the constraints (3) are satisfied or
not.

5 Test Structure and Test Execution

Denote by Di the test data generated for detection the fault model CF (fi).
Based on the data Di, and according to Lemma 1, the following test structure
results, as shown in Algorithm 1.

Algorithm 1. Test Execution Structure
1 for all fi ∈ F do
2 for all d ∈ Di do
3 apply test for fi (d)

According to Algorithm1, all tests for exercising the functions fi ∈ F , are
executed one by one, each of the tests in a loop using one by one the data d ∈ Di

which satisfy the constraints (3). A test is a subroutine which initializes the data
d ∈ Di, executes an instruction (or a sequence of instructions) responsible for
realizing the function fi (d), and performs the observation of the test result
y = fi (d).

From the algorithm in Algorithm 1, the following structure of test execu-
tion can be derived: the full test T consists of a sequence of test modules
Ti, i = 1, 2, . . . n, where each i-th module consists of test patterns Ti,t, where
each pattern Ti,t ∈ Ti,t satisfies, a subset of constraints (3).

For each test pattern Ti,t ∈ Ti, including the data operand d ∈ Di, and for
each data bit k of the functions fi ∈ F , the set F = {fi} can be partitioned for
each k into two parts F 0

k and F 1
k , so that

F 0
k = {fi,k|fi,k (d) = 0} , and F 1

k = {fi,k|fi,k (d) = 1} .
Such a test pattern covers all the constraints fi,k (d) < fj,k (d), according to

(3), where fi,k ∈ F 0
k and fj,k ∈ F 1

k .
Such a test execution according to Algorithm1 is depicted in Fig. 4. The

unrolled test sequence consists of n test modules Ti, each of them consisting of
a sequence of test patterns Ti,t for testing a function fi ∈ F . The behaviour of
the MUT is highlighted for the k − th bit of the test pattern Ti,t, showing the
subset of constraints satisfied by the pattern. As an example of error detection
is shown, where the expected value of fi,k is changed from 0 to 1 due to a fault
in the control part of MUT.
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Fig. 4. Unrolled test execution evolving in time

6 Extension of the Fault Class Beyond SAF

The ideas of the proposed fault model in Sect. 4, and the test concept in Sect. 5
are adopted from the known methods of memory testing, particularly from March
test [36]. The motivation was driven by the purpose to extend the fault class, to
be covered by test, to that of used in case of memories.

Let us consider an example of the March test depicted in Fig. 5, and compare
it with the test flow developed for a logic MUT shown in Fig. 4. The analogy
between the memory test and logic test is in similar handling of addressing the
cells in the memory and controlling the functions of fi ∈ F in logic MUTs. In
case of memories, testing of cells (data part) and the addressing logic (control
part) can be easily joined in the same test, whereas in the proposed approach,
testing of data part and control part proceeds separately.

In case of memory, the initialization of constraints (writing 1s (W1 ↑) into
cells) can be done once for all cells in a single cycle. Then, having these con-
straints stored, the following test cycle (r/w0 ↓) and observation cycle (r1) can
be carried out.

In the proposed method, the constraints cannot be stored, rather they have
to be produced “on-line” at each test pattern. In Fig. 4, a test pattern Ti,t ∈ Ti

including test data d ∈ Di, is illustrated, showing the values it produces on-line
for the k− th bit of all functions fi ∈ F , simultaneously. All functions for the bit
k are partitioned by the data d ∈ Di into two groups F 0

k and F 1
k , as explained

in Sect. 5. We see, that this particular test pattern with data d covers only a
subset of constraints for fi,k (d) < fj,k (d), where fi,k ∈ F 0

k and fj,k ∈ F 1
k .
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Fig. 5. Illustration of the March test for memories

In case of memory, in each step of the test cycle (r/w0 ↓), when reading
the Cell i, all constraints [Cell i] < [Cell j] are covered by a single run through
all the cells. Here, [Cell i] means the value stored in the Cell i. In case of the
proposed method of testing a logic MUT, the test for fi ∈ F , has to be repeated
with other data d till all the constraints (3) have been satisfied for all pairs of
functions {fi,k, fj,k}.

The comparison of the proposed data constraints based test method with
March test for memories reveals the possibility of applying the proposed app-
roach, not only for the combinational MUTs like ALU, but also for sequential
MUTs. If in sequential MUTs, a part of data d ∈ D belongs to the registers or
memory, the test must include proper initialization sequence.

Consider a MUT, represented by a set of mappings:

(ci ∈ C) → (fi ∈ F ),

where C is a set of mutually exclusive control signals (instructions) produced by
the control part of MUT, and F is the set of operations (data manipulations)
taking place in the data part of MUT.

By test data generation, used in the March test for memories and in the
proposed test method for logic MUTs, the coverage of the following functional
fault classes by the proposed method results [36]:

CL-1: With a certain instruction (ci ∈ C), no activity fi in F will happen.
CL-2: There is no instruction (ci), which can activate a function fi ∈ F . A
certain function is never accessed.
CL-3: With a certain instruction (ci), multiple functions {fi, fj , . . .} ∈ F are
activated simultaneously.
CL-4: A certain function fi ∈ F can be activated with multiple instructions
{fi, fj , . . .} ∈ F .
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Fig. 6. Functional control fault classes CL 1–CL 4

The fault classes CL-1–CL-4 are illustrated in Fig. 7 [36]:
It is easy to realize that these high-level functional fault classes cover also

SAF (CL-5) and bridging (CL-6) fault classes, i.e. these faults can be collapsed,
and do not need to take into account any more, except when the fault coverage
of these faults for given implementations is under interest (Fig. 6).

As shown in [37], address decoders built out of CMOS gates can exhibit
CMOS stuck-open faults [CL-7]. The effect of such faults is that the combina-
tional instruction decoder will behave as a sequential circuit for certain con-
trol signals. The consequence of such a fault is that another instruction will be
decoded and executed. However, this fault can be also collapsed, because it will
be covered by the faults of CL-4.

Any multiple low-level structural fault CL-8 (SAF or shorts), in the particular
implementation, will cause a change of an instruction ci → cj , which in turn can
be considered as the fault from class CL-4, and hence, be collapsed.

Regarding other general fault classes, such as conditional SAF (CL-9) [28],
called also as functional faults [38], pattern faults [39], fault tuples [40] or cell-
internal defects (CL-10) [41], will manifest themselves as a change of instruction
code ci → cj , and are covered by the fault class CL 4.

We have shown, that the structural fault classes CL-5–CL-10 are collapsed
by the implementation-independent high-level functional fault classes CL-1–CL-
4, which are used in memory testing and are covered by the March test [36].
On the other hand, in Sect. 5, we have shown, that the test for microprocessor
MUT, which satisfies the constraints (3), and is executed in accordance with
the test flow in Algorithm 1, will cover the same fault classes CL-1–CL-4 used
in memory testing. Finally, from Theorem1, it follows, that the fault classes
CL-1–CL-4 can be represented by a single fault class CF = {fi,k → (fi,k, fj,k)},
as stated in Theorem 1.

The relationships between iterative fault collapsing are shown in Fig. 7: first,
collapsing of structural faults (CL-5–Cl-9) by functional faults used in memory
testing (CL-1–CL-4) [36], and thereafter, collapsing of the faults (CL1–CL4) by
the general high-level control fault CF, developed in the paper.

In this paper, we do not consider testing of the faults in data part, however,
we propose to use here testing of all instructions separately by using pseudo-
exhaustive test (PET) data operands [32]. It is well-known that PET provides
also a good fault coverage for a broad fault class.
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Fig. 7. Fault collapsing relationships

7 High-Level Decision Diagrams and Functional Test

The problem with the proposed functional fault model is a low scalability,
because when the size n of the set of functions F is growing, the number of
high-level faults |CF | = (n − 1)2 × m is growing very fast. This is actually the
same problem as with memory testing: the broader class of faults is desired the
longer test is needed.

From that a question follows, which is how to cope with the complexity
explosion by looking for tradeoffs between some test characteristics like fault
coverage, test length, test generation time etc. One possibilities is to partition
the sets of F into smaller subsets, and consider high-level test generation for
subsets of F separately.

High-level Decision Diagrams (HLDDs) [29,30] can be used as a uniform
approach for extracting and solving the constraints (3) in test generation for the
modules of microprocessors.

Consider in Fig. 8, a HLDD for a subset of 20 instruction of the MiniMIPS
microprocessor [33] which represents a subset of function of the ALU. The single
non-terminal decision node of the HLDD is labelled by the control variable c
(denoted by the operation code of the instructions) having n control values
labelling the output edges of the node c. The terminal nodes are labelled by
data manipulation functions fi to be used for creating the data constraints (3).

The HLDD in Fig. 8 can be regarded as a MUX of the control part of the
MUT, whereas terminal nodes describe the functions of the data part. Denote
the HLDD as G = 1, meaning that the graph has 1 decision node. The size of the
fault model for this subset of functions, n = 20 is |CF | = (n − 1)2 ×m = 11552,
assuming the data word length is m = 32.
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Fig. 8. HLDD with a single decision node for representing 20 MiniMIPS instructions

Depending on different partitioning of the set of control functions, HLDDs
may have more than one non-terminal nodes. If the HLDD has more than one
internal nodes, then for each non-terminal node m, the test is generated sepa-
rately, where the subset of functions F (m) ⊂ F related to the node m under test
is set up from the HLDD, so that to each output edge of the node m, a terminal
node mT in HLDD (having a path from m to mT ) with related function fj is
mapped and included into F(m).
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Fig. 9. HLDD for a subset of instructions of MiniMIPS (Color figure online)

To reduce the complexity of the model of the MUT, we can partition itera-
tively the set of functions by adding internal nodes into the HLDD.

Consider now another version of the HLDD in Fig. 9, which represents the
same subset of 20 instructions of the MiniMIPS, but has now 10 decision nodes.
Each decision node represents a partitioning, and the number of edges of the
decision node corresponds to the size of the related subset of functions F .

We can imagine three versions of HLDDs for this subset of 20 functions
(separated by red dotted lines):

1. G = 1 as a HLDD with a single internal node and 20 terminal nodes with
N = 12160 functional faults (Fig. 8),
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2. G = 4 as 4 subgraphs with decision nodes OP1, OP21, OP22 and OP23,
and with 3, 10, 4 and 6 terminal nodes, respectively, resulting in N =
(6 + 100 + 12 + 30) × 32 = 3904 functional faults,

3. G = 10 i.e. the current HLDD in Fig. 7 with Fig. 8 decision nodes, resulting
in N = (6 + (6 + 12 + 2) + (12 + 12 + 2) + (12 + 2)) × 32 = 2112 functional
faults (Fig. 9).

We have generated tests for these three versions of HLDD models with the
following results

Using these results, we see opportunities for optimization of the test, trading
off different parameters like test length (number of test patterns), achieved SAF
fault coverage and test pattern generation time. We see that the result of the
minimization of the complexity of the fault model due to the partitioning of the
set of functions under test, the number of functional faults taken into account
reduces dramatically from 12160 to 2112 (7 times), which has of course impact
of the quality of testing the extended class of functional faults. In the same time,
the SAF coverage does not change significantly, it decreases only from 99.03%
to 99.61%, despite of the reduction of the test length from 143 to 79 (nearly 2
times). As the complexity of the fault module decreases, then the test generation
time as well decrease (Table 2).

Table 2. Example of scalabilities for three versions of HLDDs

HLDD No of patterns Number of high-level faults N SAF FC (%) Time (s)

G = 1 143 12160 99.03 0.33

G = 4 100 3904 98.77 0.27

G = 10 79 2112 99.61 0.23

8 Experimental Results

We have carried out test generation experiment with two goals, first, to investi-
gate the possible tradeoffs between the complexity of the high-level fault model,
and the characteristics of generated tests such as test length, SAF coverage, and
test generation time, and second, to compare the SAF coverage of gate-level,
achieved by the proposed method with state-of-the-art methods. However, it
should be mentioned, that in the latter case, the proposed method has addi-
tional advantage regarding the coverage of the extended functional fault class,
that has not been taken into account in the state-of-the-art methods.

We carried out experiments on Intel Core i7 processor at 3.4 GHz and 8 GB
of RAM. The target was to investigate the efficiency of the new high-level imple-
mentation independent SBST generation method for microprocessors by measur-
ing both the high-level functional fault coverage, and the gate-level fault coverage
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(FC). As research objectives of the experiments, the executing and forwarding
units of MiniMIPS [33] were chosen.

For investigating the possibilities of tradeoffs between the complexity of the
high-level functional control fault model and the characteristics of generated tests
the executing unit was used. It consists of adder and 2 multiplication modules
MULT0 and MULT1. We targeted 28 instructions out of MiniMIPS 51, as the
basis for the set of functions F = {fi} to be tested. The results are depicted in
Table 4 and in Table 5. In Table 4 we show the SAF simulation results for only
the control test, whereas in Table 5, we show the results of SAF simulation of
the integrated control and data part tests. The latter experiment was needed to
demonstrate the additional impact of the data part test to the control test, for
the special case of SAF coverage.

Table 3. Test generation for different fault model complexities (only control part test
is SAF simulated)

HLDD nodes Test patterns Functional faults N SAF FC% Time (s)

ALU EX unit

1 161 23328 99.07 98.06 131.0

3 146 12160 99.04 98.03 82.8

6 103 6400 98.79 97.78 45.8

12 83 4032 98.67 97.65 32.9

Table 4. Test generation for different fault model complexities (both control and data
part tests are SAF simulated)

HLDD nodes Test patterns Functional faults N SAF FC% Time (s)

ALU EX unit

1 161 23328 99.32 98.33 131.0

3 146 12160 99.30 98.31 82.8

6 103 6400 99.11 98.13 45.8

12 83 4032 99.01 98.03 32.9

In Tables 3 and 4 we see, that the SAF coverage is very little depending on
the size of the set of high-level functional faults used. We see also increase of the
SAF coverage, if we simulate the full test including both control and data part
tests. This is natural, because the control test is not targeting at all the data
part. On the other hand, we see that the control test indirectly covers a huge
amount of SAF faults in the data part (as added value of using the proposed
high-level functional control fault model).
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The reasons of not covering of all SAF in the gate-level simulated circuits
may be twofold: (1) the faults are not detectable, or (2) the set of functions,
used as the target for test generation, may not cover the full circuit, which was
selected for SAF simulation (the circuit may be responsible for other functions,
not included into the set of functions, which was used for high-level test gener-
ation).

The second part of experiments consisted in comparing the results with state-
of-the art methods, using for comparison only the gate-level SAF coverage, which
however was not the target of the proposed method, which had the target to
generate an implementation-independent test.

In Table 5, we compare our high-level approach with a commercial ATPG,
where we showed that the latter had to use huge time when struggling with
test generation for a sequential part of the circuit (8 h), whereas the high-level
approach for solving the combinational data constraints used less than a minute.

In Table 6, the fault coverage fault coverage and simulation times are given
for the forwarding unit (FU), first, when applying only the ALU test, and then
the dedicated test for only FU, and thereafter, combining both tests. The tests
for FU were generated without knowing gate-level implementation detail, we
relied only on general information of the MiniMIPS pipeline architecture, which
includes the number of stages and forwarding paths.

In Table 7, we compare our results for 3 different MiniMIPS modules with 3
other test generators. Our approach is similar to [7] in the sense that the gate-
level implementation details are not required, but it shows almost 5% improve-
ment in FC compared to [7]. Although the method in [19] shows 1% improve-
ment over the proposed method, it is based on requiring of structural infor-
mation. Method in [18] requires enforcing set of constraints during ATPG test
generation, requiring also gate-level information. Differently from state-of-the-
art methods, where single SAF cover is the target, the proposed method targets
extended class of faults including conditional and multiple SAF.

Table 5. Execute unit test

Method Experiments #Faults FC (%) Stored
patterns

Executed
patterns

ATPG
time

Proposed
high-level
method

High-level ATPG 756 100 166 4818 47 s

Gate-level
simulation

Adder 2516 99.92

MULT0 95188 99.52

MULT1 91810 99.16

Commercial gate-level ATPG Adder 2516 99.96 957 957 8 h 27min

MULT0 95188 97.40

MULT1 91810 97.71
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Table 6. Fault coverage of forwarding unit by different tests

Module/unit ALU test (%) Forwarding test (%) Combined (%) Improvement (%)

Forwarding unit 89.71 97.84 98.03 8.32

Time (s) 808 48 460

Table 7. Comparison with other methods

Module/unit #faults Gate-level
implementation details
are exploited

Gate-level
implementation
independent

ATIG [19] SBST [18] SBST [7] Proposed

ALU 203576 98.67% n.a. 97.85% 99.06%

PPS EX 211136 97.62% 96.20% 84.12% 98.37%

Forwarding module 3738 99.00% 99.68% 93.64% 98.03%

9 Conclusions

In this paper, we propose a novel implementation independent SBST generation
method for the modules of RISC type microprocessors, which produces high
gate-level single fault coverage, comparable with the methods which use the
knowledge of implementation details. However the main target of the paper is to
propose a method which covers an extended class of structural faults including
high-level functional faults used in memory testing.

The main idea of the method is to generate tests separately for modules
under test (MUT) and in each MUT separately for its control and data parts.
The main contribution in the paper is related to test generation for the control
parts, whereas for testing the data parts independently of the implementation
details, we use the well-known pseudo-exhaustive test approach, not considered
here in detail.

A generic high-level functional fault model was developed, represented as a
set of constraints to be satisfied by data operands, for the control parts of MUT.
The fault model covers a broad set of low-level structural faults, and differently
from state-of-the-art, a set of traditional functional fault models used in memory
testing. We showed the possibility of focusing a large number of structural and
functional fault classes into a single measurable high-level functional fault model.

Based on this representative fault model, a novel measure of high-level control
fault coverage is proposed, and a method of evaluating the test quality using this
measure, which can indirectly assess the capability of the test to cover a large
class of faults beyond SAF.

The data constraints based fault model, and the introduced analogy of test-
ing with March test flow for memories revealed the possibility of applying the
proposed approach, not only for the combinational MUTs, but also for sequen-
tial ones. We introduced High-Level Decision Diagrams, as a means to be used
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for formalization of high-level test generation and optimization of test programs
by trading off different test characteristics, such as the fault model complexity
versus test length, test generation time and well measurable SAF coverage.

For comparison of our results with state-of-the-art we used the measure of
SAF coverage. Experimental results demonstrate higher SAF coverage compared
to other existing implementation-independent test generation methods for micro-
processors. The added value of the proposed approach, compared with state-of-
the-art, is the proof of covering extended fault class beyond SAF.

Acknowledgments. The work was supported by EU H2020 project RESCUE, Esto-
nian grant IUT 19-1, and Research Center EXCITE.
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Abstract. The IoT development alongside with the more pronounced
impact of process variability in modern technology nodes, is the central
reason to control variability impact. Given the broad set of IoT devices
running on battery-oriented environments, energy consumption should
be minimal and the operation reliable. Schmitt Trigger inverters are fre-
quently used for noise immunity enhancement, and have been recently
applied to mitigate radiation effects and variability impact. Yet, Schmitt
Trigger operation at nominal voltage still introduces high deviation on
power consumption. Thus, the main contribution of this work is to iden-
tify the relationship between transistor sizing, supply voltage, energy, and
process variability robustness to achieve a minimal energy consumption
circuit while keeping robustness. On average, scenarios with a lower sup-
ply voltage applied on layouts with a smaller number of fins, presented
adequate robustness in high variability scenarios. Exploring voltage and
transistor sizing made possible a reduction of about 24.84% on power
consumption.

Keywords: Process variability mitigation · Schmitt Trigger · Low
power · FinFET technology

1 Introduction

Ultra-low Power (ULP) circuits are widely applied in various portable electronics
applications such as cellular phones, bio-medical assistance devices and sensing
networks. The ULP designs rise, alongside battery technology improvements, have
provided us with portable, powerful and useful equipment for our daily routine,
with wireless communication making information available anytime and anywhere
[1,2]. One of the most proeminent ULP applicants is the Internet of Things (IoT)
industry, determining technology development and industry tendencies.

As IoT devices emerged new kinds of applications have surfaced as well.
From improving maintenance for all sorts of facilities, to sensor in remote areas
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and even automobile applications. However IoT applications still depend on an
energy source, with battery-oriented applications being the most prominent.
Given the limited life cycle of batteries, self-sufficient systems have appeared in
order to alleviate the power consumption dilemma [2]. Given so, an IoT applica-
tion will always be restricted by its power budget, with devices that can perform
their functionality under heavy power constraints being essential [3]. The ideal
circuit for ULP applications is the one that can perform a given task while
consuming the least amount of energy. Such circuits might be achieved under
transistor sizing and supply voltage tuning, being technology and application-
dependent [2].

Nevertheless, the technology advance over transistor sizing has increased the
density of chips and the challenges related to the manufacturing process, for
example, the process variability and aging effects, the higher power consump-
tion due to larger leakage currents, and the increase in the radiation-induced
soft errors [4]. Multigate devices, as the Fin Field Effect Transistor (FinFET),
have been proposed to help overcome some of those issues. The structure of Fin-
FETs shows superior channel control due to the reduced short-channel effects
(SCE) and diminished Random Dopant Fluctuation (RDF) effect due to the fully
depleted channel [5]. However, process variability is one of the major challenges
in nanometer technology, even on FinFET designs [6]. At deep nanotechnology
nodes, each chip may show a distinct behavior due to process variations during
the lithography steps in the manufacturing process. These variations exert influ-
ence over the metrics of the circuits such as performance and power consumption,
which can bring unpredictable circuit degradation, making them unsuitable from
its expected operation regime [4,7].

This work aims to explore a low power solution considering the effects of
process variability in the Schmitt Trigger (ST) designs. ST circuits are widely
applied on low power applications due to its noise immunity, and, recently have
been considered for process variability mitigation on nanometer technologies.
This set of data can provide relevant information for ULP designers, and also
for other low power applications that need to manage process variability impact.
Thus, the main contribution of this work is an in-depth evaluation of the influ-
ence of different factors on the ST design, considering: 1) multiple combinations
of supply voltages; 2) different levels of process variability; and 3) the variable
transistor sizing relation (number of fins). The experiments analysis the impact
of these factors on the maximum achievable frequency within a failure threshold,
the trade-off among these parameters and power consumption.

Next section aims to give more context to this work, commenting on related
works and the main differences and contributions of this work in comparison.
Section 3 gives a more in-depth explanation about variability and its several
factors and phenomena. Section 4 introduces the FinFET technology and the
variability influence over it. Section 5 the main aspects of ST are shown as well
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its robustness enhancing capabilities. The methodology adopted to allow all the
evaluations is explained in Sect. 6. The results are discussed in Sect. 7 and finally,
Section VIII presents the main conclusions.

2 Related Work

Many works evaluate the effects of Process, Voltage and Temperature (PVT)
variability on circuits and devices, but few works consider the effects for ULP
designs.

Some works address theses issues focusing on the yield improvement. In [4] is
developed a mathematical methodology for increase the yield considering aging,
and PVT variability. With such method, the circuit sizing was optimized and,
obeying some performance and power constraints, it was possible to achieve
an increase from about 40% to 99% yield. [8] provides a characterization of
the effects of open defects on nanoscale CMOS gates and circuits. It shows
the difference on output value for several circuits, technology nodes and most
important under the influence of PVT variability. In [9] is shown the implication
of PVT variations on subthreshold device and circuit performance metrics. It
was found that a ±10% on several transistor parameters could introduce up to
a 77% variation in Energy, or Power-Delay Product (PDP). In this context, the
use of STs is being investigated as an effective method for increasing the on-to-
off current ratio, and consequently, for mitigating the process variation effects
[3] on subthreshold operating systems.

Other works have evaluating the impact on arithmetic circuits, mainly on
Full-Adders (FA). In [10] the effects of PVT variability in different Full Adder
(FA) designs are investigated. Both Transmission Gate Adder (TGA) and Trans-
mission Function Adder (TFA) architectures showed acceptable behavior under
PVT variability with the lowest power consumption sensibility amongst the
tested FAs, reaching about 11× smaller in comparison with Complementary
Pass Transistor Logic (CPL) FA. In [11] simulations were performed on several
FA circuits considering Carbon Nanotube Field Effect Transistor (CNFET) and
bulk Complementary Metal-Oxide-Semiconductor (CMOS) technology. Results
show that the TGA is the most robust circuit with its CNFET version providing
up to 3× less variations. [12] presents a study about the delay variability caused
by supply variations in the TGA. The experiments were performed at layout
level. It showed that lower supply voltages bring more delay variability to the
circuit with the TGA presenting worse results in comparison to static logic.

Given the energy constraints of ULP applications and the variability impact
on recent nodes, the ST circuit has been pointed as an circuit-level alternative.
The classical ST has been employed as a key element for several ULP circuits
[13–16] and for variability mitigation, mainly attenuating the deviation on the
power consumption. Schmitt Trigger was applied replacing internal inverters of
full adders in [17], where spreads in major metrics were successfully limited. Also,
the same experiment was executed at electrical and layout levels considering
FinFET technology, and showed a considerable decrease in overall variability
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impact on metrics [18,19]. However, with a considerable increase in delay and
power consumption.

It is important to highlight that the mentioned works do not consider analysis
at the layout-level in modern technology nodes. Additionally, most works do not
consider such a combination of variables and even if they do, the analysis is often
performed considering the circuit under the influence of only one of the variables
at a time. This work presents a layout-level analysis, considering all parasitics
and electrical behavior related to transistor placement and routing, as well as all
considered variables exerting their influence at the same time, as would occur
on a real scenario.

3 On Variability

As technology scaling advanced, decreasing the transistor dimensions, the ratio
between device geometrical parameters and the atom-size itself have been
shrinking. Multiple techniques have been developed to reduce the loss of pre-
cision due to the manufacturing process at different end-of-lines. However, as
the quantum-mechanical limit approaches, manufacturing-induced imprecision
impact rises [20].

Variability consists of characteristic deviations, internal or external to the cir-
cuit, which can determine its operational features and can be divided by three
types concerning its sources: Environmental Factors - External factors to the
circuits e.g. temperature and supply voltage variations [7,21], Reliability Fac-
tors - related to the aging process e.g. Negative Bias Temperature Instability
(NBTI), electromigration, dielectric breakdown and Hot Carrier Injection (HCI)
[7,21–25] and Physical Factors - caused by the manufacturing process, conse-
quence of imprecision in the manufacturing process which can be systematic,
design dependent or random [21,26–32]. Figure 1, depicts the transistor intrinsic
variability.

Despite the multiple advantages of new technologies, the atom scale makes
process variability one of the most relevant challenge. FinFET devices have been
investigated about the variability impact and the next subsection introduces the
main concepts about FinFET technology to understand the variability impact
on this device.

3.1 FinFET Technology and Variability Impact

The FinFET main geometric parameters are the gate length (L or LG), fin width
(WFIN , TFIN or TSI), fin height (HFIN ) and Oxide Thickness (TOX). FinFET
transistors can be built on a traditional bulk or on a Silicon on Insulator (SOI)
substrate with a conducting channel that rises above the level of the insulator,
creating a thin silicon structure, the gate, as shown in Fig. 2 and Fig. 3.

The channel being surrounded from three dimensions by the gate results in
a superior control, reduced SCE and RDF effect due to the fully depleted chan-
nel that causes less sensitivity to process variations [34]. FinFETs also present
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Fig. 1. Levels of abstraction from a ideal transistor towards a realistic concept. (a)
Depicts a the current approach of semiconductor device simulation. (b) Depicts a 20-
nm Metal-Oxide-Semiconductor FET (MOSFET). (c) Depicts a 4-nm MOSFET. [28].

WFIN

Back-gate

Fig. 2. Structural comparison between (a) planar MOSFET and (b) FinFET transis-
tors. Modified from [33].

Fig. 3. Structural comparison between (a) bulk and (b) SOI FinFETs [33].
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relative immunity to gate Line Edge Roughness (LER), a major source of vari-
ability in planar nanoscale FETs [35]. Overall, the major sources of variability
expected for FinFETs are the LG, WFIN , HFIN and gate WF [36]. Amongst all
variability sources, it is shown that the Vt is mainly set by the gate WF, with
fluctuations having a direct impact on its limits [37–40].

Given the challenges intrinsic to the adoption of high-k dielectrics in order
tackle the increasing gate leakage due to the scaling down of gate oxide, a metal
gate was adopted on FinFET devices [41–44]. Metals exist in natura in the form
of crystals where each atom has several bonds with adjacent atoms. Although,
due to defects and disorientation, several crystals are formed, with “grain bound-
aries” between regions of regularity (crystal grains) in the metal [45].

The electrostatic potential (e.g. Vt) varies depending on each grain boundary,
as shown in Fig. 4. At Table 1 a example of possible orientation, probability and
WF is given. Between several technology nodes - FD-SOI, Bulk and FinFET -
the latter showed the lowest Vt variation due to the much larger gate area [45].

Fig. 4. Electrostatic potential in a generic 30-nm MOSFET with the surface potential
shown below. The metal gate has two grains with the grain boundary diagonally across
the channel [46].

Table 1. Metal orientation, probability and related work function [46].

Orientation Probability Work function

<200> 60% 4.6 eV

<111> 40% 4.4 eV
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The main source of variability on FinFETs arises from the metal gate granu-
larity (MGG) that provokes significant work-function fluctuations (WFF), affect-
ing the threshold voltage and the Ion/Ioff currents [6,47].

4 Schmitt Trigger for Process Variability Mitigation

Schmitt Trigger circuits present a hysteresis characteristic. Hysteresis exists in
the presence of two switching threshold voltages (Vt). If the input level is inside
the hysteresis interval, the ST will not switch. Such characteristic provides a
higher static noise margin (SNM) in comparison to traditional inverters, ensuring
a high noise immunity. Deviations in physical parameters became alarming at
ultra-deep sub-micron (UDSM) nodes due to the following supply voltage scaling,
making the circuits more susceptible to noise and electromagnetic interference
due to the deterioration in SNM [48].

There are several ST topologies proposed in the literature. In [49], three
threshold adjustable ST circuits are presented, wher two are semi-adjustable
(only one threshold level can be adjusted) and one are a fully adjustable (both
threshold levels can be adjusted) topology. All circuits presents small chip area,
and very low static power consumption. A higher performance ST is proposed
in [50] where, by a different design, a smaller load capacitor value is achieved,
decreasing the slew rate of the ST internal node.

In [51] a low-power ST is proposed as well by forward body biasing, decreasing
the Vt, improving performance and decreasing the short circuit current. [52]
proposes a 10T ST which its hysteresis interval does not depend on transistors
width/length ratios being, consequently, more robust to process variations.

In [53] a ST with a programmable hysteresis is proposed. The programmable
hysteresis is achieved by adding a P and N transistors in series with the 6T
ST PF and NF transistors, respectively, both receiving the same gate signal. A
low-power ST is proposed at [54] with low short circuit current achieved by the
presence of only one path to each power rail, being recommended for low power,
very low frequency applications. Additionally, [55] proposes a low-power ST by
having only one transistor transmitting (at stable output values), considerably
reducing power consumption.

As show in Fig. 5, this work explores a traditional ST topology, where the
major difference from the most popular versions is the presence of PF and NF

transistors [56]. These transistors are responsible for a feedback system. For
example, if the output is at a high level, the NF is closed, pulling the node X to
a high potential, and forcing the drain-source voltage of transistor NI almost zero
and its gate-source voltage into the negative region. This kind of arrangement
reduces the leakage current NI exponentially, increasing the Ion/Ioff current
ratio, minimizing the output degradation [16].

The main effect of process variability on ST circuits is a shift in the Voltage
Transfer Curve (VTC) due to the threshold voltage variation. Mostly, the input
voltage, where a device starts transmitting current, is directly dependent on the
Vt. Given so, the variability impact onto the VTC is reduced as a result of the
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IN OUT

Fig. 5. ST inverter leakage suppression [16].

high influence of the gate-source voltage of the ST inner transistors (NI and PI)
over its switching point [16].

5 Methodology

To present an broad exploration of power consumption and the process variabil-
ity effects on the ST characteristics, this work evaluates: 1) ST circuit operating
at multiple combinations of supply voltages; 2) the impact of different levels of
process variability; 3) the influence of the transistor sizing exploring devices with
different number of fins, all at the same time composing over 175 possible sce-
narios. The impact of these parameters on the maximum achievable frequency
within a failure threshold will be analysed.

The design flow is shown at Fig. 6. The project was divided into two main
steps: the layouts designing and electrical simulations. After finishing the layout
design process, each layout passed through validation which consisted of a Design
Rule Checking (DRC) to detect if the layout obeys the technology geometry
restrictions and layer rules, Layout Versus Schematic (LVS) where layout and
schematic are compared to detect their equivalence (same nodes and nets) and
a Behavioral test, in order to observe if the circuit works as expected at nominal
operation.

5.1 Layout Design

All ST layouts were designed on the Virtuoso tool from Cadence R© with the pro-
cess design kit (PDK) of 7-nm FinFET (ASAP7) from the Arizona State Univer-
sity in partnership with ARM [57]. This PDK was chosen due to a realistic design
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Fig. 6. Design flow of the experiments.

conjecture regarding the current design competencies and for being available for
academic use. FinFET technologies present the width quantization aspect [58].
With a 27 nm fin pitch, a high-density layout is achieved with 3-fins transistors.
Otherwise, for a higher fin count, there is a lower density and routing complexity
[59]. The main PDK rules and lithography assumptions considered in this work
are shown in Table 2. The main layers and the 3-fin ST are shown in Fig. 7.

Table 2. Key layer lithography assumptions, widths and pitches [57].

Layer Lithography Width/drawn (nm) Pitch (nm)

Fin SAQP 6.5/7 27

Active (horizontal) EUV 54/16 108

Gate SADP 21/20 54

SDT/LISD EUV 25/24 54

LIG EUV 16/16 54

VIA0-VIA3 EUV 18/18 25

M1-M3 EUV 18/18 36

This work evaluates the ST with 1 to 5 fins. For comparison, the 1 and 5-fins
layouts are shown in Fig. 8. For the layouts with 1 and 2 fins, due to the minimum
active area technology restriction, it was not possible to lower the cell area in
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Fig. 7. 3-fins variant ST layout in 7 nm FinFET Technology (ASAP7) [60]

Fig. 8. a) 1 and (b) 5-fins ST layouts

comparison to the 3-fins layout. Although considering a possible scenario, the
2 and 1-fin layouts would present a 20% and 40% reduction in area, compared
to the 3-fins variant, respectively. The 3, 4 and 5-fins ST area, height and area
increase are shown at Table 3.

It is important to clarify that a lower fin count does not necessarily mean an
area reduction. The routability could turn into a challenge and a width of height
increase would be necessary.

The ASAP7 PDK contains the manufacturing process composed by front end
of line (FEOL), middle of line (MOL) and back end of line (BEOL). The lay-
outs were developed in a continuous diffusion layer with every gate surrounding
another gate in the horizontal axis. The Source-Drain Trench (SDT) connects
the active area to the LISD layer. The Local-Interconnect Gate (LIG) is applied
to connect the gate terminal, and Local-Interconnect Source-Drain (LISD) is
used to connect the source and drain of the transistors. The function of V0 is
to join the LIG and LISD to the BEOL layers. The Metal 1 (M1) is used for
intra-cell routing and short connections. The Metal 2 (M2) was applied to con-
nect the PF and NF drains to ground and source, respectively. For the layouts
with a fin count below 3, M2 was applied to connect the source/drain of the PF

and NF transistors to the X and Y layout nodes. Given the smaller area to work
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Table 3. 3, 4 and 5-fins STs area, height (in tracks of Metal 2), and the area increase
corresponding to each extra fin.

#Fins Area (nm2) Height (M2 Tracks) Area increase

3 131220 7.5 -

4 157464 9 20%

5 183708 10.5 40%

with, it was necessary to apply M2 in order to respect the M1 spacing rules,
bringing to light one of the challenges related to a smaller layout. The M2 usage
in those cases will increase the design parasitics from the neccessary extra vias
connecting M1 and M2. To successfully pass the LVS step, it was necessary the
addition of a TAP-cell to connect the transistors back-gates.

5.2 Electrical Simulation

The simulations were carried out in HSPICE [61] using the netlist obtained after
the physical verification flow and the parasitic extraction. The reference values
from ASAP7 technology for electrical simulations are shown in Table 4. For a
more realistic test-bench, it was considered a scenario where the ST receives
the signal from two inverters and drives a 1fF output capacitance, as shown
in Fig. 9. The same supply voltage is applied in the entire testbench. Only the
ST suffers from variability, and the inverters are the same (3-fins transistors)
for all experiments. All designs present in the test-bench, inverters and ST, are
simulated from the extracted layouts.

Table 4. Parameters applied in the electrical simulations [57].

Parameter 7 nm

Nominal supply voltage 0.7 V

Gate length (Lg) 21 nm

Fin width (Wfin) 6.5 nm

Fin height (Hfin) 32 nm

Oxide thickness (Tox) 2.1 nm

Channel doping 1 × 1022 m−3

Source/drain doping 2 × 1022 m−3

Work function NFET 4.372 eV

PFET 4.8108 eV

The process variability evaluation was taken through 2000 Monte Carlo (MC)
simulations [58] varying the WF of devices according to a Gaussian distribution
considering a 3σ deviation. This work explores the behavior of ST with variations
from 1% up to 5%. For each step on WF variation, all simulations were carried
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Fig. 9. Test-bench applied in all simulations [60].

from 0.1 V to 0.7 V supply voltage, with steps of 0.1 V at a nominal temperature
of 27 ◦C. The voltage of 0.1 V shows to be the technological limit to work without
the loss of the hysteresis characteristic. For all experiments, it was observed
maximum values, mean (μ), standard deviation (σ) and normalized standard
deviation (σ/μ) for each metric: hysteresis interval, delay, and energy, where
σ/μ represents the sensibility of the cell to process variability.

Due to the variability impact a circuit may present performance degradation,
given that, in order to determine the maximum frequencies for the layouts eval-
uated, this work considers a 10% maximum failure threshold in the Monte Carlo
simulations. Failures are defined as cases where a pair of operations (high-to-low
and low-to-high) propagation times do not fit into the determined frequency. In
the case of a number of failures above 10%, the frequency is decreased.

6 Results and Discussion

This section is divided into three parts. First, a discussion concerning energy
consumption where a scenario-specific analysis is performed, and different sets
of fin count and supply voltage are recommended. A performance analysis (delays
and maximum frequencies) will follow, presenting an analysis of the fin count and
supply voltage over absolute and deviation values. And finally, the ST hysteresis
interval values are presented in relation to the variability level and number of
fins.

6.1 Energy Consumption

For each level of WFF explored in this work, there is a distinct ideal scenario for
each kind of application. As shown in Table 5, considering the absolute energy
consumption observed, the 1-fin layout showed, in all cases, the lowest. It is due
to its smaller driving capability, resulting in smaller currents.

The supply voltage recommended for each scenario increases almost linearly
in relation to the level of WFF variability. The 0.1 V regime did not prevail as the
best option across all scenarios, shows the dependency of energy consumption
with propagation times. Figure 10 shows an average between the each particular
variability scenario related to the number of fins. It can be observed a difference
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Table 5. Recommended setup by each specific scenario [60].

WFF Lowest energy Most robust Cost-benefit

# Fins Supply (V) # Fins Supply (V) # Fins Supply (V)

1% 1 0.1 1 0.7 1 0.7

2% 1 0.2 1 0.7 1 0.7–0.2

3% 1 0.2 5 0.3 1 0.3

4% 1 0.3 5 0.4 1 0.4

5% 1 0.4 5 0.5 1 0.5

above 100%, between maximum and minimum, showing a higher dependence of
the number of fins in determining the circuits energy consumption. Results below
0.3 V did not feature the chart in order to preserve its scale, since for 0.2 V and
0.1 V there are a 1 and 2 orders of magnitude increase on energy consumption,
respectively.
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Fig. 10. Average energy consumption over supply voltage scaling [60].

Into the robustness analysis, a shift can be observed. For lower variability
scenarios the setup recommended is at 1 fin layout and 0.7 V for 1% and 2%
WFF. From moderate to high variability (3% to 5%), the 5 fins layout gains
advantage with the supply voltage scaling linearly.

The energy robustness is mainly determined by variations in the Ion and,
consequently, the time necessary for the circuit charging/discharging. At nominal
supply voltages, the Ion falls into the saturation region with an exponential
dependence over the Vt. Given that, variations on the Vt will result in exponential
variations. With the supply voltage decrease, the Ion falls into the linear region,
diminishing the impact of Vt variations on the Ion.

Thus, at low variability scenarios, close-to-nominal supply voltages will not
suffer from the exponential Vt dependence, weakening its effect with high current
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Fig. 11. Average energy consumption sensibility scaling over supply voltage [60].

peaks, small signal slopes overcharging and discharging and higher noise immu-
nity. As variability rises, the linearity from the Vt will present an advantage,
favoring smaller supply voltages. However, as variability rises again, the rise and
variation in propagation times will start to determine the adequate supply volt-
age. Figure 11, shows the average scaling on the impact of process variability on
energy consumption. It can be seen a lower than 5% discrepancy between best
and worst cases, showing the minor dependence of the number of fins in deter-
mining the circuits robustness. Results below 0.4 V did not appear on the chart
in order to preserve its scale. For 0.3V, 0.2V and 0.1V, maximum normalized
standard deviations are 108.64%, 266.82% and 358%, respectively.

For the sake of comparison, Fig. 12 and Fig. 13 present the difference between
the respective layouts with the lowest energy consumption and energy consump-
tion variation and the traditional 3-fins layout. The highest difference was 27.85%
and 14.44% for energy consumption and variability, respectively.

Considering a cost-benefit scenario, the best choice was defined by the lowest
value given by the product of the energy consumption and the normalized devi-
ation product (Energy-Deviation Product - EDP). It can be noticed a shift from
a more robust layout (at 1% and 2% WFF) to a low energy layout at higher
WFFs (3% to 5%). At 2% there are two supply voltages recommended since the
EDP values similar. At this variability point the layout at 0.7 V presents the
highest robustness and acceptable energy consumption, due to the lower prop-
agation times, while the layout operating at 0.2 V presents the lowest energy
consumption and acceptable energy deviation.

A comparison between the layouts with the lowest energy consumption,
energy variability, and the best cost-benefit are shown in Figs. 14 and 15 in
relation to energy consumption and energy variability, respectively. The energy
variability of the lowest energy layout at 3% WFF is one example of why a
cost-benefit analysis should be made since it shows an 11.5% lower energy con-
sumption with a 582.47% higher sensibility.
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Fig. 12. Energy consumption comparison between the layout with the lowest energy
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Fig. 13. Energy variability comparison between the layout with the lowest sensibility
and the traditional 3-fins layout at the same supply voltage [60].

6.2 Propagation Delays and Maximum Frequencies

At performance scaling it can be observed a worsening on propagation times
over the lowering of the supply voltage and fin count. The transistor driving
capability is proportional to the fin count, given that with more fins there is a
larger active area passing current, fastening the charging/discharging process.
Given the area penalty, which will be discussed, the 4-fins layout only gives a
10% penalty on propagation times, being a good choice over area constraints in
comparison to the 5-fins layout. The 3, 2 and 1 fins layouts bring a 42%, 92%
and 268% delay increase on average, respectively.

In comparison to the traditional 3-fins layout, the 5 and 4-fins variants bring
20% and 13.612% decrease on propagation times while the 2-fins and 1-fin vari-
ants bring 27.24% and 107% delay increase, respectively.
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Fig. 15. Energy variability comparison among the layouts with the best cost-benefit,
lowest energy consumption and lowest variability sensibility [60].

For variability impact, it can be observed a tendency of lower sensibility
over higher fin count at higher supply voltages. As supply voltage scales down,
a lower number of fins starts to keep up with the variability robustness, as
shown in Fig. 16. It can be concluded that due to the exponential relation of
drain current with gate-to-source voltage, the higher fin count is capable of
providing the necessary current drive at higher supply voltages. At lower supply
voltages, with the drain current decreasing exponentially, the fin count impact
on variability robustness is diminished.

Maximum frequencies are shown at Table 6. The maximum frequencies are
proportional to the supply voltage and fin count. The higher fin count allows
faster charging and discharging due to a bigger active area driving current. On
average, the 5 and 4-fins layouts were able to present 16% and 10.34% higher
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Fig. 16. Delay sensibility ratio between layouts [60].

frequencies while the 2 and 1-fin variants showed 19.18% and 44.65% lower fre-
quencies, in comparison to the 3-fins variant.

Figure 17 and Fig. 18 show the average ratio between the different variability
and circuits scenarios normalized in relation to the 1 Fin layout and 5% WFF
scenario, respectively. It can be noticed a considerable 52.597 times ratio between
low and high variability scenarios, being the main variable determining the cir-
cuit frequency. In comparison, the number of fins brings a maximum 3.917 times
ratio between 5 and 1 fins layouts, exposing the advantage of a higher number
of fins on low supply voltages.

6.3 Hysteresis Interval

Hysteresis is one of the major characteristics related to the circuit ability to filter
noise. A higher hysteresis interval brings more robustness to the circuit. As a
priority, the ratio between its value and the supply voltage should be as high as
possible. The ST, at nominal operation (nominal supply voltage and no process
variability), presented a maximum hysteresis interval of approximately 0.45 V.
Given that, considering the average absolute values of the hysteresis interval, it
can be observed a difference below than 5% between the best and worst cases,
considering different fin counts.

At higher supply voltages of 0.6 V and 0.7 V, the difference widens up reach-
ing up to 10.76% and 25.26% between the 5-fins and 1-fin layout, respectively.
Such results come from the faster charging/discharging, which decreases the sig-
nal slopes widening the circuit hysteresis interval. At lower supply voltages, a
decreased number of fins is sufficient to keep the slopes low enough, presenting
high hysteresis to supply voltage ratios while at higher supply voltages a lower
number of fins will increase the signal slopes.

Although, there is a hysteresis interval improvement, as shown in Fig. 19,
over the WFF increase as well. Such behavior happens due to the hysteresis
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Table 6. Each scenario respective maximum frequency.

WFF # Fins Supply Voltage (V)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

1% 1 600 KHz 15 MHz 350 MHz 2 GHz 8 GHz 12 GHz 16 GHz

2 1.1 MHz 25 MHz 600 MHz 4 GHz 13 GHz 19 GHz 24 GHz

3 1.5 MHz 35 MHz 900 MHz 5 GHz 17 GHz 24 GHz 29 GHz

4 1.75 MHz 40 MHz 1 GHz 6 GHz 19 GHz 27 GHz 33 GHz

5 2.25 MHz 50 MHz 1.2 GHz 6 GHz 21 GHz 30 GHz 35 GHz

2% 1 200 KHz 5 MHz 150 MHz 1.5 GHz 5 GHz 11 GHz 15 GHz

2 400 KHz 9 MHz 250 MHz 2.5 GHz 7 GHz 18 GHz 23 GHz

3 600 KHz 12.5 MHz 300 MHz 3 GHz 9 GHz 22.5 GHz 28 GHz

4 700 KHz 15 MHz 450 MHz 4 GHz 11 GHz 17 GHz 31 GHz

5 900 KHz 18 MHz 500 MHz 4 GHz 12 GHz 20 GHz 25 GHz

3% 1 100 KHz 2 MHz 60 MHz 1 GHz 4 GHz 8 GHz 14 GHz

2 200 KHz 3 MHz 100 MHz 1.5 GHz 6 GHz 11 GHz 20 GHz

3 200 KHz 5 MHz 125 MHz 2 GHz 8 GHz 14 GHz 19 GHz

4 300 KHz 6 MHz 150 MHz 2.5 GHz 9 GHz 16 GHz 21 GHz

5 400 KHz 6 MHz 150 MHz 2.5 GHz 10 GHz 17 GHz 23 GHz

4% 1 50 KHz 800 KHz 25 MHz 500 MHz 3 GHz 6 GHz 13 GHz

2 75 KHz 1.5 MHz 40 MHz 900 MHz 4 GHz 8 GHz 15 GHz

3 125 KHz 2 MHz 50 MHz 1 GHz 6 GHz 12.5 GHz 18 GHz

4 150 KHz 2.5 MHz 60 MHz 1.1 GHz 7 GHz 14 GHz 20 GHz

5 150 KHz 2.5 MHz 60 MHz 1.4 GHz 7.5 GHz 15 GHz 22 GHz

5% 1 15 KHz 350 KHz 9 MHz 250 MHz 2 GHz 5 GHz 11 GHz

2 40 KHz 600 KHz 10 MHz 350 MHz 2.5 GHz 8 GHz 14 GHz

3 50 KHz 800 KHz 18 MHz 450 MHz 4 GHz 10 GHz 17 GHz

4 90 KHz 1 MHz 20 MHz 500 MHz 5 GHz 12 GHz 19 GHz

5 80 KHz 1 MHz 20 MHz 500 MHz 5 GHz 12.5 GHz 20 GHz

interval dependency over the PFET and NFET threshold voltages [56]. This
means that lower WF decreases the NFET threshold, while higher WF will
increase the NFET threshold, and vice-versa for PFET devices. Therefore, the
ideal scenario would be with negative WFF for the PFET devices and positive
WFF for the NFET devices. Though, the NFET term also depends on the β-ratio
(ratio between the transistor emitter and base current) of the PFET and NFET
transistors. Giving an estimate based on saturation and off-currents from [57],
the NFET threshold voltage influence on the final hysteresis interval is almost
40% higher, in comparison to its counterpart.

As shown in Table 7, the only cases with considerable hysteresis worsening
happens when the NFET WF is above 2%, while the subset showing improve-
ments includes most of the possible scenarios. And since the hysteresis voltage
will never be higher than the supply voltage, the average tends to the supply
voltage value.
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Table 7. Hysteresis interval ratio dependency over NFET and PFET workfunction
[60].

NFET PFET

5% 4% 3% 2% 1% 0% −1% −2% −3% −4% −5%

5% 0.30 0.28 0.28 0.27 0.26 0.25 0.26 0.27 0.28 0.30 0.32

4% 0.46 0.46 0.55 0.54 0.54 0.54 0.55 0.56 0.57 0.59 0.61

3% 0.76 0.76 0.76 0.78 0.80 0.81 0.83 0.84 0.86 0.87 0.89

2% 0.88 0.90 0.92 0.92 0.95 0.97 0.99 1.00 1.00 1.00 1.00

1% 0.93 0.94 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0% 0.95 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

−1% 0.95 0.96 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

−2% 0.96 0.97 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.98

−3% 0.95 0.97 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97

−4% 0.93 0.94 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.95 0.94

−5% 0.93 0.94 0.96 0.96 0.96 0.95 0.95 0.94 0.94 0.94 0.93

7 Conclusions

An analysis over multiple scenarios considering several levels of process variabil-
ity, supply voltages, and transistor sizing was performed in order to identify the
adequate number of fins and supply voltage for various kinds of applications
prioritizing energy consumption and the minimization of deviations.

ST is a promising circuit for variability effects mitigation and enhancement of
noise immunity being fairly applied on critical applications with tight reliability
constraints. The results show that fewer fins can enable considerable energy
reduction. On the contrary, for the ST robustness, a higher fin count will bring
an increase in the on-current, bringing noise immunity improvements.

In performance results, it could be observed up to 16% and 44.65% maximum
average increase and decrease in frequency, respectively, with differences between
variability impact in the layouts rising alongside the supply voltage value. The
hysteresis intervals showed clear advantages over higher fin count and supply
voltages with 10.76% and 25.26% better hysteresis. Considering energy consump-
tion and variability, it was possible to achieve 24.84% and 14.44% decreases,
respectively, with robust layouts taking advantage of a higher number of fins
and a small decrease on the supply voltage while still maintaining very high
frequencies of about 5 GHz. A cost-benefit analysis was made as well, giving
an additional option in order to achieve acceptable energy consumption and
variability robustness.

For future works, we expect to investigate the effects of sizing on each feed-
back transistor on the ST circuit independently, introduce new designs and tech-
nology nodes into the analysis, take radiation effects, on top of the variability,
into account and apply such circuits into more complex projects.
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Abstract. Technology scaling increases the integrated circuits suscep-
tibility to Single Event Effects. As a manner to mitigate soft errors, solu-
tions incur significant performance and area penalties, especially when
a design with fault-tolerant structure is overprotected. There are several
estimation methods, as Probabilistic Transfer Matrix, Signal Probability
Reliability, and SPR Multi-Pass, to evaluate circuit reliability. Theses
methods use probabilistic transfer matrices (PTM) of the logic gates as
the starting point. Few works explore the accurate generation of these
matrices. This chapter briefly reviews the reliability concepts and some
circuit estimation methods that explore PTM concept and presents a
method to provide gate susceptibility matrices considering faults in the
stick diagram level. The proposed method enriches the logic gates prob-
abilistic matrices creation taking into account the characteristics of the
logic gates to evaluate gate reliability more precisely. The results present
the importance of the proposed approach. They are shown in the mean
and standard deviation of the susceptibility calculated. In terms of stan-
dard deviation, high values indicate that the cell is highly sensitive to
pin assignment. A good pin assignment alternative can result in 40%
reduction in susceptibility for the same logic function.

Keywords: Microelectronics · Reliability · Single Event Effects ·
Single event transient · Failure rate

1 Introduction

The manufacturing precision limitations and supply voltage reduction combined
with higher operating frequency and power dissipation are the primary concern
for the technology scaling in nanoscale designs. These challenges severely impact
the reliability of a system and consequently influence the need for reliability. The
circuit reliability has been pointed out as one of the major challenges in deep
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sub-micron CMOS circuits [1]. Meanwhile, with the omnipresence of electronics
in our daily lives, there is even more demand for reliable system design. Despite
these difficulties and the fact that the chips cannot be retested at the factory,
users expect the system to remain reliable and to continue to deliver the rated
performance [2].

These limitations in the fabrication process may increase the number of faults
in circuits, reducing their reliability. To mitigate the problem above, it is explored
different kinds of redundancy. These redundancy guarantees circuits that pro-
duce correct outputs even in the presence of errors [3]. However, they are usually
based on redundancy in time, hardware, and/or information [4]. Although any
redundancy-based strategy would impose extra overhead, it is still of high inter-
est since the fabrication yield is predicted to become extremely low in nanoscale
designs [5].

To avoid the overdesign and guarantee the best option in the fabricated cir-
cuit, many reliability evaluation methods may be used. An accurate method is
the Probabilistic Transfer Matrix (PTM) [6], and it is the basis for other meth-
ods, as the Signal Probability Reliability Multi-Pass (SPRMP) [7]. Since the test
of a circuit is a high-cost task, the probabilistic methods used to estimate the
reliability of a circuit based on the reliability of the gate are even more high-
lighted. Besides, these methods are prone to reliability analysis under multiple
faults scenario. It is known that the limitation of these methods is the simplifi-
cation of the assumption of the same error probability values for all logic gates.
The work proposed in [8] shows a method in transistor-level to create the logic
gate probabilistic matrices. The matrices created shown that it is essential to
observe the transistor arrangements to produce more accurate matrices for the
logic gates that feed the probabilistic methods.

The models for evaluating the reliability of logic gates made so far consider
transistor arrangement information to calculate the reliability of a gate given a
type of fault. As the transient fault occurs on the sensitive nodes of the gates,
stick diagram information becomes necessary for an accurate estimation. There-
fore, this work proposes a probabilistic method capable of evaluating the suscep-
tibility of logic gates concerning SET without the need for electrical simulations.
It is important to emphasize that the evaluation is independent of technology
since the stick diagrams are evaluated according to the number of sensitive areas.
Another important point is that the specific effects of charge sharing in the tran-
sistors are not considered, always being observed the presence of the fault at the
affected node, given the incidence of the particle.

This chapter is organized as follows: Sect. 2 presents a brief overview of basic
reliability concepts and introduce three methods that explore PTMs to estimate
the circuit reliability. Section 3 introduces Single Event Transient effect and its
definitions. In Sect. 4, the methodology proposed to calculate the susceptibility of
a logic gate described as a stick diagram is explained as well as a case study using
a two-input NAND. Section 5 presents results and characteristics of the impact
of the layouts in the single event transient susceptibility. Finally, in Sect. 6, the
conclusions are presented.
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2 BackGround

This section initially introduces reliability metrics and the PTM concept. Later,
three reliability estimation methods are discussed. These methods have been
chosen due to accuracy or runtime. They are chosen since all of them explores
the PTM concept to estimate the circuit reliability.

2.1 Reliability Concepts

Metrics. The reliability (R or Q) of a circuit is defined as the probability of a
circuit operates correctly during a time interval. Therefore, its complement, the
probability of a failure, is defined as fault probability (P), as shown in Eq. 1.

The failure rate (λ), calculated using Eq. 2, is one of the metrics used for
digital circuit reliability estimation. This failure rate indicates the number of
failures that a circuit can present in one hour of operation. Similarly, the Mean
Time Between Failures (MTBF) is used to represent the, as the name indicates,
the time between failures in the evaluated circuit. Equation 3 presents as this
metric is obtained. Once the MTBF value corresponds to the mean time between
failures, as higher this value more reliable is the circuit. Both are important
metrics used to compare reliabities of different systems, calculated using.

P = 1 − R (1)

λ = −ln(R) (2)

MTBF =
1
λ

(3)

Probabilistic Transfer Matrix. The probabilistic transfer matrix, abbrevi-
ated as PTM, aim to represent the probability of success or failure of each input
vector given a logic gate. This representation is very important in reliability
analysis since it is used in several circuit estimation methods, as the three that
are discussed later. This matrix maps the possible inputs and the respective out-
puts of a given circuit. To understand how the PTM is generated it is necessary
to know the ideal transfer matrix (ITM) that represents the behavior of a logic
gate or circuit in a fault-free scenario.

Through the truth table of a given logic gate, it is possible to determine
the ITM matrix and consequently the output that supposed to be the correct,
correlating this to the chosen probability the PTM is fill. In the presence of faults,
there are conditions that the correct output not always occurs. If we know how
frequently it happens, it is possible to map all possible conditions of this gate by
using a PTM. Figure 1 shows how to generate a PTM of two-input NAND gate
based on it is truth table and ITM matrix. In this case, the PTM considers that
the correct output occurs with probability “q”. At the same way, the erroneous
output can also occurs with a probability represented by the complement of q,
defined as “1-q”.
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Fig. 1. NAND PTM relation to ITM and Truth Table: a) Truth table b) Ideal Transfer
Matrix (ITM) c) Probabilistic Transfer Matrix (PTM)

2.2 Circuit Reliability Estimation Methods

With the basic reliability concepts reviewed, this section is dedicated to intro-
duce three circuit reliability estimation methods. All three methods explores the
PTM concept. The first one uses the same name of the concept. To avoid misun-
derstandings, we always used “PTM Method” to refer to the estimation method
and only PTM to refer to the concept.

Probabilistic Transfer Matrices Method - PTM Method. Many meth-
ods to estimate the reliability of a circuit have been proposed in the literature
[9]. The Probabilistic Transfer Matrix Method (PTM Method), proposed by
Patel et al. [6], is able to produce an exact reliability evaluation of a logic cir-
cuit, in a straightforward process [10]. The method was extensively explored by
Krishnaswamy et al. [11]. In the PTM Method, the reliability of a circuit is
obtained by a combination of the individual gates reliability and the circuit’s
topology. The individual gates reliability and the circuit’s reliability are repre-
sented by PTM and ITM matrices.

