
Mourad Baïou
Bernard Gendron
Oktay Günlük
A. Ridha Mahjoub (Eds.)

LN
CS

 1
21

76

6th International Symposium, ISCO 2020
Montreal, QC, Canada, May 4–6, 2020
Revised Selected Papers

Combinatorial 
Optimization



Lecture Notes in Computer Science 12176

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Mourad Baïou • Bernard Gendron •

Oktay Günlük • A. Ridha Mahjoub (Eds.)

Combinatorial
Optimization
6th International Symposium, ISCO 2020
Montreal, QC, Canada, May 4–6, 2020
Revised Selected Papers

123



Editors
Mourad Baïou
CNRS and Université Clermont Auvergne
Aubière, France

Bernard Gendron
Département d’informatique et de recherche
opérationnelle & CIRRELT
University of Montreal
Montréal, QC, CanadaOktay Günlük

School of Operations Research
and Information Engineering
Cornell University
Ithaca, NY, USA

A. Ridha Mahjoub
Laboratoire LAMSADE
Université Paris-Dauphine
Paris, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-53261-1 ISBN 978-3-030-53262-8 (eBook)
https://doi.org/10.1007/978-3-030-53262-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0735-7689
https://orcid.org/0000-0002-7417-1940
https://orcid.org/0000-0002-9272-377X
https://orcid.org/0000-0002-1079-1892
https://doi.org/10.1007/978-3-030-53262-8


Preface

This volume contains the regular papers presented at ISCO 2020, the 6th International
Symposium on Combinatorial Optimization, May 4–6, 2020. Originally, the confer-
ence was scheduled to take place in Montreal, Canada, but due to the COVID-19
pandemic, the conference was held online, attracting more than 250 registered par-
ticipants. Past editions of ISCO (Hammamet, Tunisia, March 2010; Athens, Greece,
April 2012; Lisboa, Portugal, March 2014; Vietri Sul Mare, Italy, May 2016;
Marrakesh, Morocco, April 2018) all included invited talks, short papers, and a doc-
toral school. Unfortunately, due to the COVID-19 pandemic, these activities, originally
scheduled to take place at HEC Montreal and at the University of Montreal, had to be
canceled. Nonetheless, the online edition of the conference was a success, with 24 talks
of 30 minutes each, grouped into 8 sessions, and every session attracting close to 100
participants from all around the world.

The ISCO series aims to bring together researchers from all communities related to
combinatorial optimization, including algorithms and complexity, mathematical pro-
gramming, operations research, stochastic optimization, graphs, and polyhedral com-
binatorics. It is intended to be a forum for presenting original research on all aspects of
combinatorial optimization, ranging from mathematical foundations and theory of
algorithms to computational studies and practical applications, and especially their
intersections. In response to the call for papers, ISCO 2020 received 66 regular sub-
missions. Each submission was reviewed by at least two Program Committee members.
The submissions were judged on their originality and technical quality, and difficult
decisions had to be made. As a result, 25 regular papers were selected to be presented at
the symposium, giving an acceptance rate of 38%. One selected paper was withdrawn
by the authors, but all other 24 papers were presented at the symposium. The revised
versions of the 24 accepted regular papers presented at the conference are included in
this volume.

We would like to thank all the authors who submitted their work to ISCO 2020, and
the Program Committee members for their remarkable work. They all contributed to the
quality of the symposium. Finally, we would like to thank the staff members of
CIRRELT, the Interuniversity Research Centre on Enterprise Networks, Logistics and
Transportation, which hosted the conference website, for their assistance and support.

May 2020 Mourad Baïou
Bernard Gendron

Oktay Günlük
A. Ridha Mahjoub



Organization

Conference Chairs

Mourad Baïou Blaise Pascal University, France
Bernard Gendron University of Montreal, Canada
Oktay Günlük Cornell University, USA
A. Ridha Mahjoub Paris Dauphine University, France

Organizing Committee

Bernard Gendron University of Montreal, Canada
Sanjay Dominik Jena UQAM, Canada
Issmaïl El Hallaoui Polytechnique Montreal, Canada

Steering Committee

Mourad Baïou Blaise Pascal University, France
Pierre Fouilhoux Pierre and Marie Curie University, France
Luis Gouveia University of Lisbon, Portugal
Nelson Maculan UFRJ, Brazil
A. Ridha Mahjoub Paris Dauphine University, France
Vangelis Paschos Paris Dauphine University, France
Giovanni Rinaldi IASI-CNR, Italy

Program Committee

Miguel Anjos University of Edinburgh, UK
Alper Atamtürk UC Berkeley, USA
Francisco Barahona IBM Research, USA
Amitabh Basu Johns Hopkins University, USA
Daniel Bienstock Columbia University, USA
Francisco Carrabs University of Salerno, Italy
Margarida Carvalho University of Montreal, Canada
Raffaelle Cerulli University of Salerno, Italy
K. Chandrasekaran University of Illinois at Urbana-Champaign, USA
Sanjeeb Dash IBM Research, USA
Abdellatif El Afia Mohammed V University, Morocco
Issmaïl El Hallaoui Polytechnique Montreal, Canada
Marcia Fampa UFRJ, Brazil
Satoru Fujishige Kyoto University, Japan
Ricardo Fukasawa University of Waterloo, Canada
Bernard Gendron University of Montreal, Canada



Akshay Gupte University of Edinburgh, UK
Mohamed Haouari Qatar University, Qatar
Sanjay Dominik Jena UQAM, Canada
Imed Kacem University of Lorraine, France
Naoyuki Kamiyama Kyushu University, Japan
Yusuke Kobayashi Kyoto University, Japan
Martine Labbé ULB, Belgium
Michael Lampis Paris Dauphine University, France
Jon Lee University of Michigan, USA
Leo Liberti École Polytechnique, France
Ivana Ljubic ESSEC Business School, France
Marco Lübbecke RWTH Aachen University, Germany
Rym M’Hallah Kuwait University, Kuwait
Viswanath Nagarajan University of Michigan, USA
Britta Peis RWTH Aachen University, Germany
Nancy Perrot Orange Labs, France
Pierre Pesneau University of Bordeaux, France
Marc Pfetsch TU Darmstadt, Germany
Maurice Queyranne UBC, Canada
J. J. Salazar González University of La Laguna, Spain
Paolo Toth University of Bologna, Italy
Eduardo Uchoa PUC Rio, Brazil
Paolo Ventura IASI-CNR, Italy
Stefan Weltge Technical University of Munich, Germany
Angelika Wiegele University of Klagenfurt, Austria
Hande Yaman KU Leuven, Belgium

viii Organization



Contents

Polyhedral Combinatorics

Polyhedra Associated with Open Locating-Dominating and Locating
Total-Dominating Sets in Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Gabriela Argiroffo, Silvia Bianchi, Yanina Lucarini,
and Annegret Wagler

On the p-Median Polytope and the Directed Odd Cycle Inequalities . . . . . . . 15
Mourad Baïou and Francisco Barahona

On k-edge-connected Polyhedra: Box-TDIness in Series-Parallel Graphs . . . . 27
Michele Barbato, Roland Grappe, Mathieu Lacroix,
and Emiliano Lancini

A Polyhedral Study for the Buy-at-Bulk Facility Location Problem . . . . . . . . 42
Chaghoub Soraya and Ibrahima Diarrassouba

Cardinality Constrained Multilinear Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Rui Chen, Sanjeeb Dash, and Oktay Günlük

On the Multiple Steiner Traveling Salesman Problem
with Order Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Raouia Taktak and Eduardo Uchoa

Integer Programming

On the Linear Relaxation of the s� t-cut Problem
with Budget Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Hassene Aissi and A. Ridha Mahjoub

An Experimental Study of ILP Formulations for the Longest Induced
Path Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Fritz Bökler, Markus Chimani, Mirko H. Wagner, and Tilo Wiedera

Handling Separable Non-convexities Using Disjunctive Cuts . . . . . . . . . . . . 102
Claudia D’Ambrosio, Jon Lee, Daphne Skipper,
and Dimitri Thomopulos

Improving Proximity Bounds Using Sparsity . . . . . . . . . . . . . . . . . . . . . . . 115
Jon Lee, Joseph Paat, Ingo Stallknecht, and Luze Xu



Cut and Flow Formulations for the Balanced Connected
k-Partition Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Flávio K. Miyazawa, Phablo F. S. Moura, Matheus J. Ota,
and Yoshiko Wakabayashi

Scheduling

Polynomial Scheduling Algorithm for Parallel Applications
on Hybrid Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Massinissa Ait Aba, Lilia Zaourar, and Alix Munier

Anchored Rescheduling Problems Under Generalized
Precedence Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux,
and Adèle Pass-Lanneau

Scheduling with Non-renewable Resources: Minimizing the Sum
of Completion Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Kristóf Bérczi, Tamás Király, and Simon Omlor

Arc-Flow Approach for Parallel Batch Processing Machine Scheduling
with Non-identical Job Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Renan Spencer Trindade, Olinto C. B. de Araújo, and Marcia Fampa

Matching

Dynamic and Stochastic Rematching for Ridesharing Systems:
Formulations and Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Gabriel Homsi, Bernard Gendron, and Sanjay Dominik Jena

The Distance Matching Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Péter Madarasi

Notes on Equitable Partitions into Matching Forests in Mixed Graphs
and b-branchings in Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Kenjiro Takazawa

Network Design

Quasi-Separable Dantzig-Wolfe Reformulations for Network Design . . . . . . . 227
Antonio Frangioni, Bernard Gendron, and Enrico Gorgone

Dynamic Programming Approach to the Generalized Minimum
Manhattan Network Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Yuya Masumura, Taihei Oki, and Yutaro Yamaguchi

x Contents



On Finding Shortest Paths in Arc-Dependent Networks . . . . . . . . . . . . . . . . 249
P. Wojciechowski, Matthew Williamson, and K. Subramani

Heuristics

The Knapsack Problem with Forfeits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Raffaele Cerulli, Ciriaco D’Ambrosio, Andrea Raiconi,
and Gaetano Vitale

An Efficient Matheuristic for the Inventory Routing Problem . . . . . . . . . . . . 273
Pedro Diniz, Rafael Martinelli, and Marcus Poggi

Solving a Real-World Multi-attribute VRP Using
a Primal-Based Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Mayssoun Messaoudi, Issmail El Hallaoui, Louis-Martin Rousseau,
and Adil Tahir

Correction to: The Knapsack Problem with Forfeits. . . . . . . . . . . . . . . . . . . C1
Raffaele Cerulli, Ciriaco D’Ambrosio, Andrea Raiconi,
and Gaetano Vitale

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Contents xi



Polyhedral Combinatorics



Polyhedra Associated with Open
Locating-Dominating and Locating
Total-Dominating Sets in Graphs

Gabriela Argiroffo1, Silvia Bianchi1, Yanina Lucarini1,
and Annegret Wagler2(B)

1 Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura, Universidad Nacional de
Rosario, Rosario, Argentina

{garua,sbianchi,lucarini}@fceia.unr.edu.ar
2 University Clermont Auvergne (LIMOS, UMR 6158 CNRS),

Clermont-Ferrand, France
wagler@isima.fr

Abstract. The problems of determining open locating-dominating or
locating total-dominating sets of minimum cardinality in a graph G are
variations of the classical minimum dominating set problem in G and
are all known to be hard for general graphs. A typical line of attack is
therefore to determine the cardinality of minimum such sets in special
graphs.

In this work we study the two problems from a polyhedral point of
view. We provide the according linear relaxations, discuss their combi-
natorial structure, and demonstrate how the associated polyhedra can
be entirely described or polyhedral arguments can be applied to find
minimum such sets for special graphs.

Keywords: Open locating-dominating code problem · Locating
total-dominating code problem · Polyhedral approach

1 Introduction

For a graph G that models a facility, detection devices can be placed at its
nodes to locate an intruder (like a fire, a thief or a saboteur). Depending on the
features of the detection devices (to detect an intruder only if it is present at
the node where the detector is installed and/or also at any of its neighbors),
different dominating sets can be used to determine the optimal distribution of
the detection devices in G. In the following, we study three problems arising in
this context which all have been actively studied during the last decade, see e.g.
the bibliography maintained by Lobstein [16].

Let G = (V,E) be a graph. The open neighborhood of a node i is the set N(i)
of all nodes of G adjacent to i, and N [i] = {i}∪N(i) is the closed neighborhood
of i. A subset C ⊆ V is dominating (resp. total-dominating) if N [i] ∩ C (resp.
N(i) ∩ C) are non-empty sets for all i ∈ V .
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-53262-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_1


4 G. Argiroffo et al.

A subset C ⊆ V is:

– an identifying code (ID) if it is a dominating set and N [i]∩C �= N [j]∩C, for
distinct i, j ∈ V [15];

– an open locating-dominating set (OLD) if it is a total-dominating set and
N(i) ∩ C �= N(j) ∩ C, for distinct i, j ∈ V [19];

– a locating total-dominating set (LTD) if it is a total-dominating set and N(i)∩
C �= N(j) ∩ C, for distinct i, j ∈ V − C [13].

Figure 1 illustrates the three concepts.

(a) (b) (c)

Fig. 1. A graph where the black nodes form a minimum (a) ID-code, (b) OLD-set, (c)
LTD-set.

Note that a graph G admits an ID-code (or is identifiable) only if there are
no true twins in G, i.e., there is no pair of distinct nodes i, j ∈ V such that
N [i] = N [j], see [15]. Analogously, a graph G without isolated nodes admits an
OLD-set if there are no false twins in G, i.e., there is no pair of distinct nodes
i, j ∈ V such that N(i) = N(j), see [19].

Given a graph G, for X ∈ {ID,OLD,LTD}, the X-problem on G is the
problem of finding an X-set of minimum size of G. The size of such a set is
called the X-number of G and is denoted by γX(G). From the definitions, the
following relations hold for any graph G (admitting an X-set):

γLTD(G) ≤ γOLD(G), (1)

whereas γID(G) and γOLD(G) are not comparable in general.
Determining γID(G) is in general NP-hard [9] and even remains hard for

several graph classes where other in general hard problems are easy to solve,
including bipartite graphs [9], split graphs and interval graphs [10].

Also determining γOLD(G) is in general NP-hard [19] and remains NP-hard
for perfect elimination bipartite graphs and APX-complete for chordal graphs
with maximum degree 4 [18]. Concerning the LTD-problem we observe that it
is as hard as the OLD-problem by just using the same arguments as in [19].

Typical lines of attack are to determine minimum ID-codes of special graphs
or to provide bounds for their size. Closed formulas for the exact value of γID(G)
have been found so far only for restricted graph families (e.g. for paths and cycles
by [8], for stars by [12], and for complete multipartite graphs, some suns and
split graphs by [2–5]). Closed formulas for the exact value of γOLD(G) have
been found so far only for cliques and paths [19], some algorithmic aspects are
discussed in [18]. Bounds for the LTD-number of trees are given in [13,14],
whereas the LTD-number in special families of graphs, including cubic graphs
and grid graphs, is investigated in [14].



Polyhedra Associated with Open Locating-Dominating 5

As polyhedral methods have been already proved to be successful for several
other NP-hard combinatorial optimization problems, it was suggested in [2] to
apply such techniques to the ID-problem. For that, the following reformulation
as set covering problem has been proposed.

For a 0/1-matrix M with n columns, the set covering polyhedron is Q∗(M) =
conv

{
x ∈ Z

n
+ : Mx ≥ 1

}
and Q(M) =

{
x ∈ R

n
+ : Mx ≥ 1

}
is its linear relax-

ation. A cover of M is a 0/1-vector x such that Mx ≥ 1, and the covering
number τ(M) equals min1Tx,x ∈ Q∗(M).

We obtain such a constraint system Mx ≥ 1 for the ID-problem as follows.
Consider a graph G = (V,E). Domination clearly requires that any ID-code C
intersects the closed neighborhood N [i] of each node i ∈ V ; separation means
that no two intersections C ∩ N [i] and C ∩ N [j] are equal. The latter condition
can be reformulated that C intersects each symmetric difference N [i] 	 N [j]
for distinct nodes i, j ∈ V . It was shown in [2] that only symmetric differences
matter if the nodes i, j ∈ V have distance dist(i, j) = 1 (i.e., are adjacent) or
distance dist(i, j) = 2 (i.e., are non-adjacent but have a common neighbor).

Hence, determining a minimum ID-code in a graph G = (V,E) can be for-
mulated as set covering problem min1Tx,MID(G)x ≥ 1,x ∈ {0, 1}|V | by:

min1Tx
x(N [j]) =

∑
i∈N [j] xi ≥ 1 ∀j ∈ V (domination)

x(N [j] 	 N [k]) =
∑

i∈N [j]�N [k] xi ≥ 1 ∀j, k ∈ V, j �= k (separation)
x ∈ {0, 1}|V |

By [2], the matrix MID(G) encoding row-wise the closed neighborhoods of the
nodes and their symmetric differences is called the identifying code matrix of G,
and the identifying code polyhedron of G is defined as

PID(G) = Q∗(MID) = conv{x ∈ Z
|V |
+ : MID(G) x ≥ 1}.

It is clear by construction that a graph is identifiable if and only if none of the
symmetric differences results in a zero-row of MID(G), and that γID(G) equals
the covering number τ(MID(G)).

It turned out that studying the ID-problem from a polyhedral point of view
can lead to interesting results, see e.g. [2–5]. The aim of this paper is to apply
the polyhedral approach to find minimum OLD- or LTD-sets.

In Sect. 2, we give the according definitions of the matrices MOLD(G) and
MLTD(G) and of the associated polyhedra, provide some basic properties of the
polyhedra POLD(G) and PLTD(G) and introduce their canonical linear relax-
ations. Afterwards, we discuss several lines to apply polyhedral techniques.

In Sect. 3, we present cases where MOLD(G) or MLTD(G) are composed of
matrices for which the set covering polyhedron is known and we, thus, immedi-
ately can obtain a complete description of POLD(G) or PLTD(G) and the exact
value of γOLD(G) or γLTD(G).

This demonstrates how polyhedral techniques can be applied in this context.
We close with a discussion on future lines of research, including how the here
obtained results can be extended to other classes of graphs.



6 G. Argiroffo et al.

2 Polyhedra Associated to OLD- and LTD-Sets

In order to apply the polyhedral approach to the OLD- and the LTD-problem,
we first give according reformulations as set covering problem.

Theorem 1. Let G = (V,E) be a graph.

(a) Let G have neither isolated nodes nor false twins. C ⊆ V is an OLD-set if
and only if C has a non-empty intersection with

OLD1 N(i) for all i ∈ V ,
OLD2 N(i) 	 N(j) for all distinct i, j ∈ V with dist(i, j) = 1 or
dist(i, j) = 2;

(b) C ⊆ V is an LTD-set if and only if C has a non-empty intersection with

LTD1 N(i) for all i ∈ V ,
LTD2 N(i) 	 N(j) for all distinct i, j ∈ V with dist(i, j) = 1,
LTD3 N [i] 	 N [j] for all distinct i, j ∈ V with dist(i, j) = 2.

The matrices MOLD(G) and MLTD(G) encoding row-wise the open neigh-
borhoods and their respective symmetric differences read, therefore, as

MOLD(G) =

⎛

⎝
N(G)
	1(G)
	2(G)

⎞

⎠ MLTD(G) =

⎛

⎝
N(G)
	1(G)
	2[G]

⎞

⎠

where every row in N(G) is the characteristic vector of an open neighborhood of
a node in G and 	k(G) (resp. 	k[G]) is composed of the characteristic vectors
of the symmetric difference of open (resp. closed) neighborhoods of nodes at
distance k in G. We define by

PX(G) = Q∗(MX(G)) = conv{x ∈ Z
|V |
+ : MX(G) x ≥ 1}

the X-polyhedron for X ∈ {OLD,LTD}. We first address the dimension of the
two polyhedra. It is known from Balas and Ng [7] that a set covering polyhedron
Q∗(M) is full-dimensional if and only if the matrix M has at least two ones per
row.

From the submatrix N(G) encoding the open neighborhoods, we see that

VN (G) = {k ∈ V : {k} = N(i), i ∈ V }
are the cases that result in a row with only one 1-entry. From the submatrix
	1(G), every row has at least two 1-entries (namely i and j for N(i)	N(j)).
From the submatrix 	2(G), we see that

V2(G) = {k ∈ V (G) : {k} = N(i)	N(j), i, j ∈ V }
are the cases that result in a row with only one 1-entry, whereas every row from
the submatrix 	2[G] has at least two 1-entries (namely i and j for N [i]	N [j]).
Moreover, if {k} = N(i) and dist(i, j) = 2, then k ∈ N(j). Thus V2(G)∩VN (G) =
∅ follows.



Polyhedra Associated with Open Locating-Dominating 7

We conclude:

Corollary 1. Let G = (V,E) be a graph.

– Let G have neither isolated nodes nor false twins. We have dim(POLD(G)) =
|V − VN (G) − V2(G)|.

– We have dim(PLTD(G)) = |V − VN (G)|.
In addition, MOLD(G) and MLTD(G) may contain redundant rows, where

we say that y is redundant if x and y are two rows of M and x ≤ y. As the
covering number of a matrix does not change after removing redundant rows,
we define the corresponding clutter matrices COLD(G) and CLTD(G), obtained
by removing redundant rows from MOLD(G) and MLTD(G), respectively. We
clearly have

PX(G) = Q∗(CX(G)) = conv{x ∈ Z
|V |
+ : CX(G) x ≥ 1}

for X ∈ {OLD,LTD}. Moreover, also in [7] it is proved that the only facet-
defining inequalities of a set covering polyhedron Q∗(M) with integer coefficients
and right hand side equal to 1 are those of the system Mx ≥ 1. Hence we have:

Corollary 2. All constraints from CX(G) x ≥ 1 define facets of PX(G) for
X ∈ {OLD,LTD}.

We obtain the corresponding linear relaxations, the fractional OLD-
polyhedron QOLD(G) and the fractional LTD-polyhedron QLTD(G) of G, by
considering all vectors satisfying the above inequalities:

QX(G) = Q(CX(G)) =
{
x ∈ R

|V |
+ : CX(G) x ≥ 1

}

for X ∈ {OLD,LTD}. To study the two problems from a polyhedral point
of view, we propose to firstly determine the clutter matrices COLD(G) and
CLTD(G) and then to determine which further constraints have to be added
to QOLD(G) and QLTD(G) in order to obtain POLD(G) and PLTD(G),
respectively.

3 Complete p-Partite Graphs

In this section, we consider complete p-partite graphs and establish a connection
to so-called complete 2-roses of order n. Given n > q ≥ 2, let Rq

n = (V, E) be
the hypergraph where V = {1, . . . , n} and E contains all q-element subsets of V .
Nobili and Sassano [17] called the incidence matrix of Rq

n the complete q-rose
of order n and we denote it by M(Rq

n). In [6], it was shown:

Theorem 2 ([2,6]). The covering polyhedron Q∗(M(Rq
n)) is given by the non-

negativity constraints and

x(V ′) ≥ |V ′| − q + 1

for all subsets V ′ ⊆ {1, . . . , n} with |V ′| ∈ {q + 1, . . . , n}.



8 G. Argiroffo et al.

Complete Bipartite Graphs. First we consider complete bipartite graphs Km,n

with bipartition A = {1, . . . , m} and B = {m + 1, . . . ,m + n}. We note that
Km,n has false twins (unless m = 1 = n) and, thus, no OLD-set, hence we only
analyse LTD-sets. We begin with the case of stars K1,n, i.e., A = {1} and n ≥ 2.
Note that K1,2 = P3 and it is easy to see that γLTD(K1,2) = 2 holds.

Lemma 1. For a star K1,n with n ≥ 3, we have

CLTD(K1,n) =

⎛

⎜
⎝

1 0 . . . 0

0

.

.

. M(R2
n)

0

⎞

⎟
⎠ .

From the above description of the facets of the covering polyhedron associated
with complete q-roses by [2], we conclude:

Corollary 3. PLTD(K1,n) with n ≥ 3 is described by the nonnegativity con-
straints, the inequalities x1 ≥ 1 and x(B′) ≥ |B′| − 1 for all nonempty subsets
B′ ⊆ {2, ..., n + 1}.

Furthermore, combining x1 ≥ 1 and x(B) ≥ |B| − 1 yields the full rank
constraint x(V ) ≥ |B| which immediately implies γLTD(K1,n) = |V | − 1 = n
(and provides an alternative proof for the result given in [14]).

Observe that for K2,2, it is easy to see that γLTD(K2,2) = 2. For general
complete bipartite graphs Km,n with m ≥ 2, n ≥ 3, we obtain:

Lemma 2. For a complete bipartite graph Km,n with m ≥ 2, n ≥ 3, we have

CLTD(Km,n) =
(

M(R2
m) 0

0 M(R2
n)

)
.

Note that results from [2] show that CID(Km,n) = CLTD(Km,n). Hence, we
directly conclude from the facet description of PID(Km,n) by [2]:

Corollary 4. PLTD(Km,n) is given by the inequalities

1. x(C) ≥ |C| − 1 for all nonempty C ⊆ A,
2. x(C) ≥ |C| − 1 for all nonempty C ⊆ B.

Moreover, γLTD(Km,n) = |V | − 2 = m + n − 2.

This provides an alternative proof for the result given in [14].

Complete p-Partite Graphs. The results above can be further generalized for
complete p-partite graphs. Consider Kn1,...,np

= (U1 ∪· · ·∪Up, E) where each Ui

induces a nonempty stable set and all edges between Ui and Uj , i �= j are present.
We use |Ui| = ni for i = 1, . . . , p, |V | = n and assume n1 ≤ n2 ≤ . . . ≤ np as well
as p ≥ 3. For illustration, complete 3-partite and 4-partite graphs are depicted
in Fig. 2.

We note that Kn1,...,np
has false twins and, thus, no OLD-set, unless n1 =

· · · = np = 1 and the graph is a clique.



Polyhedra Associated with Open Locating-Dominating 9

Fig. 2. (a) A complete 3-partite graph with n1 = 2, n2 = 3 and n3 = 4, (b) A complete
4-partite graph with n1 = 1, n2 = n3 = 2 and n4 = 3.

Lemma 3. Let Kn1,n2,...,np
be a complete p-partite graph.

(a) If n1 = · · · = np = 1, then Kn1,n2,...,np
equals the clique Kp and

COLD(Kn1,n2,...,np
) = CLTD(Kn1,n2,...,np

) = M(R2
p).

(b) If n1 = · · · = nr = 1 with r ≥ 2 and nr+1 ≥ 2, then

CLTD(Kn1,n2,...,np
) =

⎛

⎜
⎜
⎜
⎝

M(R2
r) 0 0 . . . 0

0 M(R2
nr+1

) 0 . . . 0
...

. . .
...

0 . . . M(R2
np

)

⎞

⎟
⎟
⎟
⎠

.

(c) If n1 = 1 and n2 ≥ 2, then

CLTD(Kn1,n2,...,np
) =

⎛

⎜
⎜
⎜
⎝

0 M(R2
n2

) 0 0 . . . 0
0 0 M(R2

n3
) 0 . . . 0

...
. . . . . .

...
0 0 . . . M(R2

np
)

⎞

⎟
⎟
⎟
⎠

.

(d) If n1 ≥ 2, then

CLTD(Kn1,n2,...,np
) =

⎛

⎜
⎜
⎜
⎝

M(R2
n1

) 0 0 . . . 0
0 M(R2

n2
) 0 . . . 0

...
. . .

...
0 . . . M(R2

np
)

⎞

⎟
⎟
⎟
⎠

.

From the description of the facets of the covering polyhedron associated
with complete q-roses by [2] and taking the block structure of the matrices into
account, we conclude:

Corollary 5. Let Kn1,n2,...,np
be a complete p-partite graph.

(a) If n1 = · · · = np = 1, then PX(Kn1,n2,...,np
) is given by the inequalities



10 G. Argiroffo et al.

• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ V
and γX(Kn1,n2,...,np

) = n − 1 for X ∈ {OLD,LTD}.
(b) If n1 = · · · = nr = 1 with r ≥ 2 and nr+1 ≥ 2, then

• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ U1 ∪ · · · ∪ Ur,
• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {r + 1, . . . , p}

and γLTD(Kn1,n2,...,np
) = n − p + r − 1.

(c) If n1 = 1 and n2 ≥ 2, then PLTD(Kn1,n2,...,np
) is given by the inequalities

• x(U1) ≥ 0,
• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {2, . . . , p},

and γLTD(Kn1,n2,...,np
) = n − p.

(d) If n1 ≥ 2, then PLTD(Kn1,n2,...,np
) is given by the inequalities

• x(V ′) ≥ |V ′| − 1 for all nonempty subsets V ′ ⊆ Ui for i ∈ {1, . . . , p}
and γLTD(Kn1,n2,...,np

) = n − p.

Corrollary 5(a) provides an alternative proof for the result on OLD-sets in
cliques given in [19].

4 Some Families of Split Graphs

A graph G = (C ∪ S,E) is a split graph if its node set can be partitioned into a
clique C and a stable set S. Split graphs are closed under taking complements
and form the complementary core of chordal graphs since G is a split graph if
and only if G and G are chordal or if and only if G is (C4, C4, C5)-free [11].

Our aim is to study LTD-sets in some families of split graphs having a regular
structure from a polyhedral point of view.

(a) (d)(c)(b)

Fig. 3. (a) star, (b) crown, (c) thin headless spider, (d) thick headless spider.

Complete Split Graphs. A complete split graph is a split graph where all edges
between C and S are present. Complete split graphs can be seen as special case of
complete multi-partite graphs studied in Sect. 3. In fact, a complete split graph
is a clique if |S| = 1, a star if |C| = 1, and a crown if |C| = 2, see Fig. 3(a),
(b). Otherwise, the graph can be seen as a complete multi-partite graph where
all parts but one have size 1, i.e. as Kn1,n2,...,np

with n1 = · · · = np−1 = 1 and
np ≥ 2 such that U1 ∪ · · · ∪ Up−1 induce the clique C and Up the stable set S.
Hence, we directly conclude from Lemma 3 and Corollary 5:



Polyhedra Associated with Open Locating-Dominating 11

Corollary 6. Let G = (C ∪ S,E) be a complete split graph.

(a) If |S| = 1, then G is a clique,

CX(G) = M(R2
|C|+1)

and γX(G) = |C| for X ∈ {OLD,LTD}.
(b) If |C| = 1, then G is a star,

CLTD(G) =

⎛

⎜
⎜
⎜
⎝

1 0 . . . 0
0
... M(R2

|S|)
0

⎞

⎟
⎟
⎟
⎠

.

and γLTD(G) = |S|.
(c) Otherwise, we have

CLTD(G) =

(
M(R2

|C|) 0
0 M(R2

|S|)

)

and γLTD(G) = |S| + |C| − 2.

Headless Spiders. A headless spider is a split graph with C = {c1, . . . , ck} and
S = {s1, . . . , sk}; it is thin (resp. thick) if si is adjacent to cj if and only if i = j
(resp. i �= j), see Fig. 3(c), (d) for illustration. Clearly, the complement of a thin
spider is a thick spider, and vice-versa. It is easy to see that for k = 2, the path
P4 equals the thin and thick headless spider. Moreover, it is easy to check that
headless spiders are twin-free.

A thick headless spider with k = 3 equals the 3-sun S3 and it is easy to see
that γOLD(S3) = 4 and γLTD(S3) = 3 holds. To describe the clutters for k ≥ 4,
we use the following notations. Let Jn denote the n × n matrix having 1-entries
only and In the n×n identity matrix. Furthermore, let Jn−1,n(i) denote a matrix
s.t. its i-th column has 0-entries only and removing the i-th column results in
Jn−1, and In−1,n(j) denote a matrix s.t. its j-th column has 1-entries only and
removing the j-th column results in In−1.

Lemma 4. For a thick headless spider G = (C ∪ S,E) with k ≥ 4, we have

COLD(G) =

(
M(R|S|−1

|S| ) 0

0 M(R2
|C|)

)
and CLTD(G) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 M(R|C|−1

|C| )

Jk−1,k(k) Ik−1,k(k)
...

...
Jk−1,k(1) Ik−1,k(1)
M(R2

|S|) M(R2
|C|)

J|S| I|C|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The lines associated with N(ci)	N(cj) (or equivalently with N [si]	N [sj ])
in the rows of the matrix M(R2

|C|) are ordered according to the rows of M(R2
|S|)

(that is for the same pairs (i, j) ∈ {1, ..., k}2).



12 G. Argiroffo et al.

From the description of the polyhedron associated with complete q-roses by
[2] and taking the block structure of COLD(G) into account, we conclude:

Corollary 7. For a thick headless spider G = (C ∪ S,E) with k ≥ 4, POLD(G)
is given by the inequalities

• xi ≥ 0 for all i ∈ C ∪ S,
• x(S′) ≥ |S′| − k + 2 for all S′ ⊆ S with |S′| ≥ k − 1,
• x(C ′) ≥ |C ′| − 1 for all C ′ ⊆ C with |C ′| ≥ 2,

and γOLD(G) = |C| + 1.

On the other hand, from the clutter matrix CLTD(G), we immediately see
that C is an LTD-set. However, C is a minimum LTD-set only if k = 4. For
thick headless spiders with k ≥ 5, we can show, using polyhedral arguments,
that k − 1 is a lower bound for the cardinality of any LTD-set. Exhibiting an
LTD-set of size k − 1 thus ensures minimality:

Theorem 3. For a thick headless spider G = (C ∪ S,E) with k ≥ 5, we have
γLTD(G) = k − 1.

The situation is different for thin headless spiders:

Lemma 5. For a thin headless spider G = (C ∪ S,E) with k ≥ 3, we have

COLD(G) = CLTD(G) =
(
0 I|C|

)
.

We immediately conclude:

Corollary 8. For a thin headless spider G = (C ∪ S,E) with k ≥ 3, PX(G) is
given by the inequalities

• xi ≥ 1 for all i ∈ C and xi ≥ 0 for all i ∈ S

C is the unique X-set of minimum size and γX(G) = |C| follows for X ∈
{OLD,LTD}.

5 Concluding Remarks

In this paper, we proposed to study the OLD- and LTD-problem from a polyhe-
dral point of view, motivated by promising polyhedral results for the ID-problem
[2–5]. That way, we were able to provide closed formulas for the LTD-numbers
of all kinds of complete p-partite graphs (Sect. 3), and for the studied families
of split graphs as well as the OLD-numbers of thin and thick headless spiders
(Sect. 4).

In particular, if we have the same clutter matrix for two different X-problems,
then we can conclude that every solution of one problem is also a solution for
the other problem, and vice versa, such that the two X-polyhedra coincide and
the two X-numbers are equal. This turned out to be the case for



Polyhedra Associated with Open Locating-Dominating 13

– complete bipartite graphs as CID(Km,n) = CLTD(Km,n) holds by Lemma 2
and results from [2],

– thin headless spiders G as COLD(G) = CLTD(G) holds by Lemma 5.

Furthermore, we were able to provide the complete facet descriptions of

– the LTD-polyhedra for all complete p-partite graphs (including complete split
graphs) and for thin headless spiders (see Sect. 3 and Lemma 5),

– the OLD-polyhedra of cliques, thin and thick headless spiders (see Corollary
5 and Sect. 4).

The complete descriptions of some X-polyhedra also provide us with information
about the relation between Q∗(CX(G)) and its linear relaxation Q(CX(G)). A
matrix M is ideal if Q∗(M) = Q(M). For any nonideal matrix, we can evaluate
how far M is from being ideal by considering the inequalties that have to be
added to Q(M) in order to obtain Q∗(M). With this purpose, in [1], a matrix
M is called rank-ideal if only 0/1-valued constraints have to be added to Q(M)
to obtain Q∗(M). From the complete descriptions obtained in Sect. 3 and Sect. 4,
we conclude:

Corollary 9. The LTD-clutters and OLD-clutters of thin headless spiders are
ideal for all k ≥ 3.

Corollary 10. The LTD-clutters of all complete p-partite graphs and the OLD-
clutters of cliques and thick headless spiders are rank-ideal.

Finally, the LTD-clutters of thick headless spiders have a more complex
structure such that also a facet description of the LTD-polyhedra is more
involved. However, using polyhedral arguments, is was possible to establish that
k−1 is a lower bound for the cardinality of any LTD-set. Exhibiting an LTD-set
of size k − 1 thus allowed us to deduce the exact value of the LTD-number of
thick headless spiders (Theorem 3).

This demonstrates how the polyhedral approach can be applied to find X-
sets of minimum size for special graphs G, by determining and analyzing the
X-clutters CX(G), even in cases where no complete description of PX(G) is
known yet.

As future lines of research, we plan to work on a complete description of the
LTD-polyhedra of thick headless spiders and to apply similar and more advanced
techniques for other graphs in order to obtain either X-sets of minimum size
or strong lower bounds stemming from linear relaxations of the X-polyhedra,
enhanced by suitable cutting planes.

References

1. Argiroffo, G., Bianchi, S.: On the set covering polyhedron of circulant matrices.
Discrete Optim. 6(2), 162–173 (2009)

2. Argiroffo, G., Bianchi, S., Lucarini, Y., Wagler, A.: Polyhedra associated with
identifying codes in graphs. Discrete Appl. Math. 245, 16–27 (2018)



14 G. Argiroffo et al.

3. Argiroffo, G., Bianchi, S., Wagler, A.: Study of Identifying code polyhedra for
some families of split graphs. In: Fouilhoux, P., Gouveia, L.E.N., Mahjoub, A.R.,
Paschos, V.T. (eds.) ISCO 2014. LNCS, vol. 8596, pp. 13–25. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09174-7 2

4. Argiroffo, G., Bianchi, S., Wagler, A.: On identifying code polyhedra of families
of suns. In: VIII ALIO/EURO Workshop on Applied Combinatorial Optimization
(2014)

5. Argiroffo, G., Bianchi, S., Wagler, A.: Progress on the description of identifying
code polyhedra for some families of split graphs. Discrete Optim. 22, 225–240
(2016)

6. Argiroffo, G., Carr, M.: On the set covering polyhedron of q-roses, In: Proceedings
of the VI ALIO/EURO Workshop on Applied Combinatorial Optimization 2008,
Buenos Aires, Argentina (2008)

7. Balas, E., Ng, S.M.: On the set covering polytope: I. All the facets with coef-
ficients in {0, 1, 2}. Math. Program. 43, 57–69 (1989). https://doi.org/10.1007/
BF01582278

8. Bertrand, N., Charon, I., Hudry, O., Lobstein, A.: Identifying and locating domi-
nating codes on chains and cycles. Eur. J. Comb. 25, 969–987 (2004)

9. Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard. Theoret. Comput. Sci. 290, 2109–
2120 (2003)

10. Foucaud, F.: The complexity of the identifying code problem in restricted graph
classes. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp.
150–163. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45278-
9 14

11. Földes, S., Hammer, P.: Split graphs. In: Proceedings of the VIII Southeastern
Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, La.),
Congressus Numerantium XIX, Winnipeg: Utilitas Math, pp. 311–315 (1977)

12. Gravier, S., Moncel, J.: On graphs having a V {x}-set as an identifying code. Dis-
crete Math. 307, 432–434 (2007)

13. Haynes, T.W., Henning, M.A., Howard, J.: Locating and total-dominating sets in
trees. Discrete Appl. Math. 154, 1293–1300 (2006)

14. Henning, M.A., Rad, N.J.: Locating-total domination in graphs. Discrete Appl.
Math. 160, 1986–1993 (2012)

15. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for
identifying vertices in graphs. IEEE Trans. Inf. Theory 44, 599–611 (1998)

16. Lobstein, A.: Watching systems, identifying, locating-dominating and discriminat-
ing codes in graphs. https://www.lri.enst.fr/lobstein/debutBIBidetlocdom.pdf

17. Nobili, P., Sassano, A.: Facets and lifting procedures for the set covering polytope.
Math. Program. 45, 111–137 (1989)

18. Pandey, A.: Open neighborhood locating-dominating set in graphs: complexity and
algorithms. In: International Conference on Information Technology (ICIT). IEEE
(2015)

19. Seo, S.J., Slater, P.J.: Open neighborhood locating dominating sets. Australas. J.
Comb. 46, 109–119 (2010)

https://doi.org/10.1007/978-3-319-09174-7_2
https://doi.org/10.1007/BF01582278
https://doi.org/10.1007/BF01582278
https://doi.org/10.1007/978-3-642-45278-9_14
https://doi.org/10.1007/978-3-642-45278-9_14
https://www.lri.enst.fr/lobstein/debutBIBidetlocdom.pdf


On the p-Median Polytope and the
Directed Odd Cycle Inequalities

Mourad Bäıou1 and Francisco Barahona2(B)

1 CNRS and Université Clermont Auvergne, Campus Universitaire des Cézeaux,
1 rue de la Chebarde, 63178 Aubière Cedex, France

2 IBM T. J. Watson research Center, Yorktown Heights, NY 10589, USA
barahon@us.ibm.com

Abstract. We study the effect of the odd directed cycle inequalities in
the description of the polytope associated with the p-median problem.
We treat general directed graphs and we characterize all the graphs for
which the obvious linear relaxation together with the directed odd cycle
inequalities describe the p-median polytope. In a previous work we have
shown a similar result for oriented graphs. This result extends the previ-
ous work, but its proof depends on the oriented case since it will be the
starting point of the proof in this paper.

1 Introduction

This paper follows the study of the classical linear formulation for the p-median
problem started in [1–3]. To avoid repetitions, we refer to [1] for a more detailed
introduction on the p-median problem.

Let G = (V,A) a directed graph not necessarily connected, where each arc
(u, v) ∈ A has an associated cost c(u, v). Here we make a difference between
oriented and directed graphs. In oriented graphs at most one of the the arcs
(u, v) or (v, u) exist, while in directed graphs we may have both arcs (u, v) and
(v, u). The p-median problem (pMP) consists of selecting p nodes, usually called
centers, and then assign each nonselected node along an arc to a selected node.
The goal is to select p nodes that minimize the sum of the costs yielded by the
assignment of the nonselected nodes. If the number of centers is not fixed and in
stead we have costs associated with nodes, then we get the well known facility
location problem.

If we associate the variables y to the nodes, and the variables x to the arcs,
the following is the classical linear relaxation of the pMP. If we remove equality
(1), then we get a linear relaxation of the facility location problem.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 15–26, 2020.
https://doi.org/10.1007/978-3-030-53262-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_2


16 M. Bäıou and F. Barahona

∑

v∈V

y(v) = p, (1)

y(u) +
∑

v:(u,v)∈A

x(u, v) = 1 ∀u ∈ V, (2)

x(u, v) ≤ y(v) ∀(u, v) ∈ A, (3)
y(v) ≥ 0 ∀v ∈ V, (4)
x(u, v) ≥ 0 ∀(u, v) ∈ A. (5)

Call pMP(G) the p-median polytope, that is the convex hull of integer solu-
tions satisfying (1)–(5).

Now we will introduced a class of valid inequalities based on odd directed
cycles. For this we need some additional definitions. A simple cycle C is an
ordered sequence v0, a0, v1, a1, . . . , at−1, vt, where

– vi, 0 ≤ i ≤ t − 1, are distinct nodes,
– either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and

vi+1 is the tail of ai, for 0 ≤ i ≤ t − 1, and
– v0 = vt.

Let V (C) and A(C) denote the nodes and the arcs of a simple cycle C,
respectively. By setting at = a0, we partition the vertices of C into three sets:
Ĉ, Ċ and C̃. Each node v is incident to two arcs a′ and a′′ of C. If v is the head
(resp. tail) of both arcs a′ and a′′ then v is in Ĉ (resp. Ċ) and if v is the head
of one of them and a tail of the other, then v is in C̃. Notice that |Ĉ| = |Ċ|. A
cycle will be called g-odd if |C̃| + |Ĉ| is odd, that is the number of nodes that
are heads of some arcs in C is odd. Otherwise it will be called g-even. A cycle
C with V (C) = C̃ is a directed cycle, otherwise it is called a non-directed cycle.
Notice that the notion of g-odd (g-even) cycles generalizes the notion of odd
(even) directed cycles, that is why we use the letter “g”.

Definition 1. A simple cycle is called a Y -cycle if for every v ∈ Ĉ there is an
arc (v, v̄) in A, where v̄ is in V \ Ċ.

Now consider the following inequalities.

∑

a∈A(C)

x(a) −
∑

v∈Ĉ

y(v) ≤ |C̃] + |Ĉ| − 1
2

for each g-odd Y -cycle C. (6)

The validity of these inequalities is straightforward and comes from the fact that
these inequalities are Gomory-Chvátal inequalities of rank one and their sepa-
ration problem may be reduced to that of the classical odd cycle inequalities in
undirected graphs [4]. Hence a natural and important question in polyhedral the-
ory is the characterization of the graphs such that constraints (1)–(5) together
with inequalities (6) define an integral polytope. If we remove the equality (1),



On the p-Median Polytope and the Directed Odd Cycle Inequalities 17

inequalities (6) remain valid for the facility location problem and the second ques-
tion is the characterization of the graphs for which inequalities (2)–(5) together
with (6) define an integral polytope. As a direct consequence, we get polynomial
time algorithms for both the p-median and the facility location problems in this
class of graphs. A simplification of both question is to explore first the following
subclass of inequalities (6), that we call odd directed cycle inequalities:

∑

a∈A(C)

x(a) ≤ |A(C)| − 1
2

for each odd directed cycle C. (7)

Now let PCp(G) to be the polytope defined by (1)–(5) and (7). The main result
in this paper is the characterization of the graphs such that PCp(G) is integral,
in other words PCp(G) = pMP(G). Still this question is not trivial, since the
result in this paper is based on the results of three previous papers [1–3]. In
[1] the class of graphs for which the polytope define by inequalities (1)–(5) was
characterized. This characterization was useful for the results in [2,3]. In [2],
the class of oriented graphs without triangles for which PCp(G) is integral was
characterized and this was used a starting point to characterize the class of
oriented graphs for which PCp(G) is integral in [3]. Recall that in an oriented
graph, for each pair of nodes u and v at most one of the arcs (u, v) or (v, u)
exists. So in this paper we conclude the characterization of the graphs for which
PCp(G) is integral in any class of graphs. So here graphs may have both arcs
(u, v) and (v, u). The result of this paper although is a generalization of the
results in [3], it is not self-contained since it uses [3] as starting point of the
induction on the number of pair of nodes u and v where both arcs (u, v) and
(v, u) exist.

The paper is organized as follows. In Sect. 2, we state our main theorem with
some definitions. In Sect. 3, we give the proof of our main result. This proof is
on two parts. The first part is given in the Subsect. 3.1 and the second one in the
Subsect. 3.2. We finish this paper with a conclusion that discuss the relationship
with the facility location problem and some polyhedral consequences.

2 Preliminaries

The main result of this paper is the following theorem.

Theorem 2. Let G = (V,A) be a directed graph, then PCp(G) is integral for
any integer p if and only if

(C1) it does not contain as a subgraph any of the graphs H1, H2, H3, H4, H5,
H6 of Fig. 1, and

(C2) it does not contain a non-directed g-odd Y -cycle C with an arc (u, v) with
both u and v not in V (C).



18 M. Bäıou and F. Barahona

H1
H2 H3

H4 H5
H6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
3

2
3

2
3

1
3

1

1
2

1
2

1
2

1
2

1
2

1
2

1
3

1
3

2
3

2
3

1
3

1
3

1
3

1
3

1
3

1
3

1

Fig. 1. The six forbidden configurations of condition (C1) of Theorem 2

Given a directed graph G = (V,A), a subgraph induced by the nodes
v1, . . . , vr of D is called a bidirected cycle if the only arcs in this induced sub-
graph are (vi, vi+1) and (vi+1, vi), for i = 1, . . . , r, with vr+1 = v1. We denote it
by BICr.

For a directed graph G = (V,A) and an arc (u, v) ∈ A, define G(u, v) to be
the graph obtained by removing (u, v) from G, and adding a new arc (u, v′) (v′

is a new pendent node). The rest of this section is devoted to definitions with
respect to a feasible point in PCp(G).

Definition 3. A vector (x, y) ∈ R
|A|+|V | will be denoted by z, i.e., z(u) = y(u)

for all u ∈ V and z(u, v) = x(u, v) for all (u, v) ∈ A. Given a vector z and a
labeling function l : V ∪ A → {−1, 0, 1}, we define a new vector zl from z as
follows:

zl(u) = z(u) + l(u)ε, for all u ∈ V, and

zl(u, v) = z(u, v) + l(u, v)ε, for all (u, v) ∈ A,

where ε is a sufficiently small positive scalar. When we assign labels to some
nodes and arcs without specifying the labels of the remaining nodes and arcs, it
means that they are assigned the label zero.

Definition 4. When dealing with a vector z ∈ PCp(G), we say that the arc
(u, v) is tight if z(u, v) = z(v). Also we say that an odd directed cycle C is tight
if z(A(C)) = (|A(C)| − 1)/2.



On the p-Median Polytope and the Directed Odd Cycle Inequalities 19

3 The Proof of Theorem 2

We will sketch quickly the necessity part of the proof. With each of the graphs
H1, H2, H3 and H6 in Fig. 1 we show a fractional extreme point of PC3(G)
when G is restricted to these graphs. The graphs H4 and H5 show an extreme
point of PC2(G). The numbers near the nodes correspond to y variables. The
x variables take the value 1

2 for H1, H2 and H4. For the graphs H3, H5 and
H6 the arcs take the value 1

3 , except the arc in the right in H6 that takes the
value 2

3 .
To prove necessity we just have to notice that the extreme points for the

subgraphs Hi, for i = 1, . . . , 6, in Fig. 1 may be extended to extreme points for
any graph containing these subgraphs by setting each remaining node variable
to one and each remaining arc variable to zero. For condition (C2) when the
graph contains a non-directed g-odd Y -cycle C with an arc (u, v) having both
nodes u and v not in C, we construct an extreme point of PCp(G) where p =
|C̃|+ |Ĉ|+1

2 + |V |−|V (C)|−1 as follows. All the nodes in Ċ take the value 0, the
nodes in C̃ and Ĉ with the node u take the value 1

2 ; all the arcs in C with (u, v)
take the value 1

2 . All other nodes take the value 1 and the other arcs take the
value 0, except for each unique arc leaving each node in Ĉ (see the definition of
a Y -cycle) they take the value 1

2 . One way to see that these are indeed extreme
points is to start adding ε to one of the components and try to keep satisfying
as equation the same constraints that the original vector satisfies as equation.
First we conclude that we have to add or subtract ε to other components and
this leads to the violation of Eq. (1) or to the impossibility of keeping tight the
inequality that are satisfied as equation.

The rest of this section is devoted to the sufficiency part. Denotes by Pair(G)
the set of pair of nodes {u, v} such that both arcs (u, v) and (v, u) exist. The
proof of this theorem will be done by induction on the number of |Pair(G)|. This
result has been proved in [3] for oriented graphs, that is when |Pair(G)| = 0.
This case is the starting point of the induction. Assume that Theorem 2 is true
for any directed graph H with |Pair(H)| ≤ m and let us show that it holds for
any directed graph G with |Pair(G)| = m + 1. Let G = (V,A) be a directed
graph with |Pair(G)| = m + 1 ≥ 1 satisfying conditions (C1) and (C2) of
Theorem 2. Suppose the contrary, that is PCp(G) is not integral. Let z̄ be a
fractional extreme point of PCp(G). Next we will give some useful lemmas and
then in Subsect. 3.1 and 3.2 the proof is completed. In Subsect. 3.1 we show the
theorem when there is no g-odd Y -cycle and in Subsect. 3.2 we complete the
proof when such a cycle exists.

For some arcs (u, v) and (v, u) we construct the graph G(u, v) or G(v, u) to
apply the induction hypothesis. In doing so, we have to ensure that conditions
(C1) and (C2) of Theorem 2 remain satisfied.

The next lemma states that we may assume that the variables associated with
the arcs are positive for each extreme points. Of course we may have variables
with zero value, but we may remove the associated arc and we keep working
with the resulting fractional point in the resulting graph without altering any



20 M. Bäıou and F. Barahona

hypothesis. We prefer to act that way instead of using induction, this is more
simple since we are yet using another induction on the number of pair of nodes.

Lemma 1. We may assume that z̄(u, v) > 0 for each extreme point z̄ of
PCp(G).

Lemma 2. For each (u, v) ∈ A such that (v, u) is also in A, if there is no odd
directed cycle tight for z̄ containing (u, v), then PCp+1(G(u, v)) is not integral.

Lemma 3. If (u, v) and (v, u) are arcs of G, then G(u, v) and G(v, u) satisfies
condition (C1).

From now on and following Lemma 3, when we have two arcs (u, v) and (v, u)
and we consider one of the graphs G(u, v) or G(v, u) we implicitly assume that
(C1) is satisfied. Then to use the induction we only need to check (C2).

Lemma 4. The graph G does not contain a bidirected cycle.

Lemma 5. Let (u, v) and (v, u) two arcs of G. We cannot have a triangle Δ
containing (u, v) and a triangle Δ′ containing (v, u).

Lemma 6. Let (u, v) and (v, u) two arcs in G. If (u, v) belongs to a directed
cycle of size at least five, then (v, u) does not belong to any triangle.

Proof. Let C = v1, . . . , vr, v1 a directed cycle with r ≥ 5. Set u = v1 and
v = v2. Assume that there is a triangle containing (v2, v1), with the arcs
(v1, s) and (s, v2). We may assume that s ∈ V (C), otherwise H1 is present.
Let s = vk with 2 ≤ k ≤ r. We must have k = 3 or k = 4, otherwise the arcs
(v1, v2), (s, v2), (v2, v3) and (v3, v4) induce H1. Now when k = 4 (resp. k = 3) we
have H3 (resp. H1). �	
Let us conclude this section by an important lemma concerning the intersection
of odd directed cycles.

Lemma 7. Given a solution z̄ ∈ PCp(G), there is no intersection between two
directed odd cycles both of size at least five and both tight for z̄.

Proof. Recall that here we are assuming that the underlying graph satisfies con-
ditions (C1) and (C2). Let C1 and C2 be two odd directed cycles both of size
at least five tight for z̄, and intersecting on some nodes. The fact that (C1) is
satisfied implies some interesting properties. Let C1 = v1, . . . , vk. Since C1 and
C2 intersect, there is at least one node in V (C1) ∩ V (C2), call it v1. Let (u, v1) be
an arc of C2, then we must have u ∈ V (C1), otherwise H1 is present. Moreover,
u ∈ {v2, v3, vk}, otherwise (C1) is again violated. We continue this reasoning
with the next arc in C2, (v1, w), if w is not a node of C1 then to close the cycle
C2 we must have at some stage an arc (s, t) with t ∈ V (C1) and s /∈ V (C1),
but this is impossible and again we have a violation of (C1). Following the same
arguments we must have w ∈ {vk, vk − 1, v2}. So each arc in C2 have its extrem-
ities in V (C1) and vice et versa. Therefore V (C1) = V (C2). Moreover, if (u, v) is



On the p-Median Polytope and the Directed Odd Cycle Inequalities 21

an arc of C2, then one of the following hold, where the indices are taken modulo
|V (C1)| = |V (C2)|: (1) (u, v) is also an arc of C1, that is u = vi and v = vi+1,
(2) u = vi+1 and v = vi or (3) u = vi and v = vi−2. Notice that (1) cannot hold
for each arc of C2 since C1 and C2 are different. The same (2) cannot hold for
each arc of C2 since from Lemma 4 we cannot have a bidirected cycle. Then we
must have at least one arc of type (3). Moreover their number must be even. In
fact, If (vi, vi−2) is an arc of C2, then one of the following hold

– (vi−2, vi−1) and (vi−1, vi−3) are in C2, so (vi−1, vi−3) is also an arc of type
(3).

– (vi−1, vi) and (vi+1, vi−1) are in C2, so (vi+1, vi−1) is also an arc of type (3).

Consequently, the arcs of type (3) come by pair and create two triangles with
one common arc of type (1). Let |V (C1)| = V (C2)| = 2k + 1. Assume that the
number of arcs in C1 of type (2) is r′, which is the same as those of C2. Let Δ
contains the set of triangles created by the arcs of type (3). Notice that each
triangle contains an arc of C1 of type (3), an arc of C2 of type (3) and a common
arc of C1 and C2 that is of type (1). If we assume that 2r is the number of arcs
of type (3) that are in C2, which is the same as those in C1, then the number of
arcs of type (1) is r. Therefore, 2k + 1 = 2r + r + r′. We have the following

z̄(vi, vi+1) + z̄(vi+1, vi) ≤ 1, for each arc (vi, vi+1) of type (2), (8)
z̄(δ) ≤ 1, for each δ ∈ Δ. (9)

The sum of these inequalities implies z̄(A(C1)) + z̄(A(C2)) ≤ r′+2r = 2k+1−r.
Therefore, since C1 and C2 are both tight cycles, we must have r = 1. But
then inequalities (8) and (9) should be tight, which is impossible. In fact, since
r = 1 and the sizes of C1 and C2 are at least five, at least one inequality
among (8) should exist, say z(vi, vi+1) + z(vi+1, vi) ≤ 1. We have, z̄(vi, vi+1) +
z̄(vi+1, vi) = 1, z̄(vi, vi+1) ≤ z̄(vi+1) and z̄(vi+1) + z̄(vi+1, vi) ≤ 1. Combining
these constraints, we get z̄(vi+1) + z̄(vi+1, vi) = 1, but since the arc (vi+1, vi+2)
exists we must have z̄(vi+1, vi+2) = 0, which is impossible from Lemma 1. �	

3.1 G Does Not Contain a Non-directed g-Odd Y -Cycle

When we have two arcs (u, v) and (v, u), from Lemma 3, the graph G(u, v)
satisfies condition (C1), which is not the case for condition (C2), even when
G does not contain a non-directed g-odd Y -cycle. For example we may have a
g-odd cycle C which is not a Y-cycle and an arc (s, t) with both s and t not in
V (C). Now if we have an arc (u, v) in A(C) and (v, u) ∈ A \ A(C), and if v ∈ Ĉ
and u ∈ Ċ this same cycle may become a Y-cycle in G(v, u) and so with the arc
(s, t) condition (C2) is violated.

Next we will show that we may always find a pair of arcs (u, v) and (v, u)
where at least one of the graphs G(u, v) or G(v, u) satisfies (C2).

Lemma 8. Let P = v1, . . . , vk a maximal bidirected path, different from a bidi-
rected cycle. We have the following



22 M. Bäıou and F. Barahona

(i) If G(vk, vk−1) contains a non-directed g-odd Y -cycle C, then the unique arc
leaving vk is (vk, vk−1),

(ii) If G(vk−1, vk) contains a non-directed g-odd Y -cycle C, then there is at most
one another arc leaving vk−1 which is (vk−1, vk−2).

Let P = v1, . . . , vk be a maximal bidirected path. From Lemma 4 the extrem-
ities of P cannot coincide, that is P is not a bidirected cycle. We will treat two
cases (1) none of the arcs (vk−1, vk) and (vk, vk−1) belong to an odd directed
cycle tight for z̄ and of size at least five, (2) at least one of these arcs belong to
such a cycle.

Case 1. None of the arcs (vk−1, vk) and (vk, vk−1) belong to an odd directed
cycle of size at least five. From the lemma above it is easy to see that at least
one of the graphs G(vk, vk−1) or G(vk−1, vk) does not contain a g-odd Y -cycle.
In fact, assume that both graphs contain a g-odd Y -cycle. When G(vk−1, vk)
contains a g-odd Y -cycle C, we must have vk ∈ Ċ. But this is impossible since
Lemma 8 (i) implies that (vk, vk−1) is the unique arc leaving vk. Therefore, we
only need to treat the following three cases, ordered as follows.
1. Both G(vk, vk−1) and G(vk−1, vk) do not contain a g-odd Y -cycle. Then the

induction hypothesis applies for both graphs since (C1) and (C2) are satis-
fied and that |Pair(G(vk, vk−1))| = |Pair(G(vk−1, vk))| < |Pair(G)|. Hence
PCp+1(G(vk, vk−1)) and PCp+1(G(vk−1, vk)) are both integral. Lemma 5
implies that at least one of the arcs (vk, vk−1) or (vk−1, vk) does not belong
to any triangle, say (vk−1, vk). Thus Lemma 2 applies and implies that
PCp+1(G(vk−1, vk)) is not integral, which provide a contradiction.

2. G(vk−1, vk) does not contain a g-odd Y -cycle and the arc (vk−1, vk) belongs
to triangle. From the discussion above the graph G(vk, vk−1) must contain
a g-odd Y -cycle and so Lemma 8 (i) implies that the unique arc leaving vk
is (vk, vk−1) and so it must belong to the triangle containing (vk−1, vk), but
this is not possible. Hence the induction hypothesis together with Lemma 2
apply for G(vk−1, vk) and provide a contradiction.

3. G(vk, vk−1) does not contain a g-odd Y -cycle and the arc (vk, vk−1) belongs
to a triangle, call it Δ. As above, the graph G(vk−1, vk) must contain a
g-odd Y -cycle C. Since there is a triangle containing (vk, vk−1) we must
have another arc than (vk−1, vk) leaving vk−1. From Lemma 8 (ii) this
arc is (vk−1, vk−2) and is unique and so it must be in Δ, therefore Δ =
{(vk, vk−1), (vk−1, vk−2), (vk−2, vk)}. Recall that G does not contain a g-odd
Y -cycle but G(vk−1, vk) contains one, call it C. This means that vk and vk−2

are in Ċ and so there is an arc (vk, s) with s �= vk−1, vk−2 and there is also an
arc (vk−2, t) with t �= vk−1, vk. Notice that s �= t, otherwise the cycle C would
be g-even. We must have an arc (s, s′), otherwise C would not be a Y -cycle.
We cannot have s′ = vk−1, otherwise H4 is present. We cannot have s′ = vk−2,
otherwise there is a g-odd Y -cycle and we can also see that in this case the con-
figurations H3 and H5 exist. Therefore the arcs (vk−2, vk), (vk−1, vk), (vk, s)
and (s, s′) induce H1 in G, which is not possible. Now since (vk, vk−1) can-
not belong to a triangle, Lemma 2 implies that PCp+1(G(vk, vk−1)) is not
integral, but this contradicts the induction hypothesis.



On the p-Median Polytope and the Directed Odd Cycle Inequalities 23

Case 2. One of the arcs (vk, vk−1) or (vk−1, vk) belongs to an odd directed cycle
of size at least five. Call such a cycle C and w.l.o.g. assume that (vk, vk−1) ∈
A(C). Notice that when (vk−1, vk) ∈ A(C), we must have (v1, v2) ∈ A(C) which
is symmetrically similar to the case (vk, vk−1) ∈ A(C).

Lemma 9. If there is an arc (vk, s) with s �= vk−1, then s is a pendent node.

Lemma 9 implies that G(vk−1, vk) does not contains a g-odd Y -cycle. Hence
by induction PCp+1G(vk−1, vk) is integral. Also this lemma implies that in fact
(vk−1, vk) does not belong to any directed odd cycle and so Lemma 2 implies
that PCp+1G(vk−1, vk) is not integral, a contradiction.

3.2 G Contains a Non-directed g-Odd Y -Cycle

Lemma 10. Let (u, v) and (v, u) two arcs of G. Then at least one of the graphs
G(u, v) or G(v, u) satisfies condition (C2).

Now from Lemma 3 and Lemma 10, we know that we can always consider one
of the graphs G(u, v) or G(v, u), and we get (C1) and (C2) satisfied and so
the induction hypothesis applies and implies that at least one of the polytopes
PCp+1(G(u, v)) or PCp+1(G(v, u)) is integral. The idea is to use Lemma 2 to
obtain a contradiction.

First let us assume that both graphs G(u, v) and G(v, u) satisfy condition
(C2). Then the induction hypothesis implies that both PCp+1(G(u, v)) and
PCp+1(G(v, u)) are integral. From Lemma 7, at least one of the arcs (u, v) or
(v, u) does not belong to a directed odd cycle tight for z and of size at least
five. Say that this arc is (u, v). If (u, v) belongs to a triangle, then Lemma 6
implies that (v, u) does not belong to a directed cycle of size at least five and
Lemma 5 implies that (v, u) does not belong to any triangle. Therefore Lemma
2 applies for G(v, u) and implies that PCp+1(G(v, u)) is not integral, which con-
tradicts the induction hypothesis. So we may assume that (u, v) does not belong
to any triangle, and in this case Lemma 2 applies for G(u, v) and we obtain
again a contradiction. Thus we may assume that (C2) is satisfied by G(u, v)
but not by G(v, u). The induction hypothesis applies only for G(u, v) and so
PCp+1(G(u, v)) is integral. We will also assume that (u, v) belongs to a directed
odd cycle D, otherwise we may apply Lemma 2 to obtain the contradiction that
PCp+1(G(u, v)) is not integral. Since G(v, u) does not satisfies (C2), this means
that G contains a g-odd Y -cycle C containing u but not v.

– u ∈ Ċ. Call the two nodes of C incident to u, u′ and u′′. So we have the arcs
(u, u′) and (u, u′′) in A(C).

• Assume that D is of size at least five. Let s and t the neighbors of u and v
respectively in D. That is the arcs (s, u) and (v, t) are in D. Since there are
two arcs entering u, (s, u) and (v, u), to avoid H1 any arc leaving u′ or u′′

must be directed to v or to s which means that both u′ and u′′ are in D,
otherwise the arc leaving u′ or u′′ to s or t creates H1, see Fig. 2 (a). From



24 M. Bäıou and F. Barahona

u v

u u

u v

u u

u v

u u

u v

u u

(a) (b) (c) (d)

s t t t

tt

Fig. 2. The odd directed cycle D is in bold.

this figure it is easy to check that in order to avoid H1, the situation must
be as pictured in Fig. 2 (b), that is s = u′′ and that the path in D directed
from u′ to u′′ consists of one arc (u′, u′′). Recall that we have a g-odd directed
cycle C containing u but not v and it contains the arcs (u, u′) and (u, u′′).
Thus we must have a path from u′ to u′′ that do not contain nor u nor v
and it cannot consist of the arc (u′, u′′), otherwise C is not g-odd. The only
possibility to avoid the forbidden configurations is to have an arc leaving u′′

and entering the other neighbor of u′ in D, call it t′, see Fig. 2 (c). There are
no other arcs than the ones pictured in Fig. 2 (c) that are incident to u′, u′′

or to t′, otherwise we have a forbidden configuration. This implies that the
g-odd Y -cycle C is composed by the arcs (u, u′), (u, u′′), (u′′, t′) and (t′, u′).
And since (C2) is satisfied we must have t = t′ and hence D is of size five,
see Fig. 2 (d).
Now notice that the graph G(u′′, u) does not satisfies (C2), since it easy
to check that the nodes u, v, t and u′ define a g-odd Y -cycle. By Lemma
10, G(u, u′′) satisfies (C2) and so the induction hypothesis implies that
PCp+1(G(u, u′′)) is integral. Now it is easy to check that (u, u′′) does not
belong to any directed odd cycle. In fact let D′ such a cycle. The arc (u′′, t)
must be in D′. D′ cannot be of size three, otherwise the arc (t, u) exits with
H2. Then D′ is of size at least five. D′ must contain the arc (t, u′). But now
the only arc leaving u′ is (u′, u′′). Hence Lemma 2 may be applied to G(u, u′′)
which implies that PCp+1(G(u, u′′)) is not integral, but this contradicts the
induction hypothesis.

• Assume that D is a triangle. Let (s, u), (u, v), (v, s) the arcs of D. We may
always assume that s �= u′′, otherwise rename u′ by u′′. To avoid H1, any arc
leaving u′′ must be directed to s or to v. The node u′′ is not pendent, so there
is at least one arc leaving u′′ and cannot be directed to v, otherwise (u, v)
and (v, u) both belong to triangles, which contradicts Lemma 5. Then we
must have an arc (u′′, s) which implies that s �= u′, since otherwise the arcs
(v, s), (u, s) and (u′′, s) represent H2. But then the arcs (v, s), (u′′, s), (s, u)
and (u, u′) define H1.

– u ∈ C̃. Now let (u′, u) and (u, u′′) the two arcs incident to u in C.

• D is of size at least five. Let (s, u) and (v, t) two arcs of D. We must have
s = u′, otherwise the arcs (u, v), (v, u) with (s, u) and (u′, u) induce H4. Now



On the p-Median Polytope and the Directed Odd Cycle Inequalities 25

u v

u

u

u v

u

ut t

t

(a) (b)

Fig. 3. The odd directed cycle D is in bold.

any arc leaving u′′ must be directed to t or to u′, and since t and u′ are in
D, to avoid H1 we must have (u′′, u′) an arc of D, see Fig. 3 (a). Now since
the g-odd Y -cycle contains u but not v, we must have a path P ′ between u′

and u′′ that does not contain nor u nor v and it cannot consist of (u′′, u′),
otherwise the g-odd Y -cycle C is directed. Moreover, if there is another arc
leaving u′′ it must be directed to v in order to avoid H1. But in this case it
may be easily seen from Fig. 3 (a) that the arc (u′′, v) implies the presence of
H5 . The unique other arc entering u′′ is its neighbor in D, call it t′. Hence
(t′, u′′) is in the path P ′. Now this path must contain an arc incident to u′,
by definition it cannot be (u′, u) or (u′′, u′). This arc cannot enter u′, since
the only possibility to avoid H1 is that this arc should be (v, u′) or (u, u′)
which is again impossible by definition. Thus we must have an arc (u′, s) in P ′

and s = t′, otherwise (t′, u′′), (u, u′′, (u′′, u′) and (u′, s) induce H1, see Fig. 3
(b). Hence the path P ′ consist of two arcs (u′, t′) and (t′, u′′). It follows that
C is composed by these two arcs with (u′, u) and (u, u′′). Since the unique
arc leaving u′′ is (u′′, u′) and that u′ ∈ Ċ, the cycle C is not a Y -cycle, a
contradiction.

• D is a triangle. This triangle must be composed by the arcs (u, v), (v, u′) and
(u′, u), otherwise H4 is present. Notice that u′′ is not a pendent node, and that
any any arc leaving u′′ must be directed to v or to u′. If (u′′, v) exists, then
(u, v) and (v, u) both belong to triangles which contradicts Lemma 5. So we
must have the arc (u′′, u′). In this case the arcs (v, u), (v, u′), (u, u′′), (u′′, u′)
induce a g-odd Y -cycle. This implies that there is only one additional node
in C call it t. That is V (C) = {u, u′, u′′, t}. Since the unique arc leaving u′′

is (u′′, u′), we have (t, u′′) ∈ A(C). We cannot have (t, u′), otherwise H2 is
present. Thus C is composed by the arcs (u, u′′), (t, u′′), (u′, t) and (u′, u). But
then C is not a Y -cycle, a contradiction.

Thus from the discussion above we may conclude that (u, v) does not belong
to any odd directed cycle. Lemma 2 applies and implies that PCp+1(G(u, v))
is not integral, which contradicts the induction hypothesis that states that
PCp+1(G(u, v)) is integral.

4 Concluding Remarks

In this paper we characterized all the graphs such that the classical linear relax-
ation of the p-median problem together with the odd directed cycles define an



26 M. Bäıou and F. Barahona

integral polytope. This result has an interesting computational counterpart. In
fact, when optimizing over the polytope PCp(G) which can be done in polyno-
mial time, the graphs induced by the arcs with positive variables in any optimal
fractional solution contain at least one of the configurations Hi, i = 1, . . . , 6, or
a non-directed g-odd cycle of condition (C2). All these configurations may be
found in polynomial time.

Another interesting consequence of this theorem is the relationship with the
facility location problem. In fact we have the following result. Call PC(G) the
polytope defined by inequalities (2)–(5) and (7).

Corollary 5. Le G = (V,A) be a directed graph. If G does not contain a non-
directed g-odd Y -cycle nor a bicycle of size five and does not contain none of the
graphs graphs H1, H2 and H4 of Fig. 1 as a subgraph, then PC(G) is integral.

Proof. Let G = (V,A) be a directed graph satisfying the conditions of the Corol-
lary. Notice that conditions (C1) and (C2) of Theorem 2 are satisfied as well.
Now suppose the contrary, that is PC(G) admits a fractional extreme point z̄.
Let k =

∑
v∈V z̄(v). If k is an integer, then z̄ is a fractional extreme point of

PCk(G), but this contradicts Theorem 2. Assume that k is fractional and let
p = �k. Add an arc (u, v) to G with both nodes u and v are new. Extend z̄
to z′ by setting z′ = z̄ for all nodes and arcs of G and set z′(u) = p − k and
z′(v) = 1; z′(u, v) = 1 − p + k. The resulting graph satisfies conditions (C1)
and (C2). Moreover, it is easy to check that z′ is an extreme fractional point of
PCp+1(G) which again contradicts Theorem 2.

The result above may be easily improved by allowing the bicycles of size five.
This can be done by adding a few simple valid inequalities and we get an integral
polytope.

References

1. Bäıou, M., Barahona, F.: On the linear relaxation of the p-median problem. Discrete
Optim. 8, 344–375 (2011)

2. Bäıou, M., Barahona, F.: On the p-median polytope and the directed odd cycle
inequalities: triangle-free oriented graphs. Discrete Optim. 22, 206–224 (2016)

3. Bäıou, M., Barahona, F.: On the p-median polytope and the odd directed cycle
inequalities: oriented graphs. Networks 71, 326–345 (2018)

4. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. AC, vol. 2. Springer, Heidelberg (1993). https://doi.org/10.1007/978-
3-642-78240-4

https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/978-3-642-78240-4


On k-edge-connected Polyhedra:
Box-TDIness in Series-Parallel Graphs

Michele Barbato1, Roland Grappe2, Mathieu Lacroix2,
and Emiliano Lancini2,3(B)

1 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
michele.barbato@unimi.it

2 Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030,
93430 Villetaneuse, France

{grappe,lacroix,lancini}@lipn.univ-paris13.fr
3 Université Paris-Dauphine, PSL, LAMSADE, CNRS, UMR 7243,

75016 Paris, France

Abstract. Given a connected graph G = (V,E) and an integer k ≥ 1,
the connected graph H = (V, F ), where F is a family of elements of E,
is a k-edge-connected spanning subgraph of G if H remains connected
after the removal of any k − 1 edges. The convex hull of the k-edge-
connected spanning subgraphs of a graph G forms the k-edge-connected
spanning subgraph polyhedron of G. We prove that this polyhedron is
box-totally dual integral if and only if G is series-parallel. In this case,
we also provide an integer box-totally dual integral system describing
this polyhedron.

Introduction

Totally dual integral systems—introduced in the late 70’s—are strongly con-
nected to min-max relations in combinatorial optimization (Schrijver, 1998). A
rational system of linear inequalities Ax ≥ b is totally dual integral (TDI) if the
maximization problem in the linear programming duality:

min{c�x : Ax ≥ b} = max{b�y : A�y = c, y ≥ 0}

admits an integer optimal solution for each integer vector c such that the optimum
is finite. Every rational polyhedron can be described by a TDI system (Giles and
Pulleyblank, 1979). For instance, 1

q Ax ≥ 1
q b is TDI for some positive q. However,

M. Barbato—While working on this paper, Michele Barbato was financially supported
by Regione Lombardia, grant agreement n. E97F17000000009, project AD-COM.
R. Grappe—Supported by ANR DISTANCIA (ANR-17-CE40-0015).
M. Lacroix, E. Lancini and R. Grappe—This work has been partially supported by the
PGMO project Matrices Totalement Équimodulaires.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 27–41, 2020.
https://doi.org/10.1007/978-3-030-53262-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_3


28 M. Barbato et al.

only integer polyhedra can be described by TDI systems with integer right-hand
side (Edmonds and Giles, 1984). TDI systems with only integer coefficients yield
min-max results that have combinatorial interpretation.

A stronger property is the box-total dual integrality, where a system Ax ≥ b
is box-totally dual integral (box-TDI) if Ax ≥ b, � ≤ x ≤ u is TDI for all rational
vectors � and u (possibly with infinite components). General properties of such
systems can be found in (Cook, 1986) and Chapter 22.4 of (Schrijver, 1998).
Note that, although every rational polyhedron {x : Ax ≥ b} can be described
by a TDI system, not every polyhedron can be described by a box-TDI system.
A polyhedron which can be described by a box-TDI system is called a box-
TDI polyhedron. As proved by Cook (1986), every TDI system describing such
a polyhedron is actually box-TDI.

Recently, several new box-TDI systems were exhibited. Chen et al. (2008)
characterized box-Mengerian matroid ports. Ding et al. (2017) characterized the
graphs for which the TDI system of Cunningham and Marsh (1978) describing
the matching polytope is actually box-TDI. Ding et al. (2018) introduced new
subclasses of box-perfect graphs. Cornaz et al. (2019) provided several box-TDI
systems in series-parallel graphs. For these graphs, Barbato et al. (2020) gave the
box-TDI system for the flow cone having integer coefficients and the minimum
number of constraints. Chen et al. (2009) provided a box-TDI system describing
the 2-edge-connected spanning subgraph polyhedron for the same class of graphs.

In this paper, we are interested in integrality properties of systems related
to k-edge-connected spanning subgraphs. Given a positive integer k, a k-edge-
connected spanning subgraph of a connected graph G = (V,E) is a connected
graph H = (V, F ), with F a family of elements of E, that remains connected
after the removal of any k − 1 edges.

These objects model a kind of failure resistance of telecommunication net-
works. More precisely, they represent networks which remain connected when
k − 1 links fail. The underlying network design problem is the k-edge-connected
spanning subgraph problem (k-ECSSP): given a graph G, and positive edge costs,
find a k-edge-connected spanning subgraph of G of minimum cost. Special cases
of this problem are related to classic combinatorial optimization problems. The
2-ECSSP is a well-studied relaxation of the traveling salesman problem (Erickson
et al. 1987) and the 1-ECSSP is nothing but the well-known minimum spanning
tree problem. While this latter is polynomial-time solvable, the k-ECSSP is NP-
hard for every fixed k ≥ 2 (Garey and Johnson, 1979).

Different algorithms have been devised in order to deal with the k-ECSSP.
Notable examples are branch-and-cut procedures (Cornaz et al. 2014), approxi-
mation algorithms (Gabow et al. 2009), Cutting plane algorithms Grötschel et al.
(1992), and heuristics (Clarke and Anandalingam, 1995). Winter (1986) intro-
duced a linear-time algorithm solving the 2-ECSSP on series-parallel graphs.
Most of these algorithms rely on polyhedral considerations.

The k-edge-connected spanning subgraph polyhedron of G, hereafter denoted
by Pk(G), is the convex hull of all the k-edge-connected spanning subgraphs of G.
Cornuéjols et al. (1985) gave a system describing P2(G) for series-parallel graphs.



Box-TDIness of k-edge-connected Polyhedra 29

Vandenbussche and Nemhauser (2005) characterized in terms of forbidden minors
the graphs for which this system describes P2(G). Chopra (1994) described Pk(G)
for outerplanar graphs when k is odd. Didi Biha and Mahjoub (1996) extended
these results to series-parallel graphs for all k ≥ 2. By a result of Bäıou et al.
(2000), the inequalities in these descriptions can be separated in polynomial time,
which implies that the k-ECSSP is solvable in polynomial time for series-parallel
graphs.

When studying the k-edge-connected spanning subgraphs of a graph G,
we can add the constraint that each edge of G can be taken at most once.
We denote the corresponding polyhedron by Qk(G). Barahona and Mahjoub
(1995) described Q2(G) for Halin graphs. Further polyhedral results for the
case k = 2 have been obtained by Boyd and Hao (1993), Mahjoub (1994), and
Mahjoub (1997). Grötschel and Monma (1990) described several basic facets of
Qk(G). Moreover, Fonlupt and Mahjoub (2006) extensively studied the extremal
points of Qk(G) and characterized the class of graphs for which this polytope is
described by cut inequalities and 0 ≤ x ≤ 1.

The polyhedron P1(G) is known to be box-TDI for all graphs (Lancini, 2019).
For series-parallel graphs, the system given in (Cornuéjols et al. 1985) describing
P2(G) is not TDI. Chen et al. (2009) showed that dividing each inequality by 2
yields a TDI system for such graphs. Actually, they proved that this system is
box-TDI if and only if the graph is series-parallel.

Contribution. Our starting point is the result of Chen et al. (2009). First, their
result implies that P2(G) is a box-TDI polyhedron for series-parallel graphs.
However, this leaves open the question of the box-TDIness of P2(G) for non
series-parallel graphs. More generally, for which integers k and graphs G is Pk(G)
a box-TDI polyhedron? In this paper, we answer this question and prove that,
for k ≥ 2, Pk(G) is a box-TDI polyhedron if and only if G is series-parallel.

By a result of Giles and Pulleyblank (1979), there exists a TDI system with
integer coefficients describing Pk(G). For series-parallel graphs, the system pro-
vided by Chen et al. (2009) has noninteger coefficients. Moreover, the system given
by Didi Biha and Mahjoub (1996) describing Pk(G) when k is even is not TDI.

We provide an integer TDI system for Pk(G) when G is series-parallel and
k is even, and we prove that the description of Pk(G) given by Didi Biha and
Mahjoub (1996) when k is odd is TDI if and only if the graph is series-parallel.

The box-totally dual integral characterization of Pk(G) implies that these
systems are actually box-TDI if and only if G is series-parallel. By definition of
box-TDIness, adding x ≤ 1 to these systems yields box-TDI systems for Qk(G)
for series-parallel graphs.

We mention that, due to length limitation, some of our proofs are sketched.

1 Definitions and Preliminary Results

This section is devoted to the definitions, notation, and preliminary results used
throughout the paper.



30 M. Barbato et al.

1.1 Graphs

Let G = (V,E) be a loopless undirected graph. The graph G is 2-connected
if it remains connected whenever a vertex is removed. A 2-connected graph is
called trivial if it is composed of a single edge. The graph obtained from two
disjoint graphs by identifying two vertices, one of each graph, is called a 1-sum.
A subset of edges of G is called a circuit if it induces a connected graph in
which every vertex has degree 2. Given a subset U of V , the cut δ(U) is the
set of edges having exactly one endpoint in U . A bond is a minimal nonempty
cut. Given a partition {V1, . . . , Vn} of V , the set of edges having endpoints in
two distinct Vi’s is called multicut and is denoted by δ(V1, . . . , Vn). We denote
respectively by MG and BG the set of multicuts and the set of bonds of G. For
every multicut M , there exists a unique partition {V1, . . . , VdM

} of vertices of V
such that M = δ(V1, . . . , VdM

), and G[Vi]—the graph induced by the vertices of
Vi—is connected for all i = 1, . . . , dM ; we say that dM is the order of M .

We denote the symmetric difference of two sets S and T by S ΔT . It is
well-known that the symmetric difference of two cuts is a cut.

We denote by Kn the complete graph on n vertices, that is, the simple graph
with n vertices and one edge between each pair of distinct vertices.

A graph is series-parallel if its 2-connected components can be constructed
from an edge by repeatedly adding edges parallel to an existing one, and subdi-
viding edges, that is, replacing an edge by a path of length two. Duffin (1965)
showed that series-parallel graphs are those having no K4-minor. By construc-
tion, simple nontrivial 2-connected series-parallel graphs have at least one vertex
of degree 2.

Proposition 1. For a simple nontrivial 2-connected series-parallel graph, at
least one of the following holds:

(a) two vertices of degree 2 are adjacent,
(b) a vertex of degree 2 belongs to a circuit of length 3,
(c) two vertices of degree 2 belong to a same circuit of length 4.

Proof. We proceed by induction on the number of edges. The base case is K3

for which (a) holds.
Let G be a simple 2-connected series-parallel graph such that for every simple,

2-connected series-parallel graph with fewer edges at least one among (a), (b),
and (c) holds. Since G is simple, it can be built from a graph H by subdividing
an edge e into a path f, g. Let v be the vertex of degree 2 added with this
operation. By the induction hypothesis, either H is not simple, or one among
(a), (b), and (c) holds for H.

Let first suppose that H is not simple, then, by G being simple, e is parallel
to exactly one edge e0. Hence, e0, f, g is a circuit of G length 3 containing v,
hence (b) holds for G.

From now on, suppose that H is simple. If (a) holds for H, then it holds for
G.

Suppose that (b) holds for H, that is, in H there exists a circuit C of length
3 containing a vertex w of degree 2. Without loss of generality, we suppose that



Box-TDIness of k-edge-connected Polyhedra 31

e ∈ C, as otherwise (b) holds for G. By subdividing e, we obtain a circuit of
length 4 containing v and w, and hence (c) holds for G.

At last, suppose that (c) holds for H, that is, H has a circuit C of length 4
containing two vertices of degree 2. Without loss of generality, we suppose that
e ∈ C, as otherwise (c) holds for G. By subdividing e, we obtain a circuit of
length 5 containing three vertices of degree 2. Then, at least two of them are
adjacent, and so (a) holds for G. ��

1.2 Box-Total Dual Integrality

Let A ∈ R
m×n be a full row rank matrix. This matrix is equimodular if all its

m × m non-zero determinants have the same absolute value. The matrix A is
face-defining for a face F of a polyhedron P ⊆ R

n if aff(F ) = {x ∈ R
n : Ax = b}

for some b ∈ R
m. Such matrices are the face-defining matrices of P .

Theorem 1 (Chervet et al. (2020)). Let P be a polyhedron, then the following
statements are equivalent:

(i) P is box-TDI.
(ii) Every face-defining matrix of P is equimodular.
(iii) Every face of P has an equimodular face-defining matrix.

The equivalence of conditions (ii) and (iii) stems from the following observation.

Observation 1 (Chervet et al. (2020)). Let F be a face of a polyhedron. If a
face-defining matrix of F is equimodular, then so are all face-defining matrices
of F .

Observation 2. Let A ∈ R
I×J be a full row rank matrix, j ∈ J , c be a column

of A, and v ∈ R
I . If A is equimodular, then so are:

(i)
[
A c

]
, (ii)

[
A

±χj

]
if it is full row rank, (iii)

[
A v
0� ±1

]
, and (iv)

[
A 0

±χj ±1

]
.

Observation 3 (Chervet et al. (2020)). Let P ⊆ R
n be a polyhedron and let

F = {x ∈ P : Bx = b} be a face of P . If B has full row rank and n − dim(F )
rows, then B is face-defining for F .

1.3 k-edge-connected Spanning Subgraph Polyhedron

The dominant of a polyhedron P is dom(P ) = {x : x = y + z, for y ∈ P
and z ≥ 0}. Note that Pk(G) is the dominant of the convex hull of all k-edge-
connected spanning subgraphs of G that have each edge taken at most k times.
Since the dominant of a polyhedron is a polyhedron, Pk(G) is a polyhedron even
though it is the convex hull of an infinite number of points.

From now on, k ≥ 2. Didi Biha and Mahjoub (1996) gave a complete descrip-
tion of Pk(G) for all k, when G is series-parallel.



32 M. Barbato et al.

Theorem 2. Let G be a series-parallel graph and k be a positive integer. Then,
when k is even, Pk(G) is described by:

(1)
{

x(D) ≥ k for all cuts D of G,
x ≥ 0,

(1a)
(1b)

and when k is odd, Pk(G) is described by:

(2)

{
x(M) ≥ k+1

2
dM − 1 for all multicuts M of G,

x ≥ 0.
(2a)
(2b)

The incidence vector of a family F of E is the vector χF of ZE such that e’s
coordinate is the multiplicity of e in F for all e in E. Since there is a bijection
between families and their incidence vectors, we will often use the same termi-
nology for both. Since the incidence vector of a multicut δ(V1, . . . , VdM

) is the
half-sum of the incidence vectors of the bonds δ(V1), . . . , δ(VdM

), we can deduce
an alternative description of P2h(G).

Corollary 1. Let G be a series-parallel graph and k be a positive even integer.
Then Pk(G) is described by:

(3)
{

x(M) ≥ k
2dM for all multicuts M of G,

x ≥ 0.
(3a)
(3b)

We call constraints (2a) and (3a) partition constraints. A multicut M is tight for
a point of Pk(G) if this point satisfies with equality the partition constraint (2a)
(resp. (3a)) associated with M when k is odd (resp. even). Moreover, M is tight
for a face F of Pk(G) if it is tight for all the points of F .

The following results give some insight on the structure of tight multicuts.

Theorem 3 (Didi Biha and Mahjoub (1996)). Let k > 1 be odd, let x be a
point of Pk(G), and let M = δ(V1, . . . , VdM

) be a multicut tight for x. Then, the
following hold:

(i) if dM ≥ 3, then x (δ(Vi) ∩ δ(Vj)) ≤ k +1
2 for all i 	= j ∈ {1, . . . , dM}.

(ii) G \ Vi is connected for all i = 1, . . . , dM .

Observation 4. Let M be a multicut of G strictly containing δ(v) = {f, g}. If
M is tight for a point of Pk(G), then both M \ f and M \ g are multicuts of G
of order dM − 1.

Chopra (1994) gave sufficient conditions for an inequality to be facet defining.
The following proposition is a direct consequence of (Chopra 1994, Theorem 2.4).



Box-TDIness of k-edge-connected Polyhedra 33

Proposition 2. Let G be a graph having K4 as a minor and let k > 1 be an
odd integer. Then, there exist two disjoint nonempty subsets of edges of G, E′

and E′′, and a rational b such that

χE′
+ 2χE′′ ≥ b, (4)

is a facet-defining inequality of Pk(G).

Chen et al. (2009) provided a box-TDI system for P2(G) for series-parallel
graphs.

Theorem 4 (Chen et al. (2009)). The system:
{

1
2x(D) ≥ 1 for all cuts D of G,
x ≥ 0 (5)

is box-TDI if and only if G is a series-parallel graph.

This result proves that P2(G) is box-TDI for all series-parallel graphs, and gives a
TDI system describing this polyhedron in this case. At the same time, Theorem 4
is not sufficient to state that P2(G) is a box-TDI polyhedron if and only if G is
series-parallel.

2 Box-TDIness of Pk(G)

In this section we show that, for k ≥ 2, Pk(G) is a box-TDI polyhedron if and
only if G is series-parallel.

When k ≥ 2, Pk(G) is not box-TDI for all graphs as stated by the following
lemma.

Lemma 1. For k ≥ 2, if G = (V,E) contains a K4-minor, then Pk(G) is not
box-TDI.

Proof. When k is odd, Proposition 2 shows that there exists a facet-defining
inequality that is described by a non equimodular matrix. Thus, Pk(G) is not
box-TDI by Statement (ii) of Theorem 1.

We now prove the case when k is even. Since G is connected and has a K4-
minor, there exists a partition {V1, . . . , V4} of V such that G[Vi] is connected
and δ(Vi, Vj) 	= ∅ for all i < j ∈ {1, . . . , 4}. We prove that the matrix T whose
three rows are χδ(Vi) for i = 1, 2, 3 is a face-defining matrix for Pk(G) which is
not equimodular. This will end the proof by Statement (ii) of Theorem 1.

Let eij be an edge in δ(Vi, Vj) for all i < j ∈ {1, . . . , 4}. The submatrix of T
formed by the columns associated with edges eij is the following:

e12 e13 e23 e14 e24 e34
χδ(V1)

χδ(V2)

χδ(V3)

⎡

⎣
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

⎤

⎦



34 M. Barbato et al.

The matrix T is not equimodular as the first three columns form a matrix of
determinant −2 whereas the last three ones have determinant 1.

To show that T is face-defining, we exhibit |E| − 2 affinely independent points
of Pk(G) satisfying the partition constraint (3a) associated with the multicut
δ(Vi), that is, x(δ(Vi)) = k, for i = 1, 2, 3.

