
Polynomial Scheduling Algorithm
for Parallel Applications on Hybrid

Platforms

Massinissa Ait Aba1,2(B), Lilia Zaourar1, and Alix Munier2

1 CEA, LIST, Computing and Design Environment Laboratory,
91191 Gif Sur Yvette Cedex, France

massinissa.aitaba@gmail.com
2 LIP6-UPMC, 4 place Jussieu, 75005 Paris, France

Abstract. This work addresses the problem of scheduling parallel
applications into hybrid platforms composed of two different types of
resources. We focus on finding a generic approach to schedule applica-
tions represented by directed acyclic graphs that minimises makespan
with performance guarantee. A three-phase algorithm is proposed; the
first two phases consist in solving linear formulations to find the type
of processor assigned to execute each task. In the third phase, we com-
pute the start execution time of each task to generate a feasible schedule.
Finally, we test our algorithm on a large number of instances. These tests
demonstrate that the proposed algorithm achieves a close-to-optimal per-
formance.

Keywords: Scheduling · DAG applications · Makespan · Hybrid
platform · CPU · GPU · Approximation algorithm

1 Introduction

Nowadays, High Performance Computers (HPC) are popular and powerful com-
mercial platform due to the increasing demand for developing efficient computing
resources to execute large parallel applications. In order to increase the comput-
ing power of these platforms while keeping a reasonable level of energy con-
sumption, the heterogeneous platforms have appeared. It is possible to integrate
several types of material resources such that each one is specialised for certain
types of calculations. Thus we have to take into account that the execution time
for any task of the application depends on the type of resource used to execute
it. However, using these platforms efficiently became very challenging. Conse-
quently, more and more attention has been focused on scheduling techniques
for solving the problem of optimizing the execution of parallel applications on
heterogeneous computing systems [1,2].

This work addresses the problem of scheduling parallel applications onto a
particular case of HPC composed of two different types of resources: CPU (Cen-
tral Processing Unit) and GPU (Graphics Processing Unit). These platforms are
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 143–155, 2020.
https://doi.org/10.1007/978-3-030-53262-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_12

144 M. Ait Aba et al.

often called hybrid platform. The number of platforms of the TOP500 1 equipped
with accelerators has significantly increased during the last years. TGCC Curie
supercomputer2 is an example of these platforms.

We focus here in finding a generic approach to schedule applications pre-
sented by DAG (Directed Acyclic Graph) into a hybrid platform that minimises
the completion time of the application by considering communication delays. An
algorithm with three phases has been proposed; the first phase consists in solving
a mathematical formulation (P ′) and then define a new formulation using the
solution obtained. The second phase solves an assignment problem to find the
type of processor affected to execute the tasks (processing element type 1 or 2)
using a linear formulation. In the last phase, we compute the starting execution
time of each task to generate a feasible schedule. Our algorithm has been exper-
imented on a large number of instances and evaluated compared to the exact
solution.

The rest of the paper is organised as follows: Sect. 2 gives a quick overview of
previous research in scheduling strategies on hybrid platforms. Section 3 presents
the detailed problem with mathematical formulation. In Sect. 4, we describe the
proposed algorithm for our problem and the approximation ratio we obtain for
the scheduling problem. Section 5 shows some preliminary numerical results.
Finally, we conclude and provide insights for future work in Sect. 6.

2 Related Work

The problem of scheduling tasks on hybrid parallel platforms has attracted a lot
of attention. In the case where all processors have the same processing power
and there is a cost for any communication (P |prec, com|Cmax), the problem has
been shown to be NP-hard [3].

Several works have studied the problem of scheduling independent tasks on �
(resp. k) processors of type A (resp. B) which is represented by (P�, Pk)||Cmax.
Imreh [4] proves that the greedy algorithm provides a solution with a perfor-
mance guarantee of (2 + �−1

k), where k � �. Recently, a 2-approximation algo-
rithm has been proposed in [5]. For the same problem, Kedad-Sidhoum et al. [6]
proposed two families of approximation algorithms that can achieve an approxi-
mation ratio smaller than (32 +ε). By considering precedence constraints without
communication delays (P�, Pk)|prec|Cmax, Kedad-Sidhoum et al. [7] developed
a tight 6-approximation algorithm for general structure graphs on hybrid par-
allel multi-core machines. This work was later revisited in [8] who showed that
by separating the allocation phase and the scheduling phase, they could obtain
algorithms with a similar approximation ratio but that performs significantly
better in practice.

In term of heuristic strategies, the most famous one is Heterogeneous Ear-
liest Finish Time algorithm (HEFT) [9], which is developed for the problem of
DAG scheduling on heterogeneous platforms considering communication delays
1 Top500.org ranking. URL https://www.top500.org/lists/2017/11/.
2 Tgcc curie supercomputer, http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm.

https://www.top500.org/lists/2017/11/
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

Polynomial Scheduling Algorithm for Parallel Applications 145

(Rm|prec, com|Cmax). It could also be applied for hybrid platforms. It has no
performance guarantee, but performs particularly well. Other heuristics for this
problem can be roughly partitioned into two classes: clustering and list schedul-
ing algorithms.