In a simplified way, each gate can be modeled by a PTM, and the PTM of
larger circuits can be computed by multiplying the PTMs of series logic functions
and applying the Kronecker tensor in the PTMs of logic gates that are in the
same deep level of the circuit. The circuit reliability is extracted according to
the Eq. 4, where p(i) denotes the probability of input vector i [12]. If all input
vectors have the same probability, the Eq. 4 can be simplified in Eq. 5.

The main limitation of the PTM Method is the size of the matrices that
must be stored and manipulated. Each level in a logic circuit is represented by
a PTM. The size of a PTM is a function of the number of inputs and outputs
that are being modeled. The number of rows in a PTM is equal to 2n, where n
is the number of inputs in the circuit level. The number of columns in a PTM is
equal to 2m, where m is the number of outputs in the circuit level. Then for a
circuit level with 24 inputs and 12 outputs, for example, the dimensions of the
PTM of the level will be 224 rows by 212 columns, or 512 GB of storage space
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for 8 bytes floating point representation of probabilities. Given this scenario, the
application of the PTM is limited to small size circuits, even with techniques
that improve the efficiency of the method [12]

Rc =
∑

ITMc(i,j)=1

p(j|i)p(i) (4)

Rc =
1
2n

∑

ITMc(i,j)=1

p(j|i) (5)

Signal Probability Reliability - SPR. The SPR method is another method
that explores PTM and ITM matrices to map the reliability behavior of logic
gates in a circuit. The method proposed by [13] introduce the concept of Signal
Probability matrix. This new concept avoid the generation of large matrices to
represent the intermediate circuit states as in PTM Method.

The signal probability matrix is a 2 × 2 matrix. It represents the 4 possible
states of a signal: a correct 0 (#0), a correct 1 (#3), an incorrect 0 (#2) and
an incorrect 1 (#1) as shown in Fig. 2. The probability matrix of an output
gate signal is easily computed through the simple multiplication of the input
signals probabilities matrices by the logic gate PTM. From this assumption, it is
possible to affirm that the SPR complexity is linear to the number of gates [14].
This makes the method scalable and can be applied to circuits with thousands
of logic gates.

Fig. 2. Matrix representation of a four-state signal probabilities [13]

The reliability of the entire circuit RC can be extracted according Eq. 6,
where Rj is the reliability of each circuit output signal and m is the amount of
circuit output [13]. Despite these advantages, the SPR method doesn’t takes into
account the probability dependence of reconvergent signals, producing reliability
values that are inaccurate, depending on the number of reconvergent fanout
signals in the circuit [15].

Rc =
m−1∏

j=0

Rj (6)
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Signal Probability Reliability Multi-Pass - SPR-MP. Considering the
accuracy limitations of the SPR method, which is a straightforward algorithm,
an alternative of the SPR method based on multiple passes of probabilities prop-
agation was also proposed by [7], and was referred to as the SPR Multi-pass, or
SPR-MP. In the SPR-MP method, the probabilities associated to each reconver-
gent signal are propagated 4 times, with a single signal state being propagated
at a time. The values computed at each pass of the algorithm are accumulated
to produce the final value.

As with the SPR method, there is no memory limitation associated with the
SPR-MP method, but processing time is dependent on the number of recon-
vergent fanout signals [15]. Equation 7 represents the number of passes of the
algorithm to compute the reliability of a circuit with F reconvergent fanouts. The
main advantage of the SPR-MP method is the possibility to restrict the number
of fanouts (and so, the number of passes of the algorithm) to be considered in the
reliability computation. This characteristic allows a tradeoff between processing
time and accuracy, leading to a better scalability than the PTM method and a
better accuracy than the SPR method [16].

Rc =
4F∑

f=1

Rc (7)

3 Single Event Transient

Many advances in the integrated circuits are achieved due to technology scal-
ing. The fabrication of even more capable computing architectures has been
enabled by smaller, faster, and cheaper fundamental microelectronic building
blocks. However, voltage scaling has dropped lower and lower. It results in a
reduction in the amount of charge that represents stored information, increasing
the sensitivity of CMOS devices to single-particle charge collection transients.
Also, the higher frequency achieved by the circuits can intensify the soft errors
due to the reduction in the timing masking.

In the case of Single event transient (SET), it is caused by the generation of
charge due to a single particle passing through a sensitive node in the combina-
tional circuit. This strike in a sensitive node within a combinational logic circuit
can produce a wrong output value during a time interval. The pulse generated
by the particle strike can have a positive or negative magnitude, depending on
whether the particle hits at the sensitive node of the NMOS or PMOS transistors.

In the literature, the consideration of a sensitive node for CMOS circuits has
some misunderstands. For example, in [17,18], and [19], it is considered as a
sensitive node the drain of the OFF transistors, considering an inverter gate as
an example. This assumption is not mistaken for the example, as shown in Fig. 3.
The inverter gate biased with the logic value “1” presents as the only sensitive
node, the drain of the PMOS OFF-transistor, as illustrated herein. Then, it
is possible to affirm that the sensitive PN junction of the gate is the drain of
the OFF-transistor (just in case of the inverter). However, the ideal affirmation
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is that a sensitive node is the reverse-biased PN junction [20,21]. When these
particles hit the silicon bulk, the minority carriers are created. If collected by
the source/drain diffusion regions, the change of the voltage value of those nodes
occurs [22].

Fig. 3. Single Event Transient Mechanism: Inverter example of a particle strike at a
sensitive node [23]

Besides, considering the NAND2 gate as an example shown in Fig. 2. The
output node G, which belongs to the transistor M1 is sensitive when the input
vector DE = “10” is applied, albeit it is an ON-transistor. Furthermore, as
the behavior of the SET faults is different for a PMOS/NMOS particle strike,
it is assumptive that the primary condition for reverse-biased PN junctions is
satisfied with the complementary OFF-plane of the gate, instead of in the OFF-
transistors.

Moreover, some internal nodes of a gate are not always sensitive to the parti-
cle strike. The pulse generated due to the particle strike in an internal node may
not propagate if there is not a logical sensitized path to the output. Then, the
pulse propagation from a sensitive node to the output depends on the state of the
inputs [18]. Figure 4 shows an example of a sensitive node and pulse propagation
in a NAND gate. When DE = “10”, then there is a sensitive path between N3
and G, making N3 a sensitive node for this specific input vector. However, the
input vector “11” also makes a sensitive path between N3 and G, although, in
this condition, the node is not reverse biased.
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Fig. 4. Node sensitive analysis in a NAND gate (adapted from [18])

4 SET Susceptibility Analysis

The reliability concept of a circuit is related to the probability of this circuit to
perform the function to which it was designed, under certain conditions during
a given time interval [24]. The results for error probability (EP) in [8] indicate
that the equal EP values of logic gates traditionally used in reliability evaluation
underestimate the real logic gates EPs, and consequently the circuit reliability.
This chapter presents a method able to evaluate Single Event Transient fault
susceptibility in a logic gate. A preliminary version of our work appeared in
[25]. The previous work was extended providing a more detailed evaluation of
stick diagram level and also a electrical validation of the results. The method
proposed in [8], which evaluates logic gates at transistor-level, does not evaluate
precisely when parallel transistors association results in two or more nodes in
layout level. Also, it is known that a logic cell can be designed in different ways,
then the need for a stick level analysis is highlighted.

This section presents the method proposed to evaluate the susceptibility of
logic gates to transient faults. At first, a definition of fault as a probabilistic event
is presented, which is the base to the method that analyzes stick diagrams.

4.1 Definition of Fault as a Probabilistic Event

A logic gate is defined as X, which has a set of nodes N. Considering that the
probability of a particle incidence in a node i ∈ N is defined as p. Then the
probability is obtained considering P(i) = p.

The probability of a particle occurrence on a specific logic gate, in this case,
is an independent event. It means that it is necessary to calculate the probability
of this same particle to cause an error as the probability of the particle strike
any sensitive node, given an input vector. The main reason a particle incidence
in a node is considered an independent event is defined through the concept of
probability theory. When two events are said to be independent of each other, it
means that the probability that one event occurs does not affect the probability
of the other event occurring.
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Therefore, considering that a logic gate has k sensitive nodes, the output
error probability is defined as the union of the probability of a particle incidence
in any sensitive node of the gate. As the definition of the probability theory of
independent events, the occurrence of an event i ∈ N , being N Eq. 8 gives the
total number of events that cause a fault at the output.

P (A1 ∪ · · · An) = S1 − S2 + · · · + (−1)n−1Sn (8)

where Sk is defined by Eq. 9 [26]. Note that k represents the total elements
present in the equation. For instance, assuming k=2 and three events (A1,A2

and A3). The value Sk corresponds to the sum of the intersection of each pair of
possible elements, for example S2 = A1 ∩ A2 + A1 ∩ A3 + A2 ∩ A3.

Sk =
∑

1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩ Aik) (9)

After the definition of the equation necessary to calculate the susceptibility,
it is possible to apply the method considering the number of sensitive nodes
in an input vector of a logic gate. The next subsections present the method to
evaluate the susceptibility of logic gates that depend on the probability of a
particle incidence.

4.2 Simplified Method

The stick diagram method relies on the theory previously presented for its opera-
tion. The flowchart described in Fig. 5 represents the analysis of the stick model.

Consider, for example, the stick diagram in Fig. 6 for a two-input NAND
function. This diagram has six nodes in total, two connected to VDD (n1 and n3),
and one connected to GND (n4). In this case, none of these nodes are considered
sensitive by the method, as they are connected to the circuit power supplies.
The other nodes (n2, n5, and n6) depend on the input vector to be considered
sensitive. Also, consider that the probability of occurrence of a particle in a
sensitive node is set to p.

For input vector AB = 00, the expected output of the logic function is the
logical value “1” . It means that the gate pull-up plane is conducting and that
the transient fault may only affect the circuit if it occurs in the pull-down plane.
Node 6 becomes sensitive as it is reverse-biased. Node 5 is not sensitized due to
the lack of a conductive path to the exit. Thus, the susceptibility is given by the
probability of the incidence of a particle in node 6.

For the input vector AB = 01, the expected output of the logic function is
the logical value “1” . That is, just like the previous state, the fault may only
affect the circuit occurring in the pull-down plane. As in the previous vector,
only node 6 is sensitive because it is reverse-biased. Thus, the susceptibility is
given by the probability of the incidence of a particle in node 6.



78 R. B. Schvittz et al.

Expected output evaluation

Pull-up/down plane definition

Sensitive node evaluation

Susceptibility calculation

Particle incidence probability

Susceptibility results

End of input vectors?

Fig. 5. Flowchart of the Simplified Method

For the input vector AB = 10, the expected output of the logic function
is the logical value “1” . That is, just like the previous states, the fault may
only affect the circuit occurring in the pull-down plane. In this vector, nodes 5
and 6 are reverse-biased and have a conductive path to the output. Thus, the
susceptibility is given by the probability of the incidence of a particle at node 5
or node 6.

For the input vector AB = 11, the expected output of the logic function is the
logical value “0”. That is, the fault may only affect the circuit occurring in the
pull-up plane. In this vector, node 2 is reverse-biased. Thus, the susceptibility
is given by the probability of the incidence of a particle at node 2. Table 1
summarizes the values and equations for each vector.

Table 1. NAND2 analysis provided by the stick diagram model

Input vector (AB) Sensitive node Susceptibility

00 n6 p

01 n6 p

10 n5, n6 2p − p2

11 n2 p
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Fig. 6. Stick representation of a NAND2 logic gate

4.3 Method Validation

In this section, it is explained the methodology used to validate the proposed
method. First of all, the method is based on two main rules to determine the
sensitive nodes of a logic gate. To a node be sensitive, this node must present a
reverse biased condition. Furthermore, a low resistance path must exist between
the affected node and the output of the gate. Then, the flowchart of the method
validation is presented in Fig. 7.

From the conditions mentioned above, and the Single Event Effects behavior
in NMOS and PMOS transistors, it is presented the methodology to evaluate the
proposed method. A total of eighteen logic gates from FREEPDK45 was used
to validate. The first step performs a search for the minimum energy required
(LETthreshold) to produce a bit flip in any input vector of any logic gate. The
NGSPICE electrical simulator was used in this step to evaluate the gates. The
search is performed to guarantee that a particle incidence on a sensitive node
(node that corresponds to the two rules previously described) produces a voltage
change on the output. Based on this information, it is found that the minimum
LET value capable of producing an error in any logic gate found in these cells is
in the output node of the NOR4 gate when ABCD = 1111, presenting a LET =
15.46 MeV. Thereby this LET value is used as particle energy to evaluate which
node of the gates is sensitive.

Then, it is selected each logic gate to evaluate the sensitive nodes. The node
evaluation of the gates is performed for each input vector. In this evaluation, it
is analyzed the list of node candidates to be sensitive. Each node is individually
evaluated. To perform the analysis, the electrical simulator software NGSPICE
was used. Then, one particle incidence is performed on each sensitive node candi-
date at a time. For example, a logic gate containing five sensitive node candidates
and three inputs is simulated 23 ∗ 5 times to evaluate each node if it is sensitive
in each input vector. For each particle insertion, the output node is observed to



80 R. B. Schvittz et al.

1. Search for the minimum LET

2. Logic gate selection

3. Input vector evaluation

Sensitive Node List

End of Input vectors?

End of Logic Gates? No

No

Yes

Yes

List of Logic Gates

Fig. 7. Flowchart for the method validation

verify if the particle incidence has changed the output of the gate. To an error
be observed at the output, it is necessary that the pulse must result in energy of
50% of the input voltage of the gate. The Fig. 8 and Fig. 9 show two conditions
of the validation methodology. The first one, on the left, is the particle incidence
on a node that does not fit on the specified conditions (not reverse-biased and
no low resistance path to the output). The second, on the right, is the result of
the same particle incidence on a reverse-biased node. For the 45 nm technology
node, 50% of the respective supply voltage corresponds to 0.5V.

The NAND2 gate presented in Fig. 6 is considered to exemplify the flowchart
of the validation. The gate has a total of six nodes (named n1 to n6). First
of all, the nodes n1, n3, and n4 are not sensitive due to being connected to
VDD or GND terminals. Then, the nodes n2, n5, and n6 could present a reverse
biased condition depending on the input vector. Analyzing the NAND2 gate,
when input vector AB = 00 is applied, the only sensitive node is n6, presenting
a reverse biased condition. This behavior is also repeated when input vector
AB = 01 is applied.

When the input vector is AB = 10, then, on the pull-down network, there
are two nodes in reverse biased condition and presenting a low resistance path
to the output. Then, in this input vector, the sensitive nodes that the particle
strike causes a voltage change on the output are n5 and n6.

Finally, when input vector AB = 11 is applied, the only node that the particle
strike produces a voltage change is the node n2. It was expected since, in the
pull-up network, there is only one node that could be sensitive, because n1 and
n3 are connected to VDD, and they do not present the reverse biased condition.
Figure 10 presents the sensitive nodes for each input vector of this logic gate.
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Fig. 8. Behavior of particle incidence on a PN junction not reverse-biased

Fig. 9. Behavior of particle incidence on a PN junction reverse-biased
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Fig. 10. Sensitive areas identified for NAND2 gate for each input vector

As expected, the validation process produced the same sensitive nodes of all
logic gates analyzed by the method. This means that the defined conditions to a
node being sensitive are correct. Also, the method does not need any electrical
simulation to perform its analysis, resulting in the same result than the electrical
simulation with less time spending.

5 Results

The results produced by the proposed method are shown considering a particle
strike probability p = 1.98e−6 was used as an estimate. This value defines the
probability of the incidence of a particle in a sensitive node with sufficient energy
to cause a voltage change. For the inputs of the gates, the same probability of
being “1” equal to 50% was used. Then, the method was applied in a total of 19
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logic gates. The results presented are a function of the mean susceptibility and
even the standard deviation (σ) obtained from the values of each input vector
of each function. The results obtained from the application of the method in the
45 nm library are presented in Table 2.

Table 2. Average Susceptibility (in 10−6) and standard deviation (σ) calculated by
the method for 45 nm library cell

Mean σ

Inv 1.98 0.00

NAND2 2.47 0.99

NOR2 2.47 0.99

NAND3 3.21 1.47

NOR3 3.21 1.47

NAND4 3.46 1.84

NOR4 3.46 1.84

AOI21 3.70 1.96

AOI22 3.83 2.33

AOI211 5.06 2.16

AOI221 5.12 2.35

AOI222 6.14 3.28

OAI21 3.70 1.96

OAI22 3.83 2.33

OAI211 5.06 2.16

OAI221 5.12 2.35

OAI222 6.14 3.28

OAI33 4.81 2.53

XOR2 5.93 1.61

Observing the results obtained by the proposed method, it is possible to
notice that the INVERTER logic gate was the only gate that presented a zero
standard deviation. It means that this gate was the only one within the cell
library that showed no difference in the calculated susceptibility for its vectors.

Table 3 shows the susceptibility values obtained by applying the proposed
method on the inverter logic gate. As can be observed, there is no difference in
the obtained values between both input vectors of this gate, resulting in a zero
standard deviation.

Another important point in the results is the behavior observed among the
logic gates with complementary planes. For example, the NAND and NOR gates
have complementary planes. Both gates have a network with n transistors in
series, which is the sensitive network in most of the gates input vectors. Likewise,
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Table 3. Susceptibility calculated for the inverter logic gate when the proposed method
was applied

Input vector Susceptibility (10−6)

0 1.98

1 1.98

AOI/OAI ports also exhibit this behavior. Table 4 presents the susceptibility cal-
culated for NAND2 and NOR2. Note that the same mean obtained between both
cells only occurs because the input vectors have the same occurrence probability.

Table 4. Susceptibility calculated (10−6) for NAND2 and NOR2 gates for each input
vector

Input vector (AB) NAND2 Susceptibility NOR2 Susceptibility

00 1.98 1.98

01 1.98 3.95

10 3.95 1.98

11 1.98 1.98

Finally, it is also important to note that the average susceptibility values tend
to increase, according to the number of transistors in these logic gates. Another
critical detail to note is the standard deviation value of these gates. Logic gates
with high standard deviation values are more sensitive to different probabilities
of the input vectors. A high standard deviation means that the gate has vectors in
which the susceptibility can decrease or increase considerably, applying different
input vectors probability.

To observe the difference between the input vectors that result in higher
standard deviation values, take as an example an AOI21 logic gate. The sus-
ceptibility calculated for each input vector is shown in Fig. 11. Note that the
most susceptible conditions of this gate are observed on input vectors 001, 011,
and 101. Considering this information, it was performed three different scenar-
ios considering different input vector probabilities for this logic gate. Figure 12
shows the probability for each input vector for three situations:

– a) The probability of being logical one for each input is B2 = B1 = A = 25%.
– b) The probability of being logical one for each input is B2 = B1 = 50% and

A = 75%.
– c) The probability of being logical one for each input is B2 = B1 = A = 75%.
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Input Vector
(B2B1A)

Susceptibility
(10−6)

000 1.98
001 5.93
010 3.95
011 5.93
100 1.98
101 5.93
110 1.98
111 1.98

Fig. 11. Susceptibility calculated when applied the proposed method on an AOI21
logic gate

Fig. 12. Input probabilities considering three different scenarios

In the first simulation, considering 50% for the input vector probabilities,
it results in a mean susceptibility of 3.70 for this logic gate. Considering the
first situation presented in Fig. 12a, it results in a mean susceptibility calculated
equal to 3.18. In this scenario it is possible to observe that the critical vectors
have less probability wich results in less susceptibility for the gate.

The second situation present in Fig. 12b was performed to show the sensitivity
to pin-assessment of the gate. When B2 = B1 = 50% and the input C = 75%. In
this situation, the gate presents a mean susceptibility equal to 4.32. The small
difference in the input vector probabilities causes an increase of almost 36% on
the mean susceptibility of this gate.

Finally, in the last scenario presented in Fig. 12c, the inputs have probability
of being logical one equal to 75%. As can be observed, this scenario results in a
probability of occurrence of input 111 equal to 42%, in this input vector, the gate
presents a good behavior in terms of susceptibility. Then, this scenario results in
mean susceptibility equal to 3.36. This situation resulted in a difference less than
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6% in susceptibility, compared to scenario “a”. Observing the three scenarios,
it shows that this gate can be highly dependent on the pin-assessment when
calculating the mean susceptibility.

6 Conclusions

This work proposes a method to predict Single Event Transient susceptibility
for logic gates. The results show that the susceptibility of a gate can be highly
dependent on its implementation. Moreover, the proposed method can be used
to generate probabilistic matrices for several logic gates. Also, these matrices
can be used by probabilistic methods to estimate the reliability of a circuit, such
as PTM or SPR-MP, for example. In the proposed method, it is not necessary
to consider the possible masking conditions of SET, since they are regarded in
reliability estimation techniques for circuits.

The proposed method can calculate the susceptibility of any single-stage logic
function implementation, merely providing the stick diagram, input probability
of being “1” and the value for particle strike probability. The susceptibility value
can be an important measure for choosing the best candidate for logic functions.
The results for a set of logic gates have shown the importance of considering the
stick implementation in order to evaluate the logic gates susceptibility [27].
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Abstract. Challenges were introduced in integrated circuits design due
to the technology scaling. The evolution of integrated circuits has made
them more susceptible to the radiation effects, besides increasing the
manufacturing process variability. These challenges can lead to cir-
cuits operating outside their specification ranges. Transistor arrange-
ment influences the performance of logic cells; complex logic gates can
be used to minimize area, delay and power consumption. However, with
the increasing relevance of nanometer challenges, it is necessary also to
consider these factors at logic level design. This work explores different
transistor arrangements for a set of logic functions at the layout level
to evaluate the SET response under the process variability. The pro-
cess variability is analyzed through the work-function fluctuations of the
metal gate. The complex gate and the multi-level of NAND2 topologies,
that implement the same function, were designed using the 7 nm FinFET
ASAP7 Process Design Kit. Results show that the multi-level topology is
more robust to the radiation effects at both ideal fabrication process and
considering the process variability impact. The LETth value considering
the multi-level topology is on average 55% higher than the values con-
sidering the complex topology. Moreover, all the logic functions analyzed
independently of the topology are more sensitive to the SETs considering
the impact of the process variability.
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1 Introduction

The radiation-induced soft errors and the process variability are an essential
reliability concern for nanotechnologies, affecting integrated circuits used for
space or even terrestrial applications [1,2]. Variability is related to the random
deviation, which causes an increase or decrease of typical design specifications.
The primary variability issue is the uncertainty about the correct operation of
the circuit. There is no guarantee that a circuit will behave as expected after the
manufacturing process. Due to the variability effects, each circuit can present a
different electrical behavior such as abnormal power consumption, performance
deviation, or both. The unexpected behavior due to variations can stimulate
circuit degradation besides make it inappropriate for your initial purpose.

Electronic circuits operating in space, especially in harsh environments, may
be exposed to significant radiation doses as well as to the incidence of heavy par-
ticles from the sun or from outside the galaxy. From this exposure to radiation,
changes and disturbances in the circuit can occur with high probability. Degra-
dations that arise due to the incidence of a single particle are called Single Event
Effects (SEE). If this single-particle causes a permanent failure in the circuit, it
is considered a hard error. In case of an error in the system that does not cause
permanent damage, it is called Single Event Transient (SET) or Non-Destructive
(soft error) [3,4].

For a long time, SETs were not considered a significant reliability concern.
The logical, electrical and latching window masking present in digital logic, were
enough to minimize the importance of considering the phenomenon. However,
with technology scaling, lower supply voltages and reduced nodal capacitances,
the minimum charge required to induce a transient pulse was decreased [2,5].
Also, it is more likely that a SET generated in combinational logic will be cap-
tured at the storage element due to the higher operating frequencies. Thus, to
overcome some of these problems, new device architectures and novel materials
are being used.

Multigate devices have allowed the further scaling of transistors by provid-
ing better control of Short-Channel Effects (SCE), lower leakage currents and
better yield [6]. On multigate devices, variability effects are mainly due to the
work-function fluctuation (WFF) of the metal gate [7,8]. FinFET (Fin-Shaped
Field Effect Transistor) technology is the main multigate device replacing bulk
MOSFET devices in sub-22 nm technology nodes [7]. Due to its limited sensitiv-
ity volume compared to planar devices, the charge collection region is reduced in
this technology [9,10], showing a better response to radiation effects, even con-
sidering the technology scaling. However, the radiation effects are not negligible
on multigate devices [11].

The proper estimation of Threshold Linear Energy Transfer (LETth) along
with the SET pulse width is of utmost importance for soft error (SE) mitigation
and radiation-tolerant circuit design [12]. Also, few papers analyze the impact of
process variability on the SET. The impact of process variability on on-state (Ion)
and off-state (Ioff ) currents using FinFET technology in a set of technological
nodes ranging from 20 nm to 7 nm is compared in [13]. The prominence is in
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the evaluation of Metal Gate Granularity (MGG) impact on the work-function
(WF) of the gate. The results demonstrate the importance of not only evaluating
variations in threshold voltage but also in other parameters and the significant
influence of WFF in the threshold voltage and the Ion and Ioff currents.

Regarding the radiation effects, a comparative soft error evaluation of logic
gates in bulk FinFET technology using various technological nodes is presented
in [9]. The main objective is allowing for estimating the SER of logic gates
for ground applications, as well as for understanding the impact of voltage and
drive strength through analysis of the sensitivity to soft errors. Also, similar work
highlights the robustness of the 7 nm FinFET technology, considering other logic
functions [14] and also majority voter circuits [15]. The latter also analyzes the
impact of process variability on the SET.

In this context, this work investigates the radiation robustness, considering
the process variability effects, of a set of logic functions implemented in two
different transistor topologies using 7 nm FinFET technology [16]. The SET
pulse width was obtained and the LETth was calculated to characterize the
SET response. First, a radiation robustness analysis is performed considering
only the ideal behavior, and then the process variability impact is considered.
The main contributions of this work are: 1) to provide an evaluation of the
SET sensitivity trends for complex logic gates, exploring the use of different
transistor arrangements; 2) to consider the impact of process variability effects
and radiation sensibility together on the analysis, and 3) to present a detailed
investigation about the topology relation with the FinFET logic cells robustness
through the LETth.

Next Section summarizes the main radiation effects, including their origins
and the behavior on FinFET devices. Section 3 presents the process variability
effects on FinFET technology, focusing on the WFF of the metal gate. Section 4
describes the methodology steps to observe these effects on multi-level and com-
plex gate designs. With the set of information from the evaluations, this work
discusses the results in Sect. 5 and present the main conclusions in Sect. 6.

2 Radiation Effects

The dynamic scaling alongside the low supply voltages, large transistor density,
and the high-frequency operation introduce new reliability issues in integrated
circuits, such as the high Single Event Effects (SEE) sensitivity and multi-charge
collection [9,17]. This chapter presents the main concepts and characteristics of
the radiation effects on electronic circuits. The focus is on SEEs, especially the
impact of transient faults on devices. Before detailing these effects, it is important
to present their origins.

Anomalies induced by the radiation effects on electronic circuits are known
from the beginning of space exploration. The research aimed at the study of the
radiation effects on electronic circuits was initially considered a concern of utmost
relevance only in projects developed for military or space applications. The Earth
is protected by the atmosphere, which acts as a semi-permeable “screen”, to let
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throughout light and heat, while stopping radiation and ultraviolet rays (UVs)
[3]. The intensity of the radiation basically increases according to the increase
in altitude relative to ground level. However, due to phenomena related to the
earth’s magnetic field (the polar regions are an example), some regions suffer
from a higher intensity of radiation even though they are located at low altitudes.

In space and the Earth’s atmosphere, there is a diverse range of radiation,
which is classified into two broad groups: ionizing particles and non-ionizing par-
ticles. The main particles that may cause unwanted effects in electronic circuits
are electrons, protons, neutrons, muons, alpha particles and heavy ions, as well
as electromagnetic radiation, such as x-rays and gamma rays [4]. At sea level,
muons are the most numerous terrestrial species [18]. The primary components
of radioactive phenomena encountered in space can be classified into four cat-
egories by origin: Radiation belts, solar flares, solar wind and cosmic rays [3].
Figure 1 shows the relationship between the Sun and the Earth that gave rise to
these phenomena.

Fig. 1. Radiation effects from the Sun-Earth relationship [19].

2.1 Characterization of the Radiation Effects on Electronic Devices

The effects related to the incidence of radiation in electronic components have
been studied for a long time by the international scientific community, mainly
for space and military applications. The integrated circuits that experience the
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interaction of ionizing particles basically suffer from two types of degradation:
those of singular character, occurring due to the incidence of a single particle,
and those of a cumulative nature, which occur due to the accumulation of doses
of ionizing radiation over the lifetime of the circuit.

Cumulative effects have their origin due to the dose of ionizing radiation
accumulated over the life of the device and are classified as Total Ionizing Dose
(TID). Prolonged exposure to ionizing radiation, due to accumulated (radiation-
induced) electric charges, causes parts of the circuit to change in their electrical
characteristics, such as a change in threshold voltage (Vth) and the increase in
the leakage current of the device. These electrical changes impair the correct
functioning of the device and may, depending on the amount of accumulated
dose, permanently damage it.

The TID response of bulk silicon and SOI FinFETs are significantly differ-
ent in terms of radiation-induced Vth and Ioff current. Bulk silicon FinFET
radiation tolerance is reduced due to an increase in Ioff , and SOI FinFET radi-
ation tolerance is reduced due to Vth shifts [20]. Bulk FinFETs have a similar
TID response as planar bulk MOSFETs, that is, the buildup of oxide-trapped
charge in the STI triggers a parasitic lateral transistor that modifies the electrical
characteristics (higher Ioff ) [21]. Degradations that occur due to the incidence
of a single particle are called Single Event Effects (SEE), these effects will be
presented with more details next.

Single Event Effects. The Single Event Effects occur due to the interaction
of large ionizing particles (protons, neutrons, α particles and heavy ions) that
pass through insulation, semiconductor layers, or even all MOS device. These
particles, when entering the silicon material, generate a transient path composed
of ionized elements (electron-hole pairs - e−/h) arranged under a radial distri-
bution that permeates the path of the incident particle. This transient path may
have sufficient mobile charge to drive a current pulse against the presence of the
external electric field due to the polarization of the transistor [22].

SEEs indicate any measurable or observable change in a state or performance
of a nanoelectronic device, component, subsystem or system (digital or analog) as
a result of the incidence of a single energetic particle. According to the intensity
and the region in which this current flows, it is capable of causing faults that may
be permanent in the device structure, called destructive events (hard error), or
non-destructive (soft errors), represented by the Single Event Transient (SET)
and the Single Event Upset (SEU) [23]. Figure 2 presents the classification of the
major SEEs in the literature. The focus of this work is the SET effect, which
occurs in combinational circuits.

The most common transient effects on combinational circuits are the SETs,
in which the incidence of an ionized particle produces a transient pulse that can
propagate through a logic path and be latched by memory elements. The tran-
sient pulse is generated by the interaction of energetic particles near a sensitive
region of a transistor when the collected charge (Qcoll) exceeds the critical charge
(Qcrit). However, in sub-22 nm technological nodes other phenomena must also
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Fig. 2. Classification of major Single Event Effects. Modified from [24].

be considered in the characterization of the transient pulse. The influence of
charge-sharing (charge collected by multiple transistors for a single incident par-
ticle) mechanism does not seem to have diminished for the FinFET technology.
TCAD results show the extent of electrical perturbations and charge-sharing
similar to what has been observed for older technologies. This effect can cause
the pulse quenching in ion-induced transients, resulting in a reduced overall sen-
sitivity of the system against SEE [25].

To quantify the SET effects, characteristics such as amplitude, shape and
current pulse duration are important quantities [26]. The amplitude and dura-
tion of a SET depend on factors such as the fabrication technology, the circuit
geometry, the bias voltage of the affected node, node load impedance, location
of the transistor reached by the particle, in addition to factors related to the
SEE itself, as the type and energy of the incident particle [26].

The energy deposited by a particle due to its ionization in silicon is an essen-
tial metric in the study of radiation effects in nanotechnologies because it is
directly related to the magnitude of the generated transient pulse. Linear Energy
Transfer (LET) (shown in Eq. 1) is the amount of energy that a particle releases
per unit of compliance from the path traveled by it.

LET =
∂E

∂x
(1)

The LET is dependent on the mass and energy of the particle and the ionized
material, so particles with higher mass and energy ionized in denser materials
have higher LETs [27]. Threshold LET (LETth) is the minimum LET to cause
an effect in the circuit [11].

The disruptive nature of the FinFET structure introduces questions in terms
of understanding, predicting and mitigating SEEs in circuits. The 3D structure
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of FinFET devices is favorable to reduce the soft error vulnerability according
to several works available in the literature [10,28,29]. This reduction of the soft
error vulnerability happens because the sensitive areas of FinFETs are little
exposed to the charge collection region as shown in Fig. 3. FinFET technologies
collect significantly less charge than conventional planar technologies. The work
of [30] indicates that charge collection for semiconductor regions in FinFET
technologies is approximately reduced by 70% compared to planar technologies.
From a design standpoint, the accurate estimation of SEE susceptibility is crucial
to ensure reliable circuits.

Fig. 3. Comparison of charge collection mechanism between FinFET devices and
Planar CMOS technologies [29].

Although FinFET technology is more robust to soft errors than planar tech-
nologies, there are still many concerns that justify the study of this device. The
process variability, one of the main challenges in sub-22 nm technologies, can
modify the LETth to induce a soft error. Ultra-Low-Power (ULP) circuits are
increasingly being used, and low voltages increase the probability of SE occur-
rence. Also, with the demand for devices increasingly faster, the operation fre-
quency increases, also increasing the possibility of a memory element capturing
a SE.

3 Process Variability Effects on FinFET Devices

The variability in electronic circuits can be divided into three different factors:
environmental, reliability and physical [31]. Environmental factors appear during
the circuit operation; variations in supply voltage and temperature are examples
of environmental factors. Reliability factors are related to the transistor aging,
due to the high electric fields presented in modern circuits. Finally, physical
factors are associated with variations in electrical and geometrical parameters,
which may occur due to the manufacturing process of the devices [31]. The latter
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is best known for process variability and is the focus of this study. This chapter
details the main features of the process variability, showing its impact on FinFET
devices and highlighting the most significant parameter for their effects.

The primary sources of process variability at nanometer nodes are due to
the sub-wavelength lithography [31,32]. The variability on geometric parameters
impact directly the transistor threshold voltage. These variations can compro-
mise the entire blocks of cells or reduce the performance and energy efficiency
of the chip. Some expected sources of variability for FinFETs are highlighted in
[33]: the influence of variations in the fins height, the width variations across the
double-standard layers, the variations of the fin to fin, the dependent variations
the width of the pitch, the resistance of MOL (Middle of Line), and variations
due to the overlap and the epitaxy. The main FinFET parameters and possible
variability sources are shown in Fig. 4.

Fig. 4. Possible sources of FinFET variability [34].

For nanotechnology bulk CMOS devices, the geometric variability in the gate
length has the greatest impact on the change of Ion current due to the random
fluctuation in the dopants of the channel [35]. However, in FinFET devices,
another parameter has a more significant impact. As a result of the active format
of the fins, the fin channel is weakly doped to minimize variations in Vth. As
a consequence, the Vth of weakly doped channels is mainly configured by the
working-function of the metals adopted in the gate. The use of metal as gate
material introduced some fluctuation in the work-function of the gate, mainly
due to the presence of MGG.

Thus, although variations in gate length, fin height and fin width influ-
ence the electric behavior of FinFET devices, the fluctuations of the metal gate
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work-function are the main source of expected variability for FinFETs sub 20 nm
[13,36,37]. Figure 5 illustrates this behavior considering the impact on the Ion

current.
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Fig. 5. Impact on Ion current due to work-function fluctuation [13].

In the ideal fabrication process, metal gates devices have the gates produced
with a unique metal uniformly aligned and very lower work-function deviation.
Nevertheless, in a real fabrication process, metal gate devices are generally pro-
duced with metals with different WF randomly aligned that implies in higher
WFF. WFFs are locally induced due to the polycrystalline nature of the metal
lead to potential surface variations, and it is caused by the dependency of metal
WF on the orientation of its grains, as illustrates the Fig. 6. The Vth fluctuation
due to MGG is close to a Gaussian distribution, and the standard deviation is
almost linearly proportional to metal-grain size [32].

4 Methodology

This work explores different transistor arrangements for a set of four logic func-
tions (OAI21, OAI22, AOI211 and XOR) at the layout level to evaluate the
SET response under the process variability. Two different topologies of transistor
arrangement are investigated: 1) complex gate: optimized functions designed as a
complex logic gate CMOS topology; and 2) the multi-level logic of NAND2 gates:
the functions are converted using De Morgan’s theorem into the only NAND2
transistor arrangements. Previous experiments also considered topologies using
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Fig. 6. FinFET devices: main geometric parameters and the random alignment of
metal in real devices. Modified from [32] and [13].

only NOR2 and a mix of NAND2-NOR2-INV. However, the only NAND2 topol-
ogy proved to be better, and it was chosen for this study [38]. Table 1 and Table 2
present the logic functions and the equations for the complex gate version and the
converted multi-level logic composed by NAND2 version, respectively. Although
they represent the same functions, the versions are intrinsically different, which
is interesting, since the comparison of similar versions does not present many
advantages about the variability [39]. Figure 7 presents the schematics of the
OAI21 gate in its two versions highlighting all the sensitive nodes that were con-
sidered in the worst radiation sensitive case evaluation, which will be described
in Subsect. 4.1.

Table 1. Complex gate functions. Modified from [40]

Logic function Complex gate

OAI21 Y = (A+B . C)’

OAI22 Y = (A+B . C+D)’

AOI21 Y = (A.B + C + D)’

XOR Y = A.B’ + A’.B

All layouts were designed using the 7 nm FinFET ASAP7 Process Design
Kit (PDK), developed by Arizona State University in partnership with ARM
[16]. Among the different models and corners available on this PDK, this work
considers the regular threshold voltage (RVT) transistor model at typical (TT)
corner. Table 3 summarizes the key devices parameters of 7 nm FiFET ASAP
technology. The nominal supply voltage is 0.7 V, at a typical temperature of
25 oC.

The layout of all cells adopts three fins as transistor sizing as recommended
in the PDK to allow the internal routing of the cells [16]. The cell height is
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Table 2. Multi-level Logic functions. Modified from [40]

Logic function Multi-level version with NAND2 gates

OAI21 Y = (((A.A)’ . (B.B)’)’ . C)’

OAI22 Y = (((A.A)’ . (B.B)’)’ . ((C.C)’ . (D.D)’)’)’

AOI211 Y = (X . X)’ | X = (((A.B)’.(((C.C)’.(D.D)’)’.((C.C)’.(D.D)’)’)’

XOR Y = ((A . (B.B)’)’ . ((A.A)’ . B)’)’

OAI21 COMPLEX MULTI-LEVEL 

N_OUT 

N2

N1

IN1 

IN2

IN3 

IN4

N1

N2

N3 N_OUT 

N#: Sensitive nodes
IN#: Sensitive nodes of NAND2 gates 
N(Red): Critical node

OUT = (A+B . C)’

OUT = (((A.A)’ . (B.B)’)’ . C)’

IN1 

N1

Fig. 7. OAI21 schematic in complex and multi-level transistor arrangements. Modified
from [40].

set to 7.5 tracks of metal 2 (M2) that correspond to 0.27μm for all evaluated
cells. The PDK assumes Extreme Ultraviolet (EUV) lithography for key layers, a
decision based on its present near cost-effectiveness and resulting simpler layout
rules. Non-EUV layers assume appropriate multiple patterning schemes, i.e., self-
aligned quadruple patterning (SAQP), self-aligned double patterning (SADP)
or litho-etch litho-etch (LELE), based on 193 nm optical immersion lithography
[16]. The design rules, actual dimensions and underlying assumptions for some
major layers are shown in Table 4.

The specific design rule derivation is explained for key layers at the front
end of line (FEOL), middle of line (MOL) and back end of line (BEOL) of
the predictive process modeled. As an example, the layout of OAI21 gate is
presented on Fig. 8a and Fig. 8b in complex gate and multi-level logic topologies,
respectively.
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Table 3. Key parameters of 7 nm FinFET ASAP technology [16]

Parameters 7 nm

Supply Voltage 0.7 V

Gate Length (LG) 21 nm

Fin Width (WFIN) 6.5 nm

Fin Height (HFIN) 32 nm

Oxide thickness (Tox) 2.1 nm

Channel Doping 1×1022m−3

Source/Drain Doping 2×1026m−3

Work NFET 4.3720 eV

Function PFET 4.8108 eV

All layouts were validated by Design Rule Check (DRC) and Layout Ver-
sus Schematic (LVS) steps. The extracted netlist with parasite capacitances
is obtained and it was used for the radiation sensitivity evaluation. From the
extracted netlist, SPICE simulations are performed. The input switching fre-
quency is set at 500 MHz and inverters are connected to the input sources intro-
ducing realistic delays to the cells. The project flow carried out in this work can
be seen in Fig. 9.

Table 4. Key layer lithography assumptions, widths and pitches [16]

Layer Lithography Width/drawn (nm) Pitch (nm)

Fin SAQP 6.5/7 27

Active (horizontal) EUV 54/16 108

Gate SADP 21/20 54

SDT/LISD EUV 25/24 54b

LIG EUV 16/16 54

VIA0–VIA3 EUV 18/18 25a

M1–M3 EUV 18/18 36

M4 and M5 SADP 24/24 48

VIA4 and VIA5 LELE 24/24 34a

M6 and M7 SADP 32/32 64

VIA6 and VIA7 LELE 32/32 45a

M8 and M9 SE 40/40 80

VIA8 SE 40/40 57a

aCorner to corner spacing as drawn.
bHorizontal only.
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Fig. 8. OAI21 layout in the two topologies: (a) complex and (b) multi-level of NAND2
[40].

The SET fault injection is modeled as the Messenger’s equation shown in
Eq. 2 [41], where Qcoll is the collected charge, τα (1.64 × 10−10s) is the collect
charge timing constant, τβ (5×10−11s) is the timing constant to establish the ion
track and L (21nm) is the charge collection depth. The values used in this work
are the typical values used for simulations and experiments in silicon presented
in [42], but modified to better characterize recent technologies, such as FinFET.
This effect is reproduced on the SPICE simulation as a current source, simulating
the SET effects on the transistors.
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Fig. 9. Project flow for all analyzes [40].

I(t) =
Qcoll

τα − τβ
(e− t

τα − e
− t

τβ )

Qcoll = 10.8× L× LET

(2)

4.1 Worst Radiation Sensitive Case

The first step in the radiation sensitivity evaluation was to identify the most
sensitive node and input vector at each circuit. A fault injection campaign for a
particle with LET estimated to 58 Mev. cm2/mg was performed at each node of
the circuits, as shown in Fig. 7 considering all possible input vectors. The defini-
tion of 58 Mev.cm2/mg as the LET value used for the fault injection campaign
was performed considering the highest LET that still characterizes a simulation
at the ground level (LET ≤ 60 Mev.cm2/mg) [43,44]. Two inverters were used
for each input of the circuit and a single inverter for the output, to emulate the
worst fan-out scenario, i.e. lowest fan-out (FO1). Consider the amplitude and
the width of the SET pulses allow determining which node and input vector
are the most sensitive [11] and characterize the worst radiation sensitive case.
After the worst radiation sensitive case was obtained, each logic gate was fault
injected considering this sensitive scenario, i.e., the most critical node, the sen-
sitive input vector and the waveform of the pulse (strikes at P-type devices or
N-type devices).

4.2 The SET Response at the Ideal Fabrication Process

This step evaluates the circuit under radiation effects but the effects of process
variability are not considered. The LETth and the SET pulse width are used to
characterize the SET response. Before starting the fault injection in the circuit,
it is important to know the worst-case delay of each logic gate, which will be
used to determine the LETth. Thus, the worst-case delay of each logic func-
tion considering both topologies was obtained. In this work, it is considered the
SET effects, more specifically, when a transient pulse propagates to the inverter
chain output. To calculate the LETth, two characteristics of the SET pulse were
considered: amplitude and width. A fault in the circuit is considered when the
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SET pulse amplitude exceeds half of the nominal supply voltage (VDD/2) and
the SET pulse width is greater than the circuit worst-case delay. That is, the
metrics of the worst-case delay and the SET pulse width are used in obtaining
the LETth, which is the primary metric used in this work. These values are used
as a form of reference values to evaluate the process variability effects.

4.3 Process Variability Analysis

The analysis considering the process variability effects is performed keeping the
same configurations of the previous step, however, considering the impact of the
process variability through the WFF. Metal gate devices suffer from the WFF
caused by the misalignment of metal grains in the gate. This fluctuation exhibits
a multi-nominal distribution, which can be approximated by a Gaussian distri-
bution if the number of grains on the surface of metal-gate is high enough (>10)
[45], which corresponds to the FinFET ASAP7 model characteristics. The WFF
effect due to process variation is explored through the statistical Monte Carlo
simulation process, considering a Gaussian distribution with a 3-sigma deviation
of 5% the WFF [13]. Two thousand simulations were run for each logic gate [45].
No correlation between different types of transistors was assumed, which means
that PFET and NFET devices may come up with different variations in its
parameters. Timing, SET pulse amplitude and width measurements were taken
for each Monte Carlo simulation. The mean (μ) of these values is considered
to calculate a new LETth, i.e., a LETth that considers the process variability
impact. Also, the standard deviation (σ) of the mean values is obtained and a
robustness analysis is performed using the normalized standard deviation (σ/μ)
of the SET pulse width. The σ/μ is used to define how much a circuit is sensitive
to process variability. The lower are the values of this ratio; the more robust to
variability are the circuits.

5 Results

The worst radiation sensitive case was obtained before characterizing the SET
response. The critical node, the most sensitive input vector and the transient
pulse format, which compose the worst-case scenario for each logic function in
both topologies are presented in Table 5.

To characterize the fault at a given node of the circuit, it is evaluated whether
the SET pulse propagates to the circuit output. Thus, the probability of the
critical node being the output itself is very high and this behavior is proven in
the obtained results for both topologies. It can be seen that the most sensitive
input vectors vary even considering the same logic function, due to the use of
a different transistor arrangement. For OAI21 and AOI211 gates this difference
between the input vectors is reflected in the format of the transient pulse (SET
101 or SET 010) that will be inserted in the node. Figure 10 demonstrates this
behavior in more detail for the OAI21 gate.



104 L. H. Brendler et al.

Table 5. Worst Radiation Sensitive Case [40]

Logic function Worst radiation sensitive case Complex gate Multi-level

OAI21 Critical node OUT OUT

Input vector 001 011

Transient pulse 1-0-1 0-1-0

OAI22 Critical node OUT OUT

Input vector 1001 0101

Transient pulse 0-1-0 0-1-0

AOI211 Critical node OUT OUT

Input vector 0000 0101

Transient pulse 1-0-1 0-1-0

XOR Critical node OUT OUT

Input vector 11 11

Transient pulse 0-1-0 0-1-0

5.1 SET Evaluation Under the Ideal Fabrication Process

The worst-case propagation delays of the four logic functions in the two topolo-
gies, considering the ideal fabrication process, are shown in Table 6. In addition
to presenting some differences in performance between the use of complex and
multi-level topologies, the propagation times are necessary to obtain the LETth.

Table 6. Worst-case propagation delay at nominal conditions [40]

Logic function Worst-case delay (ps)

Complex gate Multi-level

OAI21 7.79 18.29

OAI22 9.63 18.48

AOI211 13.42 36.63

XOR 11.68 20.02

Figure 11 shows the SET pulse width measured when the amplitude of this
same pulse exceeds half of the nominal supply voltage. To calculate the LETth
of each logic gate, it is important to note that all values of the SET pulse width
shown in Fig. 11 are greater than the worst-case delays shown in Table 6, char-
acterizing the fault in the circuit output. The SET pulse width values follow
much the same behavior as the delay values. The multi-level topology presents
SET pulse width about 77% larger in comparison to the complex topology. This
behavior does not necessarily mean a higher sensitivity of the multi-level topol-
ogy to the radiation effects. The SET pulse width considering ideal fabrication
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COMPLEX 

MULTI-LEVEL 

Input Vector: 001 
Transient Pulse: 1-0-1 

Input Vector: 011 
Transient Pulse: 0-1-0 

LETth = 33.3 Mev.cm2/mg 
SET pulse width = 10.31ps 

LETth = 46.8 Mev.cm2/mg 
SET pulse width = 22.89ps 

OAI21 

Fig. 10. The difference of transient pulse format inserted in the critical node (OUT)
of complex and multi-level topologies of OAI21 gate [40].

tends to be higher for the multi-level topology since the functions implemented
in this transistor arrangement are slower than the same ones implemented in
the complex topology. That is, if the SET pulse width is less than the logic gate
delay, the fault would be masked.

The larger SET pulse width of the multi-level topology is not reflected in
the LETth calculation, as can be seen in Table 7. LETth values may seem high
considering the analyzed logic gates. However, similar work highlights the robust-
ness of the 7 nm FinFET technology, considering other logic functions [14] and
also majority voter circuits [15]. NAND and NOR voters have no-fault event
(at nominal supply voltage) considering a LET value of 15 Mev.cm2/mg, for
example [15]. For the OAI21 and AOI211, the LETth considering the multi-level
topology is 40.54% and 72% higher than the LETth of the complex topology,
respectively. XOR gate and the OAI22 gate present a difference practically null,
approximately 1%. The results demonstrate that multi-level topology is more
robust to the radiation effects considering the ideal fabrication process since it
presents higher LETth values in comparison with complex topology. This behav-
ior is related to the regularity of the layouts developed. The OAI22 and XOR
gates, even in the complex topology, are already quite regular. Therefore, the
use of multi-level topology for these functions has practically no impact.
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Fig. 11. SET pulse width at the ideal fabrication process [40].

Table 7. LETth at ideal conditions [40]

Logic function LETth (Mev.cm2/mg)

Complex gate Multi-level

OAI21 33.3 46.8

OAI22 47.4 46.8

AOI211 27.5 47.3

XOR 46.8 46.9

5.2 The SET Response Under WFF

As the analysis carried out considering only the radiation effects, in the process
variability analysis, the worst-case propagation delay of each logic gate is also
measured but considering the WFF impact. Table 8 shows the mean (μ), stan-
dard deviation (σ) and normalized standard deviation (σ/μ) of the delays for all
analyzed logic gates.

Figure 12 shows the mean of the SET pulse width for each logic function
implemented in the two topologies, considering the WFF impact. Unlike the
analysis under ideal conditions, on average the SET pulse width for complex
topology is higher ranging from 4 ps to 9 ps of difference in comparison with the
multi-level topology. Only for the AOI211 gate that this ratio is not established
and the SET pulse width for the multi-level topology is still about 4 ps higher.
Considering only the SET pulse width, the complex topology is more sensitive
to the process variability effects.



Process Variability Impact on the SET Response of Multi-level Design 107

Table 8. Worst-case propagation delay under WFF [40]

Logic gates Worst-case delay (ps)

Complex gate Multi-level

μ σ σ/μ (%) μ σ σ/μ (%)

OAI21 8.43 2.56 30.37 19.21 4.00 20.83

OAI22 11.18 3.43 30.71 19.42 4.08 21.02

AOI211 14.71 4.64 31.56 38.52 7.62 19.78

XOR 12.49 2.84 22.73 20.95 4.39 20.98
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Fig. 12. Impact of WFF on SET pulse width [40].

The normalized standard deviation of the SET pulse width is shown in
Fig. 13. The smaller this deviation, the more robust to the variability effects is
the topology used in each logic function. Although the complex topology presents
higher mean values of the SET pulse width, these values deviate less than the
values considering the multi-level topology for three logic functions. This differ-
ence between the deviations is not very significant, being 2.75% for the XOR
gate and approximately 19% for the OAI21 gate. As in the previous analysis,
for the AOI211 gate, the behavior is inverse and the multi-level topology ends
up having the smallest deviation. Although the complex topology suffers from
increasing the SET pulse width due to the impact of the WFF, these values have
a smaller deviation than the ones considering the multi-level topology.
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Fig. 13. Normalized standard deviation of SET pulse width [40].

In the current analysis, the deviations are normalized by the mean, i.e., a
smaller value of the SET pulse width means for the 2000 Monte Carlo simula-
tions performed, tends to a more significant deviation. Still, this analysis allows
observing the quantity and how much the values deviate from the mean values
presented in the previous analysis. This behavior is reflected in the probability
that the WFF will more or less impact the circuit. The multi-level topology has
a slightly higher probability of having a SET pulse width value greater than the
mean.

After obtaining the SET pulse width mean values and confirming that they
are higher than the mean worst-case delay of each logic gate, the fault character-
ization in the circuit output is complete. Then a new LETth can be calculated
considering the WFF impact. Figure 14 shows the difference between the LETth
obtained considering the ideal fabrication process and the impact of the WFF
for all the logic functions in the two topologies of the study. For all logic func-
tions regardless of the adopted topology, the LETth considering the WFF impact
is smaller than the LETth at ideal fabrication process. That is, due to WFF, a
smaller amount of energy transferred by the particle is required to cause a distur-
bance in the circuit. All evaluated circuits become more sensitive to the radiation
effects. Also, in the comparison between the different transistor arrangements
used in each logic gate, the multi-level topology presents the best results. For
the OAI21 and AOI211 gates, the LETth considering the impact of the WFF is
significantly larger in comparison with the complex topology, being 38.4% and
88% respectively. For the OAI22 and XOR gates, the LETth is smaller in the
same comparison. However, signalizing a not statistically significant difference,
3.1% and 1.3%, respectively.
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Fig. 14. Difference of LETth considering ideal fabrication process and WFF impact
[40].

5.3 Area Impact

It is important to highlight one more important metric when comparing the two
topologies used in this study. Table 9 shows the number of transistors and the
area of each logic gate in the two topologies. All gates designed with the multi-
level logic arrangement show an increase in the area used. In most cases, the area
using the multi-level topology is more than three times larger than the complex
gate topology. The OAI22 and AOI211 gates have the largest variation, the
multi-level layout is about 4.5 times larger than the traditional layout. The XOR
gate has the smallest increase in the comparison between the two topologies,
approximately 67%.

Table 9. Comparison of number of transistors and area for complex gate and multi-
level logic topologies

Logic function # Transistors Area (μm2)

Complex gate Multi-level Complex gate Multi-level

OAI21 6 16 0.085 0.271

OAI22 8 28 0.102 0.475

AOI211 8 28 0.102 0.475

XOR 10 20 0.203 0.339
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6 Conclusion

This work evaluated the radiation robustness through the SET response, con-
sidering the process variability effects. A set of logic functions implemented in
two different transistor topologies was compared using the 7 nm FinFET ASAP7
PDK.

Regarding the ideal fabrication process, the multi-level topology presents the
largest SET pulse widths; however, it also shows the highest LETth values for
three of the four analyzed logic functions. That is, at least considering the ideal
fabrication, the SET pulse width has no direct relation to the LETth value.
If the design objective is a more robust circuit to radiation effects, regardless
of performance, power and area penalties, the multi-level topology is the best
option.

Considering the process variability impact, the complex topology presents a
large variation of SET pulse width values, even exceeding the multi-level topol-
ogy values. Even with this variation, the LETth of the multi-level topology
remains larger for two of the four logic functions and practically the same for
the other two. This behavior confirms the conclusion of the previous analysis, in
which the SET pulse width does not have a direct relation with the LETth value
and the multi-level topology is the best option to deal with the SET effects.

The LETth values of each circuit can also be related to the environment
where they will operate. On average, the LETth values of this study are around
42 Mev.cm2/mg considering ideal conditions and around 36 Mev.cm2/mg con-
sidering the WFF impact. Despite being high values, the logic functions are still
susceptible to faults at the ground level. That is, the robustness of the this types
of circuits must be considered even for applications that operate in a terrestrial
environment.

In addition to the analysis of the behavior of each topology considering ideal
fabrication and process variability, the impact of the WFF on the SET response
was also evaluated. For all logic functions regardless of the topology used, the
LETth value is lower, i.e., the logic gates become more sensitive to the radiation
effects when considering the process variability impact. This analysis is of utmost
importance because it indicates that to determine the LETth of a circuit, one
must also consider other reliability factors such as process variability.
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Abstract. Electronic computing systems are integrating modern mul-
ticore processors and GPUs aiming to perform complex software stacks
in different life-critical systems, including health devices and emerging
self-driving cars. Such systems are expected to experience at least one
soft error per day in the near future, which may lead to life-threatening
failures. To prevent these failures, critical system must be tested and
verified while under realistic workloads. This paper presents four novel
non-intrusive fault injection techniques that enable full fault injection
control and inspection of multicore systems behavior in the presence of
faults. Proposed techniques were integrated into a fault injection frame-
work and verified through a real automotive case study with up to 43
billions instructions. Results show that compared to traditional methods,
the new techniques can increase the efficiency of fault injection campaigns
during early development phase by 32.28%.

1 Introduction

Leading companies in automotive, medical, consumer electronics, and high-
performance computing (HPC) industry employ general-purpose multicore pro-
cessors and graphics processing units (GPUs) in their applications. The rising
demand for powerful computing capacity and energy efficiency of multicore com-
ponents lead to high-frequency clock operation and multiple voltage domains
within the same chip. In addition to that, the increasing number of internal ele-
ments (e.g., cores, memory cells, registers) is making multicore-based systems
more vulnerable to both hard and soft radiation-induced errors [1,2]. Managing
the soft error occurrence is crucial to accomplishing a reliable and efficient oper-
ation in several domains. In an HPC system, an undetected soft error can impact
on the efficiency of resource utilization (i.e., re-execution of applications/jobs),
which may lead to financial loss. In turn, the occurrence of a soft error may
cause a critical failure on a self-driving car, which can put human lives at risk.

Given trends for ever-increasing application/kernel code size and complexity,
cost-effective tools to assess the soft error resilience of multicore-based systems
c© IFIP International Federation for Information Processing 2020
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become of utmost importance to identify the most unreliable system function-
alities early in the design phase. In this regard, the high cost and time inherent
to hardware-based fault injection methods make more efficient simulation-based
fault injection frameworks key to test reliability. Most fault injection simulators
available in the literature offer a restricted number of fault injection exploration
capabilities such as injection of bit-flips in memory [3], general-purpose regis-
ters and some other CPU components (e.g., load/store queue) [4,5]. However,
with the growing complexity of both processor and software architectures, more
appropriate fault injection techniques and tools are required. The underlying
techniques and tools must provide engineers with full fault injection control and
inspection of the system’s behavior under the presence of faults.

This paper proposes four novel non-intrusive fault injection techniques
enabling engineers to perform in-depth and relevant soft error evaluation1,
addressing the gap between the available fault injection tools and the indus-
try requirements. These techniques consider the particularities of each software
stack component (e.g., kernel, hypervisor, or application function) running on
the target system. To maximize this research impact, we adopt a new tool called
SOFIA (Soft error Fault Injection Analysis) [6]. SOFIA integrates the pro-
posed fault injection techniques along with several facilities (e.g., error tracer
module), which enable to identify and classify the effects of soft errors on the
system behavior, considering both hardware and software architectures. SOFIA
is based on the Multicore Developer (M*DEV) virtual platform2, and its imple-
mentation is highly autonomous and requires little human interaction, after its
configuration.