Let D1 = {e12, e14, e23, e34}, D2 = {e12, e13, e24, e34}, D3 = {e13, e14, e23, e24}
and D4 = {e14, e24, e34}. First, we define the points Sj =

∑4
i=1 kχE[Vi]+ k

2χDj , for
j = 1, 2, 3, andS4 =

∑4
i=1 kχE[Vi]+kχD4 . Note that they are affinely independent.

Now, for each edge e /∈ {e12, e13, e14, e23, e24, e34}, we construct the point Se

as follows. When e ∈ E[Vi] for some i = 1, . . . , 4, we define Se = S4 +χe. Adding
the point Se maintains affine independence as Se is the only point not satisfying
xe = k. When e ∈ δ(Vi, Vj) for some i, j, we define Se = S� −χeij +χe, where S�

is S1 if e ∈ δ(V1, V4) ∪ δ(V2, V3) and S2 otherwise. Affine independence comes
because Se is the only point involving e. ��
Theorem 5. For k ≥ 2, Pk(G) is a box-TDI polyhedron if and only if G is
series-parallel.

Proof. Necessity stems from Lemma 1. Let us now prove sufficiency. When k = 2,
the box-TDIness of System (5) has been shown by Chen et al. (2009). This
implies box-TDIness for all even k: multiplying the right-hand side of a box-
TDI system by a positive rational preserves its box-TDIness (Schrijver, 1998,
Section 22.5). The system obtained by multiplying the right-hand side of Sys-
tem (5) by k

2 describes Pk(G) when k is even. Hence, the latter is a box-TDI
polyhedron.

The rest of the proof is dedicated to the case where k = 2h+1 for some h ≥ 1.
For this purpose, we prove that every face of P2h+1(G) admits an equimodular
face-defining matrix. The characterization of box-TDIness given in Theorem 1
concludes. We proceed by induction on the number of edges of G.

As a base-case of the induction we consider the series-parallel graph G con-
sisting of two vertices connected by a single edge. Then, P2h+1(G) = {x ∈ R+ :
x ≥ 2h + 1} is box-TDI.

(1-sum). Let G be the 1-sum of two series-parallel graphs G1 = (W 1, E1) and
G2 = (W 2, E2). By induction, there exist two box-TDI systems A1y ≥ b1

and A2z ≥ b2 describing respectively P2h+1(G1) and P2h+1(G2). If v is the
vertex of G obtained by the identification, G \ v is not connected, hence, by
Statement (ii) of Theorem 3, a multicut M of G is tight for a face of P2h+1(G)
only if M ⊆ Ei for some i = 1, 2. It follows that for every face F of P2h+1(G)
there exist two faces F 1 and F 2 of P2h+1(G1) and P2h+1(G2) respectively, such
that F = F 1 × F 2. Then P2h+1(G) = {(y, z) ∈ R

E1

+ ×R
E2

+ : A1y ≥ b1, A2z ≥ b2}
and so it is box-TDI.

(Parallelization). Let now G be obtained from a series-parallel graph H by
adding an edge g parallel to an edge f of H and suppose that P2h+1(H) is



Box-TDIness of k-edge-connected Polyhedra 35

box-TDI. Note that P2h+1(G) is obtained from P2h+1(H) by duplicating f ’s col-
umn and adding xg ≥ 0. Hence, by (Chen et al. 2009, Lemma 3.1), P2h+1(G) is
a box-TDI polyhedron.

(Subdivision). Let G = (V,E) be obtained by subdividing an edge uw of a series-
parallel graph G′ = (V ′, E′) into a path of length two uv, vw. By contradiction,
suppose there exists a non-empty face F = {x ∈ P2h+1(G) : AF x = bF } such
that AF is a face-defining matrix of F which is not equimodular. Take such a
face with maximum dimension. Then, every face-defining submatrix of AF is
equimodular. We may assume that AF is given by the left-hand side of a subset
of constraints of System (2) . We denote by MF the set of multicuts associated
with the left-hand sides of constraints (2a) appearing in AF , and by EF the set
of edges associated with the nonnegativity constraints (2b) appearing in AF .

Claim A. EF = ∅.
Proof. Suppose there exists an edge e ∈ EF . Let H = G \ e and let AFH

x =
bFH

be the system obtained from AF x = bF by removing the column and the
nonnegativity constraint associated with e. The matrix AF being of full row
rank, so is AFH

. Since M \ e is a multicut of H for all M in MF , the set
FH = {x ∈ P2h+1(H) : AFH

x = bFH
} is a face of P2h+1(H). Moreover, deleting

e’s coordinate of aff(F ) gives aff(FH) so AFH
is face-defining for FH . By the

induction hypothesis, AFH
is equimodular, and hence so is AF by Observation 2-

(iii). ��
Claim B. For all e ∈ {uv, vw}, at least one multicut of MF different from δ(v)
contains e.

Proof. Suppose that uv belongs to no multicut of MF different from δ(v).
First, suppose that δ(v) does not belong to MF . Then, the column of AF

associated with uv is zero. Let A′
F be the matrix obtained from AF by removing

this column. Every multicut of G not containing uv is a multicut of G′ (rela-
belling vw by uw), so the rows of A′

F are associated with multicuts of G′. Thus,
F ′ = {x ∈ Pk(G′) : A′

F x = bF } is a face of P2h+1(G′). Removing uv’s coordi-
nate from the points of F gives a set of points of F ′ of affine dimension at least
dim(F ) − 1. Since A′

F has the same rank of AF and one column less than AF ,
then A′

F is face-defining for F ′ by Observation 3. By induction hypothesis, A′
F

is equimodular, hence so is AF .
Suppose now that δ(v) belongs to MF . Then, the column of AF associated

with uv has zeros in each row but χδ(v). Let A�
F x = b�

F be the system obtained
from AF x = bF by removing the row associated with δ(v). Then F � = {x ∈
Pk(G) : A�

F x = b�
F } is a face of Pk(G) of dimension dim(F ) + 1. Indeed, it

contains F and z + αχuv for every point z of F and α > 0. Hence, A�
F is face-

defining for F �. This matrix is equimodular by the maximality assumption on
F , and so is AF by Observation 2-(iv). ��
Claim C. |M ∩ δ(v)| 	= 1 for every multicut M ∈ MF .



36 M. Barbato et al.

Proof. Suppose there exists a multicut M tight for F such that |M ∩ δ(v)| = 1.
Without loss of generality, suppose that M contains uv and not vw. Then, F ⊆
{x ∈ P2h+1(G) : xvw ≥ xuv} because of the partition inequality (2a) associated
with the multicut M Δδ(v). Moreover, the partition inequality associated with
δ(v) and the integrality of P2h+1(G) imply F ⊆ {x ∈ P2h+1(G) : xvw ≥ h + 1}.
The proof is divided into two cases.

Case 1. F ⊆ {x ∈ P2h+1(G) : xvw = h + 1}. We prove this case by exhibiting
an equimodular face-defining matrix for F . By Observation 1, this implies that
AF is equimodular, which contradicts the assumption on F .

Equality xvw = h + 1 can be expressed as a linear combination of rows of
AF x = bF . Let A′

F x = b′
F denote the system obtained by replacing a row of

AF x = bF by xvw = h + 1 in such a way that the underlying affine space
remains unchanged. Denote by N the set of multicuts of MF containing vw but
not uv. If N 	= ∅, then let N be in N . We now modify the system A′

F x = b′
F by

performing the following operations.

1. Every row associated with a multicut M strictly containing δ(v) is replaced
by the partition constraint (2a) associated with M \ vw set to equality.

2. Whenever δ(v) ∈ MF , replace the row associated with δ(v) by the box con-
straint xuv = h.

3. Replace every row associated with M ∈ N \ N by the partition constraint
(2a) associated with M Δδ(v) set to equality.

4. Whenever N 	= ∅, replace the row associated with N by the box constraint
xuv = h + 1.

These operations do not modify the underlying affine space. Indeed, in Operation
1, M \ vw is tight for F because of Observation 4 and F ⊆ {x ∈ P2h+1(G) :
xvw = h + 1}. Operation 2 is applied only if F ⊆ {x ∈ P2h+1(G) : xuv = h}.
Operations 3 and 4 are applied only if N 	= ∅, which implies that F ⊆ {x ∈
P2h+1(G) : xuv = h+1} because of the constraint (2a) associated with N Δδ(v)
and F ⊆ {x ∈ P2h+1(G) : xvw ≥ xuv}. Note that Operations 2 and 4 cannot be
applied both, hence the rank of the matrix remains unchanged.

Let A′′
F x = b′′

F be the system obtained by removing the row xvw = h + 1
from A′

F x = b′
F . By construction, A′′

F x = b′′
F is composed of constraints (2a)

set to equality and possibly xuv = h or xuv = h + 1. Moreover, the column of
A′′

F associated with vw is zero. Let F ′′ = {x ∈ P2h+1(G) : A′′
F x = b′′

F }. For
every point z of F and α ≥ 0, z + αχvw belongs to F ′′ because the column of
A′′

F associated with vw is zero, and z + αχvw ∈ P2h+1(G). This implies that
dim(F ′′) ≥ dim(F ) + 1.

If F ′′ is a face of P2h+1(G), then A′′
F is face-defining for F ′′ by Observation 3

and by A′
F being face-defining for F . By the maximality assumption on F , A′′

F

is equimodular, and hence so is A′
F by Observation 2-(ii).

Otherwise, by construction, F ′′ = F � ∩ {x ∈ R
E : xuv = t} where F � is

a face of P2h+1(G) strictly containing F and t ∈ {h, h + 1}. Therefore, there
exists a face-defining matrix of F ′′ given by a face-defining matrix of F � and the
row χuv. Such a matrix is equimodular by the maximality assumption of F and



Box-TDIness of k-edge-connected Polyhedra 37

Observation 2-(ii). Hence, A′′
F is equimodular by Observation 1, and so is A′

F by
Observation 2-(ii).

Case 2. F 	⊆ {x ∈ P2h+1(G) : xvw = h + 1}. Thus, there exists z ∈ F such
that zvw > h + 1. By Claim B, there exists a multicut N 	= δ(v) containing
vw which is tight for F . By Statement (i) of Theorem 3, the existence of z
implies that N is a bond. Thus, uv /∈ N and F ⊆ {x ∈ P2h+1(G) : xvw = xuv}.
Consequently, L = N Δδ(v) is also a bond tight for F . Moreover, N is the unique
multicut tight for F containing vw. Suppose indeed that there exists a multicut
B containing vw tight for F . Then, B is a bond by Statement (i) of Theorem 3
and the existence of z. Moreover, B ΔN is a multicut not containing vw. This
implies that no point x of F satisfies the partition constraint associated with
B ΔN because x(B ΔN) = x(B)+x(N)−2x(B ∩ N) = 2(2h+1)−2x(B ∩ N) ≤
4h + 2 − 2xvw ≤ 2h, a contradiction.

Consider the matrix A�
F obtained from AF by removing the row associated

with N . Matrix A�
F is a face-defining matrix for a face F � ⊇ F of P2h+1(G)

because F � contains F and z + αχuv for every point z of F and α > 0. By the
maximality assumption, the matrix A�

F is equimodular. Let BF be the matrix
obtained from AF by replacing the row χN by the row χN − χL. Then, BF

is face-defining for F . Moreover, BF is equimodular by Observation 2-(iv)—a
contradiction. ��

Let A′
F x = b′

F be the system obtained from AF x = bF by removing uv’s
column from AF and subtracting h + 1 times this column to bF . We now show
that {x ∈ P2h+1(G′) : A′

F x = b′
F } is a face of P2h+1(G′) if δ(v) /∈ MF , and

P2h+1(G′) ∩ {x : xuw = h} otherwise. Indeed, consider a multicut M in MF . If
M = δ(v), then the row of A′

F x = b′
F induced by M is nothing but xuw = h.

Otherwise, by Observation 4 and Claim C, the set M \ uv is a multicut of G′

(relabelling vw by uw) of order dM if uv /∈ M and dM − 1 otherwise. Thus, the
row of A′

F x = b′
F induced by M is the partition constraint (2a) associated with

M \ uv set to equality.
By construction, A′

F has full row rank and one column less than AF . We
prove that A′

F is face-defining by exhibiting dim(F ) affinely independent points
of P2h+1(G′) satisfying A′

F x = b′
F . Because of the integrality of P2h+1(G), there

exist n = dim(F ) + 1 affinely independent integer points z1, . . . , zn of F . By
Claim C, every multicut in MF contains either both uv and vw or none of them.
Then, Claim B and Statement (i) of Theorem 3 imply that F ⊆ {x ∈ R

E : xuv ≤
h + 1, xvw ≤ h + 1}. Combined with the partition inequality xuv + xvw ≥ 2h + 1
associated with δ(v), this implies that at least one of zi

uv and zi
vw is equal to

h + 1 for i = 1, . . . , n. Since exchanging the uv and vw coordinates of any point
of F gives a point of F by Claim C, the hypotheses on z1, . . . , zn are preserved
under the assumption that zi

uv = h + 1 for i = 1, . . . , n − 1. Let y1, . . . , yn−1 be
the points obtained from z1, . . . , zn−1 by removing uv’s coordinate. Since every
multicut of G′ is a multicut of G with the same order, y1, . . . , yn−1 belong to
P2h+1(G′). By construction, they satisfy A′

F x = b′
F so they belong to a face of



38 M. Barbato et al.

P2h+1(G′) or P2h+1(G′) ∩ {x : xuw = h}. This implies that A′
F is a face-defining

matrix of P2h+1(G′) if δ(v) /∈ MF , and P2h+1(G′) ∩ {x : xuw = h} otherwise.
By induction, P2h+1(G′) is a box-TDI polyhedron and hence so is P2h+1(G′) ∩

{x : xuw = h}. Hence, A′
F is equimodular by Theorem 1. Since the columns of

AF associated with uv and vw are equal, Observation 2-(i) implies that AF is
equimodular—a contradiction to its assumption of non-equimodularity. ��

3 TDI Systems for Pk(G)

Let G be a series-parallel graph. In this section, we study the total dual integral-
ity of systems describing Pk(G). Due to length limitation, some of the proofs of
the results below are omitted. They can be found in the appendix.

The following result characterizes series-parallel graphs in terms of TDIness
of System (2).

Theorem 6. For k > 1 odd and integer, System (2) is TDI if and only if G is
series-parallel.

Proof (sketch). We first prove that if G is not series-parallel, then System (2)
is not TDI. Indeed, every TDI system with integer right-hand side describes an
integer polyhedron (Edmonds and Giles, 1977), but, when G has a K4-minor,
System (2) describes a noninteger polyhedron (Chopra, 1994).

Let us sketch the other direction of the proof, that is, when the
graph is series-parallel. We proceed by contradiction and consider a mini-
mal counterexample G. First, we show that G is simple and 2-connected.
Then, we show that G contains none of the following configurations.

Since the red vertices in the figure above have degree 2 in G, this contradicts
Proposition 1. ��

For k > 1, by Theorem 5, Pk(G) is a box-TDI polyhedron if and only if
G is series-parallel. Together with (Cook 1986, Corollary 2.5), this implies the
following.

Corollary 2. For k > 1 odd and integer, System (2) is box-TDI if and only if
G is series-parallel.



Box-TDIness of k-edge-connected Polyhedra 39

The following theorem gives a TDI system for Pk(G) when G is series-parallel
and k is even.

Theorem 7. For a series-parallel graph G and k > 1 even, System (3) is TDI.

The proof of Theorem 7 is based on the characterization of TDIness by means
of Hilbert bases that follows. A set of vectors {v1, . . . , vk} is a Hilbert basis if each
integer vector that is a nonnegative combination of v1, . . . , vk can be expressed as
a nonnegative integer combination of them. The link between Hilbert basis and
TDIness is due to the following result (Schrijver 1998, Theorem 22.5): a system
Ax ≥ b is TDI if and only if, for each minimal face F of P = {x : Ax ≥ b}, the
rows of A associated with constraints tight for F form a Hilbert basis.

Proof (sketch). We only prove the case h = 1 since multiplying the right hand
side of a system by a positive constant preserves its TDIness (Schrijver 1998,
Section 22.5). By the structure of k-edge-connected subgraphs, it is enough to
prove the result for 2-connected graphs. We proceed by induction and use the
constructive characterization of 2-connected series-parallel graphs. We consider
as base case K2, for which System (3) is TDI.

Let H be a graph for which System (3) is TDI, and let G be obtained by
applying a series-parallel operation to H. If this operation is the addition of an
edge parallel to an existing one, then the TDIness of System (3) stems from
Lemma 3.1 of Chen et al. (2009).

Suppose now that G is obtained from H by subdividing an edge into a path
of length 2. For each vertex v of P2(G), the set of constraints active for v can
be built from the set of constraints active for a vertex of P2(H). The constraints
active for such vertex form a Hilbert basis because System (3) is TDI for H.
Since the construction preserves this property, the constraints active for v form
a Hilbert basis, for all v vertex of P2(G). This finishes the proof by (Schrijver
1998, Theorem 22.5). ��

Again, by Theorem 5 and (Cook 1986, Corollary 2.5), we have the following.

Corollary 3. For k positive and even, System (3) is box-TDI if and only if G
is series-parallel.

By Corollaries 2 and 3, and by the definition of box-TDI systems, adding
x ≤ 1 to Systems (2) and (3) preserves box-TDIness. For series-parallel graphs,
this provides box-TDI systems for the combinatorial version of the k-ECSSP,
which is the version where each edge can be taken at most once.

4 Conclusions

In this paper, we studied strong integrality properties of the k-edge-connected
spanning subgraph polyhedron Pk(G). We first showed that, for every k ≥ 2,
Pk(G) is a box-TDI polyhedron if and only if G is a series-parallel graph. This



40 M. Barbato et al.

result extends and strengthens the work of Chen et al. (2009), who provided
a box-TDI system when k = 2. When G is series-parallel and k is even, the
box-total dual integrality of Pk(G) stems from their result. For k odd, we used
a different approach, which relies on the recent characterization of box-TDI
polyhedra given by Chervet et al. (2020).

Moreover, we showed the TDIness of the system given by Didi Biha and
Mahjoub (1996) describing Pk(G) when G is series-parallel and k odd. When
k is even, the only known (box-)TDI system describing Pk(G) has noninte-
ger coefficients—see Theorem 4. We provided a system with integer coefficients
describing Pk(G) for all k even, that is TDI if G is series-parallel. By our charac-
terization of the box-TDIness of Pk(G), these systems are box-TDI if and only
if G is series-parallel.

Further, we mention that, for series-parallel graphs, our results imply that
Qk(G) is a box-TDI polytope and provide box-TDI systems describing this poly-
tope.

Acknowledgments. The authors wish to express their appreciation to the anonymous
referees for their precious comments which helped to improve the presentation of the
paper.

References

Bäıou, M., Barahona, F., Mahjoub, A.R.: Separation of partition inequalities. Math.
Oper. Res. 25(2), 243–254 (2000)

Barahona, F., Mahjoub, A.R.: On two-connected subgraph polytopes. Discrete Math.
147(1–3), 19–34 (1995)

Barbato, M., Grappe, R., Lacroix, M., Lancini, E., Wolfler Calvo, R.: The Schrijver
system of the flow cone in series-parallel graphs. Discrete Appl. Math. (2020)

Boyd, S.C., Hao, T.: An integer polytope related to the design of survivable commu-
nication networks. SIAM J. Discrete Math. 6(4), 612–630 (1993)

Chen, X., Ding, G., Zang, W.: A characterization of box-mengerian matroid ports.
Math. Oper. Res. 33(2), 497–512 (2008)

Chen, X., Ding, G., Zang, W.: The box-TDI system associated with 2-edge connected
spanning subgraphs. Discrete Appl. Math. 157(1), 118–125 (2009)

Chervet, P., Grappe, R., Robert, L.: Box-total dual integrality, box-integrality, and
equimodular matrices. Math. Program. (2020). https://doi.org/10.1007/s10107-020-
01514-0

Chopra, S.: The k-edge-connected spanning subgraph polyhedron. SIAM J. Discrete
Math. 7(2), 245–259 (1994)

Clarke, L.W., Anandalingam, G.: A bootstrap heuristic for designing minimum cost
survivable networks. Comput. Oper. Res. 22(9), 921–934 (1995)

Cook, W.: On box totally dual integral polyhedra. Math. Program. 34(1), 48–61 (1986)
Cornaz, D., Magnouche, Y., Mahjoub, A.R.: On minimal two-edge-connected graphs.

In: 2014 International Conference on Control, Decision and Information Technologies
(CoDIT), pp. 251–256. IEEE (2014)

Cornaz, D., Grappe, R., Lacroix, M.: Trader multiflow and box-TDI systems in series-
parallel graphs. Discrete Optim. 31, 103–114 (2019)

https://doi.org/10.1007/s10107-020-01514-0
https://doi.org/10.1007/s10107-020-01514-0


Box-TDIness of k-edge-connected Polyhedra 41

Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph
and some related integer polyhedra. Math. Program. 33(1), 1–27 (1985)

Cunningham, W.H., Marsh, A.B.: A primal algorithm for optimum matching. In: Balin-
ski, M.L., Hoffman, A.J. (eds.) Polyhedral Combinatorics, pp. 50–72. Springer, Hei-
delberg (1978). https://doi.org/10.1007/BFb0121194

Didi Biha, M., Mahjoub, A.R.: k-edge connected polyhedra on series-parallel graphs.
Oper. Res. Lett. 19(2), 71–78 (1996)

Ding, G., Tan, L., Zang, W.: When is the matching polytope box-totally dual integral?
Math. Oper. Res. 43(1), 64–99 (2017)

Ding, G., Zang, W., Zhao, Q.: On box-perfect graphs. J. Comb. Theory Ser. B 128,
17–46 (2018)

Duffin, R.J.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–318
(1965)

Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. In:
Annals of Discrete Mathematics, vol. 1, pp. 185–204. Elsevier (1977)

Edmonds, J., Giles, R.: Total dual integrality of linear inequality systems. In: Progress
in Combinatorial Optimization, pp. 117–129. Academic Press (1984). ISBN 978-0-
12-566780-7

Erickson, R.E., Monma, C.L., Veinott Jr., A.F.: Send-and-split method for minimum-
concave-cost network flows. Math. Oper. Res. 12(4), 634–664 (1987)

Fonlupt, J., Mahjoub, A.R.: Critical extreme points of the 2-edge connected spanning
subgraph polytope. Math. Program. 105(2–3), 289–310 (2006)

Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approximating the small-
est k-edge connected spanning subgraph by LP-rounding. Netw. Int. J. 53(4), 345–
357 (2009)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York (1979). ISBN 0716710447

Giles, F.R., Pulleyblank, W.R.: Total dual integrality and integer polyhedra. Linear
Algebra Appl. 25, 191–196 (1979)

Grötschel, M., Monma, C.L.: Integer polyhedra arising from certain network design
problems with connectivity constraints. SIAM J. Discrete Math. 3(4), 502–523 (1990)

Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plane
algorithm for designing communication networks with low-connectivity constraints.
Oper. Res. 40(2), 309–330 (1992)

Lancini, E.: TDIness and Multicuts. Ph.D. thesis, Université Sorbonne Paris Nord
(2019)

Mahjoub, A.R.: Two-edge connected spanning subgraphs and polyhedra. Math. Pro-
gram. 64(1–3), 199–208 (1994)

Mahjoub, A.R.: On perfectly two-edge connected graphs. Discrete Math. 170(1–3),
153–172 (1997)

Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
Vandenbussche, D., Nemhauser, G.L.: The 2-edge-connected subgraph polyhedron. J.

Comb. Optim. 9(4), 357–379 (2005)
Winter, P.: Generalized steiner problem in series-parallel networks. J. Algorithms 7(4),

549–566 (1986)

https://doi.org/10.1007/BFb0121194


A Polyhedral Study for the Buy-at-Bulk
Facility Location Problem

Chaghoub Soraya1(B) and Ibrahima Diarrassouba2

1 School of Mathematical Science and Institute of Mathematics, Nanjing Normal
University, Nanjing 210023, China

chaghoubsoraya@yahoo.fr
2 Normandie Univ, UNIHAVRE, LMAH, FR CNRS-3335, 76600 Le Havre, France

Abstract. In this paper, we are interested in Buy-at-Bulk Facility Loca-
tion problem which arises in network design. The problem has been
mainly studied from approximation algorithms perspective, and to the
best of our knowledge, only [7] has developed an exact algorithm for
the problem. In this work, we address the problem from a polyhedral
point of view. First, we give an integer programming formulation which,
contrarily to the those in previous works, does not use flow or path vari-
ables. Then, we investigate the structure of the polyhedron associated
with this formulation and introduce several classes of valid inequalities
which defines facets of the polyhedron.

Keywords: Facility location · Buy-at-Bulk · Network design ·
Polyhedra

1 Introduction

The Buy-at-Bulk facility location problem (BBFLP for short) is defined by an
undirected graph G = (V,E), where V denotes the set of nodes and E denotes
the set of edges. We are given a set of clients D ⊆ V and a set of facilities
H ⊆ V . Each client j ∈ D has a positive demand dj . Each facility h ∈ H
is associated with an opening cost μh. We also have a set K of different cable
types. Each cable type k ∈ K has a capacity uk and a set-up cost per unit length
denoted by γk. Finally, for each edge e ∈ E we consider a length le ∈ Z

+. We
assume that the cable types satisfy the so-called economies of scales in that if
we let K = {1, ..., |K|} such that u1 ≤ u2 ≤ ... ≤ uK , γ1 ≤ γ2 ≤ ... ≤ γK , and
γ1/u1 ≥ γ2/u2 ≥ ... ≥ γK/uK . A solution of the BBFLP consists in choosing

– a set of facilities to open,
– an assignment of each client to exactly one opened facility,
– a number of cables of each type to be installed on each edge of the graph

in order to route the demands from each client to the facility to which it is
assigned.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 42–53, 2020.
https://doi.org/10.1007/978-3-030-53262-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_4


A Polyhedral Study for the Buy-at-Bulk Facility Location Problem 43

The BBFLP is closely related to the facility location problem and network
loading problem. It has many applications in telecommunications and trans-
portation network design. It is not hard to see that the BBFLP contains the
Facility Location problem and hence it is NP-hard.

In the literature, the BBFLP was mainly studied in the perspective of approx-
imation algorithms. It was first studied by Meyrson et al. [17] who considered
a cost-distance problem and present the BBFLP as a special case of this latter
problem. In their work, they provided an O(log |D|) approximation algorithm.

Ravi et al. [19] gave an O(k) approximation algorithm for the BBFLP where
k is the number of cable types. Later, Friggst et al. [13] considered an integer
programming formulation for the BBFLP, and showed that this formulation has
an integrality gap of O(k). They also considered the variant of the BBFLP where
the opened facilities must be connected and gave an integrality gap of O(1).
Recently, Bley et al. [7] presented the first exact algorithm for the problem.
They introduced a path-based formulation for the problem and compare it with
a compact flow-based formulation. They also design an exact branch-and-price-
and-cut algorithm for solving the path-based formulation.

As mentioned before, the BBFLP is related to the Network Loading Problem
(NLP) and the Facility Location Problem (FLP). Both problems have received
a lot of attention. Concerning, the NLP, Magnanti et al. [14] studied the NLP
from a polyhedral point of view. They introduced some classes of valid inequali-
ties and devised a Branch-and-Cut algorithm. In [15], Magnanti et al. considered
the NLP with two cable types and some particular graphs and gave a complete
description of the associated polyhedron in these cases. Bienstock et al. [6] stud-
ied the NLP with two cable types with possible extension to more than three
cable types. Barahona [9] addressed the same problem, he used a relaxation
without flow variables, this relaxation is based on cut condition for multicom-
modity flows. Gülnük [11] gave a branch and cut algorithm using spanning tree
inequalities and mixed integer rounding inequalities. Agarwal [3] has introduced
4-partition based facets. Agarwal [4] extended his previous work and get a com-
plete description of the 4-node network design problem. Raacker et al. [18] have
extended the polyhedral results for cut-based inequalities for network design
problem with directed, bidirected and undirected link-capacity models. Agarwal
[5] developed the total-capacity inequalities, one-two inequalities and spanning
trees inequalities based on a p-partition of the graph and discuss conditions
under which these inequalities are facet-defining.

Several authors have solved the problem using benders partitioning based
approaches. Avella et al. [2] discussed high rounded metric inequalities for this
problem, based on these inequalities they gave a computational results. Mattia
[16] used the same approach for designing networks with two layers. Mattia [16]
extended the results of Avella et al. [2] by using bi-level programming and reports
improved computational results.

Another related problem to BBFLP is facility location problem, the goal of
this problem is to open a set of facilities, and assign each client to its nearest open
facility, such that the total incurred cost (opening facility cost and assignment



44 C. Soraya and I. Diarrassouba

cost) is minimized. The BBFLP is a combination of facility location problem
and buy-at-bulk in network design problem.

This paper is structured as follows. In Sect. 2, we give an integer programming
formulation of the BBFLP and study the associated polyhedron. In Sect. 3, we
give some facet defining inequalities from facility location problem and in Sect. 4,
we introduce a new family of facet defining inequalities. Finally, in Sect. 5, we
give some concluding remarks.

2 Integer Programming Formulation and Polyhedron

Now, we give the so-called cut formulation for the BBFLP. This formulation
can be obtained by slightly modifying the flow-based formulation introduced by
[7] and projecting out the flow variables. The cut formulation is given below.
Variable thj equals 1 if the client j is assigned to facility h, for all j ∈ D and
h ∈ H, and xk

e is the number of cable of type k installed on edge e, for all e ∈ E
and k ∈ K.

min
∑

h∈H

μhyh +
∑

e∈E

∑

k∈K

γklkexk
e

∑

h∈H

thj = 1, for all j ∈ D (1)

thj ≤ yh, for all h ∈ H, j ∈ D

h ∈ H, j ∈ D (2)
∑

e∈δ(W )

∑

k∈K

ukxk
e ≥

∑

j∈W∩D

∑

h∈H∩S

thj dj +
∑

j∈W∩D

∑

h∈H∩S

thj dj , for all W ⊆ D,

S ⊆ V, S ⊆ V \S (3)
thj ≥ 0, for all h ∈ H, j ∈ D, (4)
yh ≤ 1, for all h ∈ H, (5)
xk

e ≥ 0, for all k ∈ K, e ∈ E, (6)
thj ∈ {0, 1}, for all h ∈ H, j ∈ D, (7)
yh ∈ {0, 1}, for all h ∈ H, (8)
xk

e ∈ Z
+, for all k ∈ K, e ∈ E. (9)

The constraints (1) impose that each client must be assigned to exactly one
facility. Constraints (2) are the linking constraints and state that the clients can
not be assigned to not open facilities. Constraints (3) are the so-called cut-set
inequalities ensuring that the capacity on the edges of the graph is enough for
routing all the demands. Constraints (4), (5) and (6) are trivial constraints.
Constraints (7), (8) and (9) are the integrality constraints.

In the remain of this paper we focus on the cut formulation.
Let Q = {(x, y, t) ∈ R

|E||K| × R
|H| × R

|H||D| such that (x, y, t) satisfying
(1)–(9)}. In the following, we give the dimension of the polyhedron and show
that all the trivial inequalities define facets.



A Polyhedral Study for the Buy-at-Bulk Facility Location Problem 45

Theorem 1. dim(Q) = |E||K| + |D||H| + |H| − |D| if and only if
every connected component of G contains at least two facilities.

Theorem 2. The following constraints define facets of Q

1. thj ≥ 0, for all j ∈ D,h ∈ H,
2. thj ≤ yh, for all j ∈ D,h ∈ H,
3. yh ≥ 1, for all h ∈ H,
4. xk

e ≥ 0, for all k ∈ K, e ∈ E.

3 Facets from Facility Location Problem

One can easily see that the projection of Q on variables y and t corresponds
to the solutions of a FLP. Thus every valid inequality (resp. facet) for the FLP
polytope, in the space of y and t variables is also valid (resp. facet) for Q. Let ljh

be the cost of assigning client j to facility h, recall that the FLP is formulated
as follows.

min
∑

j∈D

∑

h∈H

ljhthj +
∑

h∈H

μhyh

∑

h∈H

thj = 1, j ∈ D (10)

thj ≤ yh, h ∈ H, j ∈ D (11)

thj ∈ {0, 1}, h ∈ H, j ∈ D (12)

yi ∈ {0, 1} h ∈ H. (13)

In what follows, we give some valid inequalities for the FLP which, from the
above remarks, are also valid for the BBFLP. Note that under some conditions,
these inequalities define facets of Q. For more details on valid inequalities and
facets associated with FLP, the reader can refer to [10]. In particularly, the
following inequalities are valid for facility location problem.

Circulant and Odd Cycle Inequalities. Cornuejols et al. [8] introduced the
following. Let p, q be integers satisfying 2 ≤ q < p ≤ m and p ≤ n, p is not
multiple of q, s1, ..., sp be distinct facilities, m1, ...,mp be distinct clients, all
the indices are modulo p the following inequality is valid for facility location
problem.

p∑

i=1

i+q−1∑

j=i

t(si,mj) ≤
p∑

h=1

y(si) + p − �p/q� (14)

Where t(si,mj) =
∑
i∈si

∑
i∈mj

tij , y(Ssi) =
∑
i∈si

yi, they called the inequality above

circulant inequality. Guignard [12] showed that this inequality defines facet when
p = q+1, and it is called simple, and when q = 2 it is called odd cycle inequality.



46 C. Soraya and I. Diarrassouba

(p,q) Inequalities. Ardal et al. [1] addressed a family of valid inequalities (p, q)
inequalities. Let p, q be integers, 2 ≤ q ≤ p ≤ n, p is not multiple of q, H

′ ⊆ H,
|H ′ | ≥ �p/q�,D′ ⊆ D, |D′ | = p, G̃ is a bipartie graph having H

′
and J

′
as a

node set, and ∀h ∈ H
′
degree(h) = q, and the set of edges of G̃ is Ẽ. The (p, q)

inequalities are defined as follows.

t(Ẽ) ≤ y(H
′
) + p − �p/q� (15)

where t(Ẽ) =
∑

{i,j}∈Ẽ

thj .

4 New Facets

Contrarily to the FLP, the valid inequalities associated with the network loading
problem are not directly valid for the BBFLP. Our idea is to use a lifting proce-
dure to extend these inequalities to the BBFLP. By this procedure, we show that
the new inequalities are valid and even define facets under the same conditions.

We particularly consider the BBFLP when there are two cable types. We
assume that the larger cable capacity is C > 1 and the smaller capacity is 1.

4.1 Network Loading and Valid Inequalities

Several families of valid inequalities were introduced for the problem, in the
following we will give the basic valid inequalities that define facets.
The NLP with two cables types is formulated as follows.

Let G = (V,E) be an undirected graph, a set of M commodities
{(s1, t1), ..., (s|M |, t|M |)}, a commodity q ∈ {1, ...,M} having a demand dq.

min
∑

uv∈E

luvγ
1
x
1
uv + luvγ

2
x
2
uv (16)

∑
v∈V

f
q
(u,v) −

∑
v∈V

f
q
(v,u) =

⎧
⎨

⎩

dq, if u = sq

−dq, if u = tq,

0 , otherwise.

for all u ∈ V, q ∈ {1, ..., M}(17)

M∑

q=1

(fk
(u,v) + fk

(v,u)) ≤ x1
uv + Cx2

uv for all uv ∈ E (18)

x1
e, x

2
e ≥ 0, for all e ∈ E, (19)

fk
(u,v), f

k
(v,u) ≥ 0 for all uv ∈ E, k ∈ K. (20)

Rounded Cut-Set Inequalities. The rounded cut-set inequalities are obtained
by partitioning the node set into two subsets, namely S and S. Magnanti et al.
[14] introduced the following form for the rounded cut-set inequalities:

x1(δ(S)) + rx2(δ(S)) ≥ r

⌈
DS,S

C

⌉
(21)



A Polyhedral Study for the Buy-at-Bulk Facility Location Problem 47

where DS,S is the total demand whose origin lays in S and destination in S and
vice-versa, and

r =
{

C, if DS,S (mod C) = 0,

DS,S (mod C), otherwise.

Theorem 3 [14]. A rounded cut set inequality defines a facet for the NLP if
and only if

1. the subgraphs induced by S and by S are connected,
2. DS,S > 0.

Partition Inequalities. Several version of partition inequalities have been
developed in the literature, in particular, Magnanti et al. [14] gave a family
of three-partition inequalities of the following form:

x1
12+x1

13+x1
23+r(x2

12+x2
13+x2

23) ≥
⌈

r
(�d12 + d13

C � + �d12 + d23
C � + �d13 + d23

C �)

2

⌉

(22)
The following metric inequalities are valid for NLP with one cable type:

Metric Inequalities. Metric inequalities can be introduced after projecting out
the flow variables from the polyhedron and obtain a “capacity formulation” in
the space of capacity variables. In particular Avella et al. [2] gave a family of
metric inequalities that completely describe the polyhedron, they take the form

μx ≥ ρ(μ,G, d), μ ∈ Met(G). (23)

In the next section we present a lifting procedure that extends the Rounded
cut-set inequalities defined for NLP to be valid for BBFLP.

4.2 Lifted Rounded Cut-Set Inequalities

Now, we give the main result of the paper which is a new family of valid inequal-
ities for the BBFLP. These latter inequalities are obtained by lifting the rounded
cut-set inequalities.

Consider the situation where all the facilities are opened and all the clients
are assigned to a facility. For every j ∈ D, let hj be the facility to which it is
assigned (Fig. 1).

Let Q0 = {(x, y, t) ∈ Q such that thj = 0, for all h ∈ H\hj , j ∈ D}.

Lemma 1. The solutions of Q0 are exactly solutions of a NLP where the
demand set is composed of the pairs (j, hj), with j the origin, hj the destination
and dj is the commodity.



48 C. Soraya and I. Diarrassouba

A

HS

B

B′

HS

A′

Fig. 1. A rounded cut-set inequality configuration

By Lemma 1, every valid inequality (respectively facet defining) for the corre-
sponding NLP polyhedron are valid for Q0 (respectively facet defining). This
means that rounded cut-set inequalities are valid for Q0.

Our objective is to extend the rounded cut-set inequalities by a lifting pro-
cedure to obtain facet defining inequalities for BBFLP. Let (x, y, t) ∈ Q0 and
S ⊆ V be a node set such that S ∩ V 
= ∅ 
= S ∩ V . Let A (resp. A′) be the node
subset of D ∩ S (resp. D ∩ S) which are assigned to a facility of H ∩ S (resp.
H ∩ S). Also, let B (resp. B′) be the node subset of D ∩ S (resp. D ∩ S) which
are assigned to a facility of H ∩ S (resp. H ∩ S).

The rounded cut-set inequality induced by S is

x1(δ(S)) + rx2(δ(S)) ≥ r

⌈
d(A ∪ A′)

C

⌉
, (24)

where r = d(A ∪ A′) (mod C). Clearly (24) is valid for Q0.

For convenience, we let,
A1 = {j ∈ A ∪ A′ such that dj ≤ r},
A2 = {j ∈ A ∪ A′ such that dj > r},
B1 = {j ∈ B ∪ B′ such that dj ≤ C − r},
B2 = {j ∈ B ∪ B′ such that dj > C − r}.

Now we give our main result.

Theorem 4. Let S ⊆ V with S ∩ V 
= ∅ 
= V ∩ S. The inequality

x1(δ(S)) + rx2(δ(S)) +
∑

j∈D

∑

h∈H\{hj}
Ch

j thj ≥ r

⌈
d(A ∪ A′)

C

⌉
(25)

where

Ch
j =

⎧
⎪⎪⎨

⎪⎪⎩

dj , forj ∈ A1 ∩ A, h ∈ H ∩ S and for ∈ A1 ∩ A′, h ∈ H ∩ S,
r , forj ∈ A2 ∩ A, h ∈ H ∩ S and for j ∈ A2 ∩ A′, h ∈ H ∩ S,
C − r − dj , forj ∈ B1 ∩ B, h ∈ H ∩ S and for j ∈ B1 ∩ B′, h ∈ H ∩ S,
0, otherwise.

is valid for BBFLP. Moreover (25) is facet for Q if (24) is facet for Q0.



A Polyhedral Study for the Buy-at-Bulk Facility Location Problem 49

The proof of Theorem 4 is established by lifting inequality (24). The values
of Ch

j given in Theorem 4 are the lifting coefficients of all the variables whose
values are fixed in Q0. Recall that the lifting coefficient of a variable depends on
the order in which this variable is lifted with respect to the other variables. In
particular, if a variable thj , when lifted first, has a coefficient ψh

j , then Ch
j ≥ ψh

j

for any order in which thj is lifted. In our proof, the variables are lifted in the
following order

1. variables thj , for j ∈ A1 ∩ A, h ∈ H ∩ S and for j ∈ A1 ∩ A′ and h ∈ H ∩ S,
2. variables thj , for j ∈ A2 ∩ A, h ∈ H ∩ S and for j ∈ A2 ∩ A′ and h ∈ H ∩ S,
3. variables thj , for j ∈ B2 ∩ B, h ∈ H ∩ S and for j ∈ B2 ∩ B′ and h ∈ H ∩ S,
4. variables thj , for j ∈ B1 ∩ B, h ∈ H ∩ S and for j ∈ B1 ∩ B′ and h ∈ H ∩ S.

Since, we do not have enough space, we will give the proof of Theorem 4 for
a variable thj with j ∈ A1 ∩ A and h ∈ H ∩ S.

Before, we give a property of the lifting coefficients which is independent of
the lifting order.

Lemma 2. For every j ∈ D and h ∈ H \ {hj}, we have

1. Ch
j = 0, for all j ∈ A ∪ B′, h ∈ H ∩ S, and for all j ∈ A′ ∪ B, h ∈ H ∩ S,

2. Ch
j = ρj, for all j ∈ A ∪ B′, h ∈ H ∩ S and for all j ∈ A′ ∪ B, h ∈ H ∩ S,

3. Ch
j ≤ 0, for all j ∈ B, h ∈ H ∩ S and for all j ∈ B′, h ∈ H ∩ S.

and this, independently of the order in which the variables are lifted.

Proof. 1) W.l.o.g., we consider a client j0 ∈ A and h1 ∈ H ∩ S. The proof
follows the same lines for the other cases. We denote by ax + by + ct ≥ θ the
inequality (25) induced by S. W.l.o.g., we assume that (25) defines a facet of
Q, different from those induced by the trivial inequalities. Thus, it exists a
solution (x, y, t) ∈ Q satisfying (25) with equality and such that t

hj0
j0

= 1 (ı.e.
j0 is assigned to facility h0). We can also assume that xk

e is sufficiently large for
all e ∈ E(S) ∪ E(S) and k ∈ {1, 2}. Now consider the solution (x, y, t

′) with

t
′j
h = t

j
h, for every j ∈ D \ {j0} and h ∈ H \ {hj0 , h1}, and t

′h0

j0 = 0 and t
′h1

j0 = 1
(i.e. j0 is now assigned to facility h1). It is not hard to see that (x, y, t

′) induces
a feasible solution for the BBFLP. Thus,

ax + by + ct
′ = ax + by + ct − C

hj0
j0

+ Ch1
j0

= θ − C
hj0
j0

+ Ch1
j0

≥ θ.

This implies that Ch1
j0

≥ C
hj0
j0

.
Now, one can consider a feasible solution whose incidence vector satisfies (25)

with equality and in which j0 is assigned to h1. As before, the solution obtained
by modifying this latter solution and now assigning j0 to hj0 is also feasible
for the BBFLP. Using similar arguments as above, we obtain that C

hj0
j0

≥ Ch1
j0

.

Therefore, Ch1
j0

= C
hj0
j0

. Finally, since variable t
hj0
j0

was not fixed in Q0, we have

that C
hj0
j0

= 0, which show the result.



50 C. Soraya and I. Diarrassouba

2) The proof for this case is very similar to case 1). In fact, for a client
j0 ∈ A and facility h1 ∈ H ∩ S, we can show using the same arguments that
Ch1

j0
= Ch0

j0
= ρj , for some h0 ∈ H ∩ S.

Now, one can consider a feasible solution whose incidence vector satisfies (25)
with equality and in which j0 is assigned to h1. As before, the solution obtained
by modifying this latter solution and now assigning j0 to hj0 is also feasible
for the BBFLP. Using similar arguments as above, we obtain that C

hj0
j0

≥ Ch1
j0

.

Therefore, Ch1
j0

= C
hj0
j0

. Finally, since variable t
hj0
j0

was not fixed in Q0, we have

that C
hj0
j0

= 0, which show the result.
3) The proof for this case is also similar to case 1). Let j0 ∈ B and facility

h1 ∈ H ∩ S, using the same arguments that we can obtain that Ch1
j0

≤ 0, for
some h0 ∈ H ∩ S.

Considering a feasible solution whose incidence vector satisfies (25) at equal-
ity and where j0 is assigned to h1. As before, the solution obtained by modifying
this latter solution and now assigning j0 to hj0 is also feasible for the BBFLP.
Using similar arguments as above, we obtain that C

hj0
j0

≥ Ch1
j0

. Since variable

t
hj0
j0

was not fixed in Q0, we have that Ch1
j0

≤ 0. �

Observe that if D′ ⊆ D is a set of clients such that the variables thj , j ∈ D′

have been lifted, then the lifting coefficient of a variable th0
j0

, forj ∈ D\D′ and
h ∈ H \ hj0 , is

Ch0
j0

= r

⌈
d(A ∪ A′)

C

⌉
− ξh0

j0

where

ξh0
j0

= min{x1(δ(S)) + rx2(δ(S)) +
∑

h∈H

∑

j∈D′
Ch

j t
h
j , for all

(x, y, t) ∈ Q with t
h0
j0 = 1 and t

h
j = 0,∀j ∈ D\D′, h ∈ H}. (26)

The above remark means that obtaining the lifting coefficients of Theorem 4
reduces to finding ξh

j , for all j ∈ D and h ∈ H \ hj .
For lack of space, we do not give a complete proof of the following lemmas

and Theorem 4. However, we will give the main ideas that lead to the coefficients
of Theorem 4.

Before going further, for every U ⊆ D, we let

rU =
{

C, if d(U)mod(C) = 0,
d(U)mod(C), otherwise.

and
εU = min{0, rU − r}.

In the following Lemma we give the form of ξh0
j0

in the case when D′ = ∅.



A Polyhedral Study for the Buy-at-Bulk Facility Location Problem 51

Lemma 3. If D′ = ∅ then, for every j0 ∈ A ∪ A′ and h0 ∈ H \ {hj0},

ξh0
j0

= r

⌈
d(W )

C

⌉
+ εW (27)

where W = (A ∪ A′) \ {j0}.
Proof. First, let β be the number of cables of type 1 loaded on the edges of δ(S).
Also, w.l.o.g., we assume that the number of cables of type 2 loaded on the edges
of δ(S) is �d(W )

C �−λ, for some λ ≥ 0. In any feasible solution of the BBFLP, we
have that β + C(�d(W )

C � − λ) ≥ d(W ).
We have that x1(δ(S)) + rx2(δ(S)) = β + r(�d(W )

C � − λ). If λ = 0, we can
show that the minimum value of x1(δ(S)) + rx2(δ(S)) is obtained for β = 0.
Thus, ξh0

j0
= r�d(W )

C � in this case. Now, if λ ≥ 1, we have that

β + r(�d(W )
C

� − λ) ≥ (C − r)λ − C + rW + r�d(W )
C

�.

Here also, we can show that the minimum of x1(δ(S)) + rx2(δ(S)) is obtained
for λ = 1 and β = C(λ − 1) + rW = rW , that is ξh0

j0
= rW − r + r�d(W )

C �.
Thus, ξh0

j0
= r

⌈
d(W )

C

⌉
+ min{0, rW − r} = r

⌈
d(W )

C

⌉
+ εW . �

Lemma 4. If D′ = ∅ then, for every j0 ∈ B ∪ B′ and h0 ∈ H \ {hj0},

ξh0
j0

= r

⌈
d(W )

C

⌉
+ εW (28)

where W = A ∪ A′ ∪ {j0}.
Now, for a node set U ⊆ D, we let

αU =
⌈

d(A ∪ A′)
C

⌉
−

⌈
d(U)
C

⌉
.

From Lemmas 3 and 4, when D′ = ∅, the lifting coefficient of a variable th0
j0

is of the form
Ch0

j0
= rαW − εW

where

W =
{

(A ∪ A′) \ {j0}, for j0 ∈ A ∪ A′,
A ∪ A′ ∪ {j0}, for j0 ∈ B ∪ B′.

From this, we can see that the lifting coefficient of variable thj , when D′ = ∅
({i.e.} when the variable is lifted at first), is

– Ch
j = rαW − εW = dj , for j ∈ A1,

– Ch
j = rαW − εW = r, for j ∈ A2,

– Ch
j = rαW − εW = 0, for j ∈ B1,

– Ch
j = rαW − εW = C − r − dj , for j ∈ B2.



52 C. Soraya and I. Diarrassouba

5 Conclusion

In this paper, we have investigated the BBFLP from a polyhedral point of view.
We have introduced an integer programming formulation for the problem which
does not use flow variables. Then, we have studied the associated polyhedron,
and show that several classes of inequalities coming from the FLP are valid for
the BBFLP polyhedron. Moreover, we have introduced a new family of facet
defining inequalities, coming from the NLP.

As a perspective, one can try to extend other families of valid inequalities
coming from the NLP, in particular the partition and the metric inequalities. It
is also interesting to devise a Branch-and-Cut algorithm for the BBFLP using
these new families of inequalities.

References

1. Ardal, K.: Capacitated facility location: separation algorithms and computa-
tional experience. Math. Program. 81, 149–175 (1998). https://doi.org/10.1007/
BF01581103

2. Avella, P., Mattia, S., Sassanoo, A.: Metric inequalities and the network loading
problem. Discrete Optim. 4(1), 103–114 (2007). https://doi.org/10.1016/j.disopt.
2006.10.002

3. Agarwal, Y.K.: k-partition-based facets of the network design problem. Networks
47, 123–136 (2006). https://doi.org/10.1002/net.20098

4. Agarwal, Y.K.: Polyhedral structure of the 4-node network design problem. Net-
works 54, 139–149 (2009). https://doi.org/10.1002/net.20317

5. Agarwal, Y.K.: Network loading problem: valid inequalities from 5-and higner par-
titions. Comput. Oper. Res. 99, 123–134 (2018)

6. Bienstosk, D., Gülnük, O.: Capacitated network design-Polyhedral structure, and
computation. INFORMS J. Comput. 8(3), 243–259 (1996). https://doi.org/10.
1287/ijoc.8.3.243

7. Bley, A., Rezapour, M.: Combinatorial approximation algorithms for buy-at-bulk
connected facility location problems. Discrete Appl. Math. 213, 34–46 (2016).
https://doi.org/10.1016/j.dam.2016.05.016

8. Cornuejolis, G., Fischer, M.L., Nemhauser, G.L.: On the uncapacitated location
problem. Ann. Discrete Math. 1, 163–177 (1977). https://doi.org/10.1016/S0167-
5060(08)70732-5. 23, 50–74 (1982)

9. Barahona, F.: Network design using cut inequalities. SIAM J. Optim. 6(3), 823–
837. https://doi.org/10.1137/S1052623494279134

10. Galili, L., Letchfrod, A.N., Miller, S.J.: New valid inequalities and facets for the
simple plant location problem. Eur. J. Oper. Res. 269(3), 824–833 (2018). https://
doi.org/10.1016/j-ejor2018.03.009

11. Gülnük, D.: A branch-and-cut algorithm for capacitated network design problems.
Math. Program. 86, 17–39 (1999). https://doi.org/10.1007/s1010700500

12. Guinard, M.: Fractional vertices, cuts and facets of simple plant location problem.
Math. Program. Study 12, 150–162 (1980). https://doi.org/10.1007/BFb0120893

13. Friggstad, Z., Rezapour, M., Salavatipour, M.R., Soto, J.A.: LP-based approxima-
tion algorithms for facility location in buy-at-bulk network design. In: Dehne, F.,
Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 373–385. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21840-3 31

https://doi.org/10.1007/BF01581103
https://doi.org/10.1007/BF01581103
https://doi.org/10.1016/j.disopt.2006.10.002
https://doi.org/10.1016/j.disopt.2006.10.002
https://doi.org/10.1002/net.20098
https://doi.org/10.1002/net.20317
https://doi.org/10.1287/ijoc.8.3.243
https://doi.org/10.1287/ijoc.8.3.243
https://doi.org/10.1016/j.dam.2016.05.016
https://doi.org/10.1016/S0167-5060(08)70732-5
https://doi.org/10.1016/S0167-5060(08)70732-5
https://doi.org/10.1137/S1052623494279134
https://doi.org/10.1016/j-ejor2018.03.009
https://doi.org/10.1016/j-ejor2018.03.009
https://doi.org/10.1007/s1010700500
https://doi.org/10.1007/BFb0120893
https://doi.org/10.1007/978-3-319-21840-3_31


A Polyhedral Study for the Buy-at-Bulk Facility Location Problem 53

14. Magnanti, T.L., Mirchandani, P., Vachani, R.: Modeling and solving the two-
facility capacitated network loading problem. Oper. Res. 233–250 (1995). https://
doi.org/10.1287/opre.43.1.142

15. Magnanti, T.L., Mirchandani, P., Vachani, R.: The convex hull of two core capaci-
tated network design problems. Math. Program. 60(1–3), 142–157 (1993). https://
doi.org/10.1007/BF01580612

16. Matia, S.: Solving survivable two-layer network design problems by metric imequal-
ities. Comput. Optim. Appl. 51, 809–839 (2011). https://doi.org/10.1007/s10589-
010-9364-0

17. Meyerson, A., Munagala, K., Plotkin, S.: Cost distance: two metric network design.
In: 41 Annual Symposium Foundations of Computer Science, pp. 624–630 (2000).
https://doi.org/10.1109/SFCS.2000.892330

18. Raack, C., Koster, A.M., Orlowski, S., Wessüly, R.: On cut-based inequalities for
capacitated network design polyhedra. Network 57(2), 141–156 (2011). https://
doi.org/10.1002/net.20395

19. Ravi, R., Sinha, S.: Approximation algorithms combining facility location and net-
work design. Oper. Res. 54, 73–81 (2006). https://doi.org/10.1287/opre.1050.0228

https://doi.org/10.1287/opre.43.1.142
https://doi.org/10.1287/opre.43.1.142
https://doi.org/10.1007/BF01580612
https://doi.org/10.1007/BF01580612
https://doi.org/10.1007/s10589-010-9364-0
https://doi.org/10.1007/s10589-010-9364-0
https://doi.org/10.1109/SFCS.2000.892330
https://doi.org/10.1002/net.20395
https://doi.org/10.1002/net.20395
https://doi.org/10.1287/opre.1050.0228


Cardinality Constrained Multilinear Sets

Rui Chen1(B), Sanjeeb Dash2, and Oktay Günlük3

1 University of Wisconsin-Madison, Madison, WI 53706, USA
rchen234@wisc.edu

2 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
sanjeebd@us.ibm.com

3 School of ORIE, Cornell University, Ithaca, NY 14853, USA
ong5@cornell.edu

Abstract. The problem of minimizing a multilinear function of binary
variables is a well-studied NP-hard problem. The set of solutions of the
standard linearization of this problem is called the multilinear set, and
many valid inequalities for its convex hull are available in the literature.
Motivated by a machine learning application, we study a cardinality
constrained version of this problem with upper and lower bounds on the
number of nonzero variables. We call the set of solutions of the standard
linearization of this problem a cardinality constrained multilinear set,
and give a complete polyhedral description of its convex hull when the
multilinear terms in the problem have a nested structure.

Keywords: Multilinear functions · Valid inequalities · Mixing

1 Introduction

In this paper, we study the convex hull of the set

X = {(x, δ) ∈ {0, 1}n × {0, 1}m : δi =
∏

j∈Si

xj , i = 1, . . . , m, L ≤
n∑

j=1

xj ≤ U},

where m,n are positive integers, Si ⊆ N = {1, . . . , n} for i = 1, . . . , m and L,U
are integers such that 0 ≤ L ≤ U ≤ n. We call X a cardinality constrained
multilinear set. We give a polyhedral characterization of the convex hull of X
in the special case that the sets Si are nested, i.e., S1 ⊂ S2 ⊂ · · · ⊂ Sm. Our
work for the nested case is closely related to recent work by Fischer, Fischer and
McCormick [14].

This paper is motivated by the work in Dash, Günlük and Wei [3], who gave
an integer programming (IP) formulation – for the problem of finding boolean
rule set based classifiers that have high predictive accuracy – with an exponential
number of columns, and tackled it via column generation. Their (column) pricing
subproblem can be framed as optimizing a linear function over X.

The set Y obtained from X by dropping the cardinality constraints is called
a multilinear set and is well-studied in mixed-integer nonlinear optimization.
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 54–65, 2020.
https://doi.org/10.1007/978-3-030-53262-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_5


Cardinality Constrained Multilinear Sets 55

The boolean quadric polytope (Padberg [19]) is equal to conv(Y ) when |Si| = 2
for i = 1, . . . , m, and a cardinality constrained version of this was studied by
Mehrotra [18]. Crama and Rodŕıguez-Heck [2], Del Pia and Khajavirad [4–6],
and Del Pia, Khajavirad and Sahinidis [7] recently studied the multilinear set.

Buchheim and Klein [1] studied the QMST-1 problem, a version of the
quadratic minimum spanning tree (QMST) problem with a single quadratic term
in the objective. They gave a polyhedral description of the standard linearization
of QMST-1, and so did Fischer and Fischer [12]. This work was generalized by
Fischer, Fischer and McCormick [14] who considered the problem of minimizing
a multilinear objective over independent sets of matroids where the nonlinear
terms consist of nested monomials. Let M be the independent set polytope of a
matroid on n elements. Fischer, Fischer and McCormick studied the convex hull
of V = {(x, δ) ∈ Y : x ∈ M} and characterized its facet-defining inequalities
when the sets Si are nested. When the matroid is a uniform matroid, V is the
same as X with L = 0. Our results thus generalize their uniform matroid result.

Prior to [3], the maximum monomial agreement problem (MMA) was studied
in the context of machine learning by Demirez, Bennett, and Shawe-Taylor [8],
Goldberg [16], Eckstein and Goldberg [10,15], and is called the maximum bichro-
matic discrepancy problem in computer graphics [9]. Given an m×n binary data
matrix A, and weights w1, . . . , wm, the MMA problem is

max
I,J⊆N

I∩J=∅, |I|+|J|≥1

m∑

k=1

wk

(
Πi∈IAki

)(
Πj∈J(1 − Akj)

)
. (1)

In other words, the goal of the MMA problem is to find disjoint subsets I and J
of N and associated monomial p(x) = Πi∈IxiΠj∈J(1−xj) such that the sum of
weighted values of the monomial – when evaluated on rows of the data matrix
A (by replacing xj by Akj) – is as large as possible. Goldberg [16], Eckstein and
Goldberg [10,15], and Eckstein, Kagawa, and Goldberg [11] present a branch-
and-bound method to solve the MMA problem and generate columns within a
column generation algorithm for a binary classification problem.

Dash, Günlük and Wei [3] solve a cardinality constrained version of MMA
(call it CMMA) by replacing |I|+|J | ≥ 1 in (1) with u ≥ |I|+|J | ≥ 1 to generate
new monomials/clauses to augment an existing list from which a classifier in the
form of a disjunction of clauses is created. The CMMA (resp. MMA) problem
can be viewed as maximizing a linear function over the set X (resp. Y ). Consider
the matrix A in (1), and let A′ = [A (1m,n − A)] where 1m,n stands for the
m × n matrix with all components one. Then, for any i we have 1 − Aki = A′

kj

for some j ∈ {1, . . . , 2n}, and therefore CMMA is equivalent to

max
I⊆{1,...,2n},

u≥|I|≥1

m∑

k=1

wk

( ∏

i∈I

A′
ki

)
=

max
{ m∑

k=1

wkδk : δk =
∏

i:A′
ki=0

(1 − zi), 1 ≤
2n∑

i=1

zi ≤ u, δ ∈ {0, 1}m, z ∈ {0, 1}2n
}

.



56 R. Chen et al.

To see this, note that Πi∈IA
′
ki = Πi:A′

ki=0(1 − zi) if I = {i : zi = 1} and |I| ≥ 1.
Dash, Günlük and Wei [3] solve an IP formulation of the problem above using
the standard linearization of the expressions δk = Πi:A′

ki=0(1 − zi).

2 Preliminaries

Let I = {1, . . . , m}, J = {1, . . . , n}, 0 ≤ l ≤ u and u ≥ 2. Let S1, . . . , Sm

be distinct subsets of J with 2 ≤ |Si| ≤ n − l for i = 1, . . . , m. Note that the
assumptions imply that n − l ≥ 2. Define S := {Si}i∈I . We will study the set

X l,u := {(z, δ) ∈ {0, 1}n × {0, 1}m : δi =
∏

j∈Si

(1 − zj), i ∈ I, l ≤
∑

j∈J

zj ≤ u},

which is equivalent to the set X in the previous section (let zj = 1−xj , l = n−U
and u = n − L).

Let Δl,u = projδ(X l,u) denote the orthogonal projection of X l,u onto the
space of δ variables. We say that S is closed under nonempty intersection if for
each pair Si, Sj ∈ S such that Si ∩ Sj �= ∅, the set Si ∩ Sj ∈ S.

We first restrict our discussion to the so-called proper families defined as
follows.

Definition 1. A family S = {Si}i∈I of subsets of J is called a proper family if
it satisfies the following properties:

1. Δl,u is a set of exactly m + 1 affinely independent vectors in R
m;

2. S is closed under nonempty intersection.

We next present three examples of proper families S.

Example 1. If S1 ⊂ S2 ⊂ . . . ⊂ Sm are nested subsets of J , l ≤ n − |Sm| and
u ≥ 2, then S = {S1, S2, . . . , Sm} is proper.

Example 2. If S1, S2 are two disjoint nonempty subsets of J , l ≤ n − |S1 ∪ S2|
and u ≥ 2, then S = {S1, S2, S1 ∪ S2} is proper.

Example 3. If S1 and S2 are two subsets of J satisfying S1 ∩ S2 �= ∅, S1 �

S2, S2 � S1, l ≤ n − |S1 ∪ S2| and u ≥ 2, then S = {S1 ∩ S2, S1, S2, S1 ∪ S2} is
proper.

More generally, given a family S that is closed under union and nonempty
intersection, we can show that S is a proper family provided that Δl,u = Δ0,n.

For any δ̄ ∈ Δl,u, define X l,u(δ̄) := {z ∈ {0, 1}n : (z, δ̄) ∈ X l,u}. An inequal-
ity αT z + βT δ ≤ γ is valid for X l,u if and only if

γ ≥ max
(z,δ)∈Xl,u

{αT z + βT δ} = max
δ̄∈Δl,u

{βT δ̄ + max
z∈Xl,u(δ̄)

αT z}.

Therefore, it is valid if and only if for all δ̄ ∈ Δl,u we have

γ − βT δ̄ ≥ max
z∈Xl,u(δ̄)

αT z. (2)



Cardinality Constrained Multilinear Sets 57

Theorem 1. Assume S is a proper family. Then each facet F of conv(X l,u) can
be defined by an inequality αT z + βT δ ≤ γ where either α = 0, or (2) holds as
equality for all δ̄ ∈ Δl,u. Moreover, we can choose α such that α ∈ {0, κ}n for
some κ ∈ {−1,+1}.
Proof. Let αT z + βT δ ≤ γ be a facet-defining inequality for conv(X l,u) and
let F be the associated facet. Assume that the inequality (2) is strict for some
δ̄ ∈ Δl,u. As S is a proper family, conv(Δl,u) is a full-dimensional simplex in
R

m. Let (β′)T δ ≤ γ′ be the (only one) facet-defining inequality for conv(Δl,u)
such that δ̄ is not contained in the corresponding facet F ′. Note that all points
in Δl,u \ {δ̄} satisfy (β′)T δ = γ′. As inequality (2) is strict, there is no point
of the form (z̄, δ̄) in F . Therefore, δ̄ is not contained in projδ(F ). We conclude
that every point δ′ in projδ(F ) satisfies (β′)T δ′ = γ′, and so does every point in
F . Therefore, F is defined by the inequality (β′)T δ ≤ γ′.

The second part of the proof is omitted due to the page limit. ��

3 When S is a Family of Nested Sets

In this section, we consider the special case when S = {Si}i∈I is a family of
nested sets. As before, let I = {1, . . . , m}, and J = {1, . . . , n}. We assume,
without loss of generality, that S1 ⊂ S2 ⊂ . . . ⊂ Sm, and Si = {1, . . . , ki} where
2 ≤ k1 < k2 < . . . < km. We assume that l ≤ n − |Sm|, and u ≥ 2; therefore
km ≤ n − l. Recall, from Example 1, that S is a proper family of sets with
respect to X l,u. We number the m + 1 vectors in Δl,u as δi, for i = 0, . . . , m,
where δ0 = 0 and δi has the first i components equal to 1, and the rest equal to
0, for all i ≥ 1. Further,

Δl,u = {δ ∈ {0, 1}m : δ1 ≥ δ2 ≥ . . . ≥ δm}, (3)
conv(Δl,u) = {δ ∈ [0, 1]m : δ1 ≥ δ2 ≥ . . . ≥ δm}. (4)

The second equation follows from the first because the constraint matrix in
the inequality system in (3) is totally unimodular. Note that conv(Δl,u) is full-
dimensional.

For any (z, δ) ∈ X l,u, we have δi+1 ≤ δi for all i < m, as Si ⊂ Si+1.
Moreover, δi+1 = δi if zj = 0 for all j ∈ Si+1 \ Si. Consequently, the following
2-link inequalities [2] are valid for conv(X l,u) for all i = 1, . . . , m − 1:

δi+1 − δi ≤ 0, δi − δi+1 −
∑

j∈Si+1\Si

zj ≤ 0. (5)

For the nested case the following inequalities together with the 2-link inequal-
ities (5) give a relaxation conv(X l,u):

l ≤
∑

j∈J

zj ≤u, (6)

zj + δi ≤1, j ∈ Si, i ∈ I, (7)



58 R. Chen et al.

1 − δ1 −
∑

j∈S1

zj ≤ 0, (8)

δm ≥ 0, 1 ≥ zj ≥ 0, j ∈ J. (9)

Without loss of generality, we can assume that l < u when S is nested. When
l = u, the problem can be easily reduced to the case when l < u by considering
the substitution zn = u − ∑

j∈J\{n} zj . In the case when l < u, conv(X l,u) can
be shown to be full-dimensional.

We next observe some properties of conv(X l,u).

Lemma 2. If βT δ ≤ γ defines a facet of conv(X l,u) then it is a multiple of an
inequality from (5)–(9).

Proof. If βT δ ≤ γ defines a facet of conv(X l,u) then it also defines a facet of
conv(Δl,u). The only facet-defining inequality for conv(Δl,u), see (4), that is not
of the form δi+1 − δi ≤ 0 or δm ≥ 0 is 1 ≥ δ1. However, 1 ≥ δ1 cannot define a
facet of conv(X l,u) as it is implied by (7) and (9) for i = 1 and any j ∈ S1. ��

3.1 Convex Hull Description of X0,u

By Theorem 1, we only need to consider inequalities of the form αT z + βT δ ≤ γ
with α ∈ {0, 1}n or α ∈ {0,−1}n. We have already characterized all facets of
the form βT δ ≤ γ in Lemma 2. We now characterize facet-defining inequalities
of the form αT z + βT δ ≤ γ for conv(X0,u) with α ≤ 0 and α �= 0.

Lemma 3. Let αT z+βT δ ≤ γ be a facet-defining inequality for conv(X0,u) with
α ∈ {0,−1}n, then the inequality is implied by an inequality from (5)–(9).

Proof. If α = 0, then the result follows from Lemma 2. Assume now that α �= 0
and therefore α ∈ {0,−1}n \ {0}. Then for all δi ∈ Δ0,u, by Theorem 1,

γ − βT δi = max
z∈Xl,u(δi)

αT z = max
j∈Si+1\Si

{αj}.

Let θi = maxj∈Si+1\Si
{αj} ∈ {0,−1}. Then

αT z + βT δ ≤
∑

i∈I

θi−1

∑

j∈Si\Si−1

zj +
m−1∑

i=1

(θi−1 − θi)δi + θm−1δm

= θ0(δ1 +
∑

j∈S1

zj

︸ ︷︷ ︸
≥1

) +
m−1∑

i=1

θi(δi+1 − δi +
∑

j∈Si+1\Si

zj

︸ ︷︷ ︸
≥0

) ≤ θ0 + 0 = γ

is implied by inequalities (5), (8) and (9). ��



Cardinality Constrained Multilinear Sets 59

We next derive a family of valid inequalities for conv(X0,u) using the mixing
procedure [17]. We start with deriving some valid inequalities from (5)–(9) which
we will use as the so-called base inequalities for the mixing procedure. Let S′ ⊆ J
be fixed and let M > n be a given constant. For any i ∈ I, we can derive
the following valid (base) inequality using the fact that for all j ∈ Si we have
zj , δi ≤ 1, and 1 − δi − zj ≥ 0.

1
M

(u −
∑

j∈S′
zj) + (1 − δi)

=
1
M

(
u −

∑

j∈S′\Si

zj

)
+

1
M

∑

j∈S′∩Si

(1 − δi − zj) +
1
M

(
M − |S′ ∩ Si|

)
(1 − δi)

≥ 1
M

(
u − |S′ \ Si|

)
.

If |S′ \Sp| ≤ u−1 for some p ∈ I, then the right-hand side of 1
M (u − ∑

j∈S′ zj)+
(1−δi) ≥ 1

M (u−|S′ \Si|) is strictly between 0 and 1 for all i = p, p+1, . . . , m.
Therefore treating the term 1

M (u − ∑
j∈S′ zj) above as a nonnegative continuous

variable, we can apply the type I mixing procedure to these (base) inequalities
to obtain the following mixing inequality,

1
M

(
u −

∑

j∈S′
zj

)
≥ 1

M

(
u − |S′ \ Sp|

)
δp +

1
M

m∑

i=p+1

(
|S′ \ Si−1| − |S′ \ Si|

)
δi.

After multiplying the inequality by M and rearranging the terms, we obtain the
following valid inequality for conv(X0,u)

∑

j∈S′
zj +

(
u − |S′ \ Sp|

)
δp +

m∑

i=p+1

(
|S′ \ Si−1| − |S′ \ Si|

)
δi ≤ u. (10)

These inequalities are sufficient to describe conv(X0,u).

Theorem 4. Inequalities (5)–(9) together with inequalities (10), for all p ∈ I
and S′ ⊆ J such that |S′\Sp| ≤ u−1, give a complete description of conv(X0,u).

Proof. Let F be a facet of conv(X0,u) and αT z + βT δ ≤ γ be the corresponding
facet-defining inequality. By Theorem 1, we can assume that either α ∈ {0, 1}n

or α ∈ {0,−1}n. Furthermore, by Lemmas 2 and 3 we have established that if
α ≤ 0 (including the case when α = 0) the inequality αT z + βT δ ≤ γ has to be
one of (6)–(9). Therefore, the only remaining case to consider is when α ∈ {0, 1}n

and α �= 0.
Let S̄ := {j ∈ J : αj = 1} and therefore αT z =

∑
j∈S̄ zj . Also remember

that Δ0,u = {δ0, . . . , δm} where the first p ∈ I components of δp ∈ {0, 1}m is 1,



60 R. Chen et al.

and the rest are 0. Then by Theorem 1, the following equations must hold for
all δp with p ∈ {0, . . . , m − 1},

γ −
p∑

i=1

βi = max
{

αT z | z ∈ X0,u(δp)
}

= min
{

u − 1{S̄∩Sp+1\Sp=∅}, |S̄ \ Sp|
}

,

(11)

where we define 1A to be 1 if condition A is true, and 0, otherwise. Similarly,
for δm, we have

γ −
m∑

i=1

βi = min{u, |S̄ \ Sm|}. (12)

Let S̄i = S̄ ∩ Si for i ∈ I and let Δ1 = S̄1 and Δi = S̄i \ S̄i−1 for i ∈ {2, . . . , m}.
Note that S̄ = (S̄ \ Sm) ∪ (∪m

i=1Δi). The unique solution to Eqs. (11) and (12)
is therefore

γ = min
{

u − 1{Δ1=∅}, |S̄| }

βi =

⎧
⎨

⎩
min

{
u − 1{Δi=∅}, |S̄ \ Si−1|

}
− min

{
u − 1{Δi+1=∅}, |S̄ \ Si|

}
, i < m,

min
{

u − 1{Δm=∅}, |S̄ \ Sm−1|
}

− min{u, |S̄ \ Sm|}, i = m.

We now consider 3 cases:
Case 1: |S̄ \ Sm| ≥ u. In this case, |S̄ \ Si| ≥ u also holds for all i ∈ I and

γ = u − 1{Δ1=∅}, βi =
{

1{Δi+1=∅} − 1{Δi=∅}, i ∈ {1, . . . , m − 1},
−1{Δm=∅}, i = m.

In this case, using inequalities (5), (6), (8), (9), we can write

αT z + βT δ =
∑

j∈Δ1

zj + 1{Δ1=∅} (−δ1)︸ ︷︷ ︸
≤−1+

∑
j∈S1

zj

+
m−1∑

i=1

[ ∑

j∈Δi+1

zj + 1{Δi+1=∅} (δi − δi+1)︸ ︷︷ ︸
≤∑

j∈Si+1\Si
zj

]
+

∑

j∈S̄\Sm

zj

≤
∑

j∈J

zj − 1{Δ1=∅} ≤ u − 1{Δ1=∅} = γ.

Case 2a: |S̄ \ Sm| ≤ u − 1 and |S̄| ≤ u − 1. In this case, (11) and (12) imply

γ = |S̄|, and βi = |S̄ \ Si−1| − |S̄ \ Si| = |Δi|, i ∈ I.

In this case, using inequalities (7) and (9), we can write

αT z + βT δ =
m∑

i=1

[ ∑

j∈Δi

(zj + δi)
]

+
∑

j∈S̄\Sm

zj ≤
m∑

i=1

|Δi| + |S̄ \ Sm| = γ.



Cardinality Constrained Multilinear Sets 61

Case 2b: |S̄ \ Sm| ≤ u − 1 and |S̄| ≥ u. Let h := min{i ∈ I : |S̄ \ Si| ≤ u − 1}.
In this case,

γ = u − 1{Δ1=∅}, βi =

⎧
⎨

⎩

1{Δi+1=∅} − 1{Δi=∅}, i ∈ {1, . . . , h − 1},
u − 1{Δh=∅} − |S̄ \ Sh|, i = h
|Δi| = |S̄ \ Si−1| − |S̄ \ Si|, i ∈ {h + 1, . . . , m}.

In this case, using inequalities (5), (8), (9) and inequality (10) with S′ = S̄ ∪ Sh

and p = h, we can write

αT z + βT δ =
∑

j∈Δ1

zj + 1{Δ1=∅} (−δ1)︸ ︷︷ ︸
≤−1+

∑
j∈S1

zj

+
h−1∑

i=1

[ ∑

j∈Δi+1

zj

+ 1{Δi+1=∅} (δi − δi+1)︸ ︷︷ ︸
≤∑

j∈Si+1\Si
zj

]
+

[ ∑

j∈Δh+1

zj + (u − |S̄ \ Sh|)δh

]

+
m∑

j=h+1

[ ∑

j∈Δi+1

zj + |Δi|δi

]
+

∑

j∈S̄\Sm

zj

≤ − 1{Δ1=∅} +
∑

j∈S̄∪Sh

zj +
(
u − |S̄ \ Sh|)δh +

m∑

i=h+1

|Δi|δi

≤ u − 1{Δ1=∅} = γ.

In all three cases, αT z + βT δ ≤ γ is implied by inequalities (5)–(9) and (10)
for all p ∈ I and S′ ⊆ J such that |S′ \ Sp| ≤ u − 1. ��

Clearly, there is an exponential number of such inequalities as one can write a
mixing inequality for each S′ ⊆ J and p ∈ I. However, given a fractional solution
(ẑ, δ̂) ∈ R

n+m
+ , the separation problem can be solved simply by checking if the

inequality (10) is violated for S′ = S∗
p for all p ∈ I, where

S∗
p :=Sp ∪

( m⋃

i=p+1

{j ∈ Si \ Si−1 : ẑj − δ̂p + δ̂i > 0}
)

∪ {j ∈ J \ Sm : ẑj − δ̂p > 0}.

We next present a set of necessary conditions for inequalities (10) to be
facet-defining for conv(X0,u).

Theorem 5. Let S be nested and let p ∈ I and S′ ⊆ J be such that |S′ \
Sp| ≤ u − 1. Then, without loss of generality, the following three conditions are
necessary for the associated inequality (10) to define a facet of conv(X0,u):
(U1)S′ ⊇ Sp, (U2) |S′ \ Sp−1| ≥ u ifp ≥ 2, (U3) |S′| ≥ u + 1.

Proof. If condition (U1) is not satisfied, then replacing S′ with S′ ∪ Sp in inequal-
ity (10) leads to a stronger inequality as zj ≥ 0 for all j ∈ J . Similarly, if condi-
tion (U2) is not satisfied, then replacing p with p − 1 in inequality (10) leads to
a stronger inequality as δp ≤ δp−1.



62 R. Chen et al.

If condition (U3) is not satisfied, then |S′| ≤ u and

∑

j∈S′
zj +

(
u − |S′ \ Sp|

)
δp +

m∑

i=p+1

(
|S′ \ Si−1| − |S′ \ Si|

)
δi

=
∑

j∈S′∩Sp

(zj + δp) +
m∑

i=p+1

∑

j∈S′∩(Si\Si−1)

(zj + δi) +
∑

j∈S′\Sm

zj +
(

u − |S′|︸ ︷︷ ︸
≥0

)
δp

≤ |S′ ∩ Sp| +
m∑

i=p+1

|S′ ∩ (Si \ Si−1)| + |S′ \ Sm| + (u − |S′|) = u,

where the last inequality is implied by the fact that zj ≤ 1 for all j ∈ J and
zj + δi ≤ 1 for all j ∈ J , i ∈ I. Therefore, if condition (U3) is not satisfied
then inequality (10) is implied by other valid inequalities. As conv(X0,u) is full-
dimensional, conditions (U1)–(U3) are necessary for inequality (10) to define a
facet. ��

3.2 Convex Hull Description of Xl,n

In [14], the authors study the convex hull description of the following set:
{

(x, δ) ∈ {0, 1}|J|+|I| : δi =
∏

j∈Si

xj for i ∈ I, x ∈ PM
}

(13)

where {Si}i∈I is a family of nested subsets of a given set J and PM is the convex
hull of incidence vectors associated with independent sets U of the matroid M =
(J,U) defined on the ground set J . Note that if we let U to be the set of all subsets
of J with cardinality at most k for some k ∈ Z+, the constraint x ∈ PM simply
becomes

∑
j∈J xj ≤ k. Consequently, taking k = n− l to define the independent

sets and replacing xj with (1− zj) for j ∈ J , precisely gives the set X l,n. Due to
the complementation of the x variables in (13), the upper bound on the sum of
the x variables becomes a lower bound on the sum of the z variables. Also note
that X0,u is not of the form (13) due to the difference in the multilinear terms.

Using the particular uniform matroid described above, we next translate the
results from [14] to our context. We define S0 = ∅ for convenience.

Theorem 6 ([14]). Inequalities (5)–(9) together with

−
∑

j∈S′
zj + (|S′ ∪ Sp| − n + l)δp +

m∑

i=p+1

(|S′ ∪ Si| − |S′ ∪ Si−1|)δi ≤ 0, (14)

for all p ∈ I and S′ ⊂ J that satisfy |S′ ∪ Sp−1| ≤ n − l < |S′ ∪ Sp| give a
complete description of conv(X l,n).

Notice that similar to inequalities (10), inequalities (14) above are also
defined for subsets of J and both (10) and (14) have the term

∑
j∈S′ zj as



Cardinality Constrained Multilinear Sets 63

well as a telescopic sum involving the δ variables. In fact, we can show that
inequalities (14) can also be derived by the mixing procedure using the following
base inequalities:

1
M

∑

j∈S′
zj + (1 − δi) ≥ |S′ ∪ Si| − n + l

M
for i = p, p + 1, . . . , m

where S′ ⊆ J , Sp satisfies |S′ ∪ Sp| ≥ n − l + 1 and M > n is a large constant.
In [14], the following two conditions (i) |S′ ∪ Sp−1| ≤ n−l, and (ii) n−l+1 ≤

|S′ ∪ Sp|, are implicitly imposed as necessary conditions for (14) to be facet-
defining. We next present a stronger characterization of the necessary conditions.

Theorem 7. Let S be nested and let p ∈ I and S′ ⊂ J be such that |S′∪Sp−1| ≤
n− l < |S′ ∪Sp|. Then the following conditions are necessary for inequality (14)
to define a facet of conv(X l,n): (L1)S′ ∩ Sp = ∅ (L2) |S′| ≤ n − l − 1.

Proof. If condition (L1) is not satisfied, then replacing S′ with S′ \Sp in inequal-
ity (14) leads to a stronger inequality. If condition (L2) is not satisfied, then
|S′| ≥ n − l. By valid inequalities (8), (9), δp ≤ 1 and

∑
j∈J zj ≥ l,

−
∑

j∈S′
zj + (|S′ ∪ Sp| − n + l)δp +

m∑

i=p+1

(|S′ ∪ Si| − |S′ ∪ Si−1|)δi

= −
∑

j∈S′
zj + [|S′| − (n − l)︸ ︷︷ ︸

≥0

]δp + (|Sp \ S′|)δp +
m∑

i=p+1

(|Si \ Si−1 \ S′|)δi

≤ −
∑

j∈S′
zj + |S′| − (n − l) +

∑

j∈Sp\S′
(1 − zj) +

m∑

i=p+1

∑

j∈Si\Si−1\S′
(1 − zj)

= −
∑

j∈S′∪Sm

zj + |S′ ∪ Sm| − (n − l)

= −
∑

j∈J

zj +
∑

j∈J\(S′∪Sm)

zj + |S′ ∪ Sm| − (n − l)

≤ − l + |J \ (S′ ∪ Sm)| + |S′ ∪ Sm| − (n − l) = 0

where the first inequality is implied by the fact that δp ≤ 1 and zj + δi ≤ 1, for
all j ∈ J , i ∈ I and the second inequality is implied by the fact that

∑
j∈J zj ≥ l,

zj ≤ 1 for all j ∈ J . Therefore, if condition (L2) is not satisfied then inequality
(14) is implied by other valid inequalities. As conv(X l,n) is full-dimensional,
conditions (L1) and (L2) are necessary for inequality (14) to define a facet. ��

3.3 Convex Hull Description of Xl,u

We now consider conv(X l,u) when l is not necessarily equal to 0 and u can be
strictly less than n. Note that X l,u = X l,n ∩ X0,u. We next show that

conv(X l,u) = conv(X0,u) ∩ conv(X l,n).



64 R. Chen et al.

Remember that by Theorem 1 and Lemma 2 we know that if an inequality
αT z + βT δ ≤ γ with α �= 0 is facet-defining for X l,u, then we can assume

γ − βT δi = max
z∈Xl,u(δi)

αT z for i = 0, . . . , m (15)

where δ0 = 0 and for i ∈ {1, . . . , m}, δi has the first i components equal to 1,
and the rest equal to 0.

For a given α ∈ R
n and S ⊆ I, let αS ∈ R

|S| denote the vector with entries
{αj : j ∈ S} and let α∗

S denote the largest entry of αS , i.e. α∗
S = maxj∈S αj .

Notice that for i ∈ {0, . . . , m − 1}, the right-hand side of (15) becomes α∗
Si+1\Si

plus the largest sum of at least (l − 1) and at most (u − 1) remaining entries of
αJ\Si , where S0 stands for ∅. Similarly, for i = m, the right-hand side becomes
the largest sum of at least l and at most u entries of αJ\Sm .

We next give a characterization of conv(X l,u).

Theorem 8. The convex hull of X l,u is equal to conv(X0,u) ∩ conv(X l,n).

Proof. As X l,u = X0,u ∩ X l,n, we have conv(X0,u) ∩ conv(X l,n) ⊇ conv(X l,u).
We next argue that conv(X0,u) ∩ conv(X l,n) ⊆ conv(X l,u).

Let αT z + βT δ ≤ γ be a facet-defining inequality for conv(X l,u).
If α = 0, then, by Lemma 2, the inequality is a multiple of an inequality from

(5)–(9). On the other hand, if α �= 0, then by Theorem 1, we can assume either
α ≥ 0 or α ≤ 0.

If α ≥ 0, then using the observation on the right-hand side of (15) above,
(β, γ) satisfies

γ −
i∑

k=1

βi ≥ α∗
Si+1\Si

+ sum of largest (u − 1) remaining entries of αJ\Si (16)

for i ∈ {0, . . . , m − 1}, where S0 stands for ∅, and

γ −
m∑

k=1

βi ≥ sum of largest u remaining entries of αJ\Sm . (17)

This implies that the inequality αT z + βT δ ≤ γ is also valid for conv(X0,u).
On the other hand, if α ≤ 0, then we can use an identical argument to observe

that (α, β, γ) satisfies (16) and (17) with u replaced with l. This implies that
αT z + βT δ ≤ γ is also valid for conv(X l,n).

Combining these two cases we conclude that facet-defining inequalities for
conv(X l,u) are valid for conv(X0,u) ∩ conv(X l,n) and therefore conv(X0,u) ∩
conv(X l,n) ⊆ conv(X l,u). ��

4 Conclusions

In this paper, we gave a polyhedral characterization of the convex hull of the
cardinality constrained multilinear set when the monomial terms have a nested



Cardinality Constrained Multilinear Sets 65

structure. In a separate study, we have obtained a polyhedral characterization
when there are just two non-nested monomial terms, and observe that the poly-
hedral structure is significantly more complicated in the non-nested case. See
also [13] for an extension of their matroid work to non-nested multilinear sets.

References

1. Buchheim, C., Klein, L.: Combinatorial optimization with one quadratic term:
spanning trees and forests. Discrete Appl. Math. 177, 34–52 (2014)

2. Crama, Y., Rodŕıguez-Heck, E.: A class of valid inequalities for multilinear 0–1
optimization problems. Discrete Optim. 25, 28–47 (2017)

3. Dash, S., Gunluk, O., Wei, D.: Boolean decision rules via column generation. In:
Advances in Neural Information Processing Systems, pp. 4655–4665 (2018)

4. Del Pia, A., Khajavirad, A.: A polyhedral study of binary polynomial programs.
Math. Oper. Res. 42(2), 389–410 (2016)

5. Del Pia, A., Khajavirad, A.: The multilinear polytope for acyclic hypergraphs.
SIAM J. Optim. 28(2), 1049–1076 (2018)

6. Del Pia, A., Khajavirad, A.: On decomposability of multilinear sets. Math. Pro-
gram. 170(2), 387–415 (2018)

7. Pia, D., Alberto, K., Aida, S., Nikolaos, V.: On the impact of running intersection
inequalities for globally solving polynomial optimization problems. Math. Program.
Comput. 1–27 (2019). https://doi.org/10.1007/s12532-019-00169-z

8. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via
column generation. Mach. Learn. 46, 225–254 (2002)

9. Dobkin, D.P., Gunopulos, D., Maass, W.: Computing the maximum bichromatic
discrepancy, with applications to computer graphics and machine learning. J. Com-
put. Syst. Sci. 52, 453–470 (1996)

10. Eckstein, J., Goldberg, N.: An improved branch-and-bound method for maximum
monomial agreement. INFORMS J. Comput. 24(2), 328–341 (2012)

11. Eckstein, J., Kagawa, A., Goldberg, N.: REPR: rule-enhanced penalized regression.
INFORMS J. Optim. 1(2), 143–163 (2019)

12. Fischer, A., Fischer, F.: Complete description for the spanning tree problem with
one linearised quadratic term. Oper. Res. Lett. 41, 701–705 (2013)

13. Fischer, A., Fischer, F., McCormick, S.T.: Matroid optimisation problems with
monotone monomials in the objective (2017, preprint)

14. Fischer, A., Fischer, F., McCormick, S.T.: Matroid optimisation problems with
nested non-linear monomials in the objective function. Math. Program. 169(2),
417–446 (2017). https://doi.org/10.1007/s10107-017-1140-9

15. Goldberg, N., Eckstein, J.: Boosting classifiers with tightened l0-relaxation penal-
ties. In: 27th International Conference on Machine Learning, Haifa, Israel (2010)

16. Golderg, N.: Optimization for sparse and accurate classifiers. Ph.D. thesis, Rutgers
University, New Brunswick, NJ (2012)

17. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3),
429–457 (2001)

18. Mehrotra, A.: Cardinality constrained boolean quadratic polytope. Discrete Appl.
Math. 79, 137–154 (1997)

19. Padberg, M.: The boolean quadric polytope: some characteristics, facets and rela-
tives. Math. Program. 45(1–3), 139–172 (1989)

https://doi.org/10.1007/s12532-019-00169-z
https://doi.org/10.1007/s10107-017-1140-9


On the Multiple Steiner Traveling
Salesman Problem with Order

Constraints

Raouia Taktak1(B) and Eduardo Uchoa2(B)

1 ISIMS & LT2S/CRNS, Université de Sfax, Sfax, Tunisia
raouia.taktak@isims.usf.tn

2 Departamento de Engenharia de Produção, Universidade Federal Fluminense,
Niterói, RJ, Brazil

eduardo.uchoa@gmail.com

Abstract. The paper deals with a variant of the Traveling Saleman
Problem (TSP), called the Multiple Steiner TSP with Order Constraints
(MSTSPOC). Consider an undirected weighted graph, and a set of sales-
men such that with each salesman is associated a set of ordered terminals.
The MSTSPOC consists in finding a minimum-cost subgraph containing
for each salesman a tour going in order through its terminals. We pro-
pose an ILP formulation for the problem, study the associated polytope
and investigate the facial aspects of the basic constraints. We further
identify new families of valid inequalities. Some computational results
are also presented.