Clustering algorithms [10,11] usually provide good solutions for communi-
cation-intensive graphs by scheduling heavily communicating tasks onto the same
processor. After grouping tasks into a set of clusters using different clustering
policies. Clusters are mapped onto processors using communication sensitive or
insensitive heuristics.

List scheduling algorithms [12] are often used to handle a limited number of
processors. Most of them [13,14] can be decomposed in two main phases. The first
one assigns priorities based on certain task properties, typically run time and/or
communication delays. The second phase assigns tasks to processors following a
priority list. Experimentally, a comparison of different list scheduling algorithms
can be found in the work of Kushwaha and Kumar [14].

Our problem was first treated in [15], a non polynomial-time two-phase app-
roach was proposed with a performance guarantee of 6. Numerical evaluations
demonstrate that the proposed algorithm achieves a close-to-optimal perfor-
mance. However, the running time of this method can be important for large
instances. We focus here in finding a polynomial-time approach which is able to
maintain an interesting performance with reasonable complexity.

3 Problem Definition

We consider in this work a hybrid platform composed of 2 unrelated Processing
elements Pe1 and Pe2 (1 CPU and 1 GPU, or 2 different GPUs or CPUs, ...).

An application A of n tasks is represented by a Directed Acyclic Graph
(DAG) oriented G(V,E), each vertex represents a task ti. Each arc e = (ti, tj)
represents a precedence constraint between two tasks ti and tj . We associate it
with the value cti,j which represents the communication delay between ti and
tj if they are executed on two different resource types. The exact formula to
evaluate cti,j which takes into consideration latencies and available bandwidth
between processors is provided in [16]. We denote by Γ−(i) (resp. Γ+(i)) the
sets of the predecessors (resp. successors) of task ti. Any task ti can be executed
by both processing elements. Executing the task ti on Pe1 (resp. Pe2) generates
an execution time equal to wi,0 (resp. wi,1). A task ti can be executed only after
the complete execution of its predecessors Γ−(i). We do not allow duplication of
tasks and preemption. We denote by Cmax the completion time of the application
A (makespan). The aim is to minimise Cmax.

Our problem can be modelled by a Mixed Integer formulation (Opt). Let xi

be the decision variable which is equal to 1 if the task ti is assigned to a Pe1
and 0 otherwise. Let Ci be the finish time of the task ti. To manage overlapping
tasks on the same processing element, we add an intermediary variable oi,j for
each two different tasks ti and tj . If ti and tj are executed in the same processing
element and tj is executed after the finish execution time of ti, then oi,j = 1,

146 M. Ait Aba et al.

otherwise oi,j = 0. Finally, for each two successive tasks (ti, tk) ∈ E, we add an
intermediary variable ζi,k to manage communication delays.

(Opt)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci + xjwj,0 + (1 − xj)wj,1 + ζi,jcti,j � Cj ∀(ti, tj) ∈ E (1)
xi − xj � ζi,j , ∀(ti, tj) ∈ E (2)
xj − xi � ζi,j , ∀(ti, tj) ∈ E (3)
xiwi,0 + (1 − xi)wi,1 � Ci,∀i ∈ {1, . . . , n}, Γ−(i) = ∅ (4)
0 � Ci � Cmax,∀i ∈ {1, . . . , n}, Γ+(i) = ∅ (5)
Ci + xjwj,0 � Cj + B × (3 − xi − xj − oi,j) ∀ti �= tj (6)
Cj + xiwi,0 � Ci + B × (2 − xi − xj + oi,j) ∀ti �= tj (7)
Ci + (1 − xj)wj,1 � Cj + B × (1 + xi + xj − oi,j) ∀ti �= tj (8)
Cj + (1 − xi)wi,1 � Ci + B × (xi + xj + oi,j) ∀ti �= tj (9)
xi, ζi,j , oi,j ∈ {0, 1}, ∀i ∈ {1, . . . , n}, B = Cte
Z(min) = Cmax

Constraints (1 to 3) describe the critical path, such as if task ti precedes
tj , and these two tasks are assigned to two different processors, we obtain two
cases: either xi = 1 and xj = 0 or xi = 0 and xj = 1. In the two cases, we
obtain ζi,j � 1. If tasks ti and tj are assigned to the same processor, xi = 0 and
xj = 0 or xi = 1 and xj = 1. In the two cases, ζi,j � 0. Since it is a minimisation
problem and without loss of generality, ζi,j should take the smallest possible
value. Tasks without predecessors (respectively successors) are considered in the
constraint (4) (resp. (5)). Overlapping tasks on Pe1 (resp. Pe2) is avoided by
constraints (6) and (7) (resp. (8) and (9)) by using a large constant B (upper
bound for example), such that if two tasks ti and tj are executed on the same
processor, then either ti starts after the completion time of the task tj or tj
starts after the completion time of the task ti. We have two cases:

1. ti and tj are executed on Pe1, then xi = 1 and xj = 1:
{

Ci + xjwj,0 � Cj + B(1 − oi,j) (6)
Cj + xiwi,0 � Ci + B(oi,j) (7)

{
Ci + xjwj,0 � Cj + B(3 − oi,j) (8)
Cj + xiwi,0 � Ci + B(2 + oi,j) (9)

If oi,j = 1 (resp. oi,j = 0), only constraint (6) (resp. (7)) becomes relevant,
with Ci + xjwj,0 � Cj (resp. Cj + xiwi,0 � Ci), then tj (resp. ti) starts after
the finish execution time of task ti (resp. tj). Other constraints will remain
valid no matter the execution order of ti and tj .

