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Abstract. We consider the general multi-vehicle and multi-period
Inventory Routing Problem (IRP). A challenging aspect of solving IRPs
is how to capture the relationship among the periods where the routing
takes place. Once the routes are defined, computing the optimal inven-
tory at each customer on each period amounts to solving a network flow
problem. We investigate the impact of efficiently solving this recurring
network problem on the solutions found by the devised algorithm. A very
significant impact is observed when solving 638 instances in a classical
benchmark set, improving 113 upper bounds through assembling the
network optimization into an ILS-RVND algorithm. In particular, the
results suggested this approach performs better for larger instances with
more periods, obtaining speed-ups of about ten times. A detailed com-
parison against nine of the most prominent exact and heuristic methods
favors the proposed approach.
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Matheuristics · Network Simplex · Iterated Local Search

1 Introduction

Logistics decisions are recognized for having a significant impact on every orga-
nization’s strategic planning. With the advent of the internet and the ever-
increasing globalization, this impact is growing and fostering companies in a
continuous search to reduce costs and increase logistics efficiency. Global opti-
mization of the supply chain is one of the efforts that have been employed in the
late years and is gaining in popularity due to improved results when compared
to traditional models. Vendor-Managed Inventory (VMI) systems are a big step
towards this objective. It centralizes the decisions on the suppliers allowing them
to reduce both production and distribution costs at the same time by combin-
ing and coordinating transportation and demand for multiple customers. The
Inventory Routing Problem [10] is then an application of VMI to define routes
to one or more vehicles to service a set of customers during a planning horizon.
In every period, all customers’ demands should be met with products from the
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limited customers’ inventories and/or from the production of the single depot,
where all vehicles are located. Therefore, besides the customers’ visits to each
customer, the amount of product delivered must also be decided for each vehicle
and period. The problem then asks for the minimum overall cost, considering
the vehicles’ routing costs, and inventory costs from the customers and depot.

This problem models three simultaneous supply chain decisions into one sin-
gle (global) optimization problem: (i) decide the periods in which a customer
should be visited, (ii) decide how much should be delivered for each customer,
and (iii) decide the best delivery routes. Considering also variations of the prob-
lem, usually, one out of these two inventory policies are applied regarding cus-
tomer visits: (i) order-up-to level policy (OU), where customer inventory is filled
to its maximum capacity at every visit; and (ii) maximum level policy (ML),
where customer inventory may be below but never above its limit at every visit.

The IRP is gaining much attention recently due to its importance, complexity,
many variations, and the lack of an exact algorithm capable of solving instances
of reasonable size in a short time. Still, considering it belongs to the class of
the NP-hard problems, which can be proved by a reduction to the Traveling
Salesman Problem, advances in the literature over the last ten years are very
promising. Over the years, different methods were proposed for the single and,
more recently, multi-vehicle versions of the problem. For the single-vehicle ver-
sion, heuristic methods include a two-step heuristic algorithm [9], an Adaptive
Large Neighborhood Search (ALNS) [13], a hybrid tabu search method [4], Sim-
ulated Annealing [2,20] and Iterated Local Search (ILS) [2,20]. The first exact
method for the single-vehicle IRP was a branch-and-cut algorithm [5]. Methods
for the multi-vehicle version are more recent but are increasing in a fast-pace.
Heuristic methods include an ALNS [12], a hybrid matheuristic [7], a kernel
search matheuristic from [18], an ILS [22], a Simulated Annealing [2] and unified
matheuristic [11]. Exact methods for this variant include branch-and-cut [1,14],
a branch-cut-and-price [16] and, more recently, a single-period cutting planes [8].

This paper considers a class of the multi-vehicle and multi-period Inventory
Routing (IRP). The main result is a matheuristic composed of an Iterated Local
Search, with Random Variable Neighborhood Descent, that explores a modifica-
tion on a Network Flow algorithm to efficiently find the optimal inventory flow
and costs, given the routes to be performed in each period. The basic idea was
already explored in [12], where the authors report the computation time to solve
the Network Flow problem as an issue. It limited the approach performance
significantly in terms of solution quality versus computation time. In the resolu-
tion of IRPs, capturing the distribution of goods relation over the periods is a
challenge. This research shows that efficiently solving this Network Flow prob-
lem pays off. A very significant impact is observed. When solving 638 instances
in the small benchmark set from [5], for the ML policy, we improve 113 upper
bounds through plugging the efficient network optimization into an ILS-RVND
algorithm. In particular, the results suggest this approach performs better on
larger instances, with more periods, customers, and vehicles. The proposed algo-
rithm achieves about ten times faster execution time by updating and reusing
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the underlying structure used by the Network Simplex algorithm. As the final
algorithm intensively uses an enhanced Network Simplex method, we classify
this heuristic algorithm as a Matheuristic.