Keywords: Steiner TSP · Order constraints · Polytope ·
Facet-defining · Valid inequalities · Branch-and-Cut

1 Introduction and Related Works

We consider a variant of the Traveling Salesman Problem (TSP), that is the
Multiple Steiner Traveling Salesman Problem with Order Constraints (MST-
SPOC). The problem was introduced in [10,11], motivated by reliability issues
in multilayer telecommunication networks, and is proved to be NP-hard even for
a single salesman [11]. Let G = (V,E) be an undirected weighted graph, and K
the set of salesmen. For each salesman k ∈ K, there is a set Tk ⊆ V of terminals,
and a set Sk ⊂ V of Steiner nodes such that Tk ∩ Sk = ∅. The MSTSPOC
consists in finding a set of edges F ⊆ E, with minimum total weight, such that
for each salesman k ∈ K there is a tour that visits all terminals in Tk in a pre-
defined cyclic order. Steiner nodes not belonging to Tk are optional. They may
be traversed between visits to terminals. Moreover, due to some survivability
restrictions explained in [10,11], tours must be elementary, that is nodes and
edges are not allowed to be visited more than once. Mahjoub et al. [19] pro-
pose an ILP compact formulation for the MSTSPOC. The formulation is based
on a layered view of the problem. An extensive computational study shows the
efficiency of the proposed formulation in solving hard instances.
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 66–77, 2020.
https://doi.org/10.1007/978-3-030-53262-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_6


Multiple Steiner TSP with Order Constraints 67

Several variants of the TSP are in close relationship with the MSTSPOC.
The first variant is the so-called Steiner Traveling Salesman Problem (STSP)
in which only a given subset of nodes, called terminals, must be visited in a
minimum-weight cycle. The STSP was first introduced by Cornuéjols et al. [12].
The problem is considered in the graphical case, and the associated polytope is
investigated. In [5], Bäıou and Mahjoub give a complete polyhedral description
of the STSP in series-parallel graphs. In [21], Steinová proposes some approx-
imation results for the STSP. Letchford et al. propose in [16] several compact
formulations for the STSP deduced from the ones known for the TSP. In [15],
Interian and Ribeiro develop an efficient GRASP heuristic-based algorithm for
the problem. The second variant is the TSP with Precedence Constraints. This
arises when the circuit starts and ends at a given node, and precedence con-
straints between some pairs of nodes are considered. This variant was also
widely studied in the literature. In [6], Balas et al. study the polytope of the
Asymmetric TSP with precedence constraints. In [4], Ascheuer et al. propose a
Branch-and-Cut algorithm to solve the problem. In [13], Gouveia et al. propose
several formulations for the Asymmetric TSP and the related precedence con-
strained version combining precedence variable based formulations with network
flow based formulations. A further interesting variant is the so-called Multiple
TSP which consists in finding a set of tours for a predefined number of sales-
men, each tour starting from and coming back to a depot node while visiting
exactly once the other intermediate nodes. Bektas [7] presents a survey of for-
mulations and solution approaches for the problem assuming that all salesmen
start from the same depot. In [8], Benavent and Mart́ınez study the problem
when salesmen are assumed to start from different depots. The authors propose
an ILP formulation for the problem. Several families of valid inequalities are
identified and a substantial polyhedral study is presented. The authors devise
an efficient Branch-and-Cut algorithm to solve the problem. In [20], Sarin et al.
study the multiple asymmetric TSP with precedence constraints and investigate
the performances of 32 formulations modeling the problem.

The paper is organized as follows. In the next section, we give necessary nota-
tions and propose an ILP formulation for the MSTSPOC. In Sect. 3, we define
the associated polytope and study the facial aspect of the basic constraints. In
Sect. 4, we describe some valid inequalities and give necessary conditions and
sufficient conditions for these inequalities to be facet defining. Due to space lim-
its, all the polyhedral and facet-defining proofs will be skipped in the paper. In
Sect. 5, we present a preliminary computational study. Some concluding remarks
and indications for future work are given in Sect. 6.

2 Integer Linear Programming Formulation

2.1 Notations

Let G = (V,E) be an edge-weighted undirected graph, such that with each edge
e ∈ E is associated a non-negative weight we. An edge e between two nodes u
and v in V will be denoted by e = uv. We suppose given a set K of salesmen,



68 R. Taktak and E. Uchoa

each having to visit a set of terminals Tk = {wk
1 , wk

2 , . . . , wk
|Tk|}, k ∈ K. The

order of terminals’ visitation for each tour (salesman) is assumed to follow the
cyclic order of the indices j in wk

j . Consider a terminal wk
j ∈ Tk, terminals in

Tk \ {wk
j−1, w

k
j+1} are said to be non-successive for wk

j , j = 1, 2, . . . |Tk|, where
wk

|Tk|+1 refers to wk
1 . Nodes of V that are not terminals for k ∈ K are called

Steiner nodes Sk ⊂ V , with Tk ∩ Sk = ∅. Consider k ∈ K and denote by
qk
j = (wk

j , wk
j+1) the section defined by the two successive terminals wk

j and
wk

j+1, j ∈ {1, 2, . . . , |Tk|}. Each tour for a salesman k ∈ K can be seen as union
of node-disjoint section paths. Let Tk denote the set of these sections for k ∈ K.
For each section qk

j = (wk
j , wk

j+1) ∈ Tk, k ∈ K and j ∈ {1, 2, . . . , |Tk|}, we
associate a reduced graph denoted by Gk

j = (V k
j , Ek

j ), in which a path joining
wk

j to wk
j+1 has to be found. The reduced graph Gk

j is obtained from the original
graph G by deleting all the terminals of Tk, except wk

j and wk
j+1, as well as their

incident edges. Let W ⊂ V be a subset of nodes of V . Recall that δG(W ) denotes
the cut calculated in G, that is the set of edges of G having one node in W and
the other in W = V \ W . When W = {w}, w ∈ V , we will write δG(w). In the
sequel we simply write δ(W ) and δ(w), if the cut is calculated in G.

2.2 ILP Formulation

Consider a salesman k ∈ K and an edge e ∈ E. We define the binary variable
xk

e that is equal to 1 if the tour of salesman k uses edge e, and 0 otherwise. We
also define the binary variable ye for each e ∈ E, that is equal to 1 if edge e
is considered in the final solution, 0 otherwise. The MSTSPOC can hence be
formulated as follows.

min
∑

e∈E

weye (1)

∑

e∈δ
Gk

j
(W )

xk
e ≥ 1

for all k ∈ K, qk
j = (wk

j , wk
j+1) ∈ Tk,

W ⊂ V k
j : wk

j ∈ W and wk
j+1 ∈ W,

(2)

∑

e∈δ(w)

xk
e ≤ 2 for all w ∈ V, k ∈ K, (3)

xk
e ≤ ye for all e ∈ E, k ∈ K, (4)

0 ≤ xk
e for all e ∈ E, k ∈ K, (5)

ye ≤ 1 for all e ∈ E, (6)

xk
e ∈ {0, 1} for all e ∈ E, k ∈ K, (7)

ye ∈ {0, 1} for all e ∈ E. (8)

Inequalities (2) are called section cut inequalities. They ensure for each section
qk
j = (wk

j , wk
j+1) corresponding to a salesman k ∈ K a path in the reduced graph

Gk
j . Hence, this guarantees for each salesman a tour going in order through its ter-

minals. Inequalities (3) are called disjunction inequalities. They ensure that the



Multiple Steiner TSP with Order Constraints 69

different sections for a salesman k ∈ K are disjoint, and hence that the associated
tour is elementary. Inequalities (4) are the linking inequalities which express the
fact that if an edge e ∈ E is not considered, that is ye = 0, then it can not be
used in any tour for the salesmen K. Finally, inequalities (5) and (6) are the trivial
inequalities, and (7) and (8) are the variables’ integrality constraints.

3 Polyhedral Analysis

An instance of the MSTSPOC corresponds to the triplet (G,K, T ), where G
is a graph, K a set of salesmen, each salesman has a set Tk of terminals and
T =

⋃
k∈K Tk. We denote by MSTSPOC(G,K, T ) the polytope associated with

the MSTSPOC, that is the convex hull of the solutions of formulation (2)–(8)
corresponding to K and T in G, i.e.

MSTSPOC(G,K, T ) = conv{wT y | (x, y) ∈ {0, 1}|E|(|K|+1) : (x, y) satisfies (2)–(6)}.
In what follows, G is assumed to be complete and for each salesman k ∈ K
Tk 	= V . These assumptions are not restrictive. First, because if the graph is
not complete, one can consider a complete graph by associating very high costs
to the non-existent edges. Moreover, if there exists a salesman k ∈ K such that
Sk = ∅, then the solution is unique for this salesman. In this case, the problem
reduces to solving the MSTSPOC for the K \ {k} remaining salesmen.
The dimension of polytope MSTSPOC(G,K, T ) is given in the following result.

Theorem 1 (Polytope Dimension)

dim(MSTSPOC(G,K, T )) = (|K| + 1)|E| −
∑

k∈K

|Tk|(|Tk| − 1)
2

.

In what follows, we study the facial structure of the polytope MSTSPOC
(G,K, T ). In particular, we state necessary and sufficient conditions for inequal-
ities of the ILP formulation to be facet defining (as mentioned above, all the
proofs will be skipped due to space limitation).

Theorem 2 (x trivial inequalities). Consider k ∈ K and e ∈ E. Inequality
xk

e ≥ 0 defines a facet of MSTSPOC(G,K, T ) if and only if e is not between
non-successive terminals of Tk.

Theorem 3 (y trivial inequalities). Consider e ∈ E. Inequality ye ≤ 1
defines a facet of MSTSPOC(G,K, T ).

Theorem 4 (Section cut inequalities). Consider k ∈ K and a section qk
j =

(wj , wj+1) ∈ Tk. Consider W a subset of nodes of V k
j such that wj ∈ W and

wj+1 ∈ W . Inequality (2) defines a facet of MSTSPOC(G,K, T ) if and only if
W ∩ Sk 	= ∅ 	= W ∩ Sk.

Theorem 5 (Disjunction inequalities). Consider k ∈ K and w ∈ V .
Inequality

∑
e∈δ(w)

xk
e ≤ 2 defines a facet for MSTSPOC(G,K, T ) if and only if w

is not a terminal of Tk.



70 R. Taktak and E. Uchoa

4 Valid Inequalities

4.1 Steiner Cut Inequalities

The first family of valid inequalities is a straight consequence related to the connec-
tivity requirements of the problem. Consider the graph of Fig. 1 which consists of
four nodes, three terminals numbered 1, 2 and 3 and a Steiner node, namely node 4.
The instance consists of a tour going in order through terminals (1, 2, 3, 1). Figure 1
shows a fractional solution for this instance. Let x̄ be the solution given by x̄ei

= 1
2

for i = 1, ..., 6. Clearly, x̄ satisfies all the constraints of the linear relaxation (2)–
(6). However, x̄ violates the inequality xe1 + xe2 + xe3 ≥ 2, which is valid for
the MSTSPOC(G,K, T ) polytope. In the following proposition, we state that this
inequality belongs to a more general class of valid inequalities.

3

1

e2

e6

e4 e5

4
e3e1

2

1
2

Fig. 1. First fractional solution

Proposition 1. Consider a salesman k ∈ K and let W ⊂ V such that W ∩Tk 	=
∅ 	= W ∩ Tk. Then

∑

e∈δ(W )

xk
e ≥ 2 (9)

is valid for MSTSPOC(G,K, T ), and is called Steiner cut inequality.

Theorem 6. Inequality
∑

e∈δ(W ) xk
e ≥ 2 defines a facet of MSTSPOC(G,K, T )

if and only if the following conditions hold.

1. W and W do not contain non-successive terminals of Tk,
2. If |W ∩ Tk| ≥ 3 (resp. |W ∩ Tk| ≥ 3), then Sk ⊂ W (resp. Sk ⊂ W ),
3. If |W ∩ Tk| = 2 (resp. |W ∩ Tk| = 2), then W ∩ Sk 	= ∅ (resp. W ∩ Sk 	= ∅).

4.2 Steiner Non-successive Terminals Inequalities

In this section, we introduce a new family of valid inequalities for the MST-
SPOC. These come enhancing the constraints related to sections’ disjunction
and order between the terminals of a given salesman. In Fig. 2, is presented a
graph consisting of six nodes, four terminals (nodes 1, 2, 3 and 4) and two Steiner
nodes (nodes 5 and 6). Figure 2 illustrates a solution for an instance looking for a



Multiple Steiner TSP with Order Constraints 71

1

5

e1

e2

e3

6

3

2

e6

4

1

1
2

e5

e10

e9

e4

e7

e8

Fig. 2. Second fractional solution

tour going in order through terminals (1, 2, 3, 4, 1). Figure 2 presents a fractional
solution for this instance. Let x̄ be the solution given by x̄ei

= 1
2 for i = 1, ..., 8

and x̄ei
= 1 for i = 9, 10. Clearly, x̄ satisfies all the constraints of (2)–(6) as

well as the Steiner cut inequalities (9) previously introduced. Observe that, in
this solution, the Steiner node 5 has three incident edges e7, e8 and e9 such that
x̄e7 = 1

2 , x̄e8 = 1
2 and x̄e9 = 1. This implies that the Steiner node 5 is used to

route two sections, namely section (1, 2) and section (2, 3), violating hence the
sections’ disjunction constraint that ensure an elementary tour. In order to cut
this fractional point, one can add the inequality xe8 ≥ xe9 , which is valid for
MSTSPOC(G,K, T ). This inequality expresses the fact that if edge e9 is con-
sidered in a solution, it should be used to route only one among the sections
adjacent to terminal 1, that is to say either section (1, 2) or section (4, 1). As
in this case the Steiner node 5 can be used to route section (1, 2), this means
that if edge e9 is considered, then edge e8 must also be taken in the solution.
This can be generalized as follows. Consider a salesman k ∈ K and let wj be a
terminal of Tk. Consider a Steiner node s of Sk and denote f = swj . Denote the
edges linking the Steiner node s with the terminals of Tk non-successive to wj by
e1, e2, ..., ep (see Fig. 3). Remark that if the edge f is considered in a solution S,
it can be used to route only one among the sections (wj−1, wj) and (wj , wj+1).
Thus, none of the edges e1, e2, ..., ep could be considered in the solution S. This
can be expressed by the inequality

∑

e∈δ′(s)

xk
e ≥ xk

f , (10)

where δ′(s) = δ(s) \ {f, e1, e2, ..., ep}.

ep

e1

wj−2

wj−1

wj wj+1

wj+2s

e2

f

Fig. 3. Steiner non-successive terminals inequalities (configuration 1)



72 R. Taktak and E. Uchoa

Note that inequality (10) can be viewed otherwise. Indeed, one could say that
the flow entering from terminal wj to the Steiner node s must be conserved when
leaving the Steiner node s, and must be used to route only sections (wj−1, wj)
and (wj , wj+1). In the following, we propose a generalization of inequality (10).
Consider a salesman k ∈ K such that |Tk| ≥ 4 and let wj be a terminal of Tk.
Consider a subset of Steiner nodes S ⊂ Sk and let Π = (V0, V1, ..., Vp), p ≥ 4 be
a partition of V (see Fig. 4) such that:

1. V0 = S,
2. V1 ∩ Tk = {wj−l, ..., wj−2, wj−1}, that is V1 contains a sequence of successive

terminals ending by wj−1,
3. V2 = {wj},
4. V3 ∩Tk = {wj+1, wj+2, ..., wj+l′}, that is V3 contains a sequence of successive

terminals ending by wj+l′ ,
5. V4, ..., Vp are such that Vi ∩ Tk 	= ∅ and Vi ∩ Sk = ∅, i = 4, ..., p.

Ej

Fj−1 ∪ Fj+1

Fj
wj−1 wj+1

wj

V3

V2

V0

V4 Vp

V1

wj+l′wj−l

Fig. 4. Steiner non-successive terminals inequalities (configuration 2)

Denote Fj−1, Fj , Fj+1 and Ej the sets of edges of E given by: Fj−1 = [V0, V1],

Fj = [V0, V2], Fj+1 = [V0, V3], and Ej =
p⋃

i=4

([V0, Vi]). With partition Π and the

sets of edges Fj−1, Fj , Fj+1 and Ej , we associate the following inequality
∑

e∈δ′(S)

xk
e ≥

∑

e∈Fj

xk
e , (11)

where δ′(S) = Fj−1 ∪ Fj+1 = δ(S) \ {Ej , Fj}. Inequality (11) implies the fol-
lowing. The flow going from wj to a subset of Steiner nodes S ⊆ Sk must be
conserved in S and used only to route sections that are adjacent to wj .

Proposition 2. Inequality (11) is valid for MSTSPOC(G,K, T ), and is called
Steiner non-successive terminals inequality.



Multiple Steiner TSP with Order Constraints 73

Theorem 7. Inequality (11) defines a facet of MSTSPOC(G,K, T ) if and only
if V1 ∩ Tk = {wj−1} and V3 ∩ Tk = {wj+1}.

4.3 F -partition Inequalities

The F -partition inequalities were first introduced by Mahjoub in 1994 [17]. Fur-
ther works have shown the efficiency of this class of inequalities to solve different
variants of the survivable network design problem (see for instance [9,14,18]). In
what follows, we discuss the F -partition inequalities for the MSTSPOC. First,
we give a fractional solution which is cut by an F -partition inequality. In Fig. 5
is illustrated a graph that consists of six nodes, three terminals 1, 2 and 3,
and three Steiner nodes 4, 5 and 6. The instance consists of a tour going in
order through terminals (1, 2, 3, 1). Let x̄ be the solution given by x̄ei

= 1 for
i = 1, 2, 3 and x̄ei

= 1
2 for i = 4, ..., 9. It is not hard to see that x̄ satisfies

all the constraints of the linear relaxation (2)–(6) and all the valid inequalities
previously introduced, namely the Steiner cut inequalities (9) and the Steiner
non-successive terminals inequalities (11). However, the fractional solution of
Fig. 5 violates a valid inequality as it will be shown in the following. Consider the
partition Π = (V0, V1, V2, V3) of V given by V0 = {4, 5, 6}, V1 = {1}, V2 = {2}
and V3 = {3}. Let F = {e1, e2, e3} (see Fig. 6). One can easily check that x

violates the inequality xe4 + xe5 + xe6 ≥ 3 −
⌊ |F |

2

⌋
= 2, which is valid for

MSTSPOC(G,K, T ). This inequality is a special case of a more general class of
inequalities stated in the following proposition.

1

2

4

5

e1

e7 e8

e9

e2 e3

1

e4 e5

e6
3

6

Fig. 5. Third fractional solution

Proposition 3. Consider a salesman k ∈ K and let Π = (V0, ..., Vp), p ≥ 2 be
a partition of V such that |Vi ∩ Tk| ≥ 1, i = 1, ..., p. Let F ⊆ δ(V0) such that |F |
is odd. Then

xk(δ(V0, ..., Vp) \ F ) ≥ p −
⌊ |F |

2
⌋

(12)

is valid for MSTSPOC(G,K, T ), and is called Steiner F-partition inequality.



74 R. Taktak and E. Uchoa

V1

2

1

4

65

V2 V3

e4 e5

e6

F

3
V0

e1

e3e2

Fig. 6. F-partition inequalities configuration

5 Computational Results

We devise a Branch-and-Cut algorithm for the proposed ILP formulation with-
out and with adding valid inequalities. Due to space limitations, the separation
routines of inequalities (2), (9), (11) and (12) are skipped. Note that this order
of the inequalities is used when generating them. The Branch-and-Cut algo-
rithm is implemented in C++ with ABACUS 3.2 [1], and makes use of CPLEX
12.6 [2] as linear solver. Experimentations are performed on a Bi-Xeon quad-core
E5507 2.27 GHz with 8 Gb of RAM, running under Linux, setting a time limit
to 3 h. Tests are computed on small and medium sized instances taken from
the TSPLib [3] with some slight modifications in order to adapt the instances
to the MSTSPOC. We particularly generate our instances based on data from
a280, bier127, eil101, lin105 and tsp225. Depending on the size of the instance,
we choose the |V | first nodes from the original TSPLib instance, and then ran-
domly generate the sets Tk for each k ∈ K. The first series of experimentations
aim to show the efficiency of the valid inequalities, and are reported in Table 1.
Entries of the table are the following: Instance is the name of the instance, |V |
is the number of nodes in the graph, |K| is the number of salesmen, Nodes-i is
the number of nodes in the Branch-and-Cut tree, Gap-i(%) is the relative error
between the best upper bound and the lower bound obtained at the root and
CPU-i(s) is the total time of execution in seconds (i = 1, 2). i = 1 for the basic
ILP formulation (2)–(8) without valid inequalities, and i = 2 is the same for-
mulation for which we added all the valid inequalities (i.e.,inequalities (9), (11)
and (12)). We present the results obtained for instances having up to 12 nodes
in G, and exactly 10 salesmen.
It appears from Table 1 that the formulation with valid inequalities performs bet-
ter than the basic one for all the instances. In fact, we notice that the number of
the Branch-and-Cut tree’s nodes for the basic formulation is larger than the one
of the formulation with valid inequalities. See, for example, instance (a, 12, 10)
for which the Branch-and-Cut tree explored 3899 nodes with the basic formula-
tion and only 153 when adding valid inequalities. For the same instance, the gap
and the total time of execution were larger using the basic formulation. And this
remark can be generalized for all the tested instances, for which we can clearly



Multiple Steiner TSP with Order Constraints 75

note that the gap and the total time of execution were always better with the
formulation using the valid inequalities. Notice also that, using the basic formu-
lation, some of the instances like (tsp, 8, 10) have not been solved to optimality
within 3 h. However, for the same instances optimality has been reached within
some seconds when adding the valid inequalities. All these observations lead us
to conclude about the importance of the added valid inequalities for a better
resolution of the MSTSPOC.

We also may see the unexpected behaviour when solving instances of size
|V | = 8 compared to those of size |V | = 10 using the basic formulation. Note that
strangely instances with |V | = 10 are solved better than those with |V | = 8. This
is due to the fact that instances and mainly terminals are randomly generated,
which implies that difficulty of the instances does not only depend on size, but
also on the generated terminals.

Table 1. Impact of valid inequalities

Instance |V | |K| Nodes-1 Gap-1(%) CPU-1(s) Nodes-2 Gap-2(%) CPU-2(s)

a 8 10 17 5.18 120.81 3 1.73 1.22

bier 8 10 19 5.39 3063.59 15 2.23 0.96

eil 8 10 7 1.90 2533.11 7 0.72 0.61

lin 8 10 17 5.86 10800.00 5 1.64 1.10

tsp 8 10 21 5.25 10800.00 15 4.20 1.80

a 10 10 79 8.54 7.10 25 4.38 0.88

bier 10 10 83 7.16 6.82 47 6.11 1.87

eil 10 10 43 7.37 6.42 21 5.85 0.92

lin 10 10 43 8.38 3.63 9 2.52 1.16

tsp 10 10 163 11.03 15.88 25 7.78 3.12

a 12 10 3899 12.97 1218.84 153 6.41 3.92

bier 12 10 1479 11.63 398.21 161 8.37 7.23

eil 12 10 489 8.22 128.49 59 6.05 4.58

lin 12 10 1845 13.56 10800.00 181 7.10 1.78

tsp 12 10 457 11.06 10800.00 83 7.64 5.52

A second series of experiments is reported in Table 2 for which we generate
each time 5 different instances of the same size in order to have average results.
For each pair (|V |, |K|), we tested over instances generated from the 5 TSPlib
instances as previously described. Entries of the table are the following: |V | the
number of nodes (ranging from 8 to 16), |K| the number of salesmen (ranging
from 6 to 10), Tk the average number of terminals for each k ∈ K, Nodes the
number of nodes in the Branch-and-Cut tree, Ncut (resp. NScut, NSNST, and
NSFP) the number of generated inequalities of type (2) (resp. (9), (11) and (12)),
Gap(%) is the relative error between the best upper bound (if any) and the lower



76 R. Taktak and E. Uchoa

bound obtained at the root, Opt the number of instances over 5 that have been
solved to optimality and CPU is the total time of execution. All the entries are
an average of 5 tested instances of the same size.

Table 2 shows that the difficulty of solving an instance depends mainly on its
size (i.e. size of the graph and number of salesmen). In fact, none of the instances
with a graph of 16 nodes could be solved to optimality within the time limit.
Note also, that for the majority of group of instances we generate a significant
number of cuts, Steiner cut and Steiner non-successive terminals inequalities.
This means that these inequalities are helpful for the tested instances. However,
only small numbers of the Steiner F -partition inequalities have been separated.
This can be explained first by the structure of instances, and second by the order
of inequalities separation.

Table 2. Branch-and-Cut average results for TSPLib instances

|V | |K| Tk Nodes Ncut NScut NSNST NSFP Gap(%) Opt CPU(s)

8 8 4.12 21.8 120.8 227.4 110.8 0.2 3.38 05/05 19.45

8 10 4.10 16.2 130.4 249.4 125.2 1.8 4.72 05/05 1.14

10 8 4.75 37.0 191.2 551.6 144.2 0.4 3.04 05/05 12.65

10 10 5.10 82.2 314.4 999.0 189.0 1.0 4.53 05/05 7.97

12 8 5.62 371.8 1200.2 471.4 277.2 0.6 5.53 05/05 608.45

12 10 5.70 633.8 1650.2 663.8 347.8 0.8 6.49 05/05 476.78

14 8 4.87 1251.2 561.4 673.4 306.0 0.0 – 01/05 13000.47

14 10 4.90 976.7 527.2 864.0 394.2 0.0 – 03/05 10413.94

16 6 4.83 809.6 3632.0 622.6 278.6 0.0 – 0/5 18000.00

16 8 4.87 661.6 863.4 1127.4 386.0 0.0 – 0/5 18000.00

6 Conclusion

In this paper, we study the Multiple Steiner TSP with Order Contraints (MST-
SPOC). We propose an ILP formulation for the problem, study the correspond-
ing polytope and the facial aspect of its basic constraints. We also identify new
families of valid inequalities, and state necessary conditions and sufficient con-
ditions for these inequalities to be facet-defining. Preliminary experimentations
show the efficiency of valid inequalities to tight the linear relaxation of our ILP
formulation. In the future, it would be interesting to investigate other valid
inequalities and solve larger instances. Another possible extention is to study a
close version of the problem which is the Multiple Assymettric Steiner TSP with
Precedence Constraints.

References

1. http://www.informatik.uni-koeln.de/abacus/

http://www.informatik.uni-koeln.de/abacus/


Multiple Steiner TSP with Order Constraints 77

2. http://www.ilog.com/products/cplex/
3. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
4. Ascheuer, N., Jünger, M., Reinelt, G.: A branch & cut algorithm for the asymmetric

traveling salesman problem with precedence constraints. Comput. Optim. Appl.
17, 61–84 (2000)

5. Bäıou, M., Mahjoub, A.R.: Steiner 2-edge connected subgraph polytopes on series-
parallel graphs. SIAM J. Discrete Math. 10, 505–514 (2002)

6. Balas, E., Fischetti, M., Pulleyblank, W.R.: The precedence-constrained asymmet-
ric traveling salesman polytope. Math. Program. 68, 241–265 (1995)

7. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

8. Benavent, E., Mart́ınez, A.: Multi-depot multiple TSP: a polyhedral study and
computational results. Ann. Oper. Res. 207(1), 7–25 (2013)

9. Bendali, F., Diarrassouba, I., Mahjoub, A.R., Didi Biha, M., Mailfert, J.: A branch-
and-cut algorithm for the k-edge connected subgraph problem. Networks 55(1),
13–32 (2010)

10. Borne, S., Gabrel, V., Mahjoub, R., Taktak, R.: Multilayer survivable optical net-
work design. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol.
6701, pp. 170–175. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21527-8 22

11. Borne, S., Mahjoub, A.R., Taktak, R.: A branch-and-cut algorithm for the multiple
Steiner TSP with order constraints. Electron. Notes Discrete Math. 41, 487–494
(2013)

12. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph
and some related integer polyhedra. Math. Program. 33, 1–27 (1985)

13. Gouveia, L., Pesneau, P., Ruthmair, M., Santos, D.: Combining and projecting flow
models for the (precedence constrained) asymmetric traveling salesman problem.
Networks 71, 451–465 (2017)

14. Huygens, D., Mahjoub, A., Pesneau, P.: Two edge-disjoint hop-constrained paths
and polyhedra. SIAM J. Discrete Math. 18(2), 287–312 (2004)

15. Interian, R., Ribeiro, C.C.: A GRASP heuristic using path-relinking and restarts
for the Steiner traveling salesman problem. Int. Trans. Oper. Res. 24(6), 1307–1323
(2017)

16. Letchford, A.N., Nasiri, S.D., Theis, D.O.: Compact formulations of the Steiner
traveling salesman problem and related problems. Eur. J. Oper. Res. 228(1), 83–
92 (2013)

17. Mahjoub, A.R.: Two edge connected spanning subgraphs and polyhedra. Math.
Program. 64(1–3), 199–208 (1994)

18. Mahjoub, A.R., Pesneau, P.: On the steiner 2-edge connected subgraph polytope.
RAIRO - Oper. Res. 42(3), 259–283 (2008)

19. Mahjoub, A.R., Taktak, R., Uchoa, E.: A layered compact formulation for the
multiple Steiner TSP with order constraints. In: 2019 6th International Conference
on Control, Decision and Information Technologies (CoDIT), pp. 1462–1467 IEEE
(2019)

20. Sarin, S.C., Sherali, H.D., Judd, J.D., Tsai, P.-F.J.: Multiple asymmetric traveling
salesmen problem with and without precedence constraints: performance compar-
ison of alternative formulations. Comput. Oper. Res. 51, 64–89 (2014)

21. Steinová, M.: Approximability of the minimum Steiner cycle problem. Comput.
Inform. 29(6+), 1349–1357 (2012)

http://www.ilog.com/products/cplex/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://doi.org/10.1007/978-3-642-21527-8_22
https://doi.org/10.1007/978-3-642-21527-8_22


Integer Programming



On the Linear Relaxation of the s − t-cut
Problem with Budget Constraints

Hassene Aissi(B) and A. Ridha Mahjoub

Paris Dauphine University, Paris, France
{aissi,mahjoub}@lamsade.dauphine.fr

Abstract. We consider in this paper a generalization of the minimum
s − t cut problem. Suppose we are given a directed graph G = (V,A)
with two distinguished nodes s and t, k non-negative arcs cost functions
c1, . . . , ck : A → Z+, and k − 1 budget bounds b1, . . . , bk−1 where k is a
constant. The goal is to find a s − t cut C satisfying budget constraints
ch(C) � bh, for h = 1, . . . , k − 1, and whose cost ck(C) is minimum.
We study the linear relaxation of the problem and give necessary and
sufficient conditions for which it has an integral optimal basic solution.

Keywords: Integer programming · s − t cut problem · Budget
constraints

1 Introduction

We consider in this paper a generalization of the well known minimum s − t cut
problem. Consider a directed graph G = (V,A) with two distinguished nodes s
and t, k arcs cost functions or criteria c1, . . . , ck : A → Z+ defined on its arcs,
and bounds bh associated to criteria ch, for h = 1, . . . , k − 1. We assume that k
is a given constant. A cut C of G is a subset C ⊆ V such that ∅ �= C �= V . For a
given cut C, δ+(C) is the set of arcs such that the heads are in C and the tails
in V \ C. The cost of cut C w.r.t. criterion h is ch(C) ≡ ch(δ+(C)). A s − t cut
is a cut C such that s ∈ C and t /∈ C. The budgeted minimum s − t cut problem
(BMCP for short) is to find a s − t cut C satisfying the budget constraints
ch(C) � bh, for h = 1, . . . , k − 1 such that ck(C) is minimum. This problem
has numerous applications in areas such as control of disasters in biological
or social networks [10]. While the minimum s − t cut problem can be solved
in polynomial time, Papadimitriou and Yannakakis [16] proved that BMCP is
strongly NP-complete even for k = 2. This implies that for k > 2, it is strongly
NP-complete even to test if the problem has a feasible solution. Therefore, BMCP
is not at all approximable in this case. Chestnut and Zenkluzen [4] give an O(n)-
approximation algorithm for BMCP with k = 2 and show that it cannot be
much easier to approximate than Densest k-Subgraph. More precisely, any no(1)-
approximation algorithm for BMCP with k = 2 gives an no(1)-approximation
algorithm for Densest k-Subgraph.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 81–88, 2020.
https://doi.org/10.1007/978-3-030-53262-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_7


82 H. Aissi and A. R. Mahjoub

1.1 Related Works

There has been a substantial interest in the study of multicriteria and budgeted
versions of several combinatorial optimization problems [1,9,11–13,17]. In gen-
eral, these versions are shown to be harder than the original ones. One exception
is given in [1] where Armon and Zwick showed that the budgeted global minimum
cut problem is polynomial-time solvable if graph G is undirected. Ravi and Goe-
mans [17] consider the minimum spanning tree with a single budget constraint
and give a polynomial-time approximation scheme. The algorithm exploits the
fact that two adjacent spanning trees differ by exactly two edges. Grandoni
et al. [9] give polynomial-time approximation scheme algorithms for spanning
tree, matroid basis, and bipartite matching problems with a constant number of
budget constraints. These algorithms are based on the iterative rounding tech-
nique and exploit the structural property of the basic optimal solutions of the
linear relaxation of the problems. For instance, the authors show that the sup-
port graph of the basic optimal solutions of the linear relaxation of the spanning
tree problem with O(1) budget constraints has O(1) edges with fractional values.

Hayrapetyan et al. [10] consider the minimum size bounded cut problem.
Given a graph G = (V,E) with edge capacities ce, source and sink nodes s and
t, as well as a bound b, the goal is to find a s − t cut C such that c(C) � b
and minimizing |C|. This problem can be reduced to BMCP with k = 2 by
connecting any node u ∈ V \{s, t} to t. The cost functions are defined as follows:
c2ut = 1 and c1ut = cut and c2uv = 0 and c1uv = cuv for all the remaining edges.
Note that only the arcs incident to t have nonzero c2 cost. The authors give
a ( 1ε , 1) or a (1, 1

1−ε ) pseudo-approximation algorithm for any 0 < ε < 1, i.e.,
the algorithm returns either a super optimal solution violating the budget by
a factor 1

ε or a feasible solution with 1
1−ε times more vertices on the s side as

the optimal value. However, we don’t know a priori which case occurs. This
result is based on a combinatorial algorithm for solving the linear relaxation
of the problem. The authors reduce the linear program to a special case of the
parametric maximum flow problem and use as a black box the algorithm of Gallo
et al. [6]. In the parametric maximum flow problem, the arc capacities ce(μ) are
d-variable affine function of some parameter μ ∈ R

d. The goal is to find μ∗

which maximizes the maximum flow between s and t. In the problem considered
in [10], only the capacities of the arcs incident to t are an affince function of a
single parameter. The remaining arcs have static arc capacities (not depending
of μ). In this particular case, Gallo et al. show that all the minimum s − t cuts
for different μ values can be computed efficiently using a single call to the push
relabel algorithm [7]. Hayrapetyan et al. give an optimal solution of the linear
relaxation which is a convex combination of two cuts among them. Zhang [18]
considers the related problem of the minimum b-size s − t cut. The goal is to
find a s − t cut with minimum cost such that the s-side have a size at most b.
The author gives a b+1

b+1−b∗ -approximation algorithm where b∗ is the size of the
s-side optimal solution. In the worst case, this approximation guarantee could
be O(k) if b∗ = b.



On the Linear Relaxtion of the s − t-cut Problem with Budget Constraints 83

1.2 Our Contributions

The minimum s− t cut problem is one of the few polynomial-time solvable com-
binatorial problems which become strongly NP-hard by adding a single budget
constraint. In order to understand the difficulty of the problem, we investigate
the structural properties of the compact linear relaxation of BMCP coming from
the dual of the maximum s− t flow problem. We show that the support graph of
any fractional basic solution contains few nodes but may have many arcs with
fractional values. This contrasts with the simple structure of the basic solution
of the minimum spanning tree problem with budget constraints [9,17]. We also
give a necessary and sufficient condition for which the linear relaxation of BMCP
has an integral optimal basic solution.

2 Structural Properties of the Linear Relaxation

The linear relaxation of BMCP can naturally be formulated by adding the budget
constraints to the standard formulation of the minimum s − t cut problem.

min
∑

(u,v)∈A

ck
uvduv (1a)

duv � pu − pv, for all arcs (u, v) ∈ A, (1b)
ps = 1, pt = 0, (1c)

∑

(u,v)∈A

ch
uvduv � bh, for h = 1, . . . , k − 1, (1d)

pu ≷ 0 for all u ∈ V \ {s, t} (1e)
duv � 0 for all arcs (u, v) ∈ A. (1f)

In the integer programming problem, of which the above formulation is its
linear relaxation, variable pv (referred to as the potential of v) is set to 1 if v ∈ C
and pv = 0 otherwise, and variable duv = 1 if u ∈ C and v /∈ C, and duv = 0
otherwise.

Let P (G, c, b) denote the polyhedron given by inequalities (1b)–(1f), where
c = (c1, . . . , ck−1) denote the cost vectors defining the budget constraints. We
consider BMCP under the following assumption.

Assumption: All nodes in V \ {s, t} are part of an s − t path.
If there exists a node u connected to s but not to t, then there exists an

optimal solution of BMCP where u is merged with s. The symmetric case can
be handled similarly.

We study in this section structural properties of the linear relaxation of
BMCP and give a necessary and sufficient condition for which it has integral
optimal basic solution for nonnegative cost vectors c1, . . . , ck.

The following example, depicted in Fig. 1, shows that the linear relaxation
can have an arbitrary high integrality gap. Assume that k = 2 and the cost
bound is b1 = 2M − 1 where M is an arbitrary non-negative integer value.



84 H. Aissi and A. R. Mahjoub

s

2

1

t

(M, 0)

(M, 0)

(0,M + 1)

(0,M + 1)

Fig. 1. Instance of BMCP where the linear program has an arbitrary high integrality
gap. Each arc (u, v) has two costs (c1uv, c

2
uv).

An optimal integer solution is p̄1 = 1, p̄2 = 0, d̄s1 = 0, d̄s2 = 1, d̄1t = 1, d̄2t =
0, with cost values (M,M +1). However, an optimal solution of the linear relax-
ation is p∗

1 = 1
M , p∗

2 = 0, d∗
s1 = 1− 1

M , d∗
s2 = 1, d∗

1t = 1
M , d∗

2t = 0, with cost values
(2M − 1, 1 + 1

M ). The integrality gap is M − 1/M which may be large.
In order to prove our result, we first give the following definitions and

notation.

Definition 1. A point (d, p) of P (G, c, b) is said to be relevant if the following
hold:

i) duv = max{pu − pv, 0} for all arc (u, v) ∈ A, and
ii) 0 � pu � 1 for all node u ∈ V .

Definition 2. Given two points (d1, p1) and (d2, p2) in P (G, c, b), we say that
(d1, p1) dominates (d2, p2) if d1uv � d2uv for all arcs (u, v) ∈ A except for at least
one arc (u0, v0) ∈ A where d1u0v0

< d2u0v0
.

Note that the dominance relation is asymmetric (if (d1, p1) dominates
(d2, p2), then (d2, p2) does not dominate (d1, p1)) and transitive (if (d1, p1) dom-
inates (d2, p2) and (d2, p2) dominates (d3, p3) then (d1, p1) dominates (d3, p3)).
A point (d, p) in P (G, c, b) will be called minimal if it is not dominated by any
other point in P (G, c, b).

In what follows, we will give a characterization of the linear relaxation of
BMCP to be integral by excluding cuts satisfying some specific properties. These
cuts are called Fractional cuts.

Definition 3. A set S = {C1, . . . , Cr} formed by 1 < r � k nested s − t cuts
C1 ⊂ C2 ⊂ · · · ⊂ Cr is called Fractional if the following conditions are met:

1. S contains at least an infeasible cut Cq for some q ∈ {1, . . . , r}, i.e., Cq

violates at least one budget constraint,
2. there exists a convex combination of these cuts that corresponds to a minimal

extreme point (d, p) of P (G, c, b).

The main result of this paper is the following theorem.



On the Linear Relaxtion of the s − t-cut Problem with Budget Constraints 85

Theorem 1. Given nonnegative cost vectors c1, . . . , ck, the linear relaxation of
BMCP has no minimal fractional optimal extreme point if and only if there exists
no Fractional set of nested s − t cuts.

The proof of Theorem 1 will be given as the consequence of a series of lemmas.
A crucial step in the proof is to give a characterization of the minimal points
and their relationships with relevant points and Fractional sets of nested s − t
cuts.

Lemma 1. Any minimal point of P (G, c, b) is relevant.

Proof. Consider a minimal point (d, p) of P (G, c, b) and suppose that it is not
relevant. First, assume that Condition i) of Definition 1 does not hold. In this
case, there exists an arc (u0, v0) ∈ A such that du0v0 > max{p̄u0 − p̄v0 , 0}. Let
(d̄, p̄) be the solution given by

{
p̄u = pu for all u ∈ V,
d̄uv = max{p̄u − p̄v, 0} for all (u, v) ∈ A.

(2)

Since the cost vector c is nonnegative and d̄ � d (with at least a strict inequality),
(d̄, p̄) satisfies the budget constraints (1d). By construction (2), (d̄, p̄) satisfies
the constraints (1b). Therefore, (d̄, p̄) belongs to P (G, c, b) and (d̄, p̄) dominates
(d, p). This contradicts that (d, p) is a minimal point.

Now suppose that Condition ii) of Definition 1 does not hold. Therefore, there
exists at least one node ū0 ∈ V such that either pū0 > 1 or pū0 < 0. Consider
solution (d̄, p̄) defined as follows:

p̄u =

⎧
⎨

⎩

1 if pu > 1,
0 if pu < 0,
pu otherwise,

(3)

and
d̄uv = max{p̄u − p̄v, 0}. (4)

By construction (3) and (4) we have d̄ � d. Suppose that pū0 > 1. The case
where pū0 < 0 can be handled similarly. Let V1 denote the set of nodes u ∈ V
such that pu > 1. By Assumption, any node u ∈ V1 is part of an s − t path.
Since s, t /∈ V1, it follows that there exists at least an arc (u1, v1) ∈ A such that
u1 ∈ V1 and v1 /∈ V1. By (3) and (4), d̄u1v1 < du1v1 . This shows that (d̄, p̄)
dominates (d, p) and contradicts again the minimality of (d, p). 	

Lemma 2. For any dominated point (d0, p0) of P (G, c, b) there exists a minimal
point (dq, pq) of P (G, c, b) that dominates it.

Proof. As (d0, p0) is dominated, there exists a point (d1, p1) in P (G, c, b) that
dominates it. By Definition 2, we have

∑

(u,v)∈A

d1uv <
∑

(u,v)∈A

d0uv.



86 H. Aissi and A. R. Mahjoub

If (d1, p1) is minimal, then we are done. Otherwise, (d1, p1) is dominated by a
point (d2, p2) of P (G, c, b). By transitivity of the dominance relation, (d2, p2)
dominates (d0, p0). Moreover, we have

∑

(u,v)∈A

d2uv <
∑

(u,v)∈A

d1uv.

Since the optimal value of

min
(d,p)∈P (G,c,b)

∑

(u,v)∈A

duv

is finite, this process must stop at a minimal solution (dq, pq) which by transi-
tivity dominates (d0, p0). 	


In the following, we show that a minimal optimal basic solution of the linear
relaxation of BMCP exists if the cost vectors are nonnegative. Furthermore, we
give a structural property satisfied by minimal points.

Lemma 3. The linear relaxation of BMCP has an optimal extreme point which
is minimal for any nonnegative cost vectors c1, . . . , ck.

Lemma 4. For any minimal point (d, p) of P (G, c, b), there exists an s − t
path P = u0(= s), u1, . . . , uq(= t) such that pu0 � pu1 � · · · � puq

and∑
(uj ,uj+1)∈P dujuj+1 = 1.

We introduce next a reduction operation. Given a vertex (d∗, p∗) of P (G, c, b),
consider the following operation:

O: contract an arc (u, v) ∈ A such that d∗
uv = p∗

u − p∗
v and d∗

uv = 0.
After the operation is over, the potential of the node w (which we call supern-

ode) that results from merging u and v satisfies p∗
w = p∗

u = p∗
v. Operation O

preserves the d∗
uv’s, i.e., for any arc (i, j) ∈ A such that i ∈ {u, v} and j /∈ {u, v}

we have d∗
wj = d∗

ij . The case where j ∈ {u, v} is handled similarly.
Let G′ = (V ′, A′) and (d∗′

, p∗′
) denote the minor digraph and the solution

obtained from (d∗, p∗) by all possible applications of Operation O. By abuse of
notation, the supernodes in V ′ containing s and t are denoted also by s and t,
respectively. Let c′ denote the restriction of the cost vector c to A′. The following
results show that operation O preserves the extremality of the relevant points
and yields a reduced graph with at most k + 1 nodes.

Lemma 5. Let (d∗, p∗) be a relevant extreme point of P (G, c, b) and (d∗′
, p∗′

)
denote the point obtained from (d∗, p∗) by all possible application of operation
O. Then (d∗′

, p∗′
) is a relevant extreme point of P (G′, c′, b).

Lemma 6. Let (d∗, p∗) be a relevant extreme point of P (G, c, b). Then the minor
G′ obtained by all possible applications of Operation O has at most k + 1 nodes.

We investigate in the following the relationship between minimal points and
a Fractional set of nested s − t cuts.



On the Linear Relaxtion of the s − t-cut Problem with Budget Constraints 87

Lemma 7. For any fractional minimal extreme point (d∗, p∗) of P (G, c, b), there
exists a Fractional set S formed by r � k nested s − t cuts such that (d∗, p∗)
corresponds to a solution satisfying Condition 2 of Definition 3.

Now we are ready to prove Theorem 1.

Proof of Theorem 1 (⇐) Suppose that there exists no Fractional set of
nested s − t cuts. By Lemma 3, the linear relaxation of BMCP has an optimal
minimal extreme point (d∗, p∗). If (d∗, p∗) is fractional, then by Lemma7 it can
be decomposed into a Fractional set of nested s − t cuts. This contradicts that
there is no Fractional set of nested s − t cuts. Therefore, (d∗, p∗) is integral.

(⇒) Suppose that there exists a Fractional set S = {C1, . . . , Cr} of nested
s − t cuts in G containing an infeasible cut Cq for some 1 � q � r. Let (d∗, p∗)
denote the fractional minimal extreme point given in Definition 3 such that
(d∗, p∗) =

∑r
i=1 μi(dCi

, pCi

) where μq > 0. It is known that any extreme point
of a polyhedron is the unique optimal solution of some cost function. In our case,
this cost function may not be an arcs cost function (it may associate to some
nodes potentials variables pv nonzero costs). We will construct a cost function
ck : A → {0, 1} such that (d∗, p∗) is an optimal extreme point of BMCP (not
necessarily the unique optimal solution).

Let C1(d∗, p∗), . . . , Cr(d∗, p∗) denote the partition of the nodes into classes
according to the decreasing potential values p∗

i . By Lemma 4, there exists an
s − t path P = u0(= s), u1, . . . , uq = t such that p∗

u0
� · · · � p∗

uq
and∑

(uj ,uj+1)∈P d∗
ujuj+1

= 1. Define the cost vector ck such that ck
uv = 1 for each

arc (u, v) ∈ P and ck
uv = 0 otherwise. Any point (d, p) in P (G, c, b) satisfies

∑

(u,v)∈A

ck
uvduv =

∑

(uj ,uj+1)∈P

dujuj+1

�
∑

(uj ,uj+1)∈P

puj
− puj+1 (by constraint (1b))

= pu0 − puq
= 1.

This shows that (d∗, p∗) is an optimal extreme point of BMCP with cost function
ck. 	


References

1. Armon, A., Zwick, U.: Multicriteria global minimum cuts. Algorithmica 46(1),
15–26 (2006)

2. Carstensen, P.J.: Complexity of some parametric integer and network programming
problems. Math. Program. 26(1), 64–75 (1983)

3. Cohen, E., Megiddo, N.: Maximizing concave function in fixed dimension. In:
Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 74–87 (1993)

4. Chestnut, S.R., Zenklusen, R.: Hardness and approximation for network flow inter-
diction. Networks 69(4), 378–387 (2017)



88 H. Aissi and A. R. Mahjoub

5. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-27659-9

6. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18, 30–55 (1989)

7. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35(4), 921–940 (1988)

8. Garg, N., Vazirani, V.V.: A polyhedron with all s – t cuts as vertices, and adjacency
of cuts. Math. Program. 70, 17–25 (1995)

9. Grandoni, F., Ravi, R., Singh, M., Zenklusen, R.: New approaches to multi-
objective optimization. Math. Program. 146(1–2), 525–554 (2014)

10. Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced graph cuts. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer,
Heidelberg (2005). https://doi.org/10.1007/11561071 19

11. Hong, S., Chung, S.J., Park, B.H.: A fully polynomial bicriteria approximation
scheme for the constrained spanning tree problem. Oper. Res. Lett. 32(3), 233–
239 (2004)

12. Levin, A., Woeginger, G.J.: The constrained minimum weight sum of job comple-
tion times. Math. Program. 108, 115–126 (2006)

13. Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res. 16,
236–245 (1984)

14. Megiddo, N.: Combinatorial optimization with rational objective functions. Math.
Oper. Res. 4(4), 414–424 (1979)

15. Megiddo, N.: Applying parallel computation algorithms in the design of serial
algorithms. J. ACM 30(4), 852–865 (1983)

16. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of FOCS, pp. 86–92 (2000)

17. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In:
Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61422-2 121

18. Zhang, P.: A new approximation algorithm for the unbalanced min s–t cut problem.
Theor. Comput. Sci. 609, 658–665 (2016)

https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/11561071_19
https://doi.org/10.1007/3-540-61422-2_121


An Experimental Study of ILP
Formulations for the Longest Induced

Path Problem

Fritz Bökler , Markus Chimani , Mirko H. Wagner(B) , and Tilo Wiedera

Theoretical Computer Science, Osnabrück University, Osnabrück, Germany
{fboekler,markus.chimani,mirwagner,tilo.wiedera}@uni-osnabrueck.de

Abstract. Given a graph G = (V,E), the LongestInducedPath prob-
lem asks for a maximum cardinality node subset W ⊆ V such that the
graph induced by W is a path. It is a long established problem with appli-
cations, e.g., in network analysis. We propose novel integer linear pro-
gramming (ILP) formulations for the problem and discuss efficient imple-
mentations thereof. Comparing them with known formulations from lit-
erature, we prove that they are beneficial in theory, yielding stronger
relaxations. Moreover, our experiments show their practical superiority.

1 Introduction

Let G = (V,E) be an undirected graph and W ⊆ V . The W-induced graph
G[W ] contains exactly the nodes W and those edges of G whose incident nodes
are both in W. If G[W ] is a path, it is called an induced path. The length of
a longest induced path is also referred to as the induced detour number which
was introduced more than 30 years ago [8]. We denote the problem of finding
such a path by LongestInducedPath. It is known to be NP-complete, even
on bipartite graphs [18].

The LongestInducedPath problem has applications in molecular physics,
analysis of social, telecommunication, and more general transportation net-
works [3,7,26,33] as well as pure graph and complexity theory. It is closely
related to the graph diameter—the length of the longest among all shortest paths
between any two nodes, which is a commonly analyzed communication property
of social networks [30]. A longest induced path witnesses the largest diameter
that may occur by the deletion of any node subset in a node failure scenario [30].
The tree-depth of a graph is the minimum depth over all of its depth-first-search
trees, and constitutes an upper bound on its treewidth [6], which is a well-
established measure in parameterized complexity and graph theory. Recently,
it was shown that any graph class with bounded degree has bounded induced
detour number iff it has bounded tree-depth [32]. Further, the enumeration of
induced paths can be used to predict nuclear magnetic resonance [36].

LongestInducedPath is not only NP-complete, but also W[2]-complete [10]
and does not allow a polynomial O(|V |1/2−ε)-approximation, unless NP =

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 89–101, 2020.
https://doi.org/10.1007/978-3-030-53262-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_8&domain=pdf
http://orcid.org/0000-0002-7950-6965
http://orcid.org/0000-0002-4681-5550
http://orcid.org/0000-0003-4593-8740
http://orcid.org/0000-0002-5923-4114
https://doi.org/10.1007/978-3-030-53262-8_8


90 F. Bökler et al.

ZPP [5,25]. On the positive side, it can be solved in polynomial time for sev-
eral graph classes, e.g., those of bounded mim-width (which includes interval,
bi-interval, circular arc, and permutation graphs) [27] as well as k-bounded-hole,
interval-filament, and other decomposable graphs [19]. Furthermore, there are
NP-complete problems, such as k-Coloring for k ≥ 5 [23] and Independent
Set [29], that are polynomial on graphs with bounded induced detour number.

Recently the first non-trivial, general algorithms to solve the LongestIn-
ducedPath problem exactly were devised by Matsypura et al. [30]. There, three
different integer linear programming (ILP) formulations were proposed: the first
searches for a subgraph with largest diameter; the second utilizes properties
derived from the average distance between two nodes of a subgraph; the third
models the path as a walk in which no shortcuts can be taken. Matsypura et al.
show that the latter (see below for details) is the most effective in practice.

Contribution. In Sect. 3, we propose novel ILP formulations based on cut and
subtour elimination constraints. We obtain strictly stronger relaxations than
those proposed in [30] and describe a way to strengthen them even further in
Sect. 4. After discussing some algorithmic considerations in Sect. 5, we show in
Sect. 6 that our most effective models are also superior in practice.

2 Preliminaries

Notation. For k ∈ N, let [k] := {0, . . . , k − 1}. Throughout this paper, we
consider a connected, undirected, simple graph G = (V,E) as our input. Edges
are cardinality-two subsets of V . If there is no ambiguity, we may write uv for
an edge {u, v}. Given a graph H, we refer to its nodes and edges by V (H) and
E(H), respectively. Given a cycle C in G, a chord is an edge connecting two
nodes of V (C) that are not neighbors along C.

Linear Programming (cf., e.g., [35]). A linear program (LP) consists of a cost
vector c ∈ R

d together with a set of linear inequalities, called constraints, that
define a polyhedron P in R

d. We want to find a point x ∈ P that maximizes the
objective function cᵀx. This can be done in polynomial time. Unless P = NP, this
is no longer true when restricting x to have integral components; the so-modified
problem is an integer linear program (ILP). Conversely, the LP relaxation of an
ILP is obtained by dropping the integrality constraints on the components of x.
The optimal value of an LP relaxation is a dual bound on the ILP’s objective;
e.g., an upper bound for maximization problems. As there are several ways to
model a given problem as an ILP, one aims for models that yield small dimensions
and strong dual bounds, to achieve good practical performance. This is crucial,
as ILP solvers are based on a branch-and-bound scheme that relies on iteratively
solving LP relaxations to obtain dual bounds on the ILP’s objective. When a
model contains too many constraints, it is often sufficient to use only a reasonably
sized constraint subset to achieve provably optimal solutions. This allows us to
add constraints during the solving process, which is called separation. We say



Experimental Study of ILP Formulations for Longest Induced Path 91

that model A is at least as strong as model B, if for all instances, the LP
relaxation’s value of model A is no further from the ILP optimum than that
of B. If there also exists an instance for which A’s LP relaxation yields a tighter
bound than that of B, then A is stronger than B.

When referring to models, we use the prefix “ILP” with an appropriate sub-
script. When referring to their respective LP relaxations we write “LP” instead.

Walk-Based Model (State-of-the-Art). Recently, Matsypura et al. [30]
proposed an ILP model, ILPWalk, that is the foundation of the fastest known
exact algorithm (called A3c therein) for LongestInducedPath. They introduce
timesteps, and for every node v and timestep t they introduce a variable that is
1 iff v is visited at time t. Constraints guarantee that nodes at non-consecutive
time points cannot be adjacent. We recapitulate details in the arXive version [9].
Unfortunately, ILPWalk yields only weak LP relaxations (cf. [30] and Sect. 4). To
achieve a practical algorithm, Matsypura et al. iteratively solve ILPWalk for an
increasing number of timesteps until the path found does not use all timesteps,
i.e., a non-trivial dual bound is encountered. In contrast to [30], we consider the
number of edges in the path (instead of nodes) as the objective value.

3 New Models

We aim for models that exhibit stronger LP relaxations and are practically
solvable via single ILP computations. To this end, we consider what we deem
a more natural variable space. We start by describing a partial model ILPBase,
which by itself is not sufficient but constitutes the core of our new models. To
obtain a full model, ILPCut, we add constraints that prevent subtours.

For notational simplicity, we augment G to G∗ := (V ∗ := V ∪ {s}, E∗ :=
E ∪{sv}v∈V ) by adding a new node s that is adjacent to all nodes of V . Within
G∗, we look for a longest induced cycle through s, where we ignore induced chords
incident to s. Searching for a cycle, instead of a path, allows us to homogeneously
require that each selected edge, i.e., edge in the solution, has exactly two adjacent
edges that are also selected. Let δ∗(e) ⊂ E∗ denote the edges adjacent to edge e
in G∗. Each binary xe-variable is 1 iff edge e is selected. We denote the partial
model below by ILPBase:

max
∑

e∈E
xe (1a)

s.t.
∑

v∈V
xsv = 2 (1b)

2xe ≤
∑

f∈δ∗(e)
xf ≤ 2 ∀e ∈ E (1c)

xe ∈ {0, 1} ∀e ∈ E∗ (1d)

Constraint (1b) requires to select exactly two edges incident with s. To prevent
chords, constraints (1c) enforce that any (original) edge e ∈ E, even if not
selected itself, is adjacent to at most two selected edges; if e is selected, precisely
two of its adjacent edges need to be selected as well.



92 F. Bökler et al.

Establishing Connectivity. The above model is not sufficient: it allows for the
solution to consist of multiple disjoint cycles, only one of which contains s. But
still, these cycles have no chords in G, and no edge in G connects any two cycles.
To obtain a longest single cycle C through s—yielding the longest induced path
G[V (C)\{s}]—we thus have to forbid additional cycles in the solutions that are
not containing s. In other words, we want to enforce that the graph induced by
the x-variables is connected.

There are several established ways to achieve connectivity: To stay with com-
pact (i.e., polynomially sized) models, we could, e.g., augment ILPBase with
Miller-Tucker-Zemlin constraints (which are known to be polyhedrally weak [4])
or multi-commodity-flow formulations (ILPFlow; cf. [9]). However, herein we
focus on augmenting ILPBase with cut or (generalized) subtour elimination con-
straints, resulting in the (non-compact) model we denote by ILPCut, that is
detailed later. Such constraints are a cornerstone of many algorithms for diverse
problems where they are typically superior (in particular in practice) than
other known approaches [16,17,34]. While ILPCut and ILPFlow are polyhedrally
equally strong (cf. Sect. 4), we know from other problems that the sheer size of
the latter typically nullifies the potential benefit of its compactness. Preliminary
experiments show that this is indeed the case here as well.

Cut Model (and Generalized Subtour Elimination). Let δ∗(W ) := {ww̄ ∈
E∗ | w ∈ W, w̄ ∈ V ∗ \W} be the set of edges in the cut induced by W ⊆ V ∗.
For notational simplicity, we may omit braces when referring to node sets of
cardinality one. We obtain ILPCut by adding cut constraints to ILPBase:

∑
e∈δ∗(v)

xe ≤
∑

e∈δ∗(W )
xe ∀W ⊆ V, v ∈ W (2a)

These constraints ensure that if a node v is incident to a selected edge (by (1c)
there are then two such selected edges), any cut separating v from s contains
at least two selected edges, as well. Thus, there are (at least) two edge-disjoint
paths between v and s selected. Together with the cycle properties of ILPBase,
we can deduce that all selected edges form a common cycle through s.

An alternative view leads to subtour elimination constraints
∑

e∈E:e⊆W xe ≤
|W | − 1 for W ⊆ V , which prohibit cycles not containing s via counting. It is
well known that these constraints can be generalized using binary node variables
yv := 1

2

∑
e∈δ∗(v) xe that indicate whether a node v ∈ V participates in the

solution (in our case: in the induced path) [21]. Generalized subtour elimination
constraints thus take the form

∑
e∈E:e⊆W

xe ≤
∑

w∈W\{v} yw ∀W ⊆ V, v ∈ W. (2b)

One expects ILPCut and “ILPBase with constraints (2b)” to be equally strong as
this is well-known for standard Steiner tree, and other related models [12,13,22].
In fact, there even is a direct one-to-one correspondence between cut con-
straints (2a) and generalized subtour elimination constraints (2b): By substi-
tuting node-variables with their definitions in (2b), we obtain 2

∑
e∈E:e⊆W xe ≤



Experimental Study of ILP Formulations for Longest Induced Path 93

∑
w∈W\{v}

∑
e∈δ∗(v) xe. A simple rearrangement yields the corresponding cut

constraint (2a).

Clique Constraints. We further strengthen our models by introducing addi-
tional inequalities. Consider any clique (i.e., complete subgraph) in G. The
induced path may contain at most one of its edges to avoid induced triangles:

∑
e∈E:e⊆Q

xe ≤ 1 ∀Q ⊆ V : G[Q] is a clique (3)

4 Polyhedral Properties of the LP Relaxations

We compare the above models w.r.t. the strength of their LP relaxations, i.e., the
quality of their dual bounds. Achieving strong dual bounds is a highly relevant
goal also in practice: one can expect a lower running time for the ILP solvers in
case of better dual bounds since fewer nodes of the underlying branch-and-bound
tree have to be explored. We defer the proofs of this section to [9].

Since ILPWalk requires some upper bound T on the objective value, we can
only reasonably compare this model to ours by assuming that we are also given
this bound as an explicit constraint. Hence, no dual bound of any of the con-
sidered models gives a worse (i.e., larger) bound than T . As it has already been
observed in [30], LPWalk in fact always yields this worst case bound:

Proposition 1 (Proposition 5 from [30]). For every instance and every num-
ber T + 1 ≤ |V | of timesteps LPWalk has objective value T .

Note that Proposition 1 is independent of the graph. Given that the longest
induced path of a complete graph has length 1, we also see that the integrality
gap of ILPWalk is unbounded. Furthermore, this shows that ILPBase cannot be
weaker than ILPWalk. We show that already the partial model ILPBase is in fact
stronger than ILPWalk. Let therefore θ := T − OPT ∈ N, where OPT is the
instance’s (integral) optimum value.

Proposition 2. ILPBase is stronger than ILPWalk. Moreover, for every θ ≥ 1
there is an infinite family of instances on which LPBase has objective value at
most OPT + 1 and LPWalk has objective value at least T = OPT + θ.

Since ILPCut only has additional constraints compared to ILPBase, this
implies that ILPCut is also stronger than ILPWalk. In fact, since constraints (2a)
cut off infeasible integral points contained in ILPBase, LPCut is clearly even
a strict subset of LPBase. As noted before, we can show that using a multi-
commodity-flow scheme (cf. [9]) results in LP relaxations equivalent to LPCut:

Proposition 3. ILPFlow and ILPCut are equally strong.

Let ILPk
Cut denote ILPCut with clique constraints added for all cliques on at

most k nodes. We show that increasing the clique sizes yields a hierarchy of ever
stronger models.

Proposition 4. For any k ≥ 4, ILPk
Cut is stronger than ILPk−1

Cut .



94 F. Bökler et al.

5 Algorithmic Considerations

Separation. Since ILPCut contains an exponential number of cut con-
straints (2a), it is not practical in its full form. We follow the traditional sepa-
ration pattern for branch-and-cut-based ILP solvers: We initially omit cut con-
straints (2a), i.e., we start with model M := ILPBase. Iteratively, given a feasible
solution to the LP relaxation of M , we seek violated cut constraints and add
them to M . If no such constraints are found and the solution is integral, we have
obtained a solution to ILPCut. Otherwise, we proceed by branching or—given a
sophisticated branch-and-cut framework—by applying more general techniques.

Given an LP solution x̂, we call an edge e ∈ E active if x̂e > 0. Similarly, we
say that a node is active, if it has an active incident edge. These active graph
elements yield a subgraph H of G∗. For integral LP solutions, we simply compute
the connected components of H and add a cut constraint for each component that
does not contain s. We refer to this routine as integral separation. For a fractional
LP solution, we compute the maximum flow value fv between s and each active
node v in H; the capacity of an edge e ∈ E∗ is equal to x̂e. If fv <

∑
e∈δ∗(v) x̂e,

a cut constraint based on the induced minimum s-v-cut is added. We call this
routine fractional separation. Both routines manage to find a violated constraint
if there is any, i.e., they are exact separation routines. In fact, this shows that an
optimal solution to LPCut can be computed in polynomial time [24]. Note that
already integral separation suffices to obtain an exact, correct algorithm—we
simply may need more branching steps than with fractional separation.

Relaxing Variables. As presented above, our models have Θ(|E|) binary vari-
ables, each of which may be used for branching by the ILP solver. We can reduce
this number, by introducing Θ(|V |) new binary variables yv, v ∈ V , that allow
us to relax the binary xe-variables, e ∈ E, to continuous ones. The new vari-
ables are precisely those discussed w.r.t. generalized subtour elimination, i.e., we
require yv = 1

2

∑
e∈δ∗(v) xe. Assuming xe to be continuous in [0, 1], we have for

every edge e = {v, w} ∈ E : if yv = 0 or yw = 0 then xe = 0. Conversely, if
yv = yw = 1 then xe = 1 by (1c). Hence, requiring integrality for the y-variables
(and, e.g., branching only on them), suffices to ensure integral x values.

Handling Clique Constraints. We use a modified version of the Bron-
Kerbosch algorithm [15] to list all maximal cliques. For each such clique we
add a constraint during the construction of our model. Recall that there are
up to 3n/3 maximal cliques [31], but preliminary tests show that this effort is
negligible compared to solving the ILP. Thus, as our preliminary tests also show,
other (heuristic) approaches of adding clique constraints to the initial model are
not worthwhile.



Experimental Study of ILP Formulations for Longest Induced Path 95

6 Computational Experiments

Algorithms. We implement the best state-of-the-art algorithm, i.e., the
ILPWalk-based one by Matsypura et al. [30]. We denote this algorithm by “W”.
For our implementations of ILPCut, we consider various parameter settings w.r.t.
to the algorithmic considerations described in Sect. 5. We denote the arising algo-
rithms by “C” to which we attach sub- and superscripts defining the parameters:
the subscript “frac” denotes that we use fractional separation in addition to inte-
gral separation. The superscript “n” specifies that we introduce node variables
as the sole integer variables. The superscript “c” specifies that we use clique
constraints. We consider all eight thereby possible ILPCut implementations.

Hard- and Software. Our C++ (GCC 8.3.0) code uses SCIP 6.0.1 [20] as the
Branch-and-Cut-Framework with CPLEX 12.9.0 as the LP solver. We use OGDF
snapshot-2018-03-28 [11] for the separation of cut constraints. We use igraph
0.7.1 [14] to calculate all maximal cliques. For W, we directly use CPLEX instead
of SCIP as the Branch-and-Cut-Framework. This does not give an advantage
to our algorithms, since CPLEX is more than twice as fast as SCIP [1] and
we confirmed in preliminary tests that CPLEX is faster on ILPWalk. However,
we use SCIP for our algorithms, as it allows better parameterizible user-defined
separation routines. We run all tests on an Intel Xeon Gold 6134 with 3.2 GHz
and 256 GB RAM running Debian 9. We limit each test instance to a single
thread with a time limit of 20 min and a memory limit of 8 GB.

Instances. We consider the instances proposed for LongestInducedPath in
[30] as well as additional ones. Overall, our test instances are grouped into four
sets: RWC, MG, BAS and BAL. The first set, denoted by RWC, is a collection of 22
real-world networks, including communication and social networks of companies
and of characters in books, as well as transportation, biological, and technical
networks. See [30] for details on the selection. The Movie Galaxy (MG) set consists
of 773 graphs representing social networks of movie characters [28]. While [30]
considered only 17 of them, we use the full set here. The other two sets are
based on the Barabási-Albert probabilistic model for scale-free networks [2].
In [30], only the chosen parameter values are reported, not the actual instances.
Our set BAS recreates instances with the same values: 30 graphs for each choice
(|V |, d) ∈ {(20, 3), (30, 3), (40, 3), (40, 2)}, where |E| = (|V | − d) · d describes the
density of the graph. As we will see, these small instances are rather easy for
our models. We thus also consider a set BAL of graphs on 100 nodes; for each
density d ∈ {2, 3, 10, 30, 50} we generate 30 instances. See http://tcs.uos.de/
research/lip for all instances, their sources, and detailed experimental results.

Comparison to the State-of-the-Art. We start with the most obvious ques-
tion: Are the new models practically more effective than the state-of-the-art?
See Fig. 1a for BAS and BAL, Fig. 1b for MG, and Table 1 for RWC.

http://tcs.uos.de/research/lip
http://tcs.uos.de/research/lip


96 F. Bökler et al.

Fig. 1. Comparison between different ILP models.
(a),(b): Each point is a median, where timeouts are treated as ∞’s. Bars in the back-
ground give the number of instances. Gray encircled markers, connected via dotted
lines, show the number of solved instances (if not 100%).
(c): Whiskers mark the 20% and 80% percentile. The gray area marks timeouts.



Experimental Study of ILP Formulations for Longest Induced Path 97

Table 1. Running times [s] on RWC except for yeast and 622bus (solved by none). We
denote timeouts by � and mark times within 5% of the minimum in bold.

instance OPT |V | |E| W Cint Cfrac Ccint Ccfrac Cnint Cnfrac C
n,c
int C

n,c
frac

high-tech 13 33 91 15.40 0.90 1.11 1.44 3.15 0.51 0.81 0.41 2.05
karate 9 34 78 2.98 1.73 1.65 2.12 1.32 1.07 3.71 0.66 2.74
mexican 16 35 117 73.30 1.68 2.25 1.12 3.59 1.22 1.34 0.87 0.99
sawmill 18 36 62 70.00 0.51 0.43 0.50 0.44 0.85 3.32 0.82 3.34
tailorS1 13 39 158 83.80 4.78 7.92 4.81 6.45 1.51 1.87 3.29 3.55
chesapeake 16 39 170 106.00 1.84 13.11 2.11 11.00 2.29 4.88 3.19 4.39
tailorS2 15 39 223 445.00 6.80 21.78 11.92 14.91 3.20 4.31 2.89 3.14
attiro 31 59 128 .� 1.76 2.57 2.48 1.75 1.20 1.75 0.89 1.19
krebs 17 62 153 522.00 3.86 28.21 18.55 10.03 16.00 11.26 3.90 2.33
dolphins 24 62 159 .� 7.95 27.59 22.72 18.33 19.21 2.99 3.01 4.70
prison 36 67 142 .� 13.36 5.87 1.09 1.50 3.62 4.05 1.02 1.02
huck 9 69 297 41.70 .� 144.13 19.46 42.22 114.27 11.63 5.96 7.49
sanjuansur 38 75 144 .� 30.67 8.64 24.86 10.33 8.22 3.65 3.79 4.71
jean 11 77 254 121.00 464.89 52.89 16.54 9.53 81.03 14.47 3.88 5.14
david 19 87 406 .� 666.25 719.46 26.70 45.34 85.88 23.94 6.93 10.35
ieeebus 47 118 179 .� 37.10 22.35 39.82 10.60 15.69 3.13 22.72 5.61
sfi 13 118 200 44.40 47.41 4.39 4.89 3.77 15.13 2.64 3.31 2.44
anna 20 138 493 .� 21.58 296.69 53.21 74.55 439.23 20.27 7.09 7.58
usair 46 332 2126 .� .� .� .� .� .� .� 922.94 .�
494bus 142 494 586 .� .� 379.29 .� 379.97 .� 178.92 .� 170.74

We observe that on every benchmark set, the various ILPCut implementa-
tions achieve the best running times and success rates. The only exceptions are
the instances from MG (cf. Fig. 1b): there, the overhead of the stronger model,
requiring an explicit separation routine, does not pay off and W yields compara-
ble performance to the weaker of the cut-based variants. On BAS instances, the
cut-based variants dominate (cf. Fig. 1a): while all variants (detailed later) solve
all of BAS, W can only solve the instances for d ∈ {20, 30} reliably. On BAL (cf.
Fig. 1a) W fails on virtually all instances. The cut-based model, however, allows
implementations (detailed later) that solve all of these harder instances. We
point out one peculiarity on the BAL instances, visible in Fig. 1a. The instances
have 100 nodes but varying density. As the density increases from 2 to 30, the
median running times of all algorithmic variants increase and the median success
rates decrease. However, from d = 30 to d = 50 (where only Cnint is successful) the
running times drop again and the success rate increases. Interestingly, the num-
ber of branch-and-bound (B&B) nodes for d = 50 is only roughly 1/7 of those
for d = 30. This suggests that the denser graphs may allow fewer (near-)optimal
solutions and thus more efficient pruning of the search tree.

Comparison of Cut-Based Implementations. Choosing the best among the
eight ILPCut implementations is not as clear as the general choice of ILPCut over
ILPWalk. In Fig. 1a, 1b, and Table 1 we see that, while adding clique constraints



98 F. Bökler et al.

Fig. 2. Root LP relaxation of cut-based models. The blue line shows the median. (Color
figure online)

is clearly beneficial on MG, on BAS and RWC the benefit is less clear. On BAL, we
do not see a benefit and for d ∈ {30, 50} we even see a clear benefit of not using
clique constraints. Each of the graphs from BAL with d ∈ {30, 50} has at least
4541 maximal cliques—and therefore initial clique constraints—, whereas the
BAL graphs for d = 10 and the RWC graphs yeast and usair have at most 581
maximal cliques and all other graphs have at most 102.

The probably most surprising finding is the choice of the separation routine:
while the fractional variant is a quite fast algorithm and yields tighter dual
bounds, the simpler integral separation performs better in practice. This is in
stark contrast to seemingly similar scenarios like TSP or Steiner problems, where
the former is considered by default. In our case, the latter—being very fast and
called more rarely—is seemingly strong enough to find effective cutting planes
that allow the ILP solver to achieve its computations fastest. This is particularly
true when combined with the addition of node variables (detailed later). In fact,
Cnint is the only choice that can completely solve all large graphs in BAL.

Adding node variables (and relaxing the integrality on the edge variables)
nearly always pays off significantly (cf. Fig. 1a, 1b). Figure 1d shows that the
models without node variables require many more B&B-nodes. In fact, looking
more deeply into the data, Cnint requires roughly as few B&B-nodes as Cfrac
without requiring the overhead of the more expensive separation routine. Only
for BAS with |V | ∈ {20, 30}, the configurations without node variables are faster;
on these instances, our algorithms only require 2–6.5 B&B-nodes (median).

Dependency of Running Time on the Optimal Value. Since the instances
optimal value OPT determines the final size of the ILPWalk instance, it is natural
to expect the running time of W to heavily depend on OPT. Figure 1c shows that
this is indeed the case. The new models are less dependent on the solution size,
as, e.g., witnessed by Cn,c

int in the same figure.



Experimental Study of ILP Formulations for Longest Induced Path 99

Practical Strength of the Root Relaxations. For our new models, we may
ask how the integer optimal solution value and the value of the LP relaxation
(obtained by any cut-based implementation with exact fractional separation)
differ, see Fig. 2a. The gap increases for larger values of OPT. Interestingly, we
observe that the density of the instance seems to play an important role: for BAS
and BAL, the plot shows obvious clusters, which—without a single exception—
directly correspond to the different parameter settings as labeled. Denser graphs
lead to weaker LP bounds in general.

Figure 2b shows the relative improvement to the LP relaxation when adding
clique constraints for MG instances. On the other hand for every instance of BAS
and BAL the root relaxation did not change by adding clique constraints.

7 Conclusion

We propose new ILP models for LongestInducedPath and prove that they
yield stronger relaxations in theory than the previous state-of-the-art. Moreover,
we show that they—generally, but also in particular in conjunction with further
algorithmic considerations—clearly outperform all known approaches in practice.
We also provide strengthening inequalities based on cliques in the graph and
prove that they form a hierarchy when increasing the size of the cliques.

It could be worthwhile to separate the proposed clique constraints (at least
heuristically) to take advantage of their theoretical properties without overload-
ing the initial model with too many such constraints. As it is unclear how to
develop an efficient such separation scheme, we leave it as future research.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009)

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

3. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)
4. Bektaş, T., Gouveia, L.: Requiem for the Miller-Tucker-Zemlin subtour elimination

constraints? EJOR 236(3), 820–832 (2014)
5. Berman, P., Schnitger, G.: On the complexity of approximating the independent

set problem. Inf. Comput. 96(1), 77–94 (1992)
6. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating

treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2),
238–255 (1995)

7. Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. SAGE
Publishing, Thousand Oaks (2013)

8. Buckley, F., Harary, F.: On longest induced paths in graphs. Chin. Quart. J. Math.
3(3), 61–65 (1988)

9. Bökler, F., Chimani, M., Wagner, M.H., Wiedera, T.: An experimental study of
ILP formulations for the longest induced path problem (2020). arXiv:2002.07012
[cs.DS]

http://arxiv.org/abs/2002.07012


100 F. Bökler et al.

10. Chen, Y., Flum, J.: On parameterized path and chordless path problems. In: CCC,
pp. 250–263 (2007)

11. Chimani, M., Gutwenger, C., Juenger, M., Klau, G.W., Klein, K., Mutzel, P.:
The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on
Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC (2013).
www.ogdf.net

12. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Obtaining optimal k-cardinality
trees fast. J. Exp. Algorithmics 14, 5:2.5–5:2.23 (2010)

13. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Strong formulations for 2-node-
connected Steiner network problems. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.)
COCOA 2008. LNCS, vol. 5165, pp. 190–200. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85097-7 18

14. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJ. Complex Syst. 1695, 1–9 (2006). http://igraph.sf.net

15. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs
in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010.
LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17517-6 36

16. Fischetti, M.: Facets of two Steiner arborescence polyhedra. Math. Program. 51,
401–419 (1991)

17. Fischetti, M., Salazar-Gonzalez, J.J., Toth, P.: The generalized traveling salesman
and orienteering problems. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Sales-
man Problem and Its Variations. Combinatorial Optimization, vol. 12, pp. 609–662.
Springer, Boston (2007). https://doi.org/10.1007/0-306-48213-4 13

18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., San Francisco (1979)

19. Gavril, F.: Algorithms for maximum weight induced paths. Inf. Process. Lett.
81(4), 203–208 (2002)

20. Gleixner, A., et al.: The SCIP optimization suite 6.0. ZIB-Report 18-26, Zuse
Institute Berlin (2018). https://scip.zib.de

21. Goemans, M.X.: The steiner tree polytope and related polyhedra. Math. Program.
63, 157–182 (1994)

22. Goemans, M.X., Myung, Y.S.: A catalog of Steiner tree formulations. Networks
23, 19–28 (1993)

23. Golovach, P.A., Paulusma, D., Song, J.: Coloring graphs without short cycles and
long induced paths. Discrete Appl. Math. 167, 107–120 (2014)

24. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988)

25. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182(1), 105–142
(1999)

26. Jackson, M.O.: Social and Economic Networks. Princeton University Press,
Princeton (2010)

27. Jaffke, L., Kwon, O., Telle, J.A.: Polynomial-time algorithms for the longest
induced path and induced disjoint paths problems on graphs of bounded mim-
Width. In: IPEC. LIPIcs, vol. 89, pp. 21:1–13 (2017)

28. Kaminski, J., Schober, M., Albaladejo, R., Zastupailo, O., Hidalgo, C.: Moviegalax-
ies - Social Networks in Movies. Harvard Dataverse, V3 (2018)

29. Lozin, V., Rautenbach, D.: Some results on graphs without long induced paths.
Inf. Process. Lett. 88(4), 167–171 (2003)

30. Matsypura, D., Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: On exact solution
approaches for the longest induced path problem. EJOR 278, 546–562 (2019)

www.ogdf.net
https://doi.org/10.1007/978-3-540-85097-7_18
https://doi.org/10.1007/978-3-540-85097-7_18
http://igraph.sf.net
https://doi.org/10.1007/978-3-642-17517-6_36
https://doi.org/10.1007/978-3-642-17517-6_36
https://doi.org/10.1007/0-306-48213-4_13
https://scip.zib.de


Experimental Study of ILP Formulations for Longest Induced Path 101

31. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3(1), 23–28 (1965)
32. Nesetril, J., de Mendez, P.O.: Sparsity - Graphs, Structures, and Algorithms. Algo-

rithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27875-4

33. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)
34. Polzin, T.: Algorithms for the Steiner problem in networks. Ph.D. thesis, Saarland

University, Saarbrücken, Germany (2003)
35. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series

in Discrete Mathematics and Optimization. Wiley, New York (1999)
36. Uno, T., Satoh, H.: An efficient algorithm for enumerating chordless cycles and

chordless paths. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS
2014. LNCS (LNAI), vol. 8777, pp. 313–324. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11812-3 27

https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-319-11812-3_27
https://doi.org/10.1007/978-3-319-11812-3_27


Handling Separable Non-convexities
Using Disjunctive Cuts

Claudia D’Ambrosio1(B), Jon Lee2, Daphne Skipper3,
and Dimitri Thomopulos4

1 LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
dambrosio@lix.polytechnique.fr

2 Department of IOE, University of Michigan, Ann Arbor, MI, USA
jonxlee@umich.edu

3 Department of Mathematics, U.S. Naval Academy, Annapolis, MD, USA
skipper@usna.edu

4 Department of Energy, Process and System Engineering,
Università di Pisa, Pisa, Italy
dimitri.thomopulos@unipi.it

Abstract. D’Ambrosio, Lee, and Wächter (2009, 2012) introduced an
algorithmic approach for handling separable non-convexities in the con-
text of global optimization. That algorithmic framework calculates lower
bounds (on the optimal min objective value) by solving a sequence of
convex MINLPs. We propose a method for addressing the same setting,
but employing disjunctive cuts (generated via LP), and solving instead
a sequence of convex NLPs. We present computational results which
demonstrate the viability of our approach.

Keywords: MINLP · Separable nonconvexity · Disjunctive cuts

Introduction

We consider non-convex global-optimization problems of the form

min f0(x) +
∑n

j=1 g0,j(xj)

subject to:
fi(x) +

∑n
j=1 gi,j(xj) ≤ 0, for i = 1, . . . , m;

Lj ≤ xj ≤ Uj , for j = 1, . . . , n,

C. D’Ambrosio and D. Thomopulos were supported by a public grant as part of the
Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.
This research benefited from the support of the FMJH Program PGMO and from the
support of EDF. J. Lee was supported in part by ONR grant N00014-17-1-2296 and
LIX, École Polytechnique. D. Skipper was supported in part by ONR grant N00014-
18-W-X00709.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 102–114, 2020.
https://doi.org/10.1007/978-3-030-53262-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_9


Separable Non-convexity via Disjunctive Cuts 103

where the fi are convex (i = 0, . . . ,m) and the gi,j are univariate but not
necessarily convex (i = 0, . . . , m; j = 1, . . . , n). So all of the non-convexity is
assumed to be separable. We assume that all of the functions are continuous
and sufficiently smooth. We may have that some of the variables are restricted
to be integers, but this does not directly matter for our approach.

An algorithm for this class of problems was studied in [8,9]. A key aspect
of that algorithm is to develop and refine a convex Mixed Integer Nonlinear
Program (MINLP) relaxation. The algorithm is based on making a piecewise-
convex under-estimator for each gi,j , by identifying the concave intervals and
using secant under-estimation on them, to get a convex MINLP relaxation —
binary variables are used to manage the piecewise functions. Refinement of the
piecewise-convex under-estimator is carried out by adding further breakpoints
on the concave intervals. After each new breakpoint, a convex MINLP is solved.

Our goal is to use the same starting relaxation, but to relax its integrality,
resulting in a continuous, convex Nonlinear Program (NLP). At each iteration,
rather than using further breakpoints to tighten the relaxation, we use a Lin-
ear Program (LP) to generate a cut, an inequality that is not in the original
formulation, but is valid for the formulation and tightens the relaxation. In par-
ticular, we iteratively introduce disjunctive cuts as a much more efficient means
of improving the NLP relaxation. The efficiency is realized by solving an LP and
a convex NLP at each iteration, rather than an expensive convex MINLP.

In Sect. 1, we describe our piecewise-convex under-estimation model. For ease
of exposition and economy of notation, we confine our attention to a single
univariate function g on domain [L,U ]. So what we propose applies separately
to each of the gi,j defined above. In Sect. 2, we describe a method for tightening
our under-estimator using disjunctive cuts, plus some improvements to our basic
approach. In Sect. 3, we describe our successful computational results. In Sect. 4,
we make some brief conclusions and indicate some plans for future work.

1 A Piecewise-Convex Under-Estimator

Our framework is similar to that of [8,9], with our focus being on optimization
models in which all of the non-convexity is separable, with each (univariate)
summand being continuous on a finite interval and piecewise sufficiently smooth.
In our development, we focus on how to handle each such non-convex summand.

Toward that end, we consider treating a non-convex univariate function g :
[L,U ] → R, where L < U are real. We assume that g is continuous on [L,U ] and
g is piecewise-defined over a finite set of T ≥ 1 closed subintervals of [L,U ] so
that g is twice continuously differentiable on each associated open subinterval.
To formalize our notation, we assume that g is sub-divided by points pi,

L =: p0 < p1 < p2 < . . . < pT := U,

so that g is twice continuously differentiable on (pi−1, pi), for i = 1, 2, . . . , T .
In this section, we develop a convex under-estimator for g (essentially the

same as was used in [9]). Toward this end, we assume that g is either convex



104 C. D’Ambrosio et al.

or concave on each interval Ii := [pi−1, pi], for i = 1, 2, . . . , T . We note that
g could be convex or concave on consecutive intervals. Let H := {1, 2, . . . , T}
be the set of indices of these intervals, which we partition into Ȟ := {i ∈ H :
g is convex on Ii} and Ĥ := {i ∈ H : g is not convex on Ii}. Note that g is
concave on interval Ii, for i ∈ Ĥ; and if g is linear on interval Ii, then i ∈ Ȟ.

We employ a set of binary variables zi, i = 1, . . . , T − 1, in order to express
g as a separable function of continuous “interval variables” δi, for i = 1, . . . , T ,
using the so-called “delta method” (see [4, pp. 282–283] and [18, Chapter 3], for
example). We want to write the variable x ∈ [L,U ] as a function of the interval
variables in a certain disciplined manner. Specifically,

x = p0 +
∑T

i=1 δi, (1)

where for each i = 1, . . . , T :

0 ≤ δi ≤ pi − pi−1, and (2)
δi > 0 =⇒ δj = pj − pj−1, for 1 ≤ j < i. (3)

Condition (3) dictates that if δi is positive, then all δj “to the left” (i.e., j < i)
should be at their upper bounds (as specified by (2)). In this way, every value
of x ∈ [L,U ] is associated with a unique solution of (1).

We accomplish this with the constraints:

z1(p1 − p0) ≤ δ1 ≤ p1 − p0; (4)
zi(pi − pi−1) ≤ δi ≤ zi−1(pi − pi−1), for i = 2, 3, . . . , T − 1; (5)

0 ≤ δT ≤ zT−1(pT − pT−1); (6)
zi ∈ {0, 1}, for i = 1, . . . , T − 1, (7)

which drive the correct behavior of the δi variables. Note that for a particular
x̄ ∈ [L,U ], the values of the (ordered) binary z variables form a sequence of
1s followed by a sequence of 0s, where the index ix̄ of the first 0 indicates the
interval Iix̄ that contains x̄, so that

δi =

⎧
⎪⎨

⎪⎩

pi − pi−1, for i < ix̄;
x̄ − pi−1, for i = ix̄;
0, for i > ix̄.

Now we can express g(x) as a separable function of the δ-variables,

g(x) =
∑T

i=1 g(pi−1 + δi) − ∑T−1
i=1 g(pi),

giving us access to g on the individual subintervals of [L,U ]. Our goal now
is to give a piecewise-convex under-estimator for g. So we use g as its own
convex under-estimator on the subintervals where g is convex, and replace g
with a secant under-estimator on the subintervals where g is not convex. Our
piecewise-convex under-estimator for g is

g(x) =
∑T

i=1 yi + g(p0), (8)



Separable Non-convexity via Disjunctive Cuts 105

with

yi ≥
(

g(pi) − g(pi−1)
pi − pi−1

)

δi, for i ∈ Ĥ, (secant under-estimator) (9)

and

yi ≥ g(pi−1 + δi) − g(pi−1), for i ∈ Ȟ. (under-estimation by g itself) (10)

Notice that in the secant under-estimation (9), the right-hand side is linear in
δi, and is 0 for δi = 0 and is g(pi) − g(pi−1) when δi = pi − pi−1.

[10] uses a related approach where concave separable quadratics are extracted
from indefinite non-separable quadratics, and then under-estimated by secants.

2 Disjunctive Cuts

Our under-estimator g can be quite far from g on the concave subintervals of
[L,U ]. In [9], the algorithmic strategy is to branch at points interior to Ii, for
i ∈ Ĥ, to get tighter lower bounds on the concave segments of g. In doing so, we
are faced with solving a convex MINLP at every stage of the overall algorithm.

Our strategy is to use disjunctive cuts to iteratively tighten our formulation,
with the goal of reducing the number of branching nodes that would be required
for globally optimizing. In contrast to the algorithm of [9], we solve convex NLPs
rather than convex MINLPs, thereby decreasing the computational burden as
we seek to improve the global lower bound in the overall solution process.

2.1 Disjunctive Cuts in General

We take an aside now to review disjunctive cuts (see [2]). This sub-section is self
contained, and the notation is not meant to coincide with its earlier usage. For
example, here we have x ∈ R

n. Let

P := {x ∈ R
n : Ax ≤ b},

D1 := {x ∈ R
n : D1x ≤ f1},

D2 := {x ∈ R
n : D2x ≤ f2}.

In its typical usage, P would be (a subset of) the inequalities describing a
polyhedral relaxation of a non-convex model, and D1

∨ D2 would be a disjunction
(i.e., x ∈ D1 or x ∈ D2) that is valid for the non-convex model.

It is well known that we can characterize the set of all linear cuts α�x ≤ β
that are valid for X := conv ((P ∩ D1) ∪ (P ∩ D2)), via the cone

K :=

{(
α

β

)
∈ R

n+1 : ∃ π1, π2, γ1, γ2 ≥ 0, with

α� = π�
1 A + γ�

1 D1, α� = π�
2 A + γ�

2 D2, β ≥ π�
1 b + γ�

1 f1, β ≥ π�
2 b + γ�

2 f2

}
.



106 C. D’Ambrosio et al.

Notice how, for π1, π2, γ1, γ2 ≥ 0, the inequality π�
� (Ax ≤ b)+γ�

� (D�x ≤ f �),
which we can alternatively write as (π�

� A+γ�
� D�)x ≤ (π�

� b+γ�
� f �), is valid for

P ∩D�, for � = 1, 2. This implies that if α� = π�
� A+γ�

1 D� and β ≥ π�
� b+γ�

� f �,
then α�x ≤ β is valid for P ∩ D�.

The so-called “cut-generating linear program” with respect to an x̄ ∈ P is

max
{

α�x̄ − β :
(

α

β

)

∈ K

}

. (CGLP)

Because K is a cone, CGLP either has a maximum value of 0 or is unbounded.
If the maximum value is 0, then x̄ ∈ X. Otherwise, the LP is unbounded, and
any direction

(
α
β

)
with α�x̄ − β > 0 gives a violated valid cut α�x ≤ β.

Typically, we bound K by using a so-called “normalization constraint”, so
that CGLP always has a finite optimum. See [11] for an understanding of how
to properly solve CGLP using an appropriate normalization. For an example of
the use of a CGLP that is very relevant to our setting, see [15–17] for treating
indefinite non-separable quadratics, and [3] for an implementation of some of
those ideas more broadly.