This work is organized as follows, in Sect. 2 we review relevant works regard-
ing simulation frameworks and soft error analysis. Section 3 presents our tool,
its components and the simulation flow. Section 4 reviews two traditional fault
injection techniques and introduces the four novel techniques, then Sect. 5
show results that support the consistency and runtime advantages of our tool.
Sections 6 and 7 contain results of soft error analysis using SOFIA for a multi-
core benchmark and an automotive application, respectively. Finally, in Sect. 8
we conclude and discuss future works.

2 Related Works in Fault Injection Frameworks

Authors in [7] present the Relyzer, a hybrid simulation framework for SPARC
core using Simics [8] and GEMS [9] simulators coupled with a pruning tech-
nique to reduce the number of injected faults. The Relyzer enables the injection
of faults into architectural integer registers, and output latches of the address
generation unit. In [10], a QEMU-based fault injection framework is proposed
targeting general-purpose registers. Fault injection campaigns [10] consider an
1 A soft error campaign (and thus the evaluation of said campaign) in the context

of this paper is considered to be relevant when the result can either identify the
existence of vulnerabilities or their source.

2 www.imperas.com.

www.imperas.com
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X86 architecture running four in-house applications on the top of RTEMS ker-
nel. F-SEFI is another fault injection framework that relies on QEMU [11,12].
This work employs the QEMU using a hypervisor mode, i.e., it does not emulate
the complete target system, which reduces both its fault injection and soft error
analysis capabilities.

The authors in [3] propose the GeFIN and the MaFIN tools, which support
the injection of faults in microarchitectural components such as general-purpose
and cache control registers. Conducted experiments consider the execution of
10 bare metal benchmarks. Rosa et al. [13] propose the OVPsim-FIM frame-
work on which several fault injection campaigns were performed in Arm pro-
cessors running FreeRTOS kernel. Authors in [5] propose a gem5-based frame-
work that allows injecting faults in different microarchitecture elements (e.g.,
reorder buffer, load-store queue, register file). In [5], each element is subject
to small 300-long fault campaign for each of the ten applications collected from
both MiBench and SPEC-Int 2006 benchmark suites. A similar gem5-based fault
injection framework is described in [4].

The reviewed frameworks only support the injection of bit-flips in mem-
ory and general single-core processor components, including registers, load/store
queue, among others (Table 1). Another drawback of such approaches is the lack
of detailed and customizable post-simulation analysis. Reviewed works classify
the detected soft errors according to the inspection of the processor architecture
context (i.e., memory and registers), disregarding the impact of software com-
ponents (e.g., functions and variables) on the system reliability. Further, such
approaches typically report low simulation performances of up to 3 MIPS [7],
which restricts the number and the complexity of fault injection campaigns.
While some works consider a single ISA [7], others use only in-house applica-
tions [10] or bare-metal implementations [3–5].

Different from the above works, SOFIA offers four novel non-intrusive fault
injection techniques that provide engineers with flexibility and full control over
the fault injection process, allowing to disentangle the cause and effect relation-
ship between an injected fault and the occurrence of possible soft errors, targeting
a specific critical application, operating system or API structure/function. Our
contribution also differs from all previous projects by allowing users to define
bespoke fault injection analysis and soft error vulnerability classifications, tak-
ing into account both software and hardware components particularities and the
system requirements. SOFIA framework was developed based on M*DEV simu-
lator, and it enables to inject faults at a speed of over 3,900 MIPS while running
complete software stacks, allowing fast soft error reliability assessment during
early design exploration phases. Further, distinctly from other reviewed works,
the promoted tool does not alter the simulator engine by using already provided
extension ports to access system hardware components.
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Table 1. State-of-the-art in virtual platform (VP) fault injection simulators (Sim.),
where ‘N/A’ means ‘not available’.

Ref. VP Sim. Kernel Fault injection description

[3] MARSS gem5 N/A • General-purpose registers

• L1 and L2 cache

• Load/store queue

[4] gem5 N/A • General-purpose registers

• Pipeline and functional units registers

• Load/store queue

[5] gem5 N/A • Eleven microarchitectural components

[7] Simics+GEMS Open-Solaris • General-purpose registers

• Address generation latches

[10] QEMU RTEMS • General-purpose registers

[11] QEMU N/A • General-purpose registers

• L1 and L2 cache

• Physical Memory

[13] OVPsim FreeRTOS • General-purpose registers

• Physical Memory

This Work M*DEV Linux • General-purpose registers

• Physical Memory

• Virtual Memory

• Variables

• Function Code

• Function Lifespan

3 SOFIA: Fault Injection Framework

To validate and demonstrate the potential of proposed techniques, the M*DEV
simulator was selected due to its support to more than 170 processor model
variants (e.g., MIPS, Arm, single-core, dual-core) including state-of-the-art mul-
ticore processors and ISAs. Note that proposed techniques can be implemented
in any virtual platform or simulation environment that provides access to the
system memory management unit (MMU) translation tables. This section details
the SOFIA fault injection framework and its main features.

3.1 Fault Model

SOFIA emulates the occurrence of single-bit-upsets (SBUs) by injecting faults
into pre-selected register or memory locations during the execution of a given
software stack. This paper focus on SBUs for brevity, nevertheless, the tool
applies a 64 bit-wide to each target locations enabling any arbitrary multiple-bit
upset fault injection. The default fault injection configuration (e.g., bit location,
injection time) relies on a random uniform function, which is a well-accepted fault



Efficient Soft Error Vulnerability Analysis 119

injection technique since it covers the majority of possible faults on a system at
a low computation cost [14]. Fault injections occur during the target application
lifespan (i.e., the operating system (OS) startup is not subject to faults), which
includes OS system calls and parallelization API subroutines arising during this
period. This approach allows identifying unexpected application execution errors
(e.g., segmentation fault), which are associated with adopted OS components or
API libraries.

3.2 Fault Injector Module

SOFIA incorporates a fault injector module (FIM) with five main components:
(1) configuration, (2) fault monitor, (3) fault injector, (4) error analysis, and
(5) exception handler. The configuration component (1) starts the simulation,
reads the configuration file (i.e., fault list), and setups the monitor component
(2), which is responsible for controlling the simulator flow. When the simula-
tion reaches the injection time, the fault injector (3) is invoked, and it alters
the microarchitectural elements (e.g., register file, physical memory) according
to the adopted fault injection technique. After the application execution, the
soft error analysis component (4) compares the simulator context against the
reference execution (i.e., the application execution without fault injection) to
classify the application behavior under fault presence. The analysis considers
memory, register context (including the program counter), and the number of
executed instructions. Additionally, component (5) automatically terminates the
fault injection simulation after an execution time threshold defined by the user
and captures unexpected termination events in the target application and OS .

3.3 Fault Injection Simulation Flow

The SOFIA fault injection flow (Fig. 1) comprises four phases: The faultless
execution (phase 1) first cross-compiles the application source code and then
simulates the target application without fault influence, aiming to verify its cor-
rectness and extract reference information, i.e., registers context and final mem-
ory state. During the simulation, SOFIA acquires additional information based
on the selected fault injection technique. The second phase deploys the fault
generation tool considering the injection time, the register name, and the target
bit for each fault injection technique. In the third and most complex phase, the
SOFIA tool starts by configuring an instruction counter event, which is defined
according to the insertion time. Then, the FIM reads the fault characteristics
and introduces a bit-flip according to the adopted fault injection techniques.
After the application conclusion, the fault injection module compares the appli-
cation outcome (e.g., the number of executed instructions, registers context, and
memory state) under fault influence with the information acquired during phase
1. In the last phase, SOFIA assembles all the individual reports to create a sin-
gle file, performs several statistical analysis (e.g., average, worst, and best cases)
and generates individual plots.



120 V. Bandeira et al.

Application 
source

Cross-
Compiler

Object 
Code

Virtual
Platform

Reference
Information

Fault List 
Generator

Fault List Fault Campaign
ManagerHarvestCampaign

Report 
VP-FIMs

FIM

Phase 2

Phase 1

Phase 3Phase 4

FIM
FIM

FIM

Individual
Reports

Fig. 1. SOFIA fault injection flow.

3.4 Soft Error Analysis and Classification

The soft error analysis module investigates the target platform software stack
(i.e., application, drivers, OS under the fault injection influence) after each sim-
ulation to expose discrepancies against an identical software stack in a faultless
execution. Fault injections campaigns must be followed by a customizable and
flexible soft error analysis, which provides engineers with appropriate means to
isolate and identify not only the occurrence but also the system characteristics
(i.e., software and hardware) contributing to the error. SOFIA enables the addi-
tion of customizable inspections based on application code, execution pattern,
or even final results without any modification on the original target software
code. For instance, the tool can be used to check a critical variable against a
predefined value or another internal variable (e.g., data duplication) ensuring
the application correctness. All the soft error analysis conducted in this paper
rely on a well known [15], and on a customized classification proposed by the
Authors of this work.

Cho et al. [15] classification considers: Vanished, if no fault traces are left.
Application Output Not Affected (ONA), when the resulting memory is
not modified; nevertheless, one or more remaining bits of the architectural state
is incorrect. Application Memory Mismatch (OMM), the application termi-
nates without any error indication; however, the resulting memory is affected.
Unexpected termination (UT), the application terminates abnormally with
an error indication. Hang, the application does not finish, requiring a preemp-
tive removal after a threshold execution time. Depending on the application’s
nature, Cho’s classification may be inadequate to express possible misbehavior.
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SOFIA enables the creation of new classifications to achieve a customized soft
error analysis. This feature is fully explored in the Sect. 7.1, Automotive Results
Analysis.

4 Fault Injection Techniques

The SOFIA framework supports six fault injection techniques (A–F), which
are illustrated in Fig. 2. These techniques make SOFIA suitable for fast and
detailed soft error vulnerability analysis at an early design space exploration
stage. Obtaining early indications of soft errors enable reliability software devel-
opers to adjust the application code (or portion of it) as needed. Note that the
six techniques target the register file or physical memory without altering the
target software stack (i.e., application, OS, and related libraries).

4.1 Register File

Random register file fault injection is a well-accepted mechanism that homoge-
neously covers the majority of soft errors, striking both application and operating
system codes. This approach ignores distinct regions of criticality (i.e., function
and data structures), leading to reduced code coverage that narrows the number
of errors that can be detected during the development phase. The SOFIA frame-
work can access the processor model register file to inject faults in any visible
register without altering the application under test.

4.2 Physical Memory

Another well-known fault injection technique relies on the inversion of single-bits
into the system physical memory, which accurately reproduces its exposition to
radiation particles. Nevertheless, the lack of correlation between the injected
faults location in the physical memory and the application-level data structures
may lead to inadequate error coverage. To enable this technique, SOFIA supports
access to both the physical memory and the injection of bit-flips at any moment
during the application execution.

Traditional fault injection frameworks only support the techniques (A) and
(B), which rely on a random selection in terms of fault injection location (e.g.,
one bit from the complete memory range or a register) and time. Although both
are well-accepted mechanisms since they cover the majority of possible faults on
a system, it lacks correlation between faults and errors. Faults are arbitrary dis-
tributed throughout the execution, striking both application and operating sys-
tem codes. Underlying techniques may lead to low code coverage, which restricts
the identification of soft errors due to the large number of errors that are masked.
Fault injection techniques (C–F) aim to minimize such limitation while keeping
the software stack unmodified.
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4.3 Application Virtual Memory

Most operating systems abstract the physical hardware implementation of the
memory from the user by making available a set of virtual address ranges while
using a translation table to connect both virtual and physical ranges. The pro-
moted technique (C) automatically extracts the virtual addressing ranges from
the target application object code, including different segment addresses (e.g.,
data, code, read-only, debug) during its phase 1 (Sect. 3.3) to create an appro-
priated fault lists (phase 2). For each fault injection, SOFIA accesses the target
OS virtual memory translation table, acquires the correspondent physical to a
virtual address, and injects the bit-flip in the system physical memory repre-
senting the target application-level memory. The advantage of this technique
over the purely physical memory fault injection relies on the fact that it targets
the application virtual address space without affecting the OS, the execution
of other applications, or libraries, reducing the number of faults campaigns that
must be conducted since soft errors are more likely to manifest earlier. This app-
roach enables the user to target a particular application running in a complex
environment with multiple applications and libraries.

4.4 Application Variables and Data Structures

To precisely evaluate an application’s vulnerability to soft errors the fault injec-
tion infrastructure should provide efficient means to correlate errors with partic-
ular application blocks or data structures. Technique (D) (Application Variable)
enables the engineer to direct bit-flip injections into particular data structures,
allowing to isolate and identify the most vulnerable ones with a lower number of
fault campaigns and higher precision. Further, this approach allows evaluating
the impact of specific application variables on the soft error reliability with-
out affecting the application control flow. For this purpose, the user is asked to
inform the target variable name, enabling SOFIA to automatically capture the
variable virtual address to create a set of faults targeting the data structure vir-
tual addressing. During any point of the application execution, the variable will
suffer a single bit-flip on its physical memory representation using the translation
table.

4.5 Function Object Code

To explore the impact of errors on functions assembly code, this work proposes
the technique (E) that limits the injection spectrum to the memory region
which holds the target function code—instructions and local variables. In the
real world, the probability of a particular function being hit by a transient fault
depends on its size (i.e., number of instructions) in comparison with the com-
plete memory range. This technique enables the user to investigate the soft error
reliability of a particular function independent of its size or execution time.
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4.6 Function Lifespan

The majority of frameworks rely on a random time generation scheme where
faults are scattered over the entire application and OS execution. Consequently,
the number of faults per function depends on its execution time and not on its
criticality level. One can argue that the critical system functions are those with
the most extended execution, however, any function can produce a system mal-
function that can impact on the overall system reliability. Function Lifespan (F)
technique enables to reduce the fault injection spectrum by limiting the insertion
time to those intervals where the target function is active—in the register con-
text. During the simulation, the fault monitor component ((2), Sect. 3.2) traces
the function execution at the instruction level and thus create a list of active
ranges, including the processor core (s) that executed the underlying function.
In this work, the lifespan technique implementation targets all the available reg-
isters: floating-point, general purposed registers (r0–r15), the program counter
(PC), and the stack pointer (SP). However, this technique can be combined
along with any other fault injection technique, e.g., (C–E), to further narrow
the fault target.

5 Techniques Consistency and Performance

To validate the proposed fault injection techniques as well as to demonstrate the
effectiveness of SOFIA a set of experiments are described as follows. Section 5.1
investigates the soft error analysis consistency of SOFIA concerning a cycle
accurate full system simulator (gem5). Whereas in Sect. 5.2, SOFIA simulation
performance is compared to the gem5 fault injection implementation. Further,
Sect. 6 analysis the soft error reliability of a benchmark considering the use of a
mitigation technique. In turn, in Sect. 7 a real automotive case study is used to
investigate the proposed fault injection techniques.

For this section, the software stack comprises an unmodified Linux kernel
(3.13) and 8 applications from the NASA NAS Parallel Benchmark (NPB)
suite [16]. Each application has three versions, the base serial and two paral-
lel implementations with different libraries (OpenMP, MPI), totaling 16 parallel
scenarios. The target architecture includes an Arm Cortex-A9 processor model.

5.1 Accuracy

Aiming at evaluating the SOFIA accuracy the register file technique (A) has
been integrated into gem5 full system mode. The gem5 simulator supports
detailed cycle-accurate simulation of the system components (e.g., processor,
cache, pipelines, arithmetic units), which justifies its adoption as the reference.
Underlying evaluation comprises 32 fault injection campaigns (16 for each simu-
lator) considering eight NASA benchmarks Block Tri-diagonal solver (BT), Con-
jugate Gradient (CG), Embarrassingly Parallel (EP), Discrete 3D fast Fourier
Transform (FT), Integer Sort (IS), Lower-Upper Gauss-Seidel solver (LU), Multi-
Grid (MG), and Scalar Penta-diagonal solver (SP) implemented in both MPI and
OpenMP.
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For each benchmark, 8,000 faults are injected in the registers of a quad-core
Arm Cortex-A9 processor in random order, aiming to estimate the percentage
of errors that are not masked during the execution of each benchmark. Such
experiments deploy 256,000 fault injections through more than 400 thousand of
simulation hours using a 5,000-core high-performance system.

Results illustrated in Fig. 3 show that the average mismatch of the SOFIA
w.r.t gem5 fault injection implementation is only 5.84%, while the worst case
is 23.35% for the OpenMP implementation of MG. Note that the mismatch
between two fault injection campaigns is defined here as the sum of absolute
differences between each soft error occurrence (e.g., ONA, OMM), divided by
the total number of fault injections. Considering that the experiments have as
reference a cycle-accurate simulator, which deploys a two-level detailed cache
model, and eight high-performance applications implemented in both MPI and
OpenMP parallelization libraries; the achieved mismatch is quite acceptable for
early reliability explorations of multicore systems executing complex software
stacks, specially when approximately 99% (396 h) of the simulation time was
devoted to gem5 simulation.

5.2 Simulation Speed

During early design space explorations the simulation time is an important fac-
tor as a lower simulation time allows for a more thorough evaluation. This
experiment evaluates the SOFIA simulation performance in terms of millions
of instructions per second (MIPS) when compared to the gem5 fault injection

Fig. 3. Fault injection campaigns considering a quad-core processor using the SOFIA
and the gem5.
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implementation. Results were performed in a Quad-core Intel(R) Core(TM) i7–
4790K CPU (32 GB DDR3 RAM) host machine. Figure 4 shows the simulation
performance of both the SOFIA and the gem5 frameworks as we increase the
number of host cores from 1 to 4 considering the 36 fault injection campaigns.

Note that both (SOFIA and gem5) fault injection flows can perform and man-
age parallel fault injection campaigns. Considering the most significant bench-
mark (i.e., EP with 87 billion instructions) and using four host cores, SOFIA
achieves up to 3,910 MIPS, which is approximately 325 times faster than the ref-
erence gem5 (12.52 MIPS). The obtained results also show that the simulation
speed of SOFIA w.r.t gem5 fault injection implementation increases along with
the application complexity, i.e., the more instructions, the higher is the SOFIA
speedup.

6 Benchmark and TMR Case Study

To showcase SOFIA’s applicability, this section presents a soft error analysis
for a matrix multiplication (MM) kernel. First, we compare a sequential and a
parallel implementation of the same kernel in Sect. 6.1. Leveraging from acquired
information on the initial analysis, this work deploys two versions of the Triple
Modular Redundancy (TMR) mitigation technique. In this regard, results are
presented according to the classic TMR approach (MM-TMR—Sect. 6.2), and a
refined TMR version (MM-TMR-I—Sect. 6.3).

Fig. 4. SOFIA and gem5 simulation performance.

6.1 Sequential and Parallel MM

The first FI campaign deploys the MM kernel in two versions: (i) a sequential
implementation, which uses a simple iteration-based algorithm, and (ii) a MM
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parallel kernel that relies on the Pthreads library to create two working threads.
Figure 5 shows the two MM implementations subjected to 8 fault campaigns of
8,000 fault injections each totaling 128,000 simulations, considering the six FI
techniques:

1. Random registers (A);
2. Physical memory (B);
3. Virtual memory (VM) entire range (C1);
4. VM code section (C2);
5. VM data sections (C3);
6. Result matrix (D1);
7. Multiplication function object code (E1);
8. Multiplication function lifespan (F1).

The sequential MM under FI shows a higher occurrence of OMMs (Fig. 5) due
to dirt registers used in the multiplication, which leads to a significant number
of silent data corruptions. The underlying implementations are also suscepti-
ble to UTs as consequence of incorrect memory address computation caused by
registers under fault influence, which may lead to errors such as segmentation
fault. However, the parallel MM presents a substantially more significant num-
ber of UT when compared to the sequential version. This is explained because
Pthreads scheduling algorithm increases the application control flow complexity,
which might incur in more wrong address computation during the MM execution.

Fault Injection Techniques

Fig. 5. Matrix multiplication soft error vulnerability analysis. Sequential (SEQ) and
parallel (PAR) for a single-core processor
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6.2 Triple Modular Redundancy

As identified in the previous Section, the injection of bit-flips severely impacts on
the matrix multiplication kernel operation due to its simplicity and high-density
code. This work deploys the TMR to improve its reliability. Such a technique
combines spatial (i.e., data duplication) and temporal (i.e., concurrent execution)
replication to reduce the amount of detectable silent data corruptions. The new
kernel (MM-TMR) executes three independent parallel MM instances (i.e., six
working threads), enabling one incorrect execution to be masked by a voting
process at the end of MM execution (i.e., a function vote the majority from the
partial results). The TMR version corrects most of the errors originated from
the input and output matrices. Nevertheless, the TMR implementation using
the Pthread library increases the UT occurrence.

A custom soft error analysis step was included in the fault campaign flow to
demonstrate the proposed tool efficiency. This additional module compares the
four matrices (i.e., each TMR replica and the voter) alongside two other error
classifications considering three possible outcomes:

1. All matrices are identical, in this case, the SOFIA classifies the detected
error according to one of the five default classes (e.g., Vanish, UT, Hang).
Note that OMM and ONA only occur if the result matrix is correct, and thus
being considered benign errors in this context.

2. If one TMR matrix does not match the other replicas, the voter will mask the
error and produce the correct result. Nevertheless, in this case, the simulation
diverges in terms of the number of executed instructions from the faultless
run, which leads to a false-positive error (i.e., control flow error with incorrect
memory) in traditional FI flows. The SOFIA classifies this execution context
as Corrected to signal the appropriate behavior, i.e., even with the context
mismatching the reference execution the final matrix is correct.

3. The third possible outcome originates from an incorrect voter execution (i.e.,
the three TMR matrices are identical and differ from the voter matrix) due
to the FI being classified as Voter Error.

Table 2 describes 17 distinct FI scenarios targeting the MM-TMR, while
Fig. 6 shows the results considering a single and quad-core ARM Cortex-A9
processor where each FI scenario comprises 8,000 faults. Register-based FI (A,
E, and F) displays a considerable amount of UT (i.e., Linux OS segmentation
faults in this context), around 40% due to the wrong address computation using
registers under fault influence. In contrast, the memory-based technique errors
depend on the stroke region, for example, targeting the 1 Gb physical memory
(using technique B) would result to a minimal number of errors (i.e., masking
rate of 99.95%) as the benchmark accesses a limited memory range (i.e., few
dozen kilobytes). The complete VM range (C1) and data sections (C3) present
a similar behavior as most of the faults hit the application 300-wide square
matrices due to its size (i.e., each one possessing 360 kbytes or 20% of applica-
tion size). The code section (C2) contains, besides the application code, hun-
dreds of unused Linux and C libraries functions added by the compiler, leading
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to greater masking rate. By individually targeting the matrix replicas (D1–3)
we exercise the TMR main functionality resulting in an almost complete error
coverage. The fault campaign (D4) leads to a 99.9% masking rate as the final
result is composed of the voter function at the application end, which incurs in
a narrow sensitive window (i.e., any faults previously present in this matrix are
overwritten).

Table 2. Fault injection techniques targeting the TMR-based matrix multiplication.

Ref. Target Ref. Target Ref. Target Ref. Target

A Register file D1 Matrix 1 E1 1st replication F1 1st replication

B Physical memory D2 Matrix 2 E2 2nd replication F2 2nd replication

C1 Complete D3 Matrix 3 E3 3rd replication F3 3rd replication

C2 Code section D4 Matrix result E4 Voter F4 Voter

C3 Data sections

Single and quad-core processors show a similar rate of correct results (i.e.,
vanish, SDC, and corrected) when targeting the function object code (E1–4).
However, their composition diverges while the single-core processor presents a
more significant SDC rate (i.e., the MM result is correct with silent data cor-
ruptions on the memory) the multicore system displays a larger masking rate.
Further, the multicore system reveals a higher number of Hangs due to the
longer and higher executions of the PTHREAD scheduling policy leading to

Fig. 6. Matrix multiplication soft error vulnerability analysis. MM-TMR for a single
and quad-core processor
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unrecoverable control flow. Random register (A) and Lifespan (F1–3) tech-
niques show similar behaviors under FI as the MM application spends 95%
on those multiplication functions. Directly targeting the voter function show a
behavior not seen when targeting the complete application with random faults
due to its short execution time, and thus, demonstrating the necessity of more
detailed FI framework. Subjecting the voter code (E4) and lifespan (F4) to FI
causes an erroneous matrix voting, which is a severe error in this context.

6.3 Improving the Triple Modular Redundancy

The initial MM-TMR solution provides complete coverage to fault injections for
the replicated data (i.e., the partial matrices) while the control flows still prone
to unexpected terminations. By using the promoted framework, it is possible to
pinpoint the significant UT cause as OS segmentation faults in one of the thread
replicas that terminates the complete application even if the other replicas had
not experienced any errors. To mitigate this issue, we modified the application
algorithm to include a segmentation handler for each replication, and conse-
quently, the improved MM-TMR (MM-TMR-I) finishes correctly even if one of
the replicas generates an OS segmentation fault. The experiments displayed in
Fig. 7 reproduce the 17 FI scenarios mentioned above for the MM-TMR-I version
using the single and quad-core processors.

The MM-TMR-I improves the MM kernel reliability by achieving of up to
90% of coverage (i.e., with correct final results) in contrast to the 50% of the
traditional TMR considering register-based fault injections targeting the replicas

Fig. 7. Matrix multiplication soft error vulnerability analysis. MM-TMR-I for a single
and quad-core processor
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working threads. FI techniques (D4, E4, and F4) targeting the voter function
and data remains unchanged without any modification being made in its code.

7 Automotive Case Study

While benchmarks can help to validate the proposed tool, a real-world appli-
cation provides more useful insights in terms of functionality and applicability
of the promoted techniques. To demonstrate the proposed fault injection tech-
niques soft error analysis capabilities, we select a complex software stack to be
our second case study. The experimental setup comprises a commercially avail-
able Arm Cortex-A9 processor, an unmodified Linux kernel (3.7), the Darknet
framework [17] for neural networks with NNPACK float-pointing acceleration
package [18], and the YOLOv3 [19] real-time object detect system. Object detec-
tion in real-time is a paramount research topic for both academia and industry
to achieve SAE Level 3+ autonomous vehicles. To supply a realistic scenario,
this work adopts the KITTI Vision Benchmark Suite [20], which uses challenging
computer vision sets to extract data from a real-world urban environment. The
YOLO algorithm takes KITTI suite images, each one measuring 1, 242 × 375
pixels, and outputs a list of detected objects and their confidence’s degree in
percentile.

After some experiments, we identified that Cho’s classification falls short
when it comes to defining object detection algorithms, which produce outcomes
based on probabilities, not on just absolute “yes” or “no”. To improve the soft
error analysis, a bespoke classification was defined according to the following con-
ditions: correct output when the outputs (golden and fault injection) match,
i.e., true vanished; incorrect if at least one object or probability is different.3

Further, the incorrect result can be divided into incorrect probability when all
objects are correct, but at least one has a different percentile of confidence—in
most cases this would not influence the action of an autonomous vehicle; wrong
detection, i.e., false positive or missing of an object; and no prediction, if no
object is in the image. The last two can represent a life-threatening failure, by
forcing a full stop in a highway (false positive, an object in the path) or crash
(missing of an object).

We subject the selected application to multiple fault scenarios employing the
fault injection techniques (see Sect. 4) targeting distinct software components
alongside a customized error classification module. Each technique covers differ-
ent aspects of the application considering its variables and critical functions in
an isolated manner, demonstrating the importance of providing engineers with
appropriate means that enable to identify not only the soft error occurrence but
also the specific software characteristics that contribute more directly to their
appearance.

3 All input images used in this work have six to ten objects detected in the reference
execution.
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The fault scenarios consider commonplace techniques in the literature ((A)
and (B)) as reference to evaluate the benefits and drawbacks of proposed fault
injection techniques (Sect. 4): application virtual memory (C), two variables
(D1, D2), and four functions—code (E) and lifespan (F). The technique (C)
is used to target the application data structures, excluding kernel and other
workloads from the system. The select two variables (D1, D2) for this exper-
iment are: colors and windows; which are globally available and are used to
plot the image overlay that delimit each detected object. The chosen functions
represent the target application critical portions: detection and probability cal-
culation of objects, add bias, and scale bias; convolutional layer creation of
the neural network make convolutional layer; and matrix multiplication, as
is orthogonal to this and other applications, compute matrix multiplication.
Each of the individual 13 scenarios comprises three fault injections campaigns
(with different input images), each campaign has 800 simulations with a single
bit-flip, totaling 31,200 fault injections.

7.1 Result Analysis

This work uses traditional fault injection techniques such as targeting general
propose registers (GPRs) and physical memory as a baseline for comparison.
This section aims to show how these techniques can mask certain behaviors. We
want to show that bespoke techniques can better guide developers towards a
more efficient soft error analysis that considers the critical application elements,
which reduces the number of simulations needed to extract relevant error/failure-
related data.

Register File. Register file fault injection campaigns display a higher masking
effect in small applications, as is the case for many benchmarks. For instance, the
ArmV7 architecture has 48 registers (16 GPRs, 32 floating-point) and presents
a twofold consequence: (i) bit-flips in unused registers lead to ONA as the fault
remains untouched until the application ends—common in short benchmarks as
they use a reduced register subset, and (ii) the usage of floating-point registers
depend on the application and compiler support. Even considering a real-world
application, the fault injection technique (A) has a masking rate of 62.32%.

The customized classification (Sect. 3.4) combined with the techniques allows
more insightful investigations. While 37.68% of the campaign (A) has some
kind of lingering difference w.r.t. Golden execution (Fig. 8), only 1.27% had
their outcome affected (Figs. 9 and 10). The high number of masking and low
incorrect outcomes attest to the reliability of the application. However, one can
also say that 98.73% of the fault injections were “not helpfull” if the goal is to
observe the behavior of the application in the presence of error.
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Fig. 8. Results for fault injection campaigns considering the classical (i.e., Cho’s) Fault
Injection classification.

Physical Memory. Physical memory fault injection masking is higher than the
ones targeting the register file. There are 42.8 × 1012 targets (i.e., the number
of instructions multiplied by either the register, or the memory bit count) for
(A) versus 65.7 × 1015 in (B), and thus the Vanish rate increases to 95.09%
(and 100% correct outcomes) due to the number of possible targets for each bit
flip. This order of magnitude difference severely impacts the soft error analysis
cost since longer fault campaigns are needed to extract a meaningful amount
of error/failure-related data. A large number of campaigns becomes impractical

Fig. 9. Results for fault injection campaigns considering this work case study custom
fault classification.
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Fig. 10. Results for fault injection campaigns considering the only the incorrect results
from Fig. 9.

as the complexity and size of the application increases. With this experimental
setup (Sect. 7), each fault injection takes on average 10 min to execute, over
5,200 h for all campaigns in this section.

This work main objective is to explore the erroneous application behavior
and not establish the number of faults when exposing the target application to
a particular fluence. Bespoke techniques allow narrowing the focus on critical
aspects of the application, e.g., functions, variables, data structures, and more.
Further, Figs. 8, 9 and 10 also show results for campaign targeting two variables,
four functions (code and lifespan).

Application Virtual Memory. The target Linux kernel (v3.7) allocates
488 MB for this application base virtual memory, mostly comprised of libraries
and reserved space. This context yields 20.9× 1015 possible fault targets, a sim-
ilar order of magnitude when compared to physical memory. Thus resulting in
95.29% of the fault injection resulted in a Vanish and all results were correct.

Application Variables and Data Structures. The need for the auxiliary
classification becomes even more evident for campaigns (D1, D2), where 100%
OMM leads to no incorrect results. Targeted variables are used during the
construction of the visual output. Meaning that the output image with the box
drawn is incorrect (e.g., position, color) but the algorithm output (i.e., classifi-
cation) is correct.

Function Code. Fault injection on the assembly code will change the func-
tion behavior for future calls. Figure 8 shows that E (1, 2, and 4) have a high
susceptibility to UT, as these functions rely on for loops which are sensible to
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wrong address (e.g., reading after a vector), and control flow (e.g., number of
iterations). Further, the predominant type of prediction errors (Fig. 10), is no
prediction and wrong detections. With a 32.28% reduction in the Vanished
(technique (A) vs (E2)), there is more relevant data regarding erroneous appli-
cation behavior. However, E3 that creates the layers of the neural network (NN)
that perform the object detection, leads to less UT and incorrect outcomes.

Function Lifespan. Even though this technique may lead to more masked
faults than (A), it has at least twice (at most six times) the number of incor-
rect/wrong results. Figure 8 shows that the occurrence of UT is lower while
OMM is higher than code fault injection, when considering the lifespan of a
function (i.e., fault injection injected in register file only when the function is
running). Considering the prediction errors (Fig. 10), the trace of the target func-
tions are more susceptible to change the objects detected, thus F1 is a prime
candidate for fault tolerance techniques.

Techniques Evaluation/Remarks. From this experimental setup, and case
study, it is possible to observe the importance of a targeted fault injection app-
roach to finding critical elements of a given application. While fault injection in
the register file shows the average behavior considering all functions, variables,
and routines; it is possible to see that some variables do not change the outcome
(Sect. 7.1). Furthermore, this type of analysis can improve the efficiency of the
fault injection campaign. Techniques targeting Function Code and Lifespan can
reduce the number of masked faults in up to 32.28%, Fig. 8. The cases where
the number of vanished increased, the analysis still has more meaningful results
than (A) as the number of incorrect outcomes is higher, Fig. 10. This type of
analysis can show the developer where the cost×benefit of implementing a fault
tolerance technique (e.g., TMR, ECC) is more profitable according to the pro-
pose of the application. Indeed, if the most crucial aspect of the application is
to provide the correct object independent of its degree of confidence, protecting
the function code (e.g., ECC) may yield better results then its execution (e.g.,
TMR for function lifespan).

8 Conclusion

This paper proposed the SOFIA framework, which supports detailed soft error
vulnerability investigation considering complex software stacks in a non-intrusive
manner. By combining novel fault injection techniques and robust analysis, the
presented tool can help engineers to uncover otherwise hidden soft errors dur-
ing early design space explorations. Two case studies with a resource intensive
benchmark running on a quad-core platform showcase the kind of discovery and
how SOFIA can aid during the early phase of development. Further, a real-
world automotive application shows that SOFIA’s exploration capabilities can
scale beyond artificial workloads, thus validating the framework.
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Abstract. Manufacturing a DRAM chip involves multiple steps. External
impurities, faulty deposition, or manufacturing errors in any of these steps could
generate chips with faulty memory cells, rendering the chip unusable. To
overcome these faulty memory cells, redundancies are included in the memory,
allowing mapping of faulty memory cells to these redundant cells. The process
of mapping faulty cells to redundant cells is called Redundancy Analysis (RA).
Different RA algorithms have been developed and are often tested on randomly
generated defect to test their efficiency and execution time. But we observed
that, the defect pattern of a chip is not completely random, it follows a distri-
bution pattern and the algorithms should be tested on chips with similar error
distribution patterns. So, in this paper, we propose a Statistical Wafer Scale
Error and Redundancy Analysis Simulator to generate defects on the chips
similar to defects on the manufacturing line. The simulated errors on the chips
are based on statistical models derived from real data. After generating defects
on the chip, execution, comparison and benchmarking of algorithms based on
yield and execution time is done. The simulator gives insights on algorithm
behavior with different kinds of memory architectures and defect patterns. This
allows designers of memory architecture and RA algorithm to simulate, predict
and improve the wafer yield for different RA algorithm designs and memory
architectures before manufacturing a new memory device.

Keywords: Redundancy analysis algorithm � Defect simulation � Error
analysis � Statistical modeling � Wafer simulation

1 Introduction

Manufacturers have been able to keep up with the increasing semiconductor demands
by producing them in large quantities on a single wafer. During manufacturing of the
wafer, there might be surface flaws due to different external conditions. Since these
flaws cannot be avoided, the wafer ends up with some defective chips. The increase in
memory densities and the decrease in node sizes have led to an increased probability of
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chip defects. These factors reduce the wafer yield. Along with increasing the quality of
production of wafers, several measures have been taken to improve the overall yield.

Beginning with 64 Kbit generation of DRAM chips, manufacturers have included
redundancies in the chips to repair them. Different operations are performed on the chip
in different phases of manufacturing. Using wafer tests, the exact address of the defect
can be located. This defect address is used to perform memory repair in the Laser
Repair step while manufacturing. The process of memory repair is called Redundancy
Analysis (RA). RA is a process of allocating spare rows and columns to the defective
address detected in the chip, as illustrated in Fig. 1.

To a certain extent RA allows the repair of defective chips, but if the chip is
unrepairable due to a large number of errors on, it would be discarded. Adding
redundancies on the chip and allocating them to the defective addresses improves the
yield but, the process of allocation of spares or Redundancy Analysis is an NP-
complete problem [1]. So, with an increasing number of chip errors or problem size,
time required to repair the chip or solve the problem using known algorithms increases
exponentially. This means that only when time complexity of the algorithm is high,
maximum yield can be achieved.

Some of the proposed RA algorithms have been discussed in Sect. 2, but most of
these algorithms have been tested on errors that have been randomly generated, or
generated based on Binomial or Polya-Eggenberger distribution. But these random
defects or these distributions do not represent the defect on the chip in a wafer on the
manufacturing line. These defects depend on the wafer lot, the wafer, position of the
chip on the wafer and many other factors. All these dependencies have been explored
in Sect. 3 along with the results of the same.

If the existing algorithms are benchmarked on random error distributions which
don’t take into account these factors, the yield and run time approximations are not
similar to that on the manufacturing line. So, in this paper we have proposed a Sta-
tistical Wafer Scale Error And Redundancy analysis Simulator based on [13] which
uses statistical models for different stages of device manufacturing to simulate chip
error.It considers various factors which affect the defect distribution that allows gen-
eration of chips with error distribution similar to the actual data. It also allows to run

Fig. 1. Memory repair using redundant rows and columns
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different RA algorithms on the simulated data to provide insights on algorithm behavior
with respect to various factors described in the paper.

The RA algorithm behavior insights provided by the simulator would help in
designing new RA algorithms and improving the memory architecture design. The
behavior insights include timing, efficiency and spare allocation of different algorithms.
Wafer efficiency comparison allows analysis of yield with respect to different sizes of
redundancies. The simulator would allow improvement in algorithms and memory
design before the chip is manufactured which would improve the wafer yield.

The outline of the paper is as follows. Section 2 gives an explanation of Redun-
dancy Analysis and existing Simulators and their features. Section 3 gives the detailed
explanation of the statistical models used in the simulator. Section 4 describes the
implementation of the simulator. Finally, Sect. 5 gives details about the experimental
setup and the results are described in Sect. 5.3. In Sect. 6 conclusions are drawn from
these results.

2 Background

2.1 Redundancy Analysis Algorithms

An ideal Redundancy Analysis (RA) Algorithm should find a repair solution whenever
one exists, execute in a reasonable length of time and abort at the earliest sign of un-
reparability. The repair rate of an RA algorithm determines its ability to obtain a correct
repair solution. The definitions of the repair rate and the normalized repair rate [1] are
as follows:

RW ¼ CRepaired
�
CTotal

ð1Þ

RNW ¼ CRepaired
�
CRepairable

ð2Þ

Where Rw is defined as the repair rate of the wafer, CRepaired is the number of chips
repaired and, CTotal is the number of chips on the wafer. RNW is defined as the nor-
malized repair rate and CRepairable is the number of theoretically repairable chips. The
total number of tested chips includes the number of chips that are unrepairable. These
chips degrade the effectiveness of the RA algorithm, causing it to have a low repair
rate. However, the normalized repair rate is independent of these unrepairable chips,
thus making it a more appropriate for estimating the ability of an RA algorithm to
obtain a correct repair solution.

Exhaustive search algorithms are required for determining if the chips are theoreti-
cally repairable. But the memory repair problem also can be solved using heuristic
algorithms. Proposed heuristic algorithms like Repair-Most [2] and OSP [3] can find a
solution quickly, but they may not find a solution of a theoretically repairable chip. So,
the heuristic algorithms may not achieve an optimal repair rate. Whereas exhaustive
search algorithms like Branch-and-Bound [1], PAGEB [1], Fault-driven [4] will cer-
tainly reach the optimal repair rate, but the time and space complexity of these algorithms
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grow exponentially with the number of errors. Therefore, the RA algorithm for chip
repair must be chosen carefully as they provide varying yield and time complexity.

RA algorithms are generally divided into the must-repair and the final-repair phase.
The must repair phase repairs the faults when there is no choice between invoking a
redundant row or a column. If there are more errors in a row than spare columns, it
must be repaired using a spare row. The final-repair phase analyses the remaining faults
for reparability.

This paper uses the existing heuristic and exhaustive algorithms to test the repair
rate and time. The time complexities of the discussed algorithms have been listed in
Table 1. The Broadside Algorithm [2] is a heuristic algorithm which uses a greedy
approach to perform a repair. It assigns a spare row or column based on whichever is
present in excess when it repairs an error. In case of same number of spare row and
column, assignment is based on the algorithm design and device requirement.

In [4] an exponential Fault Driven Comprehensive algorithm is defined. It uses a
full solution tree to try all possible combinations of spare row and columns to repair an
error and generates all possible solutions. In [5] a Faulty Line Covering Algorithm
(FLCA) is defined. This is based on the principal that a faulty row with k faults can be
covered either by a spare row or k spare columns. This eliminates branches with
parents as faults which have already been repaired. Hence it is an improvement over the
naive fault driven algorithm.

In [5] a Largest Effective Coefficient Algorithm (LECA) is defined. This heuristic
algorithm uses Effective Coefficients (EC) to rank the rows and column of a chip in the
order in which they have to be repaired. The EC considers both fault counters and
complements of a faulty line.

In [3] a One Side Pivot algorithm (OSP) is defined. It uses Pivot fault properties to
find repair priorities reducing the analysis time even when the error rate is high. Faults
are classified into 3 types of faults Pivot faults, intersection faults and OSP faults.
Where pivots fault is defined as a fault in a faulty line which is not included in any
other faulty lines, an intersection fault is defined as a fault which is included in both
faulty column or faulty row and one side pivot (OSP) fault is defined as a pivot fault
which is not included in a faulty line which does not have an intersection fault.
Row OSP faults (pivot in its column) will be solved using spare rows and column OSP
faults (pivot in its row) will be solved using spare column. To repair pivot faults, if fault
is pivot in its row it is solved using spare column and if fault is pivot in its column then
it is solved using spare row.

Table 1. Algorithms time simulation parameters

Algorithm Time complexity Remarks

Broadside
algorithm

O nð Þ n is number of errors

FLCA O 2
TF�SF
min þ 1ð Þ � 1

� �
TF is number of total faults and SF is
number of single faults

LECA O max RA;CAf g2 logmax RA;CAf g
� �

RA is redundant row and CA is
redundant columns

OSP O max n; nP � nð Þð Þ nP is number of pivot fault
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2.2 DRAM Manufacturing and Architecture

In Fig. 2 the relationship between the wafer, chip, bank and the subarrays has been
explained. During the manufacturing process, multiple chips are manufactured on a
circular wafer. Each chip contains multiple banks which is an independent two
dimensional array of storage cells. In Fig. 2 each chip has 8 banks associated with it.
Only one bank is accessed in a single read or write operation. Starting with DDR4
memory, banks are organized into bank groups for continuous data rate scaling without
necessitating longer burst lengths.

These banks are not monolithic structures, they are divided into subarrays. Read
and Writes to the DRAM are performed through row activation command which when
issued, a group of storage cells gets activated in parallel. Such a group of cells is called
a row, often referred to as a page. The storage cells store the binary information in the
form of a charge stored on a capacitor. A row activation command caches a row or a
page of memory in the sense amplifier. But the whole row is not read at a time, column
or the bit line is the smallest addressable unit of memory. Row decoder extracts the row
number from the address and activates the corresponding word line, and the sense
amplifier compares the voltage of the bit lines to Vref and thus accesses an entire word
line amplifying the voltages stored in the memory cells. Then the column decoder
which is a multiplexer is used to access particular bit lines.

2.3 Existing Simulators

A literature survey of some existing RA simulators has been described in this sub-
section. In [6] a simulator for evaluating RA Algorithm which can calculate repair rate
and allow user to manipulate memory configuration has been proposed. It uses a single
Poisson, Gamma or Negative binomial distribution to find defect per dies and has fixed
row, column, cluster and single fault probability. The simulator also incorporates the
overhead of spare elements for evaluation of algorithms which is very useful for the
user to find the better configurations of the spare elements under a certain redundancy
structure and area constraint. The tool described in [6] allows the user to develop the
built-in redundancy analysis (BIRA) algorithms and circuits for built-in self-repair

Fig. 2. Wafer, chip, bank and subarray arrangement in a DRAM chip
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(BISR) of embedded memories. This work has been continued in Raisin [7] where the
RTL memory behavioral model are tested with the BISR circuit.

An improved version called Raisin was proposed in [7], which also allowed
development of Built-In Redundancy Analysis (BIRA) algorithms and introduced a
fault detection sequence. But with the increasing DRAM sizes the DRAM memory is
not implemented as a monolithic block [11], we need multiple distributions to accu-
rately simulate the error conditions of current DRAM architectures. Adding a few more
parameters like the row and column error distributions as suggested in this paper would
allow more realistic results.

In [8] a bank model based simulator is proposed which allows creation of realistic
faults in banks. It introduces errors in the bank based on categorization of memory
device such as fault-free, faulty, theoretically repairable, and repairable memories. It
also, introduces various fault types as shown in Fig. 3, derived from defects that are
generated statistically. It allows evaluation of RA efficiency with the help of the RA
evaluation tool proposed in the paper. But the memory device categorization in [8] does
not involve wafer lot distributions and wafer specific errors.

In [9] various defect models have been described. Fault analysis, combinations and
distributions are used to generate faults in the wafer. Chip defects are then simulated to
perform fault analysis like shorts, opens, new gate material device and open devices.
Although the simulator takes into account the wafer lot and wafer simulation details, it
cannot take into account newer DRAM architectures and specific chip errors.

Fig. 3. Categorization of fault types used in [8]
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The current simulators are either confined to a chip which hampers their ability to
consider errors in the silicon wafer or do not take into account changes due to evolving
DRAM architecture. Chip based simulation is one of the major drawback of the
existing simulators. To the best of our knowledge, a statistical simulator with the ability
to perform wafer level defect injection and chip fitting providing insights on algorithm
performance has not yet been proposed.

3 Statistical Error Model

In this section we will discuss the statistical models used to determine the defects
generated on the chip. These models are used to inject errors described in Sect. 4.

3.1 Wafer Lot Distribution

The manufacturing of the wafers involves cutting and polishing silicon ingots into
wafers. These wafers are divided into wafer lots. Multiple distribution of errors are
observed in these wafer lots because they were manufactured at different time and
external conditions. So the error in a wafer is determined by wafer lot and the wafer
distribution. An example of the distribution of error in a wafer lot is illustrated in
Fig. 4.

In Fig. 4, the following negative binomial distribution has been used for wafer error
distribution:

PrWL x ¼ kð Þ ¼ aþ k � 1
a� 1

� �
n
l

� �k

1� n
l

� �n�k

ð3Þ

Where PrWL is defined as the defect probability among wafer lots, k is the wafer lot
number, n is number of wafer lots and, µ is mean of the negative binomial distribution.

Fig. 4. Example of distribution of errors in a wafer lot
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Defect distribution probability among wafers (PrWF) also follows the probability dis-
tribution described in Eq. (3). We use a two level negative binomial distribution similar
to [9], for distribution of errors across wafers and wafer lots. The first level distribution
allows the modelling of variance of defects among lots and the second level depicts the
variance between wafers in a particular lot.

3.2 Chip Distribution

The two level negative binomial distribution used in the previous step allows us to
determine the quality of wafer. Using PrWL and PrWF the wafer lot error and wafer level
error are determined. Multiple chips are manufactured on a single wafer but the dis-
tribution of errors among the chips is not random.

In our experimental data, it is observed that chips near the edge of the wafer had a
higher rate of failure than chips at the center. This is consistent with the Edge Effect
observed in [9] and [10]. Because of different error distributions at the center and
circumference of the wafer, it is difficult to fit a single distribution over the whole
wafer.

So, for error distribution on chips, a Bimodel distribution has been used which was
verified with Hypothesis testing of the sample data. An average p-value of 0.833 was
obtained. A Bimodel distribution is observed for errors on the wafer. This distribution
consists of a binomial distribution with mean at radial center and Poisson distribution at
circumference of wafer with mean greater than radius of wafer.

PrA x ¼ kð Þ ¼ n
k

� �
n
l

� �k

1� n
l

� �n�k

þ b � k
ke�k

k!
ð4Þ

Where PrA is defined as the defect probability at length k, n is normalized radial
distance, µ is mean of binomial distribution, k is mean of Poisson distribution and b is a
constant, directly proportional to k. The k value chosen for the Poisson distribution has
to be greater than n for a correct fit.

An example of the distribution described in Eq. (4) has been illustrated in Fig. 5. In
this example the radial distance has been divided into 20 divisions, so each division
represents error distribution in 5% of the radial length. From Eq. (4) the values used are
n is 20, µ is 0.6, k is 32 and b is 15. The radial distribution has been mirrored to
represent the distribution of error on the wafer diameter. The first division, represented
by R1 has a probability distribution of 0.27, calculated by keeping k value as 20. R2
represents the division with the probability distribution of 0.015 corresponding to
k = 14. Similarly division R3 represents the lowest probability distribution of
4.3 � 10−6 corresponding to k = 7. R4 in the center of the chip has a probability
distribution value of 0.15 corresponding to k = 0.

146 Atishay et al.



Other than the radial distribution, the wafer also experiences some specific faults.
Specific errors consist of arc error, line error, and segment errors. Each of them have
high error densities and an independent distribution. An example with all the 3 specific

Fig. 5. Wafer error distribution example

Fig. 6. Specific errors on a wafer
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errors on a small wafer has been illustrated in Fig. 6. In the simulator Poisson distri-
butions are used for specific errors which allows errors in chips lying on the line, arc or
segment to have different error rates depending in the distribution parameters.

As illustrated in Fig. 7, different parameters are used to determine the location,
orientation and size of the specific errors on the wafer. For a Line Error, the origin
coordinate, the angle of the line with the horizontal and the length of the line is used.
For arc type error the Radius origin and the arc angle is used to determine arc errors.
Segment errors are defined with an origin coordinate, length and a breadth. The
parameters are defined in terms of Wafer Radius. E.g.: 0.2 � Wafer Radius. Origin is
defined as (x, y) coordinates and the Angle is defined in radians.

3.3 Subarray Specific Distribution

After the distribution of errors on the wafer has been decided, the quality of the chip
has to be determined. This means that the number of errors on the chip is known but, on
the chip, these errors are not randomly distributed.

A chip is divided into banks which are further divided into subarrays [11].
The DRAM bank is not implemented as a monolithic structure because it would require
very long bit-lines and word-lines. The huge parasitic capacity of these bit-lines would
severely affect the access latency. Due to this the modern DRAM bank is divided into a
2-D array of tiles [11]. An example of the tile division is shown in Fig. 8.

There is a main row decoder which drives multiple sub word line decoders which in
turn drive the local memory arrays. Extra decoders might be present in between the
main row decoder and the sub word line decoder depending on the architecture. In the
architecture we also observe sense amplifiers which are local to each subarray. And we
also have a global column decoder which allows selection of columns to be read from
the memory. Multiple such decoders also might be present between these local sense
amplifiers and the column decoders depending on the architecture.

In the experimental data, we observed that although the error distribution on the
chip could be expressed with a Poisson equation, there were some anomalies. When
these error distributions were observed, peaks in the number of errors were discovered
in both row and column error count. The peak in the values were observed at multiples
of the tile size. The faults on the wafer can also be in the area of the row decoder,

Fig. 7. Parameters used to determine specific errors simulated on a single wafer
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column decoder or the sense amplifier as shown in Fig. 8. This would render the whole
row or column in that tile unusable and would return incorrect values while testing.

In the examples of distribution of errors explained below, nrt is number of cells in a
row per tile and nct is number of cells in column per tile. We assume that the tiles are
numbered from Tile 0 to Tile n for the simplicity in the explanation of the example.

Figure 9 represents a bank with errors in different areas. Faults F1, F2 and F3 are
present at sub word-line decoder side which render the whole row in a tile useless.
Therefore, the row error count for row r1 will be number of cells in a row of tile 2 and
tile 3 i.e., 2 � nrt. Similarly row error count for row r2 will be the sum of errors in tile
n − 3 due to F3 and the cell error F4 in tile n − 1 i.e., nrt + 1.

Fig. 8. Division of bank into tiles

Fig. 9. Row error due to defective decoder and local row buffer
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Similarly column errors as represented in Fig. 10, can occur when the error on the
chip is present in the local sense amplifier (F1, F2 and F5) or the row buffer (F6).
Number of column errors on such a fault can be similarly calculated as nct + 3, 2 �
nct + 1 and 3 � nct for column c0, c1 and c2 respectively.

Due to these faults, the number of row and column faults will have anomalies at (r �
nrt) ± x and (c � nct) ± y Where r and c lie between 1 and the number of tiles in a row
or column of the 2D array of tiles in the bank. To the best of our knowledge, this is the
first RA simulator to include tile size specific faults in the DRAM chip. This anomaly
in the distribution was corrected by adding a binomial distribution with a multiplier and
its mean value as the tile size to the original Poisson distribution of row and column
errors in the DRAM chip. Multiple such distributions with different multiplier values
can be added to the original Poisson distribution with mean values as a multiple of tile
size to accurately depict the row and column error distribution.

PrLm x ¼ kð Þ ¼ kke�k

k!
þ

Xi¼an
tn

i¼1
ci

n
k

� �
n
li

� �k

1� n
li

� �n�k

ð5Þ

Where PrLm is defined as the defect probability of line having k faults, k is mean of
Poisson distribution, an is number of cells in the array, tn is the number of cells in a tile,
ci is damping factor of ith binomial distribution, n is tile size and µi is mean of ith

binomial distribution. PrLm can be the defect probability of a row or a column (PrLR or
PrLC).

Fig. 10. Column error due to defective sense amplifier and global column decoder
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The probability distribution described in Eq. (5) allows distribution of errors on the
chip in form of row and column errors in each tile. In [8], different faults occurrences
have been considered at bank level, but in the simulator, faults are also considered on a
tile level. Faults can occur in the DRAM due to a manufacturing defect. Faults are the
reason for occurrence of errors in the memory. As illustrated in Fig. 11, the F1 fault
only introduces a single cell error in the memory array. Faults F2 and F3 due to their
occurrence on the boundary of 2 cells, cause 2 adjacent errors. Fault F4, a fault of a
larger size might cause an error in 4 adjacent cells. Faults F5 and F6, occur in the sub-
word line decoder, which causes an error in a single row or 2 adjacent rows. Similarly,
faults F7 and F8 in the local sense amplifier might cause a single column or 2 adjacent
columns to be faulty. The fault types are also a part of the error model which is
incorporated into the simulator with the help of the Defect Injector described in Sect. 4.

3.4 Final Distribution

The final probability of error in the chip is calculated using the probability values of
PrWL, PrWF and PrA which are the probability of error in a wafer lot, a wafer and a
region of the wafer respectively.

These 3 values determine the probability of an error at a particular location in a
wafer which decides the error in the chip that is manufactured at that location. This
error probability needs to be distributed among the banks in that chip as row errors,
column errors and other faults. PrRN and PrCN is the probability of occurrence of a
particular number of row errors in a row or column errors in a column of a bank.

After these probabilities are decided, similar to [8] the row and column errors are
divided into single and double row errors and single and double column errors
respectively. Rest of the errors are divided into single, double and quad errors.

Fig. 11. Fault types in a DRAM tile
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4 Implementation

The overall architecture of the simulator is described in Fig. 12. Simulator parameters
can be input manually or can be derived from fitting the error distributions on pro-
cessed chip errors. Change in the wafer or chip size changes the distribution parameters
for the models in the Defect Injector. The distribution parameters are used by the defect
injector module to define errors in a particular region of the wafer.

The chips are fit onto the wafer depending on the wafer and the chip size. Once the
chip fitting is done, the defect injector module injects error in these chips by fitting the
distribution parameters onto the equations described in Sect. 3. The defect injector logs
the defects in the bank for future use and debugging, and the RA simulation module
outputs simulation results for further analysis as described in Sect. 6. A detailed
description of the chip fitting module and defect injector has been done in this section.

4.1 Chip Fitting

The Chip Fitting module takes into consideration parameters like wafer size and chip
size to iteratively fit different memory architectures in the wafer. Defect injection is
performed and RA algorithms are applied on these chips while measuring the repair
rate. This results in a wafer efficiency peak with respect to different memory archi-
tectures as illustrated in Fig. 13.

For a given memory configuration and RA Algorithm, as the number of spares
increases, the repair rate and the chip area also increases. Increase in chip area means a
decrease in the total number of chips on the wafer. So in this paper, a solution for
finding an optimized memory architecture that accounts for the repair rate and the
number of chips on the wafer has been proposed.

Fig. 12. Simulator block diagram

152 Atishay et al.



The chip fitting module uses the bank and chip configuration to find out the area
occupied by each chip. Chips are fit side by side optimally on the wafer taking into
consideration the radius of the wafer. Figure 14 illustrates how different chip sizes lead
to difference in the number of chips on the wafer. In the example illustrated in the
figure, a steady decrease in the number of chips with increasing redundancies is
observed. But the number of repairable chips on the wafer is not maximum when the
number of chips are maximum, rather when the number of redundancies are an optimal
number the number of usable chips on a wafer is maximum.

Various user adjustable mechanisms for chip fitting were introduced in the simu-
lator to maximize the number of chips that could fit in a wafer. Initially a fixed
coordinate was used to determine the starting position of the chip, but it would lead to
inefficient chip placement on the wafer. Depending on the chip configuration i.e.: the
number of rows, columns, spare rows and spare columns, starting coordinate of the top
left chip is determined and the rest of the chips are arranged accordingly to maximize
the number of chips on the wafer.

The same bank and chip configuration have been used in both the wafers but the
number of spare rows and columns have been increased in (A). The specifications
considered for the illustration are a chip with 8 banks in a 4 � 2 configuration. Each of
the bank is 256 � 128 bits. The wafer on the left (A) has 8 spare rows and 4 spare
columns with a total of 24 chips on the wafer. Even though the wafer size is small, a
considerable decrease of 4 chips in the number of chips on the wafer was observed. The
wafer on the right (B) has 20 chips as it has 32 and 16 spare rows and columns
respectively. Although wafer (B) might have a higher yield, but it is possible that wafer
(A) might have more usable chips even with lower yield.

Fig. 13. Number of chips and wafer efficiency with respect to the redundancy size
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4.2 Defect Injector

The Defect Injector uses the distributions described in Sect. 3 to inject errors into chips
as shown in Fig. 15.

The Chip object in the Defect Injector contains the row, column count and the
number of spare rows and columns in that chip. To store the errors, a failureAddress
vector is used which stores the failed bit addresses in form of a <row, column> pair.
When a new error is generated with the help of the distributions in Sect. 3, it is added to
the failed bit address vector of the chip object. As shown in Fig. 15, when a chip is
created, the failureAddress vector is empty. For example, when a 3rd error is injected in
row 3 and column 6 represented as a red X, a <3, 6> pair is added to the vector.

Due to memory constraints, the chip objects are created one at a time and tested
with different RA algorithms sequentially during the simulation. After testing with RA
algorithms and logging the necessary parameters, this chip object is deleted. The
probability distributions used to determine the wafer lot, wafer and chip errors are
stored in maps for faster access and probability value insertion.