2. ti and tj are executed on Pe2, then xi = 0 and xj = 0:
{

Ci + xjwj,0 � Cj + B(3 − oi,j) (6)
Cj + xiwi,0 � Ci + B(2 − oi,j) (7)

{
Ci + xjwj,0 � Cj + B(1 − oi,j) (8)
Cj + xiwi,0 � Ci + B(oi,j) (9)

If oi,j = 1 (resp. oi,j = 0), only constraint (8) (resp. (9)) becomes relevant,
with Ci + (1 − xj)wj,1 � Cj (resp. Cj + (1 − xi)wi,1 � Ci), then tj (resp. ti)
starts after the finish execution time of task ti (resp. tj). Other constraints
will remain valid no matter the execution order of ti and tj .

Polynomial Scheduling Algorithm for Parallel Applications 147

The formulation (Opt) can be used to obtain an optimal solution for only
small instances with limited number of tasks using solvers like CPLEX [17]. To
solve larger instances, a polynomial method is proposed in the following.

4 Solution Method

In this section, we develop a three-phase algorithm. In Phase 1, we start by
proposing a new formulation (P) then we solve its relaxation (P

′
). After that,

we use in Phase 2 the solution obtained by this formulation to define another
formulation (P1). Finally, after rounding the fractional solution of the formu-
lation (P1) to obtain a feasible assignment of the tasks, in Phase 3 we use a
list scheduling algorithm to find a feasible schedule. Details of each phase are
described in the following.

4.1 Phase 1: Formulation (P) and Its Relaxation (P
′
)

We solve here a linear formulation with continuous variables. From the formu-
lation (Opt), we define a more simplified formulation (P) which is more useful
for the next phase. The first 5 constraints of (Opt) are thus taken up again, but
the non-overlapping constraints (6) and (7) are replaced by two workload con-
straints. Thus, (P) is defined as follow, where Constraint (6) (resp. (7)) simply
expresses that the makespan should be be larger than the average Pe1 (resp.
Pe2) workload. The aim is to minimise Cmaxp.

(P)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci + xjwj,0 + (1 − xj)wj,1 + ζi,jcti,j � Cj , ∀(ti, tj) ∈ E (1)
xi − xj � ζi,j , ∀(ti, tj) ∈ E (2)
xj − xi � ζi,j , ∀(ti, tj) ∈ E (3)
xiwi,0 + (1 − xi)wi,1 � Ci,∀i ∈ {1, . . . , n}, Γ−(i) = ∅ (4)
0 � Ci � Cmaxp,∀i ∈ {1, . . . , n}, Γ+(i) = ∅ (5)∑n

i=1 xiwi,0 � Cmaxp (6)∑n
i=1(1 − xi)wi,1 � Cmaxp (7)

xi, ζi,j ∈ {0, 1}, ∀i ∈ {1, . . . , n}
Z(min) = Cmaxp

Remark 1. The optimal solution C�
maxp of this formulation does not take into

account non-overlapping constraints, so it represents a lower bound for our prob-
lem, C�

maxp � C�
max.

Lemma 1. For each two successive tasks (ti, tj) ∈ E, constraints (2) and (3)
can be written as max(xi, xj) − min(xi, xj) � ζi,j. Furthermore, max(xi, xj) −
min(xi, xj) = (1−min(xi, xj))+(max(xi, xj)−1) = max(1−xi, 1−xj)−min(1−
xi, 1 − xj). Thus, constraints (2) and (3) can also be written as max(1 − xi, 1 −
xj) − min(1 − xi, 1 − xj) � ζi,j.

148 M. Ait Aba et al.

Remark 2. In each feasible solution of (P), for each couple of tasks (ti, tj) ∈ E,
we have always max(xi, xj) = 1 or max(1−xi, 1−xj) = 1 (or both), ∀(xi, xj) ∈
{0, 1} × {0, 1}.

Lemma 2. In the optimal solution of (P), for each couple of tasks (ti, tj) ∈ E,
from Lemma 1 we have at least max(xi, xj) = 1 or max(1−xi, 1−xj) = 1, such
that:

– If max(xi, xj) = 1, then constraints (2) and (3) can be represented by C̃on
1

i,j :
1 − min(xi, xj) � ζi,j.

– If max(1 − xi, 1 − xj) = 1, then constraints (2) and (3) can be represented by

C̃on
2

i,j : 1 − min(1 − xi, 1 − xj) � ζi,j.