2.2 Our Disjunction

Now we return to our setting (see Sect. 1). To improve upon the secant under-
estimators on the concave portions of g, we generate cuts based on disjunctions
of the following form. Choosing ψ ∈ (0, pk − pk−1) for some k ∈ Ĥ, we let

Dk
1 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(yk, δk, ∗) : δk ≤ ψ
︸ ︷︷ ︸

λ1

, yk ≥
(

g(pk−1 + ψ) − g(pk−1)
ψ

)

δk

︸ ︷︷ ︸
ω1,k

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

and

Dk
2 :=

⎧
⎪⎨

⎪⎩
(yk, δk, ∗) : δk ≥ ψ

︸ ︷︷ ︸
λ2

,

yk ≥
(

g(pk) − g(pk−1 + ψ)
pk − (pk−1 + ψ)

)

(δk − ψ) + g(pk−1 + ψ) − g(pk−1)
︸ ︷︷ ︸

ω2,k

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where “∗” is a place-holder for additional variables in the CGLP (the red anno-
tations define variables that will play the role of the γ-variables in the CGLP)

This disjunction corresponds to making a pair of secant under-estimators,
one on [pk−1, pk−1 + ψ] and one on [pk−1 + ψ, pk]. But note that we are not
advocating for refining the set of intervals à la [9]; rather, we want to include
some of the lower-bounding power of such a branching refinement (which would
come at the substantial cost of solving a further convex MINLP) with a cut
(which only leads to a further convex NLP).



Separable Non-convexity via Disjunctive Cuts 107

An important consideration is which additional variables and constraints to
include in our CGLP, playing the role of P in the previous section. We also need
to address the selection of k and ψ.

Suppose that we have a “current solution” to a relaxation, including values

δ̄1, δ̄2, . . . , δ̄T ; z̄1, z̄2, . . . , z̄T−1; ȳ1, ȳ2, . . . , ȳT . (11)

We choose k ∈ Ĥ so that the secant approximation for g on Ik is “bad” at the
current solution. This means that g(pk−1+ δ̄k) 
 ȳk, so we choose k ∈ Ĥ so that
the difference g(pk−1 + δ̄k) − ȳk is maximized. Then we choose ψ = pk−1 + δ̄k,
in the context of the disjunction Dk

1

∨ Dk
2 .

Now, we turn to the more subtle topic of describing which variable and
inequalities comprise P = {x : Ax ≤ b}. The variable-space for the CGLP
should include all δ-, z-, and y-variables corresponding to g and the following
inequalities (the red annotations define variables that will play the role of the
π-variables in the CGLP):

zi(pi − pi−1) − δi ≤ 0, for i = 1, 2, . . . , T − 1; μ�,i

−δT ≤ 0; μ�,T

δ1 ≤ p1 − p0; ν�,1

−zi−1(pi − pi−1) + δi ≤ 0, for i = 2, 3, . . . , T ; ν�,i

−z1 ≤ 0; ρ�,0

zT−1 ≤ 1; ρ�,1(
g(pi)−g(pi−1)

pi−pi−1

)
δi − yi ≤ 0, for i ∈ Ĥ \ {k}. ω�,i

Note that we omit the secant inequality for Ik because it is implied by our
disjunctive secants.

We also need to include something to represent the convex pieces of g. That
is, we would like to use yi for i ∈ Ȟ in a constraint similar to (10), but it should
be linearized at the point (δ̄i, ȳi) for use in an LP:

g(pi−1 + δ̄i) − g(pi−1) + g′(pi−1 + δ̄i)(δi − δ̄i) − yi ≤ 0, for i ∈ Ȟ. ω�,i (12)

Note that we use this linearization only in the CGLP. We propose to solve the
overall model relaxation as a convex NLP, including (10), directly.

Additional possibilities for inclusion in P for forming CGLP are:

– linearizations of (10) at other points;
– the variables (δ, z, and y) and constraints corresponding to other univariate

functions in the formulation, but maybe only those univariate functions that
operate on the same x-variable as g.

The CGLP is designed to seek to separate the current solution (to our relax-
ation) using a linear inequality. In particular, we have values (11), and so we
may seek an inequality of the form

∑T
i=1 aiδi +

∑T−1
i=1 bizi +

∑T
i=1 ciyi ≤ β (*)



108 C. D’Ambrosio et al.

that is violated by (11). We do this by solving our version of the CGLP:

max
∑T

i=1 aiδ̄i +
∑T−1

i=1 biz̄i +
∑T

i=1 ciȳi − β (13)
subject to:

ai = −μ�,i + ν�,i +
(

g(pi) − g(pi−1)
pi − pi−1

)

ω�,i, for i ∈ Ĥ \ {k}, � = 1, 2; (14)

ai = −μ�,i + ν�,i + g′(pi−1 + δ̄i)ω�,i, for i ∈ Ȟ, � = 1, 2; (15)

ak = −μ1,k + ν1,k +
(

g(pk−1 + ψ) − g(pk−1)
ψ

)

ω1,k + λ1; (16)

ak = −μ2,k + ν2,k +
(

g(pk) − g(pk−1 + ψ)
pk − pk−1 − ψ

)

ω2,k − λ2; (17)

b1 = (p1 − p0)μ�,1 − (p2 − p1)ν�,2 − ρ�,0, for � = 1, 2; (18)
bi = (pi − pi−1)μ�,i − (pi+1 − pi)ν�,i+1, for i = 2, . . . , T − 2, � = 1, 2; (19)
bT−1 = (pT−1 − pT−2)μ�,T−1 − (pT − pT−1)ν�,T + ρ�,1, for � = 1, 2; (20)
ci = −ω�,i, for i = 1, . . . , T, � = 1, 2; (21)
β ≥ (p1 − p0)ν1,1 + ρ1,1 (22)

−
∑

i∈Ȟ

(
g(pi−1 + δ̄i) − g(pi−1) − g′(pi−1 + δ̄i)δ̄i

)
ω1,i + ψλ1;

β ≥ (p1 − p0)ν2,1 + ρ2,1 (23)

−
∑

i∈Ȟ

(
g(pi−1 + δ̄i) − g(pi−1) − g′(pi−1 + δ̄i)δ̄i

)
ω2,i

−
(

−ψ
g(pk) − g(pk−1 + ψ)

pk − (pk−1 + ψ)
+ g(pk−1 + ψ) − g(pk−1)

)

ω2,k − ψλ2;

μ�,i ≥ 0, for i = 1, . . . , T, � = 1, 2; (24)
ν�,i ≥ 0, for i = 1, . . . , T, � = 1, 2; (25)
ρ�,j ≥ 0, for j = 0, 1, � = 1, 2; (26)
ω�,i ≥ 0, for i = 1, . . . , T, � = 1, 2; (27)
λ� ≥ 0, for � = 1, 2. (28)

2.3 Possible Improvements and Another Disjunction: Inviting the
z-variables to the Party

In this section, we describe three ideas, the first two of which we have tested,
for inviting the z-variables to the disjunctive party.

Improvement to P. Model relaxations similar to ours can be solved much
faster when the convex constraints (10) are linearized (and thus weakened, unfor-
tunately) so that we are in the realm of LP rather than NLP. [6,7] suggests that
these constraints can be tightened via a “perspective reformulation” (see [12])



Separable Non-convexity via Disjunctive Cuts 109

and then linearized and thus weakened, but hopefully for a net benefit. In par-
ticular, (10) becomes:

yi ≥ zi−1 g(pi−1 + δi/zi−1) − zi−1 g(pi−1), for i ∈ Ȟ, (29)

(where z0 := 1 if 1 ∈ Ȟ). Inequalities (29) are convex by the perspective-
reformulation definition and can be linearized with standard techniques. One
could carry this out directly, but we proceed as follows: we linearize (10) as (12)
only for the conceptual purpose of using within P to set up our CGLP; that is,
we strengthen (12) via the perspective reformulation, and then linearize only to
strengthen our CGLP.

Improvement to Dk
1

∨Dk
2 . We can attempt to improve (i.e., tighten) the

representation of our disjunction that was based on secant inequalities. We can
see that δk ≤ ψ =⇒ zk = 0, and δk ≥ ψ =⇒ zk−1 = 1. So we could include zk = 0
in Dk

1 and zk−1 = 1 in Dk
2 , which implies a slightly different and potentially

stronger CGLP.

Another Disjunction. Related to the last idea, we can make a direct disjunc-
tion on a zk that we could use to generate disjunctive cuts. That is, we could
use the disjunction

Zk
0 := {(zk, ∗) : zk = 0}

∨
Zk

1 := {(zk, ∗) : zk = 1},

choosing k based on z̄k being fractional. It is well known that a diversity of cuts
can be quite effective, so we propose to use disjunctive cuts based on Z0

∨ Z1

as well as ones based on D1

∨ D2. Note that in forming the CGLP based on the
disjunction Z0

∨ Z1, we should include in P the secant inequality for Ik (i.e., (9)
for i = k).

3 Computational Experiments

As a proof of concept, we tested our ideas on challenging non-linear continuous
knapsack-type problems of the form:

min f(x1, . . . , xn) + g(x0)
subject to:

CL ≤ ∑n
j=0 rjxj ≤ CU ;

0 ≤ xj ≤ 1, j = 0, 1, . . . , n,

where CL, CU , rj ∈ R
+ for j = 0, 1, . . . , n, f : R

n �→ R is convex, and the
single univariate g is a highly non-convex function. In particular, we defined
f(x1, . . . , xn) as a convex quadratic, namely

∑n
i=1

∑n
j=1 Qijxixj , where Q :=

Q̃�Q̃ and Q̃ is randomly generated. Note that f is convex by the definition of Q.
The convexity of f and the minimization objective drive (x1, . . . , xn) toward 0
at optimality. By choosing 0 < CL < CU appropriately, we can drive the solution
into a range where x0 is in a concave portion of g, thus stressing our relaxation.

We generated ten test instances. For g, we used two types of functions,
designed to be difficult (see Fig. 1):



110 C. D’Ambrosio et al.

1. g(x0) := s · x0 − 2 cos(hπx0)
hπ − x0 sin(hπx0), and

2. g(x0) := d(sin((hπx0) + 2eπ + sin−1(m
d ))) + m((hπx0) + 2eπ + sin−1((m

d ))2 +
v((hπx0) + 2eπ + sin−1(m

d )),

where s is randomly generated (with a uniform distribution) on [−4,+4], h on
[7, 15], d on {100, 200, 300}, e on {−3,−2}, m on {−2,−1}, v on {10, 15, 20}.
Entries in the vector r are uniformly randomly generated on [1, 200]. CL and
CU are chosen so that the value of x0, when (x1, . . . , xn) = 0, is in a centrally-
located concave interval of g. The first type of example only puts local stress on
the relaxation; the second type of example puts global stress on the relaxation, as
interpolating across the full domain of x0 can result in a very poor underestimate
of g in the range where x0 is feasible (when (x1, . . . , xn) = 0).

Fig. 1. Example of the function of type 1 (left) and type 2 (right).

We generated 5 instances with n = 3 for each of the two types of functions g.
All experiments were performed on a single machine equipped with an Intel

Xeon E5649 processor clocked at 2.53 GHz and 50 GB RAM. We used open-
source solvers like IPOPT 3.12.8, Bonmin 1.8.6, and Couenne 0.5 to solve
convex NLPs, convex MINLPs, and non-convex (MI)NLPs, respectively. As for
the MILPs (solved within Bonmin and Couenne), we used IBM CPLEX 12.6.

We tested and compared three strategies: the basic approach we have outlined
(called “Alg” in the tables), the improvement of the relaxation with the Per-
spective Reformulation (29) (“Alg+PC”), and the improvement using Dk

1

∨ Dk
2

(“Alg+IDC”). We have not yet tested the modifications in tandem.
Table 1 summarizes the performance of the algorithm when employing each of

the three cut-generating strategies, and applied to each of our ten test instances.
In particular, the algorithm iteratively adds violated cuts to the convex NLP
relaxation, then solves the strengthened convex MINLP. For each instance and
strategy, we present the objective-function value of the convex MINLP, along
with the number of iterations of cut generation (an iteration limit of 300 was
set). The strategy Alg+PC most frequently requires the fewest iterations among
the three strategies, making it the fastest. Among the five instances for which
the Alg+PC strategy reaches the iteration limit, the final solution obtained with



Separable Non-convexity via Disjunctive Cuts 111

this strategy is better (i.e., greater lower bound) in three cases, and equivalent
in one of the two remaining instances. Strategy Alg+IDC sometimes finds the
best solution, but often requires the most iterations.

Table 1. Results on the solution of the convex MINLP obtained after strengthening the
convex NLP relaxation by adding iteratively the cuts based on the different strategies

Inst. Strategy CMINLP #iter Inst. Strategy CMINLP #iter

1 Alg 1.07 18 6 Alg 502.44 300

1 Alg+PC 1.07 12 6 Alg+PC 506.85 300

1 Alg+IDC 1.11 69 6 Alg+IDC 502.44 300

2 Alg 2.09 36 7 Alg 502.48 300

2 Alg+PC 2.15 22 7 Alg+PC 505.81 300

2 Alg+IDC 2.09 38 7 Alg+IDC 502.92 300

3 Alg 2.56 221 8 Alg 246.46 300

3 Alg+PC 2.57 60 8 Alg+PC 252.14 300

3 Alg+IDC 2.66 300 8 Alg+IDC 246.46 300

4 Alg −2.10 300 9 Alg 504.40 300

4 Alg+PC −2.10 29 9 Alg+PC 504.40 300

4 Alg+IDC −2.13 26 9 Alg+IDC 504.40 300

5 Alg 2.70 73 10 Alg 587.70 300

5 Alg+PC 2.72 63 10 Alg+PC 587.70 300

5 Alg+IDC 2.70 300 10 Alg+IDC 589.60 300

In Table 2 we compare the strategies by defining a measure of the impact
of disjunctive cuts. In particular, for each instance (one per row) and each
strategy (one per block of 3 columns), we display the values of GAP1 :=
100 · GO−CMINLP

GO−NLP , GAP2 := 100 · GO−MINLP
GO−NLP , and GAP3 := 100 · GO−CNLP

GO−NLP ,
where GO is the global optimum value of the non-convex MINLP problem, NLP
is the optimal value of the convex NLP relaxation, MINLP is the optimal value
of the convex MINLP relaxation, CNLP is the optimal value of the convex NLP
relaxation after applying the disjunctive cuts, and CMINLP is the optimal value
of the convex MINLP relaxation after applying disjunctive cuts.

Most importantly, GAP3 measures the effectiveness of disjunctive cuts on
closing the gap in the convex NLP relaxation (initial gap is 100). We can see that
with all three strategies substantial gap is often closed using the disjunctive cuts.
Comparing across the approaches, Alg+IDC usually gives the greatest effect from
the disjunctive cuts.

By imposing integrality and solving a single convex MINLP, we can compare
gaps obtained via convex MINLP versus convex NLP: GAP2 vs 100 (no disjunc-
tive cuts) and GAP1 vs GAP3 (with disjunctive cuts). Generally, we obtain much
smaller gaps in the first of each pair, but at the cost of solving a convex MINLP.



112 C. D’Ambrosio et al.

Table 2. Results per instance using the basic algorithm (Alg), the algorithm with per-
spective cuts (Alg+PC), and the algorithm with improved disjunctive cuts (Alg+IDC).

Inst. Alg Alg+PC Alg+IDC

GAP1 GAP2 GAP3 GAP1 GAP2 GAP3 GAP1 GAP2 GAP3

1 4.25 4.25 81.43 8.38 8.38 79.01 2.42 4.25 29.67

2 15.62 15.62 80.78 22.70 27.06 79.72 15.62 15.62 79.54

3 4.57 4.57 98.28 8.27 8.88 79.39 0.83 4.57 18.82

4 0.34 1.96 80.37 0.69 3.96 74.37 1.66 1.96 76.91

5 88.34 88.34 99.38 94.36 94.47 99.21 88.34 88.34 93.10

6 7.34 7.34 93.26 12.33 13.63 92.24 7.34 7.34 41.12

7 8.20 8.20 89.62 14.31 14.88 92.74 8.16 8.20 42.62

8 9.77 9.77 93.16 17.02 17.61 90.73 9.77 9.77 50.65

9 7.32 7.32 92.70 15.19 15.19 86.48 7.32 7.32 74.71

10 4.08 4.08 93.85 8.31 8.31 88.87 3.93 4.08 47.93

Note that GAP2 is the same for Alg and Alg+IDC, because they use the same
NLP relaxation; while Alg+PC uses a different relaxation, so GAP2 is different.
Comparing GAP1 vs GAP2, we see several instances where the disjunctive cuts
close much of the remaining gap when included in the single convex MINLP;
e.g., instance 4 using Alg or Alg+PC, and instances 1 and 3, using Alg+IDC.
Again, comparing across the approaches, Alg+IDC is usually the most effective
strategy of the three.

To conclude, strategy Alg+PC seems to be the most promising both on the
speed of convergence and on the strengthening of the convex MINLP problem,
while strategy Alg+IDC gives the strongest disjunctive cuts.

As a future direction, we plan to explore a hybrid Alg+PC+IDC strategy,
and to experiment with including a diversity of disjunctive cuts (e.g., those
produced from the disjunction described at the end of Sect. 2). Finally, we have
concentrated on lower bounds, but we plan to experiment with incorporating
branching to get a complete algorithm for reaching global optimality.

4 Conclusions and Outlook

We have introduced a technique for using disjunctive cuts so as to improve a frame-
work for handling mathematical-optimization models where the non-convexities
are separable. The efficiency is realized by solving an LP and a convex NLP at
each iteration, rather than an expensive convex MINLP. We have presented pre-
liminary computational work to demonstrate the promise of our methodology. Fur-
ther work will center on enhancing and tuning the method to efficiently handle
models coming from real-world applications as the minimization of the ripple effect
(see, e.g., [13]) or the optimization of the design of bandpass and low-pass filters



Separable Non-convexity via Disjunctive Cuts 113

(see, e.g., [14]). Optimization models with non-convexities are indeed typical of
electromagnetic problems where the outputs are often characterized by a strongly
sinusoidal or generally periodic trend (see [1,5]).

References

1. Alexander, C.K., Sadiku, M.N.: Fundamentals of Electric Circuits. McGraw-Hill
Education, Boston (2000)

2. Balas, E.: Disjunctive Programming. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00148-3

3. Belotti, P.: Disjunctive cuts for nonconvex MINLP. In: Lee, J., Leyffer, S. (eds.)
Mixed Integer Nonlinear Programming. IMA, vol. 154, pp. 117–144. Springer, New
York (2012). https://doi.org/10.1007/978-1-4614-1927-3 5

4. Bradley, S.P., Hax, A.C., Magnanti, T.L.: Applied Mathematical Programming.
Addison-Wesley, Reading (1977)

5. Ceraolo, M., Poli, D.: Fundamentals of Electric Power Engineering: From Electro-
magnetics to Power Systems. Wiley, New York (2014)

6. D’Ambrosio, C., Frangioni, A., Gentile, C.: Strengthening convex relaxations of
mixed integer non linear programming problems with separable non convexities.
In: Rocha, A., Costa, M., Fernandes, E. (eds.) Proceedings of the XIII Global
Optimization Workshop (GOW 2016), pp. 49–52 (2016)

7. D’Ambrosio, C., Frangioni, A., Gentile, C.: Strengthening the sequential convex
MINLP technique by perspective reformulations. Optim. Lett. 13(4), 673–684
(2018). https://doi.org/10.1007/s11590-018-1360-9

8. D’Ambrosio, C., Lee, J., Wächter, A.: A global-optimization algorithm for mixed-
integer nonlinear programs having separable non-convexity. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 107–118. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04128-0 10

9. D’Ambrosio, C., Lee, J., Wächter, A.: An algorithmic framework for MINLP with
separable non-convexity. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear
Programming. IMA, vol. 154, pp. 315–347. Springer, New York (2012). https://
doi.org/10.1007/978-1-4614-1927-3 11

10. Fampa, M., Lee, J., Melo, W.: On global optimization with indefinite quadratics.
EURO J. Comput. Optim. 5(3), 309–337 (2016). https://doi.org/10.1007/s13675-
016-0079-6

11. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts.
Math. Program. 128(1), 205–230 (2011)

12. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer
programs. Math. Program. 106(2), 225–236 (2006)

13. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: Torque ripple minimization for a per-
manent magnet synchronous motor using a modified quasi-Z-source inverter. IEEE
Trans. Power Electron. 34(4), 3819–3830 (2019)

14. Quendo, C., Rius, E., Person, C., Ney, M.: Integration of optimized low-pass filters
in a bandpass filter for out-of-band improvement. IEEE Trans. Microw. Theory
Tech. 49(12), 2376–2383 (2001)

15. Saxena, A., Bonami, P., Lee, J.: Disjunctive cuts for non-convex mixed integer
quadratically constrained programs. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.)
IPCO 2008. LNCS, vol. 5035, pp. 17–33. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68891-4 2

https://doi.org/10.1007/978-3-030-00148-3
https://doi.org/10.1007/978-3-030-00148-3
https://doi.org/10.1007/978-1-4614-1927-3_5
https://doi.org/10.1007/s11590-018-1360-9
https://doi.org/10.1007/978-3-642-04128-0_10
https://doi.org/10.1007/978-1-4614-1927-3_11
https://doi.org/10.1007/978-1-4614-1927-3_11
https://doi.org/10.1007/s13675-016-0079-6
https://doi.org/10.1007/s13675-016-0079-6
https://doi.org/10.1007/978-3-540-68891-4_2
https://doi.org/10.1007/978-3-540-68891-4_2


114 C. D’Ambrosio et al.

16. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed inte-
ger quadratically constrained programs: extended formulations. Math. Program.
124(1–2), 383–411 (2010)

17. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed inte-
ger quadratically constrained programs: projected formulations. Math. Program.
130(2), 359–413 (2011)

18. Wilson, D.: Polyhedral methods for piecewise-linear functions. Ph.D. thesis, Uni-
versity of Kentucky (1998)



Improving Proximity Bounds Using
Sparsity

Jon Lee1, Joseph Paat2(B), Ingo Stallknecht2, and Luze Xu1

1 Department of Industrial and Operations Engineering, University of Michigan,
Ann Arbor, USA

2 Department of Mathematics, ETH Zürich, Zürich, Switzerland
joseph.paat@ifor.math.ethz.ch

Abstract. We refer to the distance between optimal solutions of integer
programs and their linear relaxations as proximity . In 2018 Eisenbrand
and Weismantel proved that proximity is independent of the dimension
for programs in standard form. We improve their bounds using results
on the sparsity of integer solutions. We first bound proximity in terms of
the largest absolute value of any full-dimensional minor in the constraint
matrix, and this bound is tight up to a polynomial factor in the number
of constraints. We also give an improved bound in terms of the largest
absolute entry in the constraint matrix, after efficiently transforming
the program into an equivalent one. Our results are stated in terms of
general sparsity bounds, so any new sparsity results immediately improve
our work. Generalizations to mixed integer programs are also discussed.

Keywords: Proximity · Sparsity · Mixed integer programming

1 Introduction

Let A ∈ Z
m×n with rank(A) = m, c ∈ Z

n, and b ∈ Z
m. Denote the largest

absolute value of a minor of A of order k ∈ {1, . . . , m} by

Δk := Δk(A) := max{|det(B)| : B is a k × k submatrix of A}.

Note that Δ1 = ‖A‖∞ is the largest absolute entry of A. For simplicity, we set
Δ := Δm. We consider the standard form integer program

max{c
ᵀ
z : Az = b, z ∈ Z

n
≥0} (IP)

and its linear relaxation

max{c
ᵀ
x : Ax = b, x ∈ R

n
≥0}. (LP)

We assume that (IP) is both feasible and bounded.
Given an optimal vertex solution x∗ to (LP), we investigate the question

of (LP) to (IP) proximity: can we bound the distance from x∗ to some opti-
mal solution z∗ of (IP)? We refer to any bound τ on ‖x∗ − z∗‖1 as a proximity
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 115–127, 2020.
https://doi.org/10.1007/978-3-030-53262-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_10


116 J. Lee et al.

bound. Proximity bounds have a variety of implications in the theory of integer
programming. For example, a proximity bound of τ translates into a bound of
τ · ‖c‖∞ on the so-called integrality gap [7,12,13]. Furthermore, strong prox-
imity bounds reduce the time needed for a local search algorithm to find an
optimal (IP) solution starting from an optimal (LP) solution, see, e.g. [10].

One of the first seminal results on proximity is by Cook et al. [7], who estab-
lished that there exists an optimal solution z∗ to (IP) satisfying

‖z∗ − x∗‖∞ ≤ n · max{Δk : k ∈ {1, . . . , m}}. (1)

Cook et al. actually consider problems in inequality form, i.e., with constraints
Ax ≤ b rather than Ax = b and x ≥ 0, but their results easily translate to the
standard form setting. A closer analysis reveals that Δ suffices for the standard
form problem rather than max{Δk : k ∈ {1, . . . , m}} stated in (1). Furthermore,
if we naively extend (1) to a bound on proximity in terms of the �1-norm, then
we obtain ‖z∗ − x∗‖1 ≤ n2Δ. Another closer analysis gives us the bound

‖z∗ − x∗‖1 ≤ (m + 1)nΔ. (2)

See the proof of Lemma 3 for the two ‘closer analyses’ referred to above. Cook
et al.’s bound has been generalized to various problems including those with sepa-
rable convex objective functions [12,13,23] or with mixed integer constraints [19],
and extended to alternative data parameters such as k-regularity [16,24] and the
magnitude of Graver basis elements [11].

The proximity bound in (2) depends on the dimension n. In 2018 Eisenbrand
and Weismantel [10] proved that proximity is independent of the dimension by
establishing the bound

‖z∗ − x∗‖1 ≤ m(2m · ‖A‖∞ + 1)m. (3)

Eisenbrand and Weismantel use the so-called Steinitz Lemma with the �∞-
norm [22] in their proof of (3). Their proof can be modified using the norm
‖x‖∗ = ‖B−1x‖∞, where B is an m × m submatrix of A with |det(B)| = δ, to
obtain the bound

‖z∗ − x∗‖1 ≤ m(2m + 1)m · Δ. (4)

The proximity bounds (3) and (4) also hold for standard form problems with
additional upper bound constraints on the variables. Oertel et al. established
that the upper bound ‖z∗ − x∗‖1 ≤ (m + 1) · (Δ − 1) holds for most problems,
where ‘most’ is defined parametrically with b treated as input [17].

As for lower bounds on proximity, it is not difficult to come up with examples
demonstrating ‖z∗ − x∗‖1 ≥ m · (Δ − 1) and ‖z∗ − x∗‖1 ≥ ‖A‖m∞. Aliev et al. [3]
give a tight lower bound Δ−1 on proximity in terms of the �∞-norm when m = 1.
However, it remains an open question if (2), (3), or (4) is tight in general.

1.1 Statement of Results and Overview of Proof Techniques

The focus of this paper is to create stronger proximity bounds. Recall that
Δ := Δm. Our first main result is an improvement over (4) for fixed Δ. We
always consider the logarithm log(·) to have base two.



Improving Proximity Bounds Using Sparsity 117

Theorem 1. For every optimal (LP) vertex solution x∗, there exists an optimal
(IP) solution z∗ such that

‖z∗ − x∗‖1 < 3m2 log(
√

2m · Δ1/m) · Δ.

Theorem 1 demonstrates that proximity in the �1-norm between (IP) solu-
tions and (LP) vertex solutions is bounded by a polynomial in m and Δ. We
focus on vertex solutions because proximity may depend on n for general non-
vertex (LP) solutions. For example, suppose that c = 0 and take any feasible
solution to (LP), which is optimal in this case, such that each of the n compo-
nents is in 1/2 + Z.

Our second main proximity result is in terms of ‖A‖∞ after A is transformed
by a suitable unimodular matrix. Recall that a unimodular matrix U ∈ Z

m×m

satisfies |det(U)| = 1, so the m × m minors of UA have the same magnitudes as
those of A. Moreover, the optimal solutions of (IP) are the same as the optimal
solutions to

max{c
ᵀ
z : UAz = Ub, z ∈ Z

n
≥0}. (U - IP)

Given an m × m submatrix B of A, we can find a unimodular matrix U in
polynomial time such that UB is upper triangular. The Hermite normal form
provides one method for computing such U , see [20]. If B satisfies |det(B)| = Δ,
then Δ ≤ ‖UB‖m∞, and we can apply Theorem 1 to obtain the bound

‖z∗ − x∗‖1 < 3m2 log(
√

2m · ‖UB‖∞) · ‖UB‖m∞. (5)

The previous bound is predicated on the knowledge of an m × m submatrix
of maximum absolute determinant, which is NP-hard to find [15]. However, Di
Summa et al. [8] established that this submatrix can be approximated in polyno-
mial time. In particular, they demonstrated that there exists an m×m submatrix
B of A satisfying

Δ ≤ |det(B)| · (2 log(m + 1))m/2 (6)

that can be found in time polynomial in m and n.1 We can use this approximate
largest absolute determinant to derive our second main result. We denote the
linear relaxation of (U - IP) by (U - LP).

Theorem 2. Let B be an m × m submatrix B of A satisfying (6) and U ∈
Z
m×m a unimodular matrix such that UB is upper triangular. Then for every

optimal (U - LP) vertex solution x∗, there exists an optimal (U - IP) solution
z∗ satisfying

‖z∗ − x∗‖1 < 3m2 log(2
√

m log(m + 1) · ‖UB‖∞) · (2 log(m + 1))m/2 · ‖UB‖m∞.

1 The approximation result of Di Summa et al. involves an ε factor of precision and
the running time is polynomial in m, n, 1/ε. For the sake of presentation, we have
fixed this ε to 1/m and obtain a polynomial time algorithm in m, n.



118 J. Lee et al.

It is worth reemphasizing that the proximity bound in Theorem2 can be deter-
mined in polynomial time, which is in contrast to the bound in (5), and the
dependence on m is significantly less than the bound in (3).

The proofs of Theorems 1 and 2 are based on combining proof techniques
of Cook et al. [7] with results on the sparsity of optimal solutions to (IP). The
support of a vector x ∈ R

n is defined as

supp(x) := {i ∈ {1, . . . , n} : xi �= 0}.

A classic theorem of Carathéodory states that | supp(x∗)| ≤ m for every vertex
solution of (LP). It turns out that the minimum support of an optimal solution
to (IP) is not much larger; denote this value by

S := min {| supp(z∗)| : z∗ is an optimal solution for (IP)} .

Aliev et al. [2,3] established that

S ≤ m + log
(√

det(AA
ᵀ
)
)

≤ 2m log(2
√

m · ‖A‖∞). (7)

For other results regarding sparsity, see [9,18] for general A and [4–6,21] for
matrices that form a Hilbert basis. See also the manuscript of Aliev et al. [1],
who give improved sparsity bounds for feasible solutions to special classes of inte-
ger programs and provide efficient algorithms for finding such solutions. Using
sparsity we derive the following proximity bound, which forms the basis for
Theorems 1 and 2.

Lemma 3. For every optimal (LP) vertex solution x∗, there exists an optimal
(IP) solution z∗ such that

‖z∗ − x∗‖1 < (m + 1) · S · Δ.

Lemma 3 improves (2) by replacing the dependence on n to S. Lemma 3
is stated for a generic sparsity bound, so one could use it together with (7) to
achieve a proximity bound in terms of Δ and ‖A‖∞. In order to provide a bound
for proximity that is uniform in the data parameter, we prove a new sparsity
result in terms of Δ. A bound in terms of Δ is also of interest because it is
invariant under unimodular transformations of A.

Theorem 4. There exists an optimal (IP) solution z∗ such that

| supp(z∗)| < 2m log
(√

2m · Δ1/m
)
.

Our proximity bounds can be generalized to mixed integer programs. Given
an index set I ⊆ {1, . . . , n}, the mixed integer program with integrality con-
straints indexed by I is

max{c
ᵀ
z : Az = b, z ≥ 0, zi ∈ Z ∀ i ∈ I}. (MIP)

Similarly to [2, Corollary 4], we establish the extension of Theorem 4 to (MIP).



Improving Proximity Bounds Using Sparsity 119

Corollary 5. There exists an optimal (MIP) solution z∗ satisfying

| supp(z∗)| < m + 2m log
(√

2m · Δ1/m
)

= 2m log
(
2
√

m · Δ1/m
)
.

We obtain the following proximity result by applying Corollary 5.

Corollary 6. For every optimal (LP) vertex solution x∗, there exists an optimal
(MIP) solution z∗ such that

‖z∗ − x∗‖1 < 3m2 log(2
√

m · Δ1/m) · Δ.

Our results also extend to integer programs in general form. Let A ∈ Z
m×n

and B ∈ Z
m×d be matrices satisfying rank([A,B]) = m. Note that it is not

necessary to assume that rank(A) = m in our general form results. Let C ∈ Z
t×d,

c ∈ Z
n+d, b1 ∈ Z

m, and b2 ∈ Z
t. The general form integer program is

max

{

c
ᵀ
z :

[A, B] z = b1

[ 0, C ] z ≤ b2
, z ∈ Z

n+d, zi ≥ 0 ∀ i ∈ {1, . . . , n}
}

. (GIP)

We define the general form linear program (GLP) similarly. Previously cited
bounds on proximity hold for (GIP). However, our analysis reveals that proximity
for (GIP) depends on the potentially smaller data parameter

δ := max

⎧
⎨

⎩
|det(E)| : E is any submatrix of

(
A B
0 C

)

defined using the first m rows

⎫
⎬

⎭
.

If t = 0 and d = 0, then (GIP) is a standard form problem and δ = Δm(A).
If m = 0 and n = 0, then (GIP) is an inequality form problem and δ =
max{Δk(C) : k ∈ {1, . . . , d}}.

Corollary 7. For every optimal (GLP) vertex solution x∗, there exists an opti-
mal (GIP) solution z∗ such that

‖z∗ −x∗‖1 < min{m+ t+1, n+ d} ·
(
min
{
n−m, 2m · log(

√
2m · δ1/m)

}
+ d
)

· δ.

The proximity bound in Corollary 7 matches the best known bounds in both the
standard form setting and the inequality form setting.

Going beyond integer linear optimization problems, it would be ideal for
proximity bounds in terms of sparsity to extend to integer programs with sep-
arable convex objective functions (see [12,13] for similarities between the linear
and separable convex setting). However, for separable convex maximization prob-
lems, strong proximity bounds do not exist for exact solutions, in general, even
though sparsity results apply. In contrast, for separable convex minimization
problems, strong sparsity bounds do not exist for exact solutions, in general,
even though the classic proximity techniques apply.

The paper is structured as follows. In Sect. 2, we present our proofs of the prox-
imity bound derived from a generic sparsity bound (Lemma3) and the sparsity



120 J. Lee et al.

bounds (Theorem 4 and Corollary 5). Then in Sect. 3, we provide the proofs of the
proximity results for the standard form integer programs (Theorems 1 and 2). The
proof of the mixed integer case (Corollary 6) is omitted because it is the same as
the proof of the pure integer case except that a different sparsity bound is applied.
Additionally, we provide a proof of the proximity result in the general form setting
(Corollary 7).

2 Proofs Regarding Sparsity

Given A ∈ R
m×n and I ⊆ {1, . . . , n}, we let AI ∈ R

m×|I| denote the columns
of A indexed by I. If I = {i} for some i ∈ {1, . . . , n}, then Ai := AI . Similarly,
given u ∈ R

n, we let uI ∈ R
|I| denote the components of u indexed by I.

Proof (of Lemma 3). We prove the result by projecting the optimization prob-
lems onto the union of the supports of x∗ and an optimal (IP) solution with
minimal support. Let z̄ ∈ Z

n
≥0 be an optimal (IP) solution with minimum sup-

port. By the definition of S we have | supp(z̄)| = S. As x∗ is an optimal vertex
solution of (LP) we also have | supp(x∗)| ≤ m. Define

H := supp(x∗) ∪ supp(z̄),

and note that

|H| = | supp(x∗) ∪ supp(z̄)| ≤ | supp(x∗)| + | supp(z̄)| ≤ | supp(x∗)| + S. (8)

If n = m, then A is invertible and there exists a unique solution A−1b to the
system Ax = b. In this case x∗ = z̄ = A−1b. Therefore, ‖x∗ − z̄‖1 = 0. For the
rest of the proof, we assume that n > m and H = {1, . . . , |H|}.

Consider the optimization problems

max
{
c
ᵀ
Hz : AHz = b, z ∈ Z

|H|
≥0

}
(IP2)

and

max
{
c
ᵀ
Hx : AHx = b, x ∈ R

|H|
≥0

}
. (LP2)

Observe that x∗
H is an optimal vertex solution for (LP2), and z̄H is an optimal

solution for (IP2).
Rewrite (LP2) in inequality form:

max
{
c
ᵀ
Hx : AHx = b,−IHx ≤ 0, x ∈ R

|H|},

where IH is the |H|×|H| identity matrix. Partition the rows of −IH into D1 and
D2 such that D1z̄H < D1x

∗
H and D2z̄H ≥ D2x

∗
H . Define the pointed polyhedral

cone
K :=

{
u ∈ R

|H| : AHu = 0, D1u ≤ 0, D2u ≥ 0
}

. (9)

Observe that z̄H − x∗
H ∈ K. By (8) we see that the rank of AH is at least

| supp(x∗)| because the columns of A corresponding to the support x∗ are linearly



Improving Proximity Bounds Using Sparsity 121

independent. Thus, the dimension of K, which we denote by dim(K), is at most
| supp(x∗)| + S − rank(AH) ≤ S.

Let U := {u1, . . . , ut} ⊆ R
|H| \{0} be a set of vectors that generate the

extreme rays of K, i.e.,

K =
{ t∑

i=1

λiu
i : λi ≥ 0 ∀ i ∈ {1, . . . , t}

}

and ui satisfies |H| − 1 linearly independent constraints in (9) at equality for
each i ∈ {1, . . . , t}.

Claim 8. For each ũ ∈ U we have

| supp(ũ)| ≤ m + 1. (10)

Also, each ũ ∈ U can be scaled to have integer components and satisfy ‖ũ‖∞ ≤ Δ.

Proof. Set T := supp(ũ) and without loss of generality assume T = {1, . . . , |T |}.
Recall that ũ satisfies a set of |H| − 1 linearly independent constraints in (9)
at equality. One such set is composed of |H| − |T | constraints from the system
D1ũ ≤ 0, D2ũ ≥ 0 and |T | − 1 constraints from 0 = AH ũ = AT ũT . By this
choice of constraints it follows that

| supp(ũ)| = |T | ≤ m + 1

and |T | − 1 ≤ rank(AT ) ≤ min{|T |,m}. Recalling n > m and rank(A) = m,
the latter inequalities imply that there exists an index set T satisfying T ⊆ T ⊆
{1, . . . , n}, AT ∈ Z

m×(m+1) and rank(AT ) = m.
Let ū ∈ R

m+1 denote the vector obtained by appending m + 1 − |T | zeros
to ũT . There exists an index set I ⊆ T with |I| = m and AI invertible. Let i
denote the singleton in T \ I. Because AT ū = 0, we have

AI ūI = −Aiūi.

If ūi = 0, then ū = 0 and so ũ = 0. However, this contradicts that ũ ∈ U . Hence,
ūi �= 0. Scale ū such that |ūi| = |det(AI)|. Applying Cramer’s rule demonstrates
that

|ūj | = |det(AI∪{i}\{j})| ∀ j ∈ I.

Hence, ū, and consequently ũ, can be scaled to have integer components with
‖ũ‖∞ ≤ Δ. ��
For the rest of the proof we assume that each ũ ∈ U is scaled such that the
conclusions of Claim 8 hold.

Recall z̄H − x∗
H ∈ K. By Carathéodory’s theorem, there exists an index set

I ⊆ {1, . . . , t} with |I| ≤ dim(K) ≤ S and λi ∈ R≥0 for each i ∈ I such that

z̄H − x∗
H =

∑

i∈I

λiu
i.



122 J. Lee et al.

Set w :=
∑

i∈Iλi�ui. Using standard techniques in proximity proofs (see, e.g., [7,
Theorem 1]), it can be verified that z̃ := z̄H − w is a feasible solution to (IP2),
x̃ := x∗

H + w is a feasible solution to (LP2), and

c
ᵀ
H z̄H + c

ᵀ
Hx∗

H = c
ᵀ
H z̃ + c

ᵀ
H x̃. (11)

Because x∗
H is optimal for (LP2), we have cᵀ

H x̃ ≤ cᵀ
Hx∗

H . Combining this with (11)
proves that cᵀ

H z̃ ≥ cᵀ
H z̄H . Because z̄H is optimal for (IP2), we have cᵀ

H z̃ = cᵀ
H z̄H

and z̃ is also an optimal solution to (IP2).
Define z∗ ∈ Z

n
≥0 component-wise to be

z∗
i :=

{
z̃i if i ∈ {1, . . . , |H|}
0 otherwise.

By construction z∗ is an optimal solution to (IP) because Az∗ = AH z̃ = AH z̄H =
b and cᵀz∗ = cᵀ

H z̃ = cᵀ
H z̄H = cᵀz̄. By (8) and (10), we arrive at the final result:

‖z∗ − x∗‖1 = ‖z̃ − x∗
H‖1 ≤

∑

i∈I

(λi − λi�)‖ui‖1

<(m + 1) · S · ‖ui‖∞ ≤ (m + 1) · S · Δ.

��
Proof (of Theorem 4). Let z∗ be an optimal solution of (IP) with minimum
support. The definition of S states that S := | supp(z∗)|. Define Ã ∈ Z

m×S as
the submatrix of A corresponding to the support of z∗. If S ≤ 2m, then the
result holds. Thus, assume that S > 2m, which implies log(S/m) < (S/m) − 1.
Theorem 1 in Aliev et al. [2] states that

S < m + log
(√

det(ÃÃ
ᵀ
)
)

.

The Cauchy-Binet formula for det(ÃÃ
ᵀ
) states that

det(ÃÃ
ᵀ
) =

∑

B is an m×m
submatrix of Ã

det(B)2.

See, e.g., [14]. Combining the previous inequalities yields

S < m + log
(√

det(ÃÃ
ᵀ
)
)

≤ m + log

(√(
S

m

)
Δ2

)

≤m + log
(
Sm/2Δ

)
= m +

m

2
log
(

S

m

)
+

m

2
log(m) + log(Δ)

<m +
m

2

(
S

m
− 1
)

+
m

2
log(m) + log(Δ) =

S

2
+

m

2
+

m

2
log(m) + log(Δ).



Improving Proximity Bounds Using Sparsity 123

Therefore,

| supp(z∗)| = S < m + m log(m) + 2 log(Δ) ≤ 2m log
(√

2m · Δ1/m
)
.

��
Proof (of Corollary 5). Let z∗ be an optimal (MIP) solution with minimal sup-
port. By applying Theorem4 to the standard form integer program with con-
straint matrix AI and right hand side b−AJ z∗

J ∈ Z
m, where J := {1, . . . , n}\I,

we see that
| supp(z∗

I)| < 2m log
(√

2m · Δ1/m
)
.

Similarly, by considering the standard form linear program with constraint
matrix AJ and right hand side b − AIz∗

I , we see that | supp(z∗
J )| ≤ m. Hence,

| supp(z∗)| ≤ | supp(z∗
J )| + | supp(z∗

I)| ≤ m + 2m log
(√

2m · Δ1/m
)
.

��

3 Results on Proximity

Proof (of Theorem 1). For now assume that m ≥ 2. Combining Lemma3 with
Theorem 4 demonstrates that there exists an optimal (IP) solution z∗ satisfying

‖z∗ − x∗‖1 < (m + 1) · S · Δ

≤ (m + 1) · 2m log(
√

2m · Δ1/m) · Δ

≤ 3m2 log(
√

2m · Δ1/m) · Δ.

This completes the proof when m ≥ 2.
It is left to consider the case m = 1. Here we have Δ = ‖A‖∞. If Δ = 1, then

x∗ is integral and there is nothing to prove. Thus, assume Δ ≥ 2. The proximity
bound (3) states that there exists an optimal solution z∗ to (IP) satisfying

‖z∗ − x∗‖1 ≤ 2 · ‖A‖∞ + 1 = 2Δ + 1 < 3Δ ≤ 3m2 log(
√

2m · Δ1/m) · Δ.

This completes the proof. ��
We use the following result to prove Theorem 2.

Lemma 9 (Theorem 1 in [8]). For every ε > 0, there exists an m × m sub-
matrix B of A satisfying

Δ ≤ |det(B)| · (e · ln ((1 + ε) · m))m/2
.

The matrix B can be found in time that is polynomial in m,n, and 1/ε.



124 J. Lee et al.

Setting ε = 1/m in Lemma 9 yields the approximation factor

Δ ≤ |det(B)| · (e · ln (m + 1))m/2

= |det(B)| ·
(

e

log(e)
· log(m + 1)

)m/2

≤ |det(B)| · (2 · log(m + 1))m/2,

which is precisely (6).

Proof (of Theorem 2). Let B be an m × m submatrix of A satisfying (6). There
exists a unimodular matrix U ∈ Z

m×m such that UB is an upper triangular
matrix with non-negative diagonal entries di.

Unimodular matrices preserve the absolute value of m × m determinants, so
|det(B)| = |det(UB)|. By (6) we see that

Δ ≤ |det(B)| · (2 · log(m + 1))m/2 = |det(UB)| · (2 · log(m + 1))m/2

=
( m∏

i=1

di

)
· (2 · log(m + 1))m/2 ≤ ‖UB‖m∞ · (2 · log(m + 1))m/2.

By applying Theorem1 we obtain the bound

‖z∗ − x∗‖1 < 3m2 log(
√

2m · Δ1/m) · Δ

<3m2 log(2
√

m log(m + 1)‖UB‖∞) · (2 log(m + 1))m/2 · ‖UB‖m∞.

This completes the proof. ��
Next, we present a proof of Corollary 7. We advise the reader that the proof

is similar to the proof of Lemma 3.

Proof (of Corollary 7). Let z∗ be an optimal solution to (GIP) with minimal
support on the first n components. Consider the n-dimensional integer program
obtained by fixing the last d variables of (GIP) to the last d components of z∗.
Similarly, consider the n-dimensional linear program obtained by fixing the last
d variables of (GLP) to the last d components of x∗. These lower dimensional
problems are in standard form. Therefore, by applying Theorem4 to these lower
dimensional problems and recalling Δm(A) ≤ δ we see that

S̄ := | supp(z∗) ∩ {1, . . . , n}| ≤ 2m · log(
√

2m · δ1/m)

and
| supp(x∗) ∪ supp(z∗)| ≤ min{n, S̄ + m} + d.

We project the original optimization problems onto the variables correspond-
ing to | supp(x∗) ∪ supp(z∗)| to bound proximity. We complete the proof of the
corollary by showing

‖z∗ − x∗‖1 < min{m + t + 1, n + d} · min{n + d − m, S̄ + d} · δ.



Improving Proximity Bounds Using Sparsity 125

As in the proof of Lemma 3, we create a pointed cone from the constraints
defining (GIP). In order to assure a pointed cone, we introduce redundant con-
straints. Let b3 ∈ Z

d be the vector where every component is �‖x∗‖∞� + ‖z∗‖∞,
and define

D :=

⎛

⎝
0 C

−In 0
0 Id

⎞

⎠ ∈ Z
(t+n+d)×(n+d) and f =

⎛

⎝
b2
0
b3

⎞

⎠ ∈ Z
t+n+d.

By construction, z∗ is an optimal solution to the integer program

max

{

c
ᵀ
z :

[A,B]z = b1, Dz ≤ f, z ∈ Z
n+d,

zi = 0 ∀ i ∈ {1, . . . , d + n} \ (supp(x∗) ∪ supp(z∗))

}

,

and x∗ is an optimal vertex solution to the corresponding linear relaxation.
Subdivide the rows of D such that D1z

∗ < D1x
∗ and D2z

∗ ≥ D2x
∗. Define

the polyhedral cone

K :=

⎧
⎨

⎩
u ∈ R

n+d : [A,B]u = 0,

(
D1

−D2

)
u ≤ 0,

ui = 0 ∀ i ∈ {1, . . . , d + n} \ (supp(x∗) ∪ supp(z∗))

⎫
⎬

⎭
.

Observe that z∗ − x∗ ∈ K. Moreover, the introduction of b3 and Id ensures that
rank(D) = n+d and that K is pointed. We bound dim(K) in two ways by count-
ing the number of linearly independent equations in the definition of K. First,
there are m linearly independent constraints of the form [A,B]u = 0 because
rank([A, B]) = m. Second, there are n+d−| supp(x∗)∪supp(z∗)| many linearly
independent constraints of the form ui = 0. Additional linearly independent
equations that are independent from this second set are | supp(x∗) ∩ {1, . . . , n}|
many rows from [A,B]u = 0 corresponding to the independent columns of
supp(x∗) ∩ {1, . . . , n}. Hence, dim(K) can be upper bounded as follows:

dim(K) ≤min{n + d − m, |[supp(x∗) ∪ supp(z∗)] ∩ {n + 1, . . . , n + d}| + S̄}
≤min{n + d − m, d + S̄}.

Let U be a finite set generating the extreme rays of K. The proof of Claim 8
can be used to demonstrate that for each ũ ∈ U we have

| supp(ũ)| ≤ min{m + t + 1, n + d},

and each ũ ∈ U can be scaled such that ũ ∈ Z
n+d and ‖ũ‖∞ ≤ δ. The main

difference that arises when repeating this proof is that the matrices D1 and D2

contain rows of [0, C] rather than simply rows from the identity matrix as was
the case in the proof of Lemma 3. It is this difference that necessitates the choice
of the data parameter δ and dictates its definition.

By Carathéodory’s theorem there exist k ≤ dim(K) vectors u1, . . . , uk ∈
U and coefficients λ1, . . . , λk ∈ R≥0 such that z∗ − x∗ =

∑k
i=1 λiu

i. Because



126 J. Lee et al.

z∗ −∑k
i=1λi�ui is also an optimal solution to (GIP), we can assume without

loss of generality that λ1, . . . , λk < 1 (the reasoning is similar to that in the
proof of Lemma 3). This implies that

‖z∗ − x∗‖1 ≤
k∑

i=1

λi‖ui‖1 < min{m + t + 1, n + d} · dim(K) · δ

≤min{m + t + 1, n + d} · min{n + d − m, S̄ + d} · δ.

This completes the proof. ��

Acknowledgements. J. Lee was supported in part by ONR grant N00014-17-1-2296.

References

1. Aliev, I., Averkov, G., De Loera, J.A., Oertel, T.: Optimizing sparsity over lat-
tices and semigroups. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS,
vol. 12125, pp. 40–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45771-6 4

2. Aliev, I., De Loera, J., Oertel, T., O’Neil, C.: Sparse solutions of linear diophantine
equations. SIAM J. Appl. Algebra Geom. 1, 239–253 (2017)

3. Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra.
To appaear in Mathematical Programming (2019)

4. Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups.
J. Reine Angew. Math. 510, 151–178 (2004)

5. Bruns, W., Gubeladze, J., Henk, M., Martin, A., Weismantel, R.: A counterexample
to an integer analogue of Carathéodory’s theorem. J. Reine Angew. Math. 510,
179–185 (1999)

6. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Carathéodory’s theo-
rem. J. Combin. Theory Ser. B 40(1), 63–70 (1986)

7. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in inte-
ger linear programming. Math. Program. 34, 251–264 (1986)

8. Di Summa, M., Eisenbrand, F., Faenza, Y., Moldenhauer, C.: On largest volume
simplices and sub-determinants. In: Proceedings of SODA 2015, pp. 315–323 (2015)

9. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res.
Lett. 34, 564–568 (2006)

10. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer
programming using the Steinitz lemma. In: Proceedings of SODA 2018, pp. 808–
816 (2018)

11. Eisenbrand, F., Hunkenschröder, C., Klein, K.M., Kouteckỳ, M., Levin, A., Onn, S.:
An algorithmic theory of integer programming. preprint arXiv:1904.01361 (2019)

12. Granot, F., Skorin-Kapov, J.: Some proximity and sensitivity results in quadratic
integer programming. Math. Program. 47, 259–268 (1990)

13. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much
harder than linear optimization. J. ACM 37, 843–862 (1990)

14. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press,
New York (2012)

15. Khachiyan, L.: On the complexity of approximating extremal determinants in
matrices. J. Complex. 11, 138–153 (1995)

https://doi.org/10.1007/978-3-030-45771-6_4
https://doi.org/10.1007/978-3-030-45771-6_4
http://arxiv.org/abs/1904.01361


Improving Proximity Bounds Using Sparsity 127

16. Lee, J.: Subspaces with well-scaled frames. Linear Algebra Appl. 114(115), 21–56
(1989)

17. Oertel, T., Paat, J., Weismantel, R.: The distributions of functions related to para-
metric integer optimization. preprint arXiv:1907.07960 (2019)

18. Oertel, T., Paat, J., Weismantel, R.: Sparsity of integer solutions in the average
case. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 341–353.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3 26

19. Paat, J., Weismantel, R., Weltge, S.: Distances between optimal solutions of mixed-
integer programs. Math. Program. 179, 1–14 (2018)

20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
21. Sebő, A.: Hilbert bases, Carathéodory’s theorem and combinatorial optimization.

In: Proceedings of IPCO 1990, pp. 431–455 (1990)
22. Steinitz, E.: Bedingt konvergente reihen und konvexe systeme. J. Angew. Math.

143, 128–176 (1913)
23. Werman, M., Magagnosc, D.: The relationship between integer and real solutions

of constrained convex programming. Math. Program. 51, 133–135 (1991)
24. Xu, L., Lee, J.: On proximity for k-regular mixed-integer linear optimization. In:

Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019. AISC, vol. 991, pp.
438–447. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4 44

http://arxiv.org/abs/1907.07960
https://doi.org/10.1007/978-3-030-17953-3_26
https://doi.org/10.1007/978-3-030-21803-4_44


Cut and Flow Formulations for the
Balanced Connected k-Partition Problem

Flávio K. Miyazawa1, Phablo F. S. Moura2(B), Matheus J. Ota1,
and Yoshiko Wakabayashi3

1 Institute of Computing, University of Campinas, Campinas, Brazil
fkm@ic.unicamp.br, matheus.ota@students.ic.unicamp.br

2 Department of Computer Science, Federal University of Minas Gerais,
Belo Horizonte, Brazil
phablo@dcc.ufmg.br

3 Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
yw@ime.usp.br

Abstract. For a fixed integer k ≥ 2, the balanced connected k-partition
problem (BCPk) consists in partitioning a graph into k mutually vertex-
disjoint connected subgraphs of similar weight. More formally, given a
connected graph G with nonnegative weights on the vertices, find a par-
tition {Vi}k

i=1 of V (G) such that each class Vi induces a connected sub-
graph of G, and the weight of a class with the minimum weight is as
large as possible. This problem, known to be NP-hard, is used to model
many applications arising in image processing, cluster analysis, operat-
ing systems and robotics. We propose an ILP and a MILP formulation
for BCPk. The first one contains only binary variables and a potentially
large number of constraints that can be separated in polynomial time.
We also present polyhedral results on the polytope associated with this
formulation, introduce new valid inequalities and design separation algo-
rithms. The other formulation is based on flows and has a polynomial
number of constraints and variables. Computational experiments show
that our formulations achieve better results than the other formulations
presented in the literature.

Keywords: Connected partition · Integer linear programming ·
Facet · Polyhedra · Branch-and-cut

1 Introduction

Let G = (V,E) be a connected graph, n := |V | and m := |E|. For an integer
k ≥ 1, as usual, the symbol [k] denotes the set {1, 2, . . . , k}. A k-partition of G

Research partially supported by grant #2015/11937-9, São Paulo Research Foundation
(FAPESP). Miyazawa is supported by CNPq (Proc. 314366/2018-0 and 425340/2016-
3) and FAPESP (Proc. 2016/01860-1). Moura is supported by FAPESP grants
#2016/21250-3 and #2017/22611-2, CAPES, and Pró-Reitoria de Pesquisa da Univer-
sidade Federal de Minas Gerais. Ota is supported by CNPq. Wakabayashi is supported
by CNPq (Proc. 306464/2016-0 and 423833/2018-9).

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 128–139, 2020.
https://doi.org/10.1007/978-3-030-53262-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_11


Cut and Flow Formulations for the Balanced Connected k-Partition Problem 129

is a collection {Vi}i∈[k] of nonempty subsets of V such that
⋃k

i=1 Vi = V , and
Vi ∩ Vj = ∅ for all i, j ∈ [k], i �= j. We refer to each set Vi as a class of the
partition. We say that a k-partition {Vi}i∈[k] of G is connected if G[Vi], the
subgraph of G induced by Vi, is connected for each i ∈ [k].

Let w : V → Q> be a function that assigns weights to the vertices of G. For
every subset V ′ ⊆ V , we define w(V ′) =

∑
v∈V ′ w(v). In the balanced connected

k-partition problem (BCPk), we are given a vertex-weighted connected graph,
and we seek a connected k-partition such that the weight of a lightest class of
this partition is maximized. In other words, for each fixed positive integer k, an
input of BCPk is given by a pair (G,w), with n ≥ k, and the objective is to find
a connected k-partition {Vi}i∈[k] of V such that mini∈[k]{w(Vi)} is maximized.

There are several problems in police patrolling, image processing, data base,
operating systems, cluster analysis, and robotics that can be modeled as a bal-
anced connected partition problem [2,17,19,23]. These different real-world appli-
cations indicate the importance of designing algorithms for BCPk, and reporting
on the computational experiments with their implementations. Not less impor-
tant are the theoretical studies of the rich and diverse mathematical formulations
and the polyhedral investigations BCPk leads to.

2 Some Known Results and Our Contributions

Problems on partitioning a vertex-weighted graph into a fixed number of con-
nected subgraphs with similar weights have been largely investigated in the lit-
erature since early eighties. Such partitions are generally called balanced, and a
number of different functions have been considered to measure this feature.

The balanced connected k-partition problem (BCPk), to be focused here,
is one of these problems. It is closely related to another problem, referred to
as min-max BCPk, whose objective function is to minimize the weight of the
heaviest class. When k = 2, for any instance, an optimal 2-partition for BCPk

is also an optimal solution for min-max BCPk; but it is easy to see that when
k > 2 the corresponding optimal k-partitions may differ.

The unweighted BCPk, restricted version in which all vertices have unit
weight, has also attracted much attention. Dyer and Frieze [10] showed that it is
NP-hard on bipartite graphs. In special, when the input graph is k-connected,
polynomial-time algorithms and other interesting structural results have been
obtained [14,16,18] for BCPk. For the weighted case, Becker et al. [4] proved
that BCPk is already NP-hard on (nontrivial) grid graphs. Chleb́ıková [8]
designed a 4/3-approximation algorithm for BCP2. For BCP3 (resp. BCP4)
on 3-connected (resp. 4-connected) graphs approximation algorithms were pro-
posed by Chataigner et al. [7]. Wu [22] proved that BCPk is NP-hard on
interval graphs; and designed an FPTAS for BCP2 on such graphs. More
recently, Borndörfer et al. [6] designed approximation algorithms for BCPk and
min-max BCPk. Both BCPk and min-max BCPk can be solved in polynomial-
time on trees [5,21]. Many other results on both problems have appeared in the
literature.



130 F. K. Miyazawa et al.

Mixed integer linear programming formulations for BCP2 were proposed
by Matić [20] and for min-max BCPk by Zhou et al. [23]. Matić also pre-
sented a VNS-based heuristic for BCP2, and Zhou et al. devised a genetic algo-
rithm for min-max BCPk. Both authors reported on the computational results
obtained with the proposed formulations and heuristics, but presented no further
polyhedral study of their formulations.

In this work we advance the state of the art for exact algorithms for BCPk

(and also for min-max BCPk). In Sect. 3, we introduce a cut-based ILP formu-
lation for BCPk, and show two stronger valid inequalities for this formulation. A
further polyhedral study is presented in Sect. 4. In Sect. 5, we propose a compact
flow-based MILP formulation for BCPk. In Sect. 6 we discuss polynomial-time
separation routines for the inequalities in the cut formulation. Both of our formu-
lations for BCPk can be used to solve min-max BCPk (and some other variants)
just by changing the objective function. Lastly, the computational experiments
in Sect. 7 show that our formulations outperform the previous formulations in
the literature.

3 Cut Formulation

In this section, we consider that (G,w), where G = (V,E), is the input for BCPk.
The ILP formulation we propose for BCPk, called Ck(G,w), or simply C, is based
on the following central concept. Let u and v be two non-adjacent vertices in
a graph G = (V,E). We say that a set S ⊆ V \ {u, v} is a (u, v)-separator if
u and v belong to different components of G − S. We denote by Γ (u, v) the
collection of all minimal (u, v)-separators in G. In the formulation, we use a
binary variable xv,i, for every v ∈ V and i ∈ [k], that is set to one if and only
if v belongs to the ith class.

max
∑

v∈V

w(v) xv,1

s.t.
∑

v∈V

w(v) xv,i ≤
∑

v∈V

w(v) xv,i+1 ∀i ∈ [k − 1], (1)

∑

i∈[k]

xv,i ≤ 1 ∀v ∈ V, (2)

xu,i + xv,i −
∑

z∈S

xz,i ≤ 1 ∀uv /∈ E,S ∈ Γ (u, v), i ∈ [k], (3)

xv,i ∈ {0, 1} ∀v ∈ V and i ∈ [k]. (4)

Inequalities (1) impose a non-decreasing weight ordering of the classes.
Inequalities (2) require that every vertex is assigned to at most one class. Inequal-
ities (3) guarantee that every class induces a connected subgraph. The objective
function maximizes the weight of the first class. Thus, in an optimal solution
no class will be empty, and therefore it will always correspond to a connected
k-partition of G.



Cut and Flow Formulations for the Balanced Connected k-Partition Problem 131

In Sect. 6 we show that the separation problem for inequalities (3) can be
solved in polynomial time. Thus, the linear relaxation of C can be solved in
polynomial time (see [13]).

Since feasible solutions of formulation Ck(G,w) may have empty classes and
nodes not assigned to any particular class, to refer to these solutions we introduce
the following concept. We say that V = {Vi}k

i=1 is a connected k-subpartition
of G, if it is a connected k-partition of a subgraph (not necessarily proper) of G,
and additionally, w(Vi) ≤ w(Vi+1) for all i ∈ [k − 1]. For such a k-subpartition
V, we denote by ξ(V) ∈ B

nk the binary vector such that its non-null entries are
precisely ξ(V)v,i = 1 for all i ∈ [k] and v ∈ Vi (that is, ξ(V) denotes the incidence
vector of V). To show our next results, let us define the polytope

Pk(G,w) = convex-hull {x ∈ B
nk : x satisfies inequalities (1)−(3) of Ck(G,w)}.

We prove that formulation Ck(G,w) correctly models BCPk. Then, we present
two classes of valid inequalities that strengthen formulation Ck(G,w).

Proposition 1

Pk(G,w) = convex-hull{ξ(V) ∈ B
nk : V is a connected k-subpartition of G}.

Proof. Consider first an extreme point x ∈ Pk(G,w). For each i ∈ [k], we define
the set of vertices Ui = {v ∈ V : xv,i = 1}. It follows from inequalities (1)
and (2) that U := {Ui}k

i=1 is a k-subpartition of G such that w(Ui) ≤ w(Ui+1)
for all i ∈ [k − 1].

To prove that U is a connected k-subpartition, we suppose to the contrary
that there exists i ∈ [k] such that G[Ui] is not connected. Hence, there exist
vertices u and v belonging to two different components of G[Ui]. Moreover, there
is a minimal set of vertices S that separates u and v and such that S ∩ Ui = ∅.
Thus, vector x violates inequalities (3), a contradiction. To show the converse,
consider now a connected k-subpartition V = {Vi}k

i=1 of G. Clearly ξ(V), satisfies
inequalities (1) and (2). Take a fixed i ∈ [k]. For every pair u,v of non-adjacent
vertices in Vi, and every (u, v)-separator S in G, it holds that S∩Vi �= ∅, because
G[Vi] is connected. Therefore, ξ(V) satisfies inequalities (3). ��
Proposition 2. Let u and v be two non-adjacent vertices of G, and let S be a
minimal (u, v)-separator. Let i ∈ [k], and let L = {z ∈ S : w(Pz) > w(V )/(k −
i+1)}, where Pz is a minimum-weight path between u and v in G that contains z.
The following inequality is valid for Pk(G,w):

xu,i + xv,i −
∑

z∈S\L

xz,i ≤ 1. (5)

Proof. Consider an extreme point x of Pk(G,w), and define Vi = {v ∈ V : xv,i =
1} for each i ∈ [k]. Suppose to the contrary that there is j ∈ [k] such that w(Vj) >
w(V )

k−j+1 . Since x satisfies inequalities (1), it holds that
∑

i∈[k]\[j−1] w(Vi) > w(V ),
a contradiction. Thus, if u and v belong to Vi, then there exists a vertex z ∈ S\Li

such that z also belongs to Vi. Therefore, x satisfies inequality (5). ��



132 F. K. Miyazawa et al.

The next class of inequalities was inspired by a result proposed by de Aragão
and Uchoa [1] for a connected assignment problem.

Proposition 3. Let q be a fixed integer such that q ≥ 2, and let S be a subset of
vertices of G containing q distinct pairs of vertices (si, ti), i ∈ [q], all mutually
disjoint. Let N(S) be the set of neighbors of S in V \S. Moreover, let σ : [q] → [k]
be an injective function, and let I = {σ(i) ∈ [k] : i ∈ [q]}. If there is no collection
of q vertex-disjoint (si, ti)-paths in G[S], then the following inequality is valid
for Pk(G,w):

∑

i∈[q]

(
xsi,σ(i) + xti,σ(i)

)
+

∑

v∈N(S)

∑

i∈[k]\I

xv,i ≤ 2q + |N(S)| − 1. (6)

Proof. Suppose to the contrary that there exists an extreme point x of Pk(G,w)
that violates inequality (6). Let us define A =

∑
i∈[q]

(
xsi,σ(i) + xti,σ(i)

)
and

B =
∑

v∈N(S)

∑
i∈[k]\I xv,i. From inequalities (2), we have that A ≤ 2q. Since x

violates (6), it follows that B > |N(S)|−1. Thus B = |N(S)| (because x satisfies
inequalities (2)). Hence, every vertex in N(S) belongs to a class that is different
from those indexed by I. This implies that every class indexed by I contains
precisely one of the q distinct pairs {si, ti}. Therefore, there exists a collection
of q vertex-disjoint (si, ti)-paths in G[S], a contradiction. ��

Kawarabayashi et al. [15] proved that, given an n-vertex graph G and a set
of q pairs of terminals in G, the problem of deciding whether G contains q vertex-
disjoint paths linking the given pairs of terminals can be solved in time O(n2).
Hence, inequalities (6) can be separated in polynomial time when S = V .

4 Polyhedral Results for Unweighted BCPk

This section is devoted to 1-BCPk, the special case of BCPk in which all vertices
have unit weight. In this case, the polytope Pk(G,w) is simply denoted as Pk(G).

We assume that G has a matching of size k, otherwise it is easy to find an
optimal solution. Thus, from now on we assume that n ≥ 2k.

Due to space constraints, we omit the proof of the results stated in this
section.

Theorem 1. Let G be an input for 1-BCPk. Then, the following hold.

(a) The polytope Pk(G) is full-dimensional, that is, dim(Pk(G)) = kn;
(b) For every v ∈ V and i ∈ [k], the inequality xv,i ≥ 0 defines a facet of Pk(G);
(c) For every v ∈ V , the inequality

∑
i∈[k] xv,i ≤ 1 defines a facet of Pk(G).

The next result characterizes when the inequalities (3) define facets of Pk(G).
To present it, we introduce some concepts and notation. Let u and v be non-
adjacent vertices in G, and let S be a minimal (u, v)-separator. Denote by Hu

and Hv the components of G − S that contain u and v, respectively. For any
vertex z in G, denote by Gz (when S is clear from the context) a minimum size



Cut and Flow Formulations for the Balanced Connected k-Partition Problem 133

connected subgraph of G containing z, with the following property: if z ∈ V (Hv),
then Gz contains v (and is contained in Hv); if z ∈ V (Hu), then Gz contains
u (and is contained in Hu); otherwise, Gz contains u and v. Note that, in the
latter case, Gz contains exactly one vertex of S. Clearly, Gz exists (and may not
be unique).

Let i ∈ [k] and z ∈ V (G). We say that Vz is a robust connected (k − i)-
partition of G − Gz if Vz = {Vj}j∈[k]\[i], and |V (Gz)| ≤ |Vj | for all j ∈ [k] \ [i].
We say that G is (u, v, S, i)-robust if for every z ∈ V (G), there is a graph Gz

such that G − Gz has a robust connected (k − i)-partition.
We are now ready to present the mentioned characterization.

Theorem 2. Let u and v be non-adjacent vertices in G, let S be a minimal
(u, v)-separator, and let i ∈ [k]. Then, the inequality xu,i +xv,i −

∑
s∈S xs,i ≤ 1

defines a facet of Pk(G) if and only if G is (u, v, S, i)-robust.

5 Flow Formulation

We present in this section a mixed integer linear programming formulation
for BCPk, called F(G,w), or simply F , that is based on flows in a digraph.

Given a graph G, with G = (V,E), we construct a digraph D = (V ∪ S,A),
where S is a set {s1, . . . , sk} of k new vertices. The arc set A is created by
replacing every edge of G with two arcs with the same endpoints and opposite
directions. Finally, we add an arc from each vertex in S to each vertex of V .

For each arc a ∈ A, we associate a real variable fa that represents the amount
of flow passing through arc a. Then, to relate the flow on the arcs with the
weights on the vertices, for each vertex v ∈ V , we impose that the amount of
flow entering v minus the amount of flow leaving v be precisely w(v) (that is, we
force vertex v to consume w(v) of the flow that enters it). In this way, we can
control that the total amount of flow that each source si sends and spreads to
other vertices corresponds precisely to the total weight of the vertices in the ith
class of the desired partition. We also use binary variables ya (such that ya = 1 if
fa > 0) that allow us to impose that flows from different sources do not mix. In
the MILP formulation given below, the abbreviated form f(T ) and y(T ) stands
for

∑
a∈T f(a) and

∑
a∈T y(a), respectively.

max f(δ+(s1))

s.t. f(δ+(si)) ≤ f(δ+(si+1)) ∀i ∈ [k − 1], (7)



134 F. K. Miyazawa et al.

f(δ−(v)) − f(δ+(v)) = w(v) ∀v ∈ V, (8)
fa ≤ w(V )ya ∀a ∈ A, (9)

y(δ+(si)) ≤ 1 ∀i ∈ [k], (10)

y(δ−(v)) ≤ 1 ∀v ∈ V, (11)
ya ∈ {0, 1} ∀a ∈ A (12)
fa ∈ R≥ ∀a ∈ A (13)

Inequalities (7) impose that the flows sent by sources s1, s2, . . . , sk are in
a non-decreasing order. This explains the objective function. Inequalities (8)
guarantee that each vertex v ∈ V consumes w(v) of the flow that it receives.
By (9), a positive flow can only pass through arcs that are chosen (arcs a for
which y(a) = 1). Inequalities (10) impose that from every source si at most one
arc leaving it transports a positive flow to a single vertex in V .

Inequalities (11) require that every non-source vertex receives a positive flow
from at most one vertex of D. This guarantees that the flows sent by any two
distinct sources do not pass through a same vertex. That is, if a source si sends an
amount of flow, say Fi, this amount Fi is distributed and consumed by a subset of
vertices, say Vi (whose total weight is precisely Fi). Moreover, this “distribution”
guarantees that G[Vi] is connected, and all subsets Vi are mutually disjoint.

It follows from these remarks that formulation Fk(G,w) correctly mod-
els BCPk. Moreover, it has a polynomial number of variables and constraints.

6 Separation Algorithms

We implemented a Branch-and-Cut approach based on the cut formulation that
is introduced in Sect. 3. In what follows, we describe the separation routines for
inequalities (3) and (6) that we designed and implemented.

6.1 Connectivity Inequalities

We focus first on the class of inequalities (3) of Sect. 3, henceforth called connec-
tivity inequalities. We address here its corresponding separation problem: given
a vector x′ ∈ R

nk, find connectivity inequalities that are violated by x′ or prove
that this vector satisfies all such inequalities.

To tackle this problem, given the input graph G = (V,E), for each i ∈ [k], we
define a digraph Di with capacities ci : A(Di) → Q≥ ∪ {∞} assigned to its arcs,
in the following manner. We set V (Di) = {v1, v2 : v ∈ V } and A(Di) = A1 ∪ A2,
where A1 = {(u2, v1), (v2, u1) : {u, v} ∈ E} and A2 = {(v1, v2) : v ∈ V }. We
define ci(a) = x′

v,i if a ∈ A2; and ci(a) = ∞, otherwise. Note that each arc in Di

with a finite capacity (i.e. each arc in A2) is associated with a vertex of G. Now,
for every pair of non-adjacent vertices u, v ∈ V such that x′

u,i + x′
v,i > 1, we find

in Di a minimum (u1, v2)-separating cut. If the weight of such a cut is smaller
than x′

u,i +x′
v,i −1, then it is finite and the vertices of G associated with the arcs



Cut and Flow Formulations for the Balanced Connected k-Partition Problem 135

in this cut give a (u, v)-separator S in G that violates the connectivity inequality
x′

u,i + x′
v,i − ∑

z∈S x′
z,i ≤ 1.

The time complexity to separate the connectivity inequalities depends on
the algorithm used to find a minimum cut. We use Goldberg’s preflow algo-
rithm [12] for maximum flow, whose time complexity is O(ñ2

√
m̃), for a digraph

with ñ vertices and m̃ arcs. Thus, in the worst-case, checking for every i ∈ [k],
and candidate pairs u,v in Di, the time complexity of this separation algorithm
is O(kn4

√
n + m).

Given a (u, v)-separator S, let Hu (resp. Hv) be the connected component of
G − S containing u (resp. v). We now describe a procedure for performing the
lifting of the connectivity inequalities by removing iteratively unnecessary ver-
tices from S. First we remove every vertex z from S such that the neighborhood
of z does not intersect with Hu and Hv. Since removing a vertex from S changes
the components of G − S, we use a Union-Find data structure to update the
components. Next, we use Dijkstra’s algorithm to remove from S the set L, as
described in Proposition 2.

6.2 Cross Inequalities

Now we turn to the separation of inequalities (6) on planar graphs G = (V,E),
restricted to the case S = V . Consider a plane embedding of G, and let F
be the boundary of a face with at least 4 vertices. Take four different vertices,
say s1, s2, t1, t2, that appear in this order in F . Since G is planar, it does not con-
tain vertex-disjoint paths P1 and P2, with endpoints s1, t1 and s2, t2, respectively.
For S = V , inequalities (6) simplifies to xs1,σ(1)+xs2,σ(2)+xt1,σ(1)+xt2,σ(2) ≤ 3.
We refer to these inequalities as cross inequalities.

For the separation problem of the cross inequalities induced by the vertices
in F , where |F | = f , we implemented an O(fk2) time complexity algorithm
(the same complexity mentioned by Barboza [3], without much detail; the algo-
rithms may possibly be different). Next, we give more details on this separation
algorithm.

Let x′ ∈ R
nk be a fractional solution of formulation C and consider a

cyclic ordering of the vertices in F . For every j ∈ [f ], let F [j] be the
j-th vertex in this ordering. Furthermore, we define matrices L1 and R1 such
that, for each j ∈ [f ] and each i ∈ [k], L1[j][i] = maxj′∈[j]{x′

F [j′],i} and
R1[j][i] = maxj′∈[f ]\[j−1]{x′

F [j′],i}. In other words, L1[j][i] (resp. R1[j][i]) corre-
sponds to the maximum value in an entry of x′ indexed by i and by a vertex
that appears before (resp. after) F [j] in the ordering. Clearly, L1 and R1 can be
created in O(fk).

For every j ∈ [f ] \ {1}, and every i1, i2 ∈ [k] with i1 �= i2, we define:

L2[j][i1][i2] =

{
x′

F [1],i1
+ x′

F [2],i2
, if j = 2,

max
{

L2[j − 1][i1][i2]; L1[j − 1][i1] + x′
F [j],i2

}
, otherwise.

Note that, given j ≥ 2 and i1, i2 ∈ [k], L2[j][i1][i2] is the maximum value
of x′

F [j′],i1 + x′
F [j′′],i2 for all j′, j′′ ∈ [j] with j′ < j′′. Our algorithm works as



136 F. K. Miyazawa et al.

follows: for every j ∈ {3, . . . , f − 1} and every i1, i2 ∈ [k] with i1 �= i2, it checks
whether L2[j − 1][i1][i2] + x′

F [j],i1
+ R1[j + 1][i2] > 3, that is, whether there is a

violated cross inequality (w.r.t. F ) such that σ(1) = i1, σ(2) = i2 and t1 = F [j].
Clearly, one may also keep track of the violated inequalities (if any).

7 Computational Results

To compare the performance of our algorithms with the exact algorithms that
have been proposed before [20,23], we ran our experiments on the same classes
of graphs that were considered in the literature, namely grid graphs and random
connected graphs. Our algorithms are based on the two formulations (and further
results) that we described in the previous sections.

To make clear the size of the instances, we use the format gg height width [a|b]
for the grid graphs, and the format rnd n m [a|b] for the random connected
graphs with n vertices and m edges. The character a (resp. b) indicates that the
weights are integers uniformly distributed in the interval [1, 100] (resp. [1, 500]).

The computational experiments were carried out on a PC with Intel(R)
Xeon(R) CPU E5-2630 v4 @ 2.20 GHz, 40 cores, 64 GB RAM and Ubuntu
18.04.2 LTS. The code was written in C++ using the graph library Lemon [9].
We implemented a Branch-and-Cut algorithm based on the cut formulation C
using SCIP [11] and Gurobi 9.0 as the LP solver. We also implemented Branch-
and-Bound algorithms (using only Gurobi 9.0) based on the flow formulation
F , and on the models previously proposed by Matić [20] and Zhou et al. [23].
We used SCIP in our branch-and-cut implementation because, unlike Gurobi,
it allows multiple rounds of cut generation when obtaining fractional solutions
in non-root nodes of the branch-and-bound tree. In order to evaluate strictly
the performance of the described formulations, we deactivated all standard cuts
used by SCIP and Gurobi.

Henceforth, cut refers to the Branch-and-Cut algorithm based on formula-
tion C, while flow refer to the Branch-and-Bound algorithm based on F .

The execution time limit for each instance was set to 1800 s. For each graph
type, we generated 10 instances. In the tables, the column Sol indicates the
number of instances solved, and the column Nodes shows the average number
of nodes explored in the branch-and-bound tree. The column Time either indi-
cates the average time (in seconds) spent to solve some instances (ignoring the
unsolved instances), or indicates, with a dash (-) that none of the 10 instances
could be solved. The minimum time in a row is indicated in boldface, and the
minimum number of nodes explored is underlined.

First we tested the efficiency of the separation routine for the cross inequal-
ities. Using such separation, the algorithm solved all 240 grid instances, but
without separation, only 183 of these instances could be solved within the time
limit. For all these 183 instances, the separation produced a reduction of the
average execution time by a factor greater than 10. From now on, we assume
that cut on grid graphs always separates the cross inequalities.



Cut and Flow Formulations for the Balanced Connected k-Partition Problem 137

Table 1. Computational results for BCP2.

Instance cut flow Matić Zhou et al.

Sol Nodes Time Sol Nodes Time Sol Nodes Time Sol Nodes Time

gg 05 05 a 10 91 0.20 10 919 0.09 10 4,659 0.52 10 2,564 0.45

gg 05 05 b 10 1,136 1.30 10 320,162 19.17 10 540,447 73.77 10 7,341 1.22

gg 05 06 a 10 245 0.49 10 460 0.07 10 75,140 9.38 10 1,843 0.43

gg 05 06 b 10 692 1.12 10 1,592 0.13 10 32,185 5.83 10 4,454 0.91

gg 05 10 a 10 164 0.72 10 500 0.15 10 368,184 57.52 10 12,542 3.27

gg 05 10 b 10 254 0.87 10 806 0.17 10 144,469 27.60 10 18,258 5.13

gg 05 20 a 10 240 2.71 10 454 0.25 1 844,935 228.56 2 116,374 42.32

gg 05 20 b 10 678 6.45 10 1,146 0.34 0 – – 4 2,221,308 522.95

gg 07 07 a 10 200 0.77 10 645 0.14 10 211,299 29.04 10 10,346 2.66

gg 07 07 b 10 740 1.99 10 784 0.18 9 1,360,869 177.56 10 15,657 3.60

gg 07 10 a 10 136 0.85 10 366 0.16 8 871,395 164.53 10 529,336 116.87

gg 07 10 b 10 773 3.22 10 1,304 0.29 5 2,977,315 520.85 9 400,859 66.10

gg 10 10 a 10 179 1.77 10 186 0.20 2 336,860 74.81 6 1,472,514 396.10

gg 10 10 b 10 537 3.24 10 905 0.36 1 404,182 97.20 5 544,515 141.69

gg 15 15 a 10 116 7.05 10 184 0.40 0 – – 0 – –

gg 15 15 b 10 564 17.45 10 696 0.59 0 – – 0 – –

rnd 100 150 a 10 204 1.81 10 206 0.20 10 558,004 129.67 10 1,918 2.06

rnd 100 150 b 10 1,238 9.08 10 531 0.25 10 230,281 50.88 10 1,711 1.77

rnd 100 300 a 10 18 0.16 10 69 0.21 8 370,546 47.67 10 247 1.44

rnd 100 300 b 10 70 0.32 10 57 0.23 8 250,040 43.69 10 565 2.32

rnd 100 800 a 10 3 0.04 10 1 0.30 10 104,655 62.19 10 29 3.29

rnd 100 800 b 10 41 0.17 10 83 0.35 10 228,209 221.98 10 71 3.01

rnd 200 300 a 10 61 2.85 10 519 0.41 7 61,372 56.53 10 1,951 7.04

rnd 200 300 b 10 1,374 28.23 10 849 0.49 7 9,413 11.20 10 2,857 10.71

rnd 200 600 a 10 16 0.40 10 356 0.56 6 87,323 34.40 10 728 9.65

rnd 200 600 b 10 123 1.21 10 515 0.62 6 64,853 70.62 10 995 9.81

rnd 200 1500 a 10 1 0.05 10 1 0.64 6 42,437 91.31 10 3 7.34

rnd 200 1500 b 10 8 0.11 10 303 1.05 5 347,862 380.35 10 241 14.85

rnd 300 500 a 10 40 4.71 10 732 0.72 6 48,026 40.73 10 2,811 28.61

rnd 300 500 b 10 1,079 25.86 10 1,029 0.84 5 8,562 17.01 10 3,629 21.84

rnd 300 1000 a 10 8 0.51 10 614 1.07 6 53,284 58.70 10 982 20.34

rnd 300 1000 b 10 54 1.06 10 1,113 1.39 5 23,831 36.13 10 1,030 19.75

rnd 300 2000 a 10 1 0.09 10 1 1.05 4 234,170 371.89 10 35 25.69

rnd 300 2000 b 10 28 0.48 10 754 1.90 5 96,513 195.54 10 54 80.63

Table 1 shows that for BCP2 the formulations we presented in this work
substantially outperform the previous formulations in the literature. On most of
the instances, flow had the best average execution time. On the other hand,
cut explored a smaller number of nodes in the branch-and-bound tree.

The experiments that we carried out for k > 2 are shown on Table 2.
To compare with the formulation proposed by Zhou et al. [23], which is for
min-max BCPk, we considered the cut and flow formulations with min-max
objective (i.e. minimizing the weight of the kth class), denoted by cut (min-max)
and flow (min-max). We remark that the specific instance that Zhou et al.’s
branch-and-bound solved in 508.93 s, flow solved in 388.67 s.



138 F. K. Miyazawa et al.

Table 2. Computational results for min-max BCPk when k ∈ {2, 3, 4, 5, 6}.

Instance k cut (min-max) flow (min-max) Zhou et al.

Sol Nodes Time Sol Nodes Time Sol Nodes Time

gg 07 10 a 3 0 – – 10 4,177 0.93 2 1,072,107 603.97

gg 07 10 a 4 0 – – 10 25,242 3.86 1 99,880 68.95

gg 07 10 a 5 0 – – 10 1,578,669 247.61 0 – –

gg 07 10 a 6 0 – – 3 3,077,826 482.45 0 – –

rnd 100 150 a 3 10 9,922 223.21 10 1,933 0.74 9 109,799 70.04

rnd 100 150 a 4 0 – – 10 13,404 3.14 4 1,019,886 641.36

rnd 100 150 a 5 0 – – 10 627,636 149.27 0 – –

rnd 100 150 a 6 0 – – 6 2,268,233 682.23 1 205,247 508.93

8 Conclusion and Further Research

We proposed two formulations for Balanced Connected k-Partition Problem:
an ILP and a MILP. While the first one has possibly an exponential amount of
constraints, the second one is a compact formulation based on flows in a digraph.
We reported on the computational results obtained with the implementation of a
Branch-and-Cut algorithm (named cut) for the first formulation and a Branch-
and-Bound algorithm (flow) for the second formulation.

We introduced a new class of valid inequalities for the polytope associated
with the ILP formulation, and implemented a polynomial-time separation rou-
tine for a special subclass on planar graphs that improved greatly the perfor-
mance of the algorithm. For the cardinality version (unit weight), we presented
some further polyhedral results. To the best of our knowledge, a polyhedral
approach to BCPk has not been used before.

Both cut and flow outperform the previous MILP models for BCP2 in the
literature. For BCPk, k > 2, flow has shown to be superior to cut. Moreover,
preliminary computational results for min-max BCPk with k > 2 suggest that
flow with min-max objective function is also superior to other formulations
in the literature. Further experiments are necessary to confirm the efficiency of
the proposed algorithm when k > 2, but the compact flow formulation seems to
be very effective. Additionally, we plan to carry out experiments on real-world
instances. On the theoretical side, it would be interesting to find new strong
valid inequalities, and design efficient separation algorithms for them.

References

1. de Aragão, M.P., Uchoa, E.: The γ-connected assignment problem. Eur. J. Oper.
Res. 118(1), 127–138 (1999)

2. Assunção, T., Furtado, V.: A heuristic method for balanced graph partitioning:
an application for the demarcation of preventive police patrol areas. In: Geffner,
H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS
(LNAI), vol. 5290, pp. 62–72. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88309-8 7

https://doi.org/10.1007/978-3-540-88309-8_7
https://doi.org/10.1007/978-3-540-88309-8_7


Cut and Flow Formulations for the Balanced Connected k-Partition Problem 139

3. Barboza, E.U.: Problemas de classificação com restrições de conexidade flexibi-
lizadas. Master’s thesis, Universidade Estadual de Campinas (1997)

4. Becker, R.I., Lari, I., Lucertini, M., Simeone, B.: Max-min partitioning of grid
graphs into connected components. Networks 32(2), 115–125 (1998)

5. Becker, R.I., Schach, S.R., Perl, Y.: A shifting algorithm for min-max tree parti-
tioning. J. ACM 29(1), 58–67 (1982)

6. Borndörfer, R., Elijazyfer, Z., Schwartz, S.: Approximating balanced graph parti-
tions. Technical report 19–25, ZIB, Takustr. 7, 14195 Berlin (2019)

7. Chataigner, F., Salgado, L.R.B., Wakabayashi, Y.: Approximation and inapprox-
imability results on balanced connected partitions of graphs. Discrete Math. Theor.
Comput. Sci. 9(1) (2007)

8. Chleb́ıková, J.: Approximating the maximally balanced connected partition prob-
lem in graphs. Inf. Process. Lett. 60(5), 225–230 (1996)

9. Dezső, B., Jüttner, A., Kovács, P.: Lemon-an open source C++ graph template
library. Electron. Notes Theor. Comput. Sci. 264(5), 23–45 (2011)

10. Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected
subgraphs. Discrete Appl. Math. 10(2), 139–153 (1985)

11. Gleixner, A., Bastubbe, M., Eifler, L., et al.: The SCIP optimization suite 6.0. T.
Report, optimization online, July 2018. http://www.optimization-online.org/DB
HTML/2018/07/6692.html

12. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35(4), 921–940 (1988)

13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, vol. 2. Springer, Heidelberg (2012)

14. Györi, E.: On division of graph to connected subgraphs. In: Combinatoris (Pro-
ceedings of Fifth Hungarian Colloquium, Koszthely, 1976), vol. I, Colloq. Math.
Soc. János Bolyai, vol. 18, North-Holland, Amsterdam, New York, pp. 485–494
(1978)

15. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. J. Combin. Theory Ser. B 102(2), 424–435 (2012)

16. Lovász, L.: A homology theory for spanning tress of a graph. Acta Math. Acad.
Sci. Hungarica 30, 241–251 (1977)

17. Lucertini, M., Perl, Y., Simeone, B.: Most uniform path partitioning and its use
in image processing. Discrete Appl. Math. 42(2), 227–256 (1993)

18. Ma, J., Ma, S.: An O(k2n2) algorithm to find a k-partition in a k-connected graph.
J. Comput. Sci. Technol. 9(1), 86–91 (1994)

19. Maravalle, M., Simeone, B., Naldini, R.: Clustering on trees. Comput. Stat. Data
Anal. 24(2), 217–234 (1997)

20. Matić, D.: A mixed integer linear programming model and variable neighborhood
search for maximally balanced connected partition problem. Appl. Math. Comput.
237, 85–97 (2014)

21. Perl, Y., Schach, S.R.: Max-min tree partitioning. J. ACM 28(1), 5–15 (1981)
22. Wu, B.Y.: Fully polynomial-time approximation schemes for the max-min con-

nected partition problem on interval graphs. Discrete Math. Algorithms Appl.
04(01), 1250005 (2012)

23. Zhou, X., Wang, H., Ding, B., Hu, T., Shang, S.: Balanced connected task alloca-
tions for multi-robot systems: an exact flow-based integer program and an approx-
imate tree-based genetic algorithm. Expert Syst. Appl. 116, 10–20 (2019)

http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html


Scheduling



Polynomial Scheduling Algorithm
for Parallel Applications on Hybrid

Platforms

Massinissa Ait Aba1,2(B), Lilia Zaourar1, and Alix Munier2

1 CEA, LIST, Computing and Design Environment Laboratory,
91191 Gif Sur Yvette Cedex, France

massinissa.aitaba@gmail.com
2 LIP6-UPMC, 4 place Jussieu, 75005 Paris, France

Abstract. This work addresses the problem of scheduling parallel
applications into hybrid platforms composed of two different types of
resources. We focus on finding a generic approach to schedule applica-
tions represented by directed acyclic graphs that minimises makespan
with performance guarantee. A three-phase algorithm is proposed; the
first two phases consist in solving linear formulations to find the type
of processor assigned to execute each task. In the third phase, we com-
pute the start execution time of each task to generate a feasible schedule.
Finally, we test our algorithm on a large number of instances. These tests
demonstrate that the proposed algorithm achieves a close-to-optimal per-
formance.

Keywords: Scheduling · DAG applications · Makespan · Hybrid
platform · CPU · GPU · Approximation algorithm

1 Introduction

Nowadays, High Performance Computers (HPC) are popular and powerful com-
mercial platform due to the increasing demand for developing efficient computing
resources to execute large parallel applications. In order to increase the comput-
ing power of these platforms while keeping a reasonable level of energy con-
sumption, the heterogeneous platforms have appeared. It is possible to integrate
several types of material resources such that each one is specialised for certain
types of calculations. Thus we have to take into account that the execution time
for any task of the application depends on the type of resource used to execute
it. However, using these platforms efficiently became very challenging. Conse-
quently, more and more attention has been focused on scheduling techniques
for solving the problem of optimizing the execution of parallel applications on
heterogeneous computing systems [1,2].