Fig. 14. Illustration of chip fitting on a wafer

Fig. 15. Chip implementation in the Defect Injector (Color figure online)
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The Defect Injector as shown in Fig. 16 is divided into four distributions as
described in Sect. 3. The Defect Injector begins by defining the error distribution in
between the wafer lots. In the example shown in Fig. 16, the error is distributed among
50 wafer lots using the distribution from Eq. (3) with x as wafer lot number, a as 50, l
as 103 and n as 60. In the second step, for each of the wafer lots, errors are distributed
among the wafers. In this example, 25 wafers were generated using the negative
binomial distribution from Eq. (3) with x as the wafer number, a and n as 25 and, l as
35. The distributions are stored in an error Distribution map as a <key, value> pair. The
keys are the wafer lot or wafer number and the values are their respective error
probabilities.

Then the error is divided among the chips which are placed on the wafer. A bi-
modal distribution which takes into account the Edge Effect [10] is used for radial error
distribution of chips on the wafer. Before injecting different chip errors, specific errors
are also injected into the wafer which bring in some anomalies in the distribution data.
The following values are used in Eq. (4): n is 150, l is 8.3 � 103, b is 60 and k is 125.
The final step of the distribution is to distribute the errors in the chip. The distribution

Fig. 16. Working of the Defect Injector
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used here is described in Eq. (5). The k value used in this equation is 1.5. It is then
added to four different binomial distributions as an/tn is 4. Assuming that the tile size in
this example is 64 bits, the mean values for the distributions, l1, l2, l3 and l4 are 64,
128, 192 and 256 respectively which are multiples of 64. The c1, c2, c3, and c4 values
used are 0.4, 0.25, 0.1 and 0.25 respectively. This allows addition of defects at row
level which takes into account the tile based architecture explained in Sect. 3.

5 Experimental Setup and Results

Multiple algorithms were tested on the simulator. This included an implementation of
the Broadside [2], FLCA [5], LECA [5] and OSP [3] algorithm. In the experimental
setup subsection we have also discussed the data structures and optimization steps used
to implement the algorithms as these impact the yield and algorithm run time results.

5.1 Experimental Setup - Algorithm

The fault address are stored in the fail bit address vector which can be decoded into the
row and column addresses. This vector along with the redundancy architecture details
are input to the algorithm for finding a solution. As explained in Fig. 17, one of the
common operations in an algorithm is iterating and decoding the failed bit vector to
row and column address, followed by the algorithms steps. Next, depending on the
availability of spare rows and columns or by user preferences, spares are assigned to
that faulty bit by inserting into the row and column solution vector. This helps to easily
compare the performance of the algorithms on a particular chip. All algorithms invoke
must-repair and also check for early abort conditions before starting their respective
steps.

The Broadside Algorithm was implemented as described in [2]. For each fault that
has not yet been repaired, a spare row or column is assigned depending on whichever is
available more at that stage of the algorithm execution.

Fig. 17. General implementation of algorithms
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Implementation of the FLCA algorithm [5] involves an object-oriented approach
where solution node object contains total errors left, spare rows, columns left and the
number of single faults. To save memory, as illustrated in Fig. 18 (a), Depth First
Search (DFS) is used while generating the solution tree so that objects generated can be
cleared when not needed. Also, since the single faults can be solved in any manner,
they are handled at the very end of the algorithm execution as mentioned in [5]. It is
sometimes advantageous to find all the possible solutions for a particular configuration.
But in this case since only the yield is important, we stop the execution as soon as one
solution is found. This helps in further reducing the amortized time complexity over
various chips because all the possibilities in the search space are not explored.

In LECA algorithm [5] implementation (Fig. 18 (b)), score maps are maintained.
After one spare is allocated, the scores of some faulty lines need to be modified. Only
the affected maps are renewed with each pass of the algorithm step while keeping in
check the maximum score values. Counter values used to calculate the scores are
maintained in vectors for faster access.

In the implementation of the OSP algorithm [3] described in Fig. 18 (c), vectors are
used to classify and keep track of Pivot, Intersection and OSP faults. This allows
quickly solving and removing faults based on priority. After priority based repair, any
RA algorithm can be used to repair the remaining faults. Broadside algorithm was
selected since it was experimentally observed that the yield improvement for the other
algorithms was not justifiable, given the increase in execution time.

5.2 Experimental Setup – Defect Injector

The parameters for different simulations performed have been described in Table 2. In
this table, under Wafer Lot and Wafer subsection, nWL is the number of wafer lots and

Fig. 18. Implementation details of the FLCA, LECA and the OSP algorithm
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nW is number of wafers. a and l can be referred from Eq. (3). Under chip Specification,
rn and cn are the total number of rows and columns. srn and scn are the total number of
spare rows and spare columns. nrt and nct represent the total number of rows and
columns in a tile. Under Wafer Area section, N represents the number of chips in a
wafer and rest of the parameters are mentioned in Eq. (4). Row and column error
distribution for the subarray section can be referred from Eq. (5). Here two parameters
have been mentioned for row and column distribution. Some parameters in the sim-
ulation like l in the Wafer subsection of simulation S2 lies within a range of 15 to 20
and is not fixed. This is represented by [15, 20]. Similarly in the subarray section, row
and column distributions can have different li values.

In Simulation S0 and S1, only a single wafer has been simulated, so the wafer lot
and wafer parameters have not been used. Here tile size is assumed to be the same as
chip size as srn and scn sizes are being varied in the simulation. The number of spare
rows and columns are varied in the range as described in srn and scn rows of Table 2.
These values are varied in multiples of 2 and the result for the same has been discussed
in the next section.

Table 2. Simulation parameters

Simulation S0 S1 S2 S3 S4

Wafer and
Wafer Lot
(IIIA)

nWL – – 9 7 –

aWL – – 12 20 –

lWL – – 35 55 –

nw – – 21 15 –

aw – – [10, 14] [10, 15] –

lw – – [15, 20] [25, 35] –

Chip
specification

rn � cn 512 � 256 512 � 256
256 � 128

1024 � 512 128 � 64 128 � 64

srn [16, 256] [4, 256]
[4, 128]

128 16 16

scn [8, 128] [2, 128]
[2, 64]

64 8 8

nrt, nct 512, 256 512, 256
256, 128

256, 256 64, 32 64, 32

Wafer Area
(III B)

N 3700 1250 1200 153047

n 270 41 7 Random chip error
(mt19937)l 9000 [10, 30] [15, 50]

b 0 3 [2, 3]

k – – 20 12
Subarray (III C) k – – 1.5 1.5 Random distribution of

single errors (mt19937)i – – [1, 4], [1, 2] 2
li – – [256, 1024],

[256, 512]
[64, 128],
[32, 64]

ci – – [0.1, 0.3] [0.15,
0.25]
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In S2, the whole wafer lot was simulated, but since the number of errors were very
high (up to 5000) FLCA was not implemented as it is an exponential algorithm. This
simulation was done for runtime comparisons between OSP, LECA and Broadside
algorithms. In S3, a very small chip size was simulated with the full wafer lot simu-
lation to see the execution time and normalized repair rate using the FLCA algorithms.
In S4 random error on the chip and random single error distribution were simulated. For
comparison, the number of chips simulated were the same as simulation S3. The chip
error and the position of chip errors were determined using a Mersenne Twister
pseudorandom number generator [12].

5.3 Results

In simulation S0, a single wafer with different chip configurations was simulated to
observe the pattern of usable chips on the wafer with respect to the redundancy size.
The simulation was done with the Broadside algorithm, the maximum yield was
obtained at 112 spare rows and 8 spare columns, as shown in Fig. 19. Similar simu-
lations can be run by chip designers and manufacturers with their respective RA
algorithm to predict the number of spares to be included in the new memory archi-
tecture. The useful insight gained from this simulation is that just increasing the number
of spare rows and columns does not guarantee an improved wafer yield i.e., the number
of usable chips obtained per wafer.

In Fig. 20, results of simulation S1 with two different executions on a row and
column configuration of 512 � 256 (Fig. 20 (a)) and 256 � 128 (Fig. 20 (b)) was
simulated. Difference in the slope to achieve the maximum wafer yield was observed.

Fig. 19. Usable chips on wafer vs spare size
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There was also a difference in the initial yield with low spare columns and rows where
in case of a larger chip size, the number of solvable chips were close to 0.

In simulation S2, the whole wafer lot was simulated and three algorithms were
compared. The number of chips repaired and time taken by different algorithms for
wafers have been plotted. The average error of the wafers for all wafer lots are also
plotted in the lower part of the graph in Fig. 21. In S2, LECA repaired 72.9% and
24.9% more chips than Broadside and OSP algorithms respectively. The Broadside
algorithm had a constant execution time and was at least 15 times faster than other
algorithms executed. On an average, LECA was 24.5% slower than OSP in the entire
simulation.

Fig. 20. Variance of usable chips on a wafer with configuration
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In simulation S3, a small chips size is simulated to observe the normalized yield of
the algorithms from Eq. (2). The Broadside algorithm has a 0% normalized repair rate
if chip error is more than 1%, whereas LECA and OSP still maintain a normalized
repair rate of *20% and *5% respectively. LECA and OSP have a high (>90%)
normalized repair rate up to a chip error rate of 0.5%, so these algorithms can be used at
a low error rate for determining the chip reparability.

Using S3 a compound RA solution for a wafer can be designed which would use
multiple algorithms, say LECA and OSP. This simulation would help in determining
when to use the algorithms. From Fig. 22, it can be observed that till a chip error rate of
0.64%, OSP provides better normalized repair rates, but after that LECA outperforms
OSP. Also, algorithms like Broadside can be included in the compound RA solution to
solve chips below an error rate of 0.34%.

Fig. 21. Algorithm yield and wafer error

Fig. 22. Normalized algorithm performance with chip error
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Figure 23 is a plot of the execution time with respect to the chip error rate. With
respect to the error rate, FLCA has an exponential increase in execution time, whereas
LECA and OSP have a linear increase in the execution time. A decrease is seen in
FLCA execution time after 1.34% chip error because of early abort conditions being
satisfied.

In Fig. 24, the simulation results of S3 are compared with S4, a random defect
injector. In S4 13.6% of the chips were repairable compared to 59.2% by this simulator
in S3. Not only is the average chip error rate constant in S4, but also algorithms are not
able to solve chips with more than 0.6% error. In S3, exhaustive and heuristic algorithm
can solve chips with a maximum error rate of 1.6% and 1.3% respectively which is
much closer to real life errors.

Fig. 23. Execution time with chip error

Fig. 24. Comparison of this simulator [S3] with random defect injector [S4]
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6 Conclusion

In this paper we presented a Statistical Wafer Scale Error And Redundancy analysis
Simulator, a statistical model based approach which provides various insights into RA
algorithms. Algorithm designers can use these insights to simulate errors similar to
those on the manufacturing line before actually manufacturing the chip and improve
their algorithm design. Memory architects would be able to gain insights on the impact
of memory design and RA algorithms on wafer yield, which would allow them to make
changes in the memory design and improve the yield.

For upcoming DRAM technologies like DDR5 and LPDDR5, with even higher
memory densities, the simulator would provide insights which would allow designers of
both memory architecture and RA algorithm to simulate, predict and improve the wafer
yield before actually manufacturing or finalizing the design of the new memory device.
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Abstract. Firmware updates on embedded systems are essential for
patching vulnerabilities and improving the functionality of devices.
Despite the importance of firmware updates, manufacturers and firmware
developers often consider firmware security as a secondary task. As a
result, firmware often turns into an alluring target for adversaries to
inject malicious code into embedded devices. In this work, we present a
framework that supports secure and fast firmware update delivery with
minimal downtime on embedded devices. The proposed framework makes
use of cryptographic primitives implemented on hardware in addition to
the device’s intrinsic physical characteristics acting as digital authenti-
cation fingerprints. Our implementation ensures firmware authenticity,
confidentiality, and integrity. A proof-of-concept design is emulated on
FPGA demonstrating high performance, strong security guarantees, and
minimal hardware overhead.

Keywords: Embedded systems · Firmware updates · Hardware
security

1 Introduction

Embedded devices are increasingly integrated into several Cyber-Physical Sys-
tem (CPS) domains such as Industrial Control Systems (ICS), home and automa-
tion networks, wireless sensing services, automobiles, etc. The deployment of
these devices in mission-critical environments, however, introduces security chal-
lenges that require a different approach compared to general-purpose computing
systems security [30]. Embedded systems are highly constrained in terms of per-
formance and resources, therefore it is typically not realistic to employ similar
security methods as those in general-purpose systems. Embedded device manu-
facturers and CPS integrators have to incorporate specialized security measures
to protect these devices, and thus the CPS application they support. Studies,
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however, have shown that these security strategies are not a priority for enter-
prises [22]. This is evident by the growing number of attack incidents related to
microprocessor-based embedded devices [38].

A prominent example of attacks against embedded systems is the 2010
Stuxnet incident. This computer worm targeted Programmable Logic Controllers
(PLCs) modifying their firmware code to perform malicious actions while also
hiding its presence. Stuxnet leveraged zero-day1 exploits in the PLCs firmware to
take control over critical machinery in a nuclear power plant facility, leading to
catastrophic failure [20]. Another example is the 2015 attack on Ukraine’s power
grid [50]. This Advanced Persistent Threat’s (APT) objective was to launch a
Denial-of-Service (DoS) attack on the power distribution entity’s call center,
disabling the Uninterruptible Power Supplies (UPS) for the control centers, and
corrupting the firmware of Human-Machine Interfaces (HMI) found in Remote
Terminal Units (RTU) and serial-to-Ethernet port servers. Due to the firmware
corruption, circuit breakers were disabled and a power outage occurred that the
customers could not report since the call centers were overloaded. A more recent
large-scale attack, the Mirai botnet, was able to turn networked devices into
controlled bots [23]. Mirai identified devices connected to the internet and tried
to log into them using a table of more than 60 common factory default user-
names and passwords. It then proceeded to infect them with the Mirai malware.
The devices continued to function correctly except for some occasional sluggish-
ness and increased bandwidth usage. These zombie devices were then directed to
certain web-services to overwhelm anti-DoS software and make the service inac-
cessible. The fact that hundreds of thousands of networked embedded devices
still use default credentials is very concerning; the effectiveness of these attacks
indicates that embedded system security can no longer be an afterthought.

Firmware in embedded systems is the dedicated software that acts as an
abstraction layer between bare metal hardware and software. Firmware is often
residing in read-only memory, playing the role of the “operating system” in an
embedded device [4,28,35], providing low-level control of the device. Due to this
ability, firmware is considered a critical component of a device that has to be
routinely updated and maintained in order to fix bugs, address performance-
related issues, and even enhance or change the device’s intended functionality.
However, embedded device owners are often reluctant to update their devices’
firmware due to the chance of rendering their devices inoperable in case of an
error and because of the extensive downtime that they may experience [17,24].
On the other hand, manufacturers often do not provide firmware updates or
support once their devices are released to the market. Even if they do, their
updates typically do not conform to security principles including encryption
and authentication. A recent survey proves that there have not been significant
security gains in the firmware domain for the last 15 years [45]. The firmware

1 “Day Zero” or “Zero-day” is the day which a vulnerability of a system is made
known to its vendor or to those who should be interested in mitigating the vulner-
ability. Hackers discovering these vulnerabilities can exploit them well before they
are mitigated. Such exploits are known as “zero-day exploits”.
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Fig. 1. An overview of the proposed approach. A firmware package is formed by combin-
ing necessary metadata, the encrypted firmware image, and the manufacturer’s digital
signature. The firmware package is transmitted to the embedded system through an
insecure channel. The device unpacks it and verifies its source and contents utilizing
hardware-implemented cryptographic primitives.

security of embedded systems is not addressed to the same level as that of
general-purpose computers or BIOS security [36].

Existing industry efforts aim to secure firmware and other sensitive infor-
mation stored at the device hardware in the form of secure storage and trusted
execution environments. However, these methods have been proven to leak data
to malicious attackers using a variety of attacks that take advantage of bugs
and exploits in operating systems [39], user applications [33], and even propri-
etary code that aims at securing cryptographic keys and encrypted data [37].
To tackle these challenges, our work proposes the utilization of hardware-based
cryptographic primitives to avoid storing secrets in non-volatile memory and alle-
viate reliance on software routines. Our proposed framework ensures firmware
data integrity and confidentiality in a time-efficient manner by using hardware-
implemented cryptographic modules while hardware-intrinsic characteristics are
used as “digital fingerprints” to perform authentication procedures.

The overview of our framework is shown in Fig. 1. Firmware updates are
transmitted from the manufacturer to the embedded device through an insecure
channel. The proposed approach relies on hardware as a root-of-trust to attain
high security levels and is motivated towards low-end embedded devices [19]. The
framework is designed in a way that user intervention and device downtime are
minimized. Hence, there is no need for intermediate authenticators to perform
key exchange and management. The embedded device can be deployed without
requiring any secure key-enrollment phase. Specifically, we employ hardware-
implemented encryption and cryptographic hash functions to provide firmware
confidentiality and data integrity, respectively. The means of digital finger-
printing are demonstrated via Physical Unclonable Functions (PUFs) [52]. The
unclonable nature of PUFs bounds the firmware packages created by the man-
ufacturer to a single device. If a device gets compromised, same model devices
retain security. The PUF used in our proof-of-concept design is a Public PUF
(PPUF), meaning that it does not rely on the secrecy of the Integrated Circuit’s
(IC) physical parameters since the model describing the PPUF is public.
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Our framework is implemented and evaluated in an experimental setup using
both software and hardware. A general-purpose computer is in charge of the
firmware packaging procedure, acting as the device manufacturer. The embedded
device to be updated is emulated on FPGA as a proof-of-concept hardware
design. The unpacking process, involving the authentication and decryption,
is carried out on the embedded device. Our security analysis of the proposed
approach shows strong security guarantees while our experimental measurements
demonstrate the feasibility of the approach and applicability for constrained
embedded devices.

The rest of the chapter is organized as follows. Related work on firmware
update security mechanisms and PUF-based authentication protocols are dis-
cussed in Sect. 2. The underlying security primitives considered in our proof-of-
concept design are discussed in Sect. 3. The proposed methodology for secure
firmware updates is presented in Sect. 4 alongside with the security analysis of
the approach. The experimental setup and implementation details are presented
in Sect. 5. Section 6 concludes the chapter.

2 Related Work

Firmware images and updates are typically provided online via vendors or man-
ufacturers’ websites. It has been shown that web crawlers can be used to gather
images of critical equipment by traversing websites that host firmware [13]. These
files can be accessed, downloaded, and modified due to the lack of access control
measures and encryption. Firmware can also be acquired through physical access
to the device [25]. By having access to the firmware image, a malicious adversary
can retrieve the inner workings of a device and expose its functionality.

The information acquired from reverse engineering the firmware can lead to
revealing zero-day exploits or other known vulnerabilities, that may provide an
adversary an “attack path” to the system utilizing the aforementioned device.
For example, access to the firmware image binary may allow adversaries to launch
firmware modification attacks able to cause severe implications to a system’s
functionality. Recent works have demonstrated the severity of such attacks in
the ICS domain when targeting devices such as PLCs and protection relays
[4,26,54]. These types of attacks have also been shown to be effective against a
large variety of other embedded devices such as printers, cameras, and network
switches [13,14].

Efforts to secure the firmware update mechanisms on embedded devices led
to secure storage and trusted execution environments, such as i-NVMM [12] and
ARM TrustZone [41]. However, the design of such systems is an attractive target
for both invasive and non-invasive attacks [8,27,29]. For instance, since the JTAG
protocol is not designed with security in mind, the JTAG test port can provide
access to secure memories allowing embedded devices to be reconfigured. Also, it
has been demonstrated that attackers are able to exploit implementation-based
weaknesses to leak sensitive information through covert channels [40].

To overcome these shortcomings, we propose avoiding reliance on software
and pre-stored data in non-volatile memories by moving towards a hardware



Hardware-Enabled Secure Firmware Updates in Embedded Systems 169

root-of-trust. Research works towards this end, suggest using the hardware’s
intrinsic properties to design and support security mechanisms. Such solutions
include PUFs that leverage manufacturing variability to produce secret keys
for authentication and encryption purposes. Different types of PUFs are used
to produce unique identifiers that can be used in security schemes for authen-
tication and secure code updates. Silicon-based PUFs (ring-oscillator, SRAM,
arbiter, etc.) utilize manufacturing variability as an entropy source to create
chip-specific identifiers. Examples of non-silicon designs include optical PUFs
that exploit the random scattering of light to act as physical one-way functions.
These kinds of solutions are successful in several domains such as intellectual
property protection and Internet-of-Things (IoT) [9,32].

Several approaches incorporating PUFs have been proposed to address the
problem of storing sensitive information in non-volatile memories. Rostami et al.
propose a PUF-based authentication and key exchange protocol based on sub-
string matching [47]. The scheme utilizes PUFs for secure communications while
alleviating the need for error correction against PUF’s inherent noise. In [2], an
end-to-end privacy-preserving authentication protocol is described, suitable for
resource-constrained devices. The protocol attempts to perform mutual authen-
tication procedures between enrolled embedded devices and a server utilizing
reverse fuzzy-extraction mechanisms for key recreation on each side. In the con-
text of IoT, a PUF-based communication protocol is presented in [10]. Before
any secure communication is initiated between two devices, each PUF-enabled
party has to share its Challenge-Response Pairs (CRPs) with an intermediate
server. This server coordinates the communication between the two devices by
issuing a public and a private key for each party. Feng et al. demonstrate a
code update protocol utilizing PUFs [21]. The protocol starts with a temporary
session in a secure environment between a server and the embedded device to
share symmetric keys. The enrolled device is then employed and can securely
communicate and update its code using its PUF for authentication. Che et al.
show how within-die path delay variations can be utilized to enable a mutual
PUF-based authentication protocol [11].

Most of the proposed solutions incorporate either strong or weak PUFs2

which are highly susceptible to a variety of attacks. For example, weak PUFs
have to remain entirely secret and an attacker with physical access could easily
extract the required CRPs and break the authentication protocol in place [46].
Strong PUFs are more difficult to reverse engineer or extract information from,
but they are highly susceptible to modeling and machine learning attacks. Such
attacks involve producing a relatively low number of CRPs from the PUF and

2 The strength of a PUF depends on the number of CRPs that can be generated [34].
Weak PUFs produce very few CRPs derived from a physical characteristic. They
usually act as fingerprints, e.g., a static bitstring, unique for each device due to
manufacturing variability altering the IC’s characteristics. Strong PUFs, on the other
hand, produce a very large amount of CRP, exponential to their size, whereas weak
PUFs produce a linear or polynomial number of CRPs. They are utilized as secret
key providers for encryption/decryption purposes.
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Fig. 2. An example of a small differential Public Physical Unclonable Function
(dPPUF). Left (1–4) and right (5–8) circuits are the same in functionality. The chal-
lenge (abcd) is presented at both sides at the same time. However, the output of gates
3–4 and 7–8 stabilizes at different times due to manufacturing variability. The fastest
propagating signals determine the corresponding response that forms the CRP.

then create a machine learning model that will be trained using the gathered
CRPs. The model then can quickly derive the remaining CRPs and create a
dictionary that will contain an excessive amount of known pairs [48,49,55]. The
aforementioned proposed protocols also require a secure setup phase; an essential
key exchange procedure that must happen in a secure environment. A number
of the proposed approaches also require intermediate servers to coordinate key
distribution or enable communication between embedded devices. In compari-
son with the existing works on hardware-based secure communication protocols,
our proposed framework neither requires a secure setup phase nor intermedi-
ate authenticator servers. The public-key infrastructure of our firmware update
scheme alleviates the need for the aforementioned measures due to the public-key
components including PPUFs, public-key cryptography, and digital signatures.

3 Underlying Security Primitives

The proposed framework employs cryptographic primitives in hardware in order
to implement securely the firmware image exchange protocol. The approach
requires both a private and a public key encryption/decryption core, a crypto-
graphic hash function, and a PPUF in order to provide confidentiality, authen-
ticity, and integrity guarantees.

PPUFs are a category of PUFs whose IC characteristics can be made pub-
lic since they do not rely on their secrecy, unlike traditional PUFs. A PPUF
is designed to be fast-to-execute and slow-to-simulate [42]. In the context of
this work, a differential PPUF (dPPUF) is utilized due to its characteristics of
not requiring ultra-accurate timing mechanisms. For instance, traditional XOR-
based PPUFs, as the one shown in Fig. 2, require a very high clock resolution to
accurately “catch” the racing signals at the end of the PPUF circuit. A 256-bit
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Fig. 3. The differential Public Physical Unclonable Function (dPPUF) architecture
consists of consecutive layers of boosters and repressers. The two sides are identical
in structure but different in inherent delays (inertial, propagation, switching, etc.). A
layer of arbiters is placed at the end to capture the fastest propagating signals and
according to the result, create the appropriate response bit string.

dPPUF is adopted from [43], presented in Fig. 3. PUFs are inherently noisy and
therefore require error correction mechanisms to stabilize them. To alleviate for
the PUF’s inherent noise, in this work, and without loss of generality, we con-
sider a Bose–Chaudhuri–Hocquenghem (BCH)-based code-offset fuzzy extractor
as an effective PUF error correction mechanism [15].

In order to create a PPUF model, as required in our framework, the manufac-
turer has to perform gate-level characterization3. The measured IC characteris-
tics form a software model that can be stored in a public repository. The software
model is the “public part” of the PPUF since it does not provide any advantage
to any adversary. This is because of the Execution-Simulation Gap (ESG). ESG

3 Gate-level characterization is the process of characterizing each gate of an IC in
terms of its physical properties using lasers, micro-probing, and simulations [31].
Typical characteristics measured include gate width and length, and properties such
as leakage power and switching power.
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is the time advantage the PPUF hardware owner has over a simulating attacker
when calculating a CRP. A CRP is formed by the input to the PPUF’s model,
i.e., the challenge, and its corresponding output, i.e., the response. The proce-
dure to produce a CRP is very fast when executed on hardware but significantly
slower when done via simulation. In order to take advantage of this disparity
we use the challenge as an encryption key while responding to the decrypting
party. The inverse operation, i.e., deriving which challenge created the provided
response, can only be completed on the actual PPUF hardware since simulating
all the possible challenges to find a matching response is infeasible in simula-
tion. Therefore, this ESG can be used as a root-of-trust and the model can be
stored publicly without any security implications. ESG can also be manipulated
to give as much advantage to the PPUF owner over the simulating adversary as
needed. Increasing either the key width or number of challenges that need to be
calculated increases the simulation effort for any attacker trying to derive the
challenge of a particular response.

In order to provide confidentiality guarantees, we encrypt the firmware image.
Encryption is the process of encoding plaintext data making it unintelligible
and scrambled in a way that no unauthorized party can understand them. To
decrypt the data, a cryptographic key is required. The key acts as a guide,
helping the authorized party rearrange and reassemble the encrypted data cor-
rectly, so that access to the plaintext is possible. To address confidentiality, we
employ the symmetric-key encryption algorithm Advanced Encryption Standard
in Galois/Counter Mode (AES-GCM). AES-GCM is an authenticated encryption
algorithm providing both data integrity and confidentiality [16]. Its hardware
implementation provides a high encryption/decryption data rate while being
adequately efficient in the use of hardware resources. AES-GCM is operating
with 128-bit blocks and has four inputs: a 128-bit secret key, a 96-bit initializa-
tion vector, a plaintext, and optional additional authenticated data. AES-GCM
generates two outputs: a message authentication code and a ciphertext. The
message authentication code acts as a checksum value that enables integrity
checks.

Towards ensuring that the firmware package contains undeniable truth that
it originated from the manufacturer (non-repudiation) and thus protecting the
device from impersonation attacks, the proposed approach utilizes digital signa-
tures. The concept of digital signatures is depicted in Fig. 4. They are data that
accompany the firmware image and provide evidence of their origin. To effectively
use digital signatures, a cryptographic hash function is required along with the
utilization of a public-key cryptosystem. Essentially, the sender has to hash the
data payload, e.g., the firmware image, and encrypt it with a private key. In our
setup, the procedure to create the manufacturer’s digital signature is the follow-
ing: (1) the manufacturer has to select a secret private key and (2) a public key.
(3) A hash digest of the firmware image is created and encrypted by a public-key
cryptosystem using the manufacturer’s private key. The public-key cryptosystem
utilized in our setup is RSA, also known as Rivest–Shamir–Adleman, while the
cryptographic hash function employed is SHA-256, both NIST-approved cryp-
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Fig. 4. Digital signature creation involves the usage of a cryptographic hash function
and a public-key cryptosystem. A hash of the payload data is encrypted using the
signer’s private key. The verifier decrypts the digital signature using the signer’s public
key and hashes the payload data. The signature is considered valid if the resulting
hashes match.

tographic implementations [3,44]. The verifier, in this case the device, is able
to receive the data alongside the digital signature and recreate the digest on
its side. Then the signature is decrypted using the manufacturer’s public key
and compared to that digest. If the hashes match, then the manufacturer is
authenticated.

While the aforementioned cryptographic primitives are well established and
widely used mechanisms in the area of cryptography and security, alternatives
with similar characteristics can still be utilized in our proposed framework. Our
approach is designed with modularity and flexibility in mind. Alternative cryp-
tographic hash functions and encryption algorithms can be considered as long as
they adhere to the needs of the secure firmware update protocol. For example,
alternative encryption algorithms of symmetrical type can be chosen instead of
AES-GCM. Examples include Simon [5], a lightweight block cipher released by
the National Security Agency (NSA) and optimized for performance in hardware
implementations, and Twofish [51], a symmetric key block cipher alternative to
AES. The cryptographic hash function and public-key cryptosystem can also be
interchanged with similar mechanisms. For instance, lighter alternatives can be
used to adjust the design for even more constrained devices, such as a lightweight
implementation of Keccak using only 200 permutations [7]. This flexibility gives
the ability to the manufacturer to adjust their devices to certain security level
constraints and available computational resources depending on each domain
and application scenario.
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4 Methodology

In this section, we provide the details of the proposed framework under the con-
sideration of a malicious individual trying to manipulate the firmware updating
procedure. The main objective is to encrypt a firmware image and deliver it
to the embedded device through an insecure channel. An attacker observing
the insecure channel should be unable to extract information from the firmware
image. Only the intended device can decrypt the firmware image and verify its
authenticity.

4.1 Threat Model and Countermeasures

We consider that the firmware packaging procedure from the manufacturer is
an error-free process taking place in a secure facility, i.e., the firmware package
is prepared correctly. The dPPUF model, however, is publicly available since
accessing it does not give the attacker any advantage. The firmware package is
transferred to the device over an insecure channel. The attacker can intercept
packages on that channel. The attacker’s goal is to uncover the firmware image
binary and reverse-engineer it to place backdoors and uncover proprietary device
operations. Using a malicious firmware binary the attacker tries to impersonate
the device manufacturer to transfer a modified firmware package to the embed-
ded system as the legitimate one.

In order to prevent this malicious activity, we employ several cryptographic
techniques utilizing their hardware-implemented counterparts. To encrypt the
firmware image and protect its binary form from unauthorized access, we use a
symmetric cipher, specifically the AES-GCM. The keys required for this encryp-
tion procedure will be provided by the dPPUF and its model, making the
firmware package chip-specific. In addition, the device receiving the firmware
update must also have proof of the firmware package’s origins in order to be
secure against impersonation attacks. In order to alleviate this issue, we employ
asymmetric cryptography as well in the form of digital signatures. A digital sig-
nature accompanying a payload gives proof of firmware origins while also being
a checksum for integrity checks. The digital signatures in our setup utilize SHA-
256 for cryptographic hashing and RSA for asymmetric cryptography.

4.2 Firmware Update Procedure

The firmware update procedure consists of two main parts, each undertaken – in
sequence – by the device manufacturer and the device user. The manufacturer
constructs a firmware package that contains the encrypted firmware image as well
as metadata. Metadata allows the embedded device to authenticate and decrypt
the firmware image without revealing useful information to any malicious entity
observing the insecure channel used for data transfer. For this methodology to
be successful, a combination of security primitives is utilized such as a crypto-
graphic hash function (SHA-256), a symmetric (AES-GCM) and an asymmetric
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Fig. 5. The firmware package generation flow: the firmware vendor encrypts the com-
posed image utilizing a public PUF model. The firmware unpacking process at the
device level: the firmware package is decrypted, verified, and uploaded to the embed-
ded device by utilizing public PUF’s (dPPUF) intrinsic manufacturing variability.

(RSA) encryption/decryption module, and a PPUF (dPPUF). These crypto-
modules are implemented on the hardware of the embedded device to avoid
reliance on software routines and pre-stored data. The firmware transition, from
the manufacturer packaging to the embedded device delivery, is shown in Fig. 5.

Secure Firmware Package Generation by Manufacturer: The upper half
of Fig. 5 presents the steps required by the manufacturer to produce a valid and
secure firmware package. The manufacturer uses a challenge to create a response
from the dPPUF model, encrypts the firmware image using that challenge, and
creates a digital signature. Then, these 3 output products are bundled together
in a firmware package to be sent to the embedded device. In particular, the
overall process involves the following:

1. The manufacturer generates a random challenge I1. This is a 256-bit long
binary that is going to be used as input to the dPPUF model. This challenge
creates the 256-bit response O1. This CRP’s challenge I1 is used to encrypt
the firmware image such that only the intended device is able to decrypt it.
The length of the CRP strings can be increased, if necessary, to further reduce
the risk of brute force attacks.
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2. The firmware image FI is concatenated with firmware metadata FV and
then encrypted with AES-GCM using I1 as the encryption key. The FI is
the firmware binary and FV contains identifiers that will help the device
further evaluate the firmware, namely firmware version and revision number.
This information can help the device avoid rollback attacks as discussed in
Sect. 4.3.

3. A hash of FI||FV is calculated to create a digital signature. The resulting
256-bit digest of SHA-256 H(FI||FV ) is then encrypted using the manufac-
turer’s private key Kpr to create (H(FI||FV ))Kpr

. The public key encryption
scheme used is RSA. The digital signature allows the device to authenticate
the manufacturer since it is the only one capable of decrypting the firmware
image and create a hash for comparison.

4. The three output products from the manufacturer are packaged and for-
warded to the embedded device in this form: [O1, (FI||FV )I1 , (H(FI||
FV ))Kpr

].

Firmware Unpacking Process by the Embedded Device: The gener-
ated firmware package is delivered to the dPPUF-enabled embedded system
through an insecure network. The device utilizes the response O1 to decrypt
(FI||FV )I1 and authenticate the package’s origins using the digital signature
(H(FI||FV ))Kpr

. The unpacking process steps include the following:

1. The embedded device makes use of the response O1 to recreate challenge I1.
In order to achieve it, the device iterates throughout all possible input com-
binations to the dPPUF until it finds a response that matches O1. This CRP
iteration is only feasible using dedicated hardware and it is computationally
prohibitive to carry out this operation through simulation [6]. Therefore, only
the correct recipient device is able to perform this operation efficiently.

2. Once I1 is derived, the embedded device uses I1 as the key, for the hardware-
implemented AES-GCM module, to decrypt (FI||FV )I1 and get FI||FV .
Once the FV is obtained, the device is able to check the firmware version of
the update and compared it to the firmware currently installed at the device.
If the firmware image FI indicates an older version of the device’s existing
firmware, the update operation is aborted.

3. In parallel to the previous step, the digital signature (H(FI||FV ))Kpr
is

decrypted with RSA using the manufacturer’s public key. This operation
results in H(FI||FV ).

4. If the firmware image indicates a firmware update, a cryptographic hash digest
of FI||FV is generated using SHA-256. The hash digest is compared to the
result of the RSA decryption. If the hashes match, then the embedded device
authenticates the origin of the firmware from the legitimate manufacturer.

5. If all the required authentication and decryption procedures are completed,
the device can proceed with updating its firmware code.

As explained in Sect. 3, the dPPUF is a series of cascading gates which, when
a challenge is introduced, a response is created. The manufacturer has access to
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a software model describing the dPPUF present in the device which is going
to be updated. Using a software model to simulate CRPs is significantly slower
than performing the same operation directly on hardware. By using the chal-
lenge as an encryption key while providing the response in plaintext, we ensure
that only the intended device is be able to decrypt the firmware image in a
feasible time frame. This is based on the fact that in order to find a challenge
for a corresponding response requires iterating through all possible challenges
until a matching response is found. Therefore, we leverage the ESG characteris-
tic of PPUFs to keep malicious attackers from getting a plaintext version of the
firmware binary. The time advantage of the dPPUF hardware during CRP itera-
tion over an attacker, simulating the same procedure, can vary depending on the
dPPUF implementation. For example, a 1024-bit implementation of the dPPUF
makes breaking the protocol extremely prohibitive, according to the analysis
in [6]. Our implementation focuses on constrained devices, thus the structure
is based on a 256-bit design. The firmware package is also chip-specific since
every device will have a different PPUF and consequently different CRPs. The
manufacturer also appends a digital signature to the encrypted firmware so that
the embedded device can authenticate it.

Overall, our proposed framework has the following features: (1) it does not
require a secure setup phase for key exchange between the firmware sender
and receiver because the decryption key is dynamically generated by the hard-
ware, (2) a malicious attacker observing the insecure channel cannot uncover
the firmware image and cannot impersonate the manufacturer, (3) the firmware
can only be decrypted by the intended device, and (4) the methodology can
be easily adapted to incorporate different cryptographic primitives. Encryp-
tion/decryption modules and cryptographic hash functions can be substituted
with other equivalent crypto-cores without altering the overall functionality of
the design.

4.3 Security Analysis

The framework is designed to adhere to certain security requirements. First, we
need to ensure that adversaries eavesdropping in the communication channel
and able to intercept the firmware package, cannot reveal the binary of the
firmware, and thus identify code subroutines that expose the embedded device’s
functionality. We also need to ensure that if the firmware package is corrupted
or tampered during transmission, the device would be able to detect it. The
device must also have the ability to authenticate the package’s origins in order
to be protected against impersonation and man-in-the-middle attacks. Installing
earlier versions of firmware may re-introduce bugs and thus firmware rollback
should be avoided.

To fulfill the above requirements we employ hardware-implemented versions
of the AES-GCM algorithm, SHA-256 cryptographic hash functions, and RSA
public-key cryptosystem. Since the firmware image, alongside the necessary
metadata, is encrypted using AES-GCM, an attacker cannot extract the firmware
binary from the transmitted package in plaintext form without having access to



178 S. Falas et al.

the key. The key, however, is only known by the manufacturer and only the
intended device can recreate it. RSA and SHA-256 are used to form the manu-
facturer’s digital signature. The role of the digital signature is not only to act as a
checksum value that allows the device to check the firmware’s data integrity but
also as undeniable evidence that the sender is indeed the manufacturer. Digital
signatures require a hash digest which acts as a checksum value. The digest is
encrypted by the manufacturer’s private key. Therefore, it can only be decrypted
using the manufacturer’s public key, authenticating the package’s origins. After
completing the decryption and authentication procedures, the embedded device
checks FV to determine the firmware version of the update. If it is not an update
to the existing firmware, the device halts the updating operation to avoid roll-
back attacks.

The aforementioned security primitives are utilized as hardware-based cryp-
tographic modules implemented on the embedded device. These primitives alle-
viate the need for secure storage of secret information such as credentials and
encryption keys directly on the device’s non-volatile memory. Keys and other
secret information are dynamically recreated on the device upon demand. The
firmware update operation is also non-dependent on software-based routines,
and thus less susceptible to software-based attacks [53].

The utilized dPPUF circuit inherits by design certain security guarantees.
The effort to simulate dPPUF using its public model scales exponentially with
the dPPUF’s depth and width. A small increase in depth or width may prove
prohibitive in terms of time, for pre-computing all sets of CRPs. Even with
enough computing capabilities for generating CRP lookup tables, the storage
requirement would be impractically high. Also, the public model of dPPUF
ensures that profile characterization (e.g., power profile) of the circuit would not
reveal any side-channel information.

5 Experimental Setup and Results

We implement a proof-of-concept experimental setup in order to validate and
evaluate our approach. As shown in Fig. 6, both the firmware packing and
unpacking phases have been implemented. The procedures performed by the
manufacturer are implemented in software using a 64-bit computer with 3.2 GHz
Intel Core i5-4460 quad-core processor and 8 GB RAM. The unpacking process,
on the embedded device’s end, is emulated utilizing a Xilinx Kintex7 FPGA with
a system clock frequency of 100 MHz.

Our PPUF implementation is using multiple layers of boosters (2-input XOR
gate) followed by repressers (small NAND-based circuit [43]), i.e., b = 1 and
r = 1 with the height and width of the dPPUF being h = 10 and w = 256,
respectively. It is implemented on hardware, using the aforementioned FPGA,
using artificial transmission and switching delays at each gate, shown in Fig. 3, to
emulate manufacturing variations. The delay values are generated by a pseudo-
random number generator software to avoid any kind of bias. The model of the
dPPUF is constructed in C++ as a graph, where its nodes represent the dPPUF
gates and their respective delays.
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Firmware Package

Insecure channel

Manufacturer (Computer):
1) Creates a CRP using the C++ dPPUF model
2) Encrypts firmware and creates digital
signature using Python script
3) Append into a firmware package

Embedded Device (FPGA)
1) Unpacks the firmware package
2) Recreates decryption key using the dPPUF hardware
3) Decrypts firmware and constructs required hashes
4) Authenticates manufacturer using digital signature

Fig. 6. Experimental and evaluation setup. The hardware-implemented security prim-
itives are developed on a FPGA in order to emulate a dPPUF-enabled device. The
firmware packaging procedure are carried out on a computer which is connected to the
FPGA through a serial cable.

Fig. 7. Strict Avalanche Criterion (SAC) of dPPUF model. The red dashed line shows
the ideal case, where P (Oi = 1) = 0.5 for all i. (Color figure online)

The effectiveness of a dPPUF design is determined by the entropy that it
exhibits. We ensure that the responses cannot be correlated to their correspond-
ing challenges and its CRPs are adequately random by conducting extensive
tests. Specifically, we validate the dPPUF’s software model with 10k input vec-
tors and compare them with the resulting outputs. Then, we utilize the Strict
Avalanche Criterion (SAC) to quantify the entropy. SAC is measured by cal-
culating the correlation probability of the corresponding outputs of two input
vectors that have a hamming distance equal to 1. Figure 7 presents the SAC
demonstrated by our dPPUF design with an average probability of each output
switching equal to 0.3425, similar to the results in the related literature [43].

Every procedure needed for completing the firmware packaging process is
done in software. Firstly, the dPPUF model is utilized to create a CRP that will
be used for encrypting the firmware package in a chip-specific way. The resulting
response O1 is going to be used as an unencrypted header for the firmware pack-
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Table 1. FPGA resource utilization for the firmware unpacking process.

Resources AES-GCM SHA-256 RSA dPPUF Overall design

LUT(#) 2671 1330 547 766 3183

FF(#) 1568 753 527 275 3981

Table 2. Firmware unpacking timings.

Device Firmware (kB) Total execution (ms)

Sercos III 233 72.27308

Zelio Logic 323 72.42759

Modicon 1183 73.90583

age while its corresponding challenge I1 is also used as a secret key to encrypt the
concatenation of the firmware image and the firmware version data (FI||FV ) to
create (FI||FV )I1 . The manufacturer also needs to prepare a digital signature
to prove the firmware’s origins to the device. The procedure for creating a digital
signature involves hashing the concatenation (FI||FV ) to create H(FI||FV ) and
then encrypting it using the manufacturer’s private key. The resulting digital sig-
nature (H(FI||FV ))Kpr

is appended to O1 and (FI||FV ) to create the firmware
package. The required cryptographic algorithms, such as encryption/decryption
and hashing, are implemented in Python using the pycryptodome library [18].
For our experiments, we choose three commercial firmware files acquired from
the vendors’ websites to be tested. The firmware images are those of embedded
systems designed for ICS environments. The devices are a Sercos III field bus
interface module, a Zelio Logic SRA2/SR3 smart relay, and a Modicon M258
logic controller.

We use an FPGA to emulate the embedded device supporting the described
hardware-implemented cryptographic primitives. The unpacking process is car-
ried out using Hardware Description Language (HDL) to demonstrate the effec-
tiveness of the approach when running directly on hardware. We make use of
Xilinx Vivado Design Suite 2018.3. The hardware resources required for these
primitives are presented in Table 1. The hardware overhead for each security
primitive is shown as the hardware usage of the overall design. Synthesis and
implementation algorithms provided by the HDL development tools help with
optimizing the overall design in terms of area. Also, routing and placement algo-
rithms can remove a lot of redundant hardware between these modules.

The firmware package produced by the manufacturer (e.g., the computer in
our setup) is transferred at the receiving party which loads it into the memory
and initiates the unpacking process. In our implementation, we first pre-load the
firmware image in block RAM and then proceed with decryption and authen-
tication procedures. During the unpacking process of the firmware, the dPPUF
input challenge, O1, from the firmware package header is used to recreate the key
of AES-GCM, I1. Then, the dPPUF iterates through all the possible challenges
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Table 3. Comparison with previous work.

Method Area overhead Performance (ms)

LUT (#) FF (#)

Proposed 3183 3981 73.90583

Aysu et al. [2] 3543 1275 61

Che et al. [11] 6038 1724 1250

of a given set (106 possible inputs in our setup), until it finds a response match-
ing O1. This is the CRP iteration explained in Sect. 3, utilizing the ESG to have
an advantage over the attacker. Once I1 is derived, the AES-GCM decryption
core is ready to decrypt (FI||FV )I1 and get the plaintext FI||FV . In parallel,
the RSA core decrypts (H(FI||FV ))Kpr

using the manufacturer’s public key
Kpub to uncover H(FI||FV ). This hash derived from the digital signature is
going to be compared to the output of the SHA-256 core when the input is
the plaintext FI||FV . If the resulting hash matches the hash uncovered from
the digital signature, then the manufacturer is authenticated and the embedded
device is assured of the firmware image’s origin and integrity. Finally, the FV
is examined to determine the firmware image’s version and revision number. If
it is determined to be an actual update, then the firmware update procedure
can be initiated. If the version or revision number indicate a downgrade, the
firmware image is rejected to avoid rollback attacks. The whole experiment is
run for each one of the industrial-grade firmware images. The time to finish the
decryption and authentication is measured, starting from the package’s arrival
to the device. The three firmware images are presented in Table 2 along with
their respective total unpacking time.

Table 3 provides a comparison with relevant state-of-the-art methods in terms
of area and performance overhead. The time measured by [2] and [11] is the
time that the device needs to establish a secure connection with the server
and authenticate it. On the other hand, we measure our performance as the
time a device takes to unpack a firmware package and perform all the necessary
authentication and decryption procedures. Therefore, our measurements include
time-consuming decryption procedures that put us at a disadvantage when com-
pared to the time measurements reported by [2] and [11]. The performance for
the proposed methodology, reported in Table 3, is the time needed to completely
unpack the Modicon firmware image and authenticate the manufacturer. In [2]
and [11], PUF-based privacy-preserving authentication protocols are being con-
sidered. When we only compare area overhead, [2] is lighter; however, it exhibits
several drawbacks. As discussed in Sect. 2, the proposed approach by Aysu et al.
requires initial setup and an enrollment phase (on top of PUF hardware charac-
terization), steps which our approach does not require. It also necessitates having
a trusted third-party server to complete the authentication handshake. Also, the
protocol does not take into account data integrity issues neither implements any
countermeasures. In addition, the work utilizes an SRAM-based PUF which is
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known to be vulnerable to a variety of attacks [1,46]. An authentication pro-
tocol that provides both confidentiality and mutual authentication is presented
in [11]. This protocol is utilizing a new type of PUF, the hardware-embedded
path delay (HELP) PUF. This kind of PUF derives randomness from path delay
variance within a hardware implementation of AES. The work shows compara-
ble resource usage. Nevertheless, the protocol does not address data integrity.
Also, our implementation performs significantly better in terms of execution time
than the mechanism proposed by [11], while also requiring a lot fewer hardware
resources.

6 Conclusions

In this work, we develop a flexible firmware update framework for securely
updating embedded systems. The framework makes use of the unique physi-
cal characteristics of each embedded system’s IC to bind firmware packages to
a specific device. By utilizing hardware-implemented cryptographic primitives,
we can guarantee the confidentiality and integrity of the firmware image while
being transmitted through an insecure channel. Our framework’s security analy-
sis demonstrates the validity of the security measures while showing the device’s
protection mechanisms against impersonation and other types of attacks. A
proof-of-concept implementation with a commercial-off-the-shelf firmware of an
industrial embedded system verifies the practicality of the approach in resource
constraint devices. The performance results show that the proposed framework
not only provides security but also fast firmware updates.
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Abstract. Digital low-dropout voltage regulators (DLDOs) have drawn
increasing attention for the easy implementation within nanoscale
devices. Despite their various benefits over analog LDOs, disadvantages
may arise in the form of bias temperature instability (BTI) induced
performance degradation. In this Chapter, conventional DLDO opera-
tion and BTI effects are explained. Reliability enhanced DLDO topolo-
gies with performance improvement for both steady-state and transient
operations are discussed. DLDOs with adaptive gain scaling (AGS) tech-
nique, where the number of power transistors that are turned on/off per
clock cycle changes dynamically according to load current conditions,
have not been explored in view of reliability concerns. As the benefits of
AGS technique can be promising regarding DLDO transient performance
improvement, a simple and effective reliability aware AGS technique with
a steady-state capture feature is proposed in this work. AGS senses the
steady-state output of a DLDO and reduces the gain to the minimum
value to obtain a stable output voltage. Moreover, a novel unidirectional
barrel shifter is proposed to reduce the aging effect of the DLDO. This
unidirectional barrel shifter evenly distributes the load among DLDO
output stages to obtain a longer lifetime. The benefits of the proposed
techniques are explored and highlighted through extensive simulations.
The proposed techniques also have negligible power and area overhead.
NBTI-aware design with AGS can reduce the transient response time by
59.5% as compared to aging unaware conventional DLDO and mitigate
the aging effect by up to 33%.

Keywords: NBTI · Reliability · Aging · Steady state performance ·
Transient performance · Shift register · Unidirectional control

1 Introduction

Semiconductor technology that enables rapid advancements in the design and
fabrication of nanoscale integrated circuits continuously improves while demand-
ing a higher amount of power per unit area [1]. Integrating voltage regulators
fully on-chip to provide robust power to the integrated circuits have been a
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challenging design issue. Several techniques have been proposed in the literature
to improve the power conversion efficiency, stability, and reliability of on-chip
voltage regulators or power delivery networks as a whole [2–14]. There is also
an emerging trend to leverage voltage regulators to address security concerns
[15–23]. In addition to the existing challenges, bias temperature instability (BTI)
induced reliability concerns have recently drawn attention especially for digital
low-dropout regulators (DLDOs) [24–27]. Modern computing systems and inter-
net of things (IoT) devices require reliable operation and long lifetime of on-chip
voltage regulators [23,25,29]. Generating and delivering a robust output voltage
under highly dynamic workload conditions have become even more difficult with
the variations in the environmental conditions. These environmental conditions
deteriorate the performance and lifetime of the transistors. Voltage regulators
suffer from the abrupt variations in the workload and may experience serious
aging phenomenon, necessitating reliability aware designs [25].

Transistor aging mechanisms such as BTI, hot carrier injection, and time-
dependent dielectric breakdown have become more important with the scaling
of transistor size. BTI is the major aging mechanism [30–36] where negative
BTI (NBTI) induces performance degradation of PMOS transistors. Various
studies have been performed to address the reliability issues of semiconduc-
tor devices [28,37,38]. BTI-aware sleep transistor sizing algorithms for reliable
power gating design [37], integral impact of BTI and PVT variation [39], and
impact of BTI variations [40] have been investigated. A conventional DLDO
has a bi-directional controller which activates certain transistors frequently and
leaves the others unused. This reliability unaware control scheme makes the
performance degradation even worse because the activation pattern of PMOS
is concentrated on certain transistors, thus causing heavy electrical stress on
these transistors. The over usage of certain transistors degrades the performance
significantly. Distributing the electrical stress among all of the transistors can
therefore be effective. The primary literature that address the aging effects of
on-chip DLDOs include a reliable digitally synthesizable linear drop-out regula-
tor design, a digitally controlled linear regulator for per-core wide-range DVFS
of AtomTM cores, and mitigation of NBTI induced performance degradation in
on-chip DLDOs [25,41,42]. To evenly distribute the workload, a decoding algo-
rithm for DLDO is proposed in [41]. A code roaming algorithm with per-core
dynamic voltage and frequency scaling method is proposed in [42]. These tech-
niques need dedicated control algorithms to enhance the reliability of a DLDO.
A unidirectional shifter is proposed for conventional DLDOs in [25] to decrease
the electrical stress on transistors. A DLDO without AGS, however, suffers from
slow response time when there are large transitions in the load current. The
supply voltage should be robust as the operation of all of the on-chip devices
are sensitive to the variations at the output of the voltage regulators. Transient
performance enhancements and loop stability can be increased by utilizing a
barrel shifter as discussed in [43]. A barrel shifter which can perform the switch-
ing of two or three transistors within a single clock cycle improves the transient
response time significantly. A barrel shifter based DLDO design with a steady
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Fig. 1. Schematic of conventional DLDO.

load current estimator and dynamic gain scaling control is discussed in [44].
Although there are benefits of the aforementioned techniques, a DLDO with
AGS still suffers from performance degradation due to NBTI. Additionally, a
conventional DLDO with AGS also does not consider aging effect. Gain scaling
using a bi-directional barrel shifter in [45,46] may not be directly applicable to
add gain scaling capability for a reliability enhanced DLDO. Therefore, further
research should be performed on AGS DLDO to mitigate performance degra-
dation due to NBTI. A novel aging aware DLDO with AGS and a steady-state
detection circuit to obtain fast transient response under abrupt changes in the
load current is proposed in this work.

The main contributions of this work are threefold. First, an NBTI-aware
DLDO with AGS is proposed. Second, a simple and effective steady state, over-
shoot, and undershoot detection circuit is proposed and verified. Third, extensive
simulations verify that the proposed circuit works effectively.

As an extension of [47], the rest of this Chapter is organized as follows. Back-
ground information regarding conventional DLDOs, steady state and transient
performance of DLDO, and BTI is discussed in Sect. 2. Existing NBTI-aware
DLDO topologies are explained in Sect. 3. The proposed NBTI-aware DLDO
with AGS is discussed in Sect. 4. Evaluation of the proposed technique and sim-
ulation results are discussed in Sect. 5. Concluding remarks are given in Sect. 6.

2 Background

In this section, background information on the design of conventional DLDO,
steady state performance and transient performance thereof, and BTI effects are
explained.
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Fig. 3. Operation of bi-directional shift register.

2.1 Conventional DLDO

The schematic of a conventional DLDO [29] is illustrated in Fig. 1. The Vref

and clk are the inputs and Vout is the output of the conventional DLDO. The
schematic and the operation principle of a bi-directional shift register used in
the conventional DLDO are described in Figs. 2 and 3, respectively. The bi-
directional shift register consists of a multiplexer and a DFF in each stage.
The digital controller modulates the value Qi based on Fig. 3. The DLDO is
composed of N parallel PMOS transistors and a feedback control to adjust the
output voltage. A bi-directional shift register is implemented in conventional
DLDOs. Mi is the ith PMOS and Qi is the logic output of the digital controller.
i denotes the activation stage of the digital controller. The bi-directional shift
register switches the state of one of the power transistors according to Vcmp

at rising edge of each clock cycle. QN is the N th output signal of the digital
controller, as shown in Fig. 1. At step k + 1, Qn+1 (Qn) is turned on (off) when
Vcmp is high (low) and the bi-directional shift register shifts right (left), as shown
in Fig. 3 where k is the activation step of the digital controller [25]. Each Mn

is connected to Qn. Since the activation scheme is bi-directional, this scheme
leads to heavy usage of M1 to Mn. DLDO performance degradation can occur
due to this power transistor activation and deactivation scheme as discussed in
Sects. 2.3 and 2.4.
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2.2 Bias Temperature Instability

BTI includes NBTI for PMOS transistors and positive BTI (PBTI) for NMOS
transistors. BTI leads to the increase of transistor threshold voltage |Vth|. NBTI
increases the |Vth| of PMOS transistors utilized in the DLDO power transistor
array, leading to slower response time and the decrease of load supply capacity
of the DLDO. The increase in |Vth| is related to the traps generated in Si/SiO2

interface at the gate when there is a negative gate voltage [48]. ΔVth formula
is given in (1) where Cox, k, T , α, and t are the oxide capacitance, Boltzmann
Constant, temperature, fraction of time when the transistor is under stress, and
time, respectively. Klt and Ea are the fitting parameters to comply with the
experimental data [49].

ΔVth = Klt

√
Cox(|Vgs| − |Vth|)e−Ea/kT (αt)1/6 (1)

Considering the case of DLDOs, most practical applications need less than
average power, which leads to heavy utilization of certain transistors within con-
ventional DLDOs. The undamped voltage output of DLDO causes large swings
at the voltage waveform which leads to heavy use of certain transistors. The
operation of the regulator causes the heavy use of M1 to Mm and less or even
no use of Mm+1 to MN . Alternatively, certain transistors (i.e., the ones with
a lower index number) are almost always active whereas some other transistors
(i.e., the ones with a greater index number) are almost never active. This activa-
tion scheme therefore induces serious non-symmetric degradation of PMOS due
to NBTI.

Fig. 4. Illustration of DLDO limit cycle oscillation mode.
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2.3 Steady State Performance of DLDO

Under a constant load current, DLDO reaches steady state operation as Vout

approaches Vref . Due to the discrete nature of digital control loop and the cor-
responding quantization error, limit cycle oscillation occurs during DLDO steady
state operation, which negatively affects output voltage ripple. The mode of limit
cycle oscillation M can be indentified through the output of bidirectional shift
register Q(t) as shown in Fig. 4. The period of limit cycle oscillation (LCO)
is 2MTclk, where Tclk is the clock period. Under a certain fclk, a larger LCO
mode typically leads to a larger amplitude of output voltage ripple. LCO mode
and output voltage ripple amplitude are largely affected by the unit current
provided by each power transistor, load capacitance, clock frequency, and load
current [50–53]. As NBTI can introduce PMOS |Vth| degradation, it can be also
detrimental to the existing LCO mitigation technique detailed in Sect. 3.

Fig. 5. Illustration of DLDO transient response.

2.4 Transient Performance of DLDO

Transient performance of a DLDO largely affects important application domains
such as dynamic voltage and frequency scaling (DVFS) and near-threshold com-
puting (NTC). A typical DLDO transient response is illustrated in Fig. 5. When
the load current of the DLDO increases, the DLDO output voltage Vout decreases
to Vout−ΔV before recovering, where ΔV is the magnitude of the transient volt-
age droop and TR is the load response time. Smaller values of ΔV and TR are
desirable for better DLDO transient performance. ΔV and TR can be, respec-
tively, expressed as [25,54–57]

ΔV = RΔiload − IpMOSfclkR
2Cln(1 +

Δiload
IpMOSfclkRC

). (2)
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Fig. 6. Operation of the uni-directional shift register [25].

and
TR = RCln(1 +

Δiload
IpMOSfclkRC

) (3)

where IpMOS , Δiload, C, and R are, respectively, the current provided by a
single active power transistor, load current change, load capacitance, and aver-
age DLDO output resistance before and after load current change. Due to the
NBTI induced |Vth| degradation, it is demonstrated in [25] that ΔV and TR also
degrade. Such DLDO performance degradation needs to be considered when
designing voltage regulators with a stringent lifetime requirement [58–60].