The optimal solution obtained by the formulation (P) without constraints (6)
and (7) represents the optimal solution of the scheduling problem on platforms
with unlimited resources. This problem has been proven to be NP-hard [18].
Thus, the problem of finding the optimal mapping using (P) is also NP-
complete. In order to simplify the problem, we relax the integer variables xi

for i ∈ {1, . . . , n} and we obtain the relaxed formulation (P
′
). We denote by

x̃
′
i ∈ [0, 1], the value of xi in the optimal solution of the formulation (P

′
).

4.2 Phase 2: Formulation (P1)

Based on Lemma 1 and using the solution of (P
′
), we define another formulation

(P1). The decision variables are x
′
i, and an intermediary variable y

′
i,j ∈ [0, 1],

with i ∈ {1, . . . , n} and j ∈ {1, . . . , n}. For all (ti, tj) ∈ E, we define the con-
straint Coni,j as follows:

– If min{x̃
′
i, x̃

′
j} >min{1 − x̃

′
i, 1 − x̃

′
j}, then Coni,j =

⎧
⎪⎨

⎪⎩

y
′
i,j � x

′
i (1)

y
′
i,j � x

′
j (2)

ζ
′
i,j = (1 − y

′
i,j) (3)

From Coni,j , we have y
′
i,j � min{x

′
i, x

′
j}. Then, ζ

′
i,j = 1 − y

′
i,j � (1 −

min{x
′
i, x

′
j}), which is equivalent to constraint C̃on

1

i,j . Since it is a minimi-
sation problem, we can set ζ

′
i,j = (1 − min{x

′
i, x

′
j}).

– If min{x̃
′
i, x̃

′
j} �min{1 − x̃

′
i, 1 − x̃

′
j} then Coni,j =

⎧
⎪⎨

⎪⎩

y
′
i,j � 1 − x

′
i (1)

y
′
i,j � 1 − x

′
j (2)

ζ
′
i,j = (1 − y

′
i,j) (3)

From Coni,j , we have y
′
i,j � min{1 − x

′
i, 1 − x

′
j}. Then, ζ

′
i,j = 1 − y

′
i,j �

(1 − min{1 − x
′
i, 1 − x

′
j}), which is equivalent to constraint C̃on

2

i,j . Since it is
a minimisation problem, we can set ζ

′
i,j = (1 − min{1 − x

′
i, 1 − x

′
j}).

Polynomial Scheduling Algorithm for Parallel Applications 149

The formulation (P1) is then given by:

(P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
′
i + x

′
jwj,0 + (1 − x

′
j)wj,1 + ζ

′
i,jcti,j � C

′
j ,∀(ti, tj) ∈ E (1)

Coni,j ,∀(ti, tj) ∈ E (2)
x

′
iwi,0 + (1 − x

′
i)wi,0 � C

′
i ,∀i ∈ {1, . . . , n}, Γ−(i) = ∅ (3)

0 � C
′
i � Cmax1′ ,∀i ∈ {1, . . . , n}, Γ+(i) = ∅ (4)

∑n
i=1 x

′
iwi,0 � Cmax1′ (5)

∑n
i=1(1 − x

′
i)wi,0 � Cmax1′ (6)

x
′
i, y

′
i,j , ζ

′
i,j ∈ [0, 1], ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n}

Z(min) = Cmax1′

We can notice that constraints (1, 3, 4, 5, 6) of the formulation (P1) are
equivalent to constraints (1, 4, 5, 6, 7) of the formulation (P

′
). We denote by

C�
max1′ the optimal solution of the formulation (P1) and C�

maxp′ the optimal
solution of (P

′
).

Theorem 1. If the optimal solution x̃�
i obtained by (P

′
) is an integer for all

i ∈ {1, . . . , n}, then C�
max1′ = C�

maxp′ .

Proof. By setting the value of x
′
i = x̃�

i , for all i ∈ {1, . . . , n}, then for each two
successive tasks (ti, tj) ∈ E, we have two cases:

1. min{x̃�
i , x̃

�
j} >min{1 − x̃�

i , 1 − x̃�
j}, then Coni,j =

⎧
⎪⎨

⎪⎩

y
′
i,j � x

′
i (1)

y
′
i,j � x

′
j (2)

ζ
′
i,j = (1 − y

′
i,j) (3)

Furthermore, min{x̃�
i , x̃

�
j} = 1, then x̃�

i = 1 and x̃�
j = 1, follows x̃�

i − x̃�
j =

0 � ζ̃�
i,j (ζ̃�

i,j = 0 since it is a minimisation problem). Furthermore, ζ
′
i,j =

(1 − min{x
′
i, x

′
j}) = 1 − 1 = 0, then ζ

′
i,j = ζ̃�

i,j .