This work addresses the problem of scheduling parallel applications onto a
particular case of HPC composed of two different types of resources: CPU (Cen-
tral Processing Unit) and GPU (Graphics Processing Unit). These platforms are
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 143–155, 2020.
https://doi.org/10.1007/978-3-030-53262-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_12


144 M. Ait Aba et al.

often called hybrid platform. The number of platforms of the TOP500 1 equipped
with accelerators has significantly increased during the last years. TGCC Curie
supercomputer2 is an example of these platforms.

We focus here in finding a generic approach to schedule applications pre-
sented by DAG (Directed Acyclic Graph) into a hybrid platform that minimises
the completion time of the application by considering communication delays. An
algorithm with three phases has been proposed; the first phase consists in solving
a mathematical formulation (P ′) and then define a new formulation using the
solution obtained. The second phase solves an assignment problem to find the
type of processor affected to execute the tasks (processing element type 1 or 2)
using a linear formulation. In the last phase, we compute the starting execution
time of each task to generate a feasible schedule. Our algorithm has been exper-
imented on a large number of instances and evaluated compared to the exact
solution.

The rest of the paper is organised as follows: Sect. 2 gives a quick overview of
previous research in scheduling strategies on hybrid platforms. Section 3 presents
the detailed problem with mathematical formulation. In Sect. 4, we describe the
proposed algorithm for our problem and the approximation ratio we obtain for
the scheduling problem. Section 5 shows some preliminary numerical results.
Finally, we conclude and provide insights for future work in Sect. 6.

2 Related Work

The problem of scheduling tasks on hybrid parallel platforms has attracted a lot
of attention. In the case where all processors have the same processing power
and there is a cost for any communication (P |prec, com|Cmax), the problem has
been shown to be NP-hard [3].

Several works have studied the problem of scheduling independent tasks on �
(resp. k) processors of type A (resp. B) which is represented by (P�, Pk)||Cmax.
Imreh [4] proves that the greedy algorithm provides a solution with a perfor-
mance guarantee of (2 + �−1

k ), where k � �. Recently, a 2-approximation algo-
rithm has been proposed in [5]. For the same problem, Kedad-Sidhoum et al. [6]
proposed two families of approximation algorithms that can achieve an approxi-
mation ratio smaller than (32 +ε). By considering precedence constraints without
communication delays (P�, Pk)|prec|Cmax, Kedad-Sidhoum et al. [7] developed
a tight 6-approximation algorithm for general structure graphs on hybrid par-
allel multi-core machines. This work was later revisited in [8] who showed that
by separating the allocation phase and the scheduling phase, they could obtain
algorithms with a similar approximation ratio but that performs significantly
better in practice.

In term of heuristic strategies, the most famous one is Heterogeneous Ear-
liest Finish Time algorithm (HEFT) [9], which is developed for the problem of
DAG scheduling on heterogeneous platforms considering communication delays
1 Top500.org ranking. URL https://www.top500.org/lists/2017/11/.
2 Tgcc curie supercomputer, http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm.

https://www.top500.org/lists/2017/11/
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm


Polynomial Scheduling Algorithm for Parallel Applications 145

(Rm|prec, com|Cmax). It could also be applied for hybrid platforms. It has no
performance guarantee, but performs particularly well. Other heuristics for this
problem can be roughly partitioned into two classes: clustering and list schedul-
ing algorithms.

Clustering algorithms [10,11] usually provide good solutions for communi-
cation-intensive graphs by scheduling heavily communicating tasks onto the same
processor. After grouping tasks into a set of clusters using different clustering
policies. Clusters are mapped onto processors using communication sensitive or
insensitive heuristics.

List scheduling algorithms [12] are often used to handle a limited number of
processors. Most of them [13,14] can be decomposed in two main phases. The first
one assigns priorities based on certain task properties, typically run time and/or
communication delays. The second phase assigns tasks to processors following a
priority list. Experimentally, a comparison of different list scheduling algorithms
can be found in the work of Kushwaha and Kumar [14].

Our problem was first treated in [15], a non polynomial-time two-phase app-
roach was proposed with a performance guarantee of 6. Numerical evaluations
demonstrate that the proposed algorithm achieves a close-to-optimal perfor-
mance. However, the running time of this method can be important for large
instances. We focus here in finding a polynomial-time approach which is able to
maintain an interesting performance with reasonable complexity.

3 Problem Definition

We consider in this work a hybrid platform composed of 2 unrelated Processing
elements Pe1 and Pe2 (1 CPU and 1 GPU, or 2 different GPUs or CPUs, ...).

An application A of n tasks is represented by a Directed Acyclic Graph
(DAG) oriented G(V,E), each vertex represents a task ti. Each arc e = (ti, tj)
represents a precedence constraint between two tasks ti and tj . We associate it
with the value cti,j which represents the communication delay between ti and
tj if they are executed on two different resource types. The exact formula to
evaluate cti,j which takes into consideration latencies and available bandwidth
between processors is provided in [16]. We denote by Γ−(i) (resp. Γ+(i)) the
sets of the predecessors (resp. successors) of task ti. Any task ti can be executed
by both processing elements. Executing the task ti on Pe1 (resp. Pe2) generates
an execution time equal to wi,0 (resp. wi,1). A task ti can be executed only after
the complete execution of its predecessors Γ−(i). We do not allow duplication of
tasks and preemption. We denote by Cmax the completion time of the application
A (makespan). The aim is to minimise Cmax.

Our problem can be modelled by a Mixed Integer formulation (Opt). Let xi

be the decision variable which is equal to 1 if the task ti is assigned to a Pe1
and 0 otherwise. Let Ci be the finish time of the task ti. To manage overlapping
tasks on the same processing element, we add an intermediary variable oi,j for
each two different tasks ti and tj . If ti and tj are executed in the same processing
element and tj is executed after the finish execution time of ti, then oi,j = 1,



146 M. Ait Aba et al.

otherwise oi,j = 0. Finally, for each two successive tasks (ti, tk) ∈ E, we add an
intermediary variable ζi,k to manage communication delays.

(Opt)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci + xjwj,0 + (1 − xj)wj,1 + ζi,jcti,j � Cj ∀(ti, tj) ∈ E (1)
xi − xj � ζi,j , ∀(ti, tj) ∈ E (2)
xj − xi � ζi,j , ∀(ti, tj) ∈ E (3)
xiwi,0 + (1 − xi)wi,1 � Ci,∀i ∈ {1, . . . , n}, Γ−(i) = ∅ (4)
0 � Ci � Cmax,∀i ∈ {1, . . . , n}, Γ+(i) = ∅ (5)
Ci + xjwj,0 � Cj + B × (3 − xi − xj − oi,j) ∀ti �= tj (6)
Cj + xiwi,0 � Ci + B × (2 − xi − xj + oi,j) ∀ti �= tj (7)
Ci + (1 − xj)wj,1 � Cj + B × (1 + xi + xj − oi,j) ∀ti �= tj (8)
Cj + (1 − xi)wi,1 � Ci + B × (xi + xj + oi,j) ∀ti �= tj (9)
xi, ζi,j , oi,j ∈ {0, 1}, ∀i ∈ {1, . . . , n}, B = Cte
Z(min) = Cmax

Constraints (1 to 3) describe the critical path, such as if task ti precedes
tj , and these two tasks are assigned to two different processors, we obtain two
cases: either xi = 1 and xj = 0 or xi = 0 and xj = 1. In the two cases, we
obtain ζi,j � 1. If tasks ti and tj are assigned to the same processor, xi = 0 and
xj = 0 or xi = 1 and xj = 1. In the two cases, ζi,j � 0. Since it is a minimisation
problem and without loss of generality, ζi,j should take the smallest possible
value. Tasks without predecessors (respectively successors) are considered in the
constraint (4) (resp. (5)). Overlapping tasks on Pe1 (resp. Pe2) is avoided by
constraints (6) and (7) (resp. (8) and (9)) by using a large constant B (upper
bound for example), such that if two tasks ti and tj are executed on the same
processor, then either ti starts after the completion time of the task tj or tj
starts after the completion time of the task ti. We have two cases:

1. ti and tj are executed on Pe1, then xi = 1 and xj = 1:
{

Ci + xjwj,0 � Cj + B(1 − oi,j) (6)
Cj + xiwi,0 � Ci + B(oi,j) (7)

{
Ci + xjwj,0 � Cj + B(3 − oi,j) (8)
Cj + xiwi,0 � Ci + B(2 + oi,j) (9)

If oi,j = 1 (resp. oi,j = 0), only constraint (6) (resp. (7)) becomes relevant,
with Ci + xjwj,0 � Cj (resp. Cj + xiwi,0 � Ci), then tj (resp. ti) starts after
the finish execution time of task ti (resp. tj). Other constraints will remain
valid no matter the execution order of ti and tj .

2. ti and tj are executed on Pe2, then xi = 0 and xj = 0:
{

Ci + xjwj,0 � Cj + B(3 − oi,j) (6)
Cj + xiwi,0 � Ci + B(2 − oi,j) (7)

{
Ci + xjwj,0 � Cj + B(1 − oi,j) (8)
Cj + xiwi,0 � Ci + B(oi,j) (9)

If oi,j = 1 (resp. oi,j = 0), only constraint (8) (resp. (9)) becomes relevant,
with Ci + (1 − xj)wj,1 � Cj (resp. Cj + (1 − xi)wi,1 � Ci), then tj (resp. ti)
starts after the finish execution time of task ti (resp. tj). Other constraints
will remain valid no matter the execution order of ti and tj .



Polynomial Scheduling Algorithm for Parallel Applications 147

The formulation (Opt) can be used to obtain an optimal solution for only
small instances with limited number of tasks using solvers like CPLEX [17]. To
solve larger instances, a polynomial method is proposed in the following.

4 Solution Method

In this section, we develop a three-phase algorithm. In Phase 1, we start by
proposing a new formulation (P ) then we solve its relaxation (P

′
). After that,

we use in Phase 2 the solution obtained by this formulation to define another
formulation (P1). Finally, after rounding the fractional solution of the formu-
lation (P1) to obtain a feasible assignment of the tasks, in Phase 3 we use a
list scheduling algorithm to find a feasible schedule. Details of each phase are
described in the following.

4.1 Phase 1: Formulation (P ) and Its Relaxation (P
′
)

We solve here a linear formulation with continuous variables. From the formu-
lation (Opt), we define a more simplified formulation (P ) which is more useful
for the next phase. The first 5 constraints of (Opt) are thus taken up again, but
the non-overlapping constraints (6) and (7) are replaced by two workload con-
straints. Thus, (P ) is defined as follow, where Constraint (6) (resp. (7)) simply
expresses that the makespan should be be larger than the average Pe1 (resp.
Pe2) workload. The aim is to minimise Cmaxp.

(P )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci + xjwj,0 + (1 − xj)wj,1 + ζi,jcti,j � Cj , ∀(ti, tj) ∈ E (1)
xi − xj � ζi,j , ∀(ti, tj) ∈ E (2)
xj − xi � ζi,j , ∀(ti, tj) ∈ E (3)
xiwi,0 + (1 − xi)wi,1 � Ci,∀i ∈ {1, . . . , n}, Γ−(i) = ∅ (4)
0 � Ci � Cmaxp,∀i ∈ {1, . . . , n}, Γ+(i) = ∅ (5)∑n

i=1 xiwi,0 � Cmaxp (6)∑n
i=1(1 − xi)wi,1 � Cmaxp (7)

xi, ζi,j ∈ {0, 1}, ∀i ∈ {1, . . . , n}
Z(min) = Cmaxp

Remark 1. The optimal solution C�
maxp of this formulation does not take into

account non-overlapping constraints, so it represents a lower bound for our prob-
lem, C�

maxp � C�
max.

Lemma 1. For each two successive tasks (ti, tj) ∈ E, constraints (2) and (3)
can be written as max(xi, xj) − min(xi, xj) � ζi,j. Furthermore, max(xi, xj) −
min(xi, xj) = (1−min(xi, xj))+(max(xi, xj)−1) = max(1−xi, 1−xj)−min(1−
xi, 1 − xj). Thus, constraints (2) and (3) can also be written as max(1 − xi, 1 −
xj) − min(1 − xi, 1 − xj) � ζi,j.



148 M. Ait Aba et al.

Remark 2. In each feasible solution of (P ), for each couple of tasks (ti, tj) ∈ E,
we have always max(xi, xj) = 1 or max(1−xi, 1−xj) = 1 (or both), ∀(xi, xj) ∈
{0, 1} × {0, 1}.

Lemma 2. In the optimal solution of (P ), for each couple of tasks (ti, tj) ∈ E,
from Lemma 1 we have at least max(xi, xj) = 1 or max(1−xi, 1−xj) = 1, such
that:

– If max(xi, xj) = 1, then constraints (2) and (3) can be represented by C̃on
1

i,j :
1 − min(xi, xj) � ζi,j.

– If max(1 − xi, 1 − xj) = 1, then constraints (2) and (3) can be represented by

C̃on
2

i,j : 1 − min(1 − xi, 1 − xj) � ζi,j.

The optimal solution obtained by the formulation (P ) without constraints (6)
and (7) represents the optimal solution of the scheduling problem on platforms
with unlimited resources. This problem has been proven to be NP-hard [18].
Thus, the problem of finding the optimal mapping using (P ) is also NP-
complete. In order to simplify the problem, we relax the integer variables xi

for i ∈ {1, . . . , n} and we obtain the relaxed formulation (P
′
). We denote by

x̃
′
i ∈ [0, 1], the value of xi in the optimal solution of the formulation (P

′
).

4.2 Phase 2: Formulation (P1)

Based on Lemma 1 and using the solution of (P
′
), we define another formulation

(P1). The decision variables are x
′
i, and an intermediary variable y

′
i,j ∈ [0, 1],

with i ∈ {1, . . . , n} and j ∈ {1, . . . , n}. For all (ti, tj) ∈ E, we define the con-
straint Coni,j as follows:

– If min{x̃
′
i, x̃

′
j} >min{1 − x̃

′
i, 1 − x̃

′
j}, then Coni,j =

⎧
⎪⎨

⎪⎩

y
′
i,j � x

′
i (1)

y
′
i,j � x

′
j (2)

ζ
′
i,j = (1 − y

′
i,j) (3)

From Coni,j , we have y
′
i,j � min{x

′
i, x

′
j}. Then, ζ

′
i,j = 1 − y

′
i,j � (1 −

min{x
′
i, x

′
j}), which is equivalent to constraint C̃on

1

i,j . Since it is a minimi-
sation problem, we can set ζ

′
i,j = (1 − min{x

′
i, x

′
j}).

– If min{x̃
′
i, x̃

′
j} �min{1 − x̃

′
i, 1 − x̃

′
j} then Coni,j =

⎧
⎪⎨

⎪⎩

y
′
i,j � 1 − x

′
i (1)

y
′
i,j � 1 − x

′
j (2)

ζ
′
i,j = (1 − y

′
i,j) (3)

From Coni,j , we have y
′
i,j � min{1 − x

′
i, 1 − x

′
j}. Then, ζ

′
i,j = 1 − y

′
i,j �

(1 − min{1 − x
′
i, 1 − x

′
j}), which is equivalent to constraint C̃on

2

i,j . Since it is
a minimisation problem, we can set ζ

′
i,j = (1 − min{1 − x

′
i, 1 − x

′
j}).



Polynomial Scheduling Algorithm for Parallel Applications 149

The formulation (P1) is then given by:

(P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
′
i + x

′
jwj,0 + (1 − x

′
j)wj,1 + ζ

′
i,jcti,j � C

′
j ,∀(ti, tj) ∈ E (1)

Coni,j ,∀(ti, tj) ∈ E (2)
x

′
iwi,0 + (1 − x

′
i)wi,0 � C

′
i ,∀i ∈ {1, . . . , n}, Γ−(i) = ∅ (3)

0 � C
′
i � Cmax1′ ,∀i ∈ {1, . . . , n}, Γ+(i) = ∅ (4)

∑n
i=1 x

′
iwi,0 � Cmax1′ (5)

∑n
i=1(1 − x

′
i)wi,0 � Cmax1′ (6)

x
′
i, y

′
i,j , ζ

′
i,j ∈ [0, 1], ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n}

Z(min) = Cmax1′

We can notice that constraints (1, 3, 4, 5, 6) of the formulation (P1) are
equivalent to constraints (1, 4, 5, 6, 7) of the formulation (P

′
). We denote by

C�
max1′ the optimal solution of the formulation (P1) and C�

maxp′ the optimal
solution of (P

′
).

Theorem 1. If the optimal solution x̃�
i obtained by (P

′
) is an integer for all

i ∈ {1, . . . , n}, then C�
max1′ = C�

maxp′ .

Proof. By setting the value of x
′
i = x̃�

i , for all i ∈ {1, . . . , n}, then for each two
successive tasks (ti, tj) ∈ E, we have two cases:

1. min{x̃�
i , x̃

�
j} >min{1 − x̃�

i , 1 − x̃�
j}, then Coni,j =

⎧
⎪⎨

⎪⎩

y
′
i,j � x

′
i (1)

y
′
i,j � x

′
j (2)

ζ
′
i,j = (1 − y

′
i,j) (3)

Furthermore, min{x̃�
i , x̃

�
j} = 1, then x̃�

i = 1 and x̃�
j = 1, follows x̃�

i − x̃�
j =

0 � ζ̃�
i,j (ζ̃�

i,j = 0 since it is a minimisation problem). Furthermore, ζ
′
i,j =

(1 − min{x
′
i, x

′
j}) = 1 − 1 = 0, then ζ

′
i,j = ζ̃�

i,j .

2. min{x̃�
i , x̃

�
j} �min{1 − x̃�

i , 1 − x̃�
j}, then Coni,j =

⎧
⎪⎨

⎪⎩

y
′
i,j � 1 − x

′
i (1)

y
′
i,j � 1 − x

′
j (2)

ζ
′
i,j = (1 − y

′
i,j) (3)

– if min{1 − x̃�
i , 1 − x̃�

j} = 1, then 1 − x̃�
i = 1 and 1 − x̃�

j = 1, follows
x̃�

i − x̃�
j = 0 � ζ̃�

i,j with x̃�
i = 0 and x̃�

j = 0. Furthermore, ζ
′
i,j = (1 −

min{1 − x
′
i, 1 − x

′
j}) = 1 − 1 = 0.

– if min{1−x̃�
i , 1−x̃�

j} = 0, then we suppose that x̃�
i = 1 and x̃�

j = 0, follows
x̃�

i −x̃�
j = 1 � ζ̃�

i,j . Furthermore, ζ
′
i,j = (1−min{1−x

′
i, 1−x

′
j}) = 1−0 = 1.

In both cases, we have ζ
′
i,j = ζ̃�

i,j .

Thus, the finish execution time of each task in the formulation (P
′
) is the same

in (P1). Furthermore, since
∑n

i=1 x
′
iwi,0 =

∑n
i=1 x�

i wi,0 and
∑n

i=1(1 − x
′
i)wi,1 =

∑n
i=1(1 − x�

i )wi,1, then constraints (5) and (6) of the formulation (P
′
) are the

same in (P1). Finally, C�
max1′ = C�

maxp′ .

However, finding the ratio between C�
max1′ and C�

maxp′ for the general case
is difficult. In the following, we suppose that C�

max1′ � αC�
maxp′ , with α ∈ R

+.



150 M. Ait Aba et al.

Table 1. GAP and standard deviation

Instances Number
of tasks

Average
GAP

Standard
deviation

test 1 10 1.12457 1.12871

test 2 30 1.11632 1.12065

test 3 60 1.00046 1.00046

test 4 100 1.00007 1.00007

test 5 200 1.00124 1.00126

test 6 400 1 1

test 7 500 1 1

test 8 600 1 1

test 9 800 1 1

test 10 1000 1 1

Average / 1,024266 1,025115

Table 1 shows the standard devi-
ation between C�

max1′ and C�
maxp′

for 20 randomly generated instances
of different sizes (DAG graphs). For
each instance Ii, we compute αi =
C�

max1′ (Ii)

C�
maxp′ (Ii)

. Then, we calculate Aver-

age GAP=
∑20

i=1 αi

20 and Standard

deviation=
√∑20

i=1 α2
i

20 .
From table 1, we can notice that

the value of α tends towards 1 when
we increase the size of the instances.
What can be said, is that the solution
of C�

max1′ is very close to the solution
of C�

maxp′ in the general case.

Lemma 3. The ratio between the optimal solution C�
max1′ of the formulation

(P1) and the optimal scheduling solution C�
max of our main problem is given by

C�
max1′ � αC�

max.

Proof. From Remark 1, we have C�
maxp � C�

max. Then, C�
max1′ � αC�

maxp′ �
αC�

maxp � αC�
max.

Rounding strategy: If x
′
i is integer for i ∈ {1, . . . , n}, the solution obtained

is feasible and optimal for (P1), otherwise the fractional values are rounded.
We denote by xr

i the rounded value of the fractional value of the assignment
variable of task ti in the optimal solution of (P1). We set xr

i = 0 if x
′
i < 1

2 ,
xr

i = 1 otherwise.
Let θ1 be the mapping obtained by this rounding. Each task ti is mapped in

either Pe1 or Pe2. Thus, θ1(ti) −→ {Pe1, P e2}.

4.3 Phase 3: Scheduling Algorithm

Using the mapping θ1, the following algorithm determines for a task order given
by a priority list L, the corresponding scheduling by executing the first task
ready of the list as long as there are free processing elements.

The priority list L can be defined in different ways. To achieve good schedul-
ing, the most important and influential tasks must be executed first. For this
purpose, the following list is particularly interesting for this problem because
it takes into account the critical path of the graph. First, we start by defining
graph G′(V,E), with V = {t1, t2, ..., tn} and E represents the set of graph edges.
The vertices are labelled by the execution time of each task according to their
assignments. The edges are labelled by the communication costs if ti precedes tj
and xr

i �= xr
j , 0 otherwise. Then, we can calculate the longest path LP (ti) from

each task ti to its last successor. The list LLP is given by LLP = {t1, t2, ..., tn},



Polynomial Scheduling Algorithm for Parallel Applications 151

such that LP (t1) � LP (t2) � ... � LP (tn). The following algorithm executes
task by task, executing first the task ti with the highest LP (ti) from ready
tasks. It uses an insertion policy that tries to insert a task at the earliest idle
time between two already scheduled tasks on the processing element, if the slot
is large enough to execute the task.

Algorithm 1: PLS (Polynomial List Scheduling) algorithm
Data: mapping θ1, list LPP .
Result: Feasible scheduling.
begin

Create an empty list ready-list;
ready-list= {tj , Γ−(j) = ∅, j ∈ {1, . . . , n}};
while ready-list �= ∅ do

ti ←− task with highest LP (ti) from ready-list;
Execute ti on θ1(ti) using insertion-based scheduling policy;
Update ready-list;

The three steps of PLS (Polynomial List Scheduling) algorithm can be sum-
marized as follows. Solve the relaxed formulation (P

′
) then us its solution to

define another formulation (P1), then solve (P1). Finally, After rounding the
solutions obtained by (P1), use Algorithm 1 with the obtained mapping θ1 and
the priority list LLP .

Complexity: Mapping θ1 is based on solving two linear formulations ((P
′
) and

(P1)) with continuous variables, which are two polynomial problems. This gives
polynomial-time solving methods for the first two phases of PLS algorithm. In
the last phase, ready-list is calculated with O(n2) time complexity. The insertion
policy is verified on a processing element by checking the non-overlapping with
at most (n−1) tasks. This makes a complexity of O(n2) for the last phase. Thus,
the complexity time of PLS algorithm is polynomial.

Algorithm Analysis: In the following, we study the performance of PLS algo-
rithm in the worst case compared to the optimal solution. We look for the ratio
between the solution Ĉmax obtained by PLS algorithm and the optimal schedul-
ing solution C�

max of our main problem.

Lemma 4. The rounding θ1 previously defined satisfies the following inequali-
ties: xr

i � 2x
′
i and (1 − xr

i ) � 2(1 − x
′
i).

Proof. If 0 � x
′
i < 1

2 , then xr
i = 0 � 2x

′
i. Furthermore, 2x

′
i � 1, then 0 � 1−2x

′
i,

follows −xr
i = 0 � 1−2x

′
i, then 1−xr

i � 2(1−x
′
i). If 1

2 � x
′
i then 1 � 2x

′
i, follows

xr
i = 1 � 2x

′
i. Furthermore, x

′
i � 1 then −2x

′
i � −2, follows 1 − 2x

′
i � −1, then

−xr
i = −1 � 1 − 2x

′
i, then 1 − xr

i � 2(1 − x
′
i).



152 M. Ait Aba et al.

Let wr
i be the execution time of the task ti by considering the rounding θ1,

where wr
i = wi,0 if xr

i = 1, wr
i = wi,1 otherwise. Let w

′
i be the execution time of

the task ti by considering the solution of (P1), where w
′
i = x

′
iwi,0 +(1−x

′
i)wi,1.

Proposition 1. The relation between wr
i and w

′
i of each task ti is given by

wr
i � 2w

′
i, i ∈ {1, . . . , n}.

Proof. From Lemma 4, 2w
′
i = 2x

′
iwi,0+2(1−x

′
i)wi,1 � xr

i wi,0+(1−xr
i )wi,1 = wr

i .

Lemma 5. For two successive tasks (ti, tj) ∈ E, if ti and tj are executed by two
different processing elements, then ζ

′
i,j > 1

2 .

Proof. We have two cases:

1. If min{x̃
′
i, x̃

′
j} >min{1 − x̃

′
i, 1 − x̃

′
j}, then from Coni,j constraint, we have

ζ
′
i,j = (1 − min{x

′
i, x

′
j}):

a. If x
′
i < 1

2 and x
′
j � 1

2 , then ζ
′
i,j = (1 − x

′
i) > 1

2 .
b. If x

′
i � 1

2 and x
′
j < 1

2 , then ζ
′
i,j = (1 − x

′
j) > 1

2 .

2. If min{x̃
′
i, x̃

′
j} �min{1 − x̃

′
i, 1 − x̃

′
j}, then from Coni,j constraint, we have

ζ
′
i,j = (1 − min{1 − x

′
i, 1 − x

′
j}):

a. If 1 − x
′
i < 1

2 and 1 − x
′
j � 1

2 , then ζ
′
i,j = x

′
i > 1

2 .
b. If 1 − x

′
i � 1

2 and 1 − x
′
j < 1

2 , then ζ
′
i,j = x

′
j > 1

2 .

For each couple of tasks (ti, tj) ∈ E, we denote by Costri,j the value given by
Costri,j = 0 if xr

i = xr
j , Costri,j = cti,j otherwise. Let Cost

′
i,j be the value given

by Cost
′
i,j = ζ

′
i,jcti,j .

Proposition 2. For each couple of tasks (ti, tj) ∈ E, the relation between
Costri,j and Cost

′
i,j is given by Costri,j < 2Cost

′
i,j .

Proof. If tj and tj are executed by the same processing element, Costri,j = 0 �
2ζ

′
i,jcti,j , because ζ

′
i,j � 0. If tj and tj are executed by two different processing

elements, then Costri,j = cti,j . Then, from Lemma 5, ζ
′
i,j > 1

2 , then 2ζ
′
i,j > 1,

follows Costri,j = cti,j � 2ζ
′
i,jcti,j = 2Cost

′
i,j .

Proposition 3. For each two successive tasks (ti, tj) ∈ E, let be lri,j = wr
i +

Costri,j +wr
j (resp. l

′
i,j = w

′
i +Cost

′
i,j +w

′
j) the length of (ti, tj) in PLS solution

(resp. (P1) solution). Then, we have lri,j < 2l
′
i,j.

Proof. From Proposition 1 and Proposition 2, lri,j = wr
i + Costri,j + wr

j < 2w
′
i +

2Cost
′
i,j + 2w

′
j = 2l

′
i,j . Thus, lri,j < 2l

′
i,j .

Theorem 2. Let Ĉmax be the solution obtained by using PLS algorithm, then
Ĉmax < 6C�

max1′ .



Polynomial Scheduling Algorithm for Parallel Applications 153

Proof. From Proposition 3, the length of each path L from G(V,E) is given
by length(L)r =

∑
(ti,ti+1)∈L lri,i+1 � 2

∑
(ti,ti+1)∈L l

′
i,i+1 = 2length(L)

′
, where

length(L)r (resp. length(L)
′
) is the length of L in PLS solution (resp. (P1)

solution). Furthermore, the workload of the tasks assigned to Pe1 (resp. Pe2)
is given by

∑n
i=1 xr

i wi,0 = 2
∑n

i=1 x
′
iwi,0 (resp.

∑n
i=1(1 − xr

i )wi,0 = 2
∑n

i=1(1 −
x

′
i)wi,0). Thus, the value of the critical path and the workloads on Pe1 and Pe2

will be at most doubled compared to the lower bounds. Finally, the interaction
between the longest paths and the workload on each processing element has been
studied in [15], such that if we have these properties, then Ĉmax < 6C�

max1′ .

Theorem 3. The ratio between the solution Ĉmax obtained by PLS algorithm

and the optimal scheduling solution C�
max is given by

Ĉmax

C�
max

< 6α.

Proof. From Lemma 3, we have C�
max1′ � αC�

max. Then,
Ĉmax

C�
max

<
6C�

max1′

C�
max

�
6αC�

max

C�
max

� 6α.

5 Numerical Results

We compare here the performance of PLS (Polynomial List Scheduling) algo-
rithm to HEFT (Heterogeneous Earliest Finish Time) and LS (List Scheduling)
algorithm using benchmarks generated by Turbine [19].

The benchmark is composed of ten parallel DAG applications. We denote by
test i instance number i. We generate 10 different applications for each test i
with i ∈ {1, . . . , 10}. The execution times of the tasks are generated randomly
over an interval [wmin, wmax], wmin has been fixed at 5 and wmax at 70. The num-
ber of successors of each task is generated randomly over an interval [dmin, dmax],
dmin has been fixed at 1 and dmax at 10. The communication rate for each arc
was generated on an interval [ctmin, ctmax], we set ctmin to 35 and ctmax to 80.

To study the performance of our method, we compared the ratio between
each makespan value obtained by PLS algorithm with HEFT and LS algorithm,
the optimal solution obtained by CPLEX and the lower bound Cmax1′ obtained
by (P1). Table 2 shows the average results obtained on 10 instances given in
column Inst of each application size given in the second column using CPLEX,
HEFT, PLS and LS algorithms. We show the average time that was needed to
CPLEX to provide the optimal solution using (Opt). We only have the result
for the first two instances due to the large running time for instances with
more than 60 tasks (> 4h). Then, we show the results obtained by HEFT, PLS
and LS algorithm. GAP columns give the average ratio between the makespan
obtained by each method compared to Cmax1′ using the following formula:
GAP = method makespan−Cmax1′

Cmax1′ × 100. Time columns show the average time
that was needed for each method to provide a solution. Best columns present



154 M. Ait Aba et al.

the number of instances where each algorithm provides better or the same solu-
tion than other methods. A line Average is added at the end of each table which
represents the average of the values each column.

Table 2. CPLEX, HEFT, LS and PLS algorithms results.

Inst Number CPLEX HEFT LS algorithm PLS algorithm

of tasks Optimal Time GAP Time Best GAP Time Best GAP Time Best

test 1 10 � 0.35 s 33.23% 0.0016 s 2 20.84% 0.25 s 7 21.24% 0.008 s 7

test 2 30 � 59.58 s 38.11% 0.0049 s 4 52.34% 0.600 s 0 43.19% 0.028 s 5

test 3 60 X X 25.89% 0.009 s 4 24.86% 0.29 s 6 24.81% 0.081 s 7

test 4 100 X X 15.80% 0.017 s 0 6.85% 0.198 s 8 6.46% 0.184 s 9

test 5 200 X X 14.56% 0.044 s 0 1.34% 0.51 s 7 1.08% 0.68 s 6

test 6 400 X X 11.80% 0.19 s 0 0.25% 1.72 s 7 0.31% 2.52 s 6

test 7 500 X X 11.50% 0.26 s 0 0.16% 1.84 s 6 0.11% 2.33 s 9

test 8 600 X X 11.53% 0.61 s 0 0.32% 2.06 s 6 0.237% 2.09 s 7

test 9 800 X X 11.78% 1.40 s 0 0.14% 3.15 s 7 0.13% 4.09 s 6

test 10 1000 X X 12.11% 1.90 s 0 0.052% 4.32 s 7 0.06% 5.26 s 7

Average / / / 18.63% 0.44 s 6% 10.71% 1.49 s 61% 9.76% 1.72 s 69%

For the running time, HEFT algorithm requires less time than PLS and LS
algorithms to provide a solution. PLS algorithm is the most efficient method
with a gap of 9.76% and 69% of better solutions compared to other methods. Its
average running time is 1.72 s, which is slightly higher than the running time of
LS algorithm.

6 Conclusion and Perspectives

This paper presents an efficient algorithm to solve the problem of scheduling par-
allel applications on hybrid platforms with communication delays. The objective
is to minimise the total execution time (makespan).

After modelling the problem, we proposed a three-phase algorithm; the first
two phases consist in solving linear formulations to find the type of processor
assigned to execute each task. In the third phase, we compute the start execution
time of each task to generate a feasible schedule. Tests on large instances close to
reality demonstrated the efficiency of our method comparing to other methods
and shows the limits of solving the problem with a solver such as CPLEX.

A proof of the performance guarantee for PLS algorithm was initiated. In
future works, we will focus on finding the value of α to have a fixed bound on
the ratio between Ĉmax and C�

max. Tests on real applications and an extension
to more general heterogeneous platforms is also planned.

References

1. Shen, L., Choe, T.-Y.: Posterior Task scheduling algorithms for heterogeneous
computing systems. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti,
E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 172–183. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71351-7 14

https://doi.org/10.1007/978-3-540-71351-7_14


Polynomial Scheduling Algorithm for Parallel Applications 155

2. Benoit, A., Pottier, L., Robert, Y.: Resilient co-scheduling of malleable applica-
tions. Int. J. High Perform. Comput. Appl. 32(1), 89–103 (2018)

3. Ullman, J.D.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

4. Imreh, C.: Scheduling problems on two sets of identical machines. Computing
70(4), 277–294 (2003)

5. Marchal, L., Canon, L.-C., Vivien, F.: Low-cost approximation algorithms for
scheduling independent tasks on hybrid platforms. Ph.D. thesis, Inria-Research
Centre Grenoble-Rhône-Alpes (2017)

6. Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: A family of scheduling
algorithms for hybrid parallel platforms. Int. J. Found. Comput. Sci. 29(01), 63–90
(2018)

7. Kedad-Sidhoum, S., Monna, F., Trystram, D.: Scheduling tasks with precedence
constraints on hybrid multi-core machines. In: IPDPSW, pp. 27–33. IEEE (2015)

8. Amaris, M., Lucarelli, G., Mommessin, C., Trystram, D.: Generic algorithms for
scheduling applications on hybrid multi-core machines. In: Rivera, F.F., Pena, T.F.,
Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 220–231. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64203-1 16

9. Topcuoglu, H., Hariri, S., Min-you, W.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

10. Boeres, C., Rebello, V.E.F., et al.: A cluster-based strategy for scheduling task
on heterogeneous processors. In: 16th Symposium on Computer Architecture and
High Performance Computing, SBAC-PAD 2004, pp. 214–221. IEEE (2004)

11. Yang, T., Gerasoulis, A.: DSC: scheduling parallel tasks on an unbounded number
of processors. IEEE Trans. Parallel Distrib. Syst. 5(9), 951–967 (1994)

12. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

13. Khan, M.A.: Scheduling for heterogeneous systems using constrained critical paths.
Parallel Comput. 38(4–5), 175–193 (2012)

14. Kushwaha, S., Kumar, S.: An investigation of list heuristic scheduling algorithms
for multiprocessor system. IUP J. Comput. Sci. 11(2) (2017)

15. Aba, M.A., Zaourar, L., Munier, A.: Approximation algorithm for scheduling appli-
cations on hybrid multi-core machines with communications delays. In: 2018 IEEE
IPDPSW, pp. 36–45. IEEE (2018)

16. Zaourar, L., Aba, M.A., Briand, D., Philippe, J.-M.: Modeling of applications and
hardware to explore task mapping and scheduling strategies on a heterogeneous
micro-server system. In: IPDPSW, pp. 65–76. IEEE (2017)

17. IBM: Ibm ilog cplex v12.5 user’s manual for cplex. http://www.ibm.com
18. Aba, M.A., Pallez, G., Munier-Kordon, A.: Scheduling on two unbounded resources

with communication costs (2019)
19. Bodin, B., Lesparre, Y., Delosme, J.-M., Munier-Kordon, A.: Fast and efficient

dataflow graph generation. In: Proceedings of the 17th International Workshop on
Software and Compilers for Embedded Systems. ACM (2014)

https://doi.org/10.1007/978-3-319-64203-1_16
http://www.ibm.com


Anchored Rescheduling Problems Under
Generalized Precedence Constraints

Pascale Bendotti1,2, Philippe Chrétienne2, Pierre Fouilhoux2,
and Adèle Pass-Lanneau1,2(B)

1 EDF R&D, 91120 Palaiseau, France
{pascale.bendotti,adele.pass-lanneau}@edf.fr

2 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{philippe.chretienne,pierre.fouilhoux}@lip6.fr

Abstract. The anchored rescheduling problem, recently introduced in
the literature, is to find a schedule under precedence constraints with
a maximum number of prescribed starting times. Namely, prescribed
starting times may correspond to a former schedule that must be modi-
fied while maintaining a maximum number of starting times unchanged.
In the present work two extensions are investigated. First we introduce
a new tolerance feature, so that starting times can be considered as
unchanged when modified less than a tolerance threshold. The sensitiv-
ity of the anchored rescheduling problem to tolerance is studied. Sec-
ond we consider generalized precedence constraints, which include, e.g.,
deadline constraints. Altogether this leads to a more realistic reschedul-
ing problem. The main result is to show that the problem is polynomial.
We discuss how to benefit from the polynomiality result in a machine
scheduling environment.

Keywords: Rescheduling · Anchored jobs · Generalized precedence
graph · Deadline constraints

1 Introduction

The solution of an optimization problem is often not computed from scratch. For
example if the optimization problem is solved on a regular basis, then the solution
computed at some point in time must take into account the solution of the
previously solved instance. Importantly, practitioners may require that former
decisions are maintained, that is, the solution must not change too much over
time. Such a stability of solutions is needed in a variety of industrial applications.
A similar situation can be observed in a decision-aiding process, when users
may want to impose some decisions. In both cases it is necessary to solve the
optimization problem while taking into account a subset of decisions to stick to,
if possible.

In the present work, we investigate this issue for project scheduling problems
under precedence constraints, where a set of jobs J must be given starting times

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 156–166, 2020.
https://doi.org/10.1007/978-3-030-53262-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_13


Anchored Rescheduling Problems 157

y ∈ R
J
+. Given a subset I ⊆ J , a partial assignment of starting times (xi)i∈I

is called a baseline. Given an instance I of project scheduling problem Π, a
baseline (xi)i∈I and a solution y of I , the anchorage level introduced in [1] is
σ(x, y) = |{i ∈ I : xi = yi}|, i.e., the number of anchored jobs that have the
same starting time in the baseline and in the new solution y. This criterion can
be integrated into a reoptimization problem as follows.

AnchRe(Π)
Input: instance I of problem Π, baseline (xi)i∈I

Problem: find y a schedule of I such that σ(x, y) is maximized.

In practice the decision maker may consider that a change of the starting time
of a job is negligible within some tolerance. Given a tolerance vector ε ∈ R

J
+,

baseline (xi)i∈I and solution y, job i ∈ I is ε-anchored if |xi − yi| ≤ εi. The
ε-anchorage level is σε(x, y) = |{i ∈ I : |xi − yi| ≤ εi}|. The corresponding
reoptimization problem is then

ε-AnchRe(Π)
Input: instance I of problem Π, baseline (xi)i∈I , tolerance ε ∈ R

J
+

Problem: find y a schedule of I such that σε(x, y) is maximized.

Note that the baseline (xi)i∈I may be issued from the solution of a previous
instance I 0 of problem Π. However in the sequel no specific assumption is
made on x.

Generalized Precedence Constraints. Let us now define the project scheduling
problem under generalized precedence constraints (GenPrec). Consider a set of
jobs J = {1, . . . , n}, and a directed graph G = ({0, . . . , n + 1},A). Let G(a) be
the weighted digraph obtained by adding arc weights a ∈ R

A to the digraph
G. Let us denote by (i, j, aij) a weighted arc of G(a). The weighted digraph
G(a) defines an instance of the (GenPrec) scheduling problem if it satisfies the
following assumptions:

(i) there is no circuit of positive length in G(a)
(ii) for every job i ∈ {1, . . . , n} there exists at least a path of non-negative length

from 0 to i and from i to n + 1 in G(a).

The (GenPrec) problem is to find a schedule x of jobs {0, . . . , n + 1} so that

xj − xi ≥ aij for every arc (i, j, aij) of G(a).

Note that w.l.o.g. we set x0 = 0 in every schedule. Assumption (i) ensures the
existence of a feasible schedule for the instance G(a) (see e.g. [2]). From assump-
tion (ii), it comes that in every feasible schedule and for every i ∈ {1, . . . , n}, the
inequality 0 ≤ xi ≤ xn+1 holds: job 0 and job n+1 then represent the beginning
and the end of the schedule respectively.

Various constraints can be modeled within this framework. A classical prece-
dence constraint xj − xi ≥ pi can be represented by an arc (i, j, pi), where pi is



158 P. Bendotti et al.

the processing time of job i. The special case of acyclic precedence graph G(p)
is denoted by (Prec).

For illustrative purpose, an example of a generalized precedence graph G(a)
with n = 6 jobs is represented in Fig. 1. It features circuits, and arcs with negative
weights, e.g., the arc (6, 4,−6) corresponds to constraint y6 − y4 ≤ 6.

0 1

2 3

4 5

6 70

2

2.5

2

1

1

2.5

3

-8

-6

Fig. 1. Generalized precedence graph G(a) with 6 jobs.

A feasible schedule y is represented in Fig. 2. Job i is represented as a rectan-
gle of length max(i,j)∈A aij , note e.g. that a12 �= a14. Baseline x = (0, 2.5, 4.5, 2,
4.5, 6) is also represented. For baseline x and no tolerance, only jobs {1, 5} are
anchored. For the same baseline and with tolerance ε = (0, 0.25, 0.25, 0, 0, 0),
jobs {1, 2, 3, 5} are ε-anchored.

y1=0

y2=2.25

y3=4.75

y4=1.5

y5=4.5

y6=7.5

0 2.52 4.5 6
x1 x2x4 x3=x5 x6

Fig. 2. Schedule y = (0, 2.25, 4.75, 1.5, 4.5, 7.5) feasible for G(a) with 6 jobs.



Anchored Rescheduling Problems 159

Related Work. The computation of a new schedule when disruptions occur has
been studied in the literature under the name of rescheduling or reactive schedul-
ing (see, e.g., [3] for a survey). Simple rules to restore a feasible schedule include
right-shifting rules [4]. Rescheduling procedures with a stability feature, to avoid
changes w.r.t. a baseline schedule, have been studied in [5–7]. In most of these
procedures the objective is to minimize a continuous deviation measure between
starting times in the baseline and the new schedule. The anchorage level was
introduced in [1] as a combinatorial stability criterion, which is the number of
unchanged starting times.

Rescheduling problems are to be contrasted with proactive approaches, in
which a suitable baseline solution is found [8]. A procedure to find stable baseline
schedule, under a stochastic continuous stability criterion, was proposed in [9].
A proactive approach involving the anchorage level was studied in [1]. A robust
problem where some jobs have guaranteed starting times was studied in [10]. A
related framework is recoverable robust optimization, that encompasses 2-stage
robust problems where the second stage, or recovery stage, corresponds to a
rescheduling problem [11,12]. The authors of [11] note that it is suitable that
the rescheduling problem is computationally easy, so that the recoverable robust
problem is reasonably tractable.

Finally note that reoptimization with a stability feature has recently raised
attention on other combinatorial problems, e.g., spanning tree, matching, net-
work problems. Proposed approaches include reoptimization with transition
costs [13] or incremental problems [14]. This line of research tackles classical
problems where decisions are naturally modelled with binary variables, in con-
trast with the scheduling problems considered here where decisions are continu-
ous starting times.

Contribution and Outline. The anchored rescheduling problem was studied in [1]
for project scheduling under precedence constraints only. In the present work,
the main result is to extend the study to generalized precedence, thus allow-
ing for a larger variety of constraints such as deadlines or time windows. We
also tackle tolerance through ε-anchored jobs, which leads to a more realis-
tic anchored rescheduling problem. We show how the result can be used in a
machine scheduling case: while the anchored rescheduling problem is NP-hard,
we show that a simpler, yet practically attractive, variant is polynomial.

In Sect. 2 the problem ε-AnchRe(GenPrec) is proven to be solvable in poly-
nomial time. In Sect. 3.1 we correct a flawed complexity result from [1] in the
case of time-window constraints. In Sect. 3.2 we use our framework in a machine
scheduling variant. In Sect. 4 we analyze the impact of tolerance ε on the opti-
mum of the anchored rescheduling problem.

2 Polynomiality of ε-AnchRe(GenPrec)

In this section we prove

Theorem 1. ε-AnchRe(GenPrec) is solvable in polynomial time.



160 P. Bendotti et al.

Let ((xi)i∈I , G(a), ε) be an instance of ε-AnchRe(GenPrec). By testing assump-
tions (i) and (ii), it can be checked in polynomial time that the weighted digraph
G(a) is a valid instance of the (GenPrec) problem.

Let H ⊆ I be a subset of jobs. The set H is x-compatible if there exists a
schedule x of G(a) such that all jobs in H are ε-anchored with respect to x.
Solving ε-AnchRe(GenPrec) is exactly finding a set H x-compatible of maxi-
mum size and an associated solution y. Consider an auxiliary graph GH defined
by copying the graph G(a), then adding for every job i ∈ H two new arcs
(0, i, xi − εi) and (i, 0,−(xi + εi)). The auxiliary graph defines an instance of
the (GenPrec) problem, whose constraints are the constraints from G(a), and
the new arcs constraints yi ≥ xi − εi and −yi ≥ −(xi + εi), that is exactly
|yi −xi| ≤ εi. Hence there is a one-to-one correspondence between the schedules
of the auxiliary graph GH , and the schedules of the instance G(a) in which all
jobs in H are ε-anchored with respect to the baseline x. Thus we obtain

Proposition 1. The set H is x-compatible if and only if the auxiliary graph GH

has no positive circuit.

Let us now show that the absence of positive circuit in GH is also equivalent
to H ∪ {0} being an antichain in an appropriate poset. Let us denote by �(P )
the length of a directed path P in G(a). For every pair of distinct jobs i, j ∈
{0, 1, . . . , n}, let LG(a)(i, j) be the maximum length of a directed path from i to
j in G(a). By convention it is equal to −∞ if there is no such path. A relation
R on the set of jobs {0, 1, . . . , n} is defined by:

iRj if and only if i = j or xi − εi + LG(a)(i, j) > xj + εj

where we define ε0 = 0 for the simplicity of notation. In particular, if i �= j and
iRj, it implies that value LG(a)(i, j) is finite and there exists a path from i to j
in G(a).

Lemma 1. The relation R is a partial order on the set of jobs {0, 1, . . . , n}.
Proof. Relation R is clearly reflexive. Relation R is antisymmetric: if iRj and
jRi with i �= j, then there exists a longest path Pij from i to j and a longest
path Pji from j to i in G(a). The circuit obtained by closing Pij with Pji has
length LG(a)(i, j) + LG(a)(j, i), which is non-positive by assumption (i) on G(a).
Furthermore LG(a)(i, j) + LG(a)(j, i) > xj + εj − (xi − εi) + xi + εi − (xj − εj) =
2(εi + εj) ≥ 0, a contradiction. Finally relation R is transitive: consider three
pairwise distinct jobs i, j, k such that iRj and jRk. There exists two paths
Pij and Pjk in G(a), hence their concatenation (Pij , Pjk) forms a path from
i to k. It comes xi − εi + LG(a)(i, k) ≥ xi − εi + LG(a)(i, j) + LG(a)(j, k) >
xj + εj + LG(a)(j, k) > xk + εk + 2εj ≥ xk + εk. Hence iRk. 	

Proposition 2. The auxiliary graph GH has no positive circuit if and only if
H ∪ {0} is an antichain of the poset ({0, 1, . . . , n},R).



Anchored Rescheduling Problems 161

Proof. Assume that H ∪ {0} is not an antichain. Then there exists two distinct
jobs i and j in H ∪{0} such that iRj. Hence there exists a longest path Pij from
i to j in G(a). Consider the circuit C obtained by closing the path Pij with the
new arc (0, i, xi − εi) if i �= 0 and with the new arc (j, 0,−(xj + εj)) if j �= 0.
Then the length of C is LG(a)(i, j) + xi − εi − (xj + εj). Note that it is valid
even if i = 0 or j = 0. This length is positive from the definition of R, hence the
auxiliary graph contains a positive circuit.

Conversely, assume that there exists a positive circuit in the auxiliary graph.
Then there exists a positive circuit C that contains every vertex at most once.
Since G(a) contains no positive circuit, the circuit C contains at least one new
arc, and consequently it contains vertex 0 exactly once. It follows that C contains
one or two successive new arcs. Let P be the path obtained by removing the
new arcs from the circuit C. Let i and j be the first and last vertex of P
respectively. The length of C can be written xi − εi + �(P ) − (xj + εj) (again it
is valid even if i = 0 or j = 0). By assumption this length is positive, then with
�(P ) ≤ LG(a)(i, j) it comes xi − εi + LG(a)(i, j) > xj + εj and iRj. 	


Remark that all results presented here can be extended to the case of asym-
metric tolerance intervals, that is, the case where the starting time of job i is
considered as unchanged if yi ∈ [xi − ε−

i , xi + ε+i ] with two distinct parameters
ε−
i , ε+i ≥ 0.

Proof (of Theorem 1). With Proposition 1 and Proposition 2, a set H is x-
compatible if and only if H ∪ {0} is an antichain of the poset ({0, 1, . . . , n},R).
Hence solving the reactive problem is tantamount to finding a maximum size
antichain H ∪ {0} of the poset. The latter problem can be solved in polynomial
time [15]. Note also that given a set H∗ of maximum size, a corresponding
reactive solution y∗ can be found in polynomial time by computing any schedule
of GH∗ . Hence the problem ε-AnchRe(GenPrec) is polynomial-time solvable. 	


Algorithmically, a max-size antichain can be found through a combinatorial
algorithm such as Dilworth’s algorithm [15], or through linear programming. A
non-compact characterization of the associated polytope is known, together with
a polynomial separation algorithm [16]. Furthermore weights may be introduced
so that the objective is to maximize the total weight of ε-anchored jobs. Then
the linear programming approach allows to search for a max-weight antichain
for any weight function, while Dilworth’s algorithm requires integer weights.

3 Particular Cases

In this section we consider particular cases which can benefit from the polyno-
miality of ε-AnchRe(GenPrec) and deal with constraints that arise in practice.

3.1 Anchored Rescheduling with Deadline Constraints

In this section we correct a flawed complexity result from [1].



162 P. Bendotti et al.

Using generalized precedence constraints, time window constraints of form
xi ∈ [li, ui] can be modelled with two arcs (0, i, li) and (i, 0,−ui) (recall that
x0 = 0 w.l.o.g.). In [1], the so-called Anchor-Reactive CPM-Scheduling Problem
with Time Windows (ARSPTW) was defined as a variant of AnchRe(Prec)
where the baseline is a complete schedule (I = J), and a time window (or
deadline) constraint is imposed on the new schedule: yn+1 ≤ B. Deadline B
is part of the instance of the ARSPTW. It follows that the ARSPTW is a
special case of ε-AnchReopt(GenPrec). Indeed given an instance (x,G(p), B) of
the ARSPTW, a corresponding instance of ε-AnchReopt(GenPrec) is built as
follows: set the baseline equal to x; form the (Prec) scheduling instance with the
graph G(p) and an additional arc (n + 1, 0,−B); set the tolerance to zero. A
consequence of Theorem 1 is then

Corollary 1. The ARSPTW is polynomial-time solvable.

The proof of Theorem 4.3 from [1] incorrectly stated the NP-hardness of the
ARSPTW. It relied on a reduction from the so-called Maximum Complete Bipar-
tite Subgraph problem (MCBS): given a bipartite graph G = (L ∪ R,E) with
n non isolated nodes and an integer k, is there a complete bipartite subgraph
of G with at least k nodes? The correct reference to Garey and Johnson [17]
requires that the complete bipartite subgraph is balanced, i.e., it has the same
number of nodes in L and R. Without this condition, the MCBS problem is
polynomial-time solvable.

3.2 Towards Machine Rescheduling

A question is to benefit from the polynomiality result of Theorem 1 in a machine
environment. Consider a set of m machines, and a set of jobs J to be scheduled
under precedence constraints represented by precedence graph G(p). A solution
of the problem, denoted by (m|Prec), is then formed with a vector of starting
times x ∈ R

J
+, and an assignment of jobs on machines. The anchored rescheduling

problem can be considered as previously, that is,

ε-AnchRe(m|Prec)
Input: integer m, precedence graph G(p), baseline (xi)i∈I , tolerance ε ∈ R

J
+

Problem: find y a schedule of G(p) on m machines such that σε(x, y) is maxi-
mized.

We first note that

Proposition 3. AnchRe(m|Prec) is NP-hard, even for m = 1.

Indeed, it was proven in [18] that the AnchRe(m|Prec) problem is NP-complete
on one machine, even when there is no precedence constraints, by a reduction
from 3-Partition.

Anchored Rescheduling for Fixed Sequence. Consider now the following variant.
Given a baseline solution, let S = (S1, . . . , Sm) be a collection of sequences,
where sequence Sk is the ordered list of jobs processed on machine k in the



Anchored Rescheduling Problems 163

baseline. We consider the anchored rescheduling problem where it is required
that the new solution y is consistent with the sequences from S, i.e.,

ε-AnchRe(m|Prec)-fixedSeq
Input: integer m, precedence graph G(p), baseline (xi)i∈I , sequences S, tolerance
ε ∈ R

J
+

Problem: find y a schedule of G(p) on m machines with sequences S such that
σε(x, y) is maximized.

Theorem 2. ε-AnchRe(m|Prec)-fixedSeq is solvable in polynomial time.

Proof. Let GS(p) denote the precedence graph formed with G(p) and additional
arcs (i, j) for every pair i, j of successive jobs in a sequence of S. Then y is a
schedule of G(p) on m machines with sequence S if and only if it is a schedule
of the instance GS(p) of (Prec). Hence solving ε-AnchRe(m|Prec)-fixedSeq is
equivalent to solving ε-AnchRe(Prec) for the precedence graph GS(p). From
Theorem 1, it comes that ε-AnchRe(m|Prec)-fixedSeq can be solved in polyno-
mial time. 	

In this variant, rescheduling does not impair neither the assignment of jobs on
machines nor the sequence of jobs on machines. The schedule y being much more
constrained than in ε-AnchRe(m|Prec), less jobs can be ε-anchored. However
the sequences of jobs on machines can be regarded as decisions that are main-
tained during rescheduling. Rescheduling with fixed sequence thus serves a sim-
ilar purpose as anchored jobs, by the stabilization of decisions.

A practical justification for rescheduling with fixed sequence is that the order
of jobs on machines may be difficult or costly to revise if the instance changes.
The sequence of jobs on a machine may require preparation, while it is easier to
adjust only starting times of jobs.

Rescheduling while maintaining the structure of the schedule w.r.t. resources
(e.g., the sequence of jobs on machines) was considered in the literature in the
context of robust approaches for the resource-constrained project scheduling
problem [19]. However the authors of [19] did not consider any criterion to main-
tain starting times.

4 Sensitivity Analysis of ε-AnchRe(GenPrec) with
Respect to Tolerance

Regarding tolerance ε as a new input of the rescheduling problem, a natural
question is the sensitivity of the optimal value of ε-AnchRe(GenPrec) to ε. In
this section, we study the behavior of the rescheduling optimal value in the case
where tolerance is given by a single parameter ε ≥ 0, that is, εi = ε for every
i ∈ {1, . . . , n}. Similar results hold if every εi is any affine function of ε. Given a
baseline x and an instance G(a), let

OPT (ε) = max
y schedule
of G(a)

σε(x, y)



164 P. Bendotti et al.

For every pair of distinct jobs i, j ∈ {0, . . . , n}, define bij = 1
2 (LG(a)(i, j) −(xj −

xi)) if i �= 0 and j �= 0, and bij = LG(a)(i, j) − (xj − xi) if i = 0 or j = 0. Let
B = {bij , i, j ∈ {0, . . . , n}, i �= j}.

Proposition 4. The function OPT (·) is piecewise constant and non-decreasing
on R+. Moreover every breakpoint ε∗ of function OPT belongs to set B.

Proof. The function OPT (·) is integer-valued. Moreover the function ε �→
σε(x, y) is non-decreasing hence OPT (·) is also non-decreasing. Let ε ≥ 0. Define
bε = max{b ∈ B, b ≤ ε}. The claim is that OPT (ε) = OPT (bε). Consider the
poset ({0, . . . , n},R) introduced in Sect. 2. The relation R depends on the tol-
erance and it can be rewritten as follows: for two distinct jobs i, j ∈ {0, . . . , n},
iRj if and only if bij > ε. Moreover, from the definition of bε, for every pair
i, j, the inequality bij > ε is equivalent to bij > bε. Hence, the relation R is the
same for tolerance ε and for tolerance bε. From Proposition 2, for every ε, the
value OPT (ε) is the maximum size of an antichain containing job 0 in the poset
({0, . . . , n},R). Since the poset remains the same for tolerance ε and tolerance
bε, it comes OPT (ε) = OPT (bε). From the claim, it follows that OPT is con-
stant on every interval of form [b, b′[ where b and b′ are two successive points of
B. Hence any breakpoint of the function must be a point in B. 	


Consider now the problem of minimizing the tolerance while ensuring that
at least k jobs are ε-anchored:

MinTolerance
Input: precedence graph G(a), baseline x, integer k
Problem: find ε such that OPT (ε) ≥ k and ε is minimized.

From Proposition 4 the optimum of MinTolerance can be found in set B.
Values in B can be computed in polynomial time, and |B| ≤ n2 + n, which
implies:

Corollary 2. MinTolerance can be solved in polynomial time.

OPT

0.25 0.5 0.75 1

ε
1

2

3

4

5

6

Fig. 3. Anchored rescheduling optimal value OPT (ε) for instance from Fig. 1 and base-
line x = (0, 2.5, 4.5, 2, 4.5, 6).



Anchored Rescheduling Problems 165

Consider the instance with 6 jobs from Fig. 1. Figure 3 shows its associated
rescheduling optimal value OPT for the baseline x = (0, 2.5, 4.5, 2, 4.5, 6). The
computation of the set B for this instance leads to four possible breakpoint
values (B = {0, 0.25, 0.5, 0.75}), but only three of them are actual breakpoints
of OPT . Namely, changing the tolerance within the range [0.25; 0.75[ has no
impact on the number of ε-anchored jobs.

5 Conclusion

We studied a rescheduling problem with the objective of maximizing the number
of jobs whose starting times correspond to the baseline, within tolerance ε. The
problem was shown to be polynomial, even under generalized precedence con-
straints, including deadlines or time windows constraints. It was also shown that
this polynomiality result can be used in the case of machine anchored reschedul-
ing with fixed sequence of jobs on machines.

If the anchored rescheduling problem of an NP-hard problem is bound to
remain NP-hard, it is interesting to stress that a polynomial variant can be of
practical interest. A perspective in the same spirit is to study anchored reschedul-
ing problems under other resource constraints. The considered rescheduling prob-
lems should also be integrated into a recoverable robust problem, in order to find
a good baseline schedule that could be marginally modified if disruptions occur.

References

1. Bendotti, P., Chrétienne, P., Fouilhoux, P., Quilliot, A.: Anchored reactive and
proactive solutions to the CPM-scheduling problem. Eur. J. Oper. Res. 261, 67–
74 (2017)

2. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall, Upper
Saddle River (2002)

3. Herroelen, W., Leus, R.: Robust and reactive project scheduling: a review and
classification of procedures, p. 42. Katholieke Universiteit Leuven, Open Access
publications from Katholieke Universiteit Leuven, April 2004

4. Smith, S.F.: Reactive Scheduling Systems. In: Brown, D.E., Scherer, W.T. (eds.)
Intelligent Scheduling Systems. Operations Research/Computer Science Interfaces
Series, vol. 3, pp. 155–192. Springer, Boston (1995). https://doi.org/10.1007/978-
1-4615-2263-8 7

5. Sakkout, H., Wallace, M.: Probe backtrack search for minimal perturbation in
dynamic scheduling. Constraints 5, 359–388 (2000)

6. Calhoun, K., Deckro, R., Moore, J., Chrissis, J., Hove, J.: Planning and re-planning
in project and production scheduling. Omega 30, 155–170 (2002)

7. Artigues, C., Roubellat, F.: A polynomial activity insertion algorithm in a multi-
resource schedule with cumulative constraints and multiple modes. Eur. J. Oper.
Res. 127(2), 297–316 (2000)

8. Herroelen, W., Leus, R.: Project scheduling under uncertainty: survey and research
potentials. Eur. J. Oper. Res. 165, 289–306 (2002)

9. Herroelen, W., Leus, R.: The construction of stable project baseline schedules. Eur.
J. Oper. Res. 156(3), 550–565 (2004)

https://doi.org/10.1007/978-1-4615-2263-8_7
https://doi.org/10.1007/978-1-4615-2263-8_7


166 P. Bendotti et al.

10. Bendotti, P., Chrétienne, P., Fouilhoux, P., Pass-Lanneau, A.: The anchor-
robust project scheduling problem, May 2019. https://hal.archives-ouvertes.fr/hal-
02144834. Working paper or preprint

11. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable
robustness, linear programming recovery, and railway applications. Robust Online
Large-Scale Optim. 5868, 1–27 (2009)

12. D’Angelo, G., Di Stefano, G., Navarra, A., Pinotti, C.: Recoverable robust timeta-
bles: an algorithmic approach on trees. IEEE Trans. Comput. 60, 433–446 (2011)

13. Schieber, B., Shachnai, H., Tamir, G., Tamir, T.: A theory and algorithms for
combinatorial reoptimization. Algorithmica 80(2), 576–607 (2018)

14. Şeref, O., Ahuja, R.K., Orlin, J.B.: Incremental network optimization: theory and
algorithms. Oper. Res. 57(3), 586–594 (2009)

15. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math.
51(1), 161–166 (1950)

16. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,
Heidelberg (2003)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., New York (1979)

18. Chrétienne, P.: Reactive and proactive single-machine scheduling to maintain a
maximum number of starting times. Ann. Oper. Res. 1–14 (2018). https://hal.
sorbonne-universite.fr/hal-02078478

19. Bruni, M., Di Puglia Pugliese, L., Beraldi, P., Guerriero, F.: An adjustable robust
optimization model for the resource-constrained project scheduling problem with
uncertain activity durations. Omega 71, 66–84 (2016)

https://hal.archives-ouvertes.fr/hal-02144834
https://hal.archives-ouvertes.fr/hal-02144834
https://hal.sorbonne-universite.fr/hal-02078478
https://hal.sorbonne-universite.fr/hal-02078478


Scheduling with Non-renewable
Resources: Minimizing the Sum

of Completion Times

Kristóf Bérczi1, Tamás Király1(B), and Simon Omlor2

1 MTA-ELTE Egerváry Research Group, Department of Operations Research,
Eötvös Loránd University, Budapest, Hungary

{berkri,tkiraly}@cs.elte.hu
2 Institute for Algorithms and Complexity, TU Hamburg, Hamburg, Germany

simon.omlor@tuhh.de

Abstract. We consider single-machine scheduling problems with a non-
renewable resource. In this setting, there are n jobs, each characterized
by a processing time, a weight, and a resource requirement. At given
points in time, certain amounts of the resource are made available to be
consumed by the jobs. The goal is to assign the jobs non-preemptively
to time slots on the machine, so that each job has the required resource
amount available at the start of its processing. We consider the objective
of minimizing the weighted sum of completion times.

The main contribution of the paper is a PTAS for the case of
0 processing times (1|rm = 1, pj = 0| ∑ wjCj). In addition, we show
strong NP-hardness of the case of unit resource requirements and weights
(1|rm = 1, aj = 1| ∑ Cj), thus answering an open question of Györgyi
and Kis. We also prove that the schedule corresponding to the Shortest
Processing Time First ordering provides a 3/2-approximation for the
latter problem.

Keywords: Scheduling · Non-renewable resources · PTAS ·
Approximation algorithm

1 Introduction

Scheduling problems with non-renewable resource constraints arise naturally in
various areas where resources like raw materials, energy, or funding arrive at
predetermined dates. In the general setting, we are given a set of jobs and a set
of machines. Each job is equipped with a requirement vector that encodes the
needs of the given job for the different types of resources. There is an initial
stock for each resource, and some additional resource arrival times in the future
are known together with the arriving quantities. The aim is to find a schedule
of the jobs on the machines such that the resource requirements are met.

Supported by DAAD with funds of the Bundesministerium für Bildung und Forschung
(BMBF) and by DFG project MN 59/4-1.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 167–178, 2020.
https://doi.org/10.1007/978-3-030-53262-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_14


168 K. Bérczi et al.

We will use the standard α|β|γ notation of Graham et al. [5]. Grigoriev
et al. [6] extended this notation by adding the restriction rm = r to the β
field, meaning that there are r resources (raw materials). In the present paper,
we concentrate on problem 1|rm = 1|∑ wjCj , that is, when we have a single
machine, a single resource, and the goal is to minimize the weighted sum of
completion times.

Previous Work. Scheduling problems with resource restrictions (sometimes
called financial constraints) were introduced by Carlier [2] and Slowinski [16].
Carlier settled the computational complexity of several variants for the single
machine case [2]. In particular, it was shown that 1|rm = 1|∑ wjCj is NP-hard
in the strong sense. This was also proved independently by Gafarov, Lazarev
and Wener in [3]. Kis [15] showed that the problem remains weakly NP-hard
even when the number of resource arrival times is 2 and gave an FPTAS for
1|rm = 1, q = 2|∑ wjCj . A further variant of the problem was considered
in [3]. Recently, Györgyi and Kis [13,14] gave polynomial time algorithms for
several special cases, and also showed that the problem remains weakly NP-hard
even under the very strong assumption that the processing time, the resource
requirement and the weight are the same for each job. They also provided a
2-approximation algorithm for this variant. For a constant number of resource
arrival times, they gave a PTAS when the processing time equals the weight for
each job, and an FPTAS when the resource requirements and weights are 1.1

In comparison, much more is known about the maximum makespan and
maximum lateness objectives. Slowinski [16] studied the preemptive schedul-
ing of independent jobs on parallel unrelated machines with the use of addi-
tional renewable and non-renewable resources under financial constraints. Toker
et al. [17] examined a single-machine scheduling problem under non-renewable
resource constraint using the makespan as a performance criterion. Xie [18]
generalized this result to the problem with multiple financial resource con-
straints. Grigoriev et al. [6] presented polynomial time algorithms, approxima-
tions and complexity results for single-machine scheduling problems with unit or
all-equal processing times. In a series of papers [7–11], Györgyi and Kis presented
approximation schemes and inapproximability results both for single and paral-
lel machine problems with the makespan and the maximum lateness objectives.
In [12], they proposed a branch-and-cut algorithm for minimizing the maximum
lateness.

Our Results. The first problem that we consider is 1|rm = 1, aj = 1|∑ Cj .
The complexity of this problem was posed as an open question in [12]. We show
that the problem is NP-hard in the strong sense.

Theorem 1. 1|rm = 1, aj = 1|∑ Cj is strongly NP-hard.

Given any scheduling problem on a single machine, the Shortest Processing
Time First (SPT) schedule orders the jobs by processing times, i.e. pspt−1(i) ≤
1 Just before the submission of the present paper, Györgyi and Kis published an
updated version of [14] with some new results. None of our results are implied by
their paper.



Scheduling with Non-renewable Resources 169

pspt−1(i+1) for all i. We prove that spt provides a 3/2-approximation. We remark
that it remains open whether the problem is APX-hard.

Theorem 2. The SPT schedule gives a 3
2 -approximation for 1|rm = 1, aj =

1|∑ Cj, and the approximation guarantee is tight.

The second problem considered is the special case when the processing time
is 0 for every job. This setting is relevant to situations where processing times
are negligible compared to the gaps between resource arrival times, and the bot-
tleneck is resource availability. Examples include financial scheduling problems
where the jobs are not time consuming but the availability of funding varies in
time, or production problems where products are shipped at fixed time intervals
and production time is negligible compared to these intervals. Note that the
number of machines is irrelevant if processing times are 0.

First we present a PTAS for constant number of resource arrival times. This
procedure will be used as a subroutine in our algorithm for the general case.

Theorem 3. There exists a (1+ q
k )-approximation for 1|rm = 1, pj = 0|∑ Cjwj

with running time O(nqk+1).

The main contribution of the paper is a PTAS for the same problem with an
arbitrary number of resource arrival times.

Theorem 4. There exists a PTAS for 1|rm = 1, pj = 0|∑ Cjwj.

A peculiarity of the algorithm is that the PTAS for constant number of arrival
times is called repeatedly on overlapping time windows, and at each call we fix
only a portion of the scheduled jobs.

Due to space constraints, several proofs and details as well as further results
are deferred to the full version of this paper, which is available at http://arxiv.
org/abs/1911.12138.

2 Preliminaries

Throughout the paper, we will use the following notation. We are given a set
J of n jobs. Each job j ∈ J has a non-negative integer processing time pj , a
non-negative weight wj , and a resource requirement aj . The resources arrive at
time points t1, . . . , tq, and the amount of resource that arrives at ti is denoted
by bi. We might assume that

∑q
i=1 bi =

∑n
j=1 aj holds. We will always assume

that t1 = 0, as this does not effect the approximation ratio of our algorithms.
The jobs should be processed non-preemptively on a single machine. A sched-

ule is an ordering of the jobs, that is, a mapping σ : J → [n], where σ(j) = i
means that job j is the ith job scheduled on the machine. The completion time
of job j in schedule σ is denoted by Cσ

j . We will drop the index σ if the schedule
is clear from the context. In any reasonable schedule, there is an idle time before
a job j only if there is not enough resource left to start j after finishing the last
job before the idle period. Hence, the completion time of job j is determined
by the ordering and by the resource arrival times, as j will be scheduled at the
earliest moment when the preceding jobs are already finished and the amount
of available resource is at least aj .

http://arxiv.org/abs/1911.12138
http://arxiv.org/abs/1911.12138


170 K. Bérczi et al.

3 The Problem 1|rm = 1, aj = 1|∑Cj

3.1 Strong NP-completeness

Proof of Theorem 1. Recall that all aj and wj values are 1, and each job has an
integer processing time pj . The number of resource arrival times is part of the
input. We prove NP-completeness by reduction from the 3-Partition problem.
The input contains numbers B ∈ N, n ∈ N, and xj ∈ N (j = 1, . . . , 3n) such that
B/4 < xj < B/2 and

∑3n
j=1 xj = nB. A feasible solution is a partition J1, . . . , Jn

of [3n] such that |Ji| = 3 and
∑

j∈Ji
xj = B for every i ∈ [n]. In contrast to the

Partition problem, the 3-partition problem remains NP-complete even when
the integers xj are bounded above by a polynomial in n. That is, the problem
remains NP-complete even when the numbers in the input are represented as
unary numbers [4, pages 96–105 and 224].

Let K = 4nB. The reduction to 1|rm = 1, aj = 1|∑ Cj involves three types
of jobs. Normal jobs correspond to the numbers xj in the 3-Partition instance,
so there are 3n of them and the processing time pj of the j-th normal job is xj .
We further have nK small jobs with processing time 1, and nK large jobs with
processing time K. There are also three types of resource arrivals. The Type
1 resource arrival times are i(B + K) (i = 0, . . . , n − 1) with three resources
arriving at each. The Type 2 arrival times are i(B + K) + j (i = 0, . . . , n − 1,
j = B, . . . , B + K − 1) with one resource arriving. Finally, the Type 3 resource
arrival times are n(B + K) + iK (i = 0, . . . , nK − 1) with one resource arriving.

Suppose that the 3-Partition instance has a feasible solution J1, . . . , Jn.
We consider the following schedule S: resources of Type 1 are used by normal
jobs, such that jobs in Ji are scheduled between (i−1)(B+K) and iB+(i−1)K
(in spt order). Type 2 resources are used by small jobs that start immediately.
Type 3 resources are used by the large jobs that also start immediately at the
resource arrival times (see Fig. 1).

Instead of
∑

Cj , we consider the equivalent shifted objective function
∑

(Cj−
tj − pj), where tj is the arrival time of the resource used by job j and pj is its
processing time – we assume without loss of generality that resources are used by
jobs in order of arrival. Note that all terms of

∑
(Cj −tj −pj) are nonnegative. As

small jobs and large jobs start immediately at the arrival of the corresponding
resource in schedule S, their contribution to the shifted objective function is
0. The jobs in Ji have total processing time B, and their contribution to the
shifted objective function is two times the processing time of the shortest job
plus the processing time of the second shortest job, which is at most B. Hence
the schedule S has objective value at most nB.

We claim that if the 3-Partition instance has no feasible solution, then the
objective value of any schedule is strictly larger than nB. First, notice that if a
large job is scheduled to start before time n(B + K), then

∑
(Cj − tj − pj) has

a term strictly larger than nB as there is a resource that arrives while the large
job is processed and is not used for more than nB time units. Similarly, if the
first large job starts at n(B + K) but uses a resource that arrived earlier, then
the resource that arrives at n(B + K) is not used for more than nB time units.



Scheduling with Non-renewable Resources 171

Fig. 1. The schedule corresponding to a feasible solution of 3-Partition.

We can conclude that the first large job uses the resource arriving at n(B + K).
If the first large job does not start at n(B +K), then all large jobs have positive
contribution to the objective value, so again, the objective value is larger than
nB. We can therefore assume that the large jobs start exactly at n(B +K)+ iK
(i = 0, . . . , nK −1) and that there is no idle time before (B+K)n. In particular,
this means that all other jobs are already completed at time (B + K)n.

Consider Type 2 resources arriving at i(B + K) + j (j = B, . . . , B + K − 1)
for some fixed i. If the first or the second resource is not used immediately, then
none of the subsequent ones are, so the objective value is more than nB. Hence,
the first resource must be used immediately by a small job.

Suppose that some resource in this interval is used by a normal job. If it is
followed by a small job, then we may improve the objective value by exchanging
the two. Thus, in this case, we can assume that the last resource of the interval is
used by a normal job, and also the Type 1 resources arriving at (i+1)(B+K) are
used by normal jobs. But this is impossible, because normal jobs have processing
time at least B/4 + 1, and a small job starts at time (i + 1)(B + K) + B.

To sum up, we can assume that all resources of Type 2 are used immediately
by small jobs. This means that normal jobs have to use resources of Type 1,
and must exactly fill the gaps of length B between the arrival of resources of
Type 2. This is only possible if the 3-partition instance has a feasible solution,
concluding the proof of Theorem 1. ��

3.2 Shortest Processing Time First for Unit Resource Requirements

We now show that scheduling the jobs according to an spt ordering provides a
3/2-approximation for the problem with unit weights and unit resource require-
ments, thus proving Theorem 2.

Proof of Theorem 2. To prove the theorem consider any instance I. We denote
the completion times for the spt ordering by Cj and their sum by spt. Further-
more, let Sspt−1(i) := Cspt−1(i)−pspt−1(i) denote the starting time of the ith job in
the spt schedule. Let opt be the optimal schedule for I. We denote the completion
times for opt by C ′

j and their sum by opt. Let S′
opt−1(i) := C ′

opt−1(i) − popt−1(i)

denote the starting time of the ith job in the optimal schedule.
Our strategy is to simplify the instance by revealing its structural properties

while not decreasing spt
opt . We only state the claims needed for the proof here;

their proofs can be found in the full version of the paper [1]. First we modify
the resource arrival times.



172 K. Bérczi et al.

Claim 1. We may assume that the ith resource arrives at S′
opt−1(i) for i =

1, . . . , n, and that there is no idle time in schedule opt, that is, S′
opt−1(i) =

C ′
opt−1(i−1) for i = 2, . . . , n.

Next, we modify the instance to have 0 − 1 processing times.

Claim 2. We may assume that popt−1(1) > pspt−1(1) and that pspt−1(1) = 0.
Furthermore, we may assume that pj ∈ {0, 1} for all j ∈ J .

Finally, we modify the order of the jobs in the optimal solution. If opt and
spt process a job of length 0 at the same time, then we can remove the job from
the instance and reduce the number of resources that arrive at this time by 1.
This will reduce opt and spt by the same amount.

Let t be the time at which schedule spt first starts to process a job of length
1. On one hand, opt does not process jobs of length 0 before t by the above
argument. On the other hand, there is no idle time after t in spt, because that
would mean idle time in opt. Thus, if we move all jobs of length 0 and their
corresponding resource arrivals in opt to time t, then spt does not change but
opt decreases. We may thus assume that schedule opt processes every job of
length 0 at t.

We conclude that opt first processes k1 jobs of length 1, then k1 jobs of
length 0 and then k2 jobs of length 1, while spt starts with the jobs of length
0 having a lot of idle time in the beginning and then consecutively processes
all jobs of length 1. The weighted sums of completion times are then given by
opt = k1(k1+1)

2 +k2
1 +k2k1+ k2(k2+1)

2 and spt = k1(k1−1)
2 +k2k1+ k1(k1+1)

2 +(k1+

k2)k1 + k2(k2+1)
2 . We get 3

2opt − spt = k2
1
4 + k2

2
4 − k1k2

2 + 3k1+k2
4 ≥ (k1−k2)

2

4 ≥ 0,
showing that the approximation factor is at most 3

2 .
Setting k2 = k1 and letting k1 go to infinity gives us a sequence of instances

such that spt
opt converges to 3

2 as we have spt = 9
2k2

1+O(k1) and opt = 3k2
1+O(k1).

This concludes the proof of Theorem 2. ��

4 The Problem 1|rm = 1, pj = 0|∑Cjwj

In this section we consider problem 1|rm = 1, pj = 0|∑ Cjwj , another special
case of 1|rm = 1|∑ Cjwj . Since the processing times are 0, every job is processed
at one of the arrival times in any optimal schedule. Thus, a schedule can be
represented by a mapping π : J → [q], where π(j) denotes the index of the
resource arrival time when job j is processed. A schedule is feasible if the resource
requirements are met, that is, if

∑
j:π(j)≤k aj ≤ ∑

i≤k bi for all 1 ≤ k ≤ q. As we
assume that

∑
i bi =

∑
j aj holds, this is equivalent to

∑
j:π(j)≥k aj ≥ ∑

i≥k bi

for all 1 ≤ k ≤ q.
Define Bk =

∑
i≥k bi, and consider the set of jobs that are not processed

before a given time point ti. Then the second inequality says that if the resource
requirements of these jobs add up to at least Bi, then our schedule is feasible.



Scheduling with Non-renewable Resources 173

4.1 PTAS for Constant q

The aim of this section is to give a PTAS for the case when the number of
resource arrival times is a constant. The algorithm is a generalization of a well
known PTAS for the knapsack problem, and will be used later as a subroutine in
the PTAS for an arbitrary number of resource arrival times. The idea is to choose
a number k ∈ Z+, guess the k heaviest jobs that are processed at each resource
arrival time ti, and then determine the remaining jobs that are scheduled at ti in
a greedy manner. Since we go over all possible sets containing at most k jobs for
each resource arrival time, there is an exponential dependence on the number q
of resource arrival times in the running time.

Algorithm 1. PTAS for 1|rm = 1, pj = 0|∑ Cjwj when q is a constant.
Input: Jobs J with |J | = n, resource requirements aj , weights wj , resource arrival
times t1 ≤ . . . ≤ tq and resource quantities b1, . . . bq.
Output: A feasible schedule π.

1: for all subpartitions S1 ∪ · · · ∪ Sq ⊆ J with |Si| ≤ k for i > 1 do
2: Set A = 0.
3: Set W = 0.
4: for i from 0 to q − 2 do
5: for j ∈ Sq−i do
6: π(j) = q − i
7: A ← A + aj

8: if |Sq−i| = k then
9: W ← max{W,min{wj : j ∈ Sq−i}}
10: while A < Bq−i do
11: if there exists an unassigned job j with wj ≤ W then
12: Let j be an unassigned job with wj ≤ W minimizing wj/aj .
13: π(j) = q − i
14: A ← A + aj

15: else
16: break
17: For all remaining jobs set π(j) = 1.

18: Let π be the best schedule found.
19: return π

Proof of Theorem 3. We claim that Algorithm 1 satisfies the requirements of the
theorem. Let πopt be an optimal schedule and define Jopt

i = {j ∈ J : πopt(j) = i}.
Let Sopt

i be the set of the k heaviest jobs in Jopt
i if |Jopt

i | ≥ k, otherwise let
Sopt

i = Jopt
i . Let Ji = {j ∈ J : π(j) = i} denote the set of jobs assigned to time

ti in our solution. In each iteration of the for loop of Step 4, let ji be the last
job added to Ji if such a job exists.

Assume that we are at the iteration of the algorithm when the subpartition
Sopt
1 ∪ · · · ∪ Sopt

q is considered in Step 1. Let Wq−� denote the value of W at the
end of the iteration of the for loop corresponding to i = � in Step 4. By Steps 3



174 K. Bérczi et al.

and 9, we have Wq−� ≤ 1
k

∑q
i=�

∑
j∈Jopt

i
wj . As our algorithm always picks the

most inefficient job, we also have
∑q

i=�

∑
j∈Ji\{ji} wj ≤ ∑q

i=�

∑
j∈Jopt

i
wj , where

Ji \ {ji} = Ji if ji is not defined for i.
Combining these two observations, for � = 1, . . . , q we get

q∑

i=�

∑

j∈Ji

wj =

q∑

i=�

∑

j∈Ji\{ji}
wj +

q∑

i=�

wji

≤
q∑

i=�

∑

j∈J
opt
i

wj + (q − � + 1) · W� ≤ (1 +
q

k
)

q∑

i=�

∑

j∈J
opt
i

wj ,

where the first inequality follows from the fact that wji ≤ Wi ≤ W� whenever
i ≥ �. This proves that the schedule that we get is a (1 + q

k )-approximation.
We get a factor of nqk in the running time for guessing the sets Sk. Assigning

the remaining jobs can be done in linear time by ordering the jobs and using
AVL-trees, thus we get an additional factor of n. In order to get a PTAS, we set
k = ε

q , concluding the proof of the theorem. ��

4.2 PTAS for Arbitrary q

We turn to the proof of the main result of the paper. The first idea is to shift
resource arrival times to powers of 1 + ε, for a suitably small ε.

Let I be an instance of 1|rm = 1, pj = 0|∑j Cjwj . We assume that resource
arrival times are integer, and that t1 = 0, t2 = 1. We define a new instance I ′ of
1|rm = 1, pj = 0|∑j Cjwj with shifted resource arrival times as follows. Set t′1 =
0 and t′i = (1+ε)i−2 for i = 2, . . . , 	log1+ε(tq)
+2. Moreover, let b′

1 = b1, b
′
2 = b2

and b′
i =

∑
[bi : ti ∈ ((1 + ε)i−3, (1 + ε)i−2] for i = 3, . . . , 	log1+ε(tq)
 + 2.

The proof of the following claim is the same as that of Claim 12 in [1].

Claim 3. A solution to I with weighted sum of completion times W can be
transformed into a solution of I ′ with weighted sum of completion times at most
(1 + ε)W . Furthermore, any feasible schedule for I ′ is also feasible for I. ��

Due to the claim, we may assume that the positive arrival times are powers
of 1 + ε. For convenience of notation, we will assume in this subsection that
the largest arrival time is 1, and arrival times are indexed in decreasing order,
starting with t0 = 1. That is, ti = (1 + ε)−i (i = 0, . . . , q − 2), and tq−1 = 0. We
will also assume that for a given constant r, bq−r−1 = · · · = bq−2 = 0. This can
be achieved by adding r dummy arrival times.

Proof of Theorem 4. Let us fix an even integer r and ε > 0; we will later assume
that r is very large compared to ε−1. We assume that resource arrival times are
as described above. The algorithm is given as Algorithm 2.

In the algorithm, we fix jobs at progressively decreasing arrival times, by
using the PTAS of the previous section for r + 1 arrival times on different
instances except for the first step, when we may use the PTAS for less than r+1



Scheduling with Non-renewable Resources 175

Algorithm 2. PTAS for 1|rm = 1, pj = 0|∑ Cjwj

Input: Jobs J with |J | = n, resource requirements aj , weights wj ; an even integer r;
resource quantities b0, . . . bq−1 such that bq−r−1 = · · · = bq−2 = 0 and

∑
aj =

∑
bi.

We assume resource arrival times are ti = (1 + ε)−i (i = 0, . . . , q − 2), tq−1 = 0.
Output: A feasible schedule π.

1: for � from 1 to r/2 do
2: Obtain instance I′ with r/2+ �+1 arrival times by moving arrivals before

tr/2+�−1 to 0.
3: Run Algorithm 1 on I′ to get schedule σ.
4: Let A = B = 0.
5: for i from 0 to � − 1 do
6: For every j ∈ σ−1(i), fix π�(j) = i.
7: A ← A +

∑
j∈σ−1(i) aj

8: B ← B + bi

9: for j from 2 to �2(q − 1 − �)/r� do
10: Let s = (j − 2)r/2 + �.
11: Obtain instance I′ with arrival times ts, ts+1, . . . , ts+r−1, 0: remove

arrivals after ts, remove max{A−B, 0} latest remaining resources,
and move all arrivals before ts+r−1 to 0.

12: Let A = B = 0.
13: Run Algorithm 1 on I′ to get schedule σ.
14: for i from s to s + r/2 − 1 do
15: For every j ∈ σ−1(i), fix π�(j) = i.
16: A ← A +

∑
j∈σ−1(i) aj

17: B ← B + bi

18: For all unscheduled jobs j, set π�(j) = q − 1.

19: Let π be the best schedule among π1, . . . , πr/2.
20: return π

arrival times. We will run our algorithm r/2 times with slight modifications, and
pick the best result. Each run is characterized by a parameter � ∈ {1, . . . , r/2}.

In the first step, we consider arrival times t0, t1, . . . , tr/2+�−1, 0. We move
the resources arriving before tr/2+�−1 to 0, and use the PTAS for r/2 + � + 1
arrival times on this instance. We fix the jobs that are scheduled at arrival times
t0, t1, . . . , t�−1.

Consider now the jth step for some j ≥ 2. Define s = (j − 2)r/2 + � and
consider arrival times ts, ts+1, . . . , ts+r−1, 0. Move the resources arriving before
ts+r−1 to 0, and decrease bs, bs+1, . . . in this order as needed, so that the total
requirement of unfixed jobs equals the total resource. Use the PTAS for r + 1
arrival times on this instance. Fix the jobs that are scheduled at arrival times
ts, ts+1, . . . , ts+r/2−1. The algorithm runs while s+ r − 1 ≤ q − 2, i.e., jr/2+ � ≤
q − 1. Since the smallest r arrival times (except for 0) are dummy arrival times,
the algorithm considers all resource arrivals.

The schedule given by the algorithm is clearly feasible, because when jobs
at ti are fixed, the total resource requirement of jobs starting no earlier than ti
is at least the total amount of resource arriving no earlier than ti. To analyze



176 K. Bérczi et al.

the approximation ratio, we introduce the following notation: Wi is the total
weight that the algorithm schedules at ti; W ′

i is the weight that the algorithm
temporarily schedules at ti when i is in the interval [ts+r/2, ts+r−1] (or, in the
first step, in the interval [t�, t�+r/2−1]); W ∗

i is the total weight scheduled at ti in
the optimal solution.

Since we use the PTAS for r/2 + � + 1 arrival times in the first step, we have
∑�−1

i=0(1 + ε)−iWi +
∑�+r/2−1

i=� (1 + ε)−iW ′
i ≤ (1 + ε)

∑�+r/2−1
i=0 (1 + ε)−iW ∗

i , as
the right-hand side is (1 + ε) times the objective value of the feasible solution
obtained from the optimal solution by moving jobs arriving before t�+r/2−1 to 0.

For s = jr/2+�, we compare the output of the PTAS with a different feasible
solution: we schedule total weight W ′

i at ti for i = s, s + 1, . . . , s + r/2 − 1, total
weight W ∗

i at ti for i = s + r/2 + 1, . . . , s + r − 1, and at ts+r/2 we schedule all
jobs that are no earlier than ts+r/2 in the optimal schedule but are no later than
ts+r/2 in the PTAS schedule. We get the inequality

(j+1)r/2+�−1∑

i=jr/2+�

(1 + ε)−iWi +

(j+2)r/2+�−1∑

i=(j+1)r/2+�

(1 + ε)−iW ′
i ≤ (1 + ε)

⎛

⎝
(j+1)r/2+�−1∑

i=jr/2+�

(1 + ε)−iW ′
i

+

(j+2)r/2+�−1∑

i=(j+1)r/2+�

(1 + ε)−iW ∗
i + (1 + ε)−(j+1)r/2−�

(j+1)r/2+�−1∑

i=0

W ∗
i

⎞

⎠ .

The sum of these inequalities gives

q−2∑

i=0

(1 + ε)−iWi ≤ ε

q−2∑

i=�

(1 + ε)−iW ′
i + (1 + ε)

q−2∑

i=0

(1 + ε)−iW ∗
i

+(1 + ε)

q−2∑

i=0

⎛

⎝
∑

j:jr/2+�>i

(1 − ε)−(jr/2+�)

⎞

⎠ W ∗
i .

(1)

To bound the first term on the right hand side of (1), first we observe that
∑r/2+�−1

i=� (1 + ε)−iW ′
i ≤ (1 + ε)

∑r/2+�−1
i=0 (1 + ε)−iW ∗

i , because the left side is
at most the value of the PTAS in the first step, while the right side is (1 + ε)
times the value of a feasible solution. Similarly,

(j+2)r/2+�−1∑

i=(j+1)r/2+�

(1 + ε)−iW ′
i

≤ (1 + ε)

⎛

⎝
(j+2)r/2+�−1∑

i=jr/2+�

(1 + ε)−iW ∗
i + (1 + ε)−jr/2−�

jr/2+�−1∑

i=0

W ∗
i

⎞

⎠ ,

because the left side is at most the value of the PTAS in the (j +1)-th step, and
the right side is (1 + ε) times the value of the following feasible solution: take
the optimal solution, move jobs scheduled before t(j+2)r/2+�−1 to 0, and move



Scheduling with Non-renewable Resources 177

jobs scheduled after tjr/2+� to tjr/2+�. Adding these inequalities, we get

ε

q−2∑

i=�

(1 + ε)−iW ′
i

≤ ε(1 + ε)

⎛

⎝2

q−2∑

i=0

(1 + ε)−iW ∗
i +

q−2∑

i=0

⎛

⎝
∑

j:jr/2+�>i

(1 + ε)−jr/2−�

⎞

⎠ W ∗
i

⎞

⎠

≤ ε

(

2(1 + ε) +
(1 + ε)r/2

(1 + ε)r/2 − 1

) q−2∑

i=0

(1 + ε)−iW ∗
i .