3 NBTI-Aware Digital Low-Dropout Regulators

Multiple NBTI-aware DLDO topologies have been proposed to mitigate steady
state and transient performance degradation [24–26,38]. The working principles
of these techniques are explained in this section.

3.1 NBTI-Aware DLDO with Unidirectional Shift Register

As illustrated in Fig. 3, the operation of a bi-directional shift register leads to
the heavy usage of the first few power transistors, which essentially increases
activity factor of these transistors and the corresponding |Vth| degradation. To
mitigate this side effect, NBTI-aware DLDO with a unidirectional shift register
control is proposed in [25,61]. With minor changes of the control logic in each
stage, the power transistor activation and deactivation can be realized in the
same direction. In such a way, activity factor of each power transistor can be
effectively reduced and the resulting DLDO performance degradation can be
mitigated. Furthermore, the power and area overhead of the implementation are
negligible.
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Fig. 7. Schematic of reduced clock pulse width DLDO [24].

3.2 Reduced Clock Pulse Width DLDO

During steady state operation, the LCO can be an issue for DLDO as it affects
the amplitude of the output voltage ripple. It is demonstrated in [24] that BTI
induced threshold voltage degradation can lead to the propagation delay degra-
dation of the clocked comparator and shift register. Such delay degradation has a
negative effect on the possible mode of LCO. Reduced clock pulse width DLDO
as shown in Fig. 7 is proposed in [24] to mitigate the side effects of LCO. Mini-
mum clock pulse width tc considering BTI induced propagation delay degrada-
tion is adopted and a uni-directional shift register is utilized to simultaneously
improve steady state and transient performance of DLDO.

Fig. 8. Schematic of NBTI-aware DLDO with LCO mitigation [38].
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3.3 NBTI-Aware DLDO with Limit Cycle Oscillation Mitigation

Due to the side effects of LCO on the DLDO steady state performance, it is
desirable to achieve the minimum LCO mode or even remove LCO to reduce the
steady state output voltage ripple. It is discovered in [62] that by adding two
additional parallel power transistors as shown in Fig. 8, minimum LCO mode of
one can be realized. However, due to NBTI induced |Vth| increase, the current
provided by a single additional power transistor deviates from that provided by
the original power transistor. Such deviation gradually nullifies the effectiveness
of the proposed technique. To more evenly distribute the electrical stress among
all of the N + 2 power transistors, NBTI-aware DLDO with LCO mitigation is
proposed in [38]. A dedicated digital controller is proposed to realize unidirec-
tional control among the N + 2 power transistors.

Fig. 9. Operation of the startup aware reliability enhancement controller [26].

3.4 NBTI-Aware DLDO with Improved Startup Performance

NBTI-Aware DLDO with unidirectional shift register is effective to more evenly
distribute electrical stress among all of the power transistors as compared to
bidirectional shift register control. However, for a special case when DLDO has to
be turned off before or shortly after reaching steady state operation, the first few
power transistors still undergo too much electrical stress as compared to the rest.
When utilized in cyclic power gating [63], DLDOs can be periodically turned off
when reaching around steady state. In this case, an unidirectional shift register
functions similar to a bidirectional shift register. To mitigate this drawback
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and enhance the reliability of DLDO during cyclic power gating operations,
NBTI-Aware DLDO with improved startup performance is proposed in [26]. The
operation of the startup aware reliability enhancement controller is demonstrated
in Fig. 9. When more number of power transistor needs to be turned on during
startup, two more power transistors are turned and one is turned off at the same
time. In such a way, electrical stress can be more evenly distributed among more
number of power transistors.

4 Proposed NBTI-Aware DLDO with AGS

Although there are respective advantages of the aforementioned DLDOs, the
techniques proposed in previous works cannot be directly applied to DLDOs with
AGS capability [64,65]. With AGS, DLDOs can adaptively change the number of
power transistor (de)activated per clock cycle to speed up the transient process.
NBTI-aware DLDO with AGS capability is proposed and investigated in this
work. This is the first work which designs a novel uni-directional barrel shifter
with AGS control.

Fig. 10. Schematic of bi-directional barrel shifter.

4.1 Barrel Shifter

Barrel shifter is the main component of the control loop. A simple schematic for
a barrel shifter is shown in Fig. 10. A barrel shifter can activate multiple power
transistors at the same clock cycle. For example, it can shift −3, −2, −1, 0, 1, 2,
3 stages at the same clock cycle. The magnitude of the shift in a barrel shifter
serves as a gain control knob in the forward activation pattern of a DLDO. The
barrel shifter in Fig. 10, is implemented using two levels of signal multiplexing
followed by a flip-flop. A is the output of D flip flop and B is the output of the
first level of MUX. The first level of MUX gives 0, 2, −2 and second level of
MUX gives 0, 1, −1 shifts to obtain −3, −2, −1, 0, 1, 2, 3 shifts at the output
of the barrel shifter. The positive values mean a shift to the right and negative
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Fig. 11. Proposed NBTI-aware DLDO with AGS capability.

values to the left. MUX1 and MUX2 are used to control the barrel shifter as an
output of up to three shifts. The first stage leads the input signals to the output
of the 4:1 mux. D is the comparator output which determines the direction of
the activation scheme. n is the stages of the barrel shifter. n − 1 determines
previous stage and n+1 determines forward stage similarly. The combination of
D, MUX1, and MUX2 determines the gain of the barrel shifter and direction
of the barrel shifter output activation scheme.

A bi-directional barrel shifter is proposed in [43] where the details can be
seen in Fig. 10. This barrel shifter operates by switching a maximum of three
transistors at the same clock cycle. 2N number of muxes and N number of D flip-
flops are housed in the barrel shifter. The operation is maintained by adjusting
the gain which can be adapted by selecting the logic inputs of the muxes. The
work in [44] improves the operation of conventional DLDOs by introducing a bi-
directional barrel shifter with steady-state load current estimator and a dynamic
bi-directional shift register gain scaling control which adjusts the barrel shifter
to obtain fast transient time. Steady-state load current estimator senses the load
current and adjusts the frequency of the digital controller to get damped behavior
of the voltage waveform. Dynamic bi-directional shift register gain scaling control
automates the eight different gain according to the predetermined conditions
which are studied in [44].

In this work, a new NBTI-aware DLDO with uni-directional barrel shifter
with AGS is implemented. Therefore, the performance mitigation due to NBTI
is maintained low and a good improvement in the transient response time has
been achieved.

DLDO has a slow transient response under large load current changes. A
trade-off exists between steady-state stability, transient response, and perfor-
mance degradation due to NBTI. A new architecture is designed to reduce the
NBTI induced stress and to speed up the transient response.
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Fig. 12. Operation of uni-directional barrel shifter with AGS.

Rotating the load stress among the power transistors enables the distribution
of the loading evenly and reduces the NBTI induced performance degradation
[66]. Furthermore, due to the steady-state gain control, settling time after the
overshoots and undershoots are reduced. The transient loading effects are also
minimized. As compared to a conventional DLDO, the transient loading response
is improved.

A uni-directional DLDO with a barrel shifter is implemented within the pro-
posed AGS. An enhanced AGS control manages all of the power transistors in
a way that shortens settling time under severe transient loading and reduced
aging for longer operation times have been achieved as compared to a conven-
tional DLDO. The Vcmp, mux1, and mux2 are the control signals generated by
the AGS. The details are depicted in Fig. 11.

4.2 Uni-Directional Shift Register

The activation pattern of pass transistors in a conventional DLDO is typically
designed to serve bidirectional. This deactivation and activation of the PMOS
scheme can be observed in Fig. 12. The one-directional activation pattern can
be observed in Fig. 12 (3-a) and (3-b). The Mi represents the PMOS transistors.
In the first stage, all PMOS is deactivated. In the second stage, when the digi-
tal controller reaches the k stage, the controller determines the output pattern
according to V out value. In Fig. 12 (3-a), the gain is one which leads to activation
of one transistor at the right boundary of the activation schema. In Fig. 12 (3-b),
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Fig. 13. Proposed uni-directional NBTI-aware DLDO with barrel shifter.

Fig. 14. Three stage adaptive gain scaling with steady state capture.

the activation of PMOS is at the left boundary of activation schema. Similarly,
in Fig. 12 (3-c) and (3-d), the gain is two which activates two PMOS transis-
tors at the same clock cycle. In Fig. 12 (3-e) and (3-f), the gain is three and
causes the activation of three PMOS at the same clock cycle within the defined
boundaries. This activation pattern should be modified to mitigate the NBTI
induced performance degradation. Evenly distributing the electrical stress to all
of the transistors can decrease the degradation in the current supply capacity
of PMOS. Under transient loading, a uni-directional DLDO can activate and
deactivate the PMOS due to the increased load current.

4.3 Uni-Directional NBTI-Aware DLDO with Barrel Shifter

The uni-directional barrel shifter is shown in Fig. 13. The schematic and oper-
ation of the proposed architecture are shown in Fig. 11 and Fig. 12. The Com-
parator in adaptive gain scaling control produces the signal of Vcmp, mux1,
and mux2 which controls the uni-directional barrel shifter as the steady-state,
gain 2 and gain 3 regions are operated. The elementary D flip-flop (DFF) and
multiplexer within bi-directional shift register are replaced with T flip-flop and
simple logic gates within the proposed uni-directional shift register. A multi-
plexer and simple logic gates are designed for uni-directional barrel shifter. A
multiplexer and logic gates are added to get barrel shifter behavior in the uni-
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directional controller. This controller is designed to toggle a maximum of three
gates at a single clock cycle, and it is the first time implementation of the uni-
directional barrel shifter controller. The parallel gates remain unchanged, and
uni-directional barrel shifter and AGS are added. The idea is to balance the
loading of each power transistors under all load current conditions. The Qi and
Qi−1 are gated using XOR gate to equate the output signal switched conse-
quently. Vcmp is gated with Qi−1 together with other Qi to determine the logic
Ti. Therefore, when Vcmp is high (low), inactive (active) power transistors at the
right (left) boundary is turned ON (OFF). A uni-directional barrel shift regis-
ter is realized through this activation/deactivation scheme, as demonstrated in
Fig. 12. Tb and Tc are added at the logic to prevent the conflicting situations.
Tb = Q1×Q2×...×QN×Vcmp and Tc = Q1 + Q2 + ... + QN + Vcmp [25]. During
transient state, three signals Vcmp, mux1, and Trans det are generated to adjust
the gain of the barrel shifter where mux1 is a steady-state indicator signal that
is generated by a novel steady-state detection circuit. After the system enters
the steady-state, the system adjusts the gain to one. For barrel shifter, one mux
and three additional gates are used in Fig. 14. Area overhead can be determined
by counting the additional transistors and compared to the conventional DLDO
per control stage. According to the previous definition, there is only a 4.5% area
overhead. As the bi-directional shift register consumes a few μW power, the
uni-directional shift register power overhear is also negligible [25,49]. Additional
controllers consume low current, thus the power overhead is negligible for the
proposed design.

Fig. 15. Vcmp and half clock cycle delay of Vcmp XORed.

4.4 Three Stage AGS with Steady-State Detection Circuit

The schematic of a three-stage AGS with steady-state capture is shown in Fig. 14.
There are three voltage comparators, two OR gates, one XOR gate, one-time
delay, and one SR latch. There are two inputs and two outputs which are Vref ,
Vout, mux1, and Trans det, respectively, for this circuit. Two comparators pro-
vide overshoot and undershoot detection. One comparator senses the changes
in the Vout. Half cycle time delayed Vcmp is XORed with Vcmp to determine
the steady-state operation. AGS senses the changes in Vcmp during steady-state
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operation. The operation of uni-directional barrel shifter starts to control the
oscillation at the output of DLDO due to limit cycle oscillation [67]. When Vcmp

starts to oscillate during the steady-state operation, Xa, the output of XOR
gate Xa is high, leading to the reset of SR latch. The Xa signal can be observed
in Fig. 15. Thus, the output mux1 is low to enter a steady-state region. The
variation at the output of DLDO is minimum when the gain is one because
the voltage change of one PMOS activation is lower than two or more PMOS
activation. If the number of parallel PMOS increases, according to Kirchhoff’s
voltage law, the drop-out voltage decreased. When the DLDO enters out of the
steady-state region, Vcmp and time-delayed Vcmp are XORed giving logic low
at Xa. Following the output of the XOR gate, SR latch’s output is high which
makes mux1 high and the gain scaling circuit operates out of steady-state mode.

The circuit operates in three different modes in three different regions. The
first region is the highest gain area in which the circuit operates to provide high
in mux1 and Trans det and the gain is three, which means that barrel shifter
switches three consecutive power transistors at the rising edge of a single clock
cycle. Within the second region, the gain is two such that two power transistors
will be turned on/off at the same time. This region is for fast settling of the
output voltage. The third region is the gain one region where the steady state
voltage variation is achieved at the output by changing the minimum amount of
power transistor. For steady state operation mux1 and Trans det are logic low.

4.5 Operation of the Proposed NBTI-Aware DLDO with AGS
Capability

The NBTI-aware uni-directional controller with AGS capability is shown in
Fig. 12. When Vout is lower than Vref , the barrel shifter activates the power
transistors at the right boundary. Similarly, when Vout is higher than Vref , the
barrel shifter deactivates the power transistors at the left boundary of the inac-
tive/active power transistor region. Depending on the value of gain, a maxi-
mum of three active (inactive) power transistors switch inactive (active) power
transistors at the boundary. The uni-directional barrel shifter always toggles
the power transistors at the right of the boundary. The switching of the power
transistors is always in one direction (right shift). Therefore, the stress on the
power transistors evenly distributed because the operation load of each PMOS is
distributed equally among each transistor. Furthermore, as compared to conven-
tional DLDO, the steady-state performance does not change and the transient
response time is decreased. During the design of the DLDO, being aware of NBTI
induced performance degradation is important. The reliability of DLDO can be
enhanced by implementing the method in this article. This work improves the
performance of AGS with respect to other works in Table 1 since the AGS has
three modes. The first mode is aggressive gain scaling. The second mode is slow
settling and the third mode is steady-state mode.
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Steady-State Operation. In the steady-state mode, the number of active and
passive PMOS is changing dynamically. Limit cycle oscillation leads to output
voltage ripple at steady-state. The number of active/inactive transistors are the
same for both NBTI-aware DLDO with AGS and conventional DLDO but the
gain is different while transient state resulting in faster settling time. In Fig. 12
(3-a) and (3-b), the operation of steady-state operation can be observed. The
PMOS at the right boundary changes its activity one transistor at each clock
cycle.

Slow Settling Operation. In the slow settling mode, the barrel shifter gain
is two, meaning that PMOS transistors change their activity two transistors at
each clock cycle. The operation is quite different from conventional DLDO since
the gain of conventional DLDO is one in every loading case. The advantage of
this mode is that it reduces the overshooting and undershooting under transient
loading. In Fig. 12 (3-c) and (3-d), the slow settling operation can be observed.
The PMOS at the boundary changes its activity two transistors at each clock
cycle. Depending on Vout, the transistors at the left boundary or at the right
boundary change their operation from inactive to active.

(a) Comparison of overshoot.

(b) Comparison of undershoot.

Fig. 16. Comparison of transient loading among aging-aware and aging-unaware
DLDOs.
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Aggressive Gain Scaling. In the aggressive gain scaling mode, the barrel
shifter gain is three. The advantage of this operation is that it reduces the
settling time significantly [44,68]. Under transient loading, the load current
changes significantly. In Fig. 12 (3-e) and (3-f), the operation of aggressive gain
scaling can be observed. The active PMOSs (shaded region) change their opera-
tion to inactive depending on the Vout. The consecutive three transistors change
their operation in the same clock cycle.

5 Evaluation of the Proposed Circuit

In order to validate the effectiveness of the 1.1 V to 1.0 V DLDO, this on-chip
circuit is designed in a 32 nm standard CMOS process. The proposed DLDO can
supply a maximum of 124 mA current. The transient output voltage waveform
from 20 mA to 60 mA step load change and comparison of the results of the
conventional DLDO without AGS, the proposed NBTI-aware DLDO with AGS,
the proposed NBTI-aware DLDO with AGS after 10-year aging and the conven-
tional DLDO with AGS after 10-year aging are shown in Fig. 16. 1 MHz clock
frequency is applied and aging induced degradation is evaluated under 100 ◦C.
The settling time after load decrease is 4.5µs and the settling time after load
increase is 4.2µs for the conventional DLDO without AGS. The proposed NBTI-
aware AGS DLDO has 2.4µs settling time after an overshoot and 1.7µs settling
time after an undershoot. The proposed NBTI-aware DLDO with AGS after
10-year aging has 2.8 μs settling time after an overshoot and 2.1µs settling time
after an undershoot. The conventional DLDO with AGS after a 10-year aging
has 3.4µs settling time after overshoot and 2.8µs settling time after undershoot.
The results for conventional DLDO with AGS without aging is the same as the
results of proposed NBTI-aware DLDO with AGS. There is 46.7% decrease in
the settling time of overshoot of the proposed DLDO with AGS as compared
to the conventional DLDO. There is also a 59.5% decrease in the settling time
of undershooting of the proposed DLDO with AGS as compared to the con-
ventional DLDO. Furthermore, the settling time for the proposed DLDO with
AGS after 10-year aging is decreased by 59.5% as compared to the conventional
DLDO with AGS after 10-year aging.

Previous works are compared with this work in Table 1. The power overhead
in [41] is negligible since added decoders have little power consumption with
respect to power PMOS. Similarly, the power overhead in [42] and [25] is neg-
ligible because the modifications add negligible power consumption. The works
in [41] and [42] have AGS capability.
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Table 1. Comparison with previous aging-aware on-chip DLDOs

[41] [42] [25] This work

Year 2015 2017 2018 2019

Broad load range Yes Yes Yes Yes

Additional
controller

Yes Yes No No

Added overhead Multiple
decoders

Decoder Modification of
original
controller

Modification of
conventional
DLDO

Topology Row rotation
scheme

Code roaming
algorithm

Uni-directional
shift controller

Uni-directional
shift controller
with barrel
shifter

Adaptive gain
scaling capability

Yes Yes No Yes

6 Conclusion

In this work, an NBTI-aware DLDO with the AGS control is proposed to dimin-
ish the aging effect and to reduce the settling time. The settling time is reduced
by 46.7% and 59.5% for overshoot and undershoot without aging aware design,
respectively. The proposed circuit is NBTI-aware, thus, performance degrada-
tions due to NBTI are reduced. A novel uni-directional shift register with barrel
shifter is proposed to distribute the electrical stress among the power transistors
evenly. The proposed NBTI-aware DLDO with AGS control is efficient because
the settling time is reduced by 33% after 10-year aging.
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Abstract. Multi-Processor System-on-Chips (MPSoCs) is a standard
platform used in time-critical applications. These platforms usually
employ Priority-Preemptive NoCs (PP-NoCs), a widely used real-time
on-chip interconnection structure that offers communication predictabil-
ity. A deep analysis of the PP-NoC parameters and their impact on sys-
tem security is required. Moreover, countermeasures that can protect the
system while guaranteeing the real-time capabilities should be proposed
and evaluated. To this end, this paper explores and evaluates the impact
of the PP-NoCs parameters on system security; exploits PP-NoCs vulner-
abilities and demonstrates for the first time two very powerful attacks;
and proposes and integrates three new security countermeasures: RT-
blinding, RT-masking, and RT-shielding. Results show that PP-NoCs
are vulnerable to attacks and that is possible to uncover victim’s infor-
mation with high accuracy (up to 96.19%). On the other hand, protec-
tion techniques were able to harden the system, effectively and efficiently
mitigating the vulnerabilities while maintaining deterministic behavior.

Keywords: Network-on-Chip · Secure MPSoC · Timing side-channel
attacks

1 Introduction

Real-time applications (RTA) are becoming very popular as more embedded
systems enter in daily life. Examples include health care equipment, automotive
safety mechanisms, smart greenhouses, agriculture, avionics, and aerospace tech-
nology. Most of these systems require a powerful and efficient hardware platform,
where Multi-processor Systems-on-Chips (MPSoCs) are the status quo. Current
MPSoCs already support RTAs through ad-hoc solutions, such as real-time pro-
cessors [1], operating systems for critical applications [2] and Networks-on-Chip
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(NoCs) with Quality-of-Service (QoS) [3–5]. Although all these components per-
form RTAs successfully, the techniques, architectures, and implementations used
to ensure their predictability create security vulnerabilities. Consequently, any
security issue in these critical systems will also be critical. Security backdoor
can be easily exploited to affect the safety-related characteristics of the systems.
Therefore, to ensure the development of safety-critical systems, it is mandatory
to understand and to guarantee the security of these systems. In this work, we
contribute by identifying and discussing the flaws and opportunities in design-
ing secure real-time MPSoCs. In particular, we focus on this work in the on-chip
communication structure based on NoCs.

Recent works have shown the effectiveness of Priority-Preemptive NoCs (PP-
NoCs) in guaranteeing real-time requirements and support mixed-critically traf-
fic [4–7]. The works of [6] and [7] demonstrated that low priority traffic at PP-
NoCs can affect the high priority traffic behavior. Furthermore, these works elab-
orate on a mathematical model able to estimate such effects in terms of packet
latency. Despite these accurate models were developed to support the design of
predictable communication structures for critical applications, they also provide
a means for attackers to successfully retrieve sensitive data from the MPSoCs.
An adversary, for example, may use this information to perform the so-called
NoC timing attacks [8–10]. These attacks exploit the microarchitecture of the
NoC, the shared communication nature and the main role of the communica-
tion in the system operation to passively gather information during the normal
operation of the system [11]. A processor inside the MPSoC can be infected (i.e.,
an external malicious application with hidden functionalities or backdoors) and
then, it may start to inject dummy packets in the network. In this scenario,
the attacker aims to collide its traffic with a victim’s traffic. In the absence
of collisions, the attacker throughput is maximal. However, the degradation of
throughput sensed by the attacker reveals the presence of collisions. Sensitive
information, such as communication affinity (to whom the victim communicates
most), communication rates and size of packets, may be extracted using this
technique. In addition, this information may be used to further enhance pow-
erful attack (e.g., cache attacks), as described in [12,13]. The identification of
vulnerabilities and further exploitation of cover channels on the real-time NoCs,
like PP-NoCs, are still unexplored.

Previous attacks were demonstrated in a wide variety of NoC architectures.
However, NoC attacks on real-time MPSoC have been not widely explored. For
the best of our knowledge, our previous work in [14] is the only study in this
direction. This work introduced two attacks named Direct Interference and Back-
Pressure. These attacks exploit two MPSoC vulnerabilities. First the traffic pre-
dictability and shaping of sensitive applications. Second, the shared memories.
As a protection mechanism to circumvent potential attacks, this former work
proposed two NoC countermeasures. In this paper, we further extend the work
in [14] by providing a refined and deep analysis of the PP-NoCs vulnerabili-
ties. We explore the different design parameters that define the configuration of
a PP-NoC and evaluate their impact on the overall MPSoC security. Also, we
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propose a new countermeasure, which tunes the PP-NoCs parameters at design
time to avoid the main known vulnerabilities. In summary, the contributions of
the paper are:

– Vulnerability exploration of preemptive NoCs through the evaluation of the
impact of the PP-NoCs configuration parameters on the MPSoC security;

– Optimization of the previous two PP-NoCs attacks: Direct-Interference and
Back-Pressure; and

– Design, implementation and evaluation of three new protection techniques for
PP-NoCs: i) RT-Blinding; ii) RT-Masking and; iii) RT-Shielding.

This paper is organized as follows. Section summarizes existing NoC attacks
in literature. Then, Sect. 3 describes the Priority-Preemptive Network-on-Chip
concept, as well as, our hardware implementation of it. In Sect. 4, we show how
to exploit the analytical models of PP-NoCs to elucidate NoC vulnerabilities.
Thereafter, two attacks are described in Sect. 5. Then, security countermeasures
and their impact are presented in Sect. 6. Section 7 presents the experiments
and evaluation results. From the results a discussion is made in Sect. 8. Finally,
conclusions are drawn in Sect. 9.

2 Related Works in NoC Attacks and Protections

In this section, we describe the previous works that deal with the NoC vulnera-
bility exploration and security integration. The NoC-timing attack was the first
attack against NoCs mentioned in scientific articles [8,10]. These works described
for the first time the exploitation of NoC covert channels. A malicious agent
(attacker) inside the MPSoC can elicit channel leakage by the evaluation of the
throughput of the own injected packets (attacker packets). As routers are shared,
different packets must compete for the resources when they are being communi-
cated simultaneously. The communication collisions between the attacker packets
and sensitive traffic cause latency perturbations. Thus, affecting the attacker com-
munication throughput. This effect is shown in Fig. 1, where the attacker traffic
is represented as λO while victim traffic as λV . As a result, this congestion reveals
the sensitive traffic information of the victim. Examples of characteristics that can
be extracted by this attack are mapping, topology, routing, communication pat-
tern and volume of communication. The collisions are sensed by the attacker due
to the reduction of throughput to inject new packets in the network.

The first demonstration of NoC timing attacks was presented in [12]. In this
work, the authors show the effectiveness of the classical NoC timing attack and
of a powerful variation: Distributed NoC Timing Attack (DNTA). It uses two
or more attackers inside an MPSoC to better tune the MPSoC congestion and
thus to maximize the attacker observation capabilities. It was demonstrated that
DNTA was immune to the NoC countermeasures proposed in [10] and [15]. In
order to avoid NoC timing attacks and DNTA, the authors proposed Gossip
NoC, a security enhanced NoC able to identify traffic anomalies and avoiding
attacks through the on-chip traffic distribution. Each NoC router included a
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Fig. 1. Attack scenarios: (a) attacker traffic λO only; (b) attacker traffic λO blocked
by victim traffic λV .

monitor to detect possible points of attack. This information was used to adapt
the routing of packets. The attack was executed in an FPGA MPSoC prototype.
Similar approach was used in [16]. Despite the effectiveness of the detection and
protection mechanisms, these secure NoCs cannot meet hard communication
deadlines and only offer best-effort communication services.

Recently, the NoC timing attack has been used to enhance the capabilities of
dangerous cache attacks, creating extremely powerful attacks such as the NoC
Prime+Probe [17] and Earthquake [11]. In [17], the authors propose the NoC
Prime+Probe attack which uses the NoC timing attack to extract information
regarding the communication behavior between a cryptographic IP core and
a shared cache, a usual configuration of secure MPSoCs. By using the NoC
timing attack, it is possible for the attacker to detect, in a non-intrusive way, the
optimal point in time to probe the shared cache1. For a system that implements
the AES (Advanced Encryption Standard) symmetric cryptography based on a
transformation table (T-Table) implementation, the best attack point (increases
the efficiency of the attack) to probe the shared cache is at the end of the first
AES round. By using the NoC Prime+Probe, the authors retrieved 12 of the 16
key bytes after 80 AES encryptions.

In the Earthquake attack of [11], the authors use the NoC timing attack to
collect the time where the third round of AES starts. Earthquake manipulates
the input of the cryptographic IP core to force several cache collisions (i.e., cache
hits) until the third round of AES, thus causing faster encryptions/decryptions.
The faster results can be used to break the key. Since the important timing
information resides within the first three rounds, the NoC timing attack allows
the attacker to sample effectively (less noise) the time. This work presented the
first practical implementation of timing attacks.

Although NoC timing attack has been studied in different NoC configurations
and scenarios, attacks to real-time NoCs, specifically Priority-Preemptive NoCs,
have been not widely explored yet. For the best of our knowledge, the only works
that address attacks to real-time NoCs are [19] and [14]. The work of Indrusiak

1 Following the classical cache attack, Prime+Probe from Osvik et al. [18], the best
moment to probe a cache is when all the accesses to the cache depends only on the
value of the secret key used for encryption.
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et al. [19] showed the impact of the NoC routing in the security of the system.
As a protection mechanism, the authors proposed a packet route randomization
mechanism to increase NoC resilience against side-channel attacks. The route ran-
domization was based on an evolutionary optimization approach for effectively
controlling the impact on hard real-time performance guarantees. In our previ-
ous work in [14], we have demonstrated for the first time an attack that exploits
preemptive NoC-based MPSoCs. Also, two countermeasures were proposed.

The protection against NoC timing attacks has been addressed in the works
of [10,20–22] and [15]. The works of Yao and Suh [20] and Wassel et al. [21]
proposed the integration of hard Quality-of-Service (QoS) mechanisms to isolate
the sensitive information. They included temporal network partitioning based on
different priorities arbitration: high priority [20] and bounded priority [21]. The
work of Sepúlveda et al. [22] presented a secure enhanced router architecture that
dynamically configures the router memory space according to the communication
and security properties of the traffic. Furthermore, the work of Sepúlveda et al.
[10] proposed random arbitration and adaptive routing as protection techniques.
The work of Stefan and Goossens [15] introduced the usage of multiple path
communication for sensitive flows. The work of Reinbrecht et al. [12] showed the
Gossip NoC, an NoC architecture with a distributed protection mechanism that
changes the routing algorithm in the presence of abnormal traffic.

3 Priority Preemptive NoCs

Priority Preemptive NoCs (PP-NoCs) allow that high priority communication
flows preempt low priority packets on the NoC router. Thus, higher priority pack-
ets are preferentially communicated while lower priority packets remain stored
inside the router buffers. High priority traffic is assumed to be either periodic
or sporadic, as to avoid starvation of low priority packets due to continuous
high priority interference. This chapter presents the target MPSoC platform
(architectural scenario) used to demonstrate the attacks and the security of the
countermeasures. The on-chip communication structure is a parameterizable PP-
NoC. The architecture overview and functionality are further detailed.

3.1 Target MPSoC Platform

The MPSoC platform allows performing the practical study of the PP-NoCs
vulnerabilities. In such environment, the proposed PP-NoCs attacks and coun-
termeasures (Sects. 5 and 6, respectively) can be evaluated. In this work, we use
the Glass MPSoC, a parameterizable hardware platform presented in [11] and
which has been already used to evaluate logical side-channel attacks. To eval-
uate the PP-NoC vulnerabilities, the Glass NoC was modified to support the
priority-preemptive flow control.

Glass MPSoC is presented in Fig. 2. It integrates 16 tiles (from IP0 to
IP15) through 4 × 4 mesh-based PP-NoC. It supports several layers of memory
hierarchy. The MPSoC tiles include an inclusive shared cache (64 KB, 16-way
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set-associative cache L2) at IP0, serial UART interface at IP3 and 14 RISC-
V processing elements. We used a verified and functional RISC-V distribution
called RI5CY core, from the Pulpino Platform [23]. Besides the processor, each
of the 14 processing tiles integrates local instruction and data memories (8 KB,
direct-mapped cache L1), a cycle-accurate timer and a network interface to com-
municate with the NoC. The NoC routers implement credit-based flow control
with four virtual channels (each one at a different priority level) and Priority-
Preemptive routers.

Fig. 2. Glass-V MPSoC platform

3.2 Priority-Preemptive (PP) NoC Architecture and Functionality

To guarantee different real-time and mixed-critically requirements, communica-
tion on-chip is prioritized. That is, communication flows that are characterized
by tight delay requirements are granted the highest communication priority. A
preemptive policy allows a higher priority packet to anticipate (preempt) an
already progressing lower-priority packet. To support the preemptive communi-
cation technique, routers should be enhanced through the integration of virtual
channels. These additional structures are capable of storing a packet blocked
during its communication. When packets with the same priority-level dispute
a communication resource (collision), any arbitrary decision algorithm can be
applied, such as Round-Robin [3] or aging [5].
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The structure of the packets of the PP-NoC follows the typical packet orga-
nization. It includes a header flit, N payload flits and a trailer flit, where N can
reach a maximum of 1024 flits per packet. Besides these flits, nine control bits
are present in the links: header/trailer identification (1 bit), packet priority (2
bits), handshake (2 bits) and credit information (4 bits). A detailed description
of the router is given in the following paragraphs.

Priority-Preemptive (PP) Router: The proposed PP-router is defined to
support four different priority levels. It uses credit-based virtual channels to han-
dle different priority messages simultaneously (each virtual channel is a different
priority lane). Since the preemption of low priority packets by higher priorities
is allowed, this router supports packet interleaving. The PP-router integrates six
components as shown in Fig. 3:

1. Priority multiplexer: It is responsible for monitoring the packet priority and
selecting the proper input buffer.

2. Routing computing unit: It defines the output port of each packet.
3. Virtual channel (PP) allocator: It selects the active priority level at the output

port.
4. Switch allocator: It is a unit included for each priority level. It is used to

attend each request (of the same priority) using a Round-Robin arbiter to
cope with resource conflicts.

5. Crossbar: Also included for each priority level. It is used to connect the defined
input and output of the router.

6. Virtual channel demultiplexer: It links the active priority crossbar with the
output of the router.

Fig. 3. Priority-Preemptive router architecture

When a packet arrives at the input port, the priority information in the
control bits defines which input buffer will be used. This information is used
for referring the packet to the proper virtual channel. The buffers request the
proper output port for each packet being handled, where the virtual channel
allocator (VA Allocator) at the output port decides which virtual channel will
be granted by the crossbar. Hence, VA Allocator is responsible for providing the
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preemption feature. The output port always chooses the higher priority packet
to perform the data commutation. When different input ports dispute the same
output port and the level of priority is the same, the Round-Robin arbitration
takes place. It is implemented in the Switch Allocator of Fig. 3.

4 Exploiting Priority-Preemptive Models for Security

In this chapter, we show how the priority-preemptive models can be used to
evaluate vulnerabilities of the Preemptive Network-on-Chip (PP-NoC). First,
we present the existing models in the literature that predicts in detail the traffic
behavior. Thereafter, we use the IBN model to explore the PP-NoC vulnera-
bilities to NoC timing attacks. Also, we explore the impact that the PP-NoC
parameters have on the overall system security.

4.1 Priority-Preemptive Models

Scheduling of real-time systems requires the calculation of upper-bounds for
packet transmission delay. To evaluate if the system can meet the application
deadlines, analytic models can be used. Although these models were elaborated
to support designers to validate the real-time constraints, in this work we use
them as an important tool to evaluate vulnerabilities and elaborate NoC timing
attacks.

The Priority-Preemptive models allow estimating the worst-case latency for
different flows of packets in the NoC. We define flow i as λi, where the flow
represents the first flit leaving the origin node until the last flit arrives at the
destination node. In the sequence, three models developed in previous works are
here described: i) SB model; ii) XLWX model; and iii) IBN model.

SB Model: The work of [6] presents the SB model to predict packet network
latency. It is based on direct and indirect interference from other traffic flows
and calculates the upper-bound interference suffered by a communication flow.
When no flow interferes with λi, the worst-case latency is given by the flow’s
zero-load latency (Ci), given by Eq. (1):

Ci = RouteL ∗ (routei − 1) + LinkL ∗ (routei) + LinkL ∗ (Li − 1) (1)

Where RouteL is the router latency in cycles, routei is the contention domain
of λi in hops, LinkL is the link latency in cycles and Li is the number of flits
in each packet of λi. The direct interference presented in this model can be
seen in Eq. (2). The worst-case response Ri is quantified by the summation of
two components: the flow’s zero-load latency (Ci) and the worst possible delays
resulting from blocking and preemption caused by higher priority packets.

Ri = Ci +
∑

λj∈SD
i

⌈
Ri + Jj

Tj

⌉
Cj (2)
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The worst-case delay is the summation of the effects of all interfering flows
on the contention domain (cdij), defined as the interference Set SD

i , which is
the path λi intersects with the interfering higher priority λj . This equation is a
recurrent ceiling function that depends on the relation between release jitter (J)
in cycles, the period of the flow (T ) in cycles, and the flow latency (R), also in
cycles. The equation is calculated until the result converges.

XLWX Model: Xiong et al. [24] presented the XLWX model. The work
extended the SB model to support Multi-point Progressive Blocking (MPB) for
downstream indirect interferences. MPB takes place when a flow λi is preempted
by a flow λj by more than its base latency Cj . This scenario usually occurs when
a third flow λk interferes with λj downstream from the link that λj interferes
with λi. The model can be represented by Eq. 3.

Ri = Ci +
∑

λj∈SD
i

⌈
Ri + Jj + JI

j

Tj

⌉
(Cj + Idown

ji ) (3)

Where JI
j = Rj − Cj is used to calculate the effects of upstream interference

of λj , Idown
ji is the number of hits suffered by λj from every λk in the downstream

indirect interference Set of λi, given by Eq. (4):

Idown
ji =

∑

λk∈S
downj
Ii

⌈
Rj + Jk

Tk

⌉
(biij) (4)

Where biij = buf · LinkL · |cdij | is the maximum buffered interference over
the contention domain cdij , Rj is the worst-case latency experienced by λj , buf
is the routers FIFO buffer size, and Tk is the release period of packets for λk.

IBN Model: The work of Indrusiak et al. [7] proves that the analysis proposed
by Xiong et al. [24] for downstream indirect interference is overly pessimistic
since it treats all interferences as direct interference. The authors improve the
XLWX model by presenting an upper-bound analysis. In order to find Ri, two
cases are considered when calculating the upper-bound for downstream interfer-
ence Idown

ij . First, when interference is caused by flows that do not suffer from
upstream and downstream interference. Second, when interference is caused by
flows that do suffer from upstream interference. The first case is described by
Eq. 5. It includes the effects of the maximum buffered interference (biij) and
the high priority flows downstream. The latter case is identical to the analysis
proposed by Xiong et al. [24].

Idown
ji =

∑

λk∈S
downj
Ii

⌈
Rj + Jk

Tk

⌉
min(biij , Ck + Idown

kj ) (5)

Even though these models give guarantees regarding the system’s ability to
meet the deadlines, the predictability of the system allows an attacker to take
advantage of the additional information about the system behavior, especially
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packet delay times. This data could be used to create a refined NoC timing attack
(exploiting thresholds), allowing an attacker to skip the costly attack setup and
tune phases as showed in [12]. These phases usually are dedicated to monitor
the throughput in order to find a value that allows an attacker to have a com-
munication sensibility such that sensitive packets are efficiently and effectively
detected (attack threshold). The details regarding the estimation of the latency
experienced by preempted packets will be explored in the next Sect. 4.2. We show
that it is possible for an attacker to further extract information of the sensitive
flow (victim’s flow), such as packet sizes. We refer to the improved version of the
XLWX model as the IBN model, and it will be used for the rest of this paper.

4.2 PP-NoC Vulnerabilities

The analytical model used to predict the behavior of the PP-NoCs can reveal
information regarding the system operation that can be exploited by an attacker.
As described in [14], two vulnerabilities can be found at PP-NoCs: Direct-
interference and Back-pressure.

Fig. 4. Flow representation of the discussed vulnerabilities: (a) back-pressure (b) inter-
ference

Direct-Interference Vulnerability. It takes place when two flows with dif-
ferent priorities dispute the same output port, such as in Fig. 4.b. The flow λo

is preempted by a higher priority flow λv and a contention occurs at router
R3. Direct measurements of transmission latency times can be used to retrieve
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predicted access times of secure flows. In this case, only direct interference was
considered. We call the preemption caused by high priority messages as interfer-
ence, and since high priority messages can occur all over the system, we consider
this feature as a vulnerability only when the attacker and the victim can be
placed close enough to avoid external interference (caused by a third IP core
communication flow). In the case of an attacker be placed distantly from victim
traffic, the interference behavior from higher priority packets can be used as a
protection technique, since it becomes a source of noise in the attacker measure-
ments. As a result, a high amount of false-positive sensitive packet detection is
caused to the attacker.

Back-Pressure Vulnerability. This vulnerability is based on the MPB sce-
nario. It considers three communication flows λv, λi and λo, originating from
routers R5, R1 and R0, ordered from highest priority to lowest, respectively. In
this scenario, represented in Fig. 4.a, the flow λi preempts all packets from λo.
However, when the high priority flow λv is injected, a contention occurs at R3

and λi is preempted. Then, packets start to accumulate on the upstream routers
from R3 until all buffer space in the upstream path is used. As a result, all of the
buffer credits from λi are expended, allowing λo to take over the transmission
in the path. Based on Eq. (3), it is noticed that when λv stops transmitting, λo

gets preempted by more than λi baseline latency, due to the accumulation in
thecdij buffers.

4.3 Exploiting PP-NoC Through IBN Model

To evaluate the vulnerabilities of the PP-NoC, the IBN model can be used. In
this case, the impact of each PP-NoC parameter of the IBN model on the security
of the system is explored. The multiple parameters described by the equations
in the previous sections can be classified into three different categories: i) Net-
work Interface (jitter); ii) Router (Buffer size); and iii) Application parameters
(transmission period and packet size). As described in Subsect. 4.1, each of the
analyzed flows (λv, λo, and λi) has a set of proprieties as: zero-load latency (C)
in cycles, worst-case latency (R) in cycles, and packet period (T ) in cycles. Also,
the network itself has parameters that influence the latency of packets, such as
router buffer-size in (buf) flits, packet release jitter (J) in cycles, link latency
(LinkL) in cycles, and the contention domain cdij (e.g., the routers where two
flows intersect). The range of values explored for each one of the parameters of
the PP-NoC is shown in Table 1.

Direct Interference Evaluation. Each PP-NoC configuration is obtained
after defining the values of the different PP-NoC parameters. The previously
discussed IBN model can be used to further understand the behavior of the sys-
tem. The Eq. (2) can be used with the corresponding PP-NoC values. Initially,
an oscillation of the resulting value Ri is observed and by using recursively this
mathematical expression, until a stable value is reached. However, for some PP-
NoC configurations the stable value is never reached (the equation diverging to
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Table 1. Selected parameters for network interface, router and application.

Parameters Values

Router buffer size (flits) (LinkL) 4 8 16 32 64

Packet transmission period (% of 1000 cycles) 10% 20% 30% 40% 50%

Release jitter (cycles) 4 8 16 32 64 128

Flow packet size (flits) 4 8 16 32 64 128

infinity). These scenarios lead to stalls and they are not considered nor evaluated
in this paper. Table 2 presents 10 different PP-NoC configurations considered as
representative candidates of all possibilities evaluated.

Table 2. Different configurations of parameters for direct interference.

Parameter Config 1 Config 2 Config 3 Config 4 Config 5 Config 6 Config 7 Config 8 Config 9 Config 10

Jitter (Cycles) 4 4 4 4 8 16 32 128 64 64

λv Period

(Cycles)

200 200 500 300 200 200 200 500 500 200

λo Size (Flits) 4 128 128 128 128 16 64 128 64 64

The Direct-interference vulnerability may be used to exploit the PP-NoC as
a cover channel. By manipulating specific communication flows, the informa-
tion of a victim flow can leak. In the Direct-Interference case, the victim v is a
high priority flow that will directly affect the low-priority attacker o. Figure 5
presents the impact of the victim’s packet size on the attacker’s flow delay.
Results show that some PP-NoC configurations exhibit a greater latency sen-
sibility when the packet size increase. This evaluation has not been presented
before and the results allow the designer to identify potential leakages in PP-
NoCs. Consequently, there are configurations that mitigate the observation of a
potential attack. The strategy uses this benefit to protect the MPSoC will be
further discussed and presented in Sect. 6.

Figures 6(a) and 6(b) present the difference in latencies for all considered con-
figurations. Each area represents the delta for subsequent packet sizes, meaning
that there is an expressive difference in terms of the latency when the packet
size is increased. Some configurations (e.g., Dif 16–32) raise this difference even
further (an increase of almost 400%). When the difference is large enough, the
attacker is able to easily differentiate the victim’s packet size.

Back-Pressure Vulnerability Evaluation. In order to evaluate the Back-
Pressure vulnerability (or indirect interference), Eqs. (3) and (5) must be used.
These calculations involve a wide variety of variables. As a consequence, the
exploration space is wider, that is, there are a wide variety of PP-NoC config-
urations. In this paper, a representative set of this design space was selected.
Table 3 presents the 10 different PP-NoC configurations selected for the study.

Figure 7 shows that the victim’s packet size does not produce a linear influ-
ence for all configurations of the PP-NoCs. For some PP-NoC configurations,
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Fig. 5. Interfering packet size effect in direct interference latency.

4, 8, 16 and 32 flits 32, 64 and 128 flits

Fig. 6. Value of the difference in latency between packet sizes of interfering flow

Table 3. Different configurations of parameters for back-pressure.

Parameter Config 1 Config 2 Config 3 Config 4 Config 5

Injector packet size (flits) 4 4 8 8 8

Observer packet size (flits) 4 4 4 8 32

Injector period (cycles) 100 300 100 300 500

Victim period (cycles) 100 300 200 500 300

Jitter (cycles) 4 8 8 64 8

Buffer size (flits) 4 16 4 64 4

Parameter Config 6 Config 7 Config 8 Config 9 Config 10

Injector packet size (flits) 16 16 32 32 128

Observer packet size (flits) 8 32 64 128 32

Injector period (cycles) 500 300 200 500 300

Victim period (cycles) 200 300 100 100 500

Jitter (cycles) 32 64 16 4 4

Buffer size (flits) 32 32 8 32 8
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such as Config 2 and Config 5, the packet size does not influence at all on the
latency experienced by the observer. In contrast, for some PP-NoC configura-
tions, such as Config 8 and Config 9, the packet latency is not easily predictable.
As a conclusion, for some PP-NoC configurations, the Back-Pressure attack could
not yield information about packet sizes, even if it could detect them.

Fig. 7. Interfering packet size effect in indirect interference latency.

5 Proposed Attacks

This section presents two attacks based on the vulnerabilities already presented.

5.1 Direct-Interference Attack

This attack explores the interference vulnerability and it is performed in three
phases. In the first phase, the latency upper and lower-bounds are calculated
based on the different parameters (PP-NoC configuration and attacker’s flow).
This generates a range of values of the expected latency for the observer’s packets
being preempted. This information can be used to increase the precision of the
NoC timing attacks. In the second phase, an IP core is infected (through a mali-
cious software or the trigger of a Trojan), in order to create the λo flow from the
attacker through the secure flow’s path (see Fig. 4(b)). The Direct-Interference
attack requires a close engagement of the attacker on the secure traffic observa-
tion. The attack applies measurement of the interference from the secure flow close
to the target path while trying to avoid at maximum interference from non-victim
flows (also called indirect interference). The third and final phase employs a math-
ematical algorithm to correlate the timing results collected by the attacker’s mon-
itor to infer an unknown key or private information. From this point, the attacks
presented in [25] or [26] can be performed to retrieve secret information.

Attack Conditions: In order to execute this attack on a PP-NoC, the following
conditions are required:
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– The attacker can infect at least one IP in the MPSoC with malicious software
or any other infection technique.

– This IP has to be, at most, one-hop away from the secure flow.
– The attacker knows where the target elements are located in the NoC (logical

addresses).
– The attacker knows the topology and routing algorithm of the communication

infrastructure.

Attack Optimization: This attack can be optimized in a way that can retrieve
not only the victim’s traffic pattern but also the size of the messages exchanged.
The size of the packets provide important information that can be correlated with
the sensitive application running. For example, it can reveal if the AES cryptog-
raphy uses T-table (32-bit information) or S-Box (8-bit information) implemen-
tation. In addition, it may reveal the bit width of the keys distributed in the
system. Finally, by knowing the granularity of the information and the moments
of data transfers, more sophisticated and efficient attacks can be elaborated.

In order to achieve this, modifications are performed in the phases of the
Direct-Interference attack. In the first phase, a range of values for Ro and Co is
calculated, based on the jitter, attacker packet size, and possible victim period
and packet size. The attacker will then monitor the latency of it’s packets and
filter configurations that lead to an Ro value smaller than the one measured.
For example, assuming a NoC with a Jitter of 4 cycles, if the attacker chooses
a large packet size (e.g., 128 flits), there will be a discernible difference in Ro

for victim packet sizes (e.g., 710 cycles for 128 flits, 98 cycles for 32 flits, and 42
cycles for 4 flits), as it can be seen in Config 2 in Fig. 5. Therefore, an attacker
can distinguish with less effort the size of victim‘s packet.

5.2 Back-Pressure Attack

This attack explores back-pressure vulnerability. It uses the same first and third
phases of the Direct-Interference attack. In contrast with the previous attack,
the second phase of the Back-Pressure attack requires the infection of two IPs:
an injector IP and an observer IP. The injector IP is responsible for creating
traffic interfering with the observer IP, λi flow as shown in Fig. 4(a). The λi

flow intends to accumulate back pressure until the buffers are filled. When the
priority flow (victim flow), λv, preempt the injector, the observer flow, λo, will
be released to proceed. Therefore, the observer understands that the secure flow
has been communicated through the increase of its transmission throughput.
Besides, the observer can use Eq. (3) to calculate specific features of the secure
flow, such as message size.

The predicted advantages of this type of attack are its ability to infer sensitive
information of high priority packets indirectly, while not being necessarily close
to the target path of the secure flow. This allows more flexibility for the attacker
and expands the range of MPSoC configurations that could be targeted. In the
same manner as the previous attacks, from this point, different methodologies
can be applied to successfully perform a complete logical Side-Channel attack.
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Attack Conditions: In order to execute this attack on a PP-NoC, the following
conditions are required:

– The attacker can infect at least two IPs in the MPSoC with malicious soft-
ware.

– The attacker knows where the target elements are located in the NoC (logical
addresses).

– The attacker knows the topology and routing algorithm of the communication
infrastructure.

– The attacker is able to create low and medium priority messages.

Attack Optimization: In the same manner as the previous attack, this attack
can be optimized to retrieve other characteristics of the victim‘s traffic rather
than pattern. To retrieve the granularity of the packets, modifications are pre-
formed to the Back-Pressure attack.

Before describing the optimized methodology, note that Back-Pressure vul-
nerability is affected by much more parameters of the NoC than direct-
interference. Hence, it is more difficult to guarantee the attacker knows or can
infer all required information. However, once the attacker knows the parameters,
the optimized attack is possible. Therefore, the attacker has first to conduct an
exploration of the NoC parameters, and then evaluate the best configuration
of attacker packet sizes and period to match with the victim‘s behavior. For
example, in an MPSoC with jitter of 64 cycles and buffer size 64 flits, if the
attacker applies an injector period of 300 cycles, and packet sizes of 8 flits, the
latency experienced by the observer would be 310 cycles for 128 flit packets, 122
cycles for 32 flits, and 66 cycles for 4 flits. As observed, the differences allow the
attacker to distinguish the size of the messages.

6 Proposed Countermeasures

Our proposed attacks depend heavily on the preemption caused by secure flows.
Hence, we propose three main strategies to mitigate the risk of a successful attack
on PP-NoCs: a) RT-Blinding, b) RT-Masking and c) RT-Shielding.

6.1 RT-Blinding

The blinding strategy relies on the timely delivery of payloads by the secure
IP. The Back-Pressure attack identifies high priority flows and assumes they
are sensitive flows being exchanged through the PP-NoC. One possible way to
avoid detection is to use dummy high priority payloads intentionally. Delivered
at predefined intervals, these payloads could be replaced by an actual secure
packet when needed. In this scenario, the victim has fixed time slots to send
it‘s high priority secure packages. Since the attacker has no way to differentiate
between a secure flow and a simple high priority flow, the attacker would not be
able to determine whether it is an actual payload.
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This interval would be determined by calculating the maximum acceptable
delay that the secure application could endure. This application-dependant value
is then used as a baseline for all high priority transmissions. The secure appli-
cation must calculate it‘s zero-load latency C, with Eq. 1. The drawback of this
approach is the increase in traffic in the NoC, which, in turn, may compromise
the overall system performance. However, since secure flows are intended to be
sporadic, it is expected that the average time defined in the time slots will be
high enough to avoid performance penalties.

6.2 RT-Masking

The masking strategy proposes the saturation of the channels when a high pri-
ority (secure) flow is passing. Our proposed protection technique, nicknamed
as Distraction, employs several high priority dummy packages sent prior and
after the actual secure package to pad the channel. In this scenario, the secure
flow is extended to have a random number of dummy packets sent with the
secure packet. This would effectively mask the actual timestamp of the packet
and message size, as each secure package would be sent in a random position of
this enlarged secure flow. When the high priority flows are replaced by normal
priority flows, our proposed protection technique, nicknamed as Avoidance, can
be triggered. It masks the secure flow with the saturation of the normal priority
channels.

An IP, defined at design time, would be responsible for generating a random
series of large normal priority packets directed to the sensitive path of the target
IP. The goal of this technique is to generate interference with the normal priority
attacker packets which will be defined by the round-robin arbiter. Thus, the
secure packets could be sent to the defined router, where they would preempt
both the attacker’s traffic and the companion normal priority buffered traffic.

6.3 RT-Shielding

Both of the previous countermeasures could be employed at the application level
or with little modification to the design. The RT-Shielding strategy uses instead
the models, described in Sect. 4.2, to build a NoC that makes the distinction
of victim traffic by the attacker more arduous. It accomplishes this by setting
the routers or the network interface with a specific set of parameters (i.e., buffer
size, jitter). In this manner, the attacker would not be able to attack since by
definition of the models certain configurations do not present interference in low
priority packets. Furthermore, if the most security-critical paths in the system
can be established at design time, only few routers and network interfaces require
adjust, reducing the overall costs of choosing this strategy.

The RT-Shielding strategy relies on the redesign of NoC parameters, such
as jitter and buffer sizes to prevent any possible interference to be used by
an attacker. The direct interference equations only use jitter parameter, so an
exhaustive analysis for different configurations was elaborated, where 17 of these
different configurations can be seen in Fig. 8. It is clear on Fig. 8 that jitter



226 B. Forlin et al.

has an effect on Latency at higher values, while maintaining a more constant
behavior at lower settings. Hence, to avoid direct interference in the system,
the IPs considered as victim in the system should have network interfaces with
fast injection times (reduced jitter). In practice, this means to design a network
interface with a small size of buffers, as they increase the delay to inject a packet
in the network. Based on our results, we consider any value below 32 cycles as
secure.

Fig. 8. Effect of jitter in different configurations.

For indirect interference, buffer sizes of the routers and the jitter have to be
taken into account. The impact of these parameters was evaluated by calculat-
ing all possible configurations of Router, Network Interface, and applications.
As with direct interference, some configurations resulted in infinite latencies, so
these were filtered, only leaving the viable sets. The plot of all these configura-
tions can be seen in Fig. 9. On the other hand, in Fig. 9, it is possible to see the
impact of the buffer size of the routers by itself, and how this size emphasizes
other variables, creating new spikes of latency. This effect is probably caused by
buffered interference, as the accumulated flow λi will take longer to dissipate.
In the case of the indirect interference vulnerability, large buffer sizes between
the observer and the injector are detrimental to the attack, as there is plenty of
time for victim behavior to be obfuscated. Therefore, for a secure NoC, Buffer
Sizes outside critical paths should aim for higher values.

7 Experiments and Results

This section presents the setup of all experiments, the results of the efficiency of
the attacks, and the decrease of attack efficiency under countermeasures.
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Fig. 9. Latencies for all viable configurations, when comparing 4 flit buffer and 64 flit
buffer.

7.1 Setup of Experiments

In this subsection, the scenarios considered and metrics used to evaluate the
attack’s efficiency are presented. All experiments were executed through RTL
MPSoC Glass simulations. The Routers were configured to have a buffer size of
32 flits and a jitter of 64 cycles.

Scenarios. Two scenarios were elaborated and mapped into the target platform.
The first scenario (Scenario 1 ) uses IP13 as a trusted RISC-V that provides
encryption services. This processor runs the AES-128 encryption as a T-Table
implementation [13], whose algorithm uses huge tables that must be accessed in
the shared cache located at IP0. In the second scenario (Scenario 2 ), IP1 and
IP13 exchange messages to perform the Diffie-Hellmann (DH) key establishment
protocol. DH protocol requires intense communication, therefore, three message
sizes (packet granularity) were evaluated in our experiments: 32 flits (KEY32),
64 flits (KEY64), and 128 flits (KEY128). The following paragraphs describe the
preparation and execution of the attacks.

Evaluation Metrics. To evaluate the effectiveness of the attacks, three metrics
are defined:

– False Positives (FP), which measures the percentage of wrong guesses among
all guesses of the attacker. Note that these guesses represent the victim’s
traffic occurrence time

– Observation Efficiency (OBS), which refers to the percentage of correctly
guessed (observed) by the attacker of the total victim’s traffic occurrence
times

– Attack Efficiency, that relates the FP and OBS. It is described by Eq. (6).
Note that the FP shows the quality of the information collected and OBS
shows the sensitivity of the attack observation

Efficiency = Obs ∗ (100% − FP ) (6)



228 B. Forlin et al.

Direct-Interference Attack Execution. To perform the Direct-Interference
attack in the Scenario 1 the three phases are executed. During the first phase,
IP5 is infected and the desired flow configuration (packet size and injection rate)
is calculated so to maximize the attacker‘s observation. We desire to calculate
the attacker latency Ra for direct interference, therefore we use Eqs. (1) and (2).
The system parameters needed by the attacker are all queryable by the attacker
in the infected IP.

During the second phase, IP5 starts to inject a high volume of small packets
(4 flits) to the IP9 (at low priority). Meanwhile, the encryption runs at IP13.
When a cache miss occurs at the local L1 memory of IP13, a request to the L2
shared cache is performed through the NoC. The shared cache L2 responds to
IP13 request with high priority flow. Such flow preempts the attacker’s flow at
IP5 at the Router11.

For Scenario 2, the key exchange application, the same behavior of preemp-
tion takes place. IP1 and IP13 exchange a high volume of high priority messages,
which are intersected by the attacker’s flow at Router11. The attacker records
all latencies of the transmission. Any increase in latency above the calculated
threshold Ca is marked as a sensitive traffic point.

Back-Pressure Attack Execution. The execution of the Back-pressure attack
at Scenario 1 is performed in three phases. First, IP6 and IP7 are infected,
becoming the observer (low-priority) and the injector (medium-priority), respec-
tively. Then, the attacker calculates a range of expected latency values for the
defined attacker flow.

In contrast with the Direct-Interference attack, Eqs. (3) and (5) are used
to calculate the indirect interference from the injector. In the second phase, the
planned flow is executed. Injector IP generates large packets (128 flits) addressed
to the IP9. Meanwhile, the observer sends data to IP5 (4 flits). The encryption
is performed at IP13, provoking cache misses. As a result of the cache hierarchy
handling, the shared cache responds to the data requests with high priority flows.
This traffic preempts the flow from IP6 at the Router11. Thus, IP6 flow gets
buffered on the route. Hence, the flow of IP7 is now free to transmit its packets
downstream.

For Scenario 2, the cores exchanging key information are IP1 and IP13.
Since this operation also uses high priority messages, the injected packets of
the attacker at IP6 are also preempted at Router11. This condition releases
observer traffic. Any delay of the observer latency at the execution stage, based
on the threshold found in phase 1, is considered as the identification of a sensitive
packet. For our experiments, the injector packet’s were sized so to guarantee that
any interference always generates maximum back-pressure.