2. min{x̃�
i , x̃

�
j} �min{1 − x̃�

i , 1 − x̃�
j}, then Coni,j =

⎧
⎪⎨

⎪⎩

y
′
i,j � 1 − x

′
i (1)

y
′
i,j � 1 − x

′
j (2)

ζ
′
i,j = (1 − y

′
i,j) (3)

– if min{1 − x̃�
i , 1 − x̃�

j} = 1, then 1 − x̃�
i = 1 and 1 − x̃�

j = 1, follows
x̃�

i − x̃�
j = 0 � ζ̃�

i,j with x̃�
i = 0 and x̃�

j = 0. Furthermore, ζ
′
i,j = (1 −

min{1 − x
′
i, 1 − x

′
j}) = 1 − 1 = 0.

– if min{1−x̃�
i , 1−x̃�

j} = 0, then we suppose that x̃�
i = 1 and x̃�

j = 0, follows
x̃�

i −x̃�
j = 1 � ζ̃�

i,j . Furthermore, ζ
′
i,j = (1−min{1−x

′
i, 1−x

′
j}) = 1−0 = 1.

In both cases, we have ζ
′
i,j = ζ̃�

i,j .

Thus, the finish execution time of each task in the formulation (P
′
) is the same

in (P1). Furthermore, since
∑n

i=1 x
′
iwi,0 =

∑n
i=1 x�

i wi,0 and
∑n

i=1(1 − x
′
i)wi,1 =

∑n
i=1(1 − x�

i)wi,1, then constraints (5) and (6) of the formulation (P
′
) are the

same in (P1). Finally, C�
max1′ = C�

maxp′ .

However, finding the ratio between C�
max1′ and C�

maxp′ for the general case
is difficult. In the following, we suppose that C�

max1′ � αC�
maxp′ , with α ∈ R

+.

150 M. Ait Aba et al.

Table 1. GAP and standard deviation

Instances Number
of tasks

Average
GAP

Standard
deviation

test 1 10 1.12457 1.12871

test 2 30 1.11632 1.12065

test 3 60 1.00046 1.00046

test 4 100 1.00007 1.00007

test 5 200 1.00124 1.00126

test 6 400 1 1

test 7 500 1 1

test 8 600 1 1

test 9 800 1 1

test 10 1000 1 1

Average / 1,024266 1,025115

Table 1 shows the standard devi-
ation between C�

max1′ and C�
maxp′

for 20 randomly generated instances
of different sizes (DAG graphs). For
each instance Ii, we compute αi =
C�

max1′ (Ii)

C�
maxp′ (Ii)

. Then, we calculate Aver-

age GAP=
∑20

i=1 αi

20 and Standard

deviation=
√∑20

i=1 α2
i

20 .
From table 1, we can notice that

the value of α tends towards 1 when
we increase the size of the instances.
What can be said, is that the solution
of C�

max1′ is very close to the solution
of C�

maxp′ in the general case.

Lemma 3. The ratio between the optimal solution C�
max1′ of the formulation

(P1) and the optimal scheduling solution C�
max of our main problem is given by

C�
max1′ � αC�

max.

Proof. From Remark 1, we have C�
maxp � C�

max. Then, C�
max1′ � αC�

maxp′ �
αC�

maxp � αC�
max.

Rounding strategy: If x
′
i is integer for i ∈ {1, . . . , n}, the solution obtained

is feasible and optimal for (P1), otherwise the fractional values are rounded.
We denote by xr

i the rounded value of the fractional value of the assignment
variable of task ti in the optimal solution of (P1). We set xr

i = 0 if x
′
i < 1

2 ,
xr

i = 1 otherwise.
Let θ1 be the mapping obtained by this rounding. Each task ti is mapped in

either Pe1 or Pe2. Thus, θ1(ti) −→ {Pe1, P e2}.

4.3 Phase 3: Scheduling Algorithm

Using the mapping θ1, the following algorithm determines for a task order given
by a priority list L, the corresponding scheduling by executing the first task
ready of the list as long as there are free processing elements.

The priority list L can be defined in different ways. To achieve good schedul-
ing, the most important and influential tasks must be executed first. For this
purpose, the following list is particularly interesting for this problem because
it takes into account the critical path of the graph. First, we start by defining
graph G′(V,E), with V = {t1, t2, ..., tn} and E represents the set of graph edges.
The vertices are labelled by the execution time of each task according to their
assignments. The edges are labelled by the communication costs if ti precedes tj
and xr

i �= xr
j , 0 otherwise. Then, we can calculate the longest path LP (ti) from

each task ti to its last successor. The list LLP is given by LLP = {t1, t2, ..., tn},

Polynomial Scheduling Algorithm for Parallel Applications 151

such that LP (t1) � LP (t2) � ... � LP (tn). The following algorithm executes
task by task, executing first the task ti with the highest LP (ti) from ready
tasks. It uses an insertion policy that tries to insert a task at the earliest idle
time between two already scheduled tasks on the processing element, if the slot
is large enough to execute the task.