The last expression is at most 4ε times the optimum value if r is large enough.
The last term of the right side of (1) is too large to get a bound that proves

a PTAS. However, we can bound the average of these terms for different values
of �. The average is

(1 + ε)
2

r

r/2∑

�=1

q−2∑

i=0

⎛

⎝
∑

j:jr/2+�>i

(1 − ε)−(jr/2+�)

⎞

⎠ W ∗
i

≤ (1 + ε)
2

r

q−2∑

i=0

( ∞∑

j=1

(1 + ε)−j

)

(1 − ε)−iW ∗
i = (1 + ε)

2

rε

q−2∑

i=0

(1 − ε)−iW ∗
i ,

which is at most ε times the optimum if r is large enough. To summarize, we
obtained that for large enough r, the average objective value of our algorithm
for � = 1, 2, . . . , r/2 is upper bounded by

4ε

q−2∑

i=0

(1+ε)−iW ∗
i +(1+ε)

q−2∑

i=0

(1+ε)−iW ∗
i +ε

q−2∑

i=0

(1+ε)−iW ∗
i = (1+6ε)

q−2∑

i=0

(1+ε)−iW ∗
i ,

which is (1 + 6ε) times the objective value of the optimal solution. This proves
that the algorithm that chooses the best of the r/2 runs is a PTAS. ��

Acknowledgement. The authors are grateful to Erika Bérczi-Kovács and to Matthias
Mnich for the helpful discussions. Kristóf Bérczi was supported by the János Bolyai
Research Fellowship of the Hungarian Academy of Sciences and by the ÚNKP-19-
4 New National Excellence Program of the Ministry for Innovation and Technology.
Projects no. NKFI-128673 and ED18-1-2019-0030 have been implemented with the sup-
port provided from the National Research, Development and Innovation Fund of Hun-
gary, financed under the FK 18 and Thematic Excellence Programme funding schemes.
Tamás Király was supported by NKFIH grant number K120254.

References

1. Bérczi, K., Király, T., Omlor, S.: Scheduling with non-renewable resources: min-
imizing the sum of completion times (2019). https://arxiv.org/abs/1911.12138.
Preprint

2. Carlier, J.: Problèmes d’ordonnancement à contraintes de ressources: algorithmes
et complexité. Université Paris VI-Pierre et Marie Curie, Institut de programma-
tion (1984)

https://arxiv.org/abs/1911.12138


178 K. Bérczi et al.

3. Gafarov, E.R., Lazarev, A.A., Werner, F.: Single machine scheduling problems with
financial resource constraints: some complexity results and properties. Math. Soc.
Sci. 62(1), 7–13 (2011)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness (1979)

5. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. In: Annals of discrete
mathematics, vol. 5, pp. 287–326. Elsevier (1979)

6. Grigoriev, A., Holthuijsen, M., Van De Klundert, J.: Basic scheduling problems
with raw material constraints. Naval Res. Logist. (NRL) 52(6), 527–535 (2005)

7. Györgyi, P.: A ptas for a resource scheduling problem with arbitrary number of
parallel machines. Oper. Res. Lett. 45(6), 604–609 (2017)

8. Györgyi, P., Kis, T.: Approximation schemes for single machine scheduling with
non-renewable resource constraints. J. Sched. 17(2), 135–144 (2013). https://doi.
org/10.1007/s10951-013-0346-9

9. Györgyi, P., Kis, T.: Approximability of scheduling problems with resource con-
suming jobs. Ann. Oper. Res. 235(1), 319–336 (2015). https://doi.org/10.1007/
s10479-015-1993-3

10. Györgyi, P., Kis, T.: Reductions between scheduling problems with non-renewable
resources and knapsack problems. Theoret. Comput. Sci. 565, 63–76 (2015)

11. Györgyi, P., Kis, T.: Approximation schemes for parallel machine scheduling with
non-renewable resources. Eur. J. Oper. Res. 258(1), 113–123 (2017)

12. Györgyi, P., Kis, T.: Minimizing the maximum lateness on a single machine with
raw material constraints by branch-and-cut. Comput. Ind. Eng. 115, 220–225
(2018)

13. Györgyi, P., Kis, T.: Minimizing total weighted completion time on a single
machine subject to non-renewable resource constraints. J. Sched. 22(6), 623–634
(2019). https://doi.org/10.1007/s10951-019-00601-1

14. Györgyi, P., Kis, T.: New complexity and approximability results for minimiz-
ing the total weighted completion time on a single machine subject to non-
renewable resource constraints. arXiv preprint arXiv:2004.00972 (2020). Earlier
version: EGRES Technical Report 2019–05, egres.elte.hu

15. Kis, T.: Approximability of total weighted completion time with resource consum-
ing jobs. Oper. Res. Lett. 43(6), 595–598 (2015)

16. Slowiński, R.: Preemptive scheduling of independent jobs on parallel machines
subject to financial constraints. Eur. J. Oper. Res. 15(3), 366–373 (1984)

17. Toker, A., Kondakci, S., Erkip, N.: Scheduling under a non-renewable resource
constraint. J. Oper. Res. Soc. 42(9), 811–814 (1991)

18. Xie, J.: Polynomial algorithms for single machine scheduling problems with finan-
cial constraints. Oper. Res. Lett. 21(1), 39–42 (1997)

https://doi.org/10.1007/s10951-013-0346-9
https://doi.org/10.1007/s10951-013-0346-9
https://doi.org/10.1007/s10479-015-1993-3
https://doi.org/10.1007/s10479-015-1993-3
https://doi.org/10.1007/s10951-019-00601-1
http://arxiv.org/abs/2004.00972


Arc-Flow Approach for Parallel Batch
Processing Machine Scheduling
with Non-identical Job Sizes

Renan Spencer Trindade1(B), Olinto C. B. de Araújo2, and Marcia Fampa3

1 LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

rst@lix.polytechnique.fr
2 CTISM, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

olinto@ctism.ufsm.br
3 IM, PESC/COPPE, Universidade Federal do Rio de Janeiro,

Rio de Janeiro, RJ, Brazil
fampa@cos.ufrj.br

Abstract. Problems of minimizing makespan in scheduling batch pro-
cessing machines are widely exploited by academic literature, mainly
motivated by burn-in tests in the semiconductor industry. The prob-
lem addressed in this work consists of grouping jobs into batches and
scheduling them in parallel machines. The jobs have non-identical size
and processing times. The total size of the batch cannot exceed the capac-
ity of the machine. The processing time of each batch will be equal to
the longest processing time among all the jobs assigned to it. This paper
proposes an arc-flow based model for minimizing makespan on parallel
processing machines Pm|sj , B|Cmax. The mathematical model is solved
using CPLEX, and computational results show that the proposed models
have a better performance than other models in the literature.

Keywords: Parallel batch processing machine · Scheduling ·
Makespan · Arc-flow

1 Introduction

Scheduling is a widely used decision-making process in resource allocation and
allows optimization in most production systems, information processing, trans-
port, and distribution configurations, and several other real-world environments.
This paper focuses on scheduling problems in Batch Processing Machines (BPM),
that have been extensively explored in the literature, motivated by a large num-
ber of applications in industries and also by the challenging solution of real world

R. S. Trindade—Partially supported by a Ph.D. scholarship from the Brazilian
National Council for Scientific and Technological Development (CNPq) [grant num-
ber 142205/2014-1] and by CNPq grant 303898/2016-0.
M. Fampa—Supported in part by CNPq grants 303898/2016-0 and 434683/2018-3.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 179–190, 2020.
https://doi.org/10.1007/978-3-030-53262-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_15


180 R. S. Trindade et al.

problems. The main goal in these problems is to group jobs in batches and pro-
cess them simultaneously in a machine, to facilitate the tasks and to reduce the
time spent in handling the material. Although there are many variations of the
problem involving BPM, the version addressed in this work are more suitable to
model the scheduling problems that arise in reliability tests in the semiconductor
industry, in operations called burn-in, presented in [22].

The burn-in operation is used to test electronic circuits and consists of des-
ignating them to industrial ovens, submitting them to thermal stress for a long
period. The test of each circuit is considered here as a job and requires a mini-
mum time inside the oven, which is referred to as the processing machine. The
jobs need to be placed on a tray, respecting the capacity of the machine. The
burn-in tests are a bottleneck in final testing operations, and the efficient schedul-
ing of these operations aims to maximize productivity. The processing time to
test an electronic circuit can reach up to 120 hours in a constant temperature
around 120◦C, as presented in [13]. On tests reported in [19] and [7], a liquid
crystal display usually takes 6 hours to complete the reliability test, which rein-
forces the importance of an efficient scheduling.

The research on BPM is recent, compared to the history of the semiconductor
manufacturing, and consists of grouping the jobs into batches. The publication
[18] reviews the research done on scheduling models considering batch processing
machines. A survey related to BPM problems research found in [15], analyzing
publications between 1986 and 2004 (part of 2004 only). Another survey that
focus on BPM problems published in [16] and reveals that p-batching is much
more important in semiconductor manufacturing comparing with s-batching.

This paper considers Pm|sj , B|Cmax problem. In the literature, the works that
address it are mostly extensions of the works published for the single machine
version of the problem. In [3], the simulated annealing meta-heuristic is applied,
and an Mixed Integer Linear Programming (MILP) formulation is presented for
the problem. This work also proves the NP-hard complexity of the problem, and
shows results for instances with up to 50 jobs. In [11], a hybrid genetic algorithm
is used to compute solutions for instances with up to 100 jobs, considering 2 and
4 parallel machines. In [8] a new application of the genetic algorithm is proposed,
which solves instances with up to 100 jobs, also on 2 and 4 parallel machines. In
[6] an approximation algorithm is presented for the problem, with the approxi-
mation factor of 2. Finally, two other works that apply meta-heuristics ([5] and
[10]), use the ant colony method and a meta-heuristic based on a max-min ant
system for this problem. In [5], results for instances with up to 500 jobs on 4 and
8 parallel machines are shown, whereas, in [10], instances are solved with up to
100 jobs, on 2, 3, and 4 parallel machines. In [21] and [20], the authors propose
a new formulation focused on symmetry breaking constraints.

We propose an arc-flow formulation for problem Pm|sj , B|Cmax. The paper is
organized as follows: In Sect. 2, we introduce problem Pm|sj , B|Cmax and present
two formulations from the literature. In Sect. 3, we present an arc-flow based
formulation for the problem. In Sect. 4, we discuss our numerical experiments



Arc-Flow Approach for Parallel Batch Processing Machine Scheduling 181

comparing the arc-flow formulation to formulations from the literature. In
Sect. 5, we present some concluding remarks and discuss future work.

2 Problem Definition

The problem can be formally defined as follows. Given a set J := {1, . . . , nJ} of
jobs, each job j ∈ J has a processing time pj and a size sj . Each of them must
be assigned to a batch k ∈ K := {1, . . . , nK}, not exceeding a given capacity
limit B of the processing machine, i.e., the sum of the sizes of the jobs assigned
to a single batch cannot exceed B. We assume that sj ≤ B, for all j ∈ J . The
batches must be assigned to a specific machine M := {1, . . . , nM}. All machines
are identical, and each one has its own processing time, defined by the time of
the last batch processed on the machine. The processing time Pk of each batch
k ∈ K is defined as longest processing time among all jobs assigned to it, i.e.,
Pk := max{pj : j is assigned to k}. Jobs cannot be split between batches. It
is also not possible to add or remove jobs from the machine while the batches
are being processed. The goal is to design and schedule the batches so that the
makespan (Cmax) is minimized, where the design of a batch is defined as the set
of jobs assigned to it, to schedule the batches means to define the ordering in
which they are processed in the machine, and the makespan is defined as the
time required to finish processing the last machine.

Consider the following decision variables, for all j ∈ J , k ∈ K, and m ∈ M :

xjkm =
{

1, if job j is assigned to batch k processed in machine m;
0, otherwise. (1)

Pkm : time to process batch k in machine m. (2)
Cmax : the makespan. (3)

In [3] the following MILP formulation is proposed for Pm|sj , B|Cmax:

(MILP) min Cmax, (4)∑
k∈K

∑
m∈M

xjkm = 1, ∀j ∈ J, (5)

∑
j∈J

∑
m∈M

sjxjkm ≤ B, ∀k ∈ K, (6)

Pkm ≥ pjxjkm, ∀j ∈ J,∀k ∈ K,∀m ∈ M, (7)

Cmax ≥
∑
k∈K

Pkm, ∀m ∈ M, (8)

xjkm ∈ {0, 1}, ∀j ∈ J,∀k ∈ K,∀m ∈ M. (9)

The objective function (4) minimizes the makespan. Constraints (5) and (6)
ensure that each job is assigned to a single batch and a single machine, respecting
the capacity of the machine. Constraints (7) determine the processing time of



182 R. S. Trindade et al.

batch k in machine m. Constraints (8) determine the makespan, which is given
by the longest sum of the processing times of all batches, among all machines.
Note that formulation (MILP) takes into account that nK = nJ , and therefore,
all batches assigned to all machines on a given solution can be indexed by distinct
indexes. Note that constraints (6) take into account the fact that, although we
have batches indexed by a given k, corresponding to all machines, a job can only
be assigned to one of them, because of constraints (5). Therefore, a job j is only
assigned to a unique pair (k,m).

(MILP) can be considered highly symmetrical concerning the order in which
the batches are scheduled in each one of the parallel machines. This is because
the same solution can be represented in different ways, just by changing the
sequence order of the batches. In [21], and [20] the symmetry mentioned above
is considered and a symmetry breaking procedure is used. At first, the variables
xjkm are replaced by two binary variables xjk, which determine only the design
of the batches, and the binary variables ykm, which determine whether or not
batch k is processed in machine m. This replacement significantly reduces the
number of binary variables. Furthermore, [21] presents a new formulation for
the problem, where symmetric solutions are eliminated from the feasible set of
(MILP), with the following approach. Firstly, the indexes of the jobs are defined
by ordering them by their processing times. More specifically, it is considered
that p1 ≤ p2 ≤ . . . ≤ pnJ

. Secondly, it is determined that batch k can only be
used if job k is assigned to it, for all k ∈ K. Thirdly, it is determined that job j
can only be assigned to batch k if j ≤ k. Considering the above, the following
formulation for 1|sj , B|Cmax is proposed in [21]:

(MILP+) min Cmax, (10)∑
k∈K:k≥j

xjk = 1, ∀j ∈ J, (11)

∑
j∈J:j≤k

sjxjk ≤ Bxkk, ∀k ∈ K, (12)

xjk ≤ xkk, ∀j ∈ J,∀k ∈ K, (13)

xkk ≤
∑

m∈M

ykm, ∀k ∈ K, (14)

Cm ≥
∑
k∈K

pkykm. ∀m ∈ M, (15)

Cmax ≥ Cm ∀m ∈ M, (16)
xjk ∈ {0, 1} ∀j ∈ J,∀k ∈ K : j ≤ k. (17)

The objective function (10) minimizes the makespan given by the latest time
to finish processing all batches in all machines. Constraints (11) determine that
each job j is assigned to a single batch k, such that k ≥ j. Constraints (12)
determine that the batches do not exceed the capacity of the machine. They also
ensure that each batch k is used if and only if job k is assigned to it. Constraints



Arc-Flow Approach for Parallel Batch Processing Machine Scheduling 183

(13) are redundant together with (12), but are included to strengthen the linear
relaxation of the model. Constraints (14) ensure that each used batch is assigned
to a machine. Constraints (15) and (16) determine the makespan.

3 Arc Flow Approach

The arc flow approach has been used recently in classical optimization prob-
lems and allows modeling with a pseudo-polynomial number of variables and
constraints. For a cutting-stock problem, [23] proposes a branch-and-price app-
roach for an arc-flow formulation. Next, it was extended for the bin-packing
problem in [24]. An alternative arc-flow formulation for the cutting-stock prob-
lem is proposed in [1] and [2], which uses a graph compression technique. These
formulations were recently tested and compared in [9] against several other mod-
els and problem-specific algorithms on one-dimensional bin packing and cutting
stock problems. The results show that the arc-flow formulation outperforms all
other models. In [14] the arc-flow model and the one-cut model are compared for
the one-dimensional cutting-stock problem, and reduction techniques for both
approaches are presented.

For the scheduling area, we are only aware of two works that consider the arc-
flow approach. In [12] the problem of scheduling a set of jobs on a set of identical
parallel machines, with the aim of minimizing the total weighted completion
time, P ||∑ WjCj is considered. In [17] the makespan minimization problem on
identical parallel machines, P ||Cmax is considered. It is important to note that
these works do not consider more complex features in scheduling problems, such
as batching machines, non-identical job sizes, and machine capacity.

The idea in this section is to formulate problem Pm|sj , B|Cmax as a problem
of determining flows in graphs. With this goal, we initially define a directed
graph G = (V,A), in which each physical space of the batch with capacity B
is represented by a node, i.e., V = {0, . . . , B}. The set of directed arcs A is
divided into three subsets: the set of job arcs AJ , the set of loss arcs AL, and
the set with a feedback arc AF . Therefore, A = AJ ∪ AL ∪ AF . Each arc (i, j)
of the subset AJ represents the existence of at least one job k of size sk, such
that sk = j − i. The subset AJ is more specifically defined as AJ := {(i, j) :
∃k ∈ J, sk = j − i ∧ i, j ∈ V ∧ i < j}. To compose valid paths and represent all
possible solutions, it is necessary to include the loss arcs in G, which represent
empty spaces at the end of a batch. The subset of arcs AL is more specifically
defined as AL := {(i, B) : i ∈ V ∧ 0 < i < B}. Finally, the feedback arc is used
to connect the last node to the first one, defined as AF := {(B, 0)}.

The graph G is then replicated for each different processing time of the
problem in our modeling approach. Each replicated graph will be referred to as
an arc-flow structure for our problem. We consider P := {P1, . . . , Pδ} as the
set with all the different processing times among all jobs, and T := {1, . . . , δ}
as the set of indexes corresponding to the arc-flow structures in the problem
formulation.

A variable wt,m is created to determine the number of batches with processing
time Pt that will be allocated on the machine m. Considering NT�,t (NT+

�,t) as



184 R. S. Trindade et al.

the number of jobs of size S� and processing time = Pt (≤ Pt), and NJt as the
number of jobs with processing time Pt, our new formulation is presented below.

fi,j,t: flow on job arc (i, j) ∈ AJ in arc-flow structure t. The variable indicates
the quantity of batches created with position i occupied by jobs with size j−i.
yi,j,t: flow on the loss arc (i, B) ∈ AL in arc-flow structure t.
vt: flow on the feedback arc in arc-flow structure t. The variable indicates the
number of batches required with processing time Pt.
zc,t: number of jobs with size c, not allocated in the batches with processing
time smaller than or equal to Pt. Theses jobs are allowed to be allocated in
the batches with processing time Pt+1.
wt,m: number of batches with processing time Pt, allocated to machine m.

(FLOW2) min Cmax (18)⎛
⎝ ∑

(i,j)∈AJ

fi,j,t +
∑

(i,j)∈AL

yi,j,t

⎞
⎠

−
⎛
⎝ ∑

(j,i)∈AJ

fj,i,t +
∑

(j,i)∈AL

yj,i,t

⎞
⎠ =

⎧⎨
⎩

−vt if j = 0;
vt if j = B;
0 if 0 < j < B.

t ∈ T (19)

NTc,t −
∑

(i,j)∈AJ :
j−i=c

fi,j,t =

⎧⎨
⎩

zc,t if t = 1;
−zc,t−1 if t = δ;
zc,t − zc,t−1 if 1 < t < δ.

c ∈ {1..B} (20)

∑
m∈M

wt,m ≥ vt t ∈ T (21)

∑
t∈T

Ptwt,m ≤ Cmax m ∈ M (22)

fi,j,t ≤ min(NJt, NT+
j−i,t), fi,j,t ∈ Z t ∈ T, (i, j) ∈ AJ (23)

vt ≤ NJt, vt ∈ Z t ∈ T (24)

yi,j,t ≤ NJt, yi,j,t ∈ Z t ∈ T, (i, j) ∈ AL (25)

zc,t ≤ NT+
c,t, zc,t ∈ Z t ∈ T : t < δ, c ∈ {1..B} (26)

wt,m ∈ Z t ∈ T,m ∈ M (27)

The objective function (18) minimizes the makespan. The set of flow conser-
vation constraints are defined by constraints (19). Constraints (20) ensure that
all jobs are assigned and also control the number of jobs to be assigned to each
arc-flow structure. Constraints (21) ensure that all batches used are assigned to
a machine. Constraints (22) determine the makespan as the time required to
finish processing the last batch on all machines. Constraints (23–27) define the
domains of the variables and their respective upper bounds. We emphasize that
(21) and (22) are the constraints that make it possible for the arc-flow model to
handle batch allocation on parallel machines.



Arc-Flow Approach for Parallel Batch Processing Machine Scheduling 185

4 Computational Results

The models presented in this chapter were compared through computational tests
performed. The set was created by the authors of [4], who kindly sent them to us,
to use in our work. Wee use the CPLEX version 12.7.1.0, configured to run in only
one thread to not benefit from the processor parallelism. We used a computer with
a 2.70 GHz Intel Quad-Core Xeon E5-2697 v2 processor and 64 GB of RAM. The
computational time to solve each instance was limited in 1800 s.

The set of test instances for problem Pm|sj , B|Cmax is the same considered in
[4] for the 1|sj , B|Cmax problem. For each job j, an integer processing time pj and
an integer job size sj were generated from the respective uniform distribution
depicted in Table 1. In total, 4200 instances were generated, 100 for each of the
42 different combinations of number and size of the jobs. We test each instance
with three different numbers of parallel machines.

Table 1. Parameter settings.

Number of
jobs (nJ)

Processing
time (pJ)

Jobs size Machine
capacity (B)

Parallel
machines (nM )

10, 20, 50, 100 p1: [1, 10] s1: [1, 10] B = 10 2, 4, 8

200, 300, 500 p2: [1, 20] s2: [2, 4]

s3: [4, 8]

We present in Table 2, 3 and 4 comparison results among the arc flow for-
mulation proposed in this work and another two from the literature. All values
presented are the average results computed over the instances of the same con-
figuration, as described in Table 1.

The comparative tests clearly show that formulation (FLOW) is superior
to (MILP) and (MILP+), especially when the number of jobs increases. Model
(FLOW) did not prove the optimality of only one instance from the set of test
problems. For instances with 20 jobs or less, (MILP+) can solve some instances
in less computational time than (FLOW), but the difference between times is
always a fraction of a second. Additionally, the duality gaps shown for (MILP)
reveal the difficulty in obtaining good lower bounds.

Unlike what we have with models (MILP) and (MILP+), the number of
variables in (FLOW) does not grow when the number of jobs increases. Moreover,
the flow graph does not change in this case. Only the bounds on the variables
change. The flow graphs of two distinct instances will be the same if the settings
in the parameters Processing Time, Job Size and Machine Capacity are the
same. In fact, this is a very important characteristic of the flow approach. We
finally note that the computational time to construct the graphs for the flow
formulation was not considered in these times. However, the maximum time to
construct a graph for any instance in our experiments was 0.008 s.



186 R. S. Trindade et al.

Table 2. Computational results for Pm|sj .B|Cmax - 2 parallel machines.

Instance (MILP) (MILP+) (FLOW)

Jobs Type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

2 parallel machines

10 p1s1 18.76 0.13 0.00 18.76 0.01 0.00 18.76 0.02 0.00

10 p1s2 11.03 0.05 0.00 11.03 0.02 0.00 11.03 0.02 0.00

10 p1s3 22.13 0.19 0.00 22.13 0.01 0.00 22.13 0.00 0.00

10 p2s1 34.50 0.12 0.00 34.50 0.01 0.00 34.50 0.03 0.00

10 p2s2 21.71 0.05 0.00 21.71 0.02 0.00 21.71 0.03 0.00

10 p2s3 40.87 0.17 0.00 40.87 0.01 0.00 40.87 0.01 0.00

20 p1s1 34.27 1308.41 5.54 34.27 0.03 0.00 34.27 0.04 0.00

20 p1s2 18.83 884.08 8.16 18.83 0.11 0.00 18.83 0.04 0.00

20 p1s3 42.13 1412.74 6.27 42.13 0.02 0.00 42.13 0.01 0.00

20 p2s1 66.79 1287.70 4.35 66.79 0.03 0.00 66.79 0.09 0.00

20 p2s2 36.87 651.70 7.05 36.87 0.15 0.00 36.87 0.09 0.00

20 p2s3 79.82 1395.83 5.60 79.82 0.02 0.00 79.82 0.01 0.00

50 p1s1 83.07 – 58.36 82.30 2.48 0.00 82.30 0.08 0.00

50 p1s2 46.56 – 59.68 43.94 529.33 0.52 43.94 0.07 0.00

50 p1s3 101.74 – 60.69 101.30 0.02 0.00 101.30 0.01 0.00

50 p2s1 159.08 – 61.30 157.52 5.12 0.00 157.52 0.33 0.00

50 p2s2 88.96 – 62.44 84.32 478.37 0.19 84.32 0.55 0.00

50 p2s3 192.95 – 64.02 192.34 0.03 0.00 192.34 0.02 0.00

100 p1s1 171.60 – 87.71 159.78 192.10 0.07 159.78 0.11 0.00

100 p1s2 98.19 – 86.49 85.56 1743.59 1.73 85.56 0.10 0.00

100 p1s3 206.66 – 86.52 198.75 0.15 0.00 198.75 0.01 0.00

100 p2s1 328.38 – 89.47 305.58 84.36 0.02 305.58 0.42 0.00

100 p2s2 188.69 – 88.60 163.39 1770.79 1.21 163.31 1.58 0.00

100 p2s3 398.94 – 89.28 383.73 0.20 0.00 383.73 0.03 0.00

200 p1s1 Unperformed 314.93 332.53 0.05 314.92 0.07 0.00

200 p1s2 167.44 – 1.58 166.97 0.15 0.00

200 p1s3 393.36 79.14 0.01 393.36 0.02 0.00

200 p2s1 599.00 495.03 0.05 598.96 0.67 0.00

200 p2s2 320.16 – 1.52 318.85 3.43 0.00

200 p2s3 752.78 42.39 0.00 752.78 0.05 0.00

300 p1s1 464.59 639.71 0.08 464.54 0.10 0.00

300 p1s2 250.62 – 1.89 248.06 0.14 0.00

300 p1s3 587.49 241.24 0.02 587.49 0.02 0.00

300 p2s1 897.09 764.46 0.05 897.00 0.57 0.00

300 p2s2 487.55 – 2.09 481.61 3.25 0.00

300 p2s3 1123.96 274.67 0.02 1123.96 0.09 0.00

500 p1s1 772.54 1084.33 0.11 772.38 0.11 0.00

500 p1s2 421.92 – 1.98 415.76 0.17 0.00

500 p1s3 975.15 382.95 0.02 975.15 0.01 0.00

500 p2s1 1483.02 1365.87 0.09 1482.58 0.59 0.00

500 p2s2 806.24 – 2.10 794.00 2.78 0.00

500 p2s3 1851.16 488.38 0.01 1851.16 0.06 0.00



Arc-Flow Approach for Parallel Batch Processing Machine Scheduling 187

Table 3. Computational results for Pm|sj .B|Cmax - 4 parallel machines.

Instance (MILP) (MILP+) (FLOW)

Jobs Type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

4 parallel machines

10 p1s1 10.87 0.16 0.00 10.87 0.02 0.00 10.87 0.02 0.00

10 p1s2 9.49 0.10 0.00 9.49 0.01 0.00 9.49 0.01 0.00

10 p1s3 12.18 0.25 0.00 12.18 0.02 0.00 12.18 0.01 0.00

10 p2s1 20.26 0.16 0.00 20.26 0.02 0.00 20.26 0.03 0.00

10 p2s2 18.68 0.11 0.00 18.68 0.01 0.00 18.68 0.02 0.00

10 p2s3 22.67 0.23 0.00 22.67 0.02 0.00 22.67 0.01 0.00

20 p1s1 17.47 1316.19 8.11 17.47 0.05 0.00 17.47 0.06 0.00

20 p1s2 10.43 56.14 0.49 10.43 0.32 0.00 10.43 0.05 0.00

20 p1s3 21.29 1629.93 11.78 21.29 0.03 0.00 21.29 0.01 0.00

20 p2s1 33.95 1122.49 5.29 33.95 0.07 0.00 33.95 0.14 0.00

20 p2s2 20.51 92.62 0.64 20.51 0.35 0.00 20.51 0.14 0.00

20 p2s3 40.21 1731.24 12.27 40.21 0.05 0.00 40.21 0.02 0.00

50 p1s1 42.69 – 70.03 41.43 2.54 0.00 41.43 0.11 0.00

50 p1s2 23.76 – 58.83 22.18 269.31 0.56 22.18 0.26 0.00

50 p1s3 51.85 – 71.91 50.90 0.05 0.00 50.90 0.01 0.00

50 p2s1 81.23 – 71.19 78.97 0.90 0.00 78.97 0.80 0.00

50 p2s2 45.55 – 57.37 42.38 283.70 0.19 42.38 1.41 0.00

50 p2s3 97.89 – 73.39 96.40 0.07 0.00 96.40 0.04 0.00

100 p1s1 93.06 – 93.44 80.09 82.33 0.05 80.09 0.18 0.00

100 p1s2 50.26 – 81.80 43.06 1409.33 1.67 43.04 0.26 0.00

100 p1s3 110.60 – 92.94 99.64 0.55 0.00 99.64 0.02 0.00

100 p2s1 177.17 – 93.54 153.03 51.98 0.02 153.03 1.83 0.00

100 p2s2 96.18 – 86.63 82.03 1679.11 1.32 81.88 3.12 0.00

100 p2s3 213.47 – 93.38 192.11 0.52 0.00 192.11 0.05 0.00

200 p1s1 Unperformed 157.71 209.19 0.06 157.70 0.16 0.00

200 p1s2 84.05 1788.54 1.69 83.67 0.53 0.00

200 p1s3 196.93 38.03 0.01 196.93 0.02 0.00

200 p2s1 299.78 396.85 0.06 299.75 21.23 0.00

200 p2s2 160.95 – 1.94 159.68 31.02 0.01

200 p2s3 376.64 59.36 0.01 376.64 0.07 0.00

300 p1s1 232.56 422.79 0.09 232.52 0.17 0.00

300 p1s2 126.22 – 2.40 124.28 0.33 0.00

300 p1s3 293.99 146.32 0.03 293.99 0.02 0.00

300 p2s1 448.84 568.62 0.06 448.79 1.19 0.00

300 p2s2 244.96 – 2.49 241.07 21.59 0.00

300 p2s3 562.24 230.89 0.02 562.24 0.11 0.00

500 p1s1 386.62 1009.64 0.15 386.47 0.17 0.00

500 p1s2 211.91 – 2.31 208.12 0.40 0.00

500 p1s3 487.84 266.44 0.03 487.84 0.02 0.00

500 p2s1 741.93 1306.98 0.12 741.56 1.91 0.00

500 p2s2 405.30 – 2.58 397.30 134.68 0.01

500 p2s3 925.84 345.92 0.02 925.84 0.07 0.00



188 R. S. Trindade et al.

Table 4. Computational results for Pm|sj .B|Cmax - 8 parallel machines.

Instance (MILP) (MILP+) (FLOW)

Jobs Type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

8 parallel machines

10 p1s1 9.54 0.23 0.00 9.54 0.01 0.00 9.54 0.02 0.00

10 p1s2 9.49 0.25 0.00 9.49 0.01 0.00 9.49 0.02 0.00

10 p1s3 9.42 0.33 0.00 9.42 0.01 0.00 9.42 0.01 0.00

10 p2s1 18.55 0.21 0.00 18.55 0.01 0.00 18.55 0.02 0.00

10 p2s2 18.68 0.24 0.00 18.68 0.01 0.00 18.68 0.02 0.00

10 p2s3 18.27 0.34 0.00 18.27 0.01 0.00 18.27 0.01 0.00

20 p1s1 10.51 276.62 2.44 10.51 0.09 0.00 10.51 0.06 0.00

20 p1s2 9.81 2.76 0.00 9.81 0.07 0.00 9.81 0.03 0.00

20 p1s3 11.61 760.27 7.24 11.60 0.15 0.00 11.60 0.01 0.00

20 p2s1 20.76 328.01 3.34 20.76 0.13 0.00 20.76 0.18 0.00

20 p2s2 19.52 2.80 0.00 19.52 0.08 0.00 19.52 0.04 0.00

20 p2s3 22.31 958.29 8.28 22.30 0.26 0.00 22.30 0.04 0.00

50 p1s1 22.30 – 55.90 20.96 2.99 0.00 20.96 0.25 0.00

50 p1s2 12.83 1783.20 27.02 11.77 850.12 4.12 11.77 0.39 0.00

50 p1s3 26.78 – 62.67 25.71 0.10 0.00 25.71 0.02 0.00

50 p2s1 42.41 – 55.68 39.72 1.25 0.00 39.72 2.47 0.00

50 p2s2 24.41 1775.39 28.90 22.46 1198.77 3.91 22.45 11.60 0.00

50 p2s3 50.33 – 61.21 48.45 0.17 0.00 48.45 0.08 0.00

100 p1s1 59.57 – 96.84 40.34 51.78 0.05 40.34 0.19 0.00

100 p1s2 28.80 – 84.72 21.82 872.63 2.04 21.75 1.49 0.00

100 p1s3 69.72 – 98.03 50.07 0.22 0.00 50.07 0.03 0.00

100 p2s1 123.38 – 97.70 76.81 59.45 0.01 76.81 10.88 0.00

100 p2s2 57.82 – 94.95 41.34 1251.21 1.45 41.23 37.99 0.03

100 p2s3 139.99 – 98.19 96.34 0.81 0.00 96.34 0.11 0.00

200 p1s1 Unperformed 79.13 213.02 0.12 79.10 0.15 0.00

200 p1s2 42.41 1599.90 1.97 42.10 0.95 0.00

200 p1s3 98.74 2.72 0.00 98.74 0.02 0.00

200 p2s1 150.18 341.94 0.08 150.14 54.67 0.01

200 p2s2 81.27 1796.74 2.64 80.08 141.71 0.04

200 p2s3 188.53 21.83 0.01 188.53 0.14 0.00

300 p1s1 116.58 480.57 0.16 116.51 18.20 0.01

300 p1s2 63.40 1779.89 2.44 62.39 0.57 0.00

300 p1s3 147.25 94.40 0.03 147.25 0.02 0.00

300 p2s1 224.76 641.81 0.12 224.61 2.84 0.00

300 p2s2 123.61 – 3.20 120.78 358.94 0.13

300 p2s3 281.31 115.95 0.02 281.31 0.31 0.00

500 p1s1 193.74 1067.41 0.29 193.53 0.24 0.00

500 p1s2 106.63 1787.69 2.72 104.38 1.67 0.00

500 p1s3 244.11 134.96 0.03 244.11 0.04 0.00

500 p2s1 371.50 1136.26 0.20 371.03 2.08 0.00

500 p2s2 203.42 – 2.83 198.96 376.70 0.09

500 p2s3 463.16 189.74 0.02 463.16 0.24 0.00



Arc-Flow Approach for Parallel Batch Processing Machine Scheduling 189

The results show that instances of configuration s2 require more computa-
tional time and are more difficult compared to the other instances for all formu-
lations. The reason for this is the small sizes of the jobs when compared to the
machine capacity, which allows more combinations of assignment to a batch.

5 Conclusion

In this paper we propose a new arc-flow formulation for minimizing makespan on
parallel batch machines, considering non-identical job sizes. The computational
results reveal that this new approach is much more efficient than those previously
published in the literature. It is able to solve instances up to 500 jobs, which
have never been solved before, with low computational times. Even for the most
difficult instances, for which the model failed to prove optimality, the results
are very close to the optimal with gaps between 0.13–0.01%. One of the best
advantages of the arc-flow model is that the number of variables does not increase
if the number of jobs of the instance increases.

As future work, it is interesting to investigate whether this approach can be
applied to other variants of scheduling problems, such as considering incompat-
ible families or jobs with non-identical release times.

References

1. Brandão, F., Pedroso, J.P.: Bin packing and related problems: general arc-flow for-
mulation with graph compression. Comput. Oper. Res. 69, 56–67 (2016). https://
doi.org/10.1016/j.cor.2015.11.009

2. Brandão, F.D.A.: Cutting & packing problems: general arc-flow formulation with
graph compression. Ph.D. thesis, Universidade do Porto (2017)

3. Chang, P.Y., Damodaran, P., Melouk, S.: Minimizing makespan on parallel batch
processing machines. Int. J. Prod. Res. 42(19), 4211–4220 (2004). https://doi.org/
10.1080/00207540410001711863

4. Chen, H., Du, B., Huang, G.Q.: Scheduling a batch processing machine with non-
identical job sizes: a clustering perspective. Int. J. Prod. Res. 49(19), 5755–5778
(2011). https://doi.org/10.1080/00207543.2010.512620

5. Cheng, B., Wang, Q., Yang, S., Hu, X.: An improved ant colony optimization for
scheduling identical parallel batching machines with arbitrary job sizes. Appl. Soft
Comput. 13(2), 765–772 (2013). https://doi.org/10.1016/j.asoc.2012.10.021

6. Cheng, B., Yang, S., Hu, X., Chen, B.: Minimizing makespan and total completion
time for parallel batch processing machines with non-identical job sizes. Appl.
Math. Model. 36(7), 3161–3167 (2012). https://doi.org/10.1016/j.apm.2011.09.061

7. Chung, S., Tai, Y., Pearn, W.: Minimising makespan on parallel batch processing
machines with non-identical ready time and arbitrary job sizes. Int. J. Prod. Res.
47(18), 5109–5128 (2009). https://doi.org/10.1080/00207540802010807

8. Damodaran, P., Hirani, N.S., Gallego, M.C.V.: Scheduling identical parallel batch
processing machines to minimise makespan using genetic algorithms. Eur. J. Ind.
Eng. 3(2), 187 (2009). https://doi.org/10.1504/EJIE.2009.023605

9. Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: math-
ematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1–20 (2016).
https://doi.org/10.1016/j.ejor.2016.04.030

https://doi.org/10.1016/j.cor.2015.11.009
https://doi.org/10.1016/j.cor.2015.11.009
https://doi.org/10.1080/00207540410001711863
https://doi.org/10.1080/00207540410001711863
https://doi.org/10.1080/00207543.2010.512620
https://doi.org/10.1016/j.asoc.2012.10.021
https://doi.org/10.1016/j.apm.2011.09.061
https://doi.org/10.1080/00207540802010807
https://doi.org/10.1504/EJIE.2009.023605
https://doi.org/10.1016/j.ejor.2016.04.030


190 R. S. Trindade et al.

10. Jia, Z.H., Leung, J.Y.T.: A meta-heuristic to minimize makespan for parallel batch
machines with arbitrary job sizes. Eur. J. Oper. Res. 240(3), 649–665 (2015).
https://doi.org/10.1016/j.ejor.2014.07.039

11. Kashan, A.H., Karimi, B., Jenabi, M.: A hybrid genetic heuristic for scheduling
parallel batch processing machines with arbitrary job sizes. Comput. Oper. Res.
35(4), 1084–1098 (2008). https://doi.org/10.1016/j.cor.2006.07.005

12. Kramer, A., Dell’Amico, M., Iori, M.: Enhanced arc-flow formulations to minimize
weighted completion time on identical parallel machines. Eur. J. Oper. Res. 275(1),
67–79 (2019). https://doi.org/10.1016/j.ejor.2018.11.039

13. Lee, C.Y., Uzsoy, R., Martin-Vega, L.A.: Efficient algorithms for scheduling semi-
conductor burn-in operations. Oper. Res. 40(4), 764–775 (1992). https://doi.org/
10.1287/opre.40.4.764

14. Martinovic, J., Scheithauer, G., de Carvalho, J.M.V.: A comparative study of the
arcflow model and the one-cut model for one-dimensional cutting stock problems.
Eur. J. Oper. Res. 266(2), 458–471 (2018). https://doi.org/10.1016/j.ejor.2017.10.
008

15. Mathirajan, M., Sivakumar, A.: A literature review, classification and simple meta-
analysis on scheduling of batch processors in semiconductor. Int. J. Adv. Manuf.
Technol. 29(9–10), 990–1001 (2006). https://doi.org/10.1007/s00170-005-2585-1

16. Mönch, L., Fowler, J.W., Dauzère-Pérès, S., Mason, S.J., Rose, O.: A survey of
problems, solution techniques, and future challenges in scheduling semiconductor
manufacturing operations. J. Sched. 14(6), 583–599 (2011). https://doi.org/10.
1007/s10951-010-0222-9

17. Mrad, M., Souayah, N.: An arc-flow model for the makespan minimization problem
on identical parallel machines. IEEE Access 6, 5300–5307 (2018). https://doi.org/
10.1109/ACCESS.2018.2789678

18. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: a review. Eur. J. Oper.
Res. 120(2), 228–249 (2000). https://doi.org/10.1016/S0377-2217(99)00153-8

19. Tai, Y.: The study on the production scheduling problems for liquid crystal display
module assembly factories. Ph.D. thesis, National Chiao Tung University (2008).
https://ir.nctu.edu.tw/bitstream/11536/57924/1/381201.pdf

20. Trindade, R.S.: Modelling batch processing machines problems with symmetry
breaking and arc flow formulation. Ph.D. thesis, Universidade Federal do Rio de
Janeiro (2019). https://www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/
details/15/2902

21. Trindade, R.S., de Araújo, O.C.B., Fampa, M.H.C., Müller, F.M.: Modelling and
symmetry breaking in scheduling problems on batch processing machines. Int.
J. Prod. Res. 56(22), 7031–7048 (2018). https://doi.org/10.1080/00207543.2018.
1424371

22. Uzsoy, R.: Scheduling a single batch processing machine with non-identical
job sizes. Int. J. Prod. Res. 32(7), 1615–1635 (1994). https://doi.org/10.1080/
00207549408957026

23. de Carvalho, J.V.: Exact solution of cutting stock problems using column gener-
ation and branch-and-bound. Int. Trans. Oper. Res. 5(1), 35–44 (1998). https://
doi.org/10.1111/j.1475-3995.1998.tb00100.x

24. de Carvalho, J.V.: Exact solution of bin-packing problems using column generation
and branch-and-bound. Ann. Oper. Res. 86, 629–659 (1999). https://doi.org/10.
1023/A:1018952112615

https://doi.org/10.1016/j.ejor.2014.07.039
https://doi.org/10.1016/j.cor.2006.07.005
https://doi.org/10.1016/j.ejor.2018.11.039
https://doi.org/10.1287/opre.40.4.764
https://doi.org/10.1287/opre.40.4.764
https://doi.org/10.1016/j.ejor.2017.10.008
https://doi.org/10.1016/j.ejor.2017.10.008
https://doi.org/10.1007/s00170-005-2585-1
https://doi.org/10.1007/s10951-010-0222-9
https://doi.org/10.1007/s10951-010-0222-9
https://doi.org/10.1109/ACCESS.2018.2789678
https://doi.org/10.1109/ACCESS.2018.2789678
https://doi.org/10.1016/S0377-2217(99)00153-8
https://ir.nctu.edu.tw/bitstream/11536/57924/1/381201.pdf
https://www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/2902
https://www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa/details/15/2902
https://doi.org/10.1080/00207543.2018.1424371
https://doi.org/10.1080/00207543.2018.1424371
https://doi.org/10.1080/00207549408957026
https://doi.org/10.1080/00207549408957026
https://doi.org/10.1111/j.1475-3995.1998.tb00100.x
https://doi.org/10.1111/j.1475-3995.1998.tb00100.x
https://doi.org/10.1023/A:1018952112615
https://doi.org/10.1023/A:1018952112615


Matching



Dynamic and Stochastic Rematching
for Ridesharing Systems: Formulations

and Reductions

Gabriel Homsi1(B), Bernard Gendron1, and Sanjay Dominik Jena2

1 Department of Computer Science and Operations Research,
Université de Montréal and CIRRELT, Montreal, Canada

{gabriel.homsi,bernard.gendron}@cirrelt.ca
2 Department of Analytics, Operations and Information Technology,

École des Sciences de la Gestion, Université du Québec à Montréal and CIRRELT,
Montreal, Canada

sanjay.jena@cirrelt.ca

Abstract. We introduce a dynamic and stochastic rematching problem
with applications in request matching for ridesharing systems. We pro-
pose three mathematical programming formulations that can be used in
a rolling horizon framework to solve this problem. We show how these
models can be simplified provided that specific conditions that are typi-
cally found in practice are met.

Keywords: Ridesharing · Request matching · Stochastic programming

1 Introduction

Ridesharing systems are matching agencies for drivers and riders that are inter-
ested in sharing commute expenses. Over time, these systems receive requests
from their customers corresponding to the intent of engaging in ridesharing as a
driver or as a rider for a certain itinerary. In this context, an itinerary is composed
of an origin, a destination, the desired departure time, and the desired arrival
time. A common goal of ridesharing systems is to create matches that generate
profit and that promote customer engagement. We use the term match to refer
to the pairing of two requests, meaning that the customers behind these requests
are assigned to travel together to fulfill their corresponding itineraries. A driver
request may be matched to a rider request if their itineraries are compatible and
if the corresponding ridesharing trip generates value for the participants. The
value of a ridesharing trip is often assumed to be the amount of travel distance
savings generated by the trip when compared to the individual trips for each
participant [1,2].

In this work, we study a ridesharing system that matches requests that
arrive dynamically and may unmatch requests whose corresponding rides have
not yet started. We assume to have access to forecasts on the probability that
future requests exist. To avoid compromising customer engagement, we allow
for defining a penalty on unmatch operations, which may correspond to a dis-
count on future trips offered to the unmatched customers. These penalties may
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 193–201, 2020.
https://doi.org/10.1007/978-3-030-53262-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_16


194 G. Homsi et al.

depend, for example, on the amount of time since the requests have been cre-
ated. Unmatching a request that was released much earlier would therefore lead
to a large penalty. Nevertheless, unmatching requests may be desirable if a new
request becomes available such that it allows for a highly profitable match with
a currently-matched request.

Research on optimization for ridesharing started gaining traction with the
work of [1], where the authors studied a dynamic driver-rider matching prob-
lem. Several further studies explored specific attributes of ridesharing systems.
To name a few, [3] studied the impact of meeting points in ridesharing systems,
[4] studied the impact of participant time flexibility in ridesharing, [5] studied
the integration of a ridesharing system with public transit, and [2] investigated
the impact of matching stability on a dynamic ride-matching system. For sur-
veys on ridesharing and related shared mobility systems, we refer the reader to
[6,7] and [8]. Our work extends the ridesharing request matching literature by
addressing the stochasticity in requests, the unmatching of requests, and the
time-dependency of matching profits and unmatching penalties. In summary,
our contributions are threefold: 1) we introduce a new dynamic and stochastic
rematching problem 2) we propose three mathematical programming formula-
tions to solve this problem, and 3) we show how these formulations can be
simplified under specific but realistic conditions.

2 Problem Definition

Requests in a ridesharing system arrive continuously over a planning horizon
T = {1, 2, . . . , h}. Let G = (V,E) be a bipartite graph where V is the set
of requests and E is the set of edges between compatible requests. The set of
requests is partitioned into a set of driver requests D and a set of rider requests
R, such that V = D ∪ R, D ∩ R = ∅, and E ⊆ D × R. A pair of requests
(ij) ∈ D×R does not belong to E if the itineraries of i and j are incompatible or
if the corresponding ridesharing trip does not generate value for its participants.

At each time period t ∈ T , a pair of requests (ij) ∈ E can be matched for a
profit of ct

ij and unmatched for a cost of dt
ij . We assume that ct

ij ≤ dt
ij , i.e., it is

never profitable to unmatch a pair of requests and then match it in the same time
period. A pair of requests (ij) is said to be active at the beginning of the time
period t if it was not unmatched since the last period it has been matched. For
each request i ∈ V , let ri be its release time and bi be its latest possible match
time. The latest possible match time may correspond to the desired departure
time or to the latest time period that a customer is willing to wait for a match.
The pair of requests (ij) ∈ E can only be matched or unmatched at time period
t ∈ T if both requests have already been released and if they are still available
for matching. Hence, matching and unmatching is only possible if t ∈ Wij , where

Wij = {t ∈ T | max(ri, rj) ≤ t ≤ min(bi, bj)}.

If the condition above is not met, we interdict matches and unmatches by assign-
ing ct

ij = −M and dt
ij = M , where M is a sufficiently big constant such that



Dynamic and Stochastic Rematching for Ridesharing Systems 195

an optimal solution never has the pair of requests (ij) matched or unmatched
outside Wij .

The objective of the ridesharing system is to dynamically match and unmatch
driver and rider requests such that the net profit over the planning horizon is
maximized. In the following, we present three mathematical programming for-
mulations that can be used in a rolling horizon framework to provide matches
and rematches at specific time periods throughout the planning horizon. We
first present a myopic formulation that can be used when no forecasts on future
demand are available. Then, we present a static formulation that can be used
when the information for all time periods is known in advance, or when a suffi-
ciently accurate forecast is available. Finally, we present a stochastic formulation
that can be used when sufficient historical information is known to accurately
generate multiple scenarios that are representative of future demand.

3 The Myopic Problem

When no forecasts on future demand are available, a myopic optimization prob-
lem can be defined. For each pair (ij) ∈ E, let xt

ij be a binary variable equal to
1 if and only if the pair (ij) is matched at time period t, yt

ij be a binary variable
equal to 1 if and only if the pair (ij) is unmatched at time period t, and at

ij be a
binary constant equal to 1 if and only if (ij) is active at the beginning of t. The
myopic problem of matching and unmatching requests such that the net profit
at time period t ∈ T is maximized can be formulated as below

fmyo(t, at) := max
∑

(ij)∈E

(ct
ijx

t
ij − dt

ijy
t
ij) (1)

s.t.
∑

(ij)∈δ(v)

(xt
ij − yt

ij) ≤ 1 −
∑

(ij)∈δ(v)

at
ij ∀v ∈ V (2)

yt
ij ≤ at

ij ∀(ij) ∈ E (3)

xt
ij , y

t
ij ∈ {0, 1} ∀(ij) ∈ E. (4)

The objective function (1) maximizes the net profit of matching and unmatch-
ing requests at time period t. Constraints (2) ensure that requests can only be
matched if they are inactive. Constraints (3) ensure that requests can only be
unmatched if they are active.

The formulation above can be rewritten as a maximum-weight bipartite
matching problem. Let E0 = {(ij) ∈ E | at

ij = 0} and E1 = E \ E0. For
each pair (ij) ∈ E0, let xt

ij be a binary variable equal to 1 if and only if the
inactive pair (ij) is matched at time period t. For each pair (ij) ∈ E1, let zt

ij be
a binary variable equal to 1 if and only if the active pair (ij) is not unmatched
at time period t. The bipartite matching reformulation is defined below

f ′
myo(t) := max

∑

(ij)∈E0

ct
ijx

t
ij +

∑

(ij)∈E1

dt
ij(z

t
ij − 1) (5)



196 G. Homsi et al.

s.t.
∑

(ij)∈δ(v)∩E0

xt
ij +

∑

(ij)∈δ(v)∩E1

zt
ij ≤ 1 ∀v ∈ V. (6)

The objective function (5) maximizes the net profit of matching and unmatching
requests at time period t. If zt

ij = 0, then (ij) is unmatched, which yields a
penalty of −dt

ij in the objective function. Constraints (6) ensure that requests
can be matched at most once, either in E0 or in E1. Despite having two sets
of variables, the formulation above is equivalent to a classic bipartite matching
formulation. Nevertheless, we have decided to use distinct variable names to
highlight the differences between matches in E0 and matches in E1.

4 The Static Problem

When the requests released throughout all time periods are known in advance, a
multiperiod static problem that provides matches and unmatches for the whole
planning horizon can be formulated. This model can be used as a benchmark for
other models evaluated in the rolling horizon framework, and is defined below

max
∑

t∈T

∑

(ij)∈E

(ct
ijx

t
ij − dt

ijy
t
ij) (7)

s.t.
t∑

�=1

∑

(ij)∈δ(v)

(x�
ij − y�

ij) ≤ 1 ∀t ∈ T, v ∈ V (8)

yt
ij ≤

t−1∑

�=1

(x�
ij − y�

ij) ∀t ∈ T, (ij) ∈ E (9)

xt
ij , y

t
ij ∈ {0, 1} ∀t ∈ T, (ij) ∈ E. (10)

The objective function (7) maximizes the net profit over the full planning hori-
zon. Constraints (8) ensure that requests can only be matched if they are inac-
tive. Constraints (9) ensure that requests can only be unmatched if they are
active.

Assumption 1. The profit of matching a pair of requests is never bigger than
the cost of unmatching it, i.e.,

ct
ij ≤ dk

ij ∀t ∈ T, k ∈ T, t ≤ k.

Proposition 1. If Assumption 1 holds for all pairs of requests, then it is never
necessary to unmatch in an optimal solution for (7)–(10).

Proof. Let (x̄, ȳ) be an optimal solution for (7)–(10) and z(x̄, ȳ) its objective
function value. Assume that there exists a pair (ij) ∈ E and time periods t ∈ T
and k ∈ T with t ≤ k such that x̄t

ij = 1 and ȳk
ij = 1. As ct

ij −dk
ij ≤ 0, there exists

a solution (x̂, ŷ) similar to (x̄, ȳ), except for x̂t
ij = 0 and ŷk

ij = 0. Consequently,
z(x̂, ŷ) ≥ z(x̄, ȳ), which either contradicts the optimality of (x̄, ȳ), or shows that
both solutions have the same objective function value. 
�



Dynamic and Stochastic Rematching for Ridesharing Systems 197

If Assumption 1 holds, by Proposition 1, it follows that the static problem can
be reduced by removing all unmatching variables, which gives the formulation
below

max
∑

t∈T

∑

(ij)∈E

ct
ijx

t
ij (11)

s.t.
∑

t∈T

∑

(ij)∈δ(v)

xt
ij ≤ 1 ∀v ∈ V (12)

xt
ij ∈ {0, 1} ∀t ∈ T, (ij) ∈ E. (13)

As each pair (ij) ∈ E can be matched at most once, it is more profitable to
match (ij) at the time period that maximizes ct

ij ,∀t ∈ T . Thus, the multiple
time periods can be represented implicitly and the formulation above can be
reduced to a maximum-weight bipartite matching problem, as below

max
∑

(ij)∈E

ĉijxij (14)

s.t.
∑

(ij)∈δ(v)

xij ≤ 1 ∀v ∈ V, (15)

where ĉij = max{ct
ij | t ∈ T}. Let x̄ be an optimal solution for Eqs. (14)–(15).

If x̄ij = 1, then (ij) is matched in time period t = arg maxt∈T ct
ij .

The static formulation can be adapted to be used in a rolling horizon frame-
work if a forecast such as the expected future demand is available. The static
model that matches and unmatches requests for a time period k ∈ T while taking
into consideration a forecast for periods (k + 1), . . . , h is defined below

fstat(k, ak) := max
h∑

t=k

∑

(ij)∈E

(ct
ijx

t
ij − dt

ijy
t
ij) (16)

s.t.
t∑

�=k

∑

(ij)∈δ(v)

(x�
ij − y�

ij) ≤ 1 −
∑

(ij)∈δ(v)

ak
ij ∀t = k, . . . , h, v ∈ V (17)

yt
ij ≤ ak

ij +
t−1∑

�=1

(x�
ij − y�

ij) ∀t = k, . . . , h, (ij) ∈ E (18)

xt
ij , y

t
ij ∈ {0, 1} ∀t = k, . . . , h, (ij) ∈ E. (19)

The formulation above is similar to the single-scenario case of the two-stage
stochastic programming formulation defined next.

5 The Stochastic Problem

To address the uncertainty on future demand, we introduce a two-stage stochas-
tic programming formulation. In the first stage, matching and unmatching deci-
sions are given for requests available at the current time period t ∈ T . In the



198 G. Homsi et al.

second stage, these decisions are made for the remainder of the planning horizon,
given the first-stage decisions and a sample realization of future requests.

Let S be the set of second-stage scenarios and ps the probability associated
with each scenario s ∈ S. We assume that each scenario s ∈ S contains a full
realization of the planning horizon since the time period t + 1. For each request
i ∈ V and scenario s ∈ S, let ξs

i be a random variable defined below

ξs
i =

{
1 if request i is available for matching in scenario s,

0 otherwise.

For each pair (ij) ∈ E and time period k = (t + 1), . . . , h, if ξs
i = 0 or ξs

j = 0,
then cks

ij = −M and dks
ij = M . Otherwise, cks

ij = ck
ij and dks

ij = dk
ij . Moreover, if a

request i ∈ V is released before the second stage, i.e., ri ≤ t, then we assume that
ξs
i = 1,∀s ∈ S. The two-stage stochastic programming formulation is defined as

below

fsto(t) := max
∑

(ij)∈E0

ct
ijx

t
ij +

∑

(ij)∈E1

dt
ij(z

t
ij − 1) +

∑

s∈S

psQ(t + 1, s, at+1) (20)

s.t.
∑

(ij)∈E0∩δ(v)

xt
ij +

∑

(ij)∈E1∩δ(v)

zt
ij ≤ 1 ∀v ∈ V (21)

at+1
ij =

{
xt

ij if (ij) ∈ E0,

zt
ij otherwise.

∀(ij) ∈ E (22)

xt
ij ∈ {0, 1} ∀(ij) ∈ E0 (23)

zt
ij ∈ {0, 1} ∀(ij) ∈ E1. (24)

The objective function (20) maximizes the net profit at time period t plus the
expect net profit for time periods (t + 1), . . . , h. Constraints (21) match and
unmatch requests for period t. Equations (22) define the values of at+1

ij ,∀(ij) ∈
E. The second-stage problem is a multiperiod problem over the time periods
(t + 1), . . . , h, and is defined for each scenario s ∈ S as below

Q(k, s, ak) := max
h∑

t=k

∑

(ij)∈E

(cts
ijx

ts
ij − dts

ijy
ts
ij ) (25)



Dynamic and Stochastic Rematching for Ridesharing Systems 199

s.t.
t∑

�=k

∑

(ij)∈δ(v)

(x�s
ij − y�s

ij ) ≤ 1 −
∑

(ij)∈δ(v)

ak
ij ∀t = k, . . . , h, v ∈ V (26)

yts
ij ≤ ak

ij +
t−1∑

�=k

(x�s
ij − y�s

ij ) ∀t = k, . . . , h, (ij) ∈ E (27)

xts
ij , y

ts
ij ∈ {0, 1} ∀t = k, . . . , h, (ij) ∈ E. (28)

We now show how the two-stage formulation can be reduced if some realistic
conditions are met.

5.1 Reductions Based on the System Environment

Motivated by the fact that unmatching close to the departure time is typically
not user-friendly, we study how to reduce the stochastic model if the penalty of
unmatching does not become less expensive over time.

Assumption 2. For each (ij) ∈ E, the unmatching costs are non-decreasing in
Wij, i.e.,

dt
ij ≤ dk

ij ∀t ∈ Wij , k ∈ Wij , t < k

Proposition 2. If Assumption 2 holds, then for each (ij) ∈ E, dt
ij is non-

decreasing in {t ∈ T | min(Wij) ≤ t ≤ h}.
Proof. For each t ∈ T , if t ∈ Wij , then dt

ij ≤ M . Otherwise, if max(Wij) < t ≤ h,
then dt

ij = M . 
�
Proposition 3. If Assumptions 1 and 2 hold, then the two-stage problem can
be reduced such that the second stage has a single period.

Proof. Let (x̄, ā, ȳ) be an optimal solution for the two-stage problem. For each
(ij) ∈ E where āk

ij = 1, the corresponding time period t for when (ij) was
last matched must be in Wij . Moreover, by Proposition 2, it follows that the
second-stage penalties for unmatching (ij) are non-decreasing. Thus, k is the
best period to unmatch (ij) in the second stage. Together with Proposition 1,
it follows that an optimal solution will never unmatch the same pair more than
once in the second stage. Consequently, the second-stage unmatching variables
yts

ij ,∀t = (k +1), . . . , h, (ij) ∈ E can be set to 0. As a result, the time periods for
the second-stage matching variables can be represented implicitly, which gives
us the single-period second-stage problem below

Q′(k, s, ak) := max
∑

(ij)∈E

(ĉs
ijx

s
ij − dks

ij yks
ij ) (29)



200 G. Homsi et al.

s.t.
∑

(ij)∈δ(v)

(xs
ij − yks

ij ) ≤ 1 −
∑

(ij)∈δ(v)

ak
ij ∀v ∈ V (30)

yks
ij ≤ ak

ij ∀(ij) ∈ E (31)

xs
ij , y

ks
ij ∈ {0, 1} ∀(ij) ∈ E, (32)

where ĉs
e = max{cts

ij | t = k, . . . , h}. Together, Eqs. (20)–(24) and (29)–(32) form
a reduced two-stage model. 
�

5.2 Reductions Based on the First-Stage Solution Structure

In certain situations, it is important to efficiently solve the second-stage problem
given a first-stage solution. For example, when the two-stage problem is solved
independently within a mathematical decomposition method. We provide two
reductions for the second-stage problem, based on the first-stage solution.

No Matches Before the Second Stage. If ak
ij = 0,∀(ij) ∈ E, then the

second-stage problem is independent of the first stage, and is defined as follows

Q′′(k, s,0) := max
h∑

t=k

∑

(ij)∈E

(cts
ijx

ts
ij − dts

ijy
ts
ij ) (33)

s.t.
t∑

�=k

∑

(ij)∈δ(v)

(x�s
ij − y�s

ij ) ≤ 1 ∀t = k, . . . , h, v ∈ V (34)

yts
ij ≤

t−1∑

�=k

(x�s
ij − y�s

ij ) ∀t = k, . . . , h, (ij) ∈ E (35)

xts
ij , y

ts
ij ∈ {0, 1} ∀t = k, . . . , h, (ij) ∈ E, (36)

which has the same structure as the static problem defined in Eqs. (7)–(10). It
follows that if Assumption 1 holds, then the formulation above can be rewritten
as a maximum-weight bipartite matching problem.

Matches Before the Second Stage. If Assumption 1 holds, then the second-
stage unmatching of pairs in {(ij) ∈ E | ak

ij = 0} is never profitable, even if
{(ij) ∈ E | ak

ij = 1} �= ∅. Thus, the variables yts
ij ,∀t = k, . . . , h, (ij) ∈ E, ak

ij = 0
can be set to 0.

Although the second-stage problem can be reduced in such cases, these reduc-
tions do not apply to the full two-stage problem defined in Eqs. (20)–(28).



Dynamic and Stochastic Rematching for Ridesharing Systems 201

6 Conclusions and Future Work

We have introduced a matching and rematching problem with applications in
request matching for ridesharing systems. We have presented three mathematical
formulations that can be used in a rolling horizon framework. We discussed how
to reduce these formulations provided that specific conditions that are typically
found in practice are met. In some cases, these formulations can be reduced to
a simple maximum-weight bipartite matching formulation. Some opportunities
for future work are the evaluation of the proposed models on a rolling horizon
framework and the development of efficient decomposition methods that exploit
the proposed model reduction techniques.

References

1. Agatz, N.A.H., Erera, A.L., Savelsbergh, M.W.P., Wang, X.: Dynamic ride-sharing:
a simulation study in metro Atlanta. Transp. Res. Part B Methodol. 45(9), 1450–
1464 (2011)

2. Wang, X., Agatz, N., Erera, A.: Stable matching for dynamic ride-sharing systems.
Transp. Sci. 52(4), 850–867 (2018)

3. Stiglic, M., Agatz, N., Savelsbergh, M., Gradisar, M.: The benefits of meeting points
in ride-sharing systems. Transp. Res. Part B Methodol. 82, 36–53 (2015)

4. Stiglic, M., Agatz, N., Savelsbergh, M., Gradisar, M.: Making dynamic ride-sharing
work: the impact of driver and rider flexibility. Transp. Res. Part E Logist. Transp.
Rev. 91, 190–207 (2016)

5. Stiglic, M., Agatz, N., Savelsbergh, M., Gradisar, M.: Enhancing urban mobility:
integrating ride-sharing and public transit. Comput. Oper. Res. 90, 12–21 (2018)

6. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-
sharing: a review. Eur. J. Oper. Res. 223(2), 295–303 (2012)

7. Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M.E., Wang, X., Koenig,
S.: Ridesharing: the state-of-the-art and future directions. Transp. Res. Part B
Methodol. 57, 28–46 (2013)

8. Mourad, A., Puchinger, J., Chu, C.: A survey of models and algorithms for opti-
mizing shared mobility. Transp. Res. Part B Methodol. 123, 323–346 (2019)



The Distance Matching Problem

Péter Madarasi(B)

Department of Operations Research, Eötvös Loránd University, Budapest, Hungary
madarasi@cs.elte.hu

Abstract. This paper introduces the d-distance matching problem, in
which we are given a bipartite graph G = (S, T ;E) with S = {s1, . . . , sn},
a weight function on the edges and an integer d ∈ Z+. The goal is to find
a maximum weight subset M ⊆ E of the edges satisfying the following
two conditions: i) the degree of every node of S is at most one in M , ii) if
sit, sjt ∈ M , then |j − i| ≥ d. The question arises naturally, for example,
in various scheduling problems.

We show that the problem is NP-complete in general and give an FPT
algorithm parameterized by d. We also settle the case when the size of T
is constant. From an approximability point of view, we consider a local
search algorithm that achieves an approximation ratio of 3/2+ ε for any
constant ε > 0 in the unweighted case. We show that the integrality gap
of the natural integer programming model is at most 2− 1

2d−1
, and give

an LP-based approximation algorithm for the weighted case with the
same guarantee. We also present a combinatorial (2− 1

d
)-approximation

algorithm. The novel approaches used in the analysis of the integrality
gap and the approximation ratio of locally optimal solutions might be of
independent combinatorial interest.

Keywords: Distance matching · Parameterized algorithms ·
Approximation algorithms · Integrality gap · Shift scheduling ·
Restricted matching

1 Introduction

In the perfect d-distance matching problem, given are a bipartite graph G =
(S, T ;E) with S = {s1, . . . , sn}, T = {t1, . . . , tk}, a weight function on the edges
w : E → R+ and an integer d ∈ Z+. The goal is to find a maximum weight
subset M ⊆ E of the edges such that the degree of every node of S is one in M
and if sit, sjt ∈ M , then |j − i| ≥ d. In the (non-perfect) d-distance matching
problem, some of the nodes of S might remain uncovered. Note that the order
of nodes in S = {s1, . . . , sn} affects the set of feasible d-distance matchings, but
the order of T = {t1, . . . , tk} is indifferent.

An application of this problem for w ≡ 1 is as follows. Imagine n consecutive
all-day events s1, . . . , sn each of which must be assigned one of k watchmen

Supported by the ÚNKP-19-3 New National Excellence Program of the Ministry for
Innovation and Technology.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 202–213, 2020.
https://doi.org/10.1007/978-3-030-53262-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_17


The Distance Matching Problem 203

t1, . . . , tk. For each event si, a set of possible watchmen is given – those who are
qualified to be on guard at event si. Appoint exactly one watchman to each of the
events such that no watchman is assigned to more than one of any d consecutive
events, where d ∈ Z+ is given. In the weighted version of the problem, let wsitj

denote the level of safety of event si if watchman tj is on watch, and the objective
is to maximize the level of overall safety.

As another application of the above question, consider n items s1, . . . , sn one
after another on a conveyor belt, and k machines t1, . . . , tk. Each item si is to
be processed on the conveyor belt by one of the qualified machines N(si) ⊆
{t1, . . . , tn} such that if a machine processes item si, then it can not process the
next d − 1 items—because the conveyor belt is running.

Previous Work. Observe that in the special case d = |S|, one gets the classic
(perfect) bipartite matching problem. For d = 1, the problem reduces to the
b-matching problem, and one can show that it is a special case of the circulation
problem for d = 2. The perfect d-distance matching problem is a special case
of the list coloring problem on interval graphs [5] and the frequency assignment
problem [6].

Our Results. This paper settles the complexity of the distance matching prob-
lem, and gives an FPT algorithm [4] parameterized by d. An efficient algorithm
for constant T is also given. We present an LP-based (2 − 1

2d−1 )-approximation
algorithm for the weighted distance matching problem, which implies that the
integrality gap of the natural IP model is at most 2 − 1

2d−1 . A combinatorial
(2 − 1

d )-approximation algorithm is also described for the weighted case. One of
the main contributions of the paper is a (3/2 + ε)-approximation algorithm for
the unweighted case for any constant ε > 0 for the unweighted case. The proof
is based on revealing the structure of locally optimal solutions recursively. Moti-
vated by the second application above, we give a polynomial time algorithm to
find a permutation of S (i.e. the items on the conveyor belt) such that the weight
of the optimal d-distance matching becomes as large as possible. The full version
of the paper with detailed proofs and further results is available on arXiv [7].

Notation. Throughout the paper, assume that G = (S, T ;E) contains no loops
or parallel edges, unless stated otherwise. Let Δ(v) and N(v) denote the set
of incident edges to node v and the neighbors of v, respectively. For a subset
X ⊆ E of the edges, NX(v) denotes the neighbors of v for edge set X. deg(v)
is the degree of node v. Let Ld(si) = {smax(i−d+1,1), . . . , si} and Rd(si) =
{si, . . . , smin(i+d−1,|S|)}. The maximum of the empty set is −∞ by definition.
Given a function f : A → B, both f(a) and fa denote the value f assigns to a ∈
A, and let f(X) =

∑
a∈X f(a) for X ⊆ A. Let χZ denote the characteristic vector

of set Z, i.e. χZ(y) = 1 if y ∈ Z, and 0 otherwise. Occasionally, the braces around
sets consisting of a single element are abandoned, e.g. χe = χ{e} for e ∈ E.

2 Complexity and Tractable Cases

Theorem 1. It is NP-complete to decide if a graph has a perfect d-distance
matching, even if the maximum degree of the graph is at most 4.



204 P. Madarasi

Sketch of the Proof. The proof of the theorem is more involved, hence we only
present the main idea here. One of Karp’s 21 NP-complete problems [1], the
3-dimensional matching can be reduced to the following problem. Given a bipar-
tite graph G = (S, T ;E) and S1, S2 ⊆ S s.t. S1 ∪ S2 = S, decide whether there
exists M ⊆ E for which |M | = |S| and both M ∩E1 and M ∩E2 are matchings,
where Ei denotes the edges induced by T and Si for i = 1, 2. The latter prob-
lem can be reduced to the d-distance matching problem in a non-trivial way,
hence the claim follows. The 3-dimensional matching problem is NP-complete
even if the maximum degree is 4 [2, p. 221]. As the reductions do not increase
the maximum degree, the hardness of the bounded degree case follows. 
�

2.1 FPT Algorithm Parameterized by d

In what follows, an FPT algorithm parameterized by d is presented for the
weighted (perfect) d-distance matching problem. First observe that the weighted
d-distance matching problem easily reduces to the perfect case by adding a new
node ts to T and a new edge sts of weight zero for each s ∈ S, therefore the
algorithm is given only for the weighted perfect d-distance matching problem.
The next claim gives a way to reduce the problem so that it admits an efficient
dynamic programming solution.

Lemma 1. If deg(s) ≥ 2d for s ∈ S, then one of the incident edges can be
removed without changing the weight of the optimal perfect d-distance matching.

Proof. Let st be a minimum weight edge incident to node s. In order to prove
that st can be removed, it suffices to show that there is a maximum weight
d-distance matching that does not use edge st. Given a d-distance matching M
that contains edge st, let Z ⊆ T denote the nodes that M assigns to Ld(s)∪Rd(s).
Since |Z| ≤ 2d − 1, there exists a node t′ ∈ N(s) \ Z for which wst ≤ wst′ . To
complete the proof, observe that M ′ = (M ∪{st′})\{st} is a d-distance matching
of weight at least w(M), which does not contain edge st. 
�

Based on Lemma 1, any instance of the weighted d-distance matching prob-
lem can be reduced so that the degree of each node s ∈ S is at most 2d − 1.
Note that the reduction can be performed in linear time if the edges are already
sorted by their weights at each node s ∈ S. In what follows, a dynamic pro-
gramming approach is presented to solve the reduced problem. For i ≥ d, let
f(si, z1, . . . , zd) denote the weight of the maximum weight d-distance matching
if the problem is restricted to the first i nodes of S and si−j+1 is assigned to its
neighbor zj for j = 1, . . . , d. Formally, f(si, z1, . . . , zd) = −∞ if z1, . . . , zd are
not distinct, otherwise, it is defined by the following recursive formula.

f(si, z1, . . . , zd) =

⎧
⎪⎨

⎪⎩

wsiz1 + max
t∈Δ(si−d)

f(si−1, z2, . . . , zd, t) if i > d

d∑

j=1

wsjzd−j+1 if i = d
(1)

where i ≥ d, si ∈ S and zj ∈ N(si−j+1) for j = 1, . . . , d.



The Distance Matching Problem 205

The weight of the optimal d-distance matching is max{f(sn, z1, . . . , zd) :
zj ∈ N(sn−j+1) for j = 1, . . . , d}. Observe that the number of subproblems is
O(n(2d − 1)d), since the degree of each s ∈ S is at most 2d − 1 by Lemma 1.
Recursion (1) gives a way to compute f(si, z1, . . . , zd) in O(d) steps. Therefore
the overall running time of the algorithm is O(dn(2d − 1)d + poly(n + |T |)).

2.2 Efficient Algorithm for Constant |T |
To obtain an algorithm running in O(n|T |d|T |) steps, consider the following
subproblems. Let f(si, d1, . . . , d|T |) denote the weight of the optimal perfect d-
distance matching if the problem is restricted to s1, . . . , si, and tj can not be
matched to nodes si−dj+1, . . . , si. The algorithm is similar to the previous one,
hence the details are left to the full version of the paper.

3 LP-Based Approach

This section proves that the integrality gap of the natural integer programming
model for the weighted d-distance matching problem is at most 2 − 1

2d−1 , and
presents an LP-based (2 − 1

2d−1 )-approximation algorithm. We also investigate
the integrality of LP1 and LP2 in special cases. First consider the relaxation
of the natural 0–1 integer programming formulation of the weighted d-distance
matching problem.

max
∑

st∈E
wstxst (LP1 )

s.t.

x ∈ RE
+ (2a)

∑

st∈Δ(s)
xst ≤ 1 ∀s ∈ S (2b)

∑

s′t∈E:s′∈Rd(s)
xs′t ≤ 1 ∀s ∈ S, t ∈ T (2c)

One gets the relaxation of the 0–1 integer programming formulation (LP2 ) of
the weighted perfect d-distance matching problem by tightening (2b) to equality.

The following definition and lemma play a central role in the LP-based
approximation algorithm presented at the end of this section.

Definition 1. Given a feasible solution x to LP1, an order of the edges e1 =
s1t1, . . . , em = smtm is θ-flat with respect to x if

ξi + ξ̄i ≤ θ − xei
(3)

holds for each i = 1, . . . ,m, where ξi =
∑{xej

: j > i, ej ∈ Δ(si)} and ξ̄i =∑{xej
: j > i, ej ∈ Δ(ti), sj ∈ Ld(si) ∪ Rd(si)}.



206 P. Madarasi

Algorithm 1. The ordering procedure for Lemma 2
Let x be a given fractional solution to LP1, and G = (S, T ;E) a copy of the graph.
j:=1
for i = 1, . . . , n do

while deg(si) �= 0 do
Choose an edge sit ∈ Δ(si) for which xsit is as large as possible.
ej := sit
j := j + 1
E := E \ {sit}

output e1, . . . , em

Lemma 2. There exists an optimal solution x ∈ Qm of LP1 and an order e1 =
s1t1, . . . , em = smtm of the edges that is (2 − 1

2d−1 )-flat with respect to x.

Proof. Let Es ⊆ Δ(s) denote the first min(2d − 1,deg(s)) largest weight edges
incident to node s for each s ∈ S. Let x be an optimal solution to LP1 for which
γ(x) =

∑{xe : e ∈ E \ ⋃
s∈S Es} is minimal. By contradiction, suppose that

γ(x) > 0. By definition, γ(x) > 0 implies that there exists an edge st ∈ E \⋃n
k=1 Ek for which xst > 0. There exists edge st′ ∈ Es s.t. x′ = x−εχst +εχst′ is

feasible for sufficiently small ε > 0, otherwise x(
⋃{Δ(s′) : s′ ∈ Ld(s)∪Rd(s)}) ≥

2d−1+ ε would hold, which is not possible. Observe that wx ≤ wx′ and γ(x′) <
γ(x), contradicting the minimality of γ(x). Therefore γ(x) = 0 follows, meaning
that xe = 0 holds for each e ∈ E \ ⋃

s∈S Es. Hence one can restrict the edge
set of the graph to

⋃
s∈S Es without change in the optimal objective value,

which implies that there exists a rational optimal solution x ∈ Qm of LP1 with
γ(x) = 0.

Let x be as above, and let e1 = s1t1, . . . , em = smtm be the order of the
edges given by Algorithm 1 for input x. To prove that this order is (2 − 1

2d−1 )-
flat with respect to x, let ξi and ξ̄i (i = 1, . . . , n) be as in Definition 1. First
observe that ξ̄i ≤ 1−xi holds for each i = 1, . . . , n, because the algorithm places
each edge

⋃i−1
j=1 Δ(sj) before ei. Hence, to obtain (3), it suffices to prove that

ξi ≤ 1 − 1
2d−1 . For any node s ∈ S, if there exists an edge st ∈ Δ(s) for which

xst ≥ 1
2d−1 , then ξj ≤ 1− 1

2d−1 follows for each ej ∈ Δ(s), since xe ≥ 1
2d−1 holds

for the first edge e ∈ Δ(s) selected by Algorithm 1. Otherwise, if there exists no
edge st ∈ Δ(s) for which xst ≥ 1

2d−1 , then x(Δ(s)) < |Es| 1
2d−1 ≤ 1, but then

x′ = x + εχst′ is feasible for some st′ ∈ Es and sufficiently small ε > 0 (because
x(

⋃{Δ(s′) : s′ ∈ Ld(s) ∪ Rd(s)}) < 2d − 1)—contradicting the optimality of x.
Therefore ξi ≤ 1 − 1

2d−1 follows for i = 1, . . . , n, which means that the order of
the edges is (2 − 1

2d−1 )-flat. 
�
The rest of this section presents an LP-based (2− 1

2d−1 )-approximation algo-
rithm and proves that the integrality gap is at most θ := 2 − 1

2d−1 .

Theorem 2. Algorithm 2 is a θ-approximation algorithm for the weighted
d-distance matching problem if a θ-flat order of the edges is given in the first
step of the algorithm.



The Distance Matching Problem 207

Algorithm 2. θ-approximation algorithm for the weighted distance matching
problem
1: Let e1, . . . , em be a θ-flat order with respect to a solution x of LP1 (see Lemma 2).
2: procedure WdmLpApx(E,w)
3: E := E \ {e ∈ E : we ≤ 0}
4: if E = ∅ then
5: return ∅
6: Let st be the first edge according to the above order that appears in E.
7: M ′ := WdmLpApx(E \ {st}, w′), where w′ := w − wstχΔ(s)∪{s′t∈Δ(t):s′∈Rd(s)}
8: if M ′ ∪ {st} is a feasible d-distance matching then
9: return M ′ ∪ {st}
10: else
11: return M ′

Proof. The proof is by induction on the number of edges. Let M denote the
distance matching found by WdmLpApx(E,w), and let x be as defined in Algo-
rithm 2. In the base case, if E = ∅, then θw(M) ≥ wx holds. Let st ∈ E be
the first edge with respect to the order of the edges used by Algorithm 2. By
induction, θw′(M ′) ≥ w′x holds for M ′ = WdmLpApx(E \ {st}, w′), where
w′ = w − wstχΔ(s)∪{s′t∈Δ(t):s′∈Rd(s)}. The key observation is that

θ(w − w′)(M) ≥ θwst ≥ (w − w′)x (4)

follows by the definition of w′ and the order of the edges. Hence, one gets that

θw(M) = θ(w − w′)(M) + θw′(M) ≥ (w − w′)x + w′x = wx, (5)

where w′(M) = w′(M ′) because w′
st = 0. Therefore M is indeed a θ-approximate

solution, which completes the proof. 
�

s1 s2 s3 s4 s5 s6 s7 s8

t1 t2 t3 t4

Fig. 1. For w ≡ 1 and d = 5, x ≡ 1/2 is an optimal solution to LP1, and the highlighted
edges form an optimal 5-distance matching, hence the integrality gap is 6/5.

Theorem 2 also implies that the integrality gap of LP1 is at most θ. Note
that if we have a θ′-flat order of the edges in the first step of Algorithm 2, then
it outputs a θ′-approximate solution. We believe that there always exist a θ′-flat
order of the edges for some θ′ < θ (i.e. it is possible to improve Lemma 2), which



208 P. Madarasi

would automatically improve both the integrality gap and the approximation
guarantee of the algorithm to θ′.

The largest known lower bound of the integrality gap of LP1 is 6/5 (see
Fig. 1), thus it remains open whether the analysis is tight. On the other hand,
one might easily show that the integrality gap of LP2 is unbounded, as it was
expected due to the complexity of the problem.

Note that both LP1 and LP2 are integral if d = 2, because the matrix of
the linear programs is a network matrix [3]. If d = |T |, then LP2 is integral (but
the matrix is not totally unimodular – in fact, one can show that the matrix is
not totally unimodular in general for d ≥ 3).

4 A Combinatorial (2 − 1
d
)-Approximation Algorithm

This section presents a (2− 1
d )-approximation algorithm for the weighted distance

matching problem. Let k ∈ {d−1, . . . , 3d−3} be such that 2d−1 divides |S|+k,
and add k new dummy nodes sn+1, . . . , sn+k to the end of S in this order. Let
us consider the extended node set in cyclic order. Observe that the new cyclic
problem is equivalent to the original one. Let Hj denote the graph induced by
Rd(sj) ∪ T , where Rd(sj) is the set consisting of node sj and the next d − 1
nodes on its right in the new cyclic problem. Let

Gi = (Si, T ;Ei) =

n+k
2d−1−1

⋃

j=0

Hi+j(2d−1)

for i = 1, . . . , 2d − 1, where Si ⊆ S. For each i = 1, . . . , 2d − 1, compute a
maximum weigh matching Mi of Gi and let i∗ = arg max{w(Mi) : i = 1, . . . , 2d−
1}. For example, consider the graph on Fig. 2 with d = 3. The nodes of G4 are
highlighted on the figure and the edges of M4 are the wavy ones (note that
s6, . . . , s10 are the five dummy nodes).

Theorem 3. Mi∗ is a feasible d-distance matching and it is (2− 1
d )-approximate.

Proof. Each node of S is covered by at most one edge of Mi∗ , as Mi∗ is the
union of matchings no two of which cover the same node of S. If sit, sjt ∈ Mi∗ ,
then sit and sjt belong to two distinct M̃k, M̃l for some k, l, hence |i − j| ≥ d
and the feasibility of Mi∗ follows.

To show the approximation guarantee, let M∗ be an optimal d-distance
matching. For each node s ∈ S, let μs ∈ R+ denote the weigh of the edge
covering s in M∗, and zero if M∗ does not cover s. Note that

∑
s∈S μs = w(M∗)

by definition, and ∑

s∈Si

μs ≤ w(Mi) (6)

follows because
∑

s∈Si
μs is the weight of a matching in Gi. Observe that

dw(M∗) = d
∑

s∈S

μs =
2d−1∑

i=1

∑

s∈Si

μs ≤
2d−1∑

i=1

w(Mi) ≤ (2d − 1)w(Mi∗), (7)



The Distance Matching Problem 209

where the first equation holds because μs occurs exactly d times as a summand
in

∑2d−1
i=1

∑
s∈Si

μs for all s ∈ S, the first inequality follows from (6) and the
last one holds because Mi∗ is a largest weight matching among M1, . . . ,M2d−1.
One gets by (7) that w(M∗) ≤ (2 − 1

d )w(Mi∗), which completes the proof. 
�

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

t1 t2 t3

Fig. 2. Tight example for Theorem 3 in the case d = 3. The wavy edges form a possible
output of the algorithm. (Recall that the nodes of S are in cyclic order.)

The analysis is tight in the sense that, for every d ∈ Z+, there exists a
graph G for which the algorithm returns a d-distance matching M for which
w(M∗) = (2− 1

d )w(M), where M∗ is an optimal d-distance matching. Let S and
T consist of 2d − 1 and d nodes, respectively. Add edge siti for i = 1, . . . , d, and
edge si+dti for i = 1, . . . , d − 1. Note that the edge set is a feasible d-distance
matching itself, and the above algorithm returns a matching that covers exactly d
nodes of S. Hence the approximation ratio of the found solution is 2d−1

d . Figure 2
shows the construction for d = 3, where s6, . . . , s10 are the dummy nodes.

5 (3/2+ ε)-Approximation Algorithm for the Unweighted
d-distance Matching

This section investigates the approximation ratio of the so-called locally optimal
solutions, and presents a 3/2 + ε approximation algorithm for constant ε > 0.
The reader is referred to the full version of this paper for a detailed description
of locally optimal solutions. First of all, consider the following notion.

Definition 2. Given an edge e∗ ∈ E, let H(e∗,M) ⊆ M denote the inclusion-
wise minimal subset of M for which M\H(e∗,M)∪{e∗} is a d-distance matching.
An edge e∗ hits e ∈ M if e ∈ H(e∗,M). Given an edge set X ⊆ E, let H(X,M) =⋃

e∗∈X H(e∗,M).

Definition 3. A d-distance matching M is l-locally optimal if there exists no
X ⊆ E \ M s.t. l ≥ |X| > |H(X,M)|. Similarly, M is l-locally optimal with
respect to M∗ if M is l-locally optimal in G′ = (S, T ;M ∪M∗), where M∗ ⊆ E.

In what follows, an upper bound �l is shown on the approximation ratio of
l-locally optimal solutions for each l ≥ 1, where �l is defined by the following
recursion.



210 P. Madarasi

�l =

⎧
⎪⎨

⎪⎩

3, if l = 1
2, if l = 2
4�l−2−3
2�l−2−1 , if l ≥ 3.

(8)

For l = 1, 2, 3, 4, the statement can be proved by a simple argument, given
below. However, this approach does not seem to work in the general case. The
proof of the general case, which is much more involved and quite esoteric, is
deferred to the full version of the paper.

Theorem 4. If M,M∗ are d-distance matchings s.t. M is l-locally optimal with
respect to M∗, then the approximation ratio |M∗|/|M | is at most �l, where l =
1, . . . , 4 and �l is as defined above.

Proof. Let M∗
i = {e∗ ∈ M∗ : |H(e∗,M)| = i} for i = 0, . . . , 3. Note that

M0,M1,M2,M3 is a partition of M∗, and M∗
0 = ∅ since each edge of M∗ hits

at least one edges of M if l ≥ 1. Since each edge e ∈ M can be hit by at most
three edges of M∗, one gets that

3|M | ≥
∑

e∗∈M∗ |H+(e∗,M)| = |M∗
1 | + 2|M∗

2 | + 3|M∗
3 |. (9)

Case l = 1. It easily follows from (9) that

|M∗| = |M∗
1 | + |M∗

2 | + |M∗
3 | ≤ |M∗

1 | + 2|M∗
2 | + 3|M∗

3 | ≤ 3|M |. (10)

Case l = 2.

2|M∗| = 2(|M∗
1 | + |M∗

2 | + |M∗
3 |) ≤ |M∗

1 | + |M∗
1 | + 2|M∗

2 | + 3|M∗
3 |

≤ |M∗
1 | + 3|M | ≤ 4|M |, (11)

where the second inequality follows from (9) and the third one holds because M
is 2-locally optimal with respect to M∗.
Case l = 3.

5|M∗| = 5(|M∗
1 | + |M∗

2 | + |M∗
3 |) = 2(|M∗

1 | + 2|M∗
2 | + 3|M∗

3 |) + 3|M∗
1 | + |M∗

2 | − |M∗
3 |

≤ 6|M | + 3|M∗
1 | + |M∗

2 | − |M∗
3 | ≤ 6|M | + 3|M∗

1 | + |M∗
2 | ≤ 9|M |, (12)

where the last inequality holds by the following claim.

Claim. |M∗
2 | ≤ 3(|M | − |M1|) if M is 3-locally optimal with respect to M∗.

Proof. It suffices to show that there exist d-distance matchings M̃ , M̃∗ s.t. 1)
|M̃ | = |M |−|M∗

1 |, 2) |M̃∗| = |M∗
2 |, and 3) M̃ is 1-locally optimal with respect

to M̃∗. Indeed, |M̃∗| ≤ 3|M̃ | holds, from which one obtains the inequality to be
proved by substituting 1) and 2). Let M̃ = M \ H(M∗

1 ,M) and M̃∗ = M∗
2 .

Clearly, both 1) and 2) hold. By contradiction, suppose that 3) does not hold,
that is, there exists e∗

1 ∈ M̃∗ s.t. M̃ ∪ {e∗
1} is feasible d-distance matching. By

definition, e∗
1 ∈ M∗

2 , therefore e∗
1 hits exactly two edges e1, e2 in M . Neither e1,

nor e2 are in M̃ , thus e1, e2 ∈ H(M∗
1 ,M), that is ej is hit by an edge e∗

j+1 ∈ M∗
1

for j=1,2. Note that e∗
1 �= e∗

2, hence e∗
1, e

∗
2, e

∗
3 are pairwise distinct edges, and

H({e∗
1, e

∗
2, e

∗
3},M) = {e1, e2}, contradicting that M is 3-locally optimal. 
�



The Distance Matching Problem 211

Case l = 4.

6|M∗| = 6(|M∗
1 | + |M∗

2 | + |M∗
3 |) = 2(|M∗

1 | + 2|M∗
2 | + 3|M∗

3 |)
+4|M∗

1 | + 2|M∗
2 | ≤ 6|M | + 4|M∗

1 | + 2|M∗
2 | ≤ 10|M |, (13)

where the first inequality holds by (9), the last one by the following claim.

Claim. 2|M∗
2 | ≤ 4(|M | − |M1|) if M is 4-locally optimal with respect to M∗.

Proof. The proof is similar to that of the previous claim. 
�
This concludes the proof of the theorem. 
�

s1 s2 s3

t1 t2

(a) The wavy edges form a 1-locally op-
timal 2-distance matching M , and M∗ =
E \M is the optimal 2-distance matching,
hence |M∗|/|M| = 3 = �1.

s1 s2 s3 s4

t1 t2

(b) The wavy edges form a 2-locally op-
timal 2-distance matching M , and M∗ =
E \M is the optimal 2-distance matching,
hence |M∗|/|M| = 2 = �2.

Fig. 3. Tight examples for Theorem 5.

Figure 3a and 3b show that the bound given by Theorem 5 is tight for l = 1
and 2, respectively. A tight example for l = 3 is presented in the full version of
the paper. It remains open whether the analysis is tight for l ≥ 4.

It is worth noting that the proof of Theorem 4 for l = 3, 4 refers inductively
to the case l − 2, which is quite unexpected. The same idea does not seem to
work for l = 5. Based on cases l = 1, 2, 3, 4, one gains the following analogous
computation.