7.2 Evaluation of Attacks

Table 4 shows the results for the Direct-Interference attack, in which the attacker
acts as the injector and observer. Small packets are not able to fill the buffer
space in the route fast enough for contention to occur. On the other hand, bigger
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packets take longer time to be generated, and therefore, sensitive information
can be lost in the meantime. Especially, when dealing with smaller packets as in
an AES execution, where the victim received packages of 16 flits from the shared
memory. The results for the Back-Pressure attack show an overall lower detec-
tion capacity in comparison with the Direct-Interference attack. However, these
strategies were able to correctly detect smaller packets, such as the packets gen-
erated by the AES encryption. The main reasoning behind this is that since the
observer is constantly starved, the liberation of its flow is almost instantaneous,
while the smaller packets guarantee a faster observation in the increase of the
throughput. This occurs even in the case where the injector flow is preempted for
a very small period. We can also observe that in general, bigger packets are easier
to detect in the NoC. As in the cases of key exchanges with larger granularity.

Table 4. Evaluation results of the attacks under unprotected MPSoC in two scenarios.

No protection

DI attack BP attack

FP Obs. Efficiency FP Obs. Efficiency

Scenario 1 - AES 0% 71.29% 71.29% 0% 72.07% 72.07%

Scenario 2 - KEY32 0% 93.53% 93.53% 0% 80.43% 80.43%

Scenario 2 - KEY64 0% 93.95% 93.95% 0% 81.25% 81.25%

Scenario 2 - KEY128 0% 96.19% 96.19% 0% 87.18% 87.18%

7.3 Evaluation of Countermeasures

The objective of the countermeasures is either distracting the attacker or avoid-
ing the attacker through false traffic. The countermeasures added 2% of overhead
in performance, which is related to the setup time to activate the defense mech-
anisms. Note that the elaboration of countermeasures also took into account the
IBN model. As a result, all real-time constraints were met. Table 5 shows the
results of both countermeasures under both scenarios.

RT-Blinding: The RT-Blinding strategy pad the sensitive information with
high priority packets. These padding packets are sent from the victim’s IP in a
time table-fashion. In addition, they are identical in terms of size and destination.
Therefore, without a frame of reference, the attacker could not identify which of
these packets (the sensitive packet or the padding packets) is the actual secure
message. In this test scenario, one of each four packages is a real secure packet.
In our test system, these values were defined as maintaining a latency below an
arbitrary threshold. In a real system, this would be defined at design time, based
on the critical application and the hard time constraints. In both attacks, the
result of the countermeasure is a plummet of efficiency values through all of the
scenarios. This comes at the cost of having four times as many secure packages
on the NoC, possibly preempting other flows beside the attackers.
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RT-Masking: The RT-Masking strategy saturates the attacker with low-
priority packages. To accomplish this, without undermining performance for the
secure process, we employ another IP (Defender IP) which sends medium-sized
(32 flits) and low priority packages at random intervals (pseudo-randomness
achieved by a Linear Feedback Shift Register function). For the Scenario 1, this
dedicated IP is defined as IP1 at design time, and ideally, it would be placed
as close as possible to the cache memory, as the attacks target the returning
message of the cache. For the Scenario 2, the Defender IP is placed at IP2, and
in other scenarios should be placed as close as possible to the secure processor.
As observed in Table 5, the effects of this strategy in the Direct-Interference
Attack are closely related to the package size of the secure flow. When the size
of the Defender’s IP package is equal or close to the secure package, there is a
heavy loss of efficiency. This is a consequence of the inability of the attacker to
differentiate the latencies caused by the congestion of the same priority pack-
ets (Defender) and the high priority packets (Victim). However, larger secure
packages produce a higher effect on preemption, thus turning easier to distin-
guish the latency thresholds. The Back-Pressure attack remains unaltered by the
countermeasure. This is the result of the utilization of the sensitive path by the
Defender IP, whose packets are exchanged with low priority to avoid important
performance penalties. Since the Back-Pressure attack uses medium priority in
the sensitive traffic path, the defender IP will not affect this attacker.

RT-Shielding: The RT-Shielding strategy avoids direct interference and back-
pressure interference by designing the NoC properly. It has large enough buffers
to sustain the throughput of potentially malicious traffic while providing a struc-
ture to quickly transmit sensitive packets. This approach can be theoretically
guaranteed by applying the IBN model equations discussed in Sect. 4.2. In our
experiments, the four routers in the sensitive path (i.e., routers 11, 12, 21 and 22)
had its buffers increased. Two configurations were evaluated, using 64 flits and
128 flits. To decrease the time to propagate sensitive packets in the system, the
sensitive IPs (i.e., IP 13 and IP 1) were configured with low jitter - 4 cycles - Net-
work Interfaces. To guarantee a minimal difference between the jitter of trusted
and non-trusted IPs, the other network interfaces were configured with a jitter
of 32 cycles, especially for IP 5, IP 6, IP 9, and IP 10. In addition, to comprise a
scenario where a jitter of 4 cycles would affect the performance of the sensitive
IPs, we also tested the system with 32 cycles as low jitter (for sensitive IPs),
and 128 cycles as high jitter (for other IPs). In total, four different PP-NoCs
were evaluated under both Direct-Interference and Back-Pressure attacks. As
expected, the attacks did not experienced latency degradation, obtaining zero
observability in the system.

Note that RT-Shielding provides a very efficient countermeasure that avoids
any performance issue. However, it imposes several limitations as a protection
mechanism. First, it increases the hardware considerably. Second, it is tailored
to specific attacks; thus it is not guaranteed that variations of these attacks can
be avoided as well. And finally, since this is defined at design time, there is no
flexibility concerning the applications running.
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Table 5. Evaluation results of the attacks under RT-Blinding and RT-Masking coun-
termeasures (S1 - Scenario 1 ; S2 - Scenario 2 )

Masking countermeasure Blinding countermeasure

DI attack BP attack DI attack BP attack

FP Obs. Efficiency FP Obs. Efficiency FP Obs. Efficiency FP Obs. Efficiency

S1.AES 72.38% 71.29% 19.69% 0% 72.07% 72.07% 75% 71.29% 17.82% 75% 72.07% 18.02%

S2.KEY32 91.85% 93.53% 7.41% 0% 80.43% 80.43% 75% 93.53% 23.38% 75% 80.43% 20.11%

S2.KEY64 88.08% 93.95% 11.20% 0% 81.25% 81.25% 75% 93.95% 23.49% 75% 81.25% 20.31%

S2.KEY128 20.75% 96.19% 76.23% 0% 87.18% 87.18% 75% 96.19% 24.05% 75% 87.18% 21.79%

8 Discussion

In this section, we clarify why the assumptions used for the attacks are practical.
Regarding having a malicious IP inside the MPSoC, mobile and embedded sys-
tems allow external software to run on the devices (under low privileges). These
external applications may hide malicious code (also known as Trojans), which
configures a system or IP infection. Another way to have an attacker in the
system is when a hidden functionality is embedded in a third-party hardware
IP (also known as Hardware Trojan). Regarding the knowledge of the logical
location (i.e., mapping in the NoC), typically the Operating System provides
an API that points system services to logical addresses. Even if the IP is in
another processor, there will be some logical identification by the system man-
ager. Sometimes, the documentation clarifies the logical (or even the physical)
addresses of the system components. About topology and routing knowledge, if
the technical documentation of the device does not disclose this information, it
is possible to infer it by injecting traffic into the NoC and observing the physical
behavior (power, timing). Regarding the application privilege levels, note that
the attacks do not require a high priority level. It is expected, that any applica-
tion will have a minimum of privilege in the real-time service (at least two levels
of privileges). For the one-hop location requirement, the attacker does not need
to know the distance. The drop in attack efficiency will reveal to the attacker
that this condition is not met. This allows location tuning by the attacker.

9 Conclusion

In this paper, we have shown that Priority-Preemptive NoCs are vulnerable to
logical side-channel attacks. The accurate analytical model developed for these
systems to prove their demanding time constraints may be used to develop pow-
erful attacks. The predictability of such systems provides the attacker with accu-
rate information before the chip infection. We create two three-phase attacks:
Direct-Interference and Back-Pressure. These attacks exploit two MPSoC vul-
nerabilities: i) the traffic predictability and shaping of sensitive applications.
These attacks may detect key updates in the MPSoC. Key refreshing in sensi-
tive applications is a common practice and it is usually performed through a
key exchange protocol that presents a very specific traffic pattern. This can be
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exploited to determine the attack’s momentum; and ii) the shared memories,
which is a very common practice in MPSoCs. The time or access of the cache
can be integrated with NoC timing attacks to reveal the secret key. We show
that critical time systems must consider security already during the design stage.
We demonstrated that providing lightweight security to critical systems while
guaranteeing the time constraints is feasible.
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10. Sepúlveda, J., Diguet, J.P., Strum, M., Gogniat, G.: NoC-based protection for SoC
time-driven attacks. IEEE Embed. Syst. Lett. 7(1), 7–10 (2015)

11. Reinbrecht, C., Forlin, B., Zankl, A., Sepúlveda, J.: Earthquake - a NoC-based
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Abstract. Offset compensation (OC) systems are indispensable parts
of multi-Gbit/s optical receiver (RX) frontends. Effects of offset are
addressed in this chapter. The analytical expression for the highest lower-
cut-off frequency of the OC with minimum impact on the sensitivity is
found. Existing OC solutions are discussed. Then, a novel mixed-signal
(MS) architecture is introduced which uses digital filtering of the signal,
and current-digital-to-analog converters to compensate the static offset
in the limiting amplifier. In the transimpedance amplifier both static
and dynamic offset are compensated. By using two feedback loops and a
continuous tracking the presented solution offers more functionality than
other existing MS architectures. Three RX implementations, with RC,
switched-capacitor (S-C) and with the MS-OC architectures, in the same
28 nm bulk-CMOS are compared quantitatively with measurements. The
presented MS design reaches a lower-cut-off frequency of under 9 kHz, a
dynamic range of over 1 mA, 3.2µA residual input offset-current and it
is compensating the RX via two feedback loops. The presented system
offers a higher flexibility and functionality in implementation, as well as
a very good compromise between area, precision and performance over
the commonly used RC-filter and S-C filter based solutions.

Keywords: Optical receiver · Offset · Offset compensation ·
Mixed-signal control loop · Residual offset · Lower-cut-off frequency ·
Transimpedance amplifier (TIA) · Limiting amplifier (LA)

1 Introduction

Optical links provide a cost- and power-efficient alternative to copper-based elec-
trical interconnects for multi-Gbit/s (×10 Gbit/s), short-range (<100 m) appli-
cations [1]. In board-to-board or rack-to-rack communications vertical-cavity
surface-emitting laser (VCSEL) based multi-mode fiber (MMF) interconnect is
the preferred choice over modulator with single-mode fiber. The reason behind
is that the VCSEL driver power consumption is lower, voltages can be handled
by CMOS technologies, while assembly and alignment efforts as well as costs are
less in comparison to modulator-based transmission. In order to achieve the best
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C. Metzler et al. (Eds.): VLSI-SoC 2019, IFIP AICT 586, pp. 235–255, 2020.
https://doi.org/10.1007/978-3-030-53273-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53273-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-53273-4_11


236 L. Szilágyi et al.

Fig. 1. Optical communication link in a network.

performance at the lowest cost, full integration of the analog frontend, together
with the digital data processing and switching core [2], and in future the photonic
device as well [3], in the same highly scaled CMOS technology is aimed.

Such a short/medium range link is described in Fig. 1. It consists of VCSEL-
based transmitters (TX). Parallel data streams at lower speed are multiplexed
(MUX) to a single signal with high data-rate. It is then enhanced to a high
amplitude by the re-timer, synchronized to the MUX by the frequency synthesis
loop. The laser diode driver (LDD) transforms the digital signal into a high-
power signal, with impedance matching to the VCSEL diode. Equalization can
be used to cope with the bandwidth limitation of the VCSEL device [4,5]. The
optical signal reaches the receivers (RX) through MMF and optical switches.
The RX itself uses a photo diode (PD) to convert the light into an electrical
current. This is amplified and converted to a voltage by the transimpedance
amplifier (TIA). The small voltage is further amplified and conditioned into a
digital signal by the limiting amplifier (LA) or main amplifier (MA) with very
high and sometimes variable gain. Next, the clock-data recovery (CDR) circuit
extracts the clock from the signal and de-multiplexes (DMUX) the information
in parallel streams, to the speed of standard digital logic. Additional circuits
such as the offset compensation (OC) loop reduce the offset in the LA and sink
the unwanted dc current of the PD.
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Fig. 2. Offset compensation system in an optical RX frontend.

Another field for short/medium optical links is in consumer electronics, with
the spread of fiber-to-home. Its purpose is to provide very high speed internet at
low cost. This can be achieved for example via passive optical networks (PON),
where a passive optical switch is used instead the optical/electrical conversion,
switching of the electrical signal then conversion back to the optical domain.
This kind of network and system is illustrated in Fig. 1. It can be seen that for
the same RX, TXs placed at different distances will transmit data packages in
bursts of impulses. It results that different packages reach the RX with different
optical power. This burst-mode RX needs to set the offset and common-mode
compensation very fast so the data is received correctly. In this case analog loops
reaction speed is too slow, therefore mixed-signal based compensation systems
need to be used after taking the measures for the system to settle quickly.

2 State-of-Art Offset Compensation

The received signal in VCSEL-transmitter based links suffers from a strong dc
component created by the limited extinction-ratio of the optical signal [6]. This
current needs to be removed by the RX, which needs to deal with variations
of optical power and mismatch created offset as well. Little attention is given
in the available literature to the offset and dc-current compensation (OC) sys-
tems in optical RXs. In Sect. 3, OC systems and the most important parameters
of the design process are addressed. An analytic expression for the maximum
lower-cut-off frequency is obtained for a given data rate (DR) bit pattern and
allowed sensitivity deterioration [7]. At present, the most common OC system
is based on RC low-pass filter (LPF) [8–12], that suffers from several drawbacks
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such as extremely high area, power consumption dependent residual offset, sta-
bility and fixed lower-cut-off frequency. Some of these issues are dealt by the
switched-capacitor (S-C) LPF based systems [8,13,14]. Their area is significantly
smaller and the lower cut-off frequency is adjustable. Section 3 gives the analyt-
ical dependency between the low-pass frequency of the LPF and lower cut-off
frequency of the RX. These conventional architectures are discussed in Sect. 4.
A fully flexible system can be implemented in a digital CMOS process by using
mixed-signal (MS) control loops with digital-to-analog converters (DAC). Such
OC system was implemented in [3] using a 7 bit current-DAC (IDAC) which
is used for calibration, compensating for the static offset. In [2] an IDAC with
successive approximation register (SAR) is used to calibrate for the dc current
at the input of the RX at every burst cycle.

A novel MS OC architecture is introduced in Sect. 5 that uses digital filtering
and compensates with an IDAC the static offset of the LA stage of the RX and a
second IDAC with SAR algorithm reduces the dc current at the input of the TIA.
Then, this second IDAC, in contrast to [2] continuously tracks and compensates
the offset during operation. This architecture was implemented and presented
briefly in [15]. In [16] further details regarding the digital algorithms, the IDACs,
measurements and comparison of the different systems is described. This chapter
reveals further theoretical and modeling issues, and extends the scope of MS
systems into burst-mode RXs for PONs. A 28 nm bulk-CMOS process is used to
implement a RX with the proposed MS OC system [15], one with RC-LPF OC
[9] and one with the S-C OC [14]. Advantages of the MS OC over the other two
systems are discussed. Superiority of the proposed architecture is proven when
measurement results are compared in Sect. 6.

3 Offset Compensation in Optical Receivers

The optical RX system, as depicted by Fig. 2, consists of the RX frontend and
the OC system. The useful signal iPD(t), part of iin(t), is a current generated by
the PD amplified by the TIA and converted in a voltage vTIA(t). A dummy TIA
provides the common mode at the differential input of the LA VCM,LA. Several
LA stages further amplify the signal into voutLA(t) that will go to the next blocks
in the signal processing chain [13].

Process spread and mismatch causes static offset in the LA [12]. At the
TIA input iin(t) also contains a dc current which can slowly change with time,
IPD(t) caused by the finite extinction ratio of the transmitter laser diode [6].
This causes VTIA(t) to drift. Furthermore, temperature variation and changes
in the input optical power will cause dynamic offset seen as difference between
VCM,LA and VTIA(t). As the RX chain, especially the LA, has a very high gain, a
small offset in the RX can cause saturation of the output stages, thus result in
the impairment of functionality. For this reason an OC system is used that has
the block diagram depicted by Fig. 2. The difference between the common-mode
of the two output polarities is measured. Then, IC,LA compensates for the static
offset of the LA. Meanwhile IC,TIA(t) sinks the dc current coming from the PD,
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IPD(t), which also compensates for the variation of optical power at the input.
Offset between the common modes of the TIA and dummy TIA is also reduced
by IC,TIA(t).

The offset compensation loop, which cancels the dc component of the signal
behaves as a high-pass filter in the signal path. Not only the dc component is
extracted, but in reality there is a low-pass frequency, mainly limited by tech-
nological considerations, therefore a significant amount of components in fre-
quency domain are canceled. This causes a high-pass effect called “dc-wander”
[17]. Figure 3a shows how an n-bit long run of 1 ’s with DR and V1 amplitude will
decrease to V ′

1 . The same can be observed for a long run of 0 ’s. In order to avoid
this, either the number of consecutive same-state bits (run length) or the lower
cut-off frequency fLCO has to be reduced [17]. Since the run length is defined in
the transmission standard, the fLCO needs to be decreased accordingly.

A common signal-pattern standard used in wire-line communications is the
pseudo-random bit sequence (PRBS) with the length of 2n − 1 bits. A PRBSn
has a run length of n 1 ’s and n − 1 0 ’s. For simplicity, however n will be used
for both 1 ’s and 0 ’s.

The decay of voltage from V1/0 to V ′
1/0, shown in Fig. 3a can be expressed as

V ′
1 = V1 · exp

(−2πn1fLCO
DR

)
. (1)

The sensitivity, S is one of the most important measures of a RX and is the
smallest input signal power that can be amplified error-free. In optical commu-
nications this signal is quantified by the optical modulation amplitude (OMA)
of the signal. As it can be seen in Fig. 3b, S = P1 − P0. The PSP = (P0 + P1)/2
in Fig. 3b is the level with the lowest bit error-rate (BER), therefore it is chosen
as the sampling level and is meanwhile the common-mode or symmetry level of
the signal PCM = PSP . So, dc-wander causes P1 to decrease into P ′

1, while P0

increases to P ′
0, thus S to worsen with the long 0 and 1 run, causing an asym-

metry by shifting PSP , thus a “decision offset” [18]. The new sensitivity will be
now S′ = P ′

1 − P ′
0. A power-penalty of the sensitivity PPS can be defined, that

accounts for dc-wander effect on both levels
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PPS = S − S′ = P1 − P0 − P ′
1 + P ′

0. (2)

By fixing PSL = P ′
SL, thus the sampling takes place at the same level in both

cases, results
P1 − P ′

1 = P0 − P ′
0. (3)

Introducing (3) into (2) the power penalty can be further written as

PPS = 2(P1 − P ′
1). (4)

To express P ′
1, Eq. (1) is used, considering a fixed resistance. Next, n1 = n0 = n

is considered for simplicity in (1). This is introduced in (4) so the power penalty
can be expressed in dB PPS(dB) as

PPS(dB) = 40π
nfLCO
DR

log102e. (5)

In the following, a PRBS31 signal is used to evaluate the performance of RXs
and PPS < 0.01 dB is aimed, meaning an insignificant sensitivity deterioration.
With Eq. (4), fLCO of 70 kHz can be calculated for a DR of 20 Gbit/s.
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Fig. 5. Lower cut-off frequency fLCO dependence on fLPF at different RX gains.

It can be concluded that an OC system is needed for an optical RX in order
to ensure its error-free functionality. Furthermore, the lower cut-off frequency
must be low enough so the sensitivity at an error-free detection is not degraded
with a given run-length of the input data at the desired DR.

4 Conventional Low-Pass Filter Based Offset
Compensation

The most straightforward way to implement an OC loop is by using a LPF in a
negative feedback loop, as depicted by Fig. 4a. The RX with transimpedance gain
of RRX , output voltage Vout is passed through the high-pass filter with output
voltage HLPF (s). This has a negative transconductance gain of output voltage
−Gm,LPF and creates a feedback current −ILPF added to Iin. −Gm,LPF will
be implemented practically as shown in Fig. 4a from an operational amplifier
(OPA) with voltage gain AOPA and a transconductance −Gm, for instance a
current-sink transistor. The loop can be described with as

Vout = RRX [Iin + VoutGm,LPFHLPF (s)] . (6)

From Eq. (6) the lower cut-off characteristic HLCO(s), dependent on the LPF
can be expressed as

HLCO(s) =
Vout

Iin
=

RRX

1 + RRX · Gm,LPFHLPF (s)
. (7)

Equation (7) gives a generalized formula for HLCO(s). When a first-order LPF is
used, such as an RC LPF the transfer characteristic can be expressed in a more
specific manner, such as depicted in Fig. 4b. A zero is created in −ωLPF , while
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a pole appears in −ωLPF (1 + RRX · Gm,LPF ). The dc offset and low frequency
signal will be suppressed to RRX/(1 + RRX · Gm,LPF ) leading to the conclusion
that Gm,LPF should be made as high as possible. However, if fLCO is expressed
depending on fLPF

fLCO ≈ RRX · Gm,LPF fLPF , (8)

it can be seen that increasing Gm,LPF results in increasing fLCO that will
require larger LPF elements in order to keep the same fLCO. This is illustrated
in Fig. 5, where it can be seen how changing fLPF impacts fLCO. The simulation
is done with different, common RX transimpedance gains of 65, 75 and 85 dBΩ.
Gain in the feedback is kept constant, with a customary AOPA of 50 dB and
1 mS one-transistor current sink Gm,LPF .

It can be concluded from Fig. 5 that fLPF needs to be significantly lower than
the required fLCO resulting in extremely large elements for the filter, implicitly
a very area inefficient circuit topology.

As the lower-cut-off frequency needs to be in the kHz domain, the LPF needs
a capacitor in the nano-Farad region, which cannot be realized on-chip. This
method, although still found in [1] has become rather obsolete. A simple on-chip
RC filter is used in [19]. However, it needs a 13 MΩ resistor and 150 pF capacitor
which occupy an unacceptably large area for the highly scaled RX designs from
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today. A very common implementation [9–12] is the active RC filter where the
Miller effect is used to multiply the capacitance to CMill ≈ AOPACRC as also
depicted by Fig. 6. This solution offers a low complexity circuit on a reasonable
area. The cut-off frequency of the LPF can be approximated as

fLPF,RC =
1

2πRRCCRCAOPA
. (9)

The biggest disadvantage of this method is that the fLCO is fixed by the resistor
and capacitor and need to be sized, according to Eq. (5) to the lowest DR and
longest run length which results in an increased area.

This disadvantage can be overcome by implementing a tunable filter. The
S-C filter has a clear area advantage over the RC LPF thus it has been chosen in
[8] and [13]. The switches and Cs1 in Fig. 7 emulate a large resistor. The cut-off
frequency of the LPF can be expressed as

fLPF,S−C = fclk
Cs1

Cs2
. (10)

It can be seen in (10) that fLPF,S−C can be adjusted with fclk. A S-C LPF needs
additionally an anti-aliasing filter (AAF) with a cut-off frequency of at least
fclk/2 [8]. This results in a compromise that needs to be done when choosing
the clock frequency, Cs1/Cs2 ratio which can be limited by the smallest capacitor
in a given technology and the accuracy of the ratio when the smallest value is
used and finally fAAF as this additional filter directly impacts the area needed
by the OC loop.

A major drawback of LPF based offset compensation loops is the residual
offset. For the conventional systems from Fig. 6 and 7 residual offset current
Ios,rez can be expressed as

Ios,rez =
2Ios,RX

ARX · AOPA
− 2Vos,OPA

ARX · RT,RX
. (11)

Equation (11) shows how Ios,rez is influenced by several factors. In order to
decrease this unwanted current the gain of the OC loop, namely AOPA needs to
be as high as possible. This can cause stability issues as well as burn a significant
amount of power.

5 Novel Mixed-Signal Offset Compensation

5.1 System Considerations

An offset compensation with digital core is proposed. Figure 8 shows the block
diagram of the mixed-signal OC loop. An RC AAF isolates the output of the RX
from the clock of the digital core. fAAF is chosen 2 MHz. A comparator follows,
which decides if there is a difference between the negative RX output − and
VCM . The comparator results are accumulated in a digital integrator with 1024
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samples. The result comp filt indicates whether the majority of the samples was
positive or negative. By building an average, the high frequency components are
suppressed similar to a conventional LPF. This is described by the signal flow
in Fig. 9a. This block divides the clock as well, so for every decision of comp filt
there is a clock edge on clk div.

5.2 Digital Design

The following blocks are controlled by the finite state machine (FSM) or digital
control block. Figure 9b shows the state diagram of the FSM. After the reset
signal rst n the 3 bit LA DAC will overcompensate roughly the offset in the LA,
until comp filt = 1. Then, after the LA rdy signal the FSM hands over control
to the SAR TIA DAC. As visible in Fig. 9b, the SAR TIA DAC Control will use
the SAR algorithm to compensate for the input offset current and dc current
generated by the average light power of the PD. After 10 bits the process is
handed over to the Track TIA DAC Control. Figure 9c shows how the tracking
works. When the current at the input changes, first the direction is detected, if
the current increased the DAC will be stepped one bit up, if it decreased one
bit down, until full compensation is achieved. In case of reset rst n the FSM
returns to the LA DAC state. The common-mode offset is continuously tracked
and compensated by increasing or decreasing the current at the TIA DAC in a
thermometric manner.
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The digital integrator and the controlling state machine were synthesized
using a custom 14-Track 1 V standard cell library. The digital library consists of
133 standard cells and its design is described in [20]. The lack of prior hardware
testing was one of the reasons to keep the clock frequency low at 2 MHz. With
a hardware proven library, the clock frequency could be set significantly higher,
which would allow significantly faster convergence.

5.3 The Digital-to-Analog Converters

The schematic of the IDAC TIA is shown in Fig. 10. It is a binary weighted
DAC split in two, sub-DACs. This is done in order to maintain a reasonable
aspect ratio between very large and very small transistors, thus maintaining a
reasonable matching. It follows, that 24µA are injected into the reference M1,
while M7 sinks 6µA. Turning on and off the current sources is done by toggling
between the reference voltage or ground of the gate of transistors M2 to M6 and
M8 to M12. IDAC LA is implemented in a similar way with only 3 bits.

5.4 Scalability

A major motivation for the MS approach is its scalability. The lower cut-off fre-
quency of the loop can be easily adjusted by means of the digital clock frequency.
While only low-frequency digital clock has been implemented out of reliability
concerns, clock frequencies in the order of GHz are feasible for hardware proven
standard-cell libraries. Since the dynamic properties of the proposed offset com-
pensation loop are proportional to the clock period, there are extremely high
prospects for improvements of the transient behavior. With additional changes
to the successive approximation algorithm, a convergence in the order of 20 ns
can be achieved as shown in Fig. 11 in comparison with a conventional RC-low
pass filter with the low cutoff frequency of 70 kHz. Such dynamic behavior would
be suitable for burst-mode operation.

The digital circuits can be easily modified and extended without major design
effort, unlike the analog implementations. Similarly, the porting to a different
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Fig. 11. Simulated turn-on time with an RC and MS loop with fast SAR algorithm.

technology is easier and more reliable, since the behavior of the loop is determined
by the clock frequency and RTL description, which are technology-independent.

On the other hand, the presented approach shares the challenges typical for
system-on-a-chip (SoC) designs. A wider tool-set as well as standard cell IP are
required for the design. Supply separation and supply noise rejection might be
gradually predominant with increasing clock frequency of the OC loop and the
complexity of the digital block.

5.5 Burst-Mode Operation

Another argument supporting MS approach to OC is their suitability for burst-
mode operation and therefore usage in PON systems as described in Sect. 1.
Adaptive systems are another opportunity for burst-mode receivers [15]. In the
current state-of-the-art, optical transceivers usually operate in full speed mode
constantly. While the VCSEL cannot be completely turned off due to long power-
on time, considerable power-savings can be achieved by powering down other
parts of the transceiver. As shown in [21] and [22], up to 50% power consumption
can be saved by disabling parts of opto-electronic transceivers while maintaining
acceptable power-on time for burst-mode operation.

Fast power-on times are required to allow acceptable latency and avoid the
necessity for large memories to store the data during the power-up time. The
settling time of a conventional OC loop is inversely proportional to the lower-
cut-off frequency of the LPF and therefore results in considerable wake-up time.
The bandwidth of a MS signal OC loop can be controlled dynamically using its
FSM to allow fast settling at wake-up as well as sufficient dc rejection during
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regular operation. While a dynamic LPF adjustment can be achieved using ana-
log techniques as well, as shown in [2], the MS loop also has better retention and
can maintain its value with minimum power consumption as long as supply is
active.

6 Measurements and Comparison

For comparison of the three systems, two previously implemented RX chips, one
with RC filter [9] and one with S-C filter [14] and a new design with mixed-signal
OC system [15] were designed and fabricated in the same 28 nm bulk-CMOS
digital process.
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Fig. 14. Oscilogram of the MS OC, output CM offset and input signal.

Figure 12a shows the RC filter based OC system. A capacitor CRC of 15 pF
and RRC 3.6 MΩ are used as in the schematic from Fig. 6. These large passive
devices increase the area of the RC-LPF based OC to over 2400µm2. The S-C-
LPF OC system implementation is shown in Fig. 12b. The corresponding values
to the components in Fig. 7 are CAAF of 2.2 pF and RAAF 400 kΩ for the AAF and
Cs1 of 35 fF, Cs2 of 4.4 pF for the SC LPF. fclk is 5 MHz in this case. The total
area is only 634µm2. The middle value of 1345µm2 is needed for the MS-OC
system from Fig. 12c. The digital block occupies 783µm2, the rest is occupied
by the AAF, comparator and DACs.

The setup in Fig. 13 is used to show the functionality of the MS-OC system.
For stable measurements the chip is bonded to dc and signal connections on
a PCB. A 5 MHz square wave clock with 50% duty cycle and 1 V amplitude



250 L. Szilágyi et al.
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dx: 10 ps/div dy: 60 mV/div

OC deactivated +20 µA

Fig. 15. Eye diagram at 20Gbit/s +20µA offset with OC active and de-activated.

is used for the following measurements. The reset n is used as a trigger for the
oscilloscope, that visualizes the output and input voltages as well. Next, a source
meter is used to inject a current ramp or step.

In order to measure the residual offset, a dc current of 100µA is injected
in the input. The output common-mode offset Vos,CM,out = Vvop − Vvon are
visualized and measured in Fig. 14. At the start of the sequence more than
600 mV initial offset is measured at the output. Until around 0.2 ms the digital
block is initialized and the LA DAC started. It can be seen that after bit 2, the
offset changes its sign. The OC procedure is handed over to the SAR TIA DAC.
Then, the SAR algorithm can be clearly seen until around 1.6 ms. Finally, the
TIA DAC toggles the current at the input by the least significant bit up/down
to sense a change on the dc current. The final average output offset voltage is
18 mV. Knowing the RX has a transimpedance gain RT (dBΩ) = 74 dBΩ [15],
the residual, input-referred offset current of 3.2µA can be estimated.

Next, the effect of offset on the transmitted signal and functionality of the
OC is demonstrated. Additionally to the setup in Fig. 13 a PRBS signal current
with 20 Gbit/s is injected to the input of the RX. The outputs are connected
to a high-speed sampling oscilloscope. The source meter will inject 20µA of dc
current. It can be seen in Fig. 15 that a correctly balanced eye diagram can be
captured at the output of the RX. Next, the clock is deactivated. It can be seen
that already such a small current causes the crossing point of the signal shifting
up by more than 100 mV. This results in a signal that cannot be detected error-
free anymore. This experiment simulates the changes in optical power of the
received signal. Furthermore, it demonstrates the necessity of an OC system as
the correct functionality of the presented circuit.

The second important comparison point is the fLCO. For this measurement a
Rhode & Schwarz, ZVL6 network analyzer with 9 kHz lowest frequency is used.
A short-open-load-through calibration is done with a standard kit. Figure 16
shows the transfer functions of the three RX up to 1 MHz. Since the chips have
different gain, the normalized transfer function is used. It can be seen that the
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Fig. 16. Measurement of the lower cut-off frequency fLCO.

Fig. 17. Measured dynamic range of the OC architectures.

RX using RC and S-C LPF OC system have a similar fLCO of approximately
20 kHz (with fclk of the S-C LPF of 5 MHz). The MS OC system has on the
other hand fLCO which is much lower than the instrument can measure, when
fclk = 5 MHz. This is around 4.9 kHz.

The dynamic range of an OC loop (IDR) can be defined as the difference
between the highest and lowest dc current that can be applied at the input which
will cause a negligible offset voltage at the output, VOS,CM,out. A value of 10% of
the single-ended output swing is chosen as limit for offset, that is approximately
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Fig. 18. Measurement of the input referred noise current.

30 mV for the MS OC. This parameter depends on the size of the compensation
current source, or in case of the MS-OC, on the dynamic range of the IDAC.
It was measured using the setup from Fig. 13, by injecting a slow current ramp
in the RX. The output CM offset exceeded 30 mV for 0.72 mA input current,
that corresponds to 1.58 dBm optical power with a 0.5 A/W responsivity PD.
By using a second IDAC (LA DAC), that has an opposite sign to the TIA DAC,
negative input current of up to −0.34 mA can be compensated. Figure 17 shows
the dynamic range measurement results. It can be seen that, although the S-C
OC has the highest dynamic range, its residual offset is large, −49 mV at the
output. In case of the MS OC, the IDR can be adjusted precisely according to
the design requirements by increasing the LSB current or the number of bits for
the TIA IDAC, meanwhile for the other two architectures only a vague forecast
can be made. In addition, these implementations of the LPF based systems use
a complementary PMOS to MiTIA in order to compensate also negative currents.
By this, a constant quiescent current of about 1 mA is constantly drawn from
the supply that is present even if no dc current from the PD is sourced. The MS
OC on the other hand does not have this disadvantage.

Although the noise spectral density (NSD) depends strongly on the gain and
bandwidth of the complete RX, the input referred noise current of the three
receivers was measured, plotted in Fig. 18 and the NSD calculated in Table 1. It
is found that by using a proper AAF, clocked OC loops (S-C and MS) have no
negative influence on the noise performance and input sensitivity of the RX.

Table 1 compares the three OC systems discussed in this chapter. It can
be seen that the MS system offers the best trade-off between area, fLCO and
residual offset current. The RC and S-C LPF based OC in these implementations
compensate the offset only at the input of the TIA and for the dc input current.
On the other hand the proposed MS OC reduces the static offset of the LA in
addition to the TIA input and dc current at the input. The biggest advantage
of the proposed system is its flexibility. By reducing the sample number at the
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Table 1. Comparison of the offset compensation systems.

Parameter Unit [9] [14] This work [15]

Architecture RC LPF S-C LPF MS

Area (µm2) 2419 634 1345

Ios,res (µA) 1.7 24.4 3.2

IDR (mA) 3.3 3 1.06

fLCO (kHz) 20 20 <9

fLCO adjustable Y/N No Yes Yes

NSD (pA/
√

Hz) 73 43 84

Compensated blocks TIA TIA TIA & LA

digital integrator, the loop speed can be increased so the system can be used in
burst-mode RX as in [2].

7 Conclusion

The function of offset compensation in optical receivers is addressed. The lower-
cut-off frequency is defined and a calculation method is given for the highest
frequency that does not impact the RX performance. An analytical relation
between the lower cut-off frequency and low-pass frequency for filter-based sys-
tems is defined. Therefore, this chapter presents a complete modeling tool for
offset compensation in optical receivers. Existing offset compensation solutions
are discussed. Then, a novel mixed-signal architecture is introduced which uses
digital filtering of the signal, an IDAC to compensate the LA, and a second
IDAC for the TIA. The second IDAC first reduces static offset with the SAR
algorithm and then continuously tracks and compensates the offset at the input
of the TIA. The presented solution differs from other previous implementations
that it reduces the offset using two DACs and from other mixed-signal solutions
that it not only calibrate for the static offset but continuously tracks the changes
in offset and compensates them. The system is extended for burst-mode receivers
suitable for PON systems.

The quantitative differences to the commonly used architectures based on
RC-filter and S-C filter are shown also by comparing measurements on three RX
implementations each with one of the mentioned offset-compensation system,
in the same 28 nm bulk-CMOS technology. The comparison is done in terms of
area, residual offset current, dynamic range, lower cut-off frequency and noise
spectral density. System considerations as adjustable lower cut-off frequency and
the compensated RX blocks are also taken in consideration. It is found that the
presented system offers a higher flexibility and functionality in implementation
and a very good compromise between area precision and performance over the
other existing solutions.
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Abstract. The need for efficient Convolutional Neural Network (CNNs)
targeting embedded systems led to the popularization of Binary Neural
Networks (BNNs), which significantly reduce execution time and memory
requirements by representing the operands using only one bit. Also, due
to 90% of the operations executed by CNNs and BNNs being convolu-
tions, a quest for custom accelerators to optimize the convolution opera-
tion and reduce data movements has started, in which Resistive Random
Access Memory (RRAM)-based accelerators have proven to be of inter-
est. This work presents a custom Binary Dot Product Engine(BDPE) for
BNNs that exploits the low-level compute capabilities enabled RRAMs.
This new engine allows accelerating the execution of the inference phase
of BNNs by locally storing the most used kernels and performing the
binary convolutions using RRAM devices and optimized custom cir-
cuitry. Results show that the novel BDPE improves performance by
11.3%, energy efficiency by 7.4% and reduces the number of memory
accesses by 10.7% at a cost of less than 0.3% additional die area.

Keywords: Machine Learning · Embedded systems · Binary Neural
Networks · RRAM-based Binary Dot Product Engine

1 Motivation

Machine Learning (ML) is the field of Artificial Intelligence (AI) that stud-
ies algorithms and statistical models aiming at teaching computer systems to
perform specific tasks based on information inferred from patterns on datasets.
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A class of such algorithms is Convolutional Neural Networks (CNNs), which
is applied to a vast diversity of fields, from image processing to natural lan-
guage processing [1]. On the one hand, CNNs are versatile and can be used
for numerous purposes, from teaching a machine how to play chess [2] to hav-
ing an embedded system with a camera recognizing objects in real-time [3]. On
the other hand, CNN-driven algorithms are costly both on computing power and
energy demand. While having a machine or a cluster of machines learning how to
play chess in a data warehouse may not be time-, compute-, or power-bounded,
using an embedded system to detect objects in frames in real-time has all those
constraints. Therefore, it is important to find efficient implementations of CNNs
targeting embedded systems.

CNNs are composed of phases called layers. Each layer of a CNN can be
seen as an independent function that takes inputs, applies a set of mathematical
operations and exports an output. The output of a layer may be used as the
input of another layer. Usually, each layer has a significant amount of inputs
and outputs that may have to be transferred multiple times from and to the
memory subsystem throughout the algorithm’s execution. Also, statistics show
that 90% of the mathematical operations executed in the layers of CNNs are
convolutions. For these reasons, the key to achieve efficient implementations of
CNN-driven algorithms relies on simultaneously reducing data movements and
optimizing the convolution operation.

In the literature, two distinct approaches for optimizing the convolution oper-
ation are widely adopted. One consists of using dedicated accelerators capable
of leveraging convolution’s potential parallelism, and data proximity. The other
exploits the adoption of lower precision operands in CNNs aiming at speeding
up their execution while not degrading severely the quality of the results.

The use of dedicated accelerators aims at leveraging both the convolution’s
potential parallelism and the high bandwidth to the memory, which is a char-
acteristic of accelerators. As an example, ISAAC [4] re-purposes the hardware
resources of Resistive Random-Access Memory (RRAM) devices to enable mas-
sive parallel computation that can be used to accelerate certain layers of CNNs.
ISAAC is not only capable of performing thousands of operations simultaneously
but also does so in-situ, i.e., it does not require to move the operands out of the
memory device. An important shortcoming of ISAAC, however, is that it hardly
fits the power constraints of embedded systems since RRAM devices require a
significant amount of energy to operate. Plus, in general, dedicated accelerators
that do not operate at memory level like ISAAC present an overhead associ-
ated with transferring the operands from the memory hierarchy that is only
surpassed by the benefits of processing large datasets. Thus, when the dataset is
not big enough, the benefits of using the accelerator might not cover the cost of
transferring the data to and from the accelerator. Since CNN-driven algorithms
executing on embedded devices usually work with small datasets, suitable for
the device’s capacity, most accelerators are not suited for such systems.

In parallel, the use of lower precision operands in CNNs is also widely
adopted, aiming at simplifying the operations executed by the several layers
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and, consequently, increasing performance. Intel’s bfloat16 is a floating-point
format using only 16 bits that was created with the purpose of being used by
CNNs. Ultimately, the precision of the operands can be reduced to the limit
of 1 bit per operand. Binary Neural Networks (BNNs), CNNs that use only 1
bit per operand, show significant performance boosts over CNNs and drastically
reduce the memory requirements as they require only 1 bit to store each operand.
Although reducing the precision of the operands to the limit sacrifices the quality
of the results to some level, studies show that XNOR-Nets, a class of BNNs, still
achieve admissible quality for many applications. Due to the drastic reduction of
requirements, some BNNs can be efficiently implemented in embedded systems.

An additional advantage brought by BNNs is the increase in data redundancy.
Part of the operands involved in the mathematical operations in the CNN layers
are intrinsic to those layers. These operands, called weights, are grouped in the
form of kernels, which are often small in size (typical values are 3× 3, 5× 5, and
7 × 7). When using 32-bit integers or floating-points to represent the weights,
it is unlikely to find two kernels whose weights are exactly the same. However,
when using only 1 bit, chances are that some kernels will have exactly the same
weights by the same order. Thus, such kernels are redundant and there is no
need to have them both stored in memory.

The system proposed in this work [5] leverages all the three aspects discussed
in the last paragraphs (dedicated hardware structures, lower-precision operands,
and data redundancy brought by the adoption of lower-precision operands) to
accelerate the execution of BNNs in embedded systems. To achieve this, we
propose a novel Functional Unit (FU) based on the work presented on [6], the
Binary Dot Product Engine (BDPE), to be integrated into the execution path
of a general-purpose Central Processing Unit (CPU). The purpose of the BDPE
is both to store the most used kernels, hence avoiding transferring them from
the memory, and accelerate the binary convolution operation, by leveraging the
low-level properties of the RRAM technology. Results show that the proposed
system provides significant benefits both in terms of performance improvements
and energy efficiency over the high-efficiency processor ARM Cortex-A53 at a
cost of a negligible area overhead.

All in all, the main contributions of this work are:

1. We revisit the work proposed in [6] and modify their artifact to create a novel
FU [5];

2. We propose the architecture of a BDPE capable of storing redundant binary
kernels and executing the binary convolution operation efficiently;

3. We integrate the novel BDPE with the execution path of the ARM Cortex-
A53;

4. We propose an ARMv8 Intruction Set Architecture (ISA) extension for sup-
porting the functionality of the novel BDPE;

5. We present a simulation methodology using accurate models and complete
frameworks to assess the benefits of the proposed system.

Throughout the following sections, we will discuss the proposed system,
namely how the different components were implemented and the methods and
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Fig. 1. CNN overview highlighting the three most common types of layers: Convolu-
tional, Pooling, and Fully-Connected.

tools that were used. The rest of this Chapter is organized as follows: Sect. 2
introduces the most important concepts about CNNs and BNNs as well as the
process of leveraging RRAM-enabled computing to perform convolutions; Sect. 3
summarizes the working principles of the binary convolution block used as base
for the novel BDPE. Section 4 details the architecture of the proposed system.
The evaluation methodology and the main results of this work are presented in
Sect. 5. Section 6 presents some related work. Finally, Sect. 7 closes this Chapter.

2 Background

This section introduces the reader to important concepts that are used in this
work. First, the basic structure and working principles of CNNs are explained,
focusing on the particular kind of CNNs used in this work, BNNs. Then, the
working principle of RRAM computation applied to CNNs is detailed.

2.1 Convolutional Neural Networks

CNNs constitute a class of Deep Learning algorithms that are particularly useful
for Computer Vision applications. Applied to that field, a CNN assigns impor-
tance (learnable weights) to the features of images that allows differentiating
different objects depicted in those frames. First, several images are presented
to the CNN together with known information about them (e.g., a picture of
a cat and the information that the picture contains a cat). The image is pro-
cessed by the CNN and the weights are updated depending on the deviation of
the obtained result from the expected result. This process goes on until certain
convergence conditions are met. This phase is called training. After training a
CNN, it can be used for inferring information from images that were not shown
to it during the training phase. For instance, given a picture of a cat different
from those shown during training, the CNN will be able to detect that there is a
cat in the picture based on all the cat pictures it has seen during training. This
phase is called inference.

A CNN is composed of different phases called layers. The type, quantity, and
order of those layers are responsible for the properties, namely the accuracy, of
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Fig. 2. (a) Convolutional layer; (b) Fully-Connected layer.

the Convolutional Neural Network (CNN). Each layer of a CNN takes inputs
(in the case of the first layer, the inputs are the pixels of an image), performs
a group of mathematical operations over those inputs and export outputs. The
inputs of a layer are organized in the form of an input feature map, whereas
the set of outputs is called output feature map. Except for the last layer, the
outputs of the layers serve as inputs for the next layer. Depending on the math-
ematical operations realized over the input data, the layers are grouped under
different categories. The three most common layer categories are convolutional,
fully-connected and pooling, as shown in Fig. 1. Convolutional layers perform
the convolution operation between the input and a given kernel (a kernel is an
organized array of weights), as shown in Fig. 2a. In fully-connected layers, each
element of the input has a weighted influence over each element of the output, as
shown in Fig. 2b. Polling layers are transformation layers that perform a mathe-
matical, possibly non-linear, operation over the elements of the input. Such layers
can be used for transforming the input such as resizing or rectifying. Examples
of possible transformations are max-pooling and Rectified Linear Unit (ReLU),
respectively, which are depicted in Fig. 3. Note that two of the three most com-
mon types of layers, convolutional and fully-connected, implement mathematical
operations that can be unrolled in a set of convolutions.

Both the convolutional and the fully-connected layers of CNNs use operands
that are intrinsic to those layers (the kernels of the convolutional layers and the
weights of the fully-connected layers). Those values are responsible for the quality

112 100 25 12

34 70 37 4

8 12 2 0

12 20 30 0

112 37

20 30

−2 10 25 −1

34 −7 −3 4

8 12 −2 0

12 −2 −5 0

x

y

ReLU
2 10 25 1

34 7 3 4

8 12 2 0

12 2 5 0

(a) (b)

Fig. 3. Two widely used Pooling layers in CNNs: (a) Max-Pool; (b) ReLU.
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of the results exported by the CNN, and are calculated during the training phase.
At the beginning of the operation, all the weights are initialized to random values.
Then, a set of images and corresponding information are fed to the CNN. The
CNN processes those inputs, and based on the deviation between the calculated
results and the expected, updates the weights using feedback processes.

Depending on several factors such as the quality of the training set, the
training configuration and duration and the architecture of the CNN itself, the
trained CNN is able to detect more or less accurately objects in new frames
that were not shown during the training phase. A popular metric to assess the
quality of the inference is the mean Average Precision (mAP). The mean Average
Precision (mAP) is defined as the average value of another metric called Average
Precision (AP), which is a composed metric that takes into account several
factors, such as precision, recall, and Intersection over Union (IoU). Precision
measures the accuracy of the CNN’s predictions, i.e., the percentage of correct
predictions; recall is the percentage of positives that the CNN is able to detect,
regardless of the assigned class; and Intersection over Union (IoU) measures the
overlap between the real area where an object is located in a frame and the
area where it is detected by the CNN. mAP values are included in the interval
[0, 1], being 1 optimal. The mAP can also be used to compare CNNs, which is
particularly useful when assessing the loss of quality due to applying heuristics
for increasing execution performance (e.g., when reducing the precision of the
operands).

2.2 XNOR-Based Binary Convolution

BNNs are a particular class of CNNs where both the inputs of the layers and the
weights are specified by only one bit and their values are limited to −1 and 1.
Duo to this representation, the atomic operations of the regular convolution can
be replaced by simpler operations. The element-wise multiplication is replaced
by the XNOR operation whereas the accumulation is replaced by bit-count [7].
Binarizing the operands and replacing the costly operators in the convolution
by simpler ones significantly increases the performance of the convolution oper-
ation. Since convolutions constitute approximately 90% of the total operations
implemented by CNNs [8], optimizing this operation significantly impacts the
overall performance and energy efficiency associated with executing the CNN.

Furthermore, binarizing a CNN also reduces significantly the memory
requirements duo to each operand being represented by a single bit. For instance,
when comparing with a 32-bit representation of the operands and the weights,
the memory requirements are reduced 32×. However, reducing the precision of
the operands to the limit of 1 bit comes at the cost of sacrificing accuracy. While
CNNs such AlexNet suffer from accuracy losses lower than 10% when binarized,
some other networks may be rendered totally useless. Therefore, not all CNNs
are viable for binarization.
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2.3 YOLO: You Look only Once

Similarly to AlexNet, YOLO [3] is another example of a CNN that can be bina-
rized without sacrificing severely its accuracy. YOLO is a state-of-art CNN for
real-time object detection targeting low-end devices. It divides the image into
regions and predicts bounding boxes and associated probabilities for each region.
Unlike expensive object-detection-oriented CNNs such as R-CNN [9] and Fast
R-CNN [10], which require thousands of network evaluations to detect multiple
objects, YOLO looks at the whole image at testing time, so its predictions are
informed by global context. As a result, the YOLO performs 1000× faster than
R-CNN and 100× faster than Fast R-CNN [3]. By sizing the network, YOLO
also allows trading accuracy for performance by reducing the number of network
layers. This represents an advantage for embedded devices characterized by low
computing power. When binarized using the definitions in [7], the XNOR-Net
version of a given configuration of YOLO, YOLOV3-tiny XNOR-Net, shows
approximately the same mAP as the full-precision network, while reducing the
size of the weights approximately 32× and thus executing up to 58× faster.
For the Street View House Numbers (SVHN) dataset [11], the YOLOV3-tiny
XNOR-Net shows a mAP decrease of only 0.43%, while increasing the number
of detections by 75%.

Duo to the binary nature of both the inputs and the operands in binary con-
volutions, which allows replacing the expensive multiply and accumulate opera-
tions by simpler XNOR and bit-counts, BNNs have great potential to be further
accelerated using dedicated structures in hardware. One of the most popular
approaches to do so is to re-purpose the hardware resources of RRAMs to enable
computation.

2.4 RRAM-Powered Convolution Acceleration

Resistive Random-Access Memory (RRAM) bit-cells, also called memristors, are
devices with two terminals composed by metal electrodes and a switching oxide
stack [12]. The application of a certain programming voltage between the two
electrodes changes the conductivity of the metal oxide, which leads to a switch
between two stable resistance states: Low-Resistance State (LRS) and High-
Resistance State (HRS). Thus, allowing to encode the binary values 1 and 0,
respectively. The switching from High-Resistance State (HRS) to Low-Resistance
State (LRS) is called a set process and can be achieved through the application
of a positive programming voltage. The complementary process is denominated
a reset process and involves the use of a negative programming voltage.

Although the classic applications of memristors only use two possible states
to encode binary data, the physical characteristics of memristors allow the LRS
to assume a wide range of values. This particular feature allows to use RRAM
cells to store non-binary values (encoded as physical impedance), which can be
used to implement hardware analog dot-products. To do that, the RRAM cells
are organized into a crossbar of passive arrays, removing all the access tran-
sistors. The output current becomes the sum of the currents flowing through
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Fig. 4. Operation principle of the RRAM-powered analog dot product: (a under perfect
conditions; (b) in the presence of variations. When subjected to variations, the final
sum of the currents flowing to the memristors has an associated error which is reflected
in the output of the 8-bit ADC.

each memristor, which has encoded a certain non-binary value in the form of
impedance, and thus, it becomes the sum of the input voltages weighted by the
values encoded in the memristors, as shown in Fig. 4a. Duo to the high density
of RRAMs, in theory, using RRAM-based analog computation enables massive
parallelism leading to remarkable performance and energy efficiency benefits.
However, RRAM-based analog computation suffers from two limitations that
largely reduce its applicability. First, it requires a massive quantity of Digital-
Analog Converters (DACs) and Analog-Digital Converters (ADCs) that are area-
and power-hungry. This limits the scalability of RRAM-based analog compute
devices. Second, memristors are subjected to variability, which has its source in
process variations during fabrication as well as temperature oscillations during
the device operation. This severely decreases the usability of the analog capabili-
ties of RRAMs, as the results are severely tampered by the lack of precision of the
resistance values. The effect of varying the resistance values of the memristors
is depicted in Fig. 4b.

The work presented in [6], which also uses RRAM arrays to perform computa-
tion, mitigates this effect by allowing only two levels of resistance and performing
the dot product in a purely digital way, without relying on an analog sum of cur-
rents. Unlike analog-based RRAM computation, the approach used in that work
allows obtaining reliable results that minimize the possibility of errors. Thus, the
convolutional block presented in [6] served as inspiration for this work and was
further developed to become a fully-functional Functional Unit (FU) and inte-
grated within the pipeline of a general-purpose Central Processing Unit (CPU).
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3 RRAM-Based Binary Convolution Block

The use of dedicated accelerators to increase performance when executing CNN-
based applications is one of the most well-succeeded approaches. Dedicated accel-
erators take the most advantage of the hardware resources for a very specific task,
enabling massive performance boosts. Furthermore, they usually have their own
high-bandwidth channels to memory. However, such accelerators are expensive in
terms of hardware and power demand, rendering them unsuitable for embedded
devices, which are highly hardware- and power-constrained. Therefore, our sys-
tem uses a custom Binary Dot Product Engine (BDPE) that is integrated within
the processor execution path. Our unit is based in the binary convolution engine
presented [6] that efficiently implements the binary convolution operation.

Kernel0 : K0

Kernelm : Km

A

Dot Product

RRAM Array

XNOR Sensing Circuits

Combinational Bit-Count Circuit

Fig. 5. Structure of the RRAM-based binary convolution block proposed in [6].

Due to the nature of the operands in a binary convolution (each element of
the operands has only 1 bit), the costly operations of multiplication and accu-
mulation required by the regular convolution can be replaced by XNOR and
bit-count, respectively [7], which can be implemented efficiently in hardware
using the low-level properties of memristors and some additional circuitry. Note
that in the context of CNNs, convolutions are implemented as a sequence of
several dot products. Therefore, the block that implements the binary convolu-
tion executes a sequence of dot products, one per cycle, until producing the final
result of the convolution.

Figure 5 shows the top-level structure of the convolutional block proposed
in [6]. The sequences of binary weights are stored in the RRAM array, one per
row. To perform one dot product with an input vector, the line of the RRAM
containing the binary weights is selected and the input data is applied to the
RRAM array. The bit-wise XNOR of the input and the binary weights stored in
the selected line is performed as a readout of the RRAM array. Then, the result
of the XNOR operation is applied to the input of the bit-count circuit, which
counts the number of bits set to ‘1’. Finally, the bit-count circuit exports the
result of the dot product.

Structure-wise, the part of the convolution block responsible for implement-
ing the XNOR operation is composed of three parts: the precharge circuit; the
programming circuit; and the XNOR circuit, as shown in Fig. 6. The precharge
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circuit loads the outputs (out and out) to VDD before the reading. The program-
ming circuit serves to store the kernels in the RRAM array prior to computation.
The XNOR circuit is responsible for performing the XNOR operation between
the input and the kernel stored in the selected row of the RRAM.

Overall, the operation of the convolutional block is divided into two phases:
(1) the kernel storage phase; and (2) the computing phase.

out out

R1k R2k

VDD VDD

out out
prog

a
a a

I0 I1
prog

VDD VDD

BL0,0 BL0,1 BL0,0BL0,1

T1dischWL0,0 WL0,1

GND,wellGND,wellVDD,well

L1 L2

P0 N0 N1 P1

P2 N2

XNOR Circuit

Programming Circuit

Precharge Circuit

Fig. 6. 1-bit RRAM-based XNOR cell that serves as unit of the RRAM array used in
the convolution block. All terminals illustrated as disconnected are connected to GND.

During the programming phase (prog = 1), both the outputs, out and out,
are precharged to VDD and the RRAM array is isolated from the XNOR circuit
through transistors I0 and I1. Additionally, disch is set to GND, turning T1
off. The value of k is stored in the RRAM in a complementary way. For example,
when k = 0, R1 is set to HRS and R2 to LRS. R1 is set to HRS by turning on
transistors N0 and P2 and turning off transistors P0, P1, N1 and N2. During
the reset process of R1, VDD,well and GND,well are switched to 2 × VDD and
VDD, respectively. As such, the voltage difference across R1 becomes −Vprog =
−2×VDD, which triggers a reset process. Similarly, R2 is set to LRS by turning
on transistors P1 and N2 and turning off transistors P0, P2, N0 and N1.
Considering k = 1, R1 is set to LRS and R2 to HRS in a similar way.

The computing phase consists of calculating the XNOR between an input a
and a weight k stored in the memory, which is performed as a single memory
readout thanks to the XNOR sense amplifiers. The read sequence goes as follows:
first, VDD,well and GND,well are switched to VDD and GND respectively. Signals
prog and disch are set to ‘0’ and ‘1’, respectively. Hence, nodes out and out
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are grounded through the RRAMs and transistor T1. During this phase, the
complementary resistances of the Resistive Random-Access Memories control
the discharge currents, so that the memristor in LRS is discharged faster than
the one in HRS. Using a deep N-well also eliminates any breakdown risk or
reliability degradation on the transistors [13]. When out or out reach the voltage
VDD −VT,pmos (VT,pmos denotes the threshold voltage of transistors L1 and L2),
the associated pmos transistor is turned on, pulling up the other node (out or
out) to VDD. The resulting output is the XNOR of a and k.

Considering the operation principles above described, it is possible to orga-
nize several XNOR cells into a matrix. Figure 7 shows a m × l RRAM matrix
array, where m is the number of kernels to be stored and l is the number of
weights of each kernel. For example, storing ten 3 × 3 kernels requires a 10 × 9
RRAM array. From the proposed bit-cell structure of Fig. 6, all the XNOR part
is shared between all the structures in each pair of columns and is put at the bot-
tom acting as a digital sense amplifier. Similarly, the programming circuits are
shared at each column and row to be able to individually address all the RRAM
lines. Sharing the programming transistors also allows parallel programming.

WL0,0

WL0,1

VDD,well

GND,well

WLm−1,0

WLm−1,1

VDD,well

GND,well

VDD

prog

a0

out0 out0

prog

VDD VDD

out0
out0

a0 a0

B
L0,

0

B
L0,

1

B
L0,

0

B
L0,

1

En0 En0

Enm−1 Enm−1

k0,0 k0,0

km−1,0 km−1,0

VDD

prog

al−1

outl−1 outl−1

prog

VDD VDD

outl−1
outl−1

al−1 al−1

B
L 0,

l−
1

B
L 1,

l−
1

B
L 0,

l−
1

B
L 1,

l−
1

En0 En0

Enm−1 Enm−1

k0,l−1 k0,l−1

km−1,l−1 km−1,l−1

Fig. 7. RRAM-based XNOR m × l array organization. All terminals illustrated as
disconnected are connected to GND.