This paper is organized as follows. The next section presents the metaheuris-
tic used. Section 3 explains the changes in the Network Simplex algorithm to
speed up the solution. In Sect. 4, we show the computational experiments and
analyses. Section 5 concludes the work and lists future research.

2 Iterated Local Search

We start by describing the basic Iterated Local Search (ILS) algorithm. We
address the fundamental constructs of the heuristic and the main components
that build up the algorithm: the neighborhoods and the local search. The search-
space used during the algorithm execution comprehends both feasible and infea-
sible solutions. A collection of neighborhoods is defined to explore this search-
space. These neighborhoods are commonly used on several classes of vehicle
routing problems, except the insert and remove neighborhoods, which are par-
ticular for the IRP since a customer may or may not be visited in a given period
of the planning horizon. The neighborhoods are the following:

– insert(c, v, p): Insert customer c into route v in period p.
– remove(c, v, p): Remove customer c from route v in period p.
– relocate(c1, v1, p1, c2, v2, p2): Remove c1 from route v1 and period p1, and

insert into route v2 in period p2 before customer c2.
– swap(v, c1, c2): Swap customer at position c1 with customer at position c2 in

rout v.
– shift(v, c, k): Move customer at position c to position c + k in route v.
– reverse-subtour(s): Reverse the subtour s. This movement is equivalent to

the well-known 2-opt move.

The ILS uses a Randomized Variable Neighborhood Descent (RVND) [20],
which chooses, at each iteration, among the above neighborhoods. Given the
current solution, represented by a set of customers tours for each vehicle and
period, it randomly selects a neighborhood and performs a local search using
the best improvement strategy. The new solution cost is then obtained by the
sum of the routing and inventory costs.

The routing cost can be calculated in constant time, as for most of VRPs,
given the changes performed by a move on the routes. Regarding the inventory,
the modified routes may impose different deliveries and may forbid fulfilling
all customers’ demands. Therefore, changes in the amount delivered for each
customer and period may be required. Our algorithm finds the optimal inventory
or detects no feasible inventory exists by solving a Network Flow problem. The
inventory cost either corresponds to the optimal inventory cost or a penalty cost
in case of infeasibility. The next section presents the Network Flow problem that
determines the optimal delivery amounts.
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An outline of the ILS is presented in Algorithm 1. It starts with an empty
initial solution as the current solution, i.e., no customer is visited in any period
by any vehicle. This solution is infeasible, therefore penalized inventory costs
will be associated. Then, in each iteration, the current solution is perturbed by
applying max perturb random moves followed by a complete run of the local
search. During the perturbation, after each random move, the new solution is
accepted if it is an improving solution or if it passes an acceptance criterion.

Algorithm 1. Outline of the Iterated Local Search
1: function ils
2: sol ← localSearch(empty sol)
3: best ← cur ← sol
4: no imp ← 0
5: for i ← 1 to max iter do
6: for j ← 1 to max perturb do
7: new ← randMove(sol)
8: if new.cost < sol.cost or testAccept(new, sol) then
9: sol ← new

10: end if
11: end for
12: sol ← localSearch(sol)
13: if sol.cost < cur.cost or testAccept(sol, cur) then
14: cur ← sol
15: if cur.cost < best.cost then
16: best ← cur
17: no imp ← 0
18: end if
19: else
20: sol ← cur
21: end if
22: no imp ← no imp + 1
23: if no imp > max no imp or sol.cost > (1 + max perc)best.cost then
24: sol ← cur ← best
25: end if
26: end for
27: end function

After the local search, this resulted solution is tested against the current
best solution. It will be accepted if it is an improving solution or if it passes the
acceptance criterion. If accepted, it will be tested for improvement against the
global best solution and replace it in case of improvement. If no improvement was
observed for a given number of iterations or the current solution value is higher
than a given percentage of the global best, the current solution and current best
solution are replaced with the global best solution.