Algorithm 1: PLS (Polynomial List Scheduling) algorithm
Data: mapping θ1, list LPP .
Result: Feasible scheduling.
begin

Create an empty list ready-list;
ready-list= {tj , Γ−(j) = ∅, j ∈ {1, . . . , n}};
while ready-list �= ∅ do

ti ←− task with highest LP (ti) from ready-list;
Execute ti on θ1(ti) using insertion-based scheduling policy;
Update ready-list;

The three steps of PLS (Polynomial List Scheduling) algorithm can be sum-
marized as follows. Solve the relaxed formulation (P

′
) then us its solution to

define another formulation (P1), then solve (P1). Finally, After rounding the
solutions obtained by (P1), use Algorithm 1 with the obtained mapping θ1 and
the priority list LLP .

Complexity: Mapping θ1 is based on solving two linear formulations ((P
′
) and

(P1)) with continuous variables, which are two polynomial problems. This gives
polynomial-time solving methods for the first two phases of PLS algorithm. In
the last phase, ready-list is calculated with O(n2) time complexity. The insertion
policy is verified on a processing element by checking the non-overlapping with
at most (n−1) tasks. This makes a complexity of O(n2) for the last phase. Thus,
the complexity time of PLS algorithm is polynomial.

Algorithm Analysis: In the following, we study the performance of PLS algo-
rithm in the worst case compared to the optimal solution. We look for the ratio
between the solution Ĉmax obtained by PLS algorithm and the optimal schedul-
ing solution C�

max of our main problem.

Lemma 4. The rounding θ1 previously defined satisfies the following inequali-
ties: xr

i � 2x
′
i and (1 − xr

i) � 2(1 − x
′
i).

Proof. If 0 � x
′
i < 1

2 , then xr
i = 0 � 2x

′
i. Furthermore, 2x

′
i � 1, then 0 � 1−2x

′
i,

follows −xr
i = 0 � 1−2x

′
i, then 1−xr

i � 2(1−x
′
i). If 1

2 � x
′
i then 1 � 2x

′
i, follows

xr
i = 1 � 2x

′
i. Furthermore, x

′
i � 1 then −2x

′
i � −2, follows 1 − 2x

′
i � −1, then

−xr
i = −1 � 1 − 2x

′
i, then 1 − xr

i � 2(1 − x
′
i).

152 M. Ait Aba et al.

Let wr
i be the execution time of the task ti by considering the rounding θ1,

where wr
i = wi,0 if xr

i = 1, wr
i = wi,1 otherwise. Let w

′
i be the execution time of

the task ti by considering the solution of (P1), where w
′
i = x

′
iwi,0 +(1−x

′
i)wi,1.

Proposition 1. The relation between wr
i and w

′
i of each task ti is given by

wr
i � 2w

′
i, i ∈ {1, . . . , n}.

Proof. From Lemma 4, 2w
′
i = 2x

′
iwi,0+2(1−x

′
i)wi,1 � xr

i wi,0+(1−xr
i)wi,1 = wr

i .

Lemma 5. For two successive tasks (ti, tj) ∈ E, if ti and tj are executed by two
different processing elements, then ζ

′
i,j > 1

2 .

Proof. We have two cases:

1. If min{x̃
′
i, x̃

′
j} >min{1 − x̃

′
i, 1 − x̃

′
j}, then from Coni,j constraint, we have

ζ
′
i,j = (1 − min{x

′
i, x

′
j}):

a. If x
′
i < 1

2 and x
′
j � 1

2 , then ζ
′
i,j = (1 − x

′
i) > 1

2 .
b. If x

′
i � 1

2 and x
′
j < 1

2 , then ζ
′
i,j = (1 − x

′
j) > 1

2 .

2. If min{x̃
′
i, x̃

′
j} �min{1 − x̃

′
i, 1 − x̃

′
j}, then from Coni,j constraint, we have

ζ
′
i,j = (1 − min{1 − x

′
i, 1 − x

′
j}):

a. If 1 − x
′
i < 1

2 and 1 − x
′
j � 1

2 , then ζ
′
i,j = x

′
i > 1

2 .
b. If 1 − x

′
i � 1

2 and 1 − x
′
j < 1

2 , then ζ
′
i,j = x

′
j > 1

2 .

For each couple of tasks (ti, tj) ∈ E, we denote by Costri,j the value given by
Costri,j = 0 if xr

i = xr
j , Costri,j = cti,j otherwise. Let Cost

′
i,j be the value given

by Cost
′
i,j = ζ

′
i,jcti,j .

Proposition 2. For each couple of tasks (ti, tj) ∈ E, the relation between
Costri,j and Cost

′
i,j is given by Costri,j < 2Cost

′
i,j .

Proof. If tj and tj are executed by the same processing element, Costri,j = 0 �
2ζ

′
i,jcti,j , because ζ

′
i,j � 0. If tj and tj are executed by two different processing

elements, then Costri,j = cti,j . Then, from Lemma 5, ζ
′
i,j > 1

2 , then 2ζ
′
i,j > 1,

follows Costri,j = cti,j � 2ζ
′
i,jcti,j = 2Cost

′
i,j .

Proposition 3. For each two successive tasks (ti, tj) ∈ E, let be lri,j = wr
i +

Costri,j +wr
j (resp. l

′
i,j = w

′
i +Cost

′
i,j +w

′
j) the length of (ti, tj) in PLS solution

(resp. (P1) solution). Then, we have lri,j < 2l
′
i,j.