As shown in Fig. 8, a convolution between an input feature map of size n×n
and a kernel (also n× n, for simplicity) leads to an output feature map with n2
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elements. The kernel is unrolled into a vector so the n2 weights are encoded in
the n2 pairs of RRAM cells. In this example, n2 is the number of columns of
the RRAM array illustrated in Fig. 7 (N2 = l). Element oi,i, the central element
of the output feature map, is calculated by performing the dot product of the
unrolled input feature map (A = {a0,0, . . . , an−1,n−1}) with the unrolled kernel
(K = {k0,0, . . . , kn−1,n−1}) by selecting the row of the RRAM where the kernel
is stored through signal Enx and summing the partial results, outh(h ∈ [0, n2]),
through an external circuit to perform the bit-count operation.
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Fig. 8. Example of binary dot product between two n × n matrices. All terminals
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Results reported by [6] show that the binary convolutional block surpasses
previous analog RRAM-based accelerators in terms of reliability against RRAM
and CMOS process variations. Furthermore, it shows significant energy efficiency
increase when compared both with conventional Multiply-Accumulate (MAC)
solutions and state-of-the-art accelerators such as ISAAC [4].

4 CPU Integration

To be able to take advantage of the convolutional block presented on [6] and fully
integrate it within the execution path of a general-purpose CPU as a regular
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FU, some adaptations to the original architecture of the convolution block were
required, as explained in [5].

The advantages of using the convolutional block are two: (1) performing
the XNOR operation efficiently using the RRAM array; (2) calculating the bit-
count atomically. To use the RRAM array to calculate the XNOR between an
input and a vector of binary weights it is required the vector of binary weights
to be stored in the RRAM array. However, having all the weights stored in
the RRAM array is not feasible as it would result in a tremendous chip area
overhead. Therefore, only a small number of weights can actually be stored
inside the BDPE. Nevertheless, the bit-count circuit does not depend on the
weights being stored in the RRAM array. Therefore, to avoid rendering useless
the entire convolutional block whenever the weights are not stored in the RRAM
array, additional logic was added that allows performing the XNOR operation
between two binary input vectors using classic CMOS logic gates. This way, the
benefit of performing the bit-count using the circuit of the original block can still
be leveraged. Figure 9 illustrates the architecture of the novel BDPE highlighting
the modifications to the original convolution block.

Kernel0 : K0

Kernelm : Km

A

RRAM Array

XNOR Sensing Circuits

Control Bit

Combinational Bit-Count Circuit Dot Product

Filter

Fig. 9. Block diagram of the proposed BDPE.

The integration of the BDPE with a general-purpose CPU is divided into
three phases: (1) the integration with the processor’s pipeline; (2) the creation
of new instructions in the CPU Intruction Set Architecture (ISA) to use the
unit; and (3) provide compiler support to use the added ISA instructions in the
software side. The CPU choice for integrating the BDPE was the ARMv8-A
ARM Cortex-A53 due to both being a high-efficiency low-end processor that
provides a competitive baseline and also the available simulations models for
this particular CPU.

As shown in Fig. 10, the BDPE is integrated with the processor’s pipeline
in the Execute stage, similarly to the Arithmetic and Logic Unit (ALU), and
stores the results of the computation in the Execute/Memory Access pipeline
register. According to the ARM Architecture Reference Manual for the ARMv8-
A architecture profile [14], the ARMv8 ISA has unused opcodes that can be
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re-purposed to expand the functionality of the CPU. Using two of the unused
opcodes, two instructions were created and assigned to the novel BDPE.
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Fig. 10. Simplified block diagram of a generic processor pipeline integrating the pro-
posed BDPE.

Figure 11 illustrates the format of the new instructions and denotes the pur-
pose of each distinct set of bits. Each of the new instructions is decoded in the
Decode stage such that the content of the register specified by rm serves as input
data of the BDPE; the content of the register represented by rn is the input
kernel; imm6 specifies the address of the kernel stored in the RRAM array; and
the second Most Significant Bit (MSB) of the opcode designates the control bit.

31 21 20 16 15 10 9 5 4 0

opcode rm imm6 rn rd

Fig. 11. Format of the new instructions added to the ARMv8 ISA to allow the pro-
cessor to issue instructions to the BDPE. The opcodes 10000011000 and 11000011000

were re-purposed to specify the custom instructions. rm and rn specify addresses of
64-bit registers; imm6 represents a 6-bit immediate; and rd specifies the address of the
destination 64-bit register.

As shown in Fig. 12, the workflow for running a Binary Neural Network
(BNN) using the novel BDPE is divided into profiling and execution. During the
profiling, the BNN is used to perform a single inference while the kernel space
is profiled, selecting the most frequently used kernels. The selected kernels are
stored in the RRAM, and a configuration file is generated containing the infor-
mation about the content of the RRAM. Then, the CNN is recompiled, and the
code responsible for implementing the binary convolution is replaced by custom
code that utilizes the BDPE. If the kernel being used is stored in the RRAM, the
compiler inserts a special instruction to perform the binary convolution using
the RRAM array. Otherwise, the compiler inserts a load instruction to fetch the
kernel from memory, followed by a special instruction that performs the binary
convolution using the two data inputs of the BDPE.
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Fig. 12. Simple example that illustrates the process of storing the most used kernels
inside the RRAM and running a BNN using the novel BDPE.

5 Results and Discussion

To assess the performance and energy efficiency improvements enabled by
the BDPE, a light configuration of the YOLOV3 XNOR-Net was used, the
YOLOV3-tiny. First, the network was trained using Darknet [15], a C-based
CNN framework on a general-purpose computer for the dataset Street View
House Numbers (SVHN) [11]. Then, the network was profiled to obtain statis-
tics about the usage of the kernels during the inference phase. Due to the number
of kernels used by the CNN, storing all of them inside the RRAM array would
lead to a prohibitively large circuit. Thus, only the kernels that are used the
most are stored inside the RRAM array while the remaining kernels have to
be transferred from memory during inference. As result of profiling YOLOV3-
tiny XNOR-Net, it was concluded that a small portion of the kernels is used in
a significant percentage of the convolution operations, as suggested by Fig. 13.
More specifically, 0.07% of the kernels are used in 9.74% of the convolutions.
Therefore, those kernels are stored in the RRAM array.

To further evaluate the impact of storing different amounts of kernels inside
the BDPE, five scenarios were considered where the RRAM usage rate (percent-
age of convolutions that use kernels locally stored in the RRAM) varies between
10% and 50% when executing YOLOV3 XNOR-Net.

5.1 Performance Analysis

A modified version of the gem5 architectural simulator [16] was used to assess the
proposed system performance benefits. Due to gem5’s known inaccuracies [17],
the default ARM model was improved with the gem5-X framework [18], allowing
to reduce the ARM model’s error margin from 10% to 4% for the ARM Cortex-
A53. The system was simulated in System Emulation (SE) mode by compiling
all the inputs of the network into a single executable binary file. Additionally,
the Darknet framework was modified at assembly level to use the custom BDPE
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Fig. 13. Number of times each kernel is used during YOLOV3-tiny XNOR-Net infer-
ence: (a) entire kernel space; (b) zoom in showing a spike on the usage of a very limited
set of kernels.

instead of the processor’s Arithmetic and Logic Unit (ALU) when performing
binary convolutions.

To determine the most used kernels and populate the RRAM array, the fol-
lowing two-step procedure was used: (1) Darknet was ran using gem5 and the
kernel space was profiled; (2) The most used kernels were selected and stored
in the RRAM. After populating the RRAM, the gem5 module responsible for
emulating the BDPE was rebuilt. Because the framework was not recompiled,
gem5 in System Emulation (SE) mode mapped the data structures to the same
addresses used in (1), and the application flow was kept the same except for
the binary convolutions involving the most frequently used kernels stored in
the RRAMs. In those cases, the RRAM array was used instead of the alterna-
tive XNOR mechanism to perform the XNOR operation. The complete system
featuring the modified ARM Cortex-A53 and four DRAM ranks of 1 GB each
operating at 2400 MHz was emulated and the entire workflow of Darknet was
executed.

As result of offloading the execution of binary convolutions to the BDPE,
the kernels that are stored in the RRAM array are not requested from memory
during inference. Thus, a reduction in memory accesses equal to the RRAM usage
rate is observed, as shown in Fig. 14a. Additionally, it can be observed that over
99% of the memory accesses reduction happens at the L1 cache, suggesting that
the system has the maximum benefits of caching effects.

However, avoiding the transfer of sequential kernels to the processor whenever
the RRAM array is used produces irregularities in the memory access patterns.
This situation leads to more evictions and cache collisions, thus causing addi-
tional cache misses, as shown in Fig. 14b. Nevertheless, the increase of the cache
misses is lower than 0.01% relative to the total number of memory accesses.
Hence, this side-effect is negligible and does not affect the overall performance.

All in all, as illustrated in Fig. 14c, for a usage rate of 10% the performance
improvement is 11.3%. Also, the performance gains show no significant variation
with the RRAM usage rate. This effect has two main causes: (1) both the data
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Fig. 14. (a) Number of memory accesses spared depending on the RRAM usage rate
when compared with the baseline system; (b) Number of L1 data cache misses caused
by BDPE-driven memory access irregularities; (c) Inference time and performance gains
of the baseline system and the proposed system considering five RRAM usage rates.

paths in the BDPE take exactly one cycle to perform a binary convolution; (2)
due to caching effects, the kernels are stored in the L1 cache 94% of the time,
substantially reducing the time required to fetch them. Consequently, using the
alternative method for performing the XNOR of the kernel and the input data
takes approximately the same time as using the RRAM array and does not
impact negatively the overall performance.

5.2 Hardware Resources

Circuit-level metrics were obtained through electrical simulations using a com-
mercial 28 nm Fully Depleted Silicon On Insulator (FD-SOI) design kit to assess
the hardware requirements and the power demand of the devised BDPE. Delay
and power results were extracted from Eldo simulations, to be used in models for
the architectural evaluation. These metrics were extracted for the two possible
cases to consider when the XNOR is performed using a kernel locally stored in
the RRAM or a kernel coming from the processor’s registers, respectively. In
order to consider an average case, it was assumed that half of the data inputs,
as well as the kernels, are zeros and the other half is ones. For the area estima-
tion, the full-custom layout of the RRAM array and its associated control path
were modeled using Cadence Virtuoso. The bit-count circuit was synthesized
with Synopsys Design Compiler from Register Transfer Level (RTL) netlists
and integrated into a Place & Route flow using Cadence Innovus to obtain the
complete layout of a 256 × 64 RRAM-based BDPE.

Table 1 shows the hardware requirements, power demand and delay for the
BDPE. In practice, since a 10% RRAM usage rate allows achieving the best
trade-off between hardware requirements, performance improvements and energy
savings, that scenario was used to obtain the results in this section.

The die area required to implement the novel mechanism is only 3, 845µm2

per CPU core, using a Fully Depleted Silicon On Insulator (FD-SOI) 28 nm
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Table 1. Hardware resources and average power demand of the BDPE considering the
two possible paths data paths considering a RRAM usage rate of 10%. When control
bit=0, the RRAM array is used to implement the XNOR operation. Otherwise, the
alternative XNOR mechanism is used.

Area/Hardware resources [µm2] Power [mW] Delay [ps]

control bit=0 3,845 1.24 408

control bit=1 3.23 214

process, while a dual-core ARM Cortex-A53 in an equivalent process requires
2.8mm2 [19]. Therefore, the BDPE represents less than 0.3% of the total CPU
area. The energy spent for a single operation when using the RRAM array (con-
trol bit=0 ) is reduced by 37% comparing to using the alternative mechanism
(control bit=1 ). This is allowed by the intrinsic energy efficiency of the RRAM
array [6]. Although this advantage comes at a cost of a delay overhead at circuit
level, the maximum operating frequency allowed is still 2.5 GHz. Thus, as the
target platform is the ARM Cortex-A53 with an operating frequency of 2 GHz,
the BDPE can be integrated with the system without constraining its overall
frequency.

5.3 Energy Efficiency

As a secondary result of running the modified version of Darknet, gem5 pro-
duced timing results, statistics on memory accesses and usage of the CPU’s
several modules. Such results were applied to 28 nm FD-SOI power models for
ARMv8 in-order cores, proposed by [18] and [20], allowing to estimate energy
consumption.

The total energy spent by the baseline system (ARM Cortex-A53) and the
five scenarios using the BDPE is illustrated in Fig. 15a. Then, Fig. 15b shows the
energy consumption for the same circumstances subtracted by the energy spent
by the DRAM. As shown in Table 2, the total energy spent by the BDPE is
negligible when compared with the rest of the system, and so the energy savings
are mostly due to the reduction in the execution time. As the execution time is
approximately constant regardless of the RRAM usage rate, so are the energy
savings. When considering only the processing system (excluding the DRAM
main memory), the use of the BDPE allows for average energy savings of 7.4%.

Table 2. Total energy spent by the BDPE and the CPU during the inference phase of
YoloV3 XNOR-Net.

RRAM usage rate [%] Baseline 10 20 30 40 50

BDPE [µJ] 0 0.870 0.279 0.271 0.263 0.255

CPU [µJ×106] 0.542 0.502 0.501 0.501 0.501 0.502



Accelerating Inference on BNNs with Digital RRAM Processing 275

BL10 20 30 40 50
BPDE usage rate [%]

0.497

0.505

0.513

0.522

0.530

0.538

0.547

T
ot

al
 e

ne
rg

y 
sp

en
t

ex
cl

ud
in

g 
D

R
A

M
 [J

]
7.4%

(a)

BL 10 20 30 40 50
BPDE usage rate [%]

5.423

5.432

5.440

5.448

5.457

5.465

5.473

T
ot

al
 e

ne
rg

y 
sp

en
t [

J]

40.51 mJ

(b)

Fig. 15. Energy spent by the baseline and the proposed system during the inference
phase of YOLOV3-tiny XNOR-Net: (a) excluding the energy spent by the DRAM; (b)
including the energy spent by the DRAM.

6 Related Work

As the need for executing compute- and power-hungry CNNs in hardware- and
power-constrained devices arises, novel approaches to execute these algorithms
efficiently are proposed. Accelerators such those presented in [21–24] aim at
reducing data movements by taking advantage of data redundancy, which results
in significantly increasing the energy efficiency. Other approaches such as that
presented in [25] consist of a method to tolerate errors resulting from aggressive
memory voltage scale down, which also allows increasing the energy efficiency
significantly.

The use of the compute capabilities of RRAM devices is also an approach to
further improve the energy efficiency of CNNs that has shown great interest in
the past few years. Shafiee et al. [4] proposed using the memristors of the RRAM
arrays to store the weights in the form of impedance and perform dot products
in an analog fashion. However, the impedance precision of memristors is limited
by the ADCs and DACs used to interface the analog RRAM array as well as
variations that affect the resistive devices both during its fabrication, operation,
and lifetime. Furthermore, ADCs and DAC consume a lot of energy and occupy
a lot of chip area, which limits the circuit scalability.

Recent works such as [26,27] proposed using RRAMs to implement dot prod-
ucts in a binary using Current Sense Amplifiers (CSAs) or reduced precision
ADCs. These approaches use only two logical levels per memristor, which not
only improves energy efficiency but also increases the robustness of the devices
when compared with RRAM-based analog computation. However, these solu-
tions failed to study important design issues such as the offset voltage of the
Sense Amplifiers (SAs), which may lead to operational failures [28].

Xiaoyu et al. [29] proposed a parallel XNOR-RRAM array using CSAs. Their
work shows that by carefully partitioning the RRAM-array, the Sense Amplifier
(SA) offset issue was alleviated and the proposed architecture is robust against
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CMOS and RRAM process variations. However, the assumed RRAM resistance
variation was very optimistic (4.5% whereas some work reported around 20%
of resistance variation [30]), and the operation of the proposed architecture still
may fail under realistic assumptions. Moreover, most of the recent works either
did not investigate the impact of RRAM process variations at the circuit level
[4,27,31–33] or mainly focused on the architectural level, lacking of proper circuit
level evaluations [4,26,27].

Furthermore, previous work still fails to provide embedded-systems-oriented
devices that are capable of operating under tight hardware and power con-
straints. Our work aims at filling these gaps. It has its base on a fully digital
RRAM convolutional block that mitigates the limitations of previous RRAM-
based solutions, such as errors due to RRAM process variations. Plus, our engine
is tiny compared to previous solutions, presenting a chip overhead of merely
0.3% over the CPU used for assessment. Nevertheless, it allows performance
improvements up to 11.3% and energy savings as high as 7.4%. Another impor-
tant contrast between previous solutions and our proposal is the methodology
for using the device. While previous approaches rely on non-standard interfaces
and protocols for programming and sending data (when such methodology is
addressed at all), our system provides a full-stack implementation of a FU that
can be easily addressed using assembly language.

7 Conclusions

Our work consists of a novel RRAM-based BDPE suited for accelerating the
inference phase of BNNs and meant to be integrated within the pipeline of a
general-purpose CPU. To our knowledge, this is the first attempt at exploring the
acceleration of CNNs through custom RRAM-based CPU-integrated FUs, which
makes it an important contribution. The power demand, hardware resources and
propagation delay of the devised mechanism were modeled, and its impact on
the considered base system was comprehensively evaluated using the Darknet
framework and gem5. Results showed that the novel BDPE achieved performance
improvements of 11.3% and 7.4% energy savings. Furthermore, the integration
of the novel mechanism requires only few modifications to the baseline CPU,
while representing less than 0.3% of the total die area, and does not lower the
operation frequency of the system.

The reported advantages allowed by the devised system are tightly coupled
with the considered baseline CPU and the used CNN model. Since this work uses
an ARM Cortex-A53, which is a high-efficiency CPU, the compute power and
energy efficiency enabled by the baseline puts it among the most efficient embed-
ded systems. Nevertheless, the use of the devised BDPE still allows achieving
significant performance improvements and energy savings at the cost of a minor
area overhead. It is also worth saying that should the baseline be a more rudi-
mentary processing system (e.g., an ultra-low-power embedded system), and the
novel BDPE would allow for bigger improvements. Furthermore, the RRAM
usage rate is highly affected by the CNN choice. While YoloV3-tiny XNOR-Net
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allowed for a RRAM usage rate of 10%, other CNNs might allow for higher usage
rates. While this may not be relevant performance-wise, as explored in Sect. 5,
higher RRAM usage rates lead to fewer data movements and also to performing
the XNOR operation using the RRAM array instead of the alternative CMOS
mechanism, which impacts positively the energy efficiency.
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Abstract. Look-Up Table (LUT) implementation of complicated func-
tions often offers lower latency compared to algebraic implementations
at the expense of significant area penalty. If the function is smooth,
MultiPartite table method (MP) can circumvent the area problem by
breaking up the implementation into multiple smaller LUTs. However,
even some of these smaller LUTs may be big in high accuracy MP imple-
mentations. Lossless LUT compression can be applied to these LUTs to
further improve area and even timing in some cases. The state-of-the-art
in the literature decomposes the Table of Initial Values (TIV) of MP into
a table of pivots and tables of differences from the pivots. Our technique
instead places differences of consecutive elements in the difference tables
and result in a smaller range of differences that fit in fewer bits. Con-
straining the difference of consecutive input values, hence semi-random
access, allows us to further optimize designs. We also propose variants of
our techniques with variable length coding. We implemented Verilog gen-
erators of MP for sine and exponential using conventional LUT as well
as different versions of the state-of-the-art and our technique. We syn-
thesized the generated designs on FPGA and found that our techniques
produce up to 29% improvement in area, 11% improvement in timing,
and 26% improvement in area-time product over the state-of-the-art.

1 Introduction

Computationally complex functions often need to be efficiently implemented in
hardware so that they can be part of real-time systems. Look-Up Table (LUT)
based methods (see [1] for a comprehensive survey) offer a good balance between
latency and area in comparison to algebraic methods by a priori computing of the
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function values. LUT-based methods usually have shorter latency as compared
to algebraic methods. A straight-forward LUT method, where function value
f(x) is stored in (read-only) memory’s location x, and the input x is tied to the
address port of the memory and the output f(x) is tied to the dataOut port
of the memory (without any additional logic) is what we call the Conventional
LUT (ConvLUT) method shown in Fig. 1. However, for large bit widths of x,
the area of a ConvLUT blows up.

What we are proposing in this work is a “lossless LUT compression method”
that can shrink the hardware area of complex functions (sometimes even with
improvements in latency) when applied to:

– ConvLUTs or
– the below smarter methods with multiple LUTs

Fig. 1. LUT contents of a ConvLUT.

When a ConvLUT blows up due to large input bit width, “multi-LUT meth-
ods” (including ours) come to rescue. Although our lossless compression method
can be directly applied to ConvLUT, better results are obtained if a lossy multi-
LUT method is used first, and our method is applied to the LUTs within. Multi-
LUT methods use some arithmetic logic to combine the values in multiple tables.
These methods do not produce the exact same output as the ConvLUT method
but can stay within a prescribed error range. Some such popular methods are
BiPartite method (BP) [2,3], Symmetric Bipartite Method (SBTM) [4], Sym-
metric Table Addition Method (STAM) [5], MultiPartite method (MP) [6,7],
and Hierarchical MultiPartite method (HMP) [8].

BP [2,3] uses approximation by the first two terms of the Taylor expansion
of a function using two LUTs: i. Table of Initial Values (TIV) and ii. Table of
Offsets (TOs). The microarchitecture in Fig. 2 becomes BP, when the three TOs
are combined into a single TO. BP uses an adder to add TIV and TO outputs.
TIV downsamples the function values and hence stores a subset of them (at x0
values), whereas TO stores the derivative times Δx(= x − x0).

For further reduction in TO size, TO can be partitioned into multiple smaller
LUTs, which thus leads to the MP method. MP combines STAM [5] and the app-
roach in [9]. InMP, there aremultipleTOs and a singleTIV.Figure 2 depicts anMP
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Fig. 2. MP microarchitecture.

microarchitecture with 3 TOs. A smaller Δx can work with a derivative with fewer
bits, hence the smaller the Δx the narrower the x0 bits (subset) it uses. Each addi-
tional table reduces the total number of bits in all of the tables but then increases
the combinational logic complexity - all in all reduces the total area.

In the recently proposed HMP method [8], the TIV is further decomposed
into the sum of another TIV and TOs. HMP also performs global bit width
optimization over all LUTs.

Figure 3 sketches the LUT compression approach within the context of MP.
For any given function f , with any given input bit resolution (wi), i.e., bit width,
output resolution (wo), and m value (which represents the number of TOs to be
generated), MP can be implemented as shown in Fig. 3, where TIVnew is a new TIV
with fewer entries than TIV, while TIVdiff ’s store differences of missing entries
from the entries TIVnew. Our lossless LUT compression and the one in [11] can
actually be applied to any LUT, hence TIV or TOs or both. However, we applied
it on TIV, as there is more compression opportunity in TIV because it is bigger.
Also, [11] is applied on TIV, and we wanted to compare our work to theirs.

The concept of general-purpose lossless LUT compression for hardware design
was first introduced in [10]. The work in [10] proposes what we here classify
as Semi-Random Access differential LUT (SR-dLUT), where differential LUT
(dLUT) is a sort of TIVdiff . Note that [10] calls the dLUT in this chapter as cLUT,
short for “compressed LUT”. SR-dLUT can output any LUT location within the
range [i − k, i + k] in a given cycle if location i is output in the previous cycle
and k is the number of difference tables (dLUT). Note that there is no TIVnew in
SR-dLUT, there are only difference tables (cLUT in the case of [10]).
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Fig. 3. MP method combined with LUT compression for TIV.

In [11], a lossless LUT compression approach was proposed and was used to
compress the TIV of MP method. Two schemes were proposed in [11], namely,
2-table decomposition and 3-table decomposition. We abbreviate them as 2T-
TIV and 3T-TIV, respectively. Details of both methods are discussed in Sects. 2.1
and 2.2. Furthermore, in [8] an improvement over the 2T-TIV method was intro-
duced, which we call 2T-TIV-IMP and discuss in detail in Sect. 2.3.

In this chapter, we propose four lossless LUT compression methods, namely,
Fully-Random Access differential LUT (FR-dLUT) and Semi-Random Access
differential LUT (SR-dLUT), “Variable Length” encoded FR-dLUT (FR-dLUT-
VL), and “Variable Length” encoded SR-dLUT (SR-dLUT-VL). Note that FR-
dLUT and FR-dLUT-VL microarchitectures were first proposed in our earlier
paper [16] and an earlier version of SR-dLUT (cLUT) was introduced in [10].
SR-dLUT-VL is unique to this chapter. Also, SR-dLUT is here used as a building
block of MP. Note that although this chapter targets hardware implementation,
software implementation of our proposed methods are also possible.

Section 2 below covers the details of the state-of-the-art, namely, 2T-TIV
[11], 3T-TIV [11], and 2T-TIV-IMP [8] (which we call T-TIV methods), while
Sect. 3 presents our proposed methods. Section 4 gives synthesis results (area,
time, and area-time product) of all of the above methods and compares them,
and Sect. 5 concludes the chapter.

2 State-of-the-Art

In this section, previous state-of-the-art of fully-random access lossless LUT
compression are outlined, namely, T-TIV methods.

2.1 2T-TIV Microarchitecture

2T-TIV [11] decomposes TIV of the MP method into 2 LUTs, TIVnew and
TIVdiff (i.e., a form of dLUT) as shown in Fig. 4, where the original TIV can
be recovered from TIVnew and TIVdiff without introducing any errors.
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Fig. 4. LUT contents of 2T-TIV for s = 2.

In Fig. 4, we have wi = 16 and s = 2 such that for every 2s consecutive
entries, TIVnew stores one TIV value (i.e., the one in the middle of 2s). That
is why TIVnew has 2wi−s entries. TIVdiff is used to store differences between
the original TIV values and their corresponding entries in TIVnew. Equation (1)
shows how TIV is reconstructed back from TIVnew and TIVdiff .

TIV (i) = TIVnew (i′) + TIVdiff (i)
where i′ = integer

(
i
2s

)

and TIVnew (i′) = TIV
(
i′ ∗ 2s + 2s−1

) (1)

Note that every 2s entries of TIVdiff contains one zero entry (i.e., entries 2,
6, 10, etc. in Fig. 4).

2.2 3T-TIV Microarchitecture

3T-TIV [11] exploits the “almost symmetry” of function values around the
entries of TIVnew. 3T-TIV has 3 LUTs as shown in Fig. 5 for a given func-
tion with wi = 16 and s = 3. In 3T-TIV, TIVnew serves the same purpose as in
2T-TIV. Figure 5 shows an example, where wi = 16 and s = 3. Hence, there is
one entry in TIVnew for every 8(= 2s=3) entries of the original TIV. The entries
in TIVnew correspond to f(4), f(12), f(20), and so on. The values of f(0), f(1),
and up to f(7) need to be computed from f(4) in TIVnew. Half of those values,
i.e., f(0), f(1), up to f(3) are calculated using the differences stored TIVdiff1 as
in 2T-TIV, hence (2) where i′ is the same as in (1).

TIV (i) = TIVnew (i′) + TIVdiff1

(
2s−1 ∗ i′ + j

)

for j < 2s−1 where j = mod (i, 2s) (2)

However, for f(4) through f(7), the second-order differences in TIVdiff2 are
also added on top of TIVnew and TIVdiff1. The value of f(7) is computed from
f(1), while f(6) is derived from f(2), and so on. That can be expressed as in (3).
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Fig. 5. LUT contents of 3T-TIV for s = 3.

TIV (i) = TIVnew (i′) + TIVdiff1

(
2s−1 ∗ i′ + j

)

+ TIVdiff2

(
2s−1 ∗ i′ + j − 2s−1

)
for j ≥ 2s−1

where TIVdiff2 (k) = TIV
(
k′ + 2s−1

)

−TIV
(
k′ − 2s−1

)

and k′ = 2 ∗ integer
(

k
ss−1

)
+ mod

(
k, 2s−1

)

(3)

In summary, when we group values of function f in groups of 2s, the first
2s−1 values in every group of 2s use TIVnew and TIVdiff1, while the second 2s−1

values use all three tables. Note that every 2s−1 entries of TIVdiff2 contains one
zero entry (i.e., entry 0, 4, 8, etc. in Fig. 5).

2.3 2T-TIV-IMP Microarchitecture

2T-TIV-IMP [8] improves 2T-TIV [11] by reducing the bit width of TIVnew. This
is possible when every TIVdiff entry is summed offline with least significant
wdiff bits of the corresponding TIVnew entry. As a result of this, the least
significant wdiff bits of all TIVnew entries can be zeroed out, hence do not need
to be stored, which leads to a bit width of wnew − wdiff bits as shown in Fig. 6.
On the other hand, TIVdiff entries become 1-bit larger (the wdiff + 1 in Fig. 6)
if any TIVdiff entry overflows when summed with wdiff bits of TIVnew. If there
is no overflow, then the bit width of TIVnew stays the same (wdiff ).

This optimization not only reduces the bit width of TIVnew but also makes
the subcircuit that sums TIVnew and TIVdiff smaller, when there is overflow
resulting in 1 overlap bit, hence TIVdiff with wdiff + 1 bits. The optimization
can even completely eliminate summing when there is no overflow during offline
addition performed to compute the new TIVdiff values. In that case, summing
TIVnew and TIVdiff can simply be realized by concatenating them.

One thing that is not addressed in [11] is that if TIVnew entries are truncated,
TIVdiff entries may have to be 2-bit larger. For a guarantee on at most 1-bit
larger TIVdiff , TIVnew entries have to be rounded down to wnew − wdiff bits
from wnew bits.

Note that the described improvement on 2T-TIV cannot be applied to 3T-
TIV because this optimization breaks the symmetry property 3T-TIV uses.
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Fig. 6. 2T-TIV-IMP version of Fig. 4.

3 Proposed Methods

In this section, our proposed microarchitectures, FR-dLUT and SR-dLUT as well
as their variable length coded variants, namely, FR-dLUT-VL and SR-dLUT-
VL, are presented. The critical difference between our approach and the previous
state-of-the-art (2T-TIV and variants) is that TIVdiff (which we call dLUT)
entries store the difference from the neighboring function value instead of the
difference from the corresponding value in TIVnew as shown in (4) and (5). This
allows elimination of TIVnew if what is desired is only semi-random access [10]. If
fully-random access is desired, we still need a TIVnew table but our dLUTs store
smaller differences compared to the above explained state-of-the-art. Below, we
will describe FR-dLUT, SR-dLUT, FR-dLUT-VL, and SR-dLUT-VL.

3.1 FR-dLUT Microarchitecture

FR-dLUT can be implemented with any number of dLUTs. Figure 7 shows an
FR-dLUT with 4 dLUTs, which implements a function f with wi = 16 and s = 3
(hence 23 = 8 difference values per each TIVnew entry). If TIVdiff in 2T-TIV
and variants contain differences, dLUTs in FR-dLUT, in a way, contain difference
of differences. More specifically, the entries in the dLUTs that correspond to
points that neighbor TIVnew entries (shown as shaded in Fig. 7) contain the
same values as in 2T-TIV, while the other differences are equal to the differences
of neighboring TIVdiff entries in 2T-TIV (see (4) and (5)).

This allows us to store smaller values (i.e., fewer bits) in our difference tables.
However, there is a tradeoff since the summation circuit gets bigger because we
have to sum multiple difference values in our case. Note that, in the actual
implementation, the last dLUT (i.e., dLUT3 in Fig. 7) has half the number of
entries of the other dLUTs. (If logic synthesis is used, logic minimization would
do area reduction when unused entries are specified as don’t cares.)
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Fig. 7. LUTs of FR-dLUT for wi = 16, s = 3 (i.e., Δ = 23−1 = 4).

Equations (4) and (5) are two specific examples of how original TIV values
are constructed from TIVnew and dLUTs in FR-dLUT. They are based on the
tables in Fig. 7.

f(10)
︸ ︷︷ ︸
TIV

= f(12)
︸ ︷︷ ︸

TIVnew

+ f(11) − f(12)
︸ ︷︷ ︸

dLUT3

+ f(10) − f(11)
︸ ︷︷ ︸

dLUT2

(4)

f(13)
︸ ︷︷ ︸
TIV

= f(12)
︸ ︷︷ ︸

TIVnew

+ f(13) − f(12)
︸ ︷︷ ︸

dLUT0

(5)

The generalized construction of TIV from TIVnew and dLUTs for FR-dLUT
method is given in (6) and (7). There are separate construction formulae for
odd (7) and even (6) rows of dLUTs. Note that i′ and TIVnew(i′) below use the
definitions given earlier in (1). Also, in the summations of (6) and (7), if the
upper index (finish index) is smaller than the lower index (start index), then the
summation returns zero.

TIV (i) = TIVnew (i′) +
∑Δ−1

k=j dLUTk(2i′) for j ≤ 2s−1

where j = mod (i, 2s) , and
dLUTk (2i′) = TIV (i′ ∗ 2s + k) − TIV (i′ ∗ 2s + k + 1)

(6)

TIV (i) = TIVnew (i′) +
∑q

k=0 dLUTk(2i′ + 1) for j > Δ = 2s−1

where j = mod (i, 2s) , q = j − 2s−1, and
dLUTk (2i′ + 1) = TIV

(
i′ ∗ 2s + 2s−1 + k + 1

) − TIV
(
i′ ∗ 2s + 2s−1 + k

) (7)

The top-level of FR-dLUT microarchitecture is shown in Fig. 8 for a func-
tion f with n-bit input (wi = n), hence 2n possible output values, k-bit output
resolution (wo = k), Δ dLUTs (Δ = 2s), and d-bit differences. The top-level of
FR-dLUT consists of 5 submodules, namely, AddressGenerator, TIVnew, a set
of dLUTs, DataSelection, and SignedSummation.

If there are Δ dLUTs, where Δ is a power of 2 (to make address gener-
ation is simple), TIVnew stores k-bit TIV(α), where α = Δ, 3Δ, 5Δ, 7Δ, . . . ,
2n − Δ. The number of locations in TIVnew is 2(n−1)/Δ. We denote the output
of TIVnew with mval (short for main value). The address line of TIVnew, named
as directAddress, has a bit width of n − 1 − lgΔ (lg denotes log2). dLUTs store
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Fig. 8. Top module of FR-dLUT microarchitecture.

d-bit 2’s complement differences. The number of locations in “dLUT Δ − 1” is
half the number of locations in the other dLUTs and is the same as in TIVnew.
“dLUT of index Δ − 1” shares the same address bus as TIVnew. The bit width
of the address lines of other dLUTs, named as indirectAddress, is n− lgΔ. The
output of a dLUT is named dval (stands for “difference value”).

AddressGenerator, detailed in Fig. 9, generates three signals: directAddress,
indirectAddress, and select. For every 2Δ value in TIV, there is only one entry in
TIVnew (as well as in “dLUT Δ−1”), thus directAddress signal is the n−1−lgΔ
most significant bits of the n-bit input α part-selected as α[n − 1 : lgΔ + 1].
Moreover, for each value in TIVnew there are two entries in each dLUT (except
“dLUT Δ − 1”), that is why indirectAddress signal is the higher n − lgΔ bits
of n-bit input α(α[n − 1 : lgΔ]).

Fig. 9. AddressGenerator module.
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Signal named select is a thermometer vector, which consists of Δ consecutive
ones, each bit representing whether the corresponding dval will be summed (by
SignedSummation module). Consider (4), which shows how we compute f(10)
using the differences in the dLUTs. In the case of f(10), signal select is 1100, i.e.,
select[3] = 1 (the MSB) and select[2] = 1. Therefore, the outputs of dLUT3 and
dLUT2 (find the terms in (4) in Fig. 7) are summed. Positions of signal select’s
bits match the dLUT locations in Figs. 7 and 8, and the related figures to follow.

Now, consider f(13), which is given by (5). Its select vector is 0001 because
only dLUT0’s output is summed with TIVnew. If we were computing f(15), select
would be 0111. Note that unused dLUT entries always have a select bit of 0. On
the other hand, f(9) and f(8) would have select of 1110 and 1111, respectively. If
the α of f(α) we are computing corresponds to an even row of dLUTs (i.e., row
0, 2, 4, etc.), then select is a contiguous block of 1’s starting with the LSB. On
the other hand, If the α corresponds to an odd row (i.e., row 1, 3, 5, etc.), then
select is a contiguous block of 1’s starting with the MSB.

Let us now look at how we generate select from α. Figure 9 shows how. Let
us apply Fig. 9 to f(10), where Δ is 4, and hence lgΔ is 2. 10 in base 10 is 1010
in binary and α[lgΔ − 1 : 0], lower lgΔ bits of α is binary 10(= 2). We start
with Δ1′b1, i.e., Δ 1’s in Verilog notation. That is, binary 1111. Left-shift it by
2 positions to get Δ = 4 bits, and we get 1100. Bitwise XOR that with α[lgΔ]
(bit 2 of α), which is 0, and we get 1100. That is indeed the select signal.

Let us do the same for f(13). 13 (α) in base 10 is 1101 in binary. Left-shift
1111 by binary 01 (α[lgΔ−1 : 0]) positions, and we get 1110. Bitwise XOR that
α[lgΔ] = 1, and all bits flip, resulting in 0001, which is the correct value.

DataSelection module shown in Fig. 10 is quite straight forward. It is prac-
tically a vector-multiplication unit or some sort of multiplexer as expressed in
(8). It multiplies every dval (i.e., dLUT output) with the corresponding select
bit, resulting in signal dsel. This can be done with an AND gate provided that
each select bit duplicated d times (i.e., dselect[i]), which happens to be the bit
width of dval as well as dsel.

dsel[i] =
{

dval[i], if select[i] = 1
0, otherwise

where i < Δ = 2s−1 (8)

After masking out some dval’s and obtaining dsel’s, we need to sum dsel’s
and the corresponding entry from TIVnew. That is best done with a Column
Compression Tree (CCT). In our work, the summation is done by SignedSum-
mation shown in Fig. 11, which is based on the CCT generator proposed in [13]
(called RoCoCo). RoCoCo handles only the summation of unsigned numbers,
which is why the following conversion had to be done.

Consider the summation when mval is 16 bits, hence a and 15 x’s in (9).
The dsel’s are 4 bits each, and there are 4 dLUTs. That is why we have four
4-bit numbers in (9). These numbers are 2’s complement, which is why their
MSBs are negative. The underbar a, b, c, d, e show that these numbers are
negative. In other words, a, b, c, d, e can be 0 or 1, and a, b, c, d, e are either
−0 = 0 or −1. In summary, we need to perform the summation in (9), where
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Fig. 10. DataSelection module.

Fig. 11. SignedSummation module.

most bit positions have 0 and 1, while two bit positions have 0, 1, and −1. We
can apply unsigned summation techniques only when −1 can be present in the
highest bit position, that is, bit position 15 (the bit position a). For this, we may
sign-extend the 4-bit 2’s complement numbers in (9) to 16 bits. Then, the result
will also be 16-bit 2’s complement, that is, a binary number with negative bit
15. We also have to make sure that the summation does not overflow. If it may,
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we need to sign-extend all numbers to 17 bits. However, in our case, the sum is
also guaranteed to be 16-bit 2’s complement.

axxxxxxxxxxxxxxx + bxxx + cxxx + dxxx + exxx (9)

= āxxxxxxxxxxxxxxx + 1000000000000000 + b̄xxx
+ 1000 + c̄xxx + 1000 + d̄xxx + 1000 + ēxxx + 1000 (10)

= āxxxxxxxxxxxxxxx + b̄xxx + c̄xxx + d̄xxx + ēxxx
+ 10111111111100000 (11)

= āxxxxxxxxxxxxxxx + b̄xxx + c̄xxx + d̄xxx + 1011111111110ēxxx (12)

= āxxxxxxxxxxxxxxx + b̄xxx + c̄xxx + d̄xxx + 011111111110ēxxx (13)

Having said all that, a smarter (more area and speed efficient) approach,
is to use the identity in Table 1, and hence, to replace the a in (9) with ā +
1, where ā is an unsigned 0 or 1 and is the NOT of a. Through this we get
(10), which is a summation of variable unsigned numbers and some 2’s comple-
ment constant numbers with still varying positions for the negative bits. How-
ever, these 2’s complement constants can be summed offline to obtain a single
16-bit 2’s complement number, hence (11). Then, we happen to have negative
bits only in bit position 15. Equation (12) does a little optimization by adding
the rightmost two numbers in (10) offline and hence combining them into a sin-
gle number (1011111111110ēxxx). Equation (13), on the other hand, eliminates
bit position 16 of that combined number as the sum is guaranteed to be 16 bits
(bit positions 0 through 15).

Table 1. Proof of a = ā + 1.

a 1+ā

0 0̄ + 1 = 1 + (−1) = 0

1 1̄ + 1 = 0 + (−1) = −1

The SignedSummation module in Fig. 8 is detailed in Fig. 11. It is composed
of CCT and a Final Adder. The little cones in Fig. 11 expose bits of signals
and recombine them. The bit-level manipulation before the CCT is a pictorial
representation of equations (9) through (13). Note that the number of zeros to
the left of ē does not have to be one as in (13) in the general case. It is lgΔ − 1
zeros (assuming Δ is a power of 2) as in Fig. 11 (look under dsel[0]). Also, note
that the CCT in Fig. 11 not only sums TIVnew and dLUT outputs but also the
outputs of TOs (shown in Fig. 2). There is no reason why we should do two
separate summations.
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3.2 FR-dLUT-VL Microarchitecture

FR-dLUT-VL has a similar microarchitecture to FR-dLUT. They both have
Δ dLUTs and a TIVnew. The contents of TIVnew are the same for both archi-
tectures. The difference between FR-dLUT-VL and FR-dLUT is the dLUT con-
tents (compare Fig. 12 with Fig. 7). FR-dLUT-VL’s dLUTs store the compressed
versions of the differences stored in the FR-dLUT’s dLUT. Due to the nature
variable length coding, dLUTs of FR-dLUT-VL are wider than those of FR-
dLUT. However, unused bits of those dLUTs’ entries are don’t care, and logic
synthesis can optimize them out.

Figure 12 shows the entries of the FR-dLUT-VL with 4 dLUTs for a function
with wi = 16 and wo = 16.

Fig. 12. LUT contents of FR-dLUT-VL implementation for Δ = 4.

It is obvious that one can apply any compression method on dLUT contents.
In this work, Huffman coding [12] is chosen for this purpose. For each dLUT,
the frequency of the values is calculated. According to the frequency, each value
is assigned a Huffman code. Frequency for each value in a dLUT is calculated
separately from the other dLUTs. Additionally, due to the encoded values stored
in the dLUTs, after each value is read from its respective dLUT, it needs to go
through a Decoder module before it can be used in SignedSummation module.

In FR-dLUT-VL microarchitecture, instead of encoding the whole value, a
portion of the entry is taken and then the encoding method is applied. For
example, if three MSBs are selected, each entry’s three MSBs are encoded. To
determine the separation point in a dLUT, starting from the two MSBs of an
entry to all bits of entry, each possible combination is tested. For each combi-
nation, dLUT sizes and the decoder sizes are calculated. Calculation of dLUT
sizes are done by adding encoded values’ bit width and the bit width of the
remaining bits that are not used in the encoding. Among these combinations,
the one with the lower bit count is selected for implementation. Pseudocode of
separation point selection is shown in Algorithm 1.
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Algorithm 1. MSB calculation of FR-dLUT-VL design.
Input: wi : input bit width, wo : output bit width
1: LUTsizeMin ← 2wi ∗ wo

2: MSBcountMin ← 0
3: for MSBcountMin ← 2 to wo do
4: compute encoded representation of every entry
5: LUTsize ← 0
6: DecoderSize ← 0
7: for all unique encoded value do
8: LUTsize ← LUTsize+(encoded value bit length)∗ (frequency of the value)
9: DecoderSize ← DecoderSize + (encoded value bit length)

10: end for
11: LUTsize ← LUTsize + 2wi ∗ (wo − MSBcount) + DecoderSize
12: if LUTsize < LUTsizeMin then
13: LUTsizeMin ← LUTsize
14: MSBcountMin ← MSBcount
15: end if
16: end for

Encoded part of the accessed dLUT entry is sent to the Decoder module.
After the encoded value is decoded, output bits and the non-encoded segment of
the stored value in dLUT is concatenated and sent to the DataSelection module.
Top module of FR-dLUT-VL method is shown in Fig. 13. As shown in Fig. 13,
after the values are read from the dLUT (dvals), part of dval goes through the
Decoder, then the decoded value merges with the rest of the dval and becomes
the decoded difference value (ddval) which is the input for the DataSelection
module.

3.3 SR-dLUT Microarchitecture

The main idea in SR-dLUT is to eliminate the TIVnew in FR-dLUT and instead
add dLUT entries on top of the previous function value. This can be done when
not only the function f is smooth but also the input (x in f(x)) is smooth.
Smoothness of x means the consecutive values of x are close to each other. This
is, for example, the case when x comes from a sensor for example in a closed-
loop control application, or when x is a timer tick or a smooth function of time.
Elimination of TIVnew makes SR-dLUT quite competitive in terms of area.

Figure 15 shows the top level of the proposed SR-dLUT microarchitecture,
which consists of AddressGenerator (Fig. 16), dLUTs, DataSelection (Fig. 19),
and SignedSummation (Fig. 20).



Semi- and Fully-Random Access LUTs for Smooth Functions 293

Fig. 13. Top module of FR-dLUT-VL microarchitecture.

Note that Δ of SR-dLUT is not the same as Δ of FR-dLUT. For FR-dLUT,
Δ is a purely internal parameter stating the number of dLUTs, and hence, it has
nothing to do with how it functions. For SR-dLUT, Δ is not only an internal
parameter but also shows how smooth x is, that is the maximum amount of
change between consecutive x values.

AddressGenerator module calculates the required addresses of dLUTs for
input α. One register stores the previous input value. The previous input is sub-
tracted from the current input to find magnitude and diff sign that determines
whether the shift direction may be forward or backward. The thermo vector is
shifted in direction of diff sign as the amount of the magnitude. (Fig. 18) shows
the ThermoRegulator block that resolves the overflow issue due to the shift oper-
ation. The thermo vector is XOR’ed with the shifted thermo vector. Then, the
output of the first XOR is shifted by 1 in a backward direction, and the resulting
signal is named tmp0. The specific bit portion of tmpO is XOR’ed to determine
select signals. Similarly, the specific bit portion of thermo is ORed to determine
dLut Out En which is used in control mechanisms of both ThermoRegulator and
DataSelection modules. (Fig. 17) shows the AddressSelection module that uses
a conditional control mechanism by using tmp α signals as input tmpO signals
as select to determine addresses of dLUTs.
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Note that SR-dLUT has access to much more than ±Δ values, since each
TIV value is coupled with multiple TO tables in MP. In Fig. 2, we can see that
the same TIV value is used for 2(Δx1 +Δx2 +Δx3) in the case of m = 3. While
we can access 2 ∗ Δ different entries in dLUTs, we can compute the function
for 2 ∗ Δ ∗ 2(Δx1 +Δx2 +Δx3) different x values. For the reasons explained above,
Δ = 1 is a meaningful case for SR-dLUT unlike FR-dLUT.

There are Δ parallel dLUTs that store difference values in SR-dLUT microa-
chitecture. Figure 14 shows an example of SR-dLUT with 4 dLUTs, which imple-
ments a function f with wi = 16. SR-dLUTs store subsequent differences values
in-order and each dLUT stores same amount of data with a length of 2(n−lgΔ).
Since the SR-dLUT method does not require a TIVnew table, we can no longer
have half entries for one of the dLUTs like in Fig. 7. In other words, there is no
unused memory location in dLUTs.

Fig. 14. LUT contents of SR-dLUT implementation for wi = 16 and Δ = 4.

DataSelection module of SR-dLUT is similar to DataSelection module of FR-
dLUT. The difference from FR-dLUT is that there is an extra control mechanism
that determines which signal is multiplied by the select signal. The multiplication
is implemented using an AND gate. The results of multiplication are dsel signals
that are connected to the SignedSummation module.

SignedSummation module of SR-dLUT is different from the FR-dLUT’s
SignedSummation. Since it needs to hold the previous value of the TIV out-
put in a register, and it could not use a single CCT to add dLUT outputs and
the TOs output from MP method. Therefore, there is an additional CCT. The
first CCT uses the current values of dsel and the previous outputs of the CCT.
It outputs two values, which are the values generated just before going through
the second CCT. The outputs of the first CCT are saved in registers for the next
iteration, at the same time used in the second CCT as inputs together with the
TOs outputs. As a conclusion, a final adder sums outputs of the second CCT.

One of the differences between SR-dLUT and the earlier version of this
work [10] is the form of thermo vector. While the size of thermo vector is 3Δ-
bit SR-dLUT, the size of the thermo vector is Δ-bit in [10]. The advantage of
using this new form of thermo vector is to find the dLUT addresses easier. In
other words, the AdressSelection module in our proposed SR-dLUT is simpler
than in [10]. Additionally, we used CCTs for the summation of dsels in our pro-
posed SR-dLUT. On the other hand, conventional addition units are used in [10].
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Our proposed summation module has an advantage in terms of area when Δ
increases because the addition unit in [10] is proportional to Δ.

Fig. 15. Top module of SR-dLUT microarchitecture.

3.4 SR-dLUT-VL Microarchitecture

Difference between SR-dLUT-VL and SR-dLUT is similar to the difference
between FR-dLUT and FR-dLUT-VL, where values inside dLUTs are partially
compressed according the algorithm shown in Algorithm 1. As in FR-dLUT-VL,
partial output of dLUTs’ (dval) in SR-dLUT-VL first go through a decoder,
then output of the decoder is concatenated with the remaining part of the dval.
The concatenated value represents the actual dval from the SR-dLUT microar-
chitecture, which can now be used in the SignedSummation module.

4 Results

In this section, we compare our proposed microarchitectures with the state-of-
the-art (T-TIV methods) as well as ConvLUT (i.e., RegularTIV). For each of
the 8 TIV construction methods listed above, we wrote a code generator in Perl
that generates Verilog RTL for a complete MP design. The code generators take
in wi, wo, and m (number of MP’s TOs) as well as parameters related to the
specific TIV construction method such as Δ for our methods.
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Fig. 16. SR-dLUT AddressGenerator module.

Fig. 17. SR-dLUT AddressSelection module.

Fig. 18. SR-dLUT ThermometerRegulator module.
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Fig. 19. SR-dLUT DataSelection module.

Generation of the original TIV (RegularTIV) and TOs, i.e., the MP method
[6], is done using a tool [14], which is also part of FloPoCo [15]. This tool (written
in Java) generates RTL code in VHDL targeting various mathematical functions
and parameters Wi, Wo, and m. Our Perl script runs the Java MP generator
with Wi, Wo, and m, where Wo shows the precision of the output rather than
the bit width of any of the embedded tables. MP generator decides what sizes
RegularTIV and TOs have to be for the given set of wi, wo, and m. This infor-
mation is embedded into Table 2 of [6] which, for example, shows that wi = 10
and wo = 17 for the RegularTIV part, when the function is sine and wi = 16,
wo = 16, and m = 1. Our Perl takes in wi, wo, and m, runs the Java MP
generator with the input parameters. Then, it parses the VHDL produced by
the MP generator, extracts wi and wo, and runs the TIV generator. Then, our
script produces Verilog, in which we have an MP design equivalent to the input
VHDL but the RegularTIV is replaced with our TIV of choice (one of FR-dLUT,
FR-dLUT-VL, SR-dLUT, SR-dLUT-VL, 2T-TIV, 2T-TIV-IMP, 3T-TIV). Our
script automates verification as well as design. We exhaustively test all function
values by comparing the output of the VHDL and Verilog designs.

We generated the above listed 8 designs for sin(x) (x = [0, π/2[) and 2x

(x = [0, 1[) functions with wi = 16, wo = 16 and wi = 24, wo = 24, both with
various m for each resolution. We then synthesized them on to a Xilinx Artix-7
FPGA (more specifically XC7A100T-3CSG324). FR-dLUT and FR-dLUT-VL
were synthesized for four Δ values (2, 4, 8, and 16) where SR-dLUT and SR-
dLUT-VL synthesized for an additional Δ value, where Δ = 1. For 24-bit res-
olution, m values of 1, 2, 3, and 4 were implemented. For 16-bit resolution, m
values (number of TOs) of 1, 2, and 3 were implemented, since the Java tool at
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Fig. 20. SR-dLUT SignedSummation module.

[14] gave an error and did not produce any VHDL. Note that all LUTs (Regu-
larTIV, dLUTs, TIVnew, TIVdiff , TIVdiff1, and TIVdiff2) are logic-synthesized
instead of instantiating memory blocks. This yields designs with smaller area for
all methods including the original TIVs. The synthesis option of Area with High
effort is selected for better area minimization in Xilinx ISE.

Tables 2, 3, and 4 show the Area, Time, and Area-Time Product (ATP)
results we obtained for sine and exponent function (2x) for 16-bit resolutions,
respectively. Similarly, Tables 5, 6, and 7 show the Area, Time, and ATP results
we obtained for 24-bit versions of sine and exponent function. Area results are
in terms of FPGA LUTs. Time (also called timing) is the latency (i.e., critical
path) of the circuit measured in terms of nanoseconds (ns). ATP simply shows
the product of Area (#LUTs) and Time (ns) columns divided by 103. ATP
of a design shows the tradeoff between area and timing, also ATP is usually
correlated with power consumption. The best Area, Time, and ATP results are
shaded for each m value in the tables.

In Table 2 through 7, all designs (60 for 16-bit and 80 for 24-bit) are
equivalent at MP level. That is, they all produce the same function with the
same resolution. However, the TIV microarchitectures are equivalent within the
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Table 2. Area results for 16-bit resolution

Table 3. Timing results for 16-bit resolution
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Table 4. ATP results for 16-bit resolution

same m. Therefore, it is best to compare the 8 microarchitectures separately for
every m. However, out of curiosity we compare all solutions for each of the 4
cases (16-bit sine, 16-bit 2x, 24-bit sine, 24-bit 2x).

Tables 2, 3, and 4 implement 16-bit sine and 2x 60 different ways each, where
57 comes from (RegularTIV + 2T-TIV + 2T-TIV-IMP + 3T-TIV + 4×FR-
dLUT + 4×FR-dLUT-VL + 4×SR-dLUT + 4×SR-dLUT-VL) × (3 m values).
In the above tables, one result is missing for 2T-TIV-IMP because TIVnew and
TIVdiff in the corresponding 2T-TIV have equal bit width, hence no optimiza-
tion is possible.

Tables 5, 6, and 7 implement 24-bit sine and 2x for an additional 20 different
ways due to the m = 4 case. The Time and ATP of RegularTIV for m = 1 are
missing for both functions and for 2T-TIV-IMP for 2x function in Table 6 and 7
because the synthesis tool was not able to complete routing. The tool reported
the Area but did not report the timing (Time).

Looking at Tables 2, 3, and 4, we can see that, except for 5 cases (2 in Area, 1
in Timing, and 2 in ATP), the proposed method is surpassed by the RegularTIV
and the T-TIV variants for 16-bit implementations. Though in a few cases, our
proposed methods offer up to 29%, 4%, 9% improvement in area, timing, ATP,
respectively over the state-of-the-art and RegularTIV. The area improvements
come from SR-dLUT. Time and ATP improvements come from FR-dLUT and
FR-dLUT-VL.

Looking at Tables 5, 6, and 7 show the results for 24-bit implementations
of sine and 2x. In area, SR-dLUT (and a few times SR-dLUT-VL) gives the
best results. In timing, FR-dLUT gives the best result in 3 out of the 8 cases
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Table 5. Area results for 24-bit resolution

(2 different designs and 4 different ms for each design). FR-dLUT-VL, on the
other hand, is the best in 3 cases. 2T-TIV and RegularTIV each are the best
in 1 case. In ATP, FR-dLUT, FR-dLUT-VL, and SR-dLUT are best in 4, 3,
and 1 case, respectively. Our proposed methods offer up to 23%, 11%, 26%
improvement in area, timing, ATP, respectively over the state-of-the-art and
RegularTIV.

In summary, proposed methods offer, in greater bit widths, significant
improvement in all of Area, Time, and ATP even beyond the state-of-the-art
T-TIV methods.

The bar graphs (Fig. 21) summarize the results by comparing RegularTIV,
the best of T-TIV methods, the best of FR-dLUT methods, and the best of
SR-dLUT methods. RegularTIV and T-TIV methods combined are, on the aver-
age, superior to proposed FR-dLUT and SR-dLUT methods in 16-bit results.
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Table 6. Timing results for 24-bit resolution

However, in 24-bit results either FR-dLUT or SR-dLUT method ore their vari-
ants (-VL) are superior. Only with one m value, we lose to our competition for
each function (sine and 2x), and that is in time metric. In each of the two 24-bit
functions, there are 4 cases (i.e., 4 different m’s), and 3 metrics (Time, Area,
ATP). Therefore, we are speaking of 12 ways to compare the TIV microarchi-
tectures. Ours are better in 11 out of 12.

Figure 21(a) and (b) shows the 16-bit results. For 16 bits, RegularTIV has
the best outcome in 8 out of 18 cases, 2T-TIV-IMP is the best in 7 cases, and
our proposed metods are the best in 5 cases. Te total is 20, not 18, because there
are 2 cases with a tie.
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Table 7. ATP results for 24-bit resolution

In Fig. 21(c) and (d), due to the routing errors we removed the results of
m = 1 from the bar graphs. From the remaining m values (2, 3, and 4) we can
see that proposed method is the best in terms of area, time, and ATP except for
one case where m = 2, in which RegularTIV shows better timing results. When
comparing FR-dLUT and SR-dLUT, we can see that SR-dLUT has the best
performance in terms of area, and FR-dLUT has the best timing. In the current
implementation of SR-dLUT, FR-dLUT shows much better timing performance
but only falls behind a little in terms of area, that is why for almost all cases,
FR-dLUT outperforms SR-dLUT in terms of ATP.
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(a) Bar graph of sine for 16-bit input resolution.

(b) Bar graph of 2x for 16-bit input resolution.

(c) Bar graph of sine for 24-bit input resolution.

(d) Bar graph of 2x for 24-bit input resolution.

Fig. 21. Bar graphs of Area, Time, and ATP for sine and 2x.

5 Conclusion

In this chapter, we have presented lossless LUT compression methods, called
FR-dLUT and SR-dLUT as well as their variants FR-dLUT-VL and SR-
dLUT-VL, which can be used to replace TIVs of Multi-Partite (MP) function
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evaluation method among other applications. It is possible to use our methods
and the previous state-of-the-art within the context of any LUT-based method
for evaluation of smooth functions. Although it is possible to implement these
techniques in software, we implemented our proposed methods in hardware (i.e.,
low-level Verilog RTL) and benchmarked at 16-bit and 24-bit resolutions within
MP implementations of sine and exponential.

It was observed that our four methods yield significant and consistent
improvements at high resolution (i.e., 24 bits) over the previous state-of-the-
art, which we also implemented through design generators for fair comparison.
We synthesized the generated designs on FPGA and found that our methods
result in up to 29% improvement in area, 11% improvement in latency, and 26%
improvement in ATP over the previous state-of-the-art.

This chapter introduces SR-dLUT-VL for the first time. SR-dLUT is, on the
other hand, is based on [10]. Yet, it is optimized and plugged into MP here,
besides getting compared with the other methods in many cases. Moreover, FR-
dLUT and FR-dLUT-VL are presented in greater detail compared to [16].