The acceptance criterion is implemented based on the solution value obtained
after the first call to the local search. In the first iteration, it will accept a solution
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20% worse with a probability of 50%. This chance is then further decreased
based on the number of iterations max iter to accept a solution 10% worse with
a probability of 10% on the last iteration [21].

3 Network Simplex

While the reduction to Minimum Cost Flow [19] is not something new to the
literature, other studies that tried this same decomposition [12] reported signifi-
cant running times where approximately 65% of the total time was spent solving
only the subproblem. Our approach achieves, on average, ten times faster run-
ning times by reusing the underlying Network Simplex structure. Every optimal
inventory is obtained starting the Network Simplex algorithm from the optimal
solution of the previous iteration. The model and the update procedure are now
described.

3.1 Formulation

The subproblem is defined on a directed acyclic graph G = (V,A). In this graph,
the vertex set is composed of |T | copies of the supplier, customers, and vehicles,
plus an artificial vertex representing the excess of product that may exist at
the end of the time horizon for some customer or the supplier. Every supplier
vertex in this graph is a source of flow equal to its production on the given period.
Similarly, every customer demands a flow equal to its demand in the given period.
The artificial vertex demands the difference between the total supply and the
total demand.

The arc set has four different types of arcs. The first type contains arcs from
the supplier vertex to vehicle vertices. The capacity of each arc is the vehicle’s
capacity, and the cost is zero. The second type contains arcs from the vehicle
vertices to customers vertices. Each arc has unlimited capacity and cost zero.
The third type contains arcs between consecutive periods for the supplier and
the customers. They represent the inventory that may wait from one period to
the next. Their cost and capacity are the inventory cost and capacity of each
customer or supply. Finally, the last type contains the arcs from the customers
or supplier in the last period to the excess vertex. For each arc, its capacity is
the supplier or customer inventory capacity, but in this case, its cost is zero. An
example of this graph, with three customers, two vehicles, and two periods, is
presented in Fig. 1.

If a vehicle visits a customer in a given period, we keep the original cost of
the corresponding vehicle-customer arc. On the other hand, if the vehicle does
not visit the customer in the period, we set the arc cost to infinity. This approach
is more efficient than to rebuild graph G or to remove and add arcs before every
call to the Network Flow algorithm.
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Fig. 1. Proposed network flow model for 2 customers, vehicles and periods.

3.2 Fast Flow Calculation

Once the graph is built, we use the Network Simplex algorithm to calculate the
total inventory cost for a given matheuristic solution. During the local search,
several move evaluations are performed in sequence by simple changes in the pre-
vious solution. By analyzing the neighborhoods presented in Sect. 2, it is possible
to control the impact of each one in the Network Flow graph. For example, when
an insert is evaluated, we have to add an arc from the corresponding vehicle to
the customer (i.e., setting its cost to zero). For a remove evaluation, we have to
remove the vehicle-customer arc (i.e., setting its cost to infinity). The modifi-
cations required by all vehicle moves can be represented by changes in costs on
arcs.

The Network Simplex works using a spanning tree structure. It defines three
sets, T , L and U . T contains the set of arcs that compose the spanning tree,
i.e., the basic variables. L contains the set of arcs where the flow is zero, and U
contains the set of arcs where flow equals the edge capacity. Both sets contain
the non-basic variables. A Network Simplex iteration starts by calculating the
reduced cost of every arc in L and U based on the dual information of the
vertices, represented by the dual variables πi. The reduced cost is then calculated
as c̄ij = cij + πi − πj . If any non-basic arc has a negative reduced cost, the
procedure moves this arc to set T , and removes another arc from T following the
Simplex rules. At the end of execution, the optimal solution is found by joining
the arc sets with positive flow, i.e., the arc sets T and U . We refer the reader to
[15] for a complete description of the method.
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Usually, any change in the solution would require executing the entire algo-
rithm again because (i) some arcs may have been introduced (or removed), (ii)
arcs’ capacities may have changed, (iii) node supplies may have been modified,
(iv) the maximum flow may have changed, and (v) arcs costs may have changed.
Taking advantage of the IRP structure, the model we propose addresses most
of these issues, and reduces changes to be the equivalent of deciding which arcs
must be moved between T , L and U . In this model, change (i) does not hap-
pen because arcs are never introduced or removed, only their costs can change
between zero or infinity. Changes (ii) and (iii) are also not present because the
vehicle and inventory constraints are the same, and the production and demands
values remain unchanged. All previous reasons implicate that change (iv) cannot
occur too. The only change left is (v), and we show how to deal with it.