13|M∗| = 13(|M∗
1 | + |M∗

2 | + |M∗
3 |) = 4(|M∗

1 | + 2|M∗
2 | + 3|M∗

3 |)
+9|M∗

1 | + 5|M∗
2 | + |M∗

3 | ≤ 12|M | + 9|M∗
1 | + 5|M∗

2 | + |M∗
3 | ≤ 21|M |,(14)

where the last inequality requires that 5|M∗
2 |+ |M∗

3 | ≤ 9(|M | − |M∗
1 |). However,

the latter inequality does not admit a constructive argument similarly to the
cases l = 3, 4. To overcome this complication, consider the following extended
problem setting, which surprisingly does admit a constructive argument.

Definition 4. Let R be a set of (parallel) loops on the nodes of S. A subset
M ⊆ E ∪ R is (R,d)-distance matching if it is the union of a d-distance
matching and R.



212 P. Madarasi

Definition 5. Given an (R, d)-distance matching M and sv ∈ (S × T ) ∪ R, let

H+(sv,M) =

{
H(sv,M \ R) ∪ {e ∈ R : e is incident to s}, if sv ∈ S × T

sv, if sv ∈ R.

In other words, each st ∈ E hits the edges of H(st,M) and all the loops
incident to node s, while each loop hits only itself. Given an edge set X ⊆ E,
let H+(X,M) =

⋃
e∈X H(e,M).

Definition 6. An (R, d)-distance matching M is l-locally optimal if there
exists no X ⊆ E \ M s.t. l ≥ |X| > |H+(X,M)|. Similarly, M is l-
locally optimal with respect to M∗ if there exists no X ⊆ M∗ \ M s.t.
l ≥ |X| > |H+(X,M)|, where M∗ in an (R, d)-distance matching.

Note that each definition reduces to its original counterpart if R = ∅. There-
fore, it suffices to show that �l is an upper bound on the approximation ratio of
(R, l)-locally optimal solutions.

Theorem 5. If M,M∗ are (R, d)-distance matchings s.t. M is l-locally optimal
with respect to M∗, then the approximation ratio |M∗|/|M | is at most �l, where
l ≥ 1 and �l is as defined above. 
�
Corollary 1. For any constant ε > 0, there exist a polynomial algorithm for the
unweighted d-distance matching problem that achieves an approximation guar-
antee of 3/2 + ε.

Proof. By Theorem 5, the approximation ratio of l-locally optimal d-distance
matchings is at most �l, where �l is as defined above. It is easy to show that
liml→∞ �l = 3/2. Hence for any ε > 0, there exists l0 ∈ Z+ s.t. �l ≤ 3/2 + ε.
To complete the proof, observe that l0 is independent from the problem size,
therefore one can compute an l0-locally optimal solution in polynomial time. 
�

6 Optimal Permutation of S

This section investigates a slightly different problem, motivated by the second
application presented in Sect. 1. It is natural to ask whether we can find a per-
mutation of S (i.e. the items on the conveyor belt, see Sect. 1) that maximizes
the weight of the maximum weight d-distance matching. The proof of the next
theorem provides a polynomial time algorithm to solve this problem. We say
that a triple y ∈ NS∪T , z ∈ NE , v ∈ NT is a u-cover of G = (S, T ;E) for u ∈ N,
if ys + yt + zst ≥ wst for all st ∈ E and vt + yt ≥ u for all t ∈ T .

Theorem 6. The maximum weight of a d-distance matching under all permu-
tations is equal to the minimum of {yb + 1z + 1v − d�n

d �u : where y ∈ NS∪T , z ∈
NE , v ∈ NT is a u-cover of G}, where b ∈ NS∪T is such that bs = 1 for s ∈ S
and bt = �n/d� for t ∈ T .



The Distance Matching Problem 213

Proof. Let n = |S| and let M ⊆ E be a maximum weight edge set s.t. degM (s) ≤
1 for all s ∈ S, degM (t) ≤ �n/d� and the number of nodes t ∈ T for which
degM (t) = �n/d� is at most n − �n/d�d. Such an edge set M can be found in
polynomial time by a reduction to the maximum cost circulation problem.

It is easy to see that w(M) ≥ W . To show that w(M) = W , it suffices
to construct a permutation of S under which M is a d-distance matching. Let
S1, . . . , Sk+1 be a partition of S s.t. k = �n/d�, |Si| = d for i = 1, . . . , k and M
induces a (not necessarily perfect) matching between T and Sk+1 covering each
node t ∈ T that has degree �n/d� + 1. Note that |Sk+1| = n − �n/d�d < d.

Let α denote the number of edge pairs st, s′t ∈ M s.t. s, s′ ∈ Si for some
i = 1, . . . , k + 1. If α = 0, then M is a d-distance matching with respect to the
order given by the concatenation of S1, . . . , Sk+1 if the nodes of each Si are in
appropriate order. Otherwise, let i be an index for which there exists st, s′t ∈ M
s.t. s, s′ ∈ Si and |NM (Si)| is as small as possible (α > 0 implies that at least
one such index exists). There exists index j ∈ 1, . . . , k s.t. NM (t) ∩ Sj = ∅, and
one can easily show that there is a node s′′ ∈ Sj for which NM (s′′) �⊆ NM (Si)
or NM (s′′) = ∅. By setting Si = Si + s′′ − s and Sj = Sj + s − s′′, α decreases
by one, hence the algorithm terminates in polynomial time.

One can easily derive the min-max formula using LP-duality or the max-flow
min-cut theorem. 
�

Remark. A similar approach solves the analogue problem for the perfect d-
distance matching problem. In this case, one should look for an edge set M for
which degM (s) = 1 (instead of degM (s) ≤ 1) and repeat the proof of Theorem 6.

Acknowledgement. The author is grateful to Kristóf Bérczi and Alpár Jüttner for
their valuable comments that greatly improved the manuscript. The author is indebted
to an anonymous reviewer of an earlier version of the manuscript for suggesting an
approach which led to the algorithm described in Sect. 4.

References

1. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103.
Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

3. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press,
Oxford (2011)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(2012)

5. Zeitlhofer, T., Wess, B.: List-coloring of interval graphs with application to register
assignment for heterogeneous register-set architectures. Sig. Process. 83(7), 1411–
1425 (2003)

6. Aardal, K.I., van Hoesel, S.P.M., Koster, A.M.C.A., et al.: Models and solution
techniques for frequency assignment problems. Ann. Oper. Res. 153, 79–129 (2007)

7. Madarasi, P.: The distance matching problem (2019). https://arxiv.org/abs/1911.
12432

https://doi.org/10.1007/978-1-4684-2001-2_9
https://arxiv.org/abs/1911.12432
https://arxiv.org/abs/1911.12432


Notes on Equitable Partitions
into Matching Forests in Mixed Graphs

and b-branchings in Digraphs

Kenjiro Takazawa(B)

Department of Industrial and Systems Engineering,
Faculty of Science and Engineering, Hosei University,
3-7-2, Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

takazawa@hosei.ac.jp

Abstract. An equitable partition into branchings in a digraph is a parti-
tion of the arc set into branchings such that the sizes of any two branch-
ings differ at most by one. For a digraph whose arc set can be parti-
tioned into k branchings, there always exists an equitable partition into
k branchings. In this paper, we present two extensions of equitable par-
titions into branchings in digraphs: those into matching forests in mixed
graphs; and into b-branchings in digraphs. For matching forests, Király
and Yokoi (2018) considered a tricriteria equitability based on the sizes of
the matching forest, and the matching and branching therein. In contrast
to this, we introduce a single-criterion equitability based on the number
of the covered vertices. For b-branchings, we define an equitability based
on the size of the b-branching and the indegrees of all vertices. For both
matching forests and b-branchings, we prove that equitable partitions
always exist.

1 Introduction

Partitioning a finite set into its subsets with certain combinatorial structure is
a fundamental topic in the fields of combinatorial optimization, discrete mathe-
matics, and graph theory. The most typical partitioning problem is graph color-
ing, which amounts to partitioning the vertex set of a graph into stable sets. In
particular, equitable coloring, in which the numbers of vertices in any two stable
sets differ at most by one, has attracted researchers’ interest since the famous
conjecture of Erdős [13] on the existence of an equitable coloring with Δ + 1
colors in a graph with maximum degree Δ, which was later proved by Hajnal
and Szemerédi [20].

Equitable edge-coloring has been mainly considered in bipartite graphs: a
bipartite graph with maximum degree Δ admits an equitable edge-coloring with
k colors for every k ≥ Δ [7,8,10,14,24]. Equitable edge-coloring in bipartite
graphs can be generalized to equitable partition of the common ground set
of two matroids into common independent sets, which has been a challenging
topic in the literature [6,15]. One successful example is equitable partition into
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 214–224, 2020.
https://doi.org/10.1007/978-3-030-53262-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_18


Notes on Equitable Partitions into Matching Forests and b-branchings 215

branchings in digraphs. The following theorem is derived from Edmonds’ dis-
joint branchings theorem [11]. For a real number x, let �x� and �x� denote the
maximum integer that is not greater than x and the minimum integer that is
not less than x, respectively.

Theorem 1 (see Schrijver [27, Theorem 53.3]). In a digraph D = (V,A), if A
can be partitioned into k branchings, then A can be partitioned into k branchings
each of which has size �|A|/k� or �|A|/k�.

The aim of this paper is to extend of Theorem 1 to equitable partition into
two generalizations of branchings: matching forests [17–19] and b-branchings [21].
An important feature is that, due to their structures, defining the equitability
of matching forests and b-branchings is not a trivial task, as explained below.

1.1 Matching Forests

The concept of matching forests was introduced by Giles [17–19]. A mixed graph
G = (V,E,A) consists of the set V of vertices, the set E of undirected edges,
and the set A of directed edges (arcs). We say that an undirected edge in E
covers a vertex v ∈ V if v is one of the endpoints of the undirected edge, and
a directed edge in A covers v if v is the head of the directed edge. A subset of
edges F ⊆ E ∪ A is a matching forest if the underlying edge set of F is a forest
and each vertex is covered by at most one edge in F . It is straightforward to see
that matching forests offer a common generalization of matchings in undirected
graphs and branchings in digraphs: if F ⊆ E∪A is a matching forest, then F ∩E
is a matching and F ∩ A is a branching.

An equivalent definition of matching forests can be given in the following
way. For a subset of undirected edges M ⊆ E, let ∂M ⊆ V denote the set
of vertices covered by at least one edge in M . For a subset of directed edges
B ⊆ A, let ∂B ⊆ V denote the set of vertices covered by at least one arc in B1.
For F ⊆ E ∪A, define ∂F = ∂(F ∩E)∪∂(F ∩A). A vertex v in ∂F is said to be
covered by F . Now F ⊆ E ∪A is a matching forest if M := F ∩E is a matching,
B := F ∩ A is a branching, and ∂M ∩ ∂B = ∅.

Previous work on matching forests includes polynomial algorithms with poly-
hedral description [17–19], total dual integrality of the description [26], a Vizing-
type theorem on the number of matching forests partitioning the edge set E ∪A
[22], and reduction to linear matroid parity [27]. More recently, Takazawa [28]
showed that the sets of vertices covered by the matching forests form a delta-
matroid [3,4,9], which provides some explanation of the tractability of matching
forests as well as the above polyhedral results. For two sets X and Y , let X�Y
denote their symmetric difference, i.e., X�Y = (X \ Y ) ∪ (Y \ X). For a finite
set V and its subset family F ⊆ 2V , the set system (V,F) is a delta-matroid if
it satisfies the following exchange property:

1 We believe that this notation causes no confusion on the direction of the arcs, since
we never refer to the set of the tails of the arcs in this paper.



216 K. Takazawa

For each U1, U2 ∈ F and u ∈ U1�U2, there exists u′ ∈ U1�U2 such that
U1�{u, u′} ∈ F .

Theorem 2 ([28]). For a mixed graph G = (V,E,A), define FG ⊆ 2V by

FG = {∂F | F ⊆ E ∪ A is a matching forest in G}.

Then, the set system (V,FG) is a delta-matroid.

The most recent work on matching forests is due to Király and Yokoi [23],
which discusses equitable partition into matching forests. They considered equi-
tability based on the sizes of F , F ∩E, and F ∩A, and proved the following two
theorems. Let Z++ denote the set of the positive integers. For k ∈ Z++, let [k]
denote the set of positive integers not greater than k, i.e., [k] = {1, . . . , k}.

Theorem 3 (Király and Yokoi [23]). Let G = (V,E,A) be a mixed graph
and k ∈ Z++. If E ∪ A can be partitioned into k matching forests, then E ∪ A
can be partitioned into k matching forests F1, . . . , Fk such that

||Fi| − |Fj || ≤ 1, ||Mi| − |Mj || ≤ 2, and ||Bi| − |Bj || ≤ 2 (1)

for every i, j ∈ [k], where Mi = Fi ∩ E and Bi = Fi ∩ A for each i ∈ [k].

Theorem 4 (Király and Yokoi [23]). Let G = (V,E,A) be a mixed graph
and k ∈ Z++. If E ∪ A can be partitioned into k matching forests, then E ∪ A
can be partitioned into k matching forests F1, . . . , Fk such that

||Fi| − |Fj || ≤ 2, ||Mi| − |Mj || ≤ 1, and ||Bi| − |Bj || ≤ 2 (2)

for every i, j ∈ [k], where Mi = Fi ∩ E and Bi = Fi ∩ A for each i ∈ [k].

Moreover, Király and Yokoi [23] showed that both of Theorems 3 and 4 are
best possible with this tricriteria equitability, by presenting examples in which
(1) and (2) cannot be improved. That is, while attaining the best possible results,
Theorems 3 and 4 mean that these three criteria cannot be optimized at the same
time, which demonstrates a sort of obscurity of matching forests.

Now the first contribution of this paper is a new theorem on equitable par-
titions into matching forests. For this theorem, we introduce a new equitability,
which builds upon a single criterion defined by the size of the set ∂F of the cov-
ered vertices. Namely, our equitable-partition theorem is described as follows.

Theorem 5. Let G = (V,E,A) be a mixed graph and k ∈ Z++. If E ∪A can be
partitioned into k matching forests, then E∪A can be partitioned into k matching
forests F1, . . . , Fk such that

||∂Fi| − |∂Fj || ≤ 2 (3)

for every i, j ∈ [k].

We remark that this criterion of equitability is plausible in the light of the
delta-matroid structure of matching forests (Theorem 2). Theorem 5 contrasts
with Theorems 3 and 4 in that the value two in the right-hand side of (3) is tight:
consider the case where G = (V,E,A) consists of an odd number of undirected
edges forming a path and no directed edges, and k = 2.



Notes on Equitable Partitions into Matching Forests and b-branchings 217

1.2 b-branchings

We next address equitable partition of a digraph into b-branchings, introduced
by Kakimura, Kamiyama, and Takazawa [21]. Let D = (V,A) be a digraph and
let b ∈ Z

V
++. For X ⊆ V , we denote b(X) =

∑
v∈X b(v). For F ⊆ A and X ⊆ V ,

let F [X] denote the set of arcs in F induced by X. For F ⊆ A and v ∈ V , let
d−

F (v) denote the indegree of v in the subgraph (V, F ), i.e., the number of arcs
in F whose head is v. Now an arc set B ⊆ A is a b-branching if

d−
B(v) ≤ b(v) for each v ∈ V , and (4)

|B[X]| ≤ b(X) − 1 for each nonempty subset X ⊆ V. (5)

Note that the branchings is a special case of b-branchings where b(v) = 1 for every
v ∈ V . That is, b-branchings provide a generalization of branchings in which the
indegree bound of each vertex v ∈ V can be an arbitrary positive integer b(v)
(Condition (4)). Together with Condition (5), it yields a reasonable generalization
of branchings admitting extensions of several fundamental results on branchings,
such as a multi-phase greedy algorithm [2,5,12,16], a packing theorem [11], and
the integer decomposition property of the corresponding polytope [1].

The packing theorem on b-branchings leads to a necessary and sufficient
condition for the arc set A to be partitioned into k b-branchings [21]. In this
paper, we prove that equitable partition into k b-branchings is possible provided
that any partition into k b-branchings exists.

Theorem 6. Let D = (V,A) be a digraph, b ∈ Z
V
++, and k ∈ Z++. If A can

be partitioned into k b-branchings, then A can be partitioned into k b-branchings
B1, . . . , Bk satisfying the following:

1. for each i = 1, . . . , k, the size |Bi| is �|A|/k� or �|A|/k�; and
2. for each i = 1, . . . , k, the indegree d−

Bi
(v) of each vertex v ∈ V is �d−

A(v)/k�
or �d−

A(v)/k�.
When b(v) = 1 for every v ∈ V , Theorem 6 exactly coincides with Theorem

1. A new feature is that our definition of equitability of b-branchings is twofold:
the number of arcs in any two b-branchings differ at most one (Condition 1);
and the indegrees of each vertex with respect to any two b-branchings differ at
most one (Condition 2). Theorem 6 means that the optimality of these |V | + 1
criteria can be attained at the same time, which suggests some good structure
of b-branchings.

One consequence of Theorem 6 is the integer decomposition property of the
convex hull of b-branchings of fixed size. For a polytope P and a positive integer
κ, define κP = {x | ∃x′ ∈ P , x = κx′}. A polytope P has the integer decomposi-
tion property if, for every κ ∈ Z++ and every integer vector x ∈ κP , there exist
κ integer vectors x1, . . . , xκ such that x = x1 + · · · + xκ.



218 K. Takazawa

For branchings, Baum and Trotter [1] showed that the branching polytope
has the integer decomposition property. Moreover, McDiarmid [25] proved the
integer decomposition property of the convex hull of branchings of fixed size �.
For b-branchings, the integer decomposition property of the b-branching polytope
is proved in [21]:

Theorem 7 (Kakimura, Kamiyama and Takazawa [21]). Let D = (V,A)
be a digraph and b ∈ Z

V
++. Then, the b-branching polytope has the integer decom-

position property.

In this paper, we derive the integer decomposition property of the convex
hull of b-branchings of fixed size � from Theorems 6 and 7.

Theorem 8. Let D = (V,A) be a digraph, b ∈ Z
V
++, and � ∈ Z+. Then, the

convex hull of the incidence vectors of the b-branchings of size � has the integer
decomposition property.

1.3 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 is devoted to a
proof for Theorem 5 on equitable partition into machining forests. In Sect. 3,
we prove Theorem 6 on equitable partition into b-branchings, and then derive
Theorem 8 on the integer decomposition property of the related polytope.

2 Equitable Partition into Matching Forests

The aim of this section is to prove Theorem 5. In fact, Theorem 5 is derived by
extending the argument in the proof for the exchangeability of matching forests
by Schrijver [26, Theorem 2]. For the sake of completeness, however, below we
describe a full proof. We remark that Schrijver used this property to prove the
total dual integrality of the linear system describing the matching forest polytope
presented by Giles [18]. The delta-matroid structure of matching forests [28] is
also derived from an in-depth analysis of the proof for the exchangeability.

Let G = (V,E,A) be a mixed graph. For a branching B ⊆ A, let R(B) =
V \ ∂B, which represents the set of root vertices of B. Similarly, for a matching
M ⊆ E, define R(M) = V \ ∂M . Note that, for a matching M and a branching
B, their union M ∪ B is a matching forest if and only if R(M) ∪ R(B) = V .

A source component X in a digraph D = (V,A) is a strong component in D
such that no arc in A enters X. In what follows, a source component is often
denoted by its vertex set. Observe that, for a vertex subset V ′ ⊆ V , there exists
a branching B satisfying R(B) = V ′ if and only if |V ′ ∩ X| ≥ 1 for every
source component X in D. This fact is extended to the following lemma on
the partition of the arc set into to two branchings, which can be derived from
Edmonds’ disjoint branchings theorem [11].



Notes on Equitable Partitions into Matching Forests and b-branchings 219

Lemma 1 (Schrijver [26]). Let D = (V,A) be a digraph, and B1 and B2

are branchings in D partitioning A. Then, for two vertex sets R′
1, R

′
2 ⊆ V such

that R′
1 ∪ R′

2 = R(B1) ∪ R(B2) and R′
1 ∩ R′

2 = R(B1) ∩ R(B2), the arc set A
can be partitioned into two branchings B′

1 and B′
2 such that R(B′

1) = R′
1 and

R(B′
2) = R′

2 if and only if

|R′
1 ∩ X| ≥ 1 and |R′

2 ∩ X| ≥ 1 for each source component X in D.

We remark that Schrijver [27] derived Theorem 1 from Lemma 1. Here we
prove that Lemma 1 further leads to Theorem 5.

Proof (Proof of Theorem 5). The case k = 1 is trivial, and thus let k ≥ 2. Let
F1, . . . , Fk be matching forests minimizing

∑

1≤i<j≤k

||∂Fi| − |∂Fj || (6)

among those partitioning E∪A. We prove that every pair of Fi and Fj (i, j ∈ [k])
attains (3).

Suppose to the contrary that (3) does not hold for some i, j ∈ [k]. Without
loss of generality, assume

|∂F1| − |∂F2| ≥ 3. (7)

Let A′ = B1 ∪ B2. Denote the family of source components in (V,A′) by X ′. If
a vertex v ∈ V belongs to R(B1) ∩ R(B2), then v has no incoming arc in A′,
and hence v itself forms a source component in (V,A′). Thus, for X ∈ X ′ with
|X| ≥ 2, it follows that X ∩ R(B1) and X ∩ R(B2) are not empty and disjoint
with each other. Denote the family of such X ∈ X ′ by X ′′, i.e., X ′′ = {X ∈ X ′ |
|X| ≥ 2}. For each X ∈ X ′′, take a pair eX of vertices of which one vertex is in
R(B1) and the other in R(B2). Denote N = {eX | X ∈ X ′′}. Note that N is a
matching.

Consider an undirected graph H = (V,M1 ∪ M2 ∪ N). Observe that each
vertex v ∈ V has degree at most two: if a vertex v ∈ V is covered by both
M1 and M2, then it follows that v ∈ R(B1) ∩ R(B2), implying that v is not
covered by N . Thus, H consists of a disjoint collection of paths, some of which
are possibly isolated vertices, and cycles.

Proposition 1. For a vertex v in H with degree exactly two, it holds that v ∈
∂F1 ∩ ∂F2.

Proof (Proof of Proposition 1). It is clear if v ∈ ∂M1 ∩ ∂M2, and suppose not.
Without loss of generality, assume v ∈ ∂M1 ∩ ∂N . It then follows from v ∈ ∂M1

that v ∈ R(B1). Since v ∈ ∂N , this implies that v �∈ R(B2). We thus conclude
v ∈ ∂B2 ⊆ ∂F2. ��

By Proposition 1, each vertex u ∈ ∂F1�∂F2 is an endpoint of a path in H.
It then follows from (7) that there must exist a path P such that



220 K. Takazawa

– one endpoint u of P belongs to ∂F1 \ ∂F2, and
– the other endpoint u′ of P belongs to ∂F1.

We remark that u′ may or may not belong to ∂F2. It may also be the case that
u′ is null, i.e., u is an isolated vertex which by itself forms P .

Denote the set of vertices in P by V (P ), and the set of edges in P belonging
to M1 ∪ M2 by E(P ). Define M ′

1 = M1�E(P ) and M ′
2 = M2�E(P ). It is not

difficult to see that M ′
1 and M ′

2 are matchings satisfying

R(M ′
1) = (R(M1) \ V (P )) ∪ (R(M2) ∩ V (P )),

R(M ′
2) = (R(M2) \ V (P )) ∪ (R(M1) ∩ V (P )).

Also define

R′
1 = (R(B1) \ V (P )) ∪ (R(B2) ∩ V (P )),

R′
2 = (R(B2) \ V (P )) ∪ (R(B1) ∩ V (P )).

It then follows that R′
1 ∪ R′

2 = R(B1) ∪ R(B2) and R′
1 ∩ R′

2 = R(B1) ∩ R(B2).
It also follows from the construction of H that R′

i ∩ X �= ∅ for every X ∈ X ′

and for i = 1, 2. Thus, by Lemma 1, the arc set A′ can be partitioned into two
branchings B′

1 and B′
2 such that R(B′

1) = R′
1 and R(B′

2) = R′
2. Then it holds

that

R(M ′
1) ∪ R(B′

1) = R(M ′
1) ∪ R′

1

= ((R(M1) ∪ R(B1)) \ V (P )) ∪ ((R(M2) ∪ R(B2)) ∩ V (P ))
= (V \ V (P )) ∪ (V ∩ V (P ))
= V,

and hence F ′
1 := M ′

1 ∪ B′
1 is a matching forest in G. This is also the case with

F ′
2 := M ′

2 ∪ B′
2.

Now we have two disjoint matching forests F ′
1 and F ′

2 such that F ′
1 ∪ F ′

2 =
F1 ∪ F2. Moreover, by the definition of P , we have that

||∂F ′
1| − |∂F ′

2|| = ||∂F1| − |∂F2|| − 2 or ||∂F ′
1| − |∂F ′

2|| = ||∂F1| − |∂F2|| − 4,

and in particular, by (7),

||∂F ′
1| − |∂F ′

2|| < ||∂F1| − |∂F2||.
It also follows that

∑

i∈[k]\{1,2}
(||∂F ′

1| − |∂Fi|| + ||∂F ′
2| − |∂Fi||)

≤
∑

i∈[k]\{1,2}
(||∂F1| − |∂Fi|| + ||∂F2| − |∂Fi||) .

This contradicts the fact that F1, . . . , Fk minimize (6), and thus completes the
proof of the theorem. ��



Notes on Equitable Partitions into Matching Forests and b-branchings 221

We remark that, if an arbitrary partition of E ∪ A into k matching forests is
given, a partition of E ∪ A into k matching forests satisfying (3) can be found
in polynomial time. This can be done by repeatedly applying the update of two
matching forests described in the above proof. The time complexity follows from
the fact that each update can be done in polynomial time and decreases the
value (6) by at least two.

3 Equitable Partition into b-branchings

In this section we first prove Theorem 6, and then derive Theorems 8. In proving
Theorem 6, we make use of the following lemma, which is an extension of Lemma
1 to b-branchings.

Lemma 2 ([29]). Let D = (V,A) be a digraph and b ∈ Z
V
++. Suppose that

A can be partitioned into two b-branchings B1, B2 ⊆ A. Then, for two vectors
b′
1, b

′
2 ∈ Z

V
++ satisfying b′

1 ≤ b, b′
2 ≤ b, and b′

1 + b′
2 = d−

A, the arc set A can be
partitioned into two b-branchings B′

1 and B′
2 such that d−

B′
1

= b′
1 and d−

B′
2

= b′
2 if

and only if

b′
1(X) < b(X) and b′

2(X) < b(X) for each source component X in D.

We now prove Theorem 6.

Proof (Proof of Theorem 6). The case k = 1 is trivial, and thus let k ≥ 2. Let
B1, . . . , Bk be k b-branchings minimizing

∑

i∈[k]

(

min
{∣

∣
∣
∣|Bi| −

⌊ |A|
k

⌋∣
∣
∣
∣ ,

∣
∣
∣
∣|Bi| −

⌈ |A|
k

⌉∣
∣
∣
∣

}

(8)

+
∑

v∈V

min
{∣

∣
∣
∣|d−

Bi
(v)| −

⌊
d−

A(v)
k

⌋∣
∣
∣
∣ ,

∣
∣
∣
∣|d−

Bi
(v)| −

⌈
d−

A(v)
k

⌉∣
∣
∣
∣

})

among those partitioning A.
Suppose to the contrary that Condition 1 or 2 does not hold for some i ∈ [k].

Then, it is straightforward to see that there exists j ∈ [k] such that

min {|Bi|, |Bj |} <
|A|
k

< max {|Bi|, |Bj |} , ||Bi| − |Bj || ≥ 2, (9)

or there exist j ∈ [k] and v ∈ V such that

min
{

d−
Bi

(v), d−
Bj

(v)
}

<
d−

A(v)
k

< max
{

d−
Bi

(v), d−
Bj

(v)
}

,
∣
∣
∣d−

Bi
(v) − d−

Bj
(v)

∣
∣
∣ ≥ 2.

(10)



222 K. Takazawa

Without loss of generality, let i = 1 and j = 2, and denote b1 = d−
B1

and
b2 = d−

B2
. Let D′ = (V,B1 ∪ B2). Since B1 and B2 are b-branchings, it directly

follows the definition of b-branchings that

b1(v) ≤ b(v) for each v ∈ V, (11)
b2(v) ≤ b(v) for each v ∈ V, (12)

b1(X) ≤ b(X) − 1 for each source component X in D′, (13)
b2(X) ≤ b(X) − 1 for each source component X in D′. (14)

Let X be the set of source components X in D′ such that b1(X) + b2(X) is
even, and let Y be the set of source components Y in D′ such that b1(Y )+b2(Y )
is odd. Then, define b′

1, b
′
2 ∈ Z

V
+ satisfying b′

1 + b′
2 = b1 + b2 in the following

manner.

– For all X ∈ X , take b′
1(v), b′

2(v) ∈ Z+ for all v ∈ X so that

b′
1(v) = b′

2(v) =
b1(v) + b2(v)

2
if b1(v) + b2(v) is even;

|b′
1(v) − b′

2(v)| = 1 if b1(v) + b2(v) is odd; and
b′
1(X) = b′

2(X).

– For all Y ∈ Y, take b′
1(v), b′

2(v) ∈ Z+ for all v ∈ Y so that

b′
1(v) = b′

2(v) =
b1(v) + b2(v)

2
if b1(v) + b2(v) is even;

|b′
1(v) − b′

2(v)| = 1 if b1(v) + b2(v) is odd;
|b′

1(Y ) − b′
2(Y )| = 1 for every Y ∈ Y; and

∣
∣
∣
∣
∣

∑

Y ∈Y
b′
1(Y ) −

∑

Y ∈Y
b′
2(Y )

∣
∣
∣
∣
∣
≤ 1.

– For v ∈ V \ (
⋃

X∈X∪Y X), take b′
1(v), b′

2(v) ∈ Z+ so that

|b′
1(v) − b′

2(v)| ≤ 1 for every v ∈ V \
⋃

X∈X∪Y
X; and

|b′
1(V ) − b′

2(V )| ≤ 1.

Now it directly follows from (11)–(14) that b′
1 ≤ b, b′

2 ≤ b, and

b′
1(X) ≤ b(X) − 1, b′

2(X) ≤ b(X) − 1 (X ∈ X ∪ Y).

It then follows from Lemma 2 that there exist b-branchings B′
1 and B′

2 such that
B′

1 ∪ B′
2 = B1 ∪ B2, d′

B1
= b′

1, and d′
B2

= b′
2. For these two b-branchings B′

1 and
B′

2, we have that

||B′
1| − |B′

2|| ≤ 1 and
∣
∣
∣d−

B′
1
(v) − d−

B′
2
(v)

∣
∣
∣ ≤ 1 for every v ∈ V. (15)

Therefore, we can strictly decreases the value (8) by replacing B1 and B2, which
satisfy (9) or (10), with B′

1 and B′
2, which satisfy (15). This contradicts the fact

that B1 . . . , Bk minimize (8). ��



Notes on Equitable Partitions into Matching Forests and b-branchings 223

We remark that a partition of A into k b-branchings satisfying Conditions 1
and 2 in Theorem 6 can be found in polynomial time. First, we can check if there
exists a partition of A into k b-branchings and find one if exists in polynomial
time [21]. If this partition does not satisfy Conditions 1 and 2, then we repeatedly
apply the update of two b-branchings as shown in the above proof, which can be
done in polynomial time and strictly decreases the value (8).

We conclude this paper by deriving Theorems 8 from Theorem 6.

Proof (Proof of Theorem 8). Denote the convex hull of the b-branchings in D
by P , and that of the b-branchings in D of size � by Q. Take a positive integer
κ ∈ Z++, and let x be an integer vector in κQ. Note that x(A) = κ · �.

Let D′ = (V,A′) be a digraph obtained from D by replacing each arc a ∈ A
by xa parallel arcs. Then, since x ∈ κQ ⊆ κP , it follows from the integer
decomposition property of the b-branching polytope (Theorem 7) that x is the
sum of the incidence vectors of κ b-branchings, i.e., A′ can be partitioned into
κ b-branchings. Here we have that |A′| = |x(A)| = κ · �, and thus it follows
from Theorem 6 that A′ can be partitioned into κ b-branchings B1, . . . , Bκ such
that |Bi| = � for each i ∈ [κ]. Therefore, x can be represented as the sum of
the incidence vectors of κ b-branchings of size �, i.e., integer vectors in Q, which
completes the proof. ��

Acknowledgements. This work is partially supported by JSPS KAKENHI Grant
Numbers JP16K16012, JP20K11699, Japan.

References

1. Baum, S., Trotter Jr., L.E.: Integer rounding for polymatroid and branching opti-
mization problems. SIAM J. Algebraic Discrete Methods 2, 416–425 (1981)

2. Bock, F.: An algorithm to construct a minimum directed spanning tree in a directed
network. In: Developments in Operations Research, pp. 29–44. Gordon and Breach
(1971)

3. Bouchet, A.: Greedy algorithm and symmetric matroids. Math. Program. 38, 147–
159 (1987)

4. Chandrasekaran, R., Kabadi, S.N.: Pseudomatroids. Discrete Math. 71, 205–217
(1988)

5. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Sci. Sinica
14, 1396–1400 (1965)

6. Davies, J., McDiarmid, C.: Disjoint common transversals and exchange structures.
J. London Math. Soc. 14, 55–62 (1976)

7. de Werra, D.: On some combinatorial problems arising in scheduling. Can. Oper.
Res. J. 8, 165–175 (1970)

8. de Werra, D.: Decomposition of bipartite multigraphs into matchings. Zeitschrift
für Oper. Res. 16, 85–90 (1972)

9. Dress, A.W.M., Havel, T.: Some combinatorial properties of discriminants in metric
vector spaces. Adv. Math. 62, 285–312 (1986)

10. Dulmage, A.L., Mendelsohn, N.S.: Some graphical properties of matrices with non-
negative entries. Aequationes Math. 2, 150–162 (1969)



224 K. Takazawa

11. Edmonds, J.: Edge-disjoint branchings. In: Rustin, R. (ed.) Combinatorial Algo-
rithms, pp. 91–96. Algorithmics Press (1973)

12. Edmonds, J.: Optimum branchings. J. Res. Natl. Bureau Stand. Sect. B 71, 233–
240 (1967)

13. Erdős, P.: Problem 9. In: Fiedler, M. (ed.) Theory of Graphs and its Applications,
p. 159. Czech Academy of Sciences (1964)

14. Folkman, J., Fulkerson, D.R.: Edge colorings in bipartite graphs. In: Bose, R.C.,
Dowling, T.A. (eds.) Combinatorial Mathematics and Its Applications (Proceed-
ings Conference Chapel Hill, North Carolina, 1967), pp. 561–577. The University
of North Carolina Press, Chapel Hill (1969)

15. Fujishige, S., Takazawa, K., Yokoi, Y.: A note on a nearly uniform partition into
common independent sets of two matroids. J. Oper. Res. Soc. Japan (to appear)

16. Fulkerson, D.R.: Packing rooted directed cuts in a weighted directed graph. Math.
Program. 6(1), 1–13 (1974)

17. Giles, R.: Optimum matching forests I: special weights. Math. Program. 22, 1–11
(1982)

18. Giles, R.: Optimum matching forests II: general weights. Math. Program. 22, 12–38
(1982)

19. Giles, R.: Optimum matching forests III: facets of matching forest polyhedra. Math.
Program. 22, 39–51 (1982)

20. Hajnal, A., Szemerédi, E.: Proof of a conjecture of P. Erdős. In: Erdős, P., Rényi,
A., Sós, V. (eds.) Combinatorial Theory and its Applications, II (Proceedings Col-
loquium on Combinatorial Theory and its Applications, Balatonfüred, Hungary,
1969), North-Holland, Amsterdam, pp. 601–623 (1970)

21. Kakimura, N., Kamiyama, N., Takazawa, K.: The b-branching problem in digraphs.
Discrete Appl. Math. (to appear)

22. Keijsper, J.: A Vizing-type theorem for matching forests. Discrete Math. 260,
211–216 (2003)

23. Király, T., Yokoi, Y.: Equitable partitions into matchings and coverings in mixed
graphs. CoRR abs/1811.07856 (2018)

24. McDiarmid, C.J.H.: The solution of a timetabling problem. J. Inst. Math. Appl.
9, 23–34 (1972)

25. McDiarmid, C.: Integral decomposition in polyhedra. Math. Program. 25(2), 183–
198 (1983)

26. Schrijver, A.: Total dual integrality of matching forest constraints. Combinatorica
20, 575–588 (2000)

27. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

28. Takazawa, K.: Optimal matching forests and valuated delta-matroids. SIAM J.
Discrete Math. 28, 445–467 (2014)

29. Takazawa, K.: The b-bibranching problem: TDI system, packing, and discrete con-
vexity. CoRR abs/1802.03235 (2018)



Network Design



Quasi-Separable Dantzig-Wolfe
Reformulations for Network Design

Antonio Frangioni1(B), Bernard Gendron2,3, and Enrico Gorgone4

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
frangio@di.unipi.it

2 Department of Computer Science and Operations Research,
Université de Montréal, Montréal, Canada

3 Interuniversity Research Centre on Enterprise Networks,
Logistics and Transportation, CIRRELT, Montréal, Canada

bernard.gendron@cirrelt.ca
4 Dipartimento di Matematica ed Informatica, Università di Cagliari, Cagliari, Italy

egorgone@unica.it

Abstract. Under mild assumptions that are satisfied for many network
design models, we show that the Lagrangian dual obtained by relaxing
the flow constraints is what we call “quasi-separable”. This property
implies that the Dantzig-Wolfe (DW) reformulation of the Lagrangian
dual exhibits two sets of convex combination constraints, one in terms of
the design variables and the other in terms of the flow variables, the lat-
ter being linked to the design variables. We compare the quasi-separable
DW reformulation to the standard disaggregated DW reformulation. We
illustrate the concepts on a particular case, the budget-constrained mul-
ticommodity capacitated unsplittable network design problem.

Keywords: Lagrangian relaxation · Dantzig-Wolfe reformulations ·
Network design

1 Introduction

We consider a large class of network design models that can be represented by
the following generic mixed-integer linear program (MILP), denoted (ND) [1]:

v(ND) = min cx + fy (1)
Ax = b (2)
Dx + Ey ≥ g (3)

Hy ≥ p (4)
x ∈ X ⊂ R

n
+ (5)

y ∈ Y ⊂ Z
m
+ (6)

where v(M) denotes the optimal value of any model (M) and the rational vectors
b, c, f , g, p and rational matrices A, D, E, H have appropriate dimensions. The
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 227–236, 2020.
https://doi.org/10.1007/978-3-030-53262-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_19


228 A. Frangioni et al.

sets X and Y are the domains of the flow variables x and the design variables y,
respectively. We assume the two sets are bounded and defined by three types of
constraints: integer-valued bounds on individual variables; simplex constraints
on subsets of the variables, which may be included in the definition of Y, but
not in that of X ; integrality constraints, which are included in the definition of
Y, but not necessarily in that of X . When integrality constraints are relaxed, we
denote the corresponding domains of variables X and Y.

We call (2) the flow constraints, (3) the linking constraints and (4) the design
constraints. To analyse these constraints, we introduce the corresponding sets
QF = { (x, y) ∈ X × Y |Ax = b }, QL = { (x, y) ∈ X × Y |Dx + Ey ≥ g },
and QD = { (x, y) ∈ X × Y |Hy ≥ p }. The associated linear programming (LP)
relaxation polyhedra, obtained by substituting X with X and Y with Y, will
be denoted respectively with PF , PL, and PD. Note that sets QF and QD (PF

and PD) are defined on all the space, but in fact only concern a subset of the
variables; we will therefore denote by Qx

F ⊂ R
n
+ and Qy

D ⊂ Z
m
+ (and similarly

for the continuous relaxation) their projection on the set of relevant variables.
Many solution methods for network design models that can be cast as special

cases of (ND) rely on Lagrangian relaxation strategies. These consist in relaxing,
in a Lagrangian way, either the linking constraints (3) [2,3] or the flow constraints
(2) [2,4–7]. These strategies give rise to two Lagrangian dual programs: the
linking relaxation dual, noted (LDL), and the flow relaxation dual, noted (LDF ),
respectively.

In (LDL), relaxing the linking constraints (3) yields a Lagrangian relax-
ation that can be decomposed into two independent subproblems: one in the
x variables, and one in the y ones. Hence, the bound strength of (LDL) can
be estimated using the primal interpretation of Lagrangian duality: the general
result of [8] reads

v(LDL) = min{ cx + fy | (x, y) ∈ PL ∩ conv(QF ∩ QD) }
= min{ cx + fy | (x, y) ∈ PL ∩ conv(QF ) ∩ conv(QD) }
= min{ cx + fy | (x, y) ∈ PL , x ∈ conv(Qx

F ) , y ∈ conv(Qy
D) },

where conv(C) denotes the convex hull of the set C. Since the Lagrangian relax-
ation is separable in two independent problems, we can write down its Dantzig-
Wolfe (DW) reformulation using two sets of convex combination constraints.
That is, being {xs }s∈S and { yt }t∈T the sets of extreme points of conv(Qx

F )
and conv(Qy

D), respectively, one has the following explicit form

v(LDL) = min cx + fy (1)
Dx + Ey ≥ g (3)
x =

∑
s∈S λsxs,

∑
s∈S λs = 1, λ ≥ 0 (7)

y =
∑

t∈T γtyt,
∑

t∈T γt = 1, γ ≥ 0 (8)

The second strategy, that of relaxing the flow constraints (2), does not yield
a separable Lagrangian relaxation. That is, for the corresponding Lagrangian
dual (LDF ) one has



Quasi-Separable Dantzig-Wolfe for Network Design 229

v(LDF ) = min{ cx + fy | (x, y) ∈ PF ∩ conv(QL ∩ QD) }
and the relevant set is {(xr, yr)}r∈R, containing the extreme points of conv(QL∩
QD), which yields the DW reformulation

v(LDF ) = min cx + fy (1)
Ax = b (2)
(x, y) =

∑
r∈R θr(xr, yr),

∑
r∈R θr = 1, θ ≥ 0 (9)

In Sect. 2, we show that, under mild assumptions that are satisfied for many
network design models, (LDF ) can be reformulated in an “almost” separable
form, which we call quasi-separable. Then, in Sect. 3 we compare the quasi-
separable DW reformulation to a disaggregated DW reformulation, which we
define. Finally, in Sect. 4 we illustrate our results on a special case of (ND),
the budget-constrained multicommodity capacitated unsplittable network design
problem (BMCUND).

2 Quasi-Separable Lagrangian Dual

To derive the quasi-separable DW reformulation of (LDF ), we recall recently
published results [1] concerning the Lagrangian subproblem associated with the
relaxation of the flow constraints. If we denote by π the (unrestricted) Lagrange
multipliers associated with the flow constraints (2), and with c = c − π, the
Lagrangian relaxation can be written as

v(LRc
F ) = min

{
cx + fy | (x, y) ∈ X × Y , Dx + Ey ≥ g , Hy ≥ p

}
.

Using a Benders’ decomposition strategy, we consider y as “complicating” vari-
ables and define the Benders subproblem

v(BSc(y)) = min{ cx |x ∈ QL(y) }

where QL(y) = {x ∈ X |Dx ≥ g − Ey }; hence, the Lagrangian relaxation can
be rewritten as

v(LRc
F ) = min

{
fy + v(BSc(y)) | y ∈ Qy

D

}
.

The following assumption holds for many network design models where y are
binary variables.

Assumption QS. [1] v(BSc(y)) can be written as a linear function of y ∈ Y:
for any cost vector c, there exists a cost vector wc such that v(BSc(y)) = wcy.

The following proposition, due to [1], shows that Assumption QS allows to
decompose the Lagrangian relaxation by optimizing first over x ∈ QL(y), then
over y ∈ Qy

D, giving rise to a quasi-separable Lagrangian dual.



230 A. Frangioni et al.

Proposition 1 [1]. Under Assumption QS, it holds

conv(QL ∩ QD) = conv(QL) ∩ conv(QD).

Proof. We prove that, however chosen cost vectors c and f̄ , minimizing them
over the two sets yields the same result. In fact

min
(x,y)∈conv(QL∩QD)

cx + f̄y = min
(x,y)∈QL∩QD

cx + f̄y = min
y∈Qy

D

f̄y + v(BSc(y))

= min
y∈Qy

D

(f̄ + wc)y = min
y∈conv(Qy

D)
(f̄ + wc)y

= min
y∈conv(Qy

D)

(
f̄y + min

x∈QL(y)
cx

)

= min
y∈conv(Qy

D)

(
f̄y + min

x∈conv(QL(y))
cx

)

= min
y∈conv(Qy

D)

(
min

(x,y)∈conv(QL)
cx + f̄y

)

= min
(x,y)∈conv(QL)∩conv(QD)

cx + f̄y.

Corollary 1. Under Assumption QS, it holds

v(LDF ) = min
y∈conv(Qy

D)

(
fy + min

x∈Px
F ∩conv(QL(y))

cx
)
.

The next proposition gives sufficient conditions for a model of the form (ND)
to satisfy Assumption QS.

Proposition 2. Consider any model (ND) such that, for some set J , both Y
and X decompose over J , i.e., Y = ×j∈J Yj and X = ×j∈J X j. Thus, x =
[xj ]j∈J and y = [ yj ]j∈J . Let I(j) be the set of indices of the variables in yj,
i.e., yj = [ yi ]i∈I(j), and I = ∪j∈JI(i). If

1. Yj = { yj ∈ { 0 , 1 }|I(j)| | ∑
i∈I(j) yi ≤ 1 };

2. QL(y) decomposes over J : QL(y) = ×j∈J{xj ∈ X j |Djxj ≤ Ejyj } for
rational matrices Dj ≥ 0 and Ej ≥ 0 of appropriate dimensions;

then model (ND) satisfies Assumption QS.

Proof. Under the assumptions, we can write the Benders subproblem as

v(BSc(y)) =
∑

j∈J min
{

cjx
j |xj ∈ X j , Djxj ≤ Ejyj

}
.

For each j ∈ J , if yj = 0 then the unique solution is xj = 0. Otherwise, let
i ∈ I(j) be unique index of the nonzero variable in yj : then, xj can be obtained
by solving

wc
i = min

{
cjx

j |xj ∈ X j , Djxj ≤ ei
}

where ei is the column of Ej corresponding to yi. Note that this problem is
feasible, as xj = 0 is a solution, and bounded, since X j is bounded. Thus,
v(BSc(y)) =

∑
i∈I wc

i yi, and Assumption QS is satisfied. �	



Quasi-Separable Dantzig-Wolfe for Network Design 231

Using the same notation as in the proof of Proposition 2, we define for each
i ∈ I

Qx
L(i) =

{
xj ∈ X j |Djxj ≤ ei

}

where j is the unique index such that i ∈ I(j) (this should be denoted by “j(i)”,
but we will avoid it whenever i is clear from the context, as we will use yj

i for yi
only if necessary). We then denote as {xj,s }s∈S(i) the set of extreme points of
conv(Qx

L(i)).

Proposition 3. Under the assumptions of Proposition 2, we have

conv(QL(y)) =×
j∈J

⎧
⎨

⎩
xj ∈ X j

∣
∣
∣
∣
∣
∣

xj =
∑

i∈I(j)

∑
s∈S(i) ωsxj,s

yi =
∑

s∈S(i) ωs i ∈ I(j)
ωs ≥ 0 i ∈ I(j) , s ∈ S(i)

⎫
⎬

⎭

Proof. Due to the assumptions we have

conv(QL(y)) = ×j∈J

{ { 0 } ∪ ⋃
i∈I(j) conv(Qx

L(i))
}

.

Clearly, we only need to discuss each j ∈ J (with the corresponding yj and xj)
separately. Consider any

xj =
∑

i∈I(j)

∑
s∈S(i) ωsxj,s .

If yj = 0, then xj = 0. Otherwise, let i be the unique index in I(j) such that
yi = 1. Clearly, yh = 0 for h ∈ I(j)\{i}; therefore, ωs = 0 for all s ∈ S(h).
Consequently ∑

s∈S(i) ωsxj,s = xj ∈ conv(Qx
L(i))

which implies the result. �	
With the same notation as in Sect. 1, we can now write the quasi-separable

DW reformulation of the flow relaxation dual:

v(LDF ) = min cx + fy (1)
Ax = b (2)
y =

∑
t∈T γtyt,

∑
t∈T γt = 1, γ ≥ 0 (8)

xj =
∑

i∈I(j)

∑
s∈S(i) ωsxj,s j ∈ J (10)

yi =
∑

s∈S(i) ωs i ∈ I (11)

ωs ≥ 0 i ∈ I , s ∈ S(i) (12)

This DW reformulation corresponds to the expression of (LDF ) given by Corol-
lary 1. Indeed, constraints (8) correspond to y ∈ conv(Qy

D), constraints (2) cor-
respond to x ∈ Px

F , and, by Proposition 3, constraints (10)–(12) correspond to
x ∈ conv(Qx

L(y)). The quasi-separable DW reformulation relies on the fact that
the Benders subproblem derived from the Lagrangian subproblem decomposes
by j ∈ J . As such, it bears close resemblance to a disaggregated DW refor-
mulation that could be derived from the Lagrangian relaxation of constraints
(2) and (4). Next, we compare these two reformulations, showing that they are
essentially the same when PD is an integral polyhedron.



232 A. Frangioni et al.

3 Comparison with Disaggregated DW Reformulation

The disaggregated DW reformulation is obtained by relaxing in a Lagrangian
way both the flow constraints (2) and the design constraints (4). The result-
ing Lagrangian subproblem decomposes by j ∈ J , i.e., its feasible domain is
×j∈J QL(j), where

QL(j) =
{

(xj , yj) ∈ X j × Yj |Djxj ≤ Ejyj
}
.

The disaggregated DW reformulation of the corresponding Lagrangian dual,
called the flow-design relaxation dual and denoted (LDFD), can then be writ-
ten as follows, where { (xj,r , yj,r ) }r∈Rj are the extreme points of conv(QL(j))
excluding ( 0 , 0 ):

v(LDFD) = min cx + fy (1)
Ax = b (2)
Hy ≥ p (4)
xj =

∑
r∈Rj θj,rxj,r j ∈ J (13)

yj =
∑

r∈Rj θj,ryj,r j ∈ J (14)
∑

r∈Rj θj,r ≤ 1, θj ≥ 0 j ∈ J (15)

Note that, for any j ∈ J , there is a one-to-one correspondence between the
extreme points { (xj,r , yj,r ) }r∈Rj of conv(QL(j)) \ { ( 0 , 0 ) } and the extreme
points {xj,s }s∈S(i) of conv(Qx

L(i)) for some i ∈ I(j). Indeed, for each s ∈
∪i∈I(j)S(i), there exists a unique r ∈ Rj such that xj,r = xj,s and yi = 1.
We denote as r = r(s) this unique index.

In general, we have v(LDF ) ≥ v(LDFD) and the inequality can be strict
if conv(QD) ⊂ PD. However, if PD is an integral polyhedron, then v(LDF ) =
v(LDFD). In fact, the next proposition show that when conv(QD) = PD the
quasi-separable and disaggregated DW reformulations are essentially identical.

Proposition 4. If PD is an integral polyhedron, then there is a one-to-one cor-
respondence between the solutions of the quasi-separable and disaggregated DW
reformulations, given by

θj,ryj,r
i = ωs for j ∈ J , i ∈ I(j) , s ∈ S(i) , r = r(s) . (16)

Proof. The objective functions and the flow constraints are the same in the two
models. In addition, since PD is an integral polyhedron, (8) are equivalent to
(4). Because of (16), nonnegativity constraints (12) and (15) are equivalent. For
any j ∈ J , the identity

∑
i∈I(j) yj,r

i = 1 is true for all r ∈ Rj , hence:

1. (10) and (13) are identical, since

xj =
∑

r∈Rj θj,rxj,r =
∑

i∈I(j)

∑
r∈Rj θj,ryj,r

i xj,r =
∑

i∈I(j)

∑
s∈S(i)

ωsxj,s .

2. (11) and (14) are identical, since yi =
∑

r∈Rj θj,ryj,r
i =

∑
s∈S(i) ωs.



Quasi-Separable Dantzig-Wolfe for Network Design 233

3. (15) is implied by (11) and the definition of Y:
∑

r∈Rj θj,r =
∑

i∈I(j)

∑
r∈Rj θj,ryj,r

i =
∑

i∈I(j)

∑
s∈S(i) ωs =

∑
i∈I(j) yi ≤ 1 .

This concludes the proof. �	
This proposition implies that the quasi-separable DW reformulation really

brings something more than the disaggregated DW reformulation only for prob-
lems where PD is not an integral polyhedron. In the next section we present
such a problem.

4 Illustration with the BMCUND

The Budget-Constrained Multicommodity Capacitated Unsplittable Network
Design problem (BMCUND) is defined on a directed graph G = (N, J), where
N is the set of nodes and J is the set of arcs. For each node n ∈ N we define the
sets of outgoing and incoming arcs, J+

n and J−
n , respectively. Each commodity

k ∈ K corresponds to an origin–destination pair such that dk units of flow must
travel between the origin O(k) and the destination D(k) using a single path; this
is why the problem is termed unsplittable, to distinguish it from the splittable
variant where the flow of each commodity can be split among several paths.
There is a limited budget M on the global investment costs to select the arcs
to be used, where using arc j ∈ J incurs a fixed cost f j ≥ 0 and provides a
capacity uj > 0. The objective function to be minimized are the routing costs
cjk ≥ 0 for each unit of commodity k ∈ K through arc j ∈ J . We introduce two
sets of variables to model the problem: xj

k is 1 if the demand dk of commodity
k flows on arc j, and 0, otherwise; yj is 1, if arc j is used, and 0, otherwise. The
model is then written as follows:

v(BND) = min
∑

j∈J

∑
k∈K dkc

j
kx

j
k (17)

∑
j∈J+

n
xj
k − ∑

j∈J−
n

xj
k = bnk n ∈ N, k ∈ K (18)

∑
k∈K dkx

j
k ≤ ujyj j ∈ J (19)

xj
k ≤ yj j ∈ J, k ∈ K (20)

∑
j∈J f jyj ≤ M (21)

xj
k ∈ { 0 , 1 } j ∈ J, k ∈ K (22)

yj ∈ { 0 , 1 } j ∈ J (23)

where bnk is the supply of node n for commodity k, i.e., 1 for n = O(k), −1 for
n = D(k), and 0 otherwise. This model is a special case of (ND) for which the
sets are defined as X = {x = [xj

k ]j∈J,k∈K | (22)}, Y = {y = [ yj ]j∈J | (23)},
Qx

F = {x ∈ X | (18)}, QL = {(x, y) ∈ X × Y | (19) , (20)}, Qy
D = {y ∈ Y | (21)},

and I = J . Relaxing the flow constraints in a Lagrangian way yields

min
{ ∑

j∈J

∑
k∈K cjkx

j
k | (x, y) ∈ QL ∩ QD

}
,



234 A. Frangioni et al.

where cjk = dkc
j
k + π

t(j)
k − π

h(j)
k , πn

k are the Lagrange multipliers, and h(j) and
t(j) are the head and the tail of arc j, respectively. The Benders subproblem
(BSc(y)) decomposes by arcs: for each j ∈ J , if yj = 0, we obtain the trivial
solution where all variables take value 0. If yj = 1 instead, a 0–1 knapsack
subproblem must be solved. Let x̃j be the solution, with optimal value wc

j : if
wc

j < 0, then (x̃j , 1) is the optimal solution, otherwise the all-0 solution is
optimal. This shows that

v(BSc(y)) = min{ cx |x ∈ Qx
L(y) } =

∑
j∈J wc

jy
j = wcy ,

i.e., Assumption QS is satisfied. Note that the assumption is also verified for
the splittable version of the problem, which is analogous save that a continuous
(rather than a 0–1) knapsack problem must be solved to compute wc

j .
Before presenting the DW reformulations of (LDF ), we note that the flow

relaxation dual dominates both the linking relaxation dual (LDL) and the flow-
design relaxation dual (LDFD). Indeed, PF is an integral polyhedron, which
implies that

v(LDL) = min{ cx | (x, y) ∈ conv(QF ) ∩ PL ∩ conv(QD) }
= min{ cx | (x, y) ∈ PF ∩ PL ∩ conv(QD) }
≤ min{ cx | (x, y) ∈ PF ∩ conv(QL) ∩ conv(QD) }
= min{ cx | (x, y) ∈ PF ∩ conv(QL ∩ QD) } = v(LDF ) .

The inequality can be strict if conv(QL) ⊂ PL, which is possible since PL is not
an integral polyhedron, as the Benders subproblem reduces to a 0–1 knapsack
problem. Also, since PD is not an integral polyhedron, we have

v(LDFD) = min{ cx | (x, y) ∈ PF ∩ conv(QL) ∩ PD }
≤ min{ cx | (x, y) ∈ PF ∩ conv(QL) ∩ conv(QD) }
= min{ cx | (x, y) ∈ PF ∩ conv(QL ∩ QD) } = v(LDF ) .

The inequality can be strict if conv(QD) ⊂ PD, which is possible since QD is a
0–1 knapsack set.

We now present and contrast the two DW reformulations of LDF . With the
notation set forth in Sect. 1, the standard DW reformulation is:

v(LDF ) = min
∑

j∈J

∑
k∈K dkc

j
kx

j
k (17)

∑
j∈J+

n
xj
k − ∑

j∈J−
n

xj
k = bnk n ∈ N, k ∈ K (18)

xj
k =

∑
r∈R θrxj,r

k j ∈ J, k ∈ K (24)
yj =

∑
r∈R θryj,r j ∈ J (25)

∑
r∈R θr = 1, θ ≥ 0 (26)

It is interesting to note that constraints (25) are redundant and can be removed.
Indeed, any link between the flow and design variables is captured in the



Quasi-Separable Dantzig-Wolfe for Network Design 235

Lagrangian subproblem, since the design variables do not appear in the objective
function of the BMCUND.

To derive the quasi-separable DW reformulation, we use the same notation
set forth in Sect. 2; note that, in this case, Qx

L(i) = {xj ∈ X j | ∑
k∈K dkx

j
k ≤ uj }

and i = j, since each of the simplices in the general treatment is actually a single
variable. Then,

v(LDF ) = min
∑

j∈J

∑
k∈K dkc

j
kx

j
k (17)

∑
j∈J+

n
xj
k − ∑

j∈J−
n

xj
k = bnk n ∈ N, k ∈ K (18)

yj =
∑

t∈T γtyj,t j ∈ J (27)
∑

t∈T γt = 1, γ ≥ 0 (8)

xj
k =

∑
s∈S(j) ωsxj,s

k j ∈ J, k ∈ K (28)

yj =
∑

s∈S(j) ωs j ∈ J (29)

ωs ≥ 0 j ∈ J , s ∈ S(j) (30)

Note that (28) is somehow simpler than the general (10), again due to the
fact that I(j) = { j }. Compared to the standard DW reformulation, the quasi-
separable DW reformulation is larger, but has an obvious advantage when apply-
ing column generation: the same extreme point yt of conv(Qy

D) can be recom-
bined with different corresponding extreme points of conv(Qx

L(yt)), while many
more columns with the same yt, but with different x values, might be needed
to solve the standard DW reformulation. This should result in much less col-
umn generation iterations when solving the quasi-separable DW reformulation,
as already shown for disaggregated DW reformulations (e.g., [9]). Computational
results on large-scale instances of the BMCUND will soon be reported to verify
this assertion.

References

1. Gendron, B.: Revisiting Lagrangian relaxation for network design. Discrete Appl.
Math. 261, 203–218 (2019)

2. Crainic, T.G., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for
multicommodity capacitated fixed charge network design. Discrete Appl. Math. 112,
73–99 (2001)

3. Frangioni, A., Gorgone, E.: Bundle methods for sum-functions with “easy” com-
ponents: applications to multicommodity network design. Math. Program. A 145,
133–161 (2014)

4. Holmberg, K., Hellstrand, J.: Solving the uncapacitated network design problem by
a Lagrangian heuristic and branch-and-bound. Oper. Res. 46, 247–259 (1998)

5. Holmberg, K., Yuan, D.: A Lagrangian heuristic based branch-and-bound approach
for the capacitated network design problem. Oper. Res. 48, 461–481 (2000)

6. Kliewer, G., Timajev, L.: Relax-and-cut for capacitated network design. In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 47–58. Springer, Heidelberg
(2005). https://doi.org/10.1007/11561071 7

https://doi.org/10.1007/11561071_7


236 A. Frangioni et al.

7. Sellmann, M., Kliewe, G., Koberstein, A.: Lagrangian cardinality cuts and variable
fixing for capacitated network design. In: Möhring, R., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 845–858. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45749-6 73

8. Geoffrion, A.M.: Lagrangean relaxation for integer programming. Math. Program.
Study 2, 82–114 (1974)

9. Frangioni, A., Gendron, B.: A stabilized structured Dantzig-Wolfe decomposition
method. Math. Program. B 140, 45–76 (2013)

https://doi.org/10.1007/3-540-45749-6_73
https://doi.org/10.1007/3-540-45749-6_73


Dynamic Programming Approach
to the Generalized Minimum Manhattan

Network Problem

Yuya Masumura1, Taihei Oki2, and Yutaro Yamaguchi1(B)

1 Osaka University, Osaka 565-0871, Japan
yutaro yamaguchi@inf.kyushu-u.ac.jp

2 The University of Tokyo, Tokyo 113-8656, Japan

Abstract. We study the generalized minimum Manhattan network
(GMMN) problem: given a set P of pairs of points in the Euclidean
plane R

2, we are required to find a minimum-length geometric network
which consists of axis-aligned segments and contains a shortest path in
the L1 metric (a so-called Manhattan path) for each pair in P . This prob-
lem commonly generalizes several NP-hard network design problems that
admit constant-factor approximation algorithms, such as the rectilinear
Steiner arborescence (RSA) problem, and it is open whether so does the
GMMN problem.

As a bottom-up exploration, Schnizler (2015) focused on the inter-
section graphs of the rectangles defined by the pairs in P , and gave a
polynomial-time dynamic programming algorithm for the GMMN prob-
lem whose input is restricted so that both the treewidth and the maxi-
mum degree of its intersection graph are bounded by constants. In this
paper, as the first attempt to remove the degree bound, we provide a
polynomial-time algorithm for the star case, and extend it to the general
tree case based on an improved dynamic programming approach.

1 Introduction

In this paper, we study a geometric network design problem in the Euclidean
plane R

2. For a pair of points s and t in the plane, a path between s and t is
called a Manhattan path (or an M-path for short) if it consists of axis-aligned
segments whose total length is equal to the Manhattan distance of s and t (in
other words, it is a shortest s–t path in the L1 metric). The minimum Manhattan
network (MMN) problem is to find a minimum-length geometric network that
contains an M-path for every pair of points in a given terminal set. In the gen-
eralized minimum Manhattan network (GMMN) problem, given a set P of pairs
of terminals, we are required to find a minimum-length network that contains

The full version [9] of this paper is available at arXiv.
Y. Masumura has moved to Fast Retailing Co., Ltd., Tokyo 135-0063, Japan, and
Y. Yamaguchi has moved to Kyushu University, Fukuoka 819-0395, Japan.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 237–248, 2020.
https://doi.org/10.1007/978-3-030-53262-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_20


238 Y. Masumura et al.

an M-path for every pair in P . Throughout this paper, let n = |P | denote the
number of terminal pairs.

The GMMN problem was introduced by Chepoi, Nouioua, and Vaxès [2], and
is known to be NP-hard as so is the MMN problem [3]. The MMN problem and
another NP-hard special case named the rectilinear Steiner arborescence (RSA)
problem admit polynomial-time constant-factor approximation algorithms, and
in [2] they posed a question whether so does the GMMN problem or not, which
is still open.

Das, Fleszar, Kobourov, Spoerhase, Veeramoni, and Wolff [4] gave an
O(logd+1 n)-approximation algorithm for the d-dimensional GMMN problem
based on a divide-and-conquer approach. They also improved the approxima-
tion ratio for d = 2 to O(log n). Funke and Seybold [5] (see also [14]) introduced
the scale-diversity measure D for (2-dimensional) GMMN instances, and gave an
O(D)-approximation algorithm. Because D = O(log n) is guaranteed, this also
implies O(log n)-approximation as with Das et al. [4], which is the current best
approximation ratio for the GMMN problem in general.

As another approach to the GMMN problem, Schnizler [13] explored
tractable cases by focusing on the intersection graphs of GMMN instances. The
intersection graph represents for which terminal pairs M-paths can intersect.
He showed that, when both the treewidth and the maximum degree of inter-
section graphs are bounded by constants, the GMMN problem can be solved in
polynomial time by dynamic programming (see Table 1). His algorithm heavily
depends on the degree bound, and it is natural to ask whether we can remove
it, e.g., whether the GMMN problem is difficult even if the intersection graph is
restricted to a tree without any degree bound.

In this paper, we give an answer to this question. Specifically, as the first
tractable case without any degree bound in the intersection graphs, we provide
a polynomial-time algorithm for the star case, and extend it to the general tree
case based on a dynamic programming approach inspired by and improving
Schnizler’s algorithm [13].

Theorem 1. There exists an O(n2)-time algorithm for the GMMN problem
when the intersection graph is restricted to a star.

Theorem 2. There exists an O(n5)-time algorithm for the GMMN problem
when the intersection graph is restricted to a tree.

Due to the page limitation, we sometimes give only intuitions or high-level
ideas with figures, and leave the details of them for the full version [9], which
also contains several improvements (cf. Table 1).

Related Work
The MMN problem was first introduced by Gudmundsson, Levcopoulos, and
Narashimhan [6]. They gave 4- and 8-approximation algorithms running in O(n3)
and O(n log n) time, respectively. The current best approximation ratio is 2,
which was obtained independently by Chepoi et al. [2] using an LP-rounding
technique, by Nouioua [11] using a primal-dual scheme, and by Guo, Sun, and
Zhu [7] using a greedy method.



Dynamic Programming Approach to the GMMN Problem 239

Table 1. Exactly solvable cases classified by the class of intersection graphs, whose
treewidth and maximum degree are denoted by tw and Δ, respectively.

Class Time complexity

tw = O(1), Δ = O(1) O(n4Δ(Δ+1)(tw+1)+2) [13]

Trees (tw = 1, Δ = O(1)) O(n4Δ2+1) [13]

Cycles (tw = Δ = 2) O(n25) [13]

Stars (tw = 1, Δ = n − 1) O(n2) (Theorem 1)

Trees (tw = 1) O(n3) (Theorem 2 + speeding-up in [9])

Cycles (tw = Δ = 2) O(n4) (cf. the full version [9])

The RSA problem is another important special case of the GMMN problem.
In this problem, given a set of terminals in R

2, we are required to find a minimum-
length network that contains an M-path between the origin and every terminal.
The RSA problem was first studied by Nastansky, Selkow, and Stewart [10] in
1974. The complexity of the RSA problem had been open for a long time, and Shi
and Su [15] showed that the decision version is strongly NP-complete after three
decades. Rao, Sadayappan, Hwang, and Shor [12] proposed a 2-approximation
algorithm that runs in O(n log n) time. Lu and Ruan [8] and Zachariasen [16]
independently obtained PTASes, which are both based on Arora’s technique [1]
of building a PTAS for the metric Steiner tree problem.

Organization
The rest of this paper is organized as follows. In Sect. 2, we describe necessary
definitions and notations. In Sect. 3, we present an algorithm for the star case
and sketch a proof of Theorem 1. In Sect. 4, based on a dynamic programming
approach, we extend our algorithm to the tree case and prove Theorem 2.

2 Preliminaries

2.1 Problem Formulation

For a point p ∈ R
2, we denote by px and py its x- and y-coordinates, respectively,

i.e., p = (px, py). Let p, q ∈ R
2 be two points. We write p ≤ q if both px ≤ qx

and py ≤ qy hold. We define two points p ∧ q = (min {px, qx} , min {py, qy})
and p ∨ q = (max {px, qx} , max {py, qy}). We denote by pq the segment whose
endpoints are p and q, and by ‖pq‖ its length, i.e., pq = {αp+(1−α)q | α ∈ [0, 1]}
and ‖pq‖ =

√
(px − qx)2 + (py − qy)2. We also define dx(p, q) = |px − qx| and

dy(p, q) = |py − qy|, and denote by d(p, q) the Manhattan distance between p
and q, i.e., d(p, q) = dx(p, q) + dy(p, q). Note that ‖pq‖ = d(p, q) if and only if
px = qx or py = qy, and then the segment pq is said to be vertical or horizontal,
respectively, and axis-aligned in either case.

A (geometric) network N in R
2 is a finite simple graph with a vertex set

V (N) ⊆ R
2 and an edge set E(N) ⊆ (

V (N)
2

)
= {{p, q} | p, q ∈ V (N), p �= q},



240 Y. Masumura et al.

where we often identify each edge {p, q} with the corresponding segment pq. The
length of N is defined as ‖N‖ =

∑
{p,q}∈E(N) ‖pq‖. For two points s, t ∈ R

2, a
path π between s and t (or an s–t path) is a network of the following form:

V (π) = {s = p0, p1, p2, . . . , pk = t},

E(π) =
{{pi−1, pi} | i ∈ [k]

}
,

where [k] = {1, 2, . . . , k} for a nonnegative integer k. An s–t path π is called a
Manhattan path (or an M-path) for a pair (s, t) if every edge {pi−1, pi} ∈ E(π)
is axis-aligned and ‖π‖ = d(s, t) holds.

We are now ready to state our problem formally.

Problem (Generalized Minimum Manhattan Network (GMMN))

Input: A set P of n pairs of points in R
2.

Goal: Find a minimum-length network N in R
2 that consists of axis-aligned

edges and contains a Manhattan path for every pair (s, t) ∈ P .

Throughout this paper, when we write a pair (p, q) ∈ R
2 × R

2, we assume
px ≤ qx (by swapping if necessary). A pair (p, q) is said to be regular if py ≤ qy,
and flipped if py ≥ qy. In addition, if px = qx or py = qy, then there exists a
unique M-path for (p, q) and we call such a pair degenerate.

2.2 Restricting a Feasible Region to the Hanan Grid

For a GMMN instance P , we denote by H(P ) the Hanan grid, which is a grid
network in R

2 consisting of vertical and horizontal lines through each point
appearing in P . More formally, it is defined as follows (see Fig. 1):

V (H(P )) =

⎛

⎝
⋃

(s,t)∈P

{sx, tx}
⎞

⎠ ×
⎛

⎝
⋃

(s,t)∈P

{sy, ty}
⎞

⎠ ⊆ R
2,

E(H(P )) =
{{p, q} ∈ (

V (H(P ))
2

) | ‖pq‖ = d(p, q), pq ∩ V (H(P )) = {p, q}}
.

Note that H(P ) is an at most 2n × 2n grid network. It is not difficult to see
that, for any GMMN instance P , at least one optimal solution is contained in
the Hanan grid H(P ) as its subgraph (cf. [5]).

For each pair v = (p, q) ∈ V (H(P )) × V (H(P )), we denote by ΠP (v) or
ΠP (p, q) the set of all M-paths for v that are subgraphs of the Hanan grid H(P ).
By the problem definition, we associate each n-tuple of M-paths, consisting of
an M-path πv ∈ ΠP (v) for each v ∈ P , with a feasible solution N =

⋃
v∈P πv

on H(P ), where the union of networks is defined by the set unions of the vertex
sets and of the edge sets. Moreover, each minimal feasible (as well as optimal)
solution on H(P ) must be represented in this way. Based on this correspondence,
we abuse the notation as N = (πv)v∈P ∈ ∏

v∈P ΠP (v), and define Feas(P ) and



Dynamic Programming Approach to the GMMN Problem 241

Fig. 1. An optimal solution (solid) to a GMMN instance {(s1, t1), (s2, t2), (s3, t3)} lies
on the Hanan grid (dashed), where (s1, t1) and (s2, t2) are regular pairs and (s3, t3) is
a flipped pair.

Opt(P ) as the sets of feasible solutions covering all minimal ones and of all
optimal solutions, respectively, on H(P ), i.e.,

Feas(P ) =
∏

v∈P

ΠP (v),

Opt(P ) = arg min{‖N‖ | N ∈ Feas(P )}.

Thus, we have restricted a feasible region of a GMMN instance P to the
Hanan grid H(P ). In other words, the GMMN problem reduces to finding a
network N = (πv)v∈P ∈ Opt(P ) as an n-tuple of M-paths in Feas(P ).

2.3 Specialization Based on Intersection Graphs

The bounding box of a pair v = (p, q) ∈ R
2 × R

2 indicates the rectangle region

{z ∈ R
2 | p ∧ q ≤ z ≤ p ∨ q},

and we denote it by B(v) or B(p, q). Note that B(p, q) is the region where an
M-path for (p, q) can exist. For a GMMN instance P and a pair v ∈ P , we denote
by H(P, v) the subgraph of the Hanan grid H(P ) induced by V (H(P )) ∩ B(v).
We define the intersection graph IG[P ] of P by

V (IG[P ]) = P,

E(IG[P ]) =
{{u, v} ∈ (

P
2

) | E(H(P, u)) ∩ E(H(P, v)) �= ∅}
.

The intersection graph IG[P ] intuitively represents how a GMMN instance
P is complicated in the sense that, for each u, v ∈ P , an edge {u, v} ∈ E(IG[P ])
exists if and only if two M-paths πu ∈ ΠP (u) and πv ∈ ΠP (v) can share some
segments, which saves the total length of a network in Feas(P ). In particular,
if IG[P ] contains no triangle, then no segment can be shared by M-paths for
three different pairs in P , and hence N ∈ Feas(P ) is optimal (i.e., ‖N‖ is mini-
mized) if and only if the total length of segments shared by two M-paths in N
is maximized.



242 Y. Masumura et al.

We denote by GMMN[· · · ] the GMMN problem with restriction on the inter-
section graph of the input; e.g., IG[P ] is restricted to a tree in GMMN[Tree].
Each restricted problem is formally stated in the relevant section.

3 An O(n2)-Time Algorithm for GMMN[Star]

In this section, as a step to GMMN[Tree], we present an O(n2)-time algorithm
for GMMN[Star], which is formally stated as follows.

Problem (GMMN[Star])

Input: A set P ⊆ R
2 × R

2 of n pairs whose intersection graph IG[P ] is a star,
whose center is denoted by r = (s, t) ∈ P .

Goal: Find an optimal network N = (πv)v∈P ∈ Opt(P ).

A crucial observation for GMMN[Star] is that an M-path πl ∈ ΠP (l) for each
leaf pair l ∈ P − r can share some segments only with an M-path πr ∈ ΠP (r)
for the center pair r. Hence, minimizing the length of N = (πv)v∈P ∈ Feas(P )
is equivalent to maximizing the total length of segments shared by two M-paths
πr and πl for l ∈ P − r.

In Sect. 3.1, we observe that, for each leaf pair l ∈ P −r, once we fix where an
M-path πr ∈ ΠP (r) for r enters and leaves the bounding box B(l), the maximum
length of segments that can be shared by πr and πl ∈ ΠP (l) is easily determined.
Thus, GMMN[Star] reduces to finding an optimal M-path πr ∈ ΠP (r) for the
center pair r = (s, t), and in Sect. 3.2, we formulate this task as the computation
of a longest s–t path in an auxiliary directed acyclic graph (DAG), which is
constructed from the subgrid H(P, r). As a result, we obtain an exact algorithm
that runs in linear time in the size of auxiliary graphs, which are simplified so
that it is always O(n2) in Sect. 3.3.

3.1 Observation on Sharable Segments

Without loss of generality, we assume that the center pair r = (s, t) is regular, i.e.,
s ≤ t. Fix an M-path πr ∈ ΠP (r) and a leaf pair l = (sl, tl) ∈ P − r. Obviously,
if πr is disjoint from the bounding box B(l), then any M-path πl ∈ ΠP (l) cannot
share any segment with πr. Suppose that πr intersects B(l), and let πr[l] denote
the intersection πr ∩ H(P, l). Let v = (p, q) be the pair of two vertices on πr

such that πr[l] is a p–q path, and we call v the in-out pair of πr for l. As
πr ∈ ΠP (r), we have πr[l] ∈ ΠP (v), and v is also regular (recall the assumption
px ≤ qx). Moreover, for any M-path πv ∈ ΠP (v), the network π′

r obtained from
πr by replacing its subpath πr[l] with πv is also an M-path for r in ΠP (r). Since
B(v) ⊆ B(l) does not intersect B(l′) for any other leaf pair l′ ∈ P \ {r, l}, once
v = (p, q) is fixed, we can freely choose an M-path πv ∈ ΠP (v) instead of πr[l]
for maximizing the length of segments shared with some πl ∈ ΠP (l). For each
possible in-out pair v = (p, q) of M-paths in ΠP (r) (the sets of those vertices p
and q are formally defined in Sect. 3.2 as V�(r, l) and V�(r, l), respectively), we



Dynamic Programming Approach to the GMMN Problem 243

(a) (b)

Fig. 2. (a) If l = (sl, tl) is a regular pair, for any πv ∈ ΠP (p, q), some πl ∈ ΠP (l)
completely includes πv. (b) If l = (sl, tl) is a flipped pair, while any πl ∈ ΠP (l) cannot
contain both horizontal and vertical segments of any πv ∈ ΠP (p, q), one can choose
πv ∈ ΠP (p, q) so that the whole of either horizontal or vertical segments of πv can be
included in some πl ∈ ΠP (l).

denote by γ(l, p, q) the maximum length of segments shared by two M-paths for
l and v = (p, q), i.e.,

γ(l, p, q) = max {‖πl ∩ πv‖ | πl ∈ ΠP (l), πv ∈ ΠP (p, q)} .

Then, the following lemma is easily observed (see Fig. 2).

Lemma 1. For every leaf pair l ∈ P − r, the following properties hold.

(1) If l is a regular pair, γ(l, p, q) = d(p, q)
(
= dx(p, q) + dy(p, q)

)
.

(2) If l is a flipped pair, γ(l, p, q) = max {dx(p, q), dy(p, q)}.

3.2 Reduction to the Longest Path Problem in DAGs

In this section, we reduce GMMN[Star] to the longest path problem in DAGs.
Let P be a GMMN[Star] instance and r = (s, t) ∈ P (s ≤ t) be the center of
IG[P ], and we construct an auxiliary DAG G from the subgrid H(P, r) as follows
(see Fig. 3).

First, for each edge e = {p, q} ∈ E(H(P, r)) with p ≤ q (and p �= q), we
replace e with an arc (p, q) of length 0. For each leaf pair l ∈ P − r, let s′

l and t′l
denote the lower-left and upper-right corners of B(r)∩B(l), respectively, so that
(s′

l, t
′
l) is a regular pair with B(s′

l, t
′
l) = B(r)∩B(l). If (s′

l, t
′
l) is degenerate, then

we change the length of each arc (p, q) with p, q ∈ V (H(P, r) ∩ B(l)) from 0 to
‖pq‖, which clearly reflects the (maximum) sharable length in B(l). Otherwise,



244 Y. Masumura et al.

(a) (b)

(c)

(d)

Fig. 3. (a) An M-path for r in the subgrid H(P, r). (b) The corresponding directed s–t
path in the auxiliary DAG G, where the dashed arcs are of length 0. (c) The boundary
vertex sets for leaf pairs. (d) The corresponding parts in G, where the length of each
interior arc (p, q) is γ(l, p, q) for p ∈ V�(r, l) and q ∈ V�(r, l).

the bounding box B(s′
l, t

′
l) ⊆ B(l) has a nonempty interior, and we define four

subsets of V (H(P, r) ∩ B(l)) as follows:

V�(r, l) = {p ∈ V (H(P, r) ∩ B(l)) | px = (s′
l)x or py = (s′

l)y},

V�(r, l) = {q ∈ V (H(P, r) ∩ B(l)) | qx = (t′l)x or qy = (t′l)y},

V••(r, l) = V�(r, l) ∩ V�(r, l),
V�(r, l) = V (H(P, r) ∩ B(l)) \ (V�(r, l) ∪ V�(r, l))

= {z ∈ V (H(P, r) ∩ B(l)) | (s′
l)x < zx < (t′l)x and (s′

l)y < zy < (t′l)y}.

As r is regular, any M-path πr ∈ ΠP (r) intersecting B(l) enters it at some
p ∈ V�(r, l) and leaves it at some q ∈ V�(r, l), and the maximum sharable length
γ(l, p, q) in B(l) is determined by Lemma 1. We remove all the interior vertices
in V�(r, l) (with all the incident arcs) and all the boundary arcs (p, q) with
p, q ∈ V�(r, l)∪V�(r, l). Instead, for each pair (p, q) of p ∈ V�(r, l) and q ∈ V�(r, l)
with p ≤ q and p �= q, we add an interior arc (p, q) of length γ(l, p, q). Let Eint(l)
denote the set of such interior arcs for each nondegenerate pair l ∈ P − r.



Dynamic Programming Approach to the GMMN Problem 245

Finally, we care about the corner vertices in V••(r, l), which can be used
for cheating if l is flipped as follows. Suppose that p ∈ V••(r, l) is the upper-
left corner of B(l), and consider the situation when the in-out pair (p′, q′) of
πr ∈ ΠP (r) for l satisfies p′

x = px < q′
x and p′

y < py = q′
y. Then, (p′, q′)

is not degenerate, and by Lemma 1, the maximum sharable length in B(l) is
γ(l, p′, q′) = max {dx(p′, q′), dy(p′, q′)} as it is represented by an interior arc
(p′, q′), but one can take another directed p′–q′ path that consists of two arcs
(p′, p) and (p, q′) in the current graph, whose length is dy(p′, p) + dx(p, q′) =
dy(p′, q′) + dx(p′, q′) > γ(l, p′, q′). To avoid such cheating, for each p ∈ V••(r, l),
we divide it into two distinct copies phor and pvert (which are often identified
with its original p unless we need to distinguish them), and replace the endpoint
p of each incident arc e with phor if e is horizontal and with pvert if vertical (see
Fig. 3 (d)). In addition, when p is not shared by any other leaf pair,1 we add an
arc (phor, pvert) of length 0 if p is the upper-left corner of B(s′

l, t
′
l) and an arc

(pvert, phor) of length 0 if the lower-right, which represents the situation when
πr ∈ ΠP (r) intersects B(l) only at p.

Let G be the constructed directed graph, and denote by �(e) the length of
each arc e ∈ E(G). The following two lemmas complete our reduction, whose
proofs are left for the full version [9] (see Fig. 3 again).

Lemma 2. The directed graph G is acyclic.

Lemma 3. Any longest s–t path π∗
G in G with respect to � satisfies

∑

e∈E(π∗
G)

�(e) = max
πr∈ΠP (r)

(
∑

l∈P−r

max
πl∈ΠP (l)

‖πl ∩ πr‖
)

.

3.3 Computational Time Analysis with Simplified DAGs

A longest path in a DAG G is computed in O(|V (G)|+ |E(G)|) time by dynamic
programming. Although the subgrid H(P, r) has O(n2) vertices and edges, the
auxiliary DAG G constructed in Sect. 3.2 may have much more arcs due to
Eint(l), whose size is Θ(|V�(r, l)| · |V�(r, l)|) and can be Ω(n2). This, however,
can be always reduced to linear by modifying the boundary vertices and the
incident arcs appropriately in order to avoid creating diagonal arcs in B(l).
We just illustrate a high-level idea in Fig. 4 and leave the details for the full
version [9]. Thus, the total computational time is O(n2), which completes the
proof of Theorem 1.

4 An O(n5)-Time Algorithm for GMMN[Tree]

In this section, we present an O(n5)-time algorithm for GMMN[Tree], which is
the main target in this paper and stated as follows.
1 Note that p can be shared as corners of two different leaf pairs due to our definition

of the intersection graph, and then leaving one bounding box means entering the
other straightforwardly.



246 Y. Masumura et al.

(a)

(b)

Fig. 4. (a) Simplification for a regular pair. (b) Simplification for a flipped pair, where
the gray and white vertices distinguish sharing horizontal and vertical segments in
H(P, r) ∩ B(l), respectively, and the dashed arcs are of length 0.

Problem (GMMN[Tree])

Input: A set P ⊆ R
2 × R

2 of n pairs whose intersection graph IG[P ] is a tree.
Goal: Find an optimal network N = (πv)v∈P ∈ Opt(P ).

For a GMMN[Tree] instance P , we choose an arbitrary pair r ∈ P as the root
of the tree IG[P ]; in particular, when IG[P ] is a star, we regard the center as
the root. The basic idea of our algorithm is dynamic programming on the tree
IG[P ] from the leaves toward r. Each subproblem reduces to the longest path
problem in DAGs like the star case, which is summarized as follows.

Fix a pair v = (sv, tv) ∈ P . If v �= r, then there exists a unique parent
u = Par(v) in the tree IG[P ] rooted at r, and there are O(n2) possible in-out
pairs (pv, qv) of πu ∈ ΠP (u) for v. We virtually define pv = qv = ε for the case
when we do not care the shared length in B(u), e.g., v = r or πu is disjoint
from B(v). Let Pv denote the vertex set of the subtree of IG[P ] rooted at v
(including v itself). For every possible in-out pair (pv, qv), as a subproblem,
we compute the maximum total length dp(v, pv, qv) of sharable segments in
B(Pv) =

⋃
w∈Pv

B(w), i.e.,

dp(v, ε, ε) = max

{
∑

w∈Pv−v

‖πw ∩ πPar(w)‖
∣
∣∣∣∣
(πw)w∈P ∈ Feas(P )

}

,

dp(v, pv, qv) = max

{
∑

w∈Pv

‖πw ∩ πPar(w)‖
∣∣∣∣∣

(πw)w∈P ∈ Feas(P ),
πu[v] ∈ ΠP (pv, qv)

}

.



Dynamic Programming Approach to the GMMN Problem 247

By definition, the goal is to compute dp(r, ε, ε). If v is a leaf in IG[P ],
then Pv = {v}. In this case, dp(v, pv, qv) is the maximum length of segments
shared by two M-paths πv ∈ ΠP (v) and πu ∈ ΠP (u) with πu[v] ∈ ΠP (pv, qv),
which is easily determined (cf. Lemma 1). Otherwise, using the computed values
dp(w, pw, qw) for all children w of v and all possible in-out pairs (pw, qw), we
reduce the task to the computation of a longest sv–tv path in an auxiliary DAG,
as with finding an optimal M-path for the center pair in the star case.

4.1 Constructing Auxiliary DAGs for Subproblems

Let v = (sv, tv) ∈ P , which is assumed to be regular without loss of generality.
If v = r, then let pv = qv = ε; otherwise, let u = Par(v) be its parent, and
fix a possible in-out pair u′ = (pv, qv) of πu ∈ ΠP (u) for v (including the case
pv = qv = ε). Let Cv ⊆ Pv be the set of all children of v. By replacing r and
P − r in Sect. 3.2 with v and Cv + u′ (or Cv if pv = qv = ε), respectively, we
construct the same auxiliary directed graph, denoted by G[v, pv, qv]. We then
change the length of each interior arc (pw, qw) ∈ Eint(w) for each child w ∈ Cv

from γ(w, pw, qw) to dp(w, pw, qw)−dp(w, ε, ε), so that it represents the difference
of the total sharable length in B(Pw) =

⋃
w∈Pw

B(w′) between the cases when
an M-path for v intersects B(w) (enters at pw and leaves at qw) and when an
M-path for v is ignored. As with Lemma 2, the graph G[v, pv, qv] is acyclic. The
following lemma completes the reduction of computing dp(v, pv, qv) to finding a
longest sv–tv path in G[v, pv, qv], whose proof is left for the full version [9].

Lemma 4. Let π∗
G be a longest sv–tv path in G[v, pv, qv] with respect to �. We

then have

dp(v, pv, qv) =
∑

e∈E(π∗
G)

�(e) +
∑

w∈Cv

dp(w, ε, ε).

4.2 Computational Time Analysis

This section completes the proof of Theorem 2. For a pair v ∈ P , suppose
that H(P, v) is an av × bv grid graph. For each possible in-out pair (pv, qv), to
compute dp(v, pv, qv), we find a longest path in the DAG G[v, pv, qv] constructed
in Sect. 4.1, which has O(avbv) = O(n2) vertices and O(δv(av + bv)2) = O(δvn2)
edges, where δv is the degree of v in IG[P ]. Hence, for solving the longest path
problem once for each v ∈ P , it takes

∑
v∈P O(δvn2) = O(n3) time in total

(recall that IG[P ] is a tree). For each v ∈ P − r, there are respectively at most
av + bv = O(n) candidates for pv and for qv, and hence O(n2) possible in-out
pairs. Thus, the total computational time is bounded by O(n5), and we are done.

We remark that this can be improved to O(n3) by computing dp(v, pv, qv)
for many possible in-out pairs (pv, qv) at once using extra DPs. See the full
version [9] for the details.

Acknowledgment. We are grateful to the anonymous reviewers for their careful read-
ing and giving helpful comments.



248 Y. Masumura et al.

References

1. Arora, S.: Approximation schemes for NP-hard geometric optimization problems:
a survey. Math. Programm. 97(1–2), 43–69 (2003)

2. Chepoi, V., Nouioua, K., Vaxès, Y.: A rounding algorithm for approximating min-
imum Manhattan networks. Theor. Comput. Sci. 390(1), 56–69 (2008)

3. Chin, F.Y., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Dis-
crete Comput. Geom. 45(4), 701–722 (2011)

4. Das, A., Fleszar, K., Kobourov, S., Spoerhase, J., Veeramoni, S., Wolff, A.:
Approximating the generalized minimum Manhattan network problem. Algorith-
mica 80(4), 1170–1190 (2018)

5. Funke, S., Seybold, M.P.: The generalized minimum Manhattan network problem
(GMMN) - scale-diversity aware approximation and a primal-dual algorithm. In:
Proceedings of Canadian Conference on Computational Geometry (CCCG), vol.
26 (2014)

6. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum
Manhattan network. Nordic J. Comput. 8(2), 219–232 (2001)

7. Guo, Z., Sun, H., Zhu, H.: Greedy construction of 2-approximation minimum Man-
hattan network. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008.
LNCS, vol. 5369, pp. 4–15. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-92182-0 4

8. Lu, B., Ruan, L.: Polynomial time approximation scheme for the rectilinear Steiner
arborescence problem. J. Combinat. Optim. 4(3), 357–363 (2000)

9. Masumura, Y., Oki, T., Yamaguchi, Y.: Dynamic programming approach to the
generalized minimum Manhattan network problem (2020). arXiv:2004.11166

10. Nastansky, L., Selkow, S.M., Stewart, N.F.: Cost-minimal trees in directed acyclic
graphs. Zeitschrift für Oper. Res. 18(1), 59–67 (1974)

11. Nouioua, K.: Enveloppes de Pareto et Réseaux de Manhattan: Caractérisations et
Algorithmes. Ph.D. thesis, Université de la Méditerranée (2005)

12. Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner
arborescence problem. Algorithmica 7(1–6), 277–288 (1992)

13. Schnizler, M.: The Generalized Minimum Manhattan Network Problem. Master’s
thesis, University of Stuttgart (2015)

14. Seybold, M.P.: Algorithm Engineering in Geometric Network Planning and Data
Mining. Ph.D. thesis, University of Stuttgart (2018)

15. Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete.
SIAM J. Comput. 35(3), 729–740 (2005)

16. Zachariasen, M.: On the approximation of the rectilinear Steiner arborescence prob-
lem in the plane (2000)

https://doi.org/10.1007/978-3-540-92182-0_4
https://doi.org/10.1007/978-3-540-92182-0_4
http://arxiv.org/abs/2004.11166


On Finding Shortest Paths
in Arc-Dependent Networks

P. Wojciechowski1, Matthew Williamson2, and K. Subramani1(B)

1 LDCSEE, West Virginia University, Morgantown, WV, USA
{pwojciec,k.subramani}@mail.wvu.edu

2 MCS, Marietta College, Marietta, OH, USA
williamm@marietta.edu

Abstract. This paper is concerned with the design and analysis of algo-
rithms for the arc-dependent shortest path (ADSP) problem. A net-
work is said to be arc-dependent if the cost of an arc a depends upon
the arc taken to enter a. These networks are fundamentally different
from traditional networks in which the cost associated with an arc is a
fixed constant and part of the input. The ADSP problem is also known
as the suffix-1 path-dependent shortest path problem in the literature.
This problem has a polynomial time solution if the shortest paths are
not required to be simple. The ADSP problem finds applications in a
number of domains including highway engineering, turn penalties and
prohibitions, and fare rebates. In this paper, we are interested in the
ADSP problem when restricted to simple paths. We call this restricted
version the simple arc-dependent shortest path (SADSP) problem. We
show that the SADSP problem is NP-complete. We present inapprox-
imability results and an exact exponential algorithm for this problem.
Additionally, we explore the problem of detecting negative cost cycles in
arc-dependent networks and discuss its algorithmic complexity.