Proof. From Proposition 1 and Proposition 2, lri,j = wr
i + Costri,j + wr

j < 2w
′
i +

2Cost
′
i,j + 2w

′
j = 2l

′
i,j . Thus, lri,j < 2l

′
i,j .

Theorem 2. Let Ĉmax be the solution obtained by using PLS algorithm, then
Ĉmax < 6C�

max1′ .

Polynomial Scheduling Algorithm for Parallel Applications 153

Proof. From Proposition 3, the length of each path L from G(V,E) is given
by length(L)r =

∑
(ti,ti+1)∈L lri,i+1 � 2

∑
(ti,ti+1)∈L l

′
i,i+1 = 2length(L)

′
, where

length(L)r (resp. length(L)
′
) is the length of L in PLS solution (resp. (P1)

solution). Furthermore, the workload of the tasks assigned to Pe1 (resp. Pe2)
is given by

∑n
i=1 xr

i wi,0 = 2
∑n

i=1 x
′
iwi,0 (resp.

∑n
i=1(1 − xr

i)wi,0 = 2
∑n

i=1(1 −
x

′
i)wi,0). Thus, the value of the critical path and the workloads on Pe1 and Pe2

will be at most doubled compared to the lower bounds. Finally, the interaction
between the longest paths and the workload on each processing element has been
studied in [15], such that if we have these properties, then Ĉmax < 6C�

max1′ .

Theorem 3. The ratio between the solution Ĉmax obtained by PLS algorithm

and the optimal scheduling solution C�
max is given by

Ĉmax

C�
max

< 6α.

Proof. From Lemma 3, we have C�
max1′ � αC�

max. Then,
Ĉmax

C�
max

<
6C�

max1′

C�
max

�
6αC�

max

C�
max

� 6α.

5 Numerical Results

We compare here the performance of PLS (Polynomial List Scheduling) algo-
rithm to HEFT (Heterogeneous Earliest Finish Time) and LS (List Scheduling)
algorithm using benchmarks generated by Turbine [19].

The benchmark is composed of ten parallel DAG applications. We denote by
test i instance number i. We generate 10 different applications for each test i
with i ∈ {1, . . . , 10}. The execution times of the tasks are generated randomly
over an interval [wmin, wmax], wmin has been fixed at 5 and wmax at 70. The num-
ber of successors of each task is generated randomly over an interval [dmin, dmax],
dmin has been fixed at 1 and dmax at 10. The communication rate for each arc
was generated on an interval [ctmin, ctmax], we set ctmin to 35 and ctmax to 80.

To study the performance of our method, we compared the ratio between
each makespan value obtained by PLS algorithm with HEFT and LS algorithm,
the optimal solution obtained by CPLEX and the lower bound Cmax1′ obtained
by (P1). Table 2 shows the average results obtained on 10 instances given in
column Inst of each application size given in the second column using CPLEX,
HEFT, PLS and LS algorithms. We show the average time that was needed to
CPLEX to provide the optimal solution using (Opt). We only have the result
for the first two instances due to the large running time for instances with
more than 60 tasks (> 4h). Then, we show the results obtained by HEFT, PLS
and LS algorithm. GAP columns give the average ratio between the makespan
obtained by each method compared to Cmax1′ using the following formula:
GAP = method makespan−Cmax1′

Cmax1′ × 100. Time columns show the average time
that was needed for each method to provide a solution. Best columns present

154 M. Ait Aba et al.

the number of instances where each algorithm provides better or the same solu-
tion than other methods. A line Average is added at the end of each table which
represents the average of the values each column.

Table 2. CPLEX, HEFT, LS and PLS algorithms results.

Inst Number CPLEX HEFT LS algorithm PLS algorithm

of tasks Optimal Time GAP Time Best GAP Time Best GAP Time Best

test 1 10 � 0.35 s 33.23% 0.0016 s 2 20.84% 0.25 s 7 21.24% 0.008 s 7

test 2 30 � 59.58 s 38.11% 0.0049 s 4 52.34% 0.600 s 0 43.19% 0.028 s 5

test 3 60 X X 25.89% 0.009 s 4 24.86% 0.29 s 6 24.81% 0.081 s 7

test 4 100 X X 15.80% 0.017 s 0 6.85% 0.198 s 8 6.46% 0.184 s 9

test 5 200 X X 14.56% 0.044 s 0 1.34% 0.51 s 7 1.08% 0.68 s 6

test 6 400 X X 11.80% 0.19 s 0 0.25% 1.72 s 7 0.31% 2.52 s 6

test 7 500 X X 11.50% 0.26 s 0 0.16% 1.84 s 6 0.11% 2.33 s 9

test 8 600 X X 11.53% 0.61 s 0 0.32% 2.06 s 6 0.237% 2.09 s 7

test 9 800 X X 11.78% 1.40 s 0 0.14% 3.15 s 7 0.13% 4.09 s 6

test 10 1000 X X 12.11% 1.90 s 0 0.052% 4.32 s 7 0.06% 5.26 s 7

Average / / / 18.63% 0.44 s 6% 10.71% 1.49 s 61% 9.76% 1.72 s 69%

For the running time, HEFT algorithm requires less time than PLS and LS
algorithms to provide a solution. PLS algorithm is the most efficient method
with a gap of 9.76% and 69% of better solutions compared to other methods. Its
average running time is 1.72 s, which is slightly higher than the running time of
LS algorithm.