In Network Simplex, the arc cost is used to calculate the arc’s dual cost and
the dual variables πi of the nodes below this arc if it is in T . These changes are
sufficient to avoid having to execute the entire Network Simplex again and let
the algorithm continue from where it stopped on the previous solution. The dual
cost of each edge can be recalculated while verifying if the edge is a candidate to
enter the tree. Otherwise, there is no need to check its reduced cost. Updating
node potentials, on the other hand, requires more effort because they must be
updated on a specific order. While other strategies may be used, we propose a
procedure that iterates over all nodes starting from the root and continues node
by node following the order used for tree construction (commonly referred to as
the “thread order”). Algorithm 2 illustrates the procedure.

Algorithm 2. Update π values
1: function update pi( )
2: node ← thread[root]
3: while node �= root do
4: arc ← pred[node]
5: tgt ← arc.target
6: src ← arc.source
7: if tgt = node then
8: π[node] ← π[src] + cost[arc]
9: else

10: π[node] ← π[tgt] − cost[arc]
11: end if
12: end while
13: end function

4 Computational Experiments

The NSIRP was implemented in C++ on Ubuntu Linux. For the inventory cost
calculation (Minimum Cost Flow), we modified and used the Network Simplex
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algorithm from the LEMON C++ library [17], adding the proposed modifica-
tions. Computational experiments were performed with a single thread on an
Intel Core i7-8700K 3.7 GHz with 64 GB RAM. The algorithm was tested over
the benchmark instances proposed in [5]. They are composed of 160 files orga-
nized into two classes of instances (low and high inventory cost) and cover
scenarios where the horizon H can be equal to 3 or 6 periods. The number of
clients n is n = 5t, with t = 1, ..., 10 when H = 3 and t = 1, ..., 6 when H = 6. All
instances were tested from two up to five identical vehicles, dividing the vehicle
capacity by the number of vehicles (and rounding down), and resulting in a total
of 640 instances (but two are known to be infeasible). For each instance, we run
the matheuristic algorithm ten times.

We first present the results on our main contribution, the Fast Flow Calcu-
lation. We performed a complete run on all instances with the regular Network
Simplex algorithm (NSA) and with the Fast Flow Calculation (FFC). Figure 2
shows the average fraction of the original time that our modification obtains, cal-
culated for each instance as ubFFC/ubNSA, for each of the four types of instance
while the number of vehicle grows: low inventory cost with three periods (L3),
high inventory cost with three periods (H3), low inventory cost with six periods
(L6) and high inventory cost with six periods (H6). The smallest improvement
was found for instances with two vehicles, three periods, five customers, and high
cost. Our method runs in 21.1% of the original time. From the figure, we can
notice a clear tendency. As the number of vehicles or the number of customers,
or even the number of periods goes up, the improvement is more significant. The
best improvement is when the method obtains a running time of 6.0% from the
original one. It is noteworthy the correlation between the same characteristics,
but different cost types (high and low). The results show that they have no
impact on the proposed method.

Fig. 2. Time fraction of fast flow, for each size, vehicles, periods and cost type.
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Using fast flow, we now compare the results of NSIRP against the best
known upper bounds and most prominent methods from the literature com-
prising nine methods: four exact, three matheuristics, and two metaheuristics.
The exact methods are ABIS (Branch-and-Bound) from Archetti et al. (2007) [6],
CL (Branch-and-Cut) from Coelho and Laporte (2014) [14], DRC (Branch-Cut-
and-Price) from Desaulniers et al. (2016) [16], and ABW (Branch-and-Cut) from
Avella et al. (2018) [8]. The matheuristic methods comprehend ABS Archetti
et al. (2017) [7], the unified decomposition CCJ from Chitsaz et al. (2019) [11],
and a kernel search AGMS from Archetti et al. (2019) [3,18]. The metaheuristics
are an Iterated Local Search SOSG from Santos et al. (2016) [22], and a Sim-
ulated Annealing AMM from Alvarez et al. (2018) [2]. The parameters used in
the experiments were max iter = 500, maxperturb = 15, maxnoimp = 25 and
maxperc = 1.2.