1 Introduction

This paper studies the problem of computing shortest paths in arc-dependent
networks. In an arc-dependent network, the cost of an arc a is not a fixed value.
Instead, the cost of the arc depends on the arc taken to enter it. This dif-
fers from traditional networks, where the cost of an arc is a fixed constant.
The problem of finding shortest paths in such a network is known as the arc-
dependent shortest path (ADSP) problem. This problem is also known as the
suffix-1 path-dependent shortest path problem and has been previously studied
in the literature [1,4,7,10,11]. The problem has a polynomial-time solution as
long as the shortest paths do not need to be simple.

An extension of this problem is known as the path-dependent shortest path
(PDSP) problem, where the cost of arc a depends on the path taken to the

K. Subramani—This research was supported in part by the Air-Force Office of Scientific
Research through Grant FA9550-19-1-017. This research was also supported in part by
the Air-Force Research Laboratory Rome through Contract FA8750-17-S-7007.

c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 249–260, 2020.
https://doi.org/10.1007/978-3-030-53262-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_21


250 P. Wojciechowski et al.

arc. This problem is claimed to be NP-complete [9,10]. A variant of the path-
dependent shortest path problem is the suffix-k PDSP problem, where the cost
of arc a depends on the last k arcs of the preceding path instead of the entire
preceding path [10].

In this paper, we are interested in the ADSP problem where the shortest
paths must be simple paths. Recall that a simple path is a path without repeated
vertices or repeated arcs. We refer to this as the simple arc-dependent shortest
path problem (SADSP). In the general suffix-k PDSP problem, the shortest
paths are not required to be simple. In fact, in some cases, non-simple paths
are actually shorter than simple paths depending on the path taken [10]. We
show that when the ADSP problem is restricted to simple paths, the problem is
actually NP-complete. We also provide special case algorithms for the SADSP
problem.

Arc-dependent networks are motivated by a number of applications. In high-
way engineering, it is desirable to find routes between points in a city’s street
and/or freeway network that are minimized with respect to time and distance.
While efficient algorithms for this problem exist [3,5], it is possible that a street
network may include “turn penalties” [4]. These penalties increase either the time
or distance (or both) of a route based on the turns taken at intersections. Turn
prohibitions [7] can also complicate transportation planning. These prohibitions
eliminate some possible solutions to the shortest path problem. For example,
some intersections do not allow a driver to make a left turn even though traffic
flows in both directions along that road. Turn prohibitions can be modeled by
having an infinite turn penalty. Fare rebates [10] provide an additional layer of
complexity in public transportation since taking specific routes in a transporta-
tion network may result in a discount while other routes may not provide such
a discount.

The principal contributions of this paper are as follows:

1. Showing that the decision version of the SADSP problem is NP-complete.
2. Showing that the problem of detecting simple negative cycles in an arc-

dependent network is NP-complete.
3. Showing that the optimization version of the SADSP problem is NPO-

complete.
4. The design and analysis of an exact exponential algorithm for the SADSP

problem.
5. Providing an integer programming representation of the SADSP problem.

The rest of this paper is organized as follows: Sect. 2 details a formal descrip-
tion of the SADSP problem. Section 3 establishes the complexity of the SADSP
problem. We also discuss a polynomial time special case. Section 4 examines the
problem of finding negative cycles in arc-dependent networks. Section 5 shows
that the problem of approximating the SADSP is NPO-complete. In Sect. 6,
we give an exact algorithm for the SADSP problem that runs in O(n3 ·2n) time.
In Sect. 7, we discuss an integer programming representation of the path and
cycle problems discussed in this paper. We conclude in Sect. 8 by summarizing
our contributions in this paper and outlining avenues for future research.



On Finding Shortest Paths in Arc-Dependent Networks 251

2 Statement of Problems

Let G = 〈V,E,C〉 denote a directed network. V is the vertex set with n vertices,
and E = {e1, e2, . . . , em} is the set of arcs. Let s ∈ V be the source vertex.

The cost structure is represented by the matrix C, where entry (i, j) corre-
sponds to the cost of arc ej assuming that ej was entered through arc ei. The
matrix C has (m + 1) rows and m columns. The (m + 1)th row of C contains
the cost of arcs that do not have any incoming arcs. We use the phantom arc e0
entering s to account for these costs. We refer to G as an arc-dependent network.

Let Pst denote the path (e1 − e2 − e3 − · · · − ek), where e1 is an arc leaving
vertex s and ek is an arc entering node t. Note that C[ej , ek] only matters when
the head of arc ej is the tail of arc ek. Otherwise, ej cannot be the predecessor
of ek. In cases where the head of ej is not the tail of ek, we define C[ej , ek] = 0.
As a result, we note that C does not represent the connectivity of G.

The cost of a path Pst between vertices s and t is given by:

cost(Pst) = C[e0, e1] + C[e1, e2] + · · · + C[ek−1, ek].

A shortest path in G is known as an arc-dependent shortest path (ADSP).

Example 1. Consider a network with four vertices and the following arcs:

1. Arc e1 : (s, v1) with cost 0.
2. Arc e2 : (s, v2) with cost −1.
3. Arc e3 : (v1, v2) with cost 1.
4. Arc e4 : (v1, t) with cost 1.
5. Arc e5 : (v2, t) with costs C[e2, e5] = 3 and C[e3, e5] = 0.

The resulting network G and cost matrix C is shown in Fig. 1.

s
v1

v2
t

0
1 3/0

−1

1
e1 e2 e3 e4 e5

e1 0 0 1 1 0
e2 0 0 0 0 3
e3 0 0 0 0 0
e4 0 0 0 0 0
e5 0 0 0 0 0
e0 0 −1 0 0 0

(a) (b)

Fig. 1. Example of an Arc-Dependent Network. (a) is the network G. (b) is the cost
matrix C.

In this paper, we explore two variants of the SADSP problem. These are:

1. SADSPD: Given an arc-dependent network G, source vertex s, target vertex
t, and cost k, does G have an arc-dependent simple path from s to t with cost
less than k?.

2. SADSPOpt: Given an arc-dependent network G, source vertex s, and target
vertex t, what is the shortest arc-dependent simple path from s to t in G?



252 P. Wojciechowski et al.

3 On the Computational Complexity of the SADSP
Problem

In this section, we explore the complexity of the SADSPD problem. The general
ADSP problem can be solved in polynomial time by transforming the network
into its respective dual network and then applying a polynomial time shortest
path algorithm [1,10]. This holds because the ADSP is not necessarily simple.

We now show that the SADSPD problem is NP-complete. We accomplish
this using a reduction from Hamiltonian Path.

Let G be an unweighted directed network with n vertices. We construct an
arc-dependent weighted network G′ as follows:

1. Create the vertex s0.
2. For each vertex vi in G, create the vertices wi and si.
3. For each vertex wi in G′, create the arc (s0, wi), which always costs 0.
4. For each pair of vertices wi and sk, where 1 ≤ i, k ≤ n, create the following

arcs:
a. (wi, sk) with cost 0 if the preceding arc is (sk−1, wi) and 1 otherwise.
b. (sk, wi) with cost 0 if the preceding arc is (wj , sk), where arc (vj , vi) is in

G, and 1 otherwise.

With this reduction, we can now prove that the SADSPD problem is NP-
complete.

Note that once a path is found, the cost of the path can be computed in
polynomial time. Thus, the SADSPD problem is in NP. All that remains is to
show that the problem is NP-hard.

Theorem 1. G′ has a 0-cost simple arc-dependent path from s0 to sn if and
only if G has a Hamiltonian Path.

Proof. We first assume that G has a Hamiltonian Path.
Without loss of generality, assume that the Hamiltonian Path is (v1, v2) →

(v2, v3) → · · · → (vn−1, vn). By construction, the path

(s0, w1) → (w1, s1) → (s1, w2) → (w2, s2) → (s2, w3) → · · · → (wn, sn)

has cost 0. Thus G′ has a SADSP of cost 0 from s0 to sn.
We now assume that G′ has a 0-cost SADSP P from s0 to sn.
By construction, the only arcs in G′ are of the form (sk, wi) or (wi, sk). In

other words, there are no arcs of the form (si, sj) or (wi, wj). We define P (k),
where 0 ≤ k ≤ n − 1, such that vertex wP (k) immediately follows vertex sk in
path P . In other words, let (sk, wP (k)) ∈ P . By construction, the only 0-cost
outgoing arc from wP (k) is (wP (k), sk+1). Thus, P must be of the form:

(s0, wP (0)) → (wP (0), s1) → (s1, wP (1)) → (wp(1), s2) → · · · → (wP (n−1), sn).

Since P is a simple path, vertices wP (0), wP (1), . . . , wP (n−1) must be distinct.
Since the total cost of path P is 0, each arc in P must also cost 0. By construction,



On Finding Shortest Paths in Arc-Dependent Networks 253

each arc (sk, wP (k)), for 1 ≤ k ≤ n − 1, has cost 0 only if arc (vP (k−1), vP (k)) is
in G. This implies that the path

(vP (0), vP (1)) → (vP (1), vP (2)) → · · · → (vP (n−2), vP (n−1))

is in G. Since vertices wP (0), wP (1), . . . , wP (n−1) are distinct in G′, it follows that
vP (0), vP (1), . . . , vP (n−1) are distinct in G. Therefore, by definition, the above
path must be a Hamiltonian Path in G. ��
Corollary 1. The SADSPD problem is NP-complete for the class of bipartite
graphs in which the arc costs belong to the set {0, 1}.
Proof. Note that the graph G′ is bipartite. Thus, the SADSPD problem is NP-
complete even when restricted to bipartite graphs. Additionally, the arc costs in
G′ are restricted to the set {0, 1}. Thus, the SADSPD problem is NP-compete
when G is bipartite, there are only two possible arc costs, and all arc costs are
non-negative. ��

We now examine a case where the SADSPOpt problem can be solved in
polynomial time.

Theorem 2. The SADSPOpt problem can be solved in polynomial time for
directed acyclic graphs.

Proof. Let G be a directed acyclic graph with an arc-dependent cost function.
Let s and t be vertices in G. Since G is acyclic, any path from s to t is necessarily
simple. Thus, the problem of finding a SADSP from s to t in G is equivalent to
the problem of finding any ADSP from s to t. This problem is known to be in
P [1,10]. ��

4 Negative Cycles in Arc-Dependent Networks

In this section, we discuss the problem of finding simple negative cycles in arc-
dependent networks. We call this problem the simple arc-dependent negative
cycle problem and it is defined as follows:

Definition 1. Simple arc-dependent negative cycle (SADNC) problem: Given
an arc-dependent network G, does G contain a simple cycle NC consisting of
arcs e1 through ek, such that:

C[ek, e1] +
k∑

i=2

C[ei−1, ei] < 0?

Note that the cost of e1, the first arc in NC, depends on ek, the last arc in
NC. Thus, the negative cost of the cycle depends only on the cycle itself and
not how the cycle was reached initially.

We now show that the SADNC problem is NP-complete. We do this by
modifying the reduction from Hamiltonian Path to SADSP from Sect. 3.



254 P. Wojciechowski et al.

Let G be an unweighted directed network, and let G′ be the arc-dependent
network constructed using the reduction described in Sect. 3. If we add the arc
(sn, s0) with cost −1 to G′, then G′ has a negative cost arc-dependent simple
cycle if and only if G has a Hamiltonian Path. This gives us the following result
which follows from Theorem 1.

Theorem 3. The SADNC problem is NP-complete.

Proof. Note that once a cycle is found, the cost of the cycle can be computed
in polynomial time. Thus, the SADNC problem is in NP. All that remains is to
show that the problem is NP-hard.

Let G be an unweighted directed network. Let G′ be the corresponding
arc-dependent network with the additional arc (sn, s0) with cost −1. We now
show that G has a Hamiltonian Path if and only if G′ has a negative-cost arc-
dependent simple cycle.

First assume that G has a Hamiltonian Path. From Theorem 1, we know
that G′ has a 0-cost arc-dependent simple path from s0 to sn. If we include arc
(sn, s0) with this path, we obtain a cycle with a total cost of −1. Thus, we have
the desired negative cost cycle.

Now assume that G′ has a simple arc-dependent negative cost cycle. The
only negative cost arc in G′ is (sn, s0). Thus, this arc must be in the cycle. Since
this arc has cost −1, the remainder of the cycle must be a 0-cost SADSP from
s0 to sn. Therefore, from Theorem 1, G has a Hamiltonian Path. ��

Note that G′ has only one arc which costs −1 and that the cost of this arc is
not arc-dependent. Thus, the problem of finding a negative cost arc-dependent
simple cycle is still NP-complete even in this restricted case.

5 Inapproximability

In this section, we show that the SADSPOpt problem is NPO-complete [2].
Note that the length of a simple path is limited by the number of vertices in

G. Additionally, once a path is found, the cost of the path can be computed in
polynomial time. Thus, the SADSPOpt problem is in NPO. All that remains is
to show that the problem is NPO-hard. This will be done via reduction from
the Traveling Salesman problem.

Let G be a complete weighted directed network with n vertices and cost
function c such that c(vi, vj) is the cost of arc (vi, vj). Let cmax be the highest
(largest) cost of any arc in G. We construct an arc-dependent network G′ as
follows:

1. Create the vertex s0.
2. For each vertex vi in G, create the vertices wi and si.
3. For each vertex wi in G′, create the arc (s0, wi), which always costs 0.
4. For each pair of vertices wi and sk, where 1 ≤ i, k ≤ n, create the following

arc:



On Finding Shortest Paths in Arc-Dependent Networks 255

a. (wi, sk) with cost 0 if the preceding arc is (sk−1, wi) and cost (n ·cmax+1)
otherwise.

b. (sk, wi) with cost c(vj , vi) if the preceding arc is (wj , sk).

Theorem 4. For any h ≤ n · cmax, G′ has a SADSP from s0 to sn of cost h if
and only if G has a Traveling Salesman Path of cost h.

Proof. We first assume that G has a Traveling Salesman Path of cost h.
Without loss of generality, assume that the path is (v1, v2) → (v2, v3) →

· · · → (vn−1, vn). By construction, the path

(s0, w1) → (w1, s1) → (s1, w2) → (w2, s2) → (s2, w3) → · · · → (wn, sn)

has cost
∑n−1

i=1 c(vi, vi + 1) = h. Thus, G′ has a SADSP of cost h from s0 to sn.
We now assume that G′ has a SADSP P of cost h from s0 to sn.
By construction, the only arcs inG′ are of the form (sk, wi) or (wi, sk). In other

words, there are no arcs of the form (si, sj) or (wi, wj). We define P (k), where
0 ≤ k ≤ n− 1, such that vertex wP (k) immediately follows vertex sk in path P . In
other words, let (sk, wP (k)) ∈ P . By construction, the cost of going from wP (k) to
any vertex sj 	= sk+1 is n · cmax + 1 > h. Thus, P must be of the form:

(s0, wP (0)) → (wP (0), s1) → (s1, wP (1)) → (wp(1), s2) → · · · → (wP (n−1), sn).

Since P is a simple path, vertices wP (0), wP (1), . . . , wP (n−1) must be dis-
tinct. By construction, each arc (sk, wP (k)), for 1 ≤ k ≤ n − 1, has cost
c(vP (k−1), vP (k)). Also, by construction, each arc (wP (k), sk+1) has cost 0. Thus,

c(vP (0), vP (1)) + c(vP (1), vP (2)) + · · · + c(vP (n−2), vP (n−1)) = h.

Since vertices wP (0), wP (1), . . . , wP (n−1) are distinct in G′, it must be the case
that vP (0), vP (1), . . . , vP (n−1) are distinct in G. Therefore, by definition, the
above path must be a Traveling Salesman Path in G of cost h. ��

Therefore, this reduction from Traveling Salesman is a strict reduction. Since
TSP is NPO-complete [8], so is the SADSPOpt problem. In other words, the
presence of a polynomial approximation for the SADSPOpt problem would imply
that P = NP.

6 An Exact Exponential Algorithm

In this section, we provide an exact exponential algorithm for the SADSPOpt

problem.

6.1 A Naive Approach

We first describe a naive approach to solving the problem. This approach pro-
ceeds as follows:



256 P. Wojciechowski et al.

1. For each ordering of the vertices in G such that v1 = s:
a. Let k be the index of t in the ordering. This means that vk = t.
b. The cost of the path from s to t under this ordering is

C[v2, s] +
k∑

i=2

C[(vi−1, vi), (vi, vi+1)].

2. Return the st-path with the least cost.

It is easy to see that every possible st-path is considered using this procedure.
However, there are n! possible orderings of the vertices in G. Once an ordering is
chosen, the cost of the st-path can be computed in polynomial time. Thus, this
procedure runs in time O∗(n!). However, a more efficient procedure is possible.

6.2 An Improved Exponential Algorithm

We now provide a more efficient method for solving the SADSPOpt problem.
Let us consider a method that constructs the simple path backwards, starting

from the destination t. Finding the shortest one arc path to t can be done by
simply looking at the costs of the arcs going into t. We can then look further
back to consider all two-arc paths to t. As we continue backtracking, we need
to keep track of the set of intermediate vertices so that we do not reuse these
vertices.

Suppose we know, for vertices vi and vj and set of vertices R, the shortest
path p from vi to t with predecessor vj such that the set of intermediate vertices
is exactly R. Then, from the perspective of further backtracking, it does not
matter what order the vertices of R are visited by p. We only need to know
that these vertices cannot be used for further backtracking. Thus, we only need
to know the shortest path for each start vertex, predecessor vertex, and set
of intermediate vertices. This leads us to a dynamic programming based exact
exponential algorithm.

Let P (vi, vj , R) be the least cost of any path from vi to t with predecessor
vj and set of intermediate vertices R. Note that the cost of any path from vi
to t depends only on the vertex vj that precedes vi. Thus, P (vi, vj , R) is well
defined. If there are no intermediate vertices, then the only possible path from
vi to t is the arc (vi, t). Thus, P (vi, vj , ∅) = C[(vj , vi), (vi, t)]. We will now show
that

P (vi, vj , R) = min
vk∈R

{
C[(vj , vi), (vi, vk)] + P (vk, vi, R \ {vk})

}
.

Theorem 5. Let G = 〈V,E, c〉 be an arc-dependent network. For each vi, vj ∈
V and each R ⊆ V \ {s, t, vi, vj},

P (vi, vj , R) = min
vk∈R

{
C[(vj , vi), (vi, vk)] + P (vk, vi, R \ {vk})

}
.



On Finding Shortest Paths in Arc-Dependent Networks 257

Proof. If |R| = 1, then there is only one vertex vk ∈ R. By definition of P , this
must be the only intermediate vertex between vi and t. Thus, the only possible
path from vi to vt is (vi, vk) → (vk, t). The cost of this path is

P (vi, vj , R) = C[(vi, vk), (vk, t)] + C[(vj , vi), (vi, vk)]
= C[(vj , vi), (vi, vk)] + P (vk, vi, ∅).

Now assume that this holds true for all sets R of size h. Let R′ be a set of
size (h + 1).

Let p be the shortest path from vi to t with predecessor vj and set of interme-
diate vertices R′. We know that some vk ∈ R′ immediately follows vi on p. Thus,
p can be broken up into the arc (vi, vk) and a path p′ from vk to t. Note that
p′ has R′ \ {vk} as its set of intermediate vertices and has vi as its predecessor.
This means that the cost of p′ is at least P (vk, vi, R \ {vk}).

If there is a path p∗ from vk to t with set of intermediate vertices R′ \ {vk}
and predecessor vi that is shorter than p′, then the path consisting of the arc
(vi, vk) followed by p∗ is a simple path from vi to t with set of intermediate
vertices R′ that is shorter than p. Since this violates the optimality of p, p′ must
be the shortest path from vk to t with set of intermediate vertices R′ \ {vk} and
predecessor vi. Thus, the cost of p′ is P (vk, vi, R \ {vk}).

This means that

P (vi, vj , R′) = min
vk∈R′

{
C[(vj , vi), (vi, vk)] + P (vk, vi, R′ \ {vk})

}
.

��
From Theorem 5, P (vi, vj , R) can be found in O(n) time once P is known

for every pair of vertices and every subset of R. Note that we only need to find
P (vi, vj , R) when (vj , vi) ∈ E. Thus, there are O(m · 2n) possible inputs to P .
This means that P can be computed in O(m · n · 2n) time using a dynamic
program. Once P is computed, it is easy to see that the SADSP from s to t in
G has cost

min
R⊆V\{s,t}

P (s, , R),

where implies that s does not have a preceding arc in the shortest path from
s to t. The same dynamic program can be easily modified to return the shortest
path. Thus, the SADSPOpt problem can be solved in O(m · n · 2n) time.

Note that this algorithm can be extended to solve the SADNC problem by
checking if for each arc (vi, vj) in G, the cost of the shortest path p from vj to
vi is less than −C[ek, (vi, vj)] where ek is the last arc of p.

6.3 A Lower Bound

We now utilize the reduction from the Traveling Salesman Problem used in
Sect. 5 to establish a likely lower bound on the running time of any algorithm
that would solve the SADSPOpt problem.



258 P. Wojciechowski et al.

From Theorem 4, we can solve the Traveling Salesman Problem on a graph
with n vertices by solving the SADSPOpt problem on a graph with (2 · n + 1)

vertices. This means that it is unlikely for there to be a o∗(
√

2
n′

) algorithm for
solving the SADSPOpt problem on a network with n′ vertices. If such an algo-
rithm existed, then it would solve the Traveling Salesman Problem on a graph
with n vertices in time o∗(

√
2
2·n+1

) = o∗(2n). This would constitute an improve-
ment on the bound of O(n2 · 2n) obtained by the Heldman-Karp algorithm [6].

7 Integer Programming Formulation

In this section, we provide a compact integer programming formulation for the
SADSPOpt problem.

Let G be an arc-dependent network. We construct the corresponding integer
program I as follows:

1. For each node vi, create the variable vi ∈ {0, . . . , n}.
2. For each arc ej in G, create the variable xj ∈ {0, 1}.
3. If arc ej goes from node vi to vi′ , create the constraint vi′ ≥ vi+(n+1)·xj−n.
4. For each pair of arcs ej and ek such that the head of ej is the tail of ek:

(a) Create the variable wjk ∈ {0, 1}.
(b) Create the constraint xj + xk − 1 ≤ wjk.

5. For each arc ek leaving s, create the variable w0k and the constraint w0k = xk.
6. For each arc ek, create the constraint

∑
wjk ≤ xk.

7. For each node vi, let Hi be the set of arcs with head vi, and let Ti be the set
of arcs with tail vi.

8. For each node vi 	∈ {s, t}, create the constraints
∑

ej∈Hi

xj =
∑

ej∈Ti

xj ≤ 1.

9. Create the constraints
∑

ej∈Ht
xj = 1 and

∑
ej∈Ts

xj = 1.
10. Create the objective function min

∑
C[ej , ek] · wjk.

We now show that I solves the SADSPOpt problem.

Theorem 6. G has an arc-dependent path p from s to t of cost c if and only if
I has a solution such that the objective function has value c.

Proof. First assume that G has an arc-dependent path p of cost c. For each arc
ej , set xj = 1 if ej ∈ p and xj = 0, otherwise.

Let ek be an arbitrary arc in p. If ek is the first arc in p, then by construction
ek leaves s. Thus, the variable w0,k = 1 and arc ek contributes C[e0, ek] to the
value of the optimization function. Recall that e0 is a phantom arc.

If ej is the arc that precedes arc ek in p, then we have the following:



On Finding Shortest Paths in Arc-Dependent Networks 259

1. The head of ej is the tail of ek. Thus, the variable wjk exists.
2. xj = xk = 1. This implies that the constraints xj +xk −1 ≤ wjk and wjk ≤ 1

force wjk = 1.
3. Let ej′ 	= ej be an arc such that the head of ej′ is the tail of ek.
4. Since p is simple, ej′ cannot be in p, so xj′ = 0. Thus, wj′k = 0 satisfies the

constraint xj′ + xk − 1 ≤ wj′k.
5. Since xk = wjk, the constraint

∑
wjk ≤ xk forces wj′k = 0. Thus, arc

ek contributes exactly C[ej , ek] to the value optimization function. This is
precisely the cost of arc ek in the path p.

Since each arc in p contributes its cost to the optimization function, we have
that the value of the optimization function is the total cost of p as desired.

Now assume that I has a solution for which the value of the optimization
function is c. For each arc ej in G, add ej to p if and only if xj = 1. We now
show that p is a simple path with arc-dependent cost c.

Observe the following:

1. The constraint
∑

ej∈Ts
xj = 1 ensures that exactly one arc leaves s. Thus, p

starts at s.
2. The constraint

∑
ej∈Ts

xj = 1 ensures that exactly one arc enters t. Thus, p
ends at t.

3. For each vi, the constraints
∑

ej∈Hi
xj =

∑
ej∈Ti

xj ≤ 1 ensure that at most
one arc leaves vi, at most one arc enters vi, and that the an arc leaves vi if
and only if an arc enters xi.

4. For each arc ej ∈ p, the constraint vi′ ≥ vi+(n+1)·xj−n becomes vi′ ≥ vi+1.
This prevents p from containing a cycle. Thus, p is a simple path.

As argued previously, each arc in p contributes its cost to the optimization
function. Therefore, p has arc-dependent cost c as desired. ��

If we remove the constraints created in steps 5 and 9 from the construction
of integer program I, then this becomes an integer programming formulation of
the SADNC problem.

8 Conclusion

In this paper, we discussed the arc-dependent shortest path problem in arbitrar-
ily weighted networks. In particular, we focused on the SADSPD, SADSPOpt, and
SADNC problems in such networks. We established several complexity results.
In particular, we showed that the SADSPD problem is NP-complete and that
the SADSPOpt problem is NPO-complete. We designed an exact exponential
algorithm for the SADSPOpt problem. Finally, we provided integer programming
representations of the SADSPOpt and SADNC problems.

We plan on investigating graph classes for which the SADSPOpt problem can
be solved in polynomial time. We have not yet studied the complexity of this
problem for planar graphs or graphs with bounded degree. We may be able to
obtain better results for the SADSPOpt problem for these restricted graph types.



260 P. Wojciechowski et al.

References

1. Añez, J., De La Barra, T., Pérez, B.: Dual graph representation of transport net-
works. Transp. Res. Part B: Methodol. 30(3), 209–216 (1996)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization and Their
Approximability Properties, 1st edn. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-58412-1

3. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton
(1957)

4. Caldwell, T.: On finding minimum routes in a network with turn penalties. Com-
mun. ACM 4(2), 107–108 (1961)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

6. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

7. Kirby, R.F., Potts, R.B.: The minimum route problem for networks with turn
penalties and prohibitions. Transp. Res. 3(3), 397–408 (1969)

8. Orponen, P., Mannila, H.: On approximation preserving reductions: complete prob-
lems and robustmeasures. Technical report, Department of Computer Science, Uni-
versity of Helsinki (1987)

9. Tan, J.: On path-dependent shortest path and its application in finding least cost
path in transportation networks. Master’s thesis, School of Computing, National
University of Singapore (2003)

10. Tan, J., Leong, HW.: Least-cost path in public transportation systems with fare
rebates that are path- and time-dependent. In: Proceedings of the 7th Interna-
tional IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.
04TH8749), pp. 1000–1005, October 2004

11. Ziliaskopoulos, A.K., Mahmassani, H.S.: A note on least time path computation
considering delays and prohibitions for intersection movements. Transp. Res. Part
B: Methodol. 30(5), 359–367 (1996)

https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-58412-1


Heuristics



The Knapsack Problem with Forfeits

Raffaele Cerulli, Ciriaco D’Ambrosio, Andrea Raiconi(B), and Gaetano Vitale

University of Salerno, 84084 Fisciano, Italy
{raffaele,cdambrosio,araiconi,gvitale}@unisa.it

Abstract. In this paper we introduce and study the Knapsack Problem
with Forfeits. With respect to the classical definition of the problem,
we are given a collection of pairs of items, such that the inclusion of
both in the solution involves a reduction of the profit. We propose a
mathematical formulation and two heuristic algorithms for the problem.
Computational results validate the effectiveness of our approaches.

Keywords: Knapsack Problem · Conflicts · Forfeits · Carousel Greedy

1 Introduction

In many optimization problems, contrasting or mutually exclusive choices often
arise. In combinatorial optimization, this issue has been often faced by the intro-
duction of disjunctive constraints or conflicts, meaning that there exists a col-
lection of pairs of items, such that for each pair at most one of them can be
included in the solution. Variants of classical problems with the addition of
conflicts include the Minimum Spanning Tree Problem [4,7,13,20,21], the Max-
imum Flow Problem [17], the Knapsack Problem [1,10,12,16,18] and the Bin
Packing Problem [8,9,15,19]. In [2,3] disjunctive constraints are used to model
interference constraints in the Maximum Lifetime Problem on Wireless Sensor
Networks.

In this paper, we study a variant of the 0/1 Knapsack Problem that considers
soft conflict constraints, or forfeits. In more detail, we introduce a forfeit cost
to be paid each time that both objects in a so-called forfeit pair are chosen to
be part of the solution. This variant can be of use in scenarios in which strict
conflicts may lead to infeasible solutions, or the drawback caused to avoid all
conflicts may impact the result more than allowing some of them. We can think
of several applications of the problem, including:

– Each object is a machine which needs a worker to be operated. Forfeit pairs
represent machines that can only be operated by a worker that we are cur-
rently paying, and hence the activation of two such machines requires hiring
a new worker, i.e. another salary;

The original version of this chapter was revised: the second author’s family
name was corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-53262-8 25

c© Springer Nature Switzerland AG 2020, corrected publication 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 263–272, 2020.
https://doi.org/10.1007/978-3-030-53262-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_25
https://doi.org/10.1007/978-3-030-53262-8_22


264 R. Cerulli et al.

– The chosen items represent the work shift assigned to an employee, and for-
feit pairs represent tasks that would involve extras on the salary if assigned
together;

– In deciding a series of investments, a cost could derive from making two
investment decisions at the same time.

We introduce a mathematical formulation and two heuristic algorithms to
solve the problem. The first algorithm is a constructive greedy, while the second
is based on the recently introduced Carousel Greedy paradigm. In [5], Carousel
Greedy was proposed and applied with success to the Minimum Label Spanning
Tree Problem, the Minimum Vertex Cover Problem, the Maximum Independent
Set Problem and the Minimum Weight Vertex Cover Problem. It has been sub-
sequently used in several other contexts, including a coverage problem in Wire-
less Sensor Networks [2], a generalization of the Minimum Label Spanning Tree
Problem [6], sentiment analysis in the context of Big Data [11] and community
detection [14].

The paper is organized as follows. In Sect. 2, we formally define the problem
by presenting notation and the mathematical formulation. The two proposed
heuristic algorithms are introduced and discussed in Sect. 3. Computational
results are reported and commented in Sect. 4. Conclusions and final remarks
are included in Sect. 5.

2 Notation and Mathematical Formulation

Let n be the number of objects, composing the set X. Each object i ∈ X has an
associated profit pi > 0 in the set P and positive weight wi > 0 in the set W ,
i = 1, . . . , n. Let F be a set of l distinct forfeit pairs

F = {Fk}k=1,...,l, Fk ⊆ X, |Fk| = 2 ∀Fk ∈ F

and let dk > 0, in the set D, be the forfeit cost associated with Fk, k = 1, . . . , l.
Finally, let b > 0 be the available budget, that is, the upper bound on the

maximum weight of the items chosen to be part of the solution. The problem
can be formulated as follows:

max
n∑

i=1

pixi −
l∑

k=1

dkvk (1)

s.t. (2)
n∑

i=1

wixi ≤ b (3)

xi + xj − vk ≤ 1 ∀Fk = {i, j}, k = 1, . . . , l (4)
xj ∈ {0, 1} ∀i = 1, . . . , n (5)
0 ≤ vk ≤ 1 ∀k = 1, . . . , l (6)



The Knapsack Problem with Forfeits 265

where:

– variable xi is equal to 1 if object i is selected, and 0 otherwise;
– variable vk assumes value 1 if the forfeit cost dk is to be paid according to

the chosen objects, and 0 otherwise.

This formulation is a natural generalization of the one reported in [16]. In fact,
we relax the strict conflict constraints of the type xi + xj ≤ 1 ∀Fk = {i, j}, k =
1, . . . , l by introducing variables vj (see constraints (4)). These variables allow
us to choose both the elements of the forfeit pair. In this case, vk is forced to
value 1, and therefore, according to objective function (1), the related cost dk is
paid. Constraint (3) makes sure that the total budget is not violated.

The problem includes the classical 0–1 Knapsack Problem as special case and
is therefore NP-Hard.

In the next section two heuristic algorithms for the problem are proposed.

3 Algorithms

In this section, two heuristic algorithms for the problem are proposed. We first
propose a constructive greedy algorithm in Sect. 3.1. Furthermore, we present
an enhancement of this algorithm based on the Carousel Greedy paradigm in
Sect. 3.2.

3.1 GreedyForfeits Algorithm

The pseudocode of our constructive greedy algorithm is reported in Algorithm 1.
The algorithm takes as input the items set X, the profit and weight sets P

and W , the budget value b, the forfeits set F and forfeit costs set D. The set
S ⊆ X initialized in line 1 will contain the items chosen to be included in the
solution, while the bres value, introduced in line 2, corresponds in any phase of
the algorithm to the residual budget, that is, bres = b−∑

i∈S wi. The main loop
of the algorithm is contained in lines 3–28. In each iteration, we first build the set
Xiter (lines 4–9), containing the items that can still be added to S. That is, Xiter

contains any item i ∈ X which does not currently belong to S, and such that
its weight wi is not greater than bres. If Xiter is empty, clearly no more items
can be added, and the algorithm stops returning S (lines 10–12). Otherwise, we
evaluate the most promising element of Xiter to be added to S. The main idea
is to evaluate each item i ∈ Xiter according to the ratio between profit and
weight, pi

wi
. However, for any forfeit pair Fk = {i, j} containing i and such that

the other item j is already in S, we subtract from pi the related cost dk. The
updated profit value, indicated as p′

i, reflects the forfeit costs that would have to
be paid if i is added to S. For each i ∈ Xiter, the computation of p′

i is described
in lines 14–19, while the computation of the ratio value ratioi is reported in line
20. Then, the element i∗ ∈ Xiter corresponding to the maximum ratio value is
identified (line 22). We note that it is possible for p′

i∗ (and therefore for ratioi∗)
to be a negative value. If this is true, it means that it is not convenient to add
any other item to S, and the set is returned (lines 23–25). Otherwise, both S and
bres are updated to reflect the addition of i∗ to the solution (lines 26–27), and



266 R. Cerulli et al.

Algorithm 1. GreedyForfeits
Input: (X, W, P, b, F, D)

1: S ← ∅
2: bres ← b
3: while X \ S �= ∅ do
4: Xiter ← ∅
5: for i ∈ X do
6: if wi ≤ bres & i �∈ S then
7: Xiter ← Xiter ∪ {i}
8: end if
9: end for

10: if Xiter = ∅ then
11: return S
12: end if
13: for i ∈ Xiter do
14: p′

i ← pi

15: for Fk = {i, j} ∈ F do
16: if j ∈ S then
17: p′

i ← p′
i − dk

18: end if
19: end for
20: ratioi ← p′

i
wi

21: end for
22: i∗ ← argmax[ratio]
23: if ratioi∗ < 0 then
24: return S
25: end if
26: S ← S ∪ {i∗}
27: bres ← bres − wi∗

28: end while
29: return S

current iteration ends. Finally, if the main loop ends without encountering any
of the two mentioned stopping conditions (meaning that trivially all elements of
X could be added to S), the set S is returned.

As in many constructive greedy algorithms, a limit of the proposed Greedy-
Forfeits is that the contribution of each item composing the solution is evaluated
in the moment in which it is added to it. An item appearing attractive in the
first iterations could actually lead to many forfeit costs to be added later on.
A way to overcome this issue is represented by the carousel greedy paradigm,
which we used to enhance the GreedyForfeits heuristic, as described in Sect. 3.2.

3.2 CarouselForfeits Algorithm

The Carousel Greedy (CG) paradigm, originally proposed in [5], provides a gen-
eralized framework to improve constructive greedy algorithms, posing itself as



The Knapsack Problem with Forfeits 267

a trade-off (in terms of computational time and solution quality) among such
greedy procedures and meta-heuristics. The main intuition is that, generally, the
choices taken according to the greedy criteria in the first steps of the algorithm
could be not very effective due to the lack of knowledge about the subsequent
structure of the solution. Therefore, such early choices could end up compro-
mising the quality of the final solution. In order to overcome this phenomenon,
earlier choices are iteratively reconsidered and eventually replaced with new ones.
Given a basic constructive heuristic, a CG is composed of three main steps:

1. Using the greedy algorithm, a solution is first built, and then some of its
latest choices are discarded, obtaining a partial solution.

2. For a predefined number of iterations, the oldest choice is discarded, and a
new one is taken according to the greedy criteria of the basic algorithm.

3. Finally, the solution is completed by applying the greedy algorithm, starting
from the partial solution obtained at point 2.

The pseudocode of the CG algorithm that we developed, CarouselForfeits, is
reported in Algorithm 2.

Algorithm 2. CarouselForfeits
Input: (X, W, P, b, F, D, α, β)

1: S ← GreedyForfeits(X, W, P, b, F, D)
2: S′ ← RemoveLastChoices(S, β)
3: size ← |S′|
4: for i = 1 → α × size do
5: S′ ← RemoveOldestChoice(S′)
6: i∗ ← GreedyForfeitsSingle(X, W, P, b, F, D, S′)
7: S′ ← S′ ∪ {i∗}
8: end for
9: S′′ ← GreedyForfeitsInit(X, W, P, b, F, D, S′)

10: return S′′

The algorithm takes the same input of GreedyForfeits, plus two parameters,
α and β, such that 0 ≤ β ≤ 1 and α ≥ 1.

Lines 1–2 correspond to the first CG step. We first use our greedy to obtain
a feasible solution S ⊆ X. We then obtain a partial solution S′ by dropping
some of the last choices; more precisely, the last β|S| added items are dropped.
Let size be |S′| at this point; the second CG step (lines 4–8) is iterated α× size
times. In each iteration, we first drop from S′ the oldest choice. We then execute
a variant of GreedyForfeits called GreedyForfeitsSingle. It initializes the solution
with S′ instead of the empty set, executes a single iteration of the main loop,
identifying the best element to be added i∗ according to our greedy criterion,
and returns it. S′ is then updated to include i∗. Finally, in the third and last
CG step (line 9), we complete S′ by executing a second variant of our greedy,



268 R. Cerulli et al.

GreedyForfeitsInit, which again initializes the solution with S′, and completes
the solution iterating the main loop until no more items can be added. The
resulting solution S′′ is returned (line 10).

4 Computational Results

In this section we compare the results of our two heuristics with values pro-
vided by solving the mathematical formulation reported in Sect. 2, on a set of
benchmark instances. We have generated instances according to the following
parameters: number of items n in the set {500, 700, 800, 1000}, number of ran-
domly chosen forfeit pairs l = n × 6, budget b = n × 3. Item weights are integer
values assigned randomly, chosen in the interval [3, . . . , 20]. Item profits are ran-
dom integers in the interval [5, . . . , 25], while forfeit values are random integers
in the interval [2, . . . , 15]. We generated randomly 10 instances for each value of
n, for a total of 40 test cases. For the CG parameters, after a preliminary tuning
phase, the values α = 2, β = 0.05 were chosen.

All tests were executed on a workstation with an Intel Xeon CPU E5-2650 v3
running at 2.30 GHz with 128 GB of RAM. GreedyForfeits and CarouselForfeits
were coded in C++. CPLEX 12.10 was used to solve the mathematical formula-
tion, considering a time limit of one hour, and collecting the best solution found
whenever it is violated.

The results on “small” instances (n = 500 and n = 700) are reported in
Table 1, while the results for the “large” ones (n = 800 and n = 1000) are
contained in Table 2. In the tables, each row refers to the results collected for
a given instance. The first two columns contain the value of n and an identifier
(between 1 and 10) for the instance. The following three columns contain the
results obtained by CPLEX, namely the solution value, the related number of
paid forfeits and the computational time in seconds. Whenever the time limit
(3600 s) is reached, this is indicated with “TL”. The following four columns refer
to the GreedyForfeits algorithm, and contain the solution value, the gap between
such solution and the one found by CPLEX, the number of paid forfeits and the
computational time, respectively. Finally, the last four columns contain the same
values for CarouselForfeits. Each value reported under the “%gap” columns is
computed using the formula 100 − 100 solheu

solopt
, where solopt is the solution value

found by CPLEX on the related instance, and solheu the solution value found
by GreedyForfeits or CarouselForfeits.

Let us consider the results on the small instances (Table 1). We note that 18
out of 20 instances were solved to optimality within the time limit. Fon n = 500,
all instances were solved, requiring up to around 1000 s in the worst case (id = 3
and id = 7). A single instance required less than 100 s (id = 8). For n = 700, two
instances could not be solved (id = 2 and id = 9), while two other instances (id 8
and 10) required around 3000 s. A single instance (id = 6) was solved in less than
1000 s. According to expectations, the computational time required to solve the
instances grows with their size.



The Knapsack Problem with Forfeits 269

Table 1. Results on small instances

Instance type Model Greedy CG

n id sol #forf. time(s) sol %gap #forf. time(s) sol %gap #forf. time(s)

500 1 2626 66 402.84 2309 12.07 121 0.61 2510 4.42 86 1.74

2 2660 57 262.91 2428 8.72 109 0.50 2556 3.91 79 1.31

3 2516 53 1002.02 2335 7.19 106 0.49 2400 4.61 84 1.26

4 2556 46 222.16 2327 8.96 91 0.50 2441 4.50 73 1.26

5 2625 58 375.77 2328 11.31 121 0.51 2502 4.69 91 1.29

6 2615 36 337.87 2309 11.70 95 0.53 2500 4.40 62 1.33

7 2627 63 958.39 2316 11.84 131 0.51 2470 5.98 90 1.36

8 2556 50 75.97 2282 10.72 111 0.49 2471 3.33 82 1.28

9 2613 53 221.67 2337 10.56 113 0.51 2524 3.41 91 1.34

10 2558 53 662.10 2346 8.29 94 0.49 2439 4.65 82 1.30

700 1 3589 57 1613.96 3218 10.34 144 1.40 3448 3.93 95 3.51

2 3422 68 TL 2865 16.28 166 1.40 3253 4.94 98 3.45

3 3679 64 1031.14 3374 8.29 127 1.36 3449 6.25 110 3.47

4 3664 69 2302.12 3380 7.75 135 1.36 3512 4.15 116 3.51

5 3647 67 1748.07 3332 8.64 138 1.39 3457 5.21 106 3.51

6 3596 68 698.76 3330 7.40 138 1.39 3447 4.14 125 3.65

7 3542 72 1067.65 3086 12.87 154 1.38 3319 6.30 118 3.65

8 3619 60 3339.49 3183 12.05 142 1.38 3389 6.36 94 3.61

9 3553 80 TL 3040 14.44 175 1.43 3363 5.35 119 3.64

10 3652 64 2971.29 3167 13.28 152 1.40 3462 5.20 96 3.60

Looking at the results for GreedyForfeits, we observe that the algorithm is
remarkably fast, requiring around 0.5 s for n = 500 and 1.4 s for n = 700. The
gap among the solution values found by the algorithm and the ones returned
by CPLEX is within 15% in 19 out 20 cases, and within 10% in 8 cases. In
the worst case (n = 700, id = 2) the gap is 16.28%. Looking at the number of
forfeits, we note that the greedy solutions contain in all cases around twice of
such penalties to be paid. In the worst cases (n = 500, id=6 and n = 700, id = 1)
such ratio is 2.64 and 2.53, respectively. These results justify the introduction of
the CarouselForfeits as a mean to improve these solutions.

Indeed, we note that CarouselForfeits allows us to obtain significantly
reduced solution gaps. For n = 500, such gap is between 3.33% (id = 8) and
5.98% (id = 7), and it is under 5% in 9 out of 10 cases. For n = 700, the gap
varies from 3.93% to 6.36%. We may note that this performance enhancement is
reflected in a reduction in the number of forfeits. With respect to GreedyForfeits,
CarouselForfeits brings a reduction in the number of paid forfeit costs that is
between 9.42% (n = 700, id = 6) and 40.96% (n = 700, id = 2). The reduction is
above 20% in 14 out of 20 cases.



270 R. Cerulli et al.

Table 2. Results on large instances

Instance type Model Greedy CG

n id sol #forf. time(s) sol %gap #forf. time(s) sol %gap #forf. time(s)

800 1 4184 84 TL 3877 7.34 152 2.12 4024 3.82 126 5.31

2 4065 64 TL 3649 10.23 147 2.09 3827 5.85 106 5.25

3 4101 89 TL 3684 10.17 189 2.15 3886 5.24 148 5.47

4 4051 82 TL 3633 10.32 164 2.17 3850 4.96 132 5.48

5 4085 95 TL 3622 11.33 197 2.14 3900 4.53 129 5.48

6 4249 90 TL 3790 10.80 175 2.15 4084 3.88 123 5.68

7 4117 79 TL 3682 10.57 195 2.21 3897 5.34 145 5.70

8 4063 94 TL 3636 10.51 180 2.15 3859 5.02 135 5.64

9 4080 75 TL 3703 9.24 149 2.11 3853 5.56 123 5.58

10 4124 91 TL 3794 8.00 169 2.19 4050 1.79 125 5.71

1000 1 4925 89 TL 4455 9.54 181 4.72 4655 5.48 151 12.04

2 4966 123 TL 4562 8.14 212 4.77 4756 4.23 176 12.14

3 5170 108 TL 4724 8.63 199 4.87 4897 5.28 158 12.35

4 5139 115 TL 4602 10.45 202 4.76 4916 4.34 159 12.12

5 5134 97 TL 4693 8.59 194 4.82 4935 3.88 152 12.16

6 5063 99 TL 4606 9.03 169 4.74 4858 4.05 130 12.35

7 5100 108 TL 4482 12.12 206 4.75 4876 4.39 156 12.51

8 5178 100 TL 4780 7.69 189 4.83 4916 5.06 165 12.61

9 5108 97 TL 4536 11.20 193 4.76 4890 4.27 153 12.50

10 5174 118 TL 4724 8.70 217 4.89 4998 3.40 160 12.66

Finally we note that, while more complex than the greedy algorithm, Carou-
selForfeits remains a fast algorithm, running in 1.74 s in the worst case for
n = 500 (id = 1) and in 3.65 s in the worst case for n = 700 (id = 6 and id = 7).

We now turn to large instances (Table 2). We note that no instances of this
size could be solved to certified optimality within the time limit, emphasizing
the need for good heuristic algorithms. Looking at GreedyForfeits, we note that
in terms of percentage gap from the CPLEX solutions there is not a noticeable
difference with respect to the case of small instances. Indeed, the gap is below
10% for 10 out of 20 instances, and equal to 12.12% in the worst case (n = 1000,
id = 7). Again, the number of paid forfeit costs for greedy solutions are around
twice those produced by CPLEX with a peak of this ratio equal to 2.47 (n = 800,
id = 7). In terms of computational times, all instances required around 2 s for
n = 800 and less than 5 s for n = 1000.

Looking at CarouselForfeits, we observe that for n = 800 gaps are between
1.79% (id = 10) and 5.85% (id = 2), while for n = 1000 they are between 3.40%
(id = 10) and 5.48% (id = 1). The reduction in the number of paid forfeits with
respect to GreedyForfeits is between 12.70% (n = 1000, id = 8) and 34.52%
(n = 800, id = 5). As in the case of small instances, this gap is above 20% in 14 out
of 20 cases. Finally, we observe that the computational times of CarouselForfeits



The Knapsack Problem with Forfeits 271

remain very reasonable, since all instances with n = 800 are solved in less than
6 s, and all instances with n = 1000 in less than 13 s.

5 Conclusions

In this work we introduced and studied the Knapsack Problem with soft conflict
constraints, or forfeits. In this variant, a cost must be paid each time that both
elements of a so-called forfeit pair are chosen together to be included in the
solution. A mathematical formulation and two heuristic approaches have been
proposed. In particular, we designed a Carousel Greedy algorithm which is able
to extend and improve our constructive greedy, and produces solutions of good
quality in fast computational times.

Future research efforts will be spent on developing new exact and meta-
heuristic approaches for the problem, as well as applying the concept of forfeits
to other problems.

References

1. Bettinelli, A., Cacchiani, V., Malaguti, E.: A branch-and-bound algorithm for
the knapsack problem with conflict graph. INFORMS J. Comput. 29(3), 457–473
(2017)

2. Carrabs, F., Cerrone, C., D’Ambrosio, C., Raiconi, A.: Column generation embed-
ding carousel greedy for the maximum network lifetime problem with interference
constraints. In: Sforza, A., Sterle, C. (eds.) ODS 2017. SPMS, vol. 217, pp. 151–159.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67308-0 16

3. Carrabs, F., Cerulli, R., D’Ambrosio, C., Raiconi, A.: Prolonging lifetime in wire-
less sensor networks with interference constraints. In: Au, M.H.A., Castiglione, A.,
Choo, K.-K.R., Palmieri, F., Li, K.-C. (eds.) GPC 2017. LNCS, vol. 10232, pp.
285–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57186-7 22

4. Carrabs, F., Cerulli, R., Pentangelo, R., Raiconi, A.: Minimum spanning tree with
conflicting edge pairs: a branch-and-cut approach. Ann. Oper. Res. 1–14 (2018).
https://doi.org/10.1007/s10479-018-2895-y

5. Cerrone, C., Cerulli, R., Golden, B.: Carousel greedy: a generalized greedy algo-
rithm with applications in optimization. Comput. Oper. Res. 85, 97–112 (2017)

6. Cerrone, C., D’Ambrosio, C., Raiconi, A.: Heuristics for the strong generalized
minimum label spanning tree problem. Networks 74(2), 148–160 (2019)

7. Darmann, A., Pferschy, U., Schauer, J.: Minimal spanning trees with conflict
graphs. Optimization online (2009)

8. Epstein, L., Levin, A.: On bin packing with conflicts. SIAM J. Optim. 19(3), 1270–
1298 (2008)

9. Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the bin
packing problem with conflicts. Comput. Oper. Res. 31(3), 347–358 (2004)

10. Gurski, F., Rehs, C.: The knapsack problem with conflict graphs and forcing graphs
of bounded clique-width. In: Fortz, B., Labbé, M. (eds.) Operations Research Pro-
ceedings 2018. ORP, pp. 259–265. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-18500-8 33

11. Hadi, K., Lasri, R., El Abderrahmani, A.: An efficient approach for sentiment
analysis in a big data environment. Int. J. Eng. Adv. Technol. 8(4), 263–266 (2019)

https://doi.org/10.1007/978-3-319-67308-0_16
https://doi.org/10.1007/978-3-319-57186-7_22
https://doi.org/10.1007/s10479-018-2895-y
https://doi.org/10.1007/978-3-030-18500-8_33
https://doi.org/10.1007/978-3-030-18500-8_33


272 R. Cerulli et al.

12. Hifi, M., Otmani, N.: An algorithm for the disjunctively constrained knapsack
problem. Int. J. Oper. Res. 13(1), 22–43 (2012)

13. Kanté, M.M., Laforest, C., Momège, B.: Trees in graphs with conflict edges or
forbidden transitions. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC
2013. LNCS, vol. 7876, pp. 343–354. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38236-9 31

14. Kong, H., Kang, Q., Li, W., Liu, C., Kang, Y., He, H.: A hybrid iterated carousel
greedy algorithm for community detection in complex networks. Physica A: Stat.
Mech. Appl. 536 (2019). Article Number 122124

15. Muritiba, A.E.F., Iori, M., Malaguti, E., Toth, P.: Algorithms for the bin packing
problem with conflicts. Informs J. Comput. 22(3), 401–415 (2010)

16. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13(2), 233–249 (2009)

17. Pferschy, U., Schauer, J.: The maximum flow problem with conflict and forcing
conditions. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp.
289–294. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21527-
8 34

18. Pferschy, U., Schauer, J.: Approximation of knapsack problems with conflict and
forcing graphs. J. Comb. Optim. 33(4), 1300–1323 (2016). https://doi.org/10.
1007/s10878-016-0035-7

19. Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price
algorithm. INFORMS J. Comput. 25(2), 244–255 (2013)

20. Samer, P., Urrutia, S.: A branch and cut algorithm for minimum spanning trees
under conflict constraints. Optim. Lett. 9(1), 41–55 (2014). https://doi.org/10.
1007/s11590-014-0750-x

21. Zhang, R., Kabadi, S.N., Punnen, A.P.: The minimum spanning tree problem with
conflict constraints and its variations. Discret. Optim. 8(2), 191–205 (2011)

https://doi.org/10.1007/978-3-642-38236-9_31
https://doi.org/10.1007/978-3-642-38236-9_31
https://doi.org/10.1007/978-3-642-21527-8_34
https://doi.org/10.1007/978-3-642-21527-8_34
https://doi.org/10.1007/s10878-016-0035-7
https://doi.org/10.1007/s10878-016-0035-7
https://doi.org/10.1007/s11590-014-0750-x
https://doi.org/10.1007/s11590-014-0750-x


An Efficient Matheuristic
for the Inventory Routing Problem

Pedro Diniz1, Rafael Martinelli2(B), and Marcus Poggi1

1 Departamento de Informática, PUC-Rio, Rio de Janeiro, Brazil
{pfonseca,poggi}@inf.puc-rio.br

2 Departamento de Engenharia Industrial, PUC-Rio, Rio de Janeiro, Brazil
martinelli@puc-rio.br

Abstract. We consider the general multi-vehicle and multi-period
Inventory Routing Problem (IRP). A challenging aspect of solving IRPs
is how to capture the relationship among the periods where the routing
takes place. Once the routes are defined, computing the optimal inven-
tory at each customer on each period amounts to solving a network flow
problem. We investigate the impact of efficiently solving this recurring
network problem on the solutions found by the devised algorithm. A very
significant impact is observed when solving 638 instances in a classical
benchmark set, improving 113 upper bounds through assembling the
network optimization into an ILS-RVND algorithm. In particular, the
results suggested this approach performs better for larger instances with
more periods, obtaining speed-ups of about ten times. A detailed com-
parison against nine of the most prominent exact and heuristic methods
favors the proposed approach.

Keywords: Inventory routing Problem · Vendor-Managed Inventory ·
Matheuristics · Network Simplex · Iterated Local Search

1 Introduction

Logistics decisions are recognized for having a significant impact on every orga-
nization’s strategic planning. With the advent of the internet and the ever-
increasing globalization, this impact is growing and fostering companies in a
continuous search to reduce costs and increase logistics efficiency. Global opti-
mization of the supply chain is one of the efforts that have been employed in the
late years and is gaining in popularity due to improved results when compared
to traditional models. Vendor-Managed Inventory (VMI) systems are a big step
towards this objective. It centralizes the decisions on the suppliers allowing them
to reduce both production and distribution costs at the same time by combin-
ing and coordinating transportation and demand for multiple customers. The
Inventory Routing Problem [10] is then an application of VMI to define routes
to one or more vehicles to service a set of customers during a planning horizon.
In every period, all customers’ demands should be met with products from the
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 273–285, 2020.
https://doi.org/10.1007/978-3-030-53262-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_23


274 P. Diniz et al.

limited customers’ inventories and/or from the production of the single depot,
where all vehicles are located. Therefore, besides the customers’ visits to each
customer, the amount of product delivered must also be decided for each vehicle
and period. The problem then asks for the minimum overall cost, considering
the vehicles’ routing costs, and inventory costs from the customers and depot.

This problem models three simultaneous supply chain decisions into one sin-
gle (global) optimization problem: (i) decide the periods in which a customer
should be visited, (ii) decide how much should be delivered for each customer,
and (iii) decide the best delivery routes. Considering also variations of the prob-
lem, usually, one out of these two inventory policies are applied regarding cus-
tomer visits: (i) order-up-to level policy (OU), where customer inventory is filled
to its maximum capacity at every visit; and (ii) maximum level policy (ML),
where customer inventory may be below but never above its limit at every visit.

The IRP is gaining much attention recently due to its importance, complexity,
many variations, and the lack of an exact algorithm capable of solving instances
of reasonable size in a short time. Still, considering it belongs to the class of
the NP-hard problems, which can be proved by a reduction to the Traveling
Salesman Problem, advances in the literature over the last ten years are very
promising. Over the years, different methods were proposed for the single and,
more recently, multi-vehicle versions of the problem. For the single-vehicle ver-
sion, heuristic methods include a two-step heuristic algorithm [9], an Adaptive
Large Neighborhood Search (ALNS) [13], a hybrid tabu search method [4], Sim-
ulated Annealing [2,20] and Iterated Local Search (ILS) [2,20]. The first exact
method for the single-vehicle IRP was a branch-and-cut algorithm [5]. Methods
for the multi-vehicle version are more recent but are increasing in a fast-pace.
Heuristic methods include an ALNS [12], a hybrid matheuristic [7], a kernel
search matheuristic from [18], an ILS [22], a Simulated Annealing [2] and unified
matheuristic [11]. Exact methods for this variant include branch-and-cut [1,14],
a branch-cut-and-price [16] and, more recently, a single-period cutting planes [8].

This paper considers a class of the multi-vehicle and multi-period Inventory
Routing (IRP). The main result is a matheuristic composed of an Iterated Local
Search, with Random Variable Neighborhood Descent, that explores a modifica-
tion on a Network Flow algorithm to efficiently find the optimal inventory flow
and costs, given the routes to be performed in each period. The basic idea was
already explored in [12], where the authors report the computation time to solve
the Network Flow problem as an issue. It limited the approach performance
significantly in terms of solution quality versus computation time. In the resolu-
tion of IRPs, capturing the distribution of goods relation over the periods is a
challenge. This research shows that efficiently solving this Network Flow prob-
lem pays off. A very significant impact is observed. When solving 638 instances
in the small benchmark set from [5], for the ML policy, we improve 113 upper
bounds through plugging the efficient network optimization into an ILS-RVND
algorithm. In particular, the results suggest this approach performs better on
larger instances, with more periods, customers, and vehicles. The proposed algo-
rithm achieves about ten times faster execution time by updating and reusing



An Efficient Matheuristic for the IRP 275

the underlying structure used by the Network Simplex algorithm. As the final
algorithm intensively uses an enhanced Network Simplex method, we classify
this heuristic algorithm as a Matheuristic.

This paper is organized as follows. The next section presents the metaheuris-
tic used. Section 3 explains the changes in the Network Simplex algorithm to
speed up the solution. In Sect. 4, we show the computational experiments and
analyses. Section 5 concludes the work and lists future research.

2 Iterated Local Search

We start by describing the basic Iterated Local Search (ILS) algorithm. We
address the fundamental constructs of the heuristic and the main components
that build up the algorithm: the neighborhoods and the local search. The search-
space used during the algorithm execution comprehends both feasible and infea-
sible solutions. A collection of neighborhoods is defined to explore this search-
space. These neighborhoods are commonly used on several classes of vehicle
routing problems, except the insert and remove neighborhoods, which are par-
ticular for the IRP since a customer may or may not be visited in a given period
of the planning horizon. The neighborhoods are the following:

– insert(c, v, p): Insert customer c into route v in period p.
– remove(c, v, p): Remove customer c from route v in period p.
– relocate(c1, v1, p1, c2, v2, p2): Remove c1 from route v1 and period p1, and

insert into route v2 in period p2 before customer c2.
– swap(v, c1, c2): Swap customer at position c1 with customer at position c2 in

rout v.
– shift(v, c, k): Move customer at position c to position c + k in route v.
– reverse-subtour(s): Reverse the subtour s. This movement is equivalent to

the well-known 2-opt move.

The ILS uses a Randomized Variable Neighborhood Descent (RVND) [20],
which chooses, at each iteration, among the above neighborhoods. Given the
current solution, represented by a set of customers tours for each vehicle and
period, it randomly selects a neighborhood and performs a local search using
the best improvement strategy. The new solution cost is then obtained by the
sum of the routing and inventory costs.

The routing cost can be calculated in constant time, as for most of VRPs,
given the changes performed by a move on the routes. Regarding the inventory,
the modified routes may impose different deliveries and may forbid fulfilling
all customers’ demands. Therefore, changes in the amount delivered for each
customer and period may be required. Our algorithm finds the optimal inventory
or detects no feasible inventory exists by solving a Network Flow problem. The
inventory cost either corresponds to the optimal inventory cost or a penalty cost
in case of infeasibility. The next section presents the Network Flow problem that
determines the optimal delivery amounts.



276 P. Diniz et al.

An outline of the ILS is presented in Algorithm 1. It starts with an empty
initial solution as the current solution, i.e., no customer is visited in any period
by any vehicle. This solution is infeasible, therefore penalized inventory costs
will be associated. Then, in each iteration, the current solution is perturbed by
applying max perturb random moves followed by a complete run of the local
search. During the perturbation, after each random move, the new solution is
accepted if it is an improving solution or if it passes an acceptance criterion.

Algorithm 1. Outline of the Iterated Local Search
1: function ils
2: sol ← localSearch(empty sol)
3: best ← cur ← sol
4: no imp ← 0
5: for i ← 1 to max iter do
6: for j ← 1 to max perturb do
7: new ← randMove(sol)
8: if new.cost < sol.cost or testAccept(new, sol) then
9: sol ← new

10: end if
11: end for
12: sol ← localSearch(sol)
13: if sol.cost < cur.cost or testAccept(sol, cur) then
14: cur ← sol
15: if cur.cost < best.cost then
16: best ← cur
17: no imp ← 0
18: end if
19: else
20: sol ← cur
21: end if
22: no imp ← no imp + 1
23: if no imp > max no imp or sol.cost > (1 + max perc)best.cost then
24: sol ← cur ← best
25: end if
26: end for
27: end function

After the local search, this resulted solution is tested against the current
best solution. It will be accepted if it is an improving solution or if it passes the
acceptance criterion. If accepted, it will be tested for improvement against the
global best solution and replace it in case of improvement. If no improvement was
observed for a given number of iterations or the current solution value is higher
than a given percentage of the global best, the current solution and current best
solution are replaced with the global best solution.

The acceptance criterion is implemented based on the solution value obtained
after the first call to the local search. In the first iteration, it will accept a solution



An Efficient Matheuristic for the IRP 277

20% worse with a probability of 50%. This chance is then further decreased
based on the number of iterations max iter to accept a solution 10% worse with
a probability of 10% on the last iteration [21].

3 Network Simplex

While the reduction to Minimum Cost Flow [19] is not something new to the
literature, other studies that tried this same decomposition [12] reported signifi-
cant running times where approximately 65% of the total time was spent solving
only the subproblem. Our approach achieves, on average, ten times faster run-
ning times by reusing the underlying Network Simplex structure. Every optimal
inventory is obtained starting the Network Simplex algorithm from the optimal
solution of the previous iteration. The model and the update procedure are now
described.

3.1 Formulation

The subproblem is defined on a directed acyclic graph G = (V,A). In this graph,
the vertex set is composed of |T | copies of the supplier, customers, and vehicles,
plus an artificial vertex representing the excess of product that may exist at
the end of the time horizon for some customer or the supplier. Every supplier
vertex in this graph is a source of flow equal to its production on the given period.
Similarly, every customer demands a flow equal to its demand in the given period.
The artificial vertex demands the difference between the total supply and the
total demand.

The arc set has four different types of arcs. The first type contains arcs from
the supplier vertex to vehicle vertices. The capacity of each arc is the vehicle’s
capacity, and the cost is zero. The second type contains arcs from the vehicle
vertices to customers vertices. Each arc has unlimited capacity and cost zero.
The third type contains arcs between consecutive periods for the supplier and
the customers. They represent the inventory that may wait from one period to
the next. Their cost and capacity are the inventory cost and capacity of each
customer or supply. Finally, the last type contains the arcs from the customers
or supplier in the last period to the excess vertex. For each arc, its capacity is
the supplier or customer inventory capacity, but in this case, its cost is zero. An
example of this graph, with three customers, two vehicles, and two periods, is
presented in Fig. 1.

If a vehicle visits a customer in a given period, we keep the original cost of
the corresponding vehicle-customer arc. On the other hand, if the vehicle does
not visit the customer in the period, we set the arc cost to infinity. This approach
is more efficient than to rebuild graph G or to remove and add arcs before every
call to the Network Flow algorithm.



278 P. Diniz et al.

s1 s2

c1,1

c2,1

c3,1

v1,1

v2,1

c1,2

c2,2

c3,2

v1,2

v2,2

t

Period 1 Period 2 Excess

Supplier

Customers

Vehicles

Fig. 1. Proposed network flow model for 2 customers, vehicles and periods.

3.2 Fast Flow Calculation

Once the graph is built, we use the Network Simplex algorithm to calculate the
total inventory cost for a given matheuristic solution. During the local search,
several move evaluations are performed in sequence by simple changes in the pre-
vious solution. By analyzing the neighborhoods presented in Sect. 2, it is possible
to control the impact of each one in the Network Flow graph. For example, when
an insert is evaluated, we have to add an arc from the corresponding vehicle to
the customer (i.e., setting its cost to zero). For a remove evaluation, we have to
remove the vehicle-customer arc (i.e., setting its cost to infinity). The modifi-
cations required by all vehicle moves can be represented by changes in costs on
arcs.

The Network Simplex works using a spanning tree structure. It defines three
sets, T , L and U . T contains the set of arcs that compose the spanning tree,
i.e., the basic variables. L contains the set of arcs where the flow is zero, and U
contains the set of arcs where flow equals the edge capacity. Both sets contain
the non-basic variables. A Network Simplex iteration starts by calculating the
reduced cost of every arc in L and U based on the dual information of the
vertices, represented by the dual variables πi. The reduced cost is then calculated
as c̄ij = cij + πi − πj . If any non-basic arc has a negative reduced cost, the
procedure moves this arc to set T , and removes another arc from T following the
Simplex rules. At the end of execution, the optimal solution is found by joining
the arc sets with positive flow, i.e., the arc sets T and U . We refer the reader to
[15] for a complete description of the method.



An Efficient Matheuristic for the IRP 279

Usually, any change in the solution would require executing the entire algo-
rithm again because (i) some arcs may have been introduced (or removed), (ii)
arcs’ capacities may have changed, (iii) node supplies may have been modified,
(iv) the maximum flow may have changed, and (v) arcs costs may have changed.
Taking advantage of the IRP structure, the model we propose addresses most
of these issues, and reduces changes to be the equivalent of deciding which arcs
must be moved between T , L and U . In this model, change (i) does not hap-
pen because arcs are never introduced or removed, only their costs can change
between zero or infinity. Changes (ii) and (iii) are also not present because the
vehicle and inventory constraints are the same, and the production and demands
values remain unchanged. All previous reasons implicate that change (iv) cannot
occur too. The only change left is (v), and we show how to deal with it.

In Network Simplex, the arc cost is used to calculate the arc’s dual cost and
the dual variables πi of the nodes below this arc if it is in T . These changes are
sufficient to avoid having to execute the entire Network Simplex again and let
the algorithm continue from where it stopped on the previous solution. The dual
cost of each edge can be recalculated while verifying if the edge is a candidate to
enter the tree. Otherwise, there is no need to check its reduced cost. Updating
node potentials, on the other hand, requires more effort because they must be
updated on a specific order. While other strategies may be used, we propose a
procedure that iterates over all nodes starting from the root and continues node
by node following the order used for tree construction (commonly referred to as
the “thread order”). Algorithm 2 illustrates the procedure.

Algorithm 2. Update π values
1: function update pi( )
2: node ← thread[root]
3: while node �= root do
4: arc ← pred[node]
5: tgt ← arc.target
6: src ← arc.source
7: if tgt = node then
8: π[node] ← π[src] + cost[arc]
9: else

10: π[node] ← π[tgt] − cost[arc]
11: end if
12: end while
13: end function

4 Computational Experiments

The NSIRP was implemented in C++ on Ubuntu Linux. For the inventory cost
calculation (Minimum Cost Flow), we modified and used the Network Simplex



280 P. Diniz et al.

algorithm from the LEMON C++ library [17], adding the proposed modifica-
tions. Computational experiments were performed with a single thread on an
Intel Core i7-8700K 3.7 GHz with 64 GB RAM. The algorithm was tested over
the benchmark instances proposed in [5]. They are composed of 160 files orga-
nized into two classes of instances (low and high inventory cost) and cover
scenarios where the horizon H can be equal to 3 or 6 periods. The number of
clients n is n = 5t, with t = 1, ..., 10 when H = 3 and t = 1, ..., 6 when H = 6. All
instances were tested from two up to five identical vehicles, dividing the vehicle
capacity by the number of vehicles (and rounding down), and resulting in a total
of 640 instances (but two are known to be infeasible). For each instance, we run
the matheuristic algorithm ten times.

We first present the results on our main contribution, the Fast Flow Calcu-
lation. We performed a complete run on all instances with the regular Network
Simplex algorithm (NSA) and with the Fast Flow Calculation (FFC). Figure 2
shows the average fraction of the original time that our modification obtains, cal-
culated for each instance as ubFFC/ubNSA, for each of the four types of instance
while the number of vehicle grows: low inventory cost with three periods (L3),
high inventory cost with three periods (H3), low inventory cost with six periods
(L6) and high inventory cost with six periods (H6). The smallest improvement
was found for instances with two vehicles, three periods, five customers, and high
cost. Our method runs in 21.1% of the original time. From the figure, we can
notice a clear tendency. As the number of vehicles or the number of customers,
or even the number of periods goes up, the improvement is more significant. The
best improvement is when the method obtains a running time of 6.0% from the
original one. It is noteworthy the correlation between the same characteristics,
but different cost types (high and low). The results show that they have no
impact on the proposed method.

Fig. 2. Time fraction of fast flow, for each size, vehicles, periods and cost type.



An Efficient Matheuristic for the IRP 281

Using fast flow, we now compare the results of NSIRP against the best
known upper bounds and most prominent methods from the literature com-
prising nine methods: four exact, three matheuristics, and two metaheuristics.
The exact methods are ABIS (Branch-and-Bound) from Archetti et al. (2007) [6],
CL (Branch-and-Cut) from Coelho and Laporte (2014) [14], DRC (Branch-Cut-
and-Price) from Desaulniers et al. (2016) [16], and ABW (Branch-and-Cut) from
Avella et al. (2018) [8]. The matheuristic methods comprehend ABS Archetti
et al. (2017) [7], the unified decomposition CCJ from Chitsaz et al. (2019) [11],
and a kernel search AGMS from Archetti et al. (2019) [3,18]. The metaheuristics
are an Iterated Local Search SOSG from Santos et al. (2016) [22], and a Sim-
ulated Annealing AMM from Alvarez et al. (2018) [2]. The parameters used in
the experiments were max iter = 500, maxperturb = 15, maxnoimp = 25 and
maxperc = 1.2.

Figure 3 shows the average gap for each instance type when the number
of vehicles grows. Each gap is calculated against the best-known upper bound
from the literature (LIT) as (ubFFC − ubLIT )/ubLIT . It becomes negative as
the number of periods goes up with the worst, never exceeding 4.0%. The gap
growth for each series was minimal reinforcing the correlation between same
characteristics, except for L3. Table 1 shows the detailed results. The overall
average gap was 0.77%, 0.01% on the best, and 1.84% on the worst. Of the 638
instances, NSIRP improved or at least matched 463 (72.0%) of the best-known
upper bounds, with 113 improvements (51.0% of the 221 open instances) and
350 matches.

Fig. 3. Average UB gap for each group and number of vehicles.



282 P. Diniz et al.

Table 1. Summary results for classical IRP instances

Type Veh Best Avg Worst Time Better Equal Worse

L3 2 0.04% 0.41% 1.15% 47.88 0 45 5

H3 2 0.00% 0.16% 0.39% 58.85 2 41 7

L6 2 0.11% 0.96% 2.48% 75.17 3 18 9

H6 2 0.01% 0.39% 1.02% 89.78 7 14 9

Avg/Total 0.04% 0.48% 1.26% 67.92 12 118 30

L3 3 0.01% 1.17% 2.92% 74.74 2 44 4

H3 3 0.05% 0.36% 0.92% 92.79 3 35 12

L6 3 −0.19% 0.92% 2.64% 107.85 14 11 5

H6 3 −0.07% 0.47% 1.26% 133.40 14 9 7

Avg/Total −0.05% 0.73% 1.94% 102.20 33 99 28

L3 4 0.34% 1.68% 3.57% 101.56 6 30 14

H3 4 0.12% 0.50% 1.04% 127.87 10 25 15

L6 4 −0.40% 0.76% 2.27% 140.04 15 5 10

H6 4 −0.10% 0.50% 1.18% 176.22 13 6 11

Avg/Total -0.01% 0.86% 2.01% 136.42 44 66 50

L3 5 0.45% 1.95% 3.86% 129.59 0 31 19

H3 5 0.18% 0.68% 1.49% 165.29 3 26 21

L6 5 −0.18% 0.90% 2.15% 156.41 8 6 15

H6 5 −0.16% 0.52% 1.08% 221.56 13 4 12

Avg/Total 0.07% 1.01% 2.15% 168.21 24 67 67

Overall 0.01% 0.77% 1.84% 118.69 113 350 175

Fig. 4. Gap comparison from each work of the literature.



An Efficient Matheuristic for the IRP 283

A best upper bound gap comparison against each method from the literature
is presented in Fig. 4. For each method (MET), this gap is calculated against
our best upper bound for each instance as (ubMET −ubFFC)/ubFFC . This com-
parison comprehends only the instances where the method provided an upper
bound. From the figure, we can notice that, on average, NSIRP outperforms all
nine methods we compare from the literature.

5 Conclusion

We have defined a new model to solve the multi-vehicle Inventory Routing.
We have demonstrated how this model enables the development of inventory-
exact solutions with more than ten times faster running times by extending
current state-of-the-art Network Simplex implementation and proposing a fast
flow procedure. We have implemented an ILS-RVND based matheuristic, entitled
NSIRP, to assess the performance of the model on well-known instances from
the literature and reported the results.

Computational experiments using well-known instances demonstrated that
NSIRP could be widely applied between different instances, with an average
upper bound gap of 0.77%. On the 638 tested instances, the method improved
or at least matched 463 (72.0%) of the best-known upper bounds, improving 113
(51.0%) of the 221 open instances. Running time results indicates that there is
no correlation between fast flow calculation times and the number of vehicles,
customers, or periods. It is demonstrated to be a scalable method, well suited
for the cases when one of these variables grows. Compared to other methods
from the literature NSIRP was capable of decreasing the average upper bound
gap for all of them, in the worst case by at least 0.4%.

Considering we are capable of solving the inventory subproblem using
an exact algorithm that implements the simplex algorithm with significantly
reduced running times, further work would be to use dual information to create
more problem-specific neighborhoods. Use this information, such as the nodes
πi or the arcs’ reduced costs, to reduce the search space, and navigate between
solutions that otherwise would be composed of multiple moves.

Acknowledgements. This research was partially supported by the Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq), grants 140084/2017-7,
313521/2017-4, 425962/2016-4 and 311954/2017-0, and by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES), Financing Code 001. All
support is gratefully acknowledged.



284 P. Diniz et al.

References

1. Adulyasak, Y., Cordeau, J.F., Jans, R.: Formulations and branch-and-cut algo-
rithms for multivehicle production and inventory routing problems. INFORMS J.
Comput. 26(1), 103–120 (2013)

2. Alvarez, A., Munari, P., Morabito, R.: Iterated local search and simulated anneal-
ing algorithms for the inventory routing problem. Int. Trans. Oper. Res. 25(6),
1785–1809 (2018)

3. Archetti, C., Guastaroba, G., Huerta-Muñoz, D., Speranza, M.: A kernel search
heuristic for the multi-vehicle inventory routing problem (2019). http://or-brescia.
unibs.it/instances

4. Archetti, C., Bertazzi, L., Hertz, A., Speranza, M.G.: A hybrid heuristic for an
inventory routing problem. INFORMS J. Comput. 24(1), 101–116 (2012)

5. Archetti, C., Bertazzi, L., Laporte, G., Speranza, M.G.: A branch-and-cut algo-
rithm for a vendor-managed inventory-routing problem. Transp. Sci. 41(3), 382–
391 (2007)

6. Archetti, C., Bianchessi, N., Irnich, S., Speranza, M.G.: Formulations for an inven-
tory routing problem. Int. Trans. Oper. Res. 21(3), 353–374 (2014)

7. Archetti, C., Boland, N., Speranza, M.G.: A matheuristic for the multivehicle
inventory routing problem. INFORMS J. Comput. 29(3), 377–387 (2017)

8. Avella, P., Boccia, M., Wolsey, L.A.: Single-period cutting planes for inventory
routing problems. Transp. Sci. 52(3), 497–508 (2018)

9. Bertazzi, L., Paletta, G., Speranza, M.G.: Deterministic order-up-to level policies
in an inventory routing problem. Transp. Sci. 36(1), 119–132 (2002)

10. Campbell, A., Clarke, L., Kleywegt, A., Savelsbergh, M.: The inventory routing
problem. In: Crainic, T.G., Laporte, G. (eds.) Fleet Management and Logistics.
CRT, pp. 95–113. Springer, Boston, MA (1998). https://doi.org/10.1007/978-1-
4615-5755-5 4

11. Chitsaz, M., Cordeau, J.F., Jans, R.: A unified decomposition matheuristic for
assembly, production, and inventory routing. INFORMS J. Comput. 31(1), 134–
152 (2019)

12. Coelho, L.C., Cordeau, J.F., Laporte, G.: Consistency in multi-vehicle inventory-
routing. Transp. Res. Part C: Emerg. Technol. 24, 270–287 (2012)

13. Coelho, L.C., Cordeau, J.F., Laporte, G.: The inventory-routing problem with
transshipment. Comput. Oper. Res. 39(11), 2537–2548 (2012)

14. Coelho, L.C., Laporte, G.: Improved solutions for inventory-routing problems
through valid inequalities and input ordering. Int. J. Prod. Econ. 155, 391–397
(2014)

15. Cunningham, W.H.: A network simplex method. Math. Program. 11(1), 105–116
(1976)

16. Desaulniers, G., Rakke, J.G., Coelho, L.C.: A branch-price-and-cut algorithm for
the inventory-routing problem. Transp. Sci. 50(3), 1060–1076 (2015)

17. Dezső, B., Jüttner, A., Kovács, P.: LEMON - an open source C++ graph template
library. Electron. Notes Theor. Comput. Sci. 264(5), 23–45 (2011)

18. Huerta-Muñoz, D., Archetti, C., Guastaroba, G., Speranza, M.: A kernel search for
the inventory routing problem (2019). http://redloca.ulpgc.es/images/workshop/
2019/Slides 2019/Huerta Munoz.pdf

19. Orlin, J.B.: A polynomial-time parametric simplex algorithm for the minimum
cost network flow problem. Working papers 1484-83. Massachusetts Institute of
Technology (MIT), Sloan School of Management (1983)

http://or-brescia.unibs.it/instances
http://or-brescia.unibs.it/instances
https://doi.org/10.1007/978-1-4615-5755-5_4
https://doi.org/10.1007/978-1-4615-5755-5_4
http://redloca.ulpgc.es/images/workshop/2019/Slides_2019/Huerta_Munoz.pdf
http://redloca.ulpgc.es/images/workshop/2019/Slides_2019/Huerta_Munoz.pdf


An Efficient Matheuristic for the IRP 285

20. Peres, I.T., Repolho, H.M., Martinelli, R., Monteiro, N.J.: Optimization in
inventory-routing problem with planned transshipment: a case study in the retail
industry. Int. J. Prod. Econ. 193, 748–756 (2017)

21. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

22. Santos, E., Ochi, L.S., Simonetti, L., González, P.H.: A hybrid heuristic based on
iterated local search for multivehicle inventory routing problem. Electron. Notes
Discret. Math. 52, 197–204 (2016)



Solving a Real-World Multi-attribute
VRP Using a Primal-Based Approach

Mayssoun Messaoudi1,3(B), Issmail El Hallaoui1,3, Louis-Martin Rousseau1,2,
and Adil Tahir1,3

1 Mathematics and Industrial Engineering Department,
Polytechnique Montréal, Montréal, QC H3C 3A7, Canada

mayssoun.messaoudi@polymtl.ca
2 Interuniversity Research Centre on Enterprise Networks,

Logistics and Transportation (CIRRELT), Montréal, QC H3C 3A7, Canada
3 Group for Research in Decision Analysis (GERAD),

Montréal, QC H3C 3A7, Canada

Abstract. Through this paper we focus on a real-life combinatorial
problem arising in emergent logistics and transportation field. The main
objective is to solve a realistic multi-attribute rich Vehicle Routing Prob-
lem using a primal-based algorithm embedded in column generation
framework. The mathematical model is formulated as a Set Partition-
ing Problem (SPP) while the subproblem is the shortest path problem
with resource constraints (SPPRC). The numerical study was carried out
on real instances reaching 140 customers. The successful results show the
effectiveness of the method, and highlight its interest.

Keywords: VRP · Column generation · Primal algorithm

1 Introduction

Supply chain encompasses several integrated activities and hand-offs allowing
physical and information flows to be routed from the source (supplier) to the
final destination (customer). Many believe that nearly two thirds of the supply
chain total cost is related to transportation, more specifically, trucking is the
dominant spend component.

Indeed, in a customer-centric era, transportation industry is becoming
increasingly complex, and firms are facing a serious imperative: being able to
deliver efficiently a whatever-whenever-wherever while respecting time, cost and
quality. However, traditional networks, inefficient and fragile systems with lim-
ited computing performance are crippling firms to provide high-quality service,
and maintain growth. In that respect, logistics providers are called upon to
sharpen their practices through resilient tailor-made approaches.

Our main objective is to solve a real-world routing problem subject to a
set of constraints and specific business rules commonly encountered in logistics
industry markets. Our solution approach is based on a primal-based algorithm in
c© Springer Nature Switzerland AG 2020
M. Bäıou et al. (Eds.): ISCO 2020, LNCS 12176, pp. 286–296, 2020.
https://doi.org/10.1007/978-3-030-53262-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_24


Primal Algorithm for Rich VRP 287

column generation framework. The aim is not only to efficiently generate optimal
dispatching plans, but also to shed light on the opportunity offered by such
methods, especially when deployed on large-scale problems. In the remainder of
this paper, note that all the mathematical formulations will be presented in their
maximization form, but results also hold for a minimization scenario.

2 Related Literature

Vehicle Routing Problems (VRP) are so popular, and are the subject of an
intensive literature due to their wide application in logistics and freight indus-
try. Since its introduction by [1,2], several approaches regarding modelling and
solution methods have been proposed for many VRP variants. Classical VRP
aims to design minimal cost routes for a fleet of identical vehicles such that
each customer is served exactly once, the capacity is respected and each vehicle
starts and ends its route at the depot. In a-demand-driven-supply chain, many
requirements and constraints arise, thus we switched from the classical VRP to
new and more combinatorial and difficult models [3] which combine not only the
usual restrictions such as time windows and fleet structure, but also specific busi-
ness rules that vary according to the context. A detailed study of those variants
can be found in [4]. Since VRP is NP-hard [5], heuristics and metaheuristics are
more suitable than exact methods which are difficult to implement on large-scale
problems. According to the classification of [6], solution methods are classified in
two main classes: dual fractional and primal methods. Dual fractional methods
[6] maintain iteratively optimality and feasibility until integrality is achieved.
Whereas primal or augmentation methods maintain both feasibility and inte-
grality and stop when optimality is reached.

One of the most known dual fractional methods is the branch-and-price
(B&P) algorithm which combines branch-and-bound (B&B) and column gen-
eration. The latter is an iterative process that solves the linear relaxation of
the problem called a master problem (MP) for a restrictive subset of variables
(columns), then called the restricted master problem (RMP). The duals related
to the RMP’s constraints are sent to a subproblem (SP) in order to generate
positive-reduced cost variables, to be added into the RMP. The process stops
when no such variables exist, and an optimal solution is obtained. If the latter is
fractional, B&B is applied using a suitable branching strategy. However, despite
its overall success, convergence problems can occur and affect the method’s effi-
ciency [7], they could be circumvented by using the stabilization strategies found
in the literature and a fine-tuning strategy.

For VRPs, column generation is one of the notable exact methods that have
successfully solved large and complex problems [8]. In such a context, the master
problem is often modelled as a Set Partitioning Problem (SPP) and the subprob-
lem is the Shortest Path Problem with Resource Constraints (SPPRC) defined
on a directed graph [9], and usually solved with the dynamic programming algo-
rithm introduced by [10].

Interestingly, exact primal methods have attracted very little interest in the
literature, furthermore, concrete and adapted realizations of these approaches



288 M. Messaoudi et al.

remain marginal. In a simple way, a primal procedure moves from one integer
solution to an improving adjacent one until optimality, and such a sequence of
moves leading to an improving solution is called a descent direction. With respect
to the usual notation, a descent direction refers to augmentation direction in a
maximization context as well. The first primal approach was introduced by [11],
then [12] set the concept of the integral augmentation problem. An interesting
combined approach was proposed by [13,14] that showed how integral simplex
can be properly embedded in column generation context. They used an adequate
branching strategy to obtain an optimal solution. Although, these models are
restricted to small instances as they haven’t been able to overcome the high
degeneracy of SPPs. Integral Simplex Using Decomposition (ISUD) is one of
the most promising primal methods, it was introduced by [15] to solve large-
scale SPPs. Based on the improved primal simplex algorithm [16], ISUD takes
advantage of degeneracy and finds strict descent directions at each iteration lead-
ing to an optimal solution. ISUD’s performance has been enhanced by adding
secant plans to penalize fractional descent directions [17], and also by exploring
neighborhood search [18]. ISUD performed excellent computational results for
SPPs with up to 500.000 variables. Recently, [19] introduced integral column
generation (ICG). This three-stage sequential algorithm combines ISUD and
column generation to solve SPPs. Experiments on large-scale instances of Vehi-
cle and Crew Scheduling Problem (VCSP) and Crew Pairing Problem (CPP)
showed that ICG exceeds two well-known column generation-based heuristics.
The authors invoked the possibility to adapt ICG even on SPP with side
constraints.

The remarkable performance of ISUD and ICG algorithms makes them worth
pursuing. We believe that such methods have to be experimented on complex
and well-known problems of literature such as rich routing problems.

2.1 Organization of the Paper and Contributions

To the best of our knowledge, it is the first time that a primal algorithm based
on an exact method has been used to solve a rich vehicle routing problem. It is
also an opportunity to discuss the procedure’s performance on a real-world com-
binatorial problem. On the one hand, experimentation on real instances showed
that the used primal method finds very good results in a short computing time.
Indeed, it outperforms a well-known branch-and-price heuristic. On the other
hand, the solution has led to a positive impact on the company’s outcome indi-
cators. This paper is organized as follows. In Sect. 3, we describe our problem
and give the related notation. In Sect. 4, we give the mathematical formulation
of master problem and subproblem. In Sect. 5, we introduce some theoretical
notions related to the primal approach. The solution method (ICG) is described
in the Sect. 6. The computational results are reported in the Sect. 7. Finally,
concluded remarks are presented in the Sect. 8.



Primal Algorithm for Rich VRP 289

3 Problem Statement

In the remainder of the paper, we use the notation organized in the Table 1
bellow.

Table 1. Definition of the parameters and variables

Notation Type Description

Ω − Set of feasible routes

N − Set of customers to visit

K − Set of heterogeneous k-type vehicles

air Binary Is equal to 1 if and only if customer i is served by route r

di Real Demand associated with customer i ∈ N

lk Real Travelled distance between origin and destination by k-vehicle
∈ K

pr Real Profit collected by the route r ∈ Ω

qk Real Capacity of vehicle k ∈ K

si Real Service time at customer i ∈ N

wk Real Accumulated working time of k-vehicle ∈ K

θr Binary Is equal to 1 if and only if route r is selected

Given a set of customers i ∈ N geographically scattered, a logistic hub O
handles their transport operations. The daily task is to ensure next-day deliver-
ies within specific time frames imposed by either customer convenience or/and
urban traffic regulation, using heterogeneous vehicles with different capacities,
types and operating costs. In addition, specific business rules such as the driving
hours set up by work unions, loading rate, and urban accessibility regulation
must be satisfied.

The objective is to maximize the profit collected by routes, resulting in the
difference between freight rates and freight costs, while satisfying the following
constraints:

1. Each customer i ∈ N is visited by a single route r ∈ Ω
2. Each customer i ∈ N is visited within the time window [ai, bi]
3. Each customer i ∈ N is visited by an allowed k-vehicle
4. The total load

∑

i∈N

di on the route travelled by k-vehicle does not exceed the

vehicle’s capacity qk

5. The total travelling time lk, including service times si, does not exceed the
allowed working time wk of k-vehicle

4 Mathematical Models

The master problem and the subproblem are formulated as SPP and SPPRC,
respectively.



290 M. Messaoudi et al.

4.1 Master Problem

With respect to the below-mentioned notation, we formulate the problem as
follows:

(SPP ) : max
θ

∑

r∈Ω

prθr (1)

s.t.
∑

r∈Ω

airθr = 1 ∀i ∈ N, (2)

θr ∈ {0, 1} ∀r ∈ Ω (3)

Each variable θr is associated with a feasible route r ∈ Ω which specifies a
sequence of customers i ∈ N to be served. The objective function (1) aims to
maximize the profit made by the feasible route r. The constraints (2) guarantee
that each customer is delivered exactly once. The choice of binary variables is
imposed by (3).

4.2 SPPRC on G(V, A)

The subproblem is modelized as a shortest path problem with resource con-
straints, and is solved using a labelling algorithm as shown in [20]. We have one
supbroblem for each k−vehicle, put simply we omit the k-index. The reduced
cost of feasible route r travelled by k−vehicle, starting and