In future work, SR-dLUT can be modified to utilize pre-fetching. That may
make SR-dLUT better than all other techniques in latency at the expense of
some additional area. Since SR-dLUT is already efficient in area, it can afford
some additional area. However, pre-fetching can also allow memory packing,
which can lower area at the expense of some additional latency.
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Abstract. The Three-Independent-Gate Field-Effect Transistor (TIGFET) is a
promising beyond-CMOS technology which offers multiple modes of operation
enabling unique capabilities such as the dynamic control of the device polarity
and dual-threshold voltage characteristics. These operations can be used to
reduce the number of transistors required for logic implementation resulting in
compact logic designs and reductions in chip area and leakage current.
However, the evaluation of TIGFET-based design currently relies on a close

approximation for the Power, Performance, and Area (PPA) rather than tradi-
tional layout-based methods. To allow for a systematic evaluation of the design
area, we present here a publicly available Predictive Process Design Kit
(PDK) for a 10 nm-diameter silicon-nanowire TIGFET device. This work
consists of a SPICE model and full custom physical design files including a
Design Rule Manual, a Design Rule Check, and Layout Versus Schematic decks
for Calibre®. We validate the design rules through the implementation of basic
logic gates and a full-adder and compare extracted metrics with the
FreePDK15nmTM PDK. We show 26% and 41% area reduction in the case of an
XOR gate and a 1-bit full-adder design respectively. Applications for this PDK
with respect to hardware security benefits are supported through a differential
power analysis study.

1 Introduction

In the past decade, the semiconductor industry has seen exponential growth in com-
putationally intensive applications such as artificial intelligence, augmented reality, and
machine learning. Scaling down the standard semiconductor technologies based on
standard Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFET) devices has
been the primary solution for achieving these performance requirements. However, with
a reduction in transistor size, undesired short-channel effects such as increased leakage
current start dominating the device operation. Several 3D semiconductor structures such
as Fin Field-Effect Transistor (FinFET) or Gate-All-Around (GAA) configurations have
been proposed to enhance channel electrostatic control and reduce leakage current [1].
However, their fabrication in the sub-10 nm regime is increasingly difficult and
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expensive [2] and so there is a need to investigate devices which can be scaled func-
tionally rather than physically.

To continue supporting ever-increasing performance demand substantial research has
beendevoted tonovel semiconductor structureswithenhanced functionality [3–5].Device
level innovations such as novel geometries and materials are used in improved logic
devices including Spintronics-based FETs, Tunnel FETs, and Ferroelectric FETs [6, 7].

Of particular interest are Multiple Independent Gate FETs (MIGFETs), which are
Schottky-based devices using additional gate terminals to configure the device to
different modes of operation [8–11]. Due to their compatibility with the standard
CMOS manufacturing process and their increased logic benefits, these devices are
considered promising both as superlatives and alternatives to conventional MOSFETs.
A wide range of studies showing the benefits of these devices have been carried out in
different domains including digital, analog, and RF design [12, 13].

One promising MIGFET device is the Three-Independent-Gate FET (TIGFET)
[14], which introduces two gate terminals called Polarity Gates (PG) to a traditional
FET structure. The PG terminals are used to modulate Schottky-barriers at the source
and drain of the FET and effectively allow for a dynamic configuration of the device to
n- or p-type. A massive benefit to these devices is their extremely low leakage current
when compared to standard MOSFETs, which is due to the current cutoff provided by
the Schottky-barriers. Meanwhile, the ability to dynamically control device polarity
gives TIGFETs a higher expressive logic capability than conventional devices,
resulting in a compact logic gate implementation and lower leakage current per cell. As
a result, the circuit-level benefits of TIGFETs have been largely investigated in liter-
ature in the past few years and have shown promising implementations for a wide range
of logic circuits such as multiplexers [15], adders [16], flip-flops [17] or for use in
differential power attack mitigation techniques with reduced power line variation [18].

However, performance evaluation of TIGFET-based design currently relies on an
area approximation rather than traditional layout-based methods since no TIGFET-
based Process Design Kit is publicly available.

In this work, we introduce an open-source TIGFET PDK available online [19],
created for simple integration with Cadence® Virtuoso.

The Design Rule Manual for the proposed PDK is derived from previously fabri-
cated MIGFET devices [4] and the publicly available FreePDK15nmTM [20]. Our PDK
consists of a SPICE Verilog-A model for a 10 nm diameter Silicon Nanowire (SiNW)
TIGFET and includes full custom design files, Design Rule Check (DRC), and Layout
Versus Schematic (LVS) decks. The availability of this PDK will allow universities and
researchers to explore the benefits of TIGFETs in various domains. The benefits of the
proposed PDK are as follows:

• It provides design rules and a layout consistency check for a more reliable and
reproducible system design,

• It allows accurate metric evaluations, such as area or delay, of TIGFET-based
designs,

• It enables the system designer to explore higher-level designs using state-of-the-art
TIGFET circuit techniques,

• It showcases the area benefits of compact TIGFET gates for an XOR and a 1-bit full
adder.
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• It provides a detailed regular cell placement method which helps mitigate additional
routing overhead.

The rest of this chapter is organized as follows: Sect. 2 provides an overview of
TIGFET technology including its circuit-level opportunities. Section 3 introduces the
TCAD work and resulting electrical SPICE model of the proposed TIGFET device.
Section 4 describes the physical TIGFET design and briefly describes the DRC and
LVS decks. Section 5 evaluates the regular layout technique for TIGFETs, and Sect. 6
includes a differential power analysis which further showcases the benefits of TIGFET-
based applications. Finally, Sect. 7 concludes the chapter.

2 Technical Background

In this section, we establish the necessary background to understand TIGFET tech-
nology. We then briefly review circuit-level opportunities brought by TIGFET devices
and discuss publicly available design kits.

2.1 TIGFET Operation

The TIGFET is composed of drain and source contacts as well as three independent
gate contacts, as shown in Fig. 1 (a). The Control Gate (CG) controls the potential
barrier in the channel in the same manner the gate contact works in a conventional
MOSFET device and turns the device on or off.

The Polarity Gates (PG) at the source and drain modulate their respective Schottky-
barriers, selecting the type of carriers (electrons or holes) which will enter the channel
and dominate the current flow; the ability to make this selection is called device
reconfigurability and is unique to Schottky-barrier-based devices. TIGFET devices
have been successfully fabricated with several channel technologies such as FinFET
[21], 2D materials [22], and SiNW [23]. In this paper, we will consider a
SiNW TIGFET which is fabricated using a fully CMOS-compatible process. A scan-
ning electron microscopy picture of a previously fabricated TIGFET device with
labeled terminals is seen in Fig. 1 (b) [23].

(a) (b)

D PGD PGSCG S

Fig. 1. (a) TIGFET general structure; (b) scanning electron microscopy image of a fabricated
TIGFET device comprising of four vertically stacked silicon nanowires [23].
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2.2 Circuit-Level Opportunities

Due to their reconfigurability, TIGFETs show richer switching capabilities per given
transistor and this ability is used to implement compact logic gates. For instance, as
shown in Fig. 2 (a), a TIGFET NAND requires 1 fewer transistor than its CMOS
counterpart. Similarly, as illustrated in Fig. 2 (b) and (c), while a CMOS two-input
XOR and three-input majority gate require 8 and 10 transistors respectively, using
TIGFETs reduces this amount to only 4 transistors in both cases. This leads to an area
reduction, as is demonstrated in Sect. 5. Note also that a two-input XOR, three-input
XOR, and three-input majority gate can all be made from the same four TIGFET
transistors by adjusting the terminal voltages [10]. This essentially means that a
TIGFET circuit does not need to be programmed until after it has been fabricated and
can also be reprogrammed for multiple differing functions, a feat not possible with
standard CMOS technology.

2.3 Publicly Available Physical Design Kits

Previous PDKs based on predictive technologies include the FreePDK45nmTM [24]
and FreePDK15nmTM [20] which present the design rules and standard cell library [25]
for planar and FinFET CMOS technologies respectively. In addition, the ASAP7 PDK
[26] was created to describe the aggressive 7 nm FinFET technology node. The set of
realistic assumptions included in the ASAP7 PDK simplifies its use in an academic
setting. Most recently, an add-on for the FreePDk15nmTM was proposed for CMOS-
compatible Resistive RAM technology [27].

3 Proposed TIGFET Device Properties

In this section, we evaluate the proposed TIGFET device electrical properties and
present the TIGFET SPICE model used in the PDK as well as the TCAD model upon
which it is based.
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Fig. 2. TIGFET compact gates: (a) 2-input NAND; (b) 2-input XOR; (b) 3-input majority gate.
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3.1 Device TCAD Work

TCAD simulations of a 10 nm SiNW TIGFET device with gates of 10 nm and sep-
arations of 10 nm were performed in Synopsys Sentaurus. Nickel silicide-silicon is the
assumed Schottky barrier contact and the dielectric layer is HfO2 with a thickness of
8 nm. Electrical properties, such as the ON-current (ION), the OFF-current (IOFF) and
the nominal voltage VDD were extracted from these simulations. The maximum current
drive for n-type operation is 90.20 lA/lm and for p-type is 89.25 lA/lm, as seen in
Fig. 3. Thanks to the Schottky barrier cutoff, IOFF is extremely low at 3.3 nA/lm and
0.1 nA/lm for n- and p-type operation respectively. Further work and discussion of
this simulation is available in [28].

These current drives are approximately 10 X lower than the previous 22 nm
TIGFET device simulations [7] which used a supply voltage of 1.2 V. This loss is
primarily due to the 0.7 V supply voltage used in the 10 nm devices as is standard for
technology at this node. This lowered supply voltage is necessary for fair comparisons
with the corresponding CMOS technology.

The real benefit to these devices is their reconfigurability, as used in Sect. 5 and this
is enhanced with this new model: the 10 nm TIGFET device was designed in TCAD to
be extremely symmetric in its ON-current drives for p-type and n-type switching. This
is seen in Fig. 4 which compares the 10 nm TIGFET TCAD device to the previously
used 22 nm TIGFET TCAD device using normalized drain current and gate voltage
characteristics; from this plot we can see a decrease in asymmetry from approximately
9% with the 22 nm simulations to less than 1% with this new model.

Fig. 3. IDS-VGS characteristics of the simulated device at VDD = 0.7 V. The switching is
centered around VGS = 0.3 V. The linear scale results show the maximum ON-current and the
log scale results show the minimum OFF-current.
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3.2 SPICE Verilog-A Model

The TCAD simulation results have been used to develop a TIGFET macro model in
Verilog-A, as shown in Fig. 5.

The nonlinear current source I(D, S) is modeled using TIGFET macro model

approach and a function of the drain, source and all three gate voltages. The table stores
the current I(D, S) for each bias point combination applied on the device terminals. We
chose a bias point granularity of 0.1 V on the PG gates at the source and drain and the
CG terminal, and a 0.05 V bias on the drain terminal, totaling to 67,536 bias points. For
other bias points, the model uses linear interpolation and extrapolation techniques.
Linear interpolation provides relatively better convergence in transient simulation and
avoids any spurious false peaks. To model transient behavior, the capacitance between
each terminal pair is extracted by AC simulations from TCAD and the average value
obtained under all the bias conditions is considered in the proposed model. The ter-
minal access resistances are also extracted using TCAD simulations. The coupling
capacitance between gate terminals is very small and omitted from the model. Since
TIGFETs are built using vertically stacked SiNWs, as explained in Sect. 2, the pro-
posed SPICE model assumes a single SiNW by default. To change the number of wires

Fig. 4. Normalized IDS-VGS characteristics of the simulated 10 nm and 22 nm TIGFET devices.

Fig. 5. Macro model of a SiNW TIGFET.
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in the stack, a nw design parameter can be changed. A comparison of SPICE model and
TCAD simulation result indicates less than 0.1% mean square error for both DC and
transient simulations.

4 TIGFET Physical Design

In this section, we briefly present the TIGFET fabrication process requirements and
corresponding constraints. Then, we summarize the sets of DRC and LVS rules.
Finally, we discuss the implications of a TIGFET-based physical design.

4.1 Process Assumptions

The fabrication of a SiNW-based TIGFET is completely CMOS-compatible and
straightforward, the most challenging step for fabricating these devices at the 10 nm
node being patterning. Each TIGFET has three independent gates, which are patterned
with a spacing of 15 nm and reliable fabrication of these features is required for correct
functionality of the device. The traditional 193 nm (ArF) lithography process is
inadequate for realizing features this small, and the most advanced lithography process
of Extreme Ultraviolet Lithography (EUVL) is as yet prohibitively expensive for high
volume production [29]. An alternative option to the latter is Dual Patterning
Lithography (DPL) at 193 nm. DPL allows patterning at half the pitch size of the
corresponding single patterning technique [29]. Hence, in the proposed PDK, we
consider DPL for patterning of the gate layer and the first four metal layers. Every DPL
layer requires decomposition before the fabrication process. In commercial PDKs this
decomposition is achieved by providing different colors for each DPL layer. When two
patterns have to be drawn in the same layer with spacing smaller than the pitch, double
patterning is realized by using two separate colors which correspond to different masks.
These two separate masks are then connected together by inserting a stitch to form an
electrical connection between them [30]. A minimum number of stitches must be
introduced into each layer to stall printability degradation [31]. Process modeling is
also recommended to ensure correct decomposition of layers. In an academic setting,
placement and design using all the constraints of the DPL technique can get increas-
ingly difficult. The layer decomposition task is better automated using many proposed
layout decomposition EDA tools [32]. To simplify the use of the proposed PDK, we
represent each DPL layer with a single color. This results in the gate layer and the first
four metal layers being represented using a single color. To simplify further, this PDK
does not provide any additional layers for threshold adjustment or a gate cut mask. The
proposed PDK’s Back-End-Of-Line (BEOL) process supports ten layers of metal. The
list of key layers is given in Table 1.
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4.2 Single Device Layout and Dimensions

The layout of a single TIGFET is shown in Fig. 6. As discussed earlier, all three gates of
the TIGFET are drawn using the same color to represent the gate layer; these are separated
later using EDA tools for fabrication of separate PG and CG masks. Vertical strips of
polysilicon are patterned uniformly across the chip with a Contacted Poly Pitch (CPP) of

Table 1. List of key layers in the proposed PDK.

Layer name Drawn width (nm) Pitch (nm)

Active 166 32
GATE 20 64*

PG-CG 20 35
SDC 28 40
GC 56 40

IL 24 40
V0 28 36

Metal 1-4 28 36
VM0 5-10 28 36
Metal 5-10 56 72

VM5 5-10 56 72

*Pitch between the gate of two different devices.
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Fig. 6. TIGFET layout and the FEOL/MOL process cross-section.
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44 nm. The gate cut mask generated using the automated EDA tools is used to cut the
excess polysilicon from around the active regionwith a 20 nm extension. Figure 6 shows
the cross-section view of the Front-End-Of-Line (FEOL) andMiddle-Of-Line (MOL) of
the proposed predictive process model. Contact to all the gate terminals is made using the
Gate Contact (GC) layer. Source and drain terminals of the device are connected using
Source Drain Connect (SDC) layer. Both GC and SDC layers are connected to the first
layer of the metal using Interconnect Layer (IL).

The drain and source terminals of the device have a height and width of 100 nm
and 30 nm respectively. The side view in Fig. 6 shows the channel as formed with a
maximum stack of four SiNW. Based on the height of the active region, multiple such
stacks can be formed with a pitch of 40 nm. Figure 6 depicts a device with a total of 5
stacks of 4 nanowires. Some of the other key layers are summarized in Table 1, along
with the drawn width and minimum pitch.

4.3 Cell Layout and DTCO Consideration

Meeting fabrication yield and cost targets are particularly challenging tasks when
fabricating new semiconductor structures. Design for Manufacturability (DFM) and
Design Technology Co-optimization (DTCO) are widely used techniques to ensure
successful device fabrication using novel processes. Using the DTCO approach,
manufacturing yield and device density can be improved by customizing the layouts of
some widely used structures [26, 33]. In the traditional fabrication processes, the
DTCO approach is used for optimizing the highly regular pattern such as an SRAM
cell. The SRAM pattern can be carefully tuned using actual manufacturing data
allowing tighter tolerance, higher device density, but very few variations in the layout.

In the case of TIGFET-based designs, transistors connected in series (i.e., with shared
source and drain contacts) and tied polarity gates are very common, and these are called
grouped devices. We use the DTCO approach to optimize the layout of the grouped
devices. Figure 7 shows the schematic and the layout of two grouped TIGFETs. The
polarity gates of both devices are shorted together by allowing horizontal routing of the
gate layer to the top of the device. TheDRC rule for vertical spacing of gates with different
potentials is compromised to achieve higher device density. This structure is also very
helpful in designing a regular layout using TIGFET devices, as will be shown in Sect. 5.

n1

n2

n3

G2

G1

g1

n1 n2 n3

G2G1

g1
(a) (b)

Fig. 7. TIGFET grouped transistors: (a) schematic; (b) layout view.
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4.4 Sea-of-Tile Implementation

The enhanced functionality of TIGFETs comes at the cost of two additional gate
terminals per device. Using traditional layout and routing methods, the TIGFET-based
physical design may not give the best possible results due to the addition of these extra
gates. Here, we explore some techniques to mitigate the additional routing complexity.
In particular we look at the dual metal power grid routing and then explore the novel
layout approach for increasing regularity of the TIGFET-based design, which was first
proposed in [34, 35].

At advanced technology nodes, one of the prerequisites for robustness is a layout
regularity. This makes the design less sensitive to process variation and improves the
yield of fabrication. Sea-of-Tiles (SoT) is a fully configurable architecture in which an
array of logic tiles is uniformly spread across the chip. A tile is an array of TIGFET
devices in which the devices are placed horizontally and adjacent to each other with
shorted polarity gates in case they share the same logic on polarity gates. If the devices
share the same logic on the control gate, they are aligned vertically with shorted control
gates. Based on the number of devices grouped together, many different sizes of tiles
are possible. In this work, we will consider TileG1 and TileG2 [35], whose corre-
sponding schematics are shown in Fig. 8 (a) and (b) respectively.

Each tile can be configured for different logical operation based on the input
provided to its nodes (n1–n6) and gates (g1, g2, G1, and G2).

Many other configurations are possible using TileG2, and these are listed in Table 2.
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Fig. 8. Logic tiles: (a) TileG1 stick diagram; (b) TileG1 schematic; (c) TileG2 stick diagram;
(d) TileG2 schematic.
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We implement TileG1 and TileG2 using the proposed design rules in Cadence®
Virtuoso, as shown in Fig. 9.

4.5 Grid Based Power Routing

A TIGFET device can be configured as a pull-up (p-type) network by applying logic 0
to its polarity gates or a pull-down (n-type) by applying logic 1. This additional
requirement creates a sparse connection of VDD/GND connectivity in the cell. Con-
sequently, traditional power distribution schemes with alternate VDD and GND lines
are not efficient. As proposed in [35], we used two metal approach to route power
around the cell. Figure 8 shows the horizontal VDD and vertical GND lines. Com-
parison of this approach with tradition single metal based power routing has been
demonstrated in [34] and shows delay reduction by approximately 28% with minimum
routing complexity.

Table 2. Area comparison of tile-based logic gates implementation.

Logic gate Tile Area TIGFET (µm2) Area CMOS (µm2)

1-bit HA 2 � TileG2 0.34 0.59
XNOR2 TileG2 0.37 0.49
NAND2 TileG2 0.17 0.15
NOR2 TileG2 0.17 0.15
INV TileG1 0.10 0.10
BUF TileG1 0.10 0.10

(a) (b)198nm

502nm

332nm

VDDVDD

GND GND

Fig. 9. SoT layout using the proposed PDK: (a) TileG1 (Area = 0.10 lm2); (b) TileG2
(Area = 0.17 lm2).
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5 PDK Showcases

In this section, we showcase the area benefits of TIGFET technology by presenting two
TIGFET compact logic cells designed using the proposed PDK.

5.1 Compact XOR Cell

Using the higher expressive logic capabilities of the TIGFET device, it is possible to
build a compact XOR gate. As illustrated in Fig. 2 (b), a TIGFET-based XOR gate only
requires 4 transistors, whereas its CMOS counterpart requires 8 transistors. This com-
pact implementation of a TIGFET-based XOR gate results in an area benefit and leakage
power reduction. It is interesting to note that the TIGFET design requires a single device
for a pull-up or a pull-down operation, unlike CMOS which requires a series of two
transistors. As a result, it reduces the total resistance in the charging and discharging
load paths. A TIGFET-based XOR is implemented using 2 X TileG2. One is configured
as two individual inverters, and another as an XOR gate, as shown in Fig. 2. The
complete layout of the CMOS-based XOR gate. The resulting area of the TIGFET-based
XOR cell is 0.37 lm2, which is *26% smaller than the CMOS implementation which
resulted in an area of 0.49 lm2. Due to its symmetric structure, the TIGFET-based
XNOR has the same area and power benefits. This work was previously shown in [36].

5.2 Compact 1-Bit Full Adder

We also built a 1-bit full adder using compact TIGFET-based XOR and MAJ logic
gates, and compared it to its CMOS counterpart [25], the schematic of which is seen in
Fig. 10.

The layout of the TIGFET (Area = 0.66 lm2) and CMOS-based (Area = 1.13 lm2)
full adder are shown in Fig. 11 (a) and (b) respectively. As explained, the richer
switching capabilities of TIGFET devices allow them to realize the same CMOS logic
function while reducing the number of devices. In the case of the 1-bit full adder, this
results in a 41% area reduction. [36]
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Fig. 10. TIGFET-based compact implementation of a 1-bit full adder.
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Similar to the XOR and MAJ gates, various logic functions can be realized by
configuring TileG1 and TileG2.

6 Differential Power Analysis Resilience Study

Simulations for power line variation and integral charge were performed using the
TIGFET 10 nm PDK for various TIGFET-based logic gate designs including XOR-
only, XOR-XNOR, DCVSL-XOR, NAND HP, NAND LL, DCVSL-NAND, NOR HP,
NOR LL, and DCVSL-NOR. These results were then compared to simulations per-
formed using a PTM 10 nm LSTP CMOS design. Table 3 shows these simulation
results.

Power line variation was lower for almost all TIGFET-based gate configurations
(the only exception being for the XOR-XNOR gate). One of the most impressive of
these was for a TIGFET-based NAND design which showed 2 X the power line
variation when compared to its CMOS-based counterpart. The integral charge was
similarly consistently and significantly lower for the TIGFET-based design, with
benefits of over 7 X being seen for the DCVSL-XOR simulations. These two metrics
are extremely important in designing circuits that are resilient to hardware attacks.

(a)

768nm

1472nm

(b)

502nm

1258nm

C
A

B
S
C

Fig. 11. Layout view of a full adder: (a) CMOS; (b) TIGFET.
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Table 3. Power line variation and integral charge studies for TIGFET-based designs compared
to CMOS-based designs.

NAND TIGFET 
NAND 

HP

TIGFET 
NAND 

LP

TIGFET 
DCVSL 
NAND 

CMOS 
4T 

NAND

CMOS 
DCVSL 
NAND

ISUPPLY (μA)
Power Line 
Variation 

(%)

34.55 32.38 18.64 51.77 24.64

Integral 
Charge (10-

16 C) 
(│Max-
Min│)

0.23 0.11 0.96 0.94 1.65

NOR TIGFET 
NOR 
HP

TIGFET 
NOR LP

TIGFET 
DCVSL 

NOR 

CMOS 
NOR

CMOS 
DCVSL 

NOR
ISUPPLY (μA)

Power Line 
Variation 

(%)

34.55 32.38 18.64 51.77 24.64

Integral 
Charge (10-

16 C) 
(│Max-
Min│)

0.05 0.17 0.95 1.61 1.89

TIGET 10 nm PTM 10 nm LSTP CMOS-
CMG

XOR TIGFET 
XOR

TIGFET 
XOR-
XNOR 

TIGFET 
DCVSL 

XOR 

CMOS 
XOR

CMOS 
XOR-
XNOR

CMOS 
DCVSL

NOR
ISUPPLY (μA)

Power Line 
Variation 

(%)

21.16 5.81 0.58 57.46 4.51 38.52

Integral 
Charge (10-

16 C) 
(│Max-
Min│)

0.65 0.01 1.05 0.76 0.17 7.34
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7 Conclusion

This work has exhibited a predictive PDK for a 10 nm-diameter SiNW TIGFET. The
design kit is derived using TCAD simulations and realistic assumptions made for large-
scale production of TIGFET-based systems. We detailed key assumptions made while
designing the PDK and derived the set of design rules for physical design in Cadence®
Virtuoso. Using the TIGFET PDK, we evaluated previously proposed grouped tran-
sistor and grid-based power-line distribution overhead introduced because of the
TIGFET’s additional terminals. We validated the design rules by implementing an
XOR and a 1-bit full adder, and compared those with the FreePDK15nmTM CMOS
process, which shows 26% and 41% area reduction respectively. The TIGFET PDK
was also used to compare against CMOS-based logic cell designs for power variation
analysis, and it was showed to be optimal when compared to the CMOS designs for
almost all logic cells.

Acknowledgements. This work was supported by the NSF Career Award number 1751064, and
the SRC Contract 2018-IN-2834.
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Abstract. Modern mobile SoCs are typically integrated with multiple
heterogeneous hardware accelerators such as GPU and DSP. Resource
heavy applications such as object detection and image recognition based
on convolutional neural networks are accelerated by offloading these
computation-intensive algorithms to the accelerators to meet their strin-
gent performance constraints. Conventionally there are device-specific
runtime and programming languages supported for programming each
accelerator, and these offloading tasks are typically pre-mapped to a spe-
cific compute unit at compile time, missing the opportunity to exploit
other underutilized compute resources to gain better performance. To
address this shortcoming, we present SURF: a Self-aware Unified Run-
time Framework for Parallel Programs on Heterogeneous Mobile Archi-
tectures. SURF supports several heterogeneous parallel programming
languages (including OpenMP and OpenCL), and enables dynamic task-
mapping to heterogeneous resources based on runtime measurement and
prediction. The measurement and monitoring loop enables self-aware
adaptation of run-time mapping to exploit the best available resource
dynamically. Our SURF framework has been implemented on a Qual-
comm Snapdragon 835 development board and evaluated on a mix of
image recognition (CNN), image filtering applications and synthetic
benchmarks to demonstrate the versatility and efficacy of our unified
runtime framework.

1 Introduction

Mobile computing has benefited from a virtuous cycle of powerful computational
platforms enabling new mobile applications, which in turn create the demand for
ever more powerful computational platforms. In particular contemporary mobile
platforms are increasingly integrating a diverse set of heterogeneous computing
units1 that can be used to accelerate newer mobile applications (e.g., augmented
reality, image recognition, inferencing, 3-D gaming, etc.) that are computation-
ally demanding. The privacy and security needs of these mobile applications
1 In this article we use the terms “compute unit” and “device” interchangeably.
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(i.e., safely compute on the mobile platform, rather than suffer the vulnerabil-
ity of sending to the cloud for processing) place further computational stress
on emerging mobile platforms. Consequently, as shown in Table 1, contempo-
rary mobile platforms typically include a diverse set of compute units such as
multiple heterogeneous multi-processors (HMPs), and programmable accelera-
tors such as GPUs, DSPs, NPUs, as well as other custom application-specific
hardware accelerators.

Table 1. Contemporary mobile SoCs [10]

Vendor SoC CPU GPU Other IPs

Qualcomm Snapdragon HMP Adreno Hexagon DSP

TI OMAP HMP PowerVR Tesla DSP

NVIDIA Tegra HMP NVIDIA -

Samsung Exynos HMP Mali Neural processor

Apple A series HMP Apple Neural processor

However, current mobile platforms and their supporting software infrastruc-
tures are unable to fully exploit these heterogeneous compute units for two rea-
sons: 1) existing runtime systems are typically designed for one or a few com-
pute units, thus unable to exploit other heterogeneous compute units that are
left idle, and 2) conventional wisdom dictates that certain application codes are
best accelerated by specific compute units (e.g., embarassingly parallel codes by
GPUs, and filtering/signal processing by DSPs). Consequently, some compute
units (e.g., GPUs) can get heavily overloaded with high resource contention
resulting in overall poor performance. Indeed, in our recent study [10], we made
the case for exploiting underutilized resources in heterogeneous mobile architec-
tures to gain better performance and power; and even counterintuitively using
a slower/less efficient but underused compute unit to gain overall performance
and power benefits when the platform is saturated. To fully exploit such situ-
ations, we believe there is a need for a unified runtime framework for parallel
programs that can accept applications and dynamically map them to fully utilize
the available heterogeneous architectures.

Towards that end, this article motivates the need for, and presents the soft-
ware architecture and preliminary evaluation of SURF, our Self-aware Unified
Runtime Framework for parallel programs, that exploits the range of mobile
heterogeneous compute units. SURF is a unified framework built on top of
existing parallel programming interfaces to provide resource management and
task schedulability for heterogeneous mobile platforms. Using SURF applica-
tion interfaces, application designers can accelerate application blocks by creat-
ing schedulable SURF tasks. The SURF runtime system includes a self-aware
task mapping module that considers resource contention, the platform’s native
scheduling scheme, and hardware architecture to perform performance-centric
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task mapping. We have implemented SURF in Android on a Qualcomm Snap-
dragon 835 development board, supporting OpenMP, OpenCL and Hexagon
SDK as the programming interfaces to program CPU, GPU and DSP respec-
tively. Our initial experimental results – using a naive, but self-aware scheduling
scheme – shows that SURF achieves average performance improvements of 24%
over contemporary runtime systems, when the system is saturated with mutliple
applications. We believe this demonstrates the potential upside of even larger
performance improvements when more sophisticated scheduling algorithms are
deployed within SURF.

The rest of this article is organized as follows. Section 2 presents background
on existing mobile programming frameworks. Section 3 outlines opportunities to
exploit heterogeneous compute units for mobile parallel workloads, and moti-
vates the need for the SURF framework through a case study. Section 4 presents
SURF’s software architecture. Section 5 presents early experimental results using
SURF to execute sample mobile workloads. Section 6 discusses related work, and
Sect. 7 concludes the article.

2 Background

Modern mobile heterogeneous system-on-Chip (SoC) platforms are typically
shipped with supporting software packages to program the integrated heteroge-
neous hardware accelerators. However, there is no unified programming frame-
work. Open Computing Language (OpenCL) was designed to serve this purpose
but it ends up being mostly limited to GPU only among mobile platforms. Other
compute units such as DSP or FPGA need their own software supporting pack-
ages instead of relying on OpenCL. As a consequence, existing infrastructures
require a static mapping of the workload to compute units at compile time.
severe resource contention for one unit (e.g., the GPU) while underutilizing
other units (e.g., DSP). Besides, there is no information sharing between indi-
vidual device runtimes, which makes it difficult to make intelligent task-mapping
decisions even if the schedulability is provided. Hence, existing software infras-
tructures are unable to exploit the full heterogeneity of compute units. In our
previous case study [10], we showed how underutilized heterogeneous resources
can be exploited to boost performance and gain power saving when the plat-
form is saturated with workloads – an increasingly common scenario for mobile
platforms where users are multi-tasking between mobile games, image/photo
manipulation, video streaming, AR, etc. Our study highlighted the need for a
new runtime that can dynamically manage and map applications to heteroge-
neous resources at runtime. To address these challenges, we have built SURF, a
unified framework that sits on top of existing parallel programming interfaces to
provide resource management and task schedulability for mobile heterogeneous
platforms. Using SURF application interfaces, application designers can acceler-
ate application blocks by creating schedulable SURF tasks. Next we analyze the
performance of several popular mobile data parallel workloads on heterogeneous
compute units to illustrate the potential for SURF to map these computations
across these units.
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Fig. 1. Execution time of benchmarks on different compute units

Data-Parallel Workload Characterization. Data-parallel computations are com-
mon in several mobile application domains such as image recognition (using
CNNs) and image/video processing/manipulation where the same function is
applied to a huge amount of data. Due to the simplicity of this programming
pattern, they can be easily offloaded to hardware accelerators such as GPUs
without substantial programming effort. In order to highlight the opportunity for
gaining performance improvement through task mapping/schedulability across
heterogeneous compute units, we measured the execution time of two benchmark
suites (Polybench benchmark suite [7] and Hexagon SDK benchmark suite [16]),
as well as for the critical layers in a CNN (cuda-convnet) that contain sev-
eral common data-parallel kernels across different domains. In addition to their
original implementations, we added OpenMP/CPU, OpenCL/GPU or C/DSP
implementations to execute them on different compute units (CPU, GPU, DSP).

Figure 1 shows the measurement results of running each benchmark on the
CPU, GPU and DSP respectively. As expected, we typically see one “dominant”
version for best performance on a specific compute unit, e.g., syrk and con-
vnet pool1 have the lowest execution time on GPU, whereas bilateral and con-
vnet conv2 runs best on the DSP. However, note that the non-dominant (slower)
versions (e.g., syrk and convnet pool1 on CPU or DSP; and bilateral and con-
vnet conv2 on CPU or GPU) – while seemingly inferior in performance – can be
opportunistically exploited by our SURF runtime to improve overall system per-
formance, especially as the mobile platform suffers from high contention when
popular apps (e.g., image recognition, photo manipulation/filtering) compete for
a specific compute unit (e.g., the GPU for data parallel computations).
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3 Motivational Case Study

With abundant compute resources on a mobile chip, a developer typically par-
titions an application into task kernels to be executed on compute units and
accelerators (e.g., CPU, GPU, DSP) that correspondingly promise a boost in
performance. For instance, a convolutional neural network (CNN) application
with multiple layers can be partitioned into data-parallel tasks for each layer
and mapped onto GPUs for boosting performance. Intuitively, this strict parti-
tioning of tasks to execute them on the highest-performing compute units should
result in overall better performance. Mobile platforms often face resource con-
tention when executing multiple applications, saturating these high-performing
compute units. In such scenarios – contrary to intuition – offloading of computa-
tional pressure to other underutilized and seemingly under-performing compute
units (e.g., DSPs) can actually result in overall improvements in performance
and energy. Indeed, in an earlier experimental case study [10], we observed an
average improvement of 15–46% in performance and 18–80% in energy when exe-
cuting multiple CNNs, computer vision and graphics applications on a mobile
Snapdragon 835 platform by utilizing idle resources such as DSPs and consider-
ing all available resources holistically.

In this section, we present this motivational study executing a mix of popular
data-parallel workloads and show that both performance and energy consump-
tion of mobile platforms can be improved by synergistically deploying these
underutilized compute resources. We select and run three classes of applica-
tions: image recognition, image processing and graphics rendering workload, to
emulate when the system is heavily-exercised by high computation-demanding
applications such as augmented reality and virtual reality applications.

3.1 Experimental Setup

Table 2. Keywords used in experiments [10]

Experiment Description

CPU-float, CPU-8bit Run the original or quantized version on the CPU

GPU-float, GPU-8bit Run the original or quantized version on the GPU

DSP-float Run the original version on the DSP

DSP-8bit Run the quantized version on the DSP w/ batch processing

DSP-8bit-nob DSP-8bit w/o batch processing

Hetero Layers or stages are statically configured to run on
highest-performing compute unit

Hetero-noGPU Like Hetero but avoid using GPU

Platform: We use a Snapdragon 835 development board with the Android 6
operating system (which uses the Linux 4.4.63 kernel). The board’s SoC inte-
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grates custom CPUs with big-LITTLE configurations that conform to ARM’s
ISA. It also integrates a GPU with unified shaders, all capable of running com-
pute and graphics workloads. The 835 board has two Hexagon DSPs: a cellular
modem DSP dedicated to signal processing, and a compute DSP for audio, sen-
sor, and general purpose processing. We target exploiting the compute DSP since
it is typically idle.

Applications: For the CNN applications, we select two Caffe CNNs: lenet-5 and
cuda-convnet using datasets MNIST and CIFAR10, respectively. MNIST repre-
sents a lightweight network with a few layers and low memory footprint whereas
CIFAR10 has more layers and high memory footprint. We also implemented a
quantized version of Caffe, which supports quantized matrix multiplication using
8-bit fixed-point for convolutional and fully-connected layers. The other layers
still perform floating-point computation. The experiments include floating-point
and fixed-point versions of CNN models running on CPU, GPU and DSP. For
the CED application, we modified Chai CED [9] to support all heterogeneous
compute resources for each stage.

Table 2 summarizes the different experiments by executing the above applica-
tions on various compute units (CPU, GPU, DSP, and heterogeneous – including
all compute units). In addition to the original floating-point version of CNNs,
we also deploy 8-bit quantized versions to exploit the DSP effectively. The row
DSP-8-bit represents a single function call for batch processing of 100 images to
amortize the communication overhead, whereas the row DSP-8bit-nob represents
no batch processing, i.e., separate function calls for each image.

3.2 Opportunities for Exploiting Underutilized Resources

Figure 2 presents the performance of the convolutional layers of MNIST and
CIFAR10. Since the Hexagon DSP is fixed-point optimized, the quantized ver-
sion (DSP-8bit) of the conventional layers are able to outperform some of the
other versions. Therefore – following intuition – the performance of a single
application can be boosted by allocating the workload to the corresponding
highest-performing compute unit. However – counterintuitively – we may be
able to exploit seemingly slower compute units to gain overall performance and
energy improvements. Figure 3 illustrates this scenario, showing the execution
time of running one to three instances of CIFAR10 in parallel. When executing
only one CIFAR10 instance, the GPU-only version yields the best result com-
pared to GPU-CPU and GPU-DSP versions (as expected). However, when we
execute multiple instances of CIFAR10 (i.e., panels showing CIFAR10*2 and
CIFAR10*3 ), we observe that offloading to the other seemingly inferior com-
pute units (e.g., CPU & DSP) yields overall better performance. Indeed, when
executing 3 instances of CIFAR10 (CIFAR10*3 ), we see that the performance
of GPU-CPU and GPU-DSP significantly outperform the GPU-only version,
since the GPU is saturated. This simple example motivates the opportunity to
exploit underutilized resources such as DSPs as outlined in Sects. 3.3 and 3.4.
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3.3 Optimization for Single Application Class

Intuitively, the performance and energy consumption of an application (e.g.,
CNN) can be improved by partitioning and executing on specific accelerators
(e.g., GPUs). But frameworks such as Tensorflow and Caffe run the CNN model
on the same GPU, saturating that compute unit while missing the opportunity to
improve performance and energy consumption by exploiting other underutilized
compute units (e.g., CPU and DSP). Therefore, we partition the neural network
at the layer level so each layer can be executed as a task running on a different
compute unit to exploit heterogeneity. Figure 4a, 4b shows the execution time,
average power and energy consumption of running different versions of MNIST
and CIFAR10. For MNIST, conv2 runs on DSP and the others run on CPU.
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Fig. 2. Performance of convolutional layers [10]
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Fig. 4. Performance, power, and energy consumption for single or multiple CNNs/CED
with different task mapping [10]

For CIFAR10, conv2, and conv3 run on DSP, and the others run on GPU.
Although DSP-8bit has better performance over convolution layers in general
as shown in Fig. 2, it performs worse due to the floating-point computation in
other layers such as the Pooling and ReLu layers. For all quantized models,
the accuracy drops 1.4% on average. Hetero represents the results of utilizing
diverse compute units to gain performance and energy improvements. Indeed,
the Hetero results show a 15.6% performance boost and a 25.4% energy saving
on average compared to CPU-float and GPU-float (which respectively perform
best for MNIST and CIFAR10).

Figure 4c shows the results of running multiple CIFAR10 instances. The
results are grouped by CPU, GPU and heterogeneous resources and the val-
ues are normalized to CPU-8bit. For CPU-8bit, the performance is scalable but
the power and energy consumption increases drastically with more instances
because more cores are exercised. The performance of GPU-8bit downgrades
along with the increase of instances because they contend for the GPU. Het-
ero shows more stability than the others due to the distribution of the workload
over all compute resources. We also simulate the scenario when the GPU is satu-
rated by rendering high-quality graphics. We use the GPU Performance Analyzer
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benchmark to produce a high quality graphics workload. As Fig. 4d shows, the
performance of GPU-float and Hetero decreased significantly because the GPU
is fully-saturated by the above-mentioned graphics workload. Hetero-noGPU is
statically configured to offload the conv2, conv3 and relu layers to DSP while
the other layers run on CPU. As Hetero-noGPU specifically avoided using the
GPU, its performance and energy consumption outperforms the others.

3.4 Optimization for Multiple Application Classes

When executing multiple application classes on a system, both the task partition-
ing and the exploitation of heterogeneous resources help for better distribution
of workload, which in turn leads to better performance and energy consump-
tion. Figure 5a presents the results of running different combinations of CED
and CIFAR10. CPU/CPU represents the static task mapping policy that CED
runs only on the CPU and CIFAR10 also runs on the CPU. The other terms in
the figure follow the same convention. Makespan is from when we execute all the
applications in parallel to when the last application terminates. By exploiting all
heterogeneous (including underutilized) resources efficiently, we can achieve bet-
ter results: the fully heterogeneous with Hetero mapping outperforms CPU-only
and GPU-only up to 51% for performance and 55% for energy consumption.

Figure 5b presents the results of running all three workload including
CED, CIFAR10 and the graphics benchmark. The mapping policy Het-
ero/Hetero/Grahpics contends for GPU and therefore fail to achieve better out-
come. However, the Hetero-noGPU/Hetero-noGPU/Grahpics policy where we
adjust the CED and CIFAR10 to map only on CPU and DSP outshadows the
previously policy since GPU becomes the bottleneck due to severe contention.
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Fig. 5. Performance of mixed workload

This scenario highlights the need for runtime decision making for pairing
workload from different applications with compute unit according to the system
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status – something not possible in existing runtimes. Hence, we proposed our
runtime model, SURF, to deal with the problem which will be detailed in the
next section.

4 SURF: Self-aware Unified Runtime Framework

SURF [11] is a unified runtime framework built on top of existing programming
interfaces and device runtime to provide adaptive, opportunistic resource man-
agement and task schedulability that exploits underutilized compute resources.
Figure 6 shows the architectural overview of SURF. In a nutshell, mobile applica-
tions create SURF tasks through SURF APIs. When a SURF task is submitted,
a self-aware task mapping algorithm is invoked referencing runtime information
of compute units provided by SURF service. After the task mapping decision is
made, the corresponding parallel runtime stub executes that task.

OS Kernel

SURF Framework

SURF Service

Applications

Little CPU GPU DSP

SURF TaskSURF API kernel

runtime1 runtime2 runtime3SURF monitor

Big CPU

argument buffer

Parallel Runtime Stubs
OpenCLOpenMP Hexagon

Self-aware Adaptive Task Mapping

…

…

Fig. 6. SURF Architecture

4.1 Application and Task Model

Figure 7 shows the hierarchy of SURF’s application model. At the highest level,
the mobile platform admits new applications at any time. A newly entering
application (e.g., CNN in Fig. 7) can create and submit tasks to SURF dynam-
ically. A task (e.g., conv1, pool and relu1 in Fig. 7’s CNN application) rep-
resents a computational chunk (parallel algorithm or application block) that
could be a candidate for acceleration. A kernel residing in a task represents the
programming-interface-specific implementation artifact to program one compute
unit (e.g., OpenMP, OpenCL and Hexagon DSP kernels as shown on the right
side of Fig. 7). SURF opportunistically maps each task (encapsulating multiple
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Fig. 7. Application and task model

kernels) for scheduling execution on a specific compute unit. All kernels in a task
share a set of common inputs and outputs,

The code block in Fig. 8 demonstrates an example of how to use the applica-
tion interfaces to create and execute a 2-dimensional convolution task with three
kernels including an OpenMP, a OpenCL and a Hexagon DSP kernel. Lines 1–2
create the input and output SURF buffer; Line 4 creates a task; Lines 5–8 add
common arguments for all kernels; Lines 9–11 create three kernels to run on
CPU, GPU and DSP with user-provided OpenMP binary, OpenCL source code,
Hexagon DSP binary respectively, and associate the kernels with the task; and
Lines 11–12 execute and destroy the task.

1 surf_buffer_t in = surf_buffer_create(size_in);
2 surf_buffer_t out = surf_buffer_create(size_out);
3 /* fill in input buffer */
4 surf_task_t task = surf_task_create(3);
5 surf_task_add_args(task, 0, in, size_in, SURF_MEM_READ | SURF_MEM_BUFFER);
6 surf_task_add_args(task, 1, out, size_out, SURF_MEM_WRITE | SURF_MEM_BUFFER);
7 surf_task_add_args(task, 2, &ni, sizeof(int), 0);
8 surf_task_add_args(task, 3, &nj, sizeof(int), 0);
9 surf_task_create_kernel(task, "conv2D_cpu", SURF_DEV_CPU, SURF_KERNEL_OPENMP |

SURF_KERNEL_USE_BINARY, "res/libpb.so", 0);
10 surf_task_create_kernel(task, "conv2D_gpu", SURF_DEV_GPU, SURF_KERNEL_OPENCL |

SURF_KERNEL_USE_SOURCE, "res/2dconv.cl", 0);
11 surf_task_create_kernel(task, "conv2D_dsp", SURF_DEV_DSP, SURF_KERNEL_HEXAGON |

SURF_KERNEL_USE_BINARY, "res/libconv.so", 0);
12 surf_task_enqueue(task);
13 surf_task_destroy(task);

Fig. 8. Sample code of SURF application interfaces including SURF buffer, task and
kernel creation as well as SURF task execution and termination.
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4.2 Memory Management and Synchronization

SURF assumes compute units are sharing the system memory which is also the
dominant architecture in mobile SoCs. Hence, the expensive data movement
between device memory can be ignored if the memory is mapped to all the
devices correctly. The SURF buffer object is a memory region mapped to all
the device address space through device-specific programming interfaces e.g.,
OpenCL Qualcomm extension and Hexagon SDK APIs for Qualcomm SoCs.
Memory synchronization is still necessary when the buffer is used among different
devices to ensure the running device can see the most recent update of data.
SURF automatically synchronizes memory objects when the memory object is
going to be used by a different device; this memory overhead is included in
SURF’s task mapping decision.

4.3 Self-aware Adaptive Task Mapping

SURF employs a self-aware adaptive task mapping strategy. SURF exhibits self-
awareness [5] by creating a model of the underlying heterogeneous resources,
assessing current system state via the SURF monitor, and using predictive mod-
els to guide mapping decisions. This enables SURF to act in a self-aware manner,
combining both reactive (e.g., as new applications arrive or when active appli-
cations exit), as well as proactive (e.g., through the use of predictive models
to enable evaluation of opportunistic mapping to underutilized compute units)
strategies to enable efficient, adaptive runtime mapping.

SURF’s current implementation deploys a variant of the heterogeneous ear-
liest finish time (HEFT) [17] task mapping algorithm, enhanced to incorporate
the cost of runtime resource contention. We consider two types of contention:

Intra-compute-Unit. the contention happens when multiple tasks are submitted
to a compute unit. The cost of the contention depends on the device runtime and
the hardware architecture. For compute unit accelerators such as GPU and DSP,
the task execution is usually exclusive due to costly context switch overheads. A
FIFO task queue is implemented for each compute unit, so we include the wait
time in the queue when calculating the finish time for a task. We also consider
device concurrency (i.e., how many tasks can run concurrently on a device) in the
analysis. Contemporary mobile GPUs can only accommodate one task execution
at a time. Other devices such as DSPs may have more than one concurrent task
execution (e.g. Qualcomm Hexagon DSP supports up to 2 when setting to 128-
byte vector context mode [16]). And of course for the CPU cluster we can have
multiple, concurrent tasks executing across the big.LITTLE cores, that typically
employs an existing sophisticated scheduler such as the Linux Completely Fair
Scheduler (CFS) [14].

Inter-compute-Unit. Typically memory contention is the major bottleneck when
there are concurrent memory-intensive task executions in different compute
units, resulting in the execution makespan of a task increasing significantly.
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Figure 9 shows SURF’s dynamic task mapping scheme. SURF proposes a
heuristic-based scheme to estimate the finish time for a task running on different
compute units considering both intra- and inter-compute-unit contention. First,
to determine which compute unit has the fastest execution time, a new task
starts within a profile phase to measure the execution time for all kernels in the
task. Mapping phase comes after the profile phase is finished where it begins to
find the earliest finish time based on the runtime information. Policy determines
how to perform the task mapping according to the task profile and device load.
Equation 1 shows how we estimate the finish time. T cu

task is the finish time when
executing task t on compute unit cu. Tinter is the execution time considering
inter-compute-unit contention. The influence of memory contention to execution
time is difficult to estimate at runtime because the micro-architecture metrics
for hardware accelerators are usually not feasible; hence we use a history-based
method to model that effect. A history buffer is introduced to track execution
time of the latest n runs. Tinter is the average of the history buffer. Tintra is
the execution time considering intra-compute-unit contention. For GPU/DSP,
Tintra is the sum of execution time of earlier submitted tasks. For CPU, Tintra

is complicated to estimate if left unbounded. So we estimate the worst execution
time based on OpenMP programming model and assume the active CPU threads
have the same priority under CFS policy (each thread is allocated with the same
time slice). SURF configures an OpenMP kernel to execute on a CPU cluster
with a thread on each core. Hence, we approximate the worst execution time
by Eq. 2. TPC is the number of concurrent OpenMP tasks in the CPU cluster.
To represent the overhead of deploying the task to the compute units and the
memory synchronization if it is necessary (e.g., memory buffer is written by GPU
and CPU is going to use the results). SURF finds the kernel with the minimum
T cu
task and submits it to the SURF device queue for execution.
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T cu
t = T cu

inter + T cu
intra + To, cu ∈ {CPU,GPU,DSP} (1)

T cpu
intra = TPC ∗ T cpu

inter (2)

4.4 Parallel Runtime Stub

Parallel runtime stub is an abstract layer on top of the existing programming
interfaces. This layer utilizes their interfaces to communication with the cor-
responding runtime. The corresponding stub provides the following features:
a) Initialization of programming resources for different programming interfaces
accordingly; b) Memory management and synchronization: while the shared sys-
tem memory model between heterogeneous compute units is dominant in mobile
SoCs, and saves expensive data movement, it still needs to perform memory syn-
chronization between cache and system memory before another compute unit
accesses the memory; and c) Computation kernel execution. SURF currently
supports three programming interfaces: OpenMP, OpenCL and Hexagon SDK
to program CPU, GPU and DSP respectively.

4.5 SURF Service and Monitor

The SURF service is a background process that synchronizes the system informa-
tion with application processes. The SURF Monitor collects system status and
profile results. For example, we collect execution time of OpenMP threads from
the entity sum exec runtime through sysfs so to estimate how long an OpenMP
kernel runs.

5 Experimental Results

5.1 Experimental Setup

Figure 10 shows our experimental setup. We have implemented the SURF frame-
work using C/C++ in Android 7 running on Qualcomm Snapdragon 835 devel-
opment board, which has two CPU clusters (big.LITTLE configuration), and
integrated GPU and DSP. SURF considers the little CPU cluster, big CPU clus-
ter, GPU and DSP as four compute units when making task mapping decisions
where GPU and DSP are exclusive for 1 and 2 tasks respectively. SURF kernels
can be created by the programming interfaces of OpenMP, OpenCL and Hexagon
SDK to program CPU, GPU and DSP respectively. We deploy the Caffe con-
volutional neural network framework [12], Canny Edge Detector (CED), Poly-
bench benchmark suite and Hexagon SDK benchmarks to run on SURF. We
also use the Snapdragon Profiler [15] to measure the utilization for each com-
pute unit. Power consumption is measured by averaging the product of voltage
and current read from the power supply module through Linux sysfs interface
(e.g. /sys/class/power supply). Energy consumption is the product of makespan
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and average power consumption. We also access Android Debug Bridge (adb)
through WiFi instead of USB connection so the USB charging will not compro-
mise the results. The big.LITTLE processor governors are set to performance
mode so as to not interfere with our performance-centric task mapping.

In our experimental sets, we run two applications: image recognition (cuda-
convnet within Caffe and with Cifar10 dataset) and image filter (CED) repre-
senting foreground processes that have 9 and 4 SURF tasks respectively. We also
run two GPU-dominant benchmarks (syrk and gemm from Polybench) and two
DSP-dominant benchmarks (bilateral and epsilon) representing background pro-
cesses and each of the benchmarks runs one SURF task. We characterize appli-
cation workloads as heavy and light workloads by changing batch processing size
(how many images are processed each iteration) and benchmark workloads as
heavy, medium and light workload by changing their input size. Light workload
is characterized as real-time workload which can be done within 20 ms. Medium
and heavy workload are the ones can be done within 20–100 ms and above 100 ms
respectively. Tables 3 and 4 summarizes the configurations of applications and
benchmarks used in our experimental sets.

Table 3. Details of applications and benchmarks used in our experimental sets

Name Source Category #tasks Dominant
device

CUDA-convnet Caffe Image recognition 9 Mixed

Canny Edge Detector Synthetic Image filter 4 Mixed

syrk Polybench Linear algebra 1 GPU

gemm Polybench Linear algebra 1 GPU

bilateral Hexagon SDK Image filter 1 DSP

epsilon Hexagon SDK Image filter 1 DSP

Table 4. Details of applications and benchmarks used in our experimental sets (con-
tinuation)

Name #Iteration Workload

Heavy(H) Medium(M) Light(L)

CUDA-convnet 150 Batch=100, 32 × 32 n/a Batch=10

Canny Edge Detector 150 Batch=100, 640 × 354 n/a Batch=1

syrk 200 512 × 512 384 × 384 256 × 256

gemm 200 768 × 768 512 × 512 256 × 256

bilateral 200 3840 × 2160 1920 × 1080 1280 × 960

epsilon 200 7680 × 4320 3840 × 2160 1920 × 1080
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Fig. 10. Experimental setup

5.2 Experimental Results

As Table 5 shows, we run six test sets composed of combinations of heavy/light
applications and heavy/medium/light benchmarks. Figure 11 shows the execu-
tion makespan of running our six test sets with static best-performing task map-
ping and SURF dynamic task mapping. The static best-performing mapping
configures each task to run on their best-performing compute unit according to
the profiling results without SURF. SURF’s dynamic task mapping outperforms
static mapping by 24% on average. Table 5 also shows that the speedup increases
with the level of the background benchmark workload because for heavy back-
ground benchmarks, a single run of them will occupy the compute resources
for long time in GPU and DSP, which creates opportunities to map alterna-
tive kernels to exploit other underutilized compute units. The light applications
have better speedup than heavy applications because the light application setup

Table 5. Speedup for different test sets

Foreground-background workload Speedup Makespan difference (s)

Set1 H-H 1.33 19.07

Set2 H-M 1.17 7.15

Set3 H-L 1.04 1.43

Set4 L-H 1.34 12.60

Set5 L-M 1.34 5.07

Set6 L-L 1.22 1.72
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experiences more contention with background processes during the entire
makespan and it’s easy to find alternative kernels because the kernels in one
task tend to have similar performance in light workload configuration. Figure 12
shows the sum of all device utilization of the makespan including little/big CPUs,
GPU and DSP utilization when running each test set (max 400% across the 4
classes of units). GPU and DSP utilization are similar (increased by 4.51% and
3.38% respectively) across all in general, since the GPU and DSP are heav-
ily exercised. Here the Big CPU is better utilized (increased by 30.6%) by our
dynamic scheme, and is the major contributor to the speedup.
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Fig. 11. Makespan of static and SURF dynamic task mapping
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Further experiments were conducted where DSP-dominant background pro-
cesses (bilateral and epsilon) are not executed, but only foreground applications
and GPU-dominant background processes. Figure 13 and 14 show the results
of makespan and utilization respectively. SURF’s dynamic scheme outperforms
static mapping by 27% in performance which is slightly better than the previous
experiments because there are more available resources while GPU is saturated.
The utilization for big CPU and DSP increased by 43.15% and 8.13% respec-
tively which shows part of the computation are offloaded to them.

0
10
20
30
40
50
60
70
80
90

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic
Set1-HH Set2-HM Set3-HL Set4-LH Set5-LM Set6-LL

M
ak

es
pa

n 
(s

ec
on

d)

Fig. 13. Makespan of static and SURF dynamic task mapping w/o DSP-dominant
background processes

While these preliminary experimental results demonstrate SURF’s efficacy in
exploiting underutilized compute units for improving performance, the current
policy which applies the HEFT algorithm introduced in Sect. 4.3 is not power-
and energy-aware. As a result, the power and energy consumption increase by
62.8% and 31.6% on average shown in Fig. 15. We speculate that the current
implementation for the computational kernels make SURF infeasible to deploy
energy-aware policy because they are not optimized according to the hardware
architecture. Hence, the trade-off between performance and energy becomes triv-
ial - either high performance and energy consumption or low performance and
low energy consumption. We expect to see reductions in energy consumption
once the kernels are optimized with an energy-aware policy. This development
is currently ongoing.
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6 Related Work

Heterogeneous resource management has been widely studied, with a large
body of existing work on task scheduling/mapping algorithms [4,8,13,17]. For
instance, Topcuoglu et al. [17] proposes the heterogeneous earliest finish time
(HEFT) algorithm that schedules tasks in a directed acyclic graph (DAG) onto
a device to minimize execution time. Choi et al. [4] estimates the remain-
ing execution time for tasks on CPU and GPU by using a history buffer and
selects the most suitable device. The StarPU [2] framework targets high per-
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formance computing and enables dynamic scheduling between CPU and GPU
based on static knowledge of the tasks. Zhou et al. [19] perform task mapping
onto heterogeneous platforms for fast completion time. Some recent efforts also
address domain-specific platforms: Wen et al. [18] and Bolchini et al. [3] pro-
pose dynamic task mapping schemes specific for OpenCL; Georgiev et al. [6]
proposes a memetic algorithm based task scheduler for mobile sensor workload;
and Aldegheri et al. [1] presents a framework allowing multiple programming
languages and exploit their different level of parallelism for computer vision
applications which achieves better performance and energy consumption.

SURF distinguishes from these works in two directions. First, the SURF
framework is composed of a runtime system for task mapping and APIs for
mobile systems. SURF is built on top of existing programming interfaces and
dynamically profiles task execution and perform task mapping without user-
provided static knowledge. Second, SURF is self-aware: aware of the heteroge-
neous hardware architecture, existing scheduling scheme and the runtime system
status. It takes care of resource contention of single compute units while other
works make assumptions that all the compute unit are exclusive to a single
task (e.g., CPU should not be exclusive). The device concurrency of hardware
accelerators is also ignored in these previous works.

7 Conclusion

In this article, we presented the architecture of SURF, a self-aware unified
runtime framework built on top of existing programming interfaces including
OpenMP, OpenCL and Hexagon DSP SDK for mapping tasks onto CPU, GPU,
and DSP respectively in mobile SoCs. We illustrated how to use SURF’s applica-
tion interfaces to create and execute a SURF task. SURF performs task mapping
while being aware of existing scheduling schemes, intra- and inter-compute-unit
contention and heterogeneous hardware architectures to select the compute unit
with the earliest finish time for the given tasks without user-provided static infor-
mation about the tasks. Our early experimental results show an average of 24%
speedup by running mixed mobile workloads including two applications, image
recognition by using convolution neural networks and an image filter with couple
of background processes sharing workload on the compute units. Our ongoing
work is incorporating more sophisticated mapping and prediction algorithms,
and analyzing the performance as well as energy benefits of deploying SURF on
emerging heterogeneous mobile platforms.
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