Figure 3 shows the average gap for each instance type when the number
of vehicles grows. Each gap is calculated against the best-known upper bound
from the literature (LIT) as (ubFFC − ubLIT )/ubLIT . It becomes negative as
the number of periods goes up with the worst, never exceeding 4.0%. The gap
growth for each series was minimal reinforcing the correlation between same
characteristics, except for L3. Table 1 shows the detailed results. The overall
average gap was 0.77%, 0.01% on the best, and 1.84% on the worst. Of the 638
instances, NSIRP improved or at least matched 463 (72.0%) of the best-known
upper bounds, with 113 improvements (51.0% of the 221 open instances) and
350 matches.

Fig. 3. Average UB gap for each group and number of vehicles.
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Table 1. Summary results for classical IRP instances

Type Veh Best Avg Worst Time Better Equal Worse

L3 2 0.04% 0.41% 1.15% 47.88 0 45 5

H3 2 0.00% 0.16% 0.39% 58.85 2 41 7

L6 2 0.11% 0.96% 2.48% 75.17 3 18 9

H6 2 0.01% 0.39% 1.02% 89.78 7 14 9

Avg/Total 0.04% 0.48% 1.26% 67.92 12 118 30

L3 3 0.01% 1.17% 2.92% 74.74 2 44 4

H3 3 0.05% 0.36% 0.92% 92.79 3 35 12

L6 3 −0.19% 0.92% 2.64% 107.85 14 11 5

H6 3 −0.07% 0.47% 1.26% 133.40 14 9 7

Avg/Total −0.05% 0.73% 1.94% 102.20 33 99 28

L3 4 0.34% 1.68% 3.57% 101.56 6 30 14

H3 4 0.12% 0.50% 1.04% 127.87 10 25 15

L6 4 −0.40% 0.76% 2.27% 140.04 15 5 10

H6 4 −0.10% 0.50% 1.18% 176.22 13 6 11

Avg/Total -0.01% 0.86% 2.01% 136.42 44 66 50

L3 5 0.45% 1.95% 3.86% 129.59 0 31 19

H3 5 0.18% 0.68% 1.49% 165.29 3 26 21

L6 5 −0.18% 0.90% 2.15% 156.41 8 6 15

H6 5 −0.16% 0.52% 1.08% 221.56 13 4 12

Avg/Total 0.07% 1.01% 2.15% 168.21 24 67 67

Overall 0.01% 0.77% 1.84% 118.69 113 350 175

Fig. 4. Gap comparison from each work of the literature.
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A best upper bound gap comparison against each method from the literature
is presented in Fig. 4. For each method (MET), this gap is calculated against
our best upper bound for each instance as (ubMET −ubFFC)/ubFFC . This com-
parison comprehends only the instances where the method provided an upper
bound. From the figure, we can notice that, on average, NSIRP outperforms all
nine methods we compare from the literature.

5 Conclusion

We have defined a new model to solve the multi-vehicle Inventory Routing.
We have demonstrated how this model enables the development of inventory-
exact solutions with more than ten times faster running times by extending
current state-of-the-art Network Simplex implementation and proposing a fast
flow procedure. We have implemented an ILS-RVND based matheuristic, entitled
NSIRP, to assess the performance of the model on well-known instances from
the literature and reported the results.

Computational experiments using well-known instances demonstrated that
NSIRP could be widely applied between different instances, with an average
upper bound gap of 0.77%. On the 638 tested instances, the method improved
or at least matched 463 (72.0%) of the best-known upper bounds, improving 113
(51.0%) of the 221 open instances. Running time results indicates that there is
no correlation between fast flow calculation times and the number of vehicles,
customers, or periods. It is demonstrated to be a scalable method, well suited
for the cases when one of these variables grows. Compared to other methods
from the literature NSIRP was capable of decreasing the average upper bound
gap for all of them, in the worst case by at least 0.4%.

Considering we are capable of solving the inventory subproblem using
an exact algorithm that implements the simplex algorithm with significantly
reduced running times, further work would be to use dual information to create
more problem-specific neighborhoods. Use this information, such as the nodes
πi or the arcs’ reduced costs, to reduce the search space, and navigate between
solutions that otherwise would be composed of multiple moves.
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