6 Conclusion and Perspectives

This paper presents an efficient algorithm to solve the problem of scheduling par-
allel applications on hybrid platforms with communication delays. The objective
is to minimise the total execution time (makespan).

After modelling the problem, we proposed a three-phase algorithm; the first
two phases consist in solving linear formulations to find the type of processor
assigned to execute each task. In the third phase, we compute the start execution
time of each task to generate a feasible schedule. Tests on large instances close to
reality demonstrated the efficiency of our method comparing to other methods
and shows the limits of solving the problem with a solver such as CPLEX.

A proof of the performance guarantee for PLS algorithm was initiated. In
future works, we will focus on finding the value of α to have a fixed bound on
the ratio between Ĉmax and C�

max. Tests on real applications and an extension
to more general heterogeneous platforms is also planned.

References

1. Shen, L., Choe, T.-Y.: Posterior Task scheduling algorithms for heterogeneous
computing systems. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti,
E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 172–183. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71351-7 14

https://doi.org/10.1007/978-3-540-71351-7_14

Polynomial Scheduling Algorithm for Parallel Applications 155

2. Benoit, A., Pottier, L., Robert, Y.: Resilient co-scheduling of malleable applica-
tions. Int. J. High Perform. Comput. Appl. 32(1), 89–103 (2018)

3. Ullman, J.D.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

4. Imreh, C.: Scheduling problems on two sets of identical machines. Computing
70(4), 277–294 (2003)

5. Marchal, L., Canon, L.-C., Vivien, F.: Low-cost approximation algorithms for
scheduling independent tasks on hybrid platforms. Ph.D. thesis, Inria-Research
Centre Grenoble-Rhône-Alpes (2017)

6. Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: A family of scheduling
algorithms for hybrid parallel platforms. Int. J. Found. Comput. Sci. 29(01), 63–90
(2018)

7. Kedad-Sidhoum, S., Monna, F., Trystram, D.: Scheduling tasks with precedence
constraints on hybrid multi-core machines. In: IPDPSW, pp. 27–33. IEEE (2015)

8. Amaris, M., Lucarelli, G., Mommessin, C., Trystram, D.: Generic algorithms for
scheduling applications on hybrid multi-core machines. In: Rivera, F.F., Pena, T.F.,
Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 220–231. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64203-1 16

9. Topcuoglu, H., Hariri, S., Min-you, W.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

10. Boeres, C., Rebello, V.E.F., et al.: A cluster-based strategy for scheduling task
on heterogeneous processors. In: 16th Symposium on Computer Architecture and
High Performance Computing, SBAC-PAD 2004, pp. 214–221. IEEE (2004)

11. Yang, T., Gerasoulis, A.: DSC: scheduling parallel tasks on an unbounded number
of processors. IEEE Trans. Parallel Distrib. Syst. 5(9), 951–967 (1994)

12. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

13. Khan, M.A.: Scheduling for heterogeneous systems using constrained critical paths.
Parallel Comput. 38(4–5), 175–193 (2012)

14. Kushwaha, S., Kumar, S.: An investigation of list heuristic scheduling algorithms
for multiprocessor system. IUP J. Comput. Sci. 11(2) (2017)

15. Aba, M.A., Zaourar, L., Munier, A.: Approximation algorithm for scheduling appli-
cations on hybrid multi-core machines with communications delays. In: 2018 IEEE
IPDPSW, pp. 36–45. IEEE (2018)

16. Zaourar, L., Aba, M.A., Briand, D., Philippe, J.-M.: Modeling of applications and
hardware to explore task mapping and scheduling strategies on a heterogeneous
micro-server system. In: IPDPSW, pp. 65–76. IEEE (2017)

17. IBM: Ibm ilog cplex v12.5 user’s manual for cplex. http://www.ibm.com
18. Aba, M.A., Pallez, G., Munier-Kordon, A.: Scheduling on two unbounded resources

with communication costs (2019)
19. Bodin, B., Lesparre, Y., Delosme, J.-M., Munier-Kordon, A.: Fast and efficient

dataflow graph generation. In: Proceedings of the 17th International Workshop on
Software and Compilers for Embedded Systems. ACM (2014)

https://doi.org/10.1007/978-3-319-64203-1_16
http://www.ibm.com

	Polynomial Scheduling Algorithm for Parallel Applications on Hybrid Platforms
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Solution Method
	4.1 Phase 1: Formulation (P) and Its Relaxation (P')
	4.2 Phase 2: Formulation (P1)
	4.3 Phase 3: Scheduling Algorithm

	5 Numerical Results
	6 Conclusion and Perspectives
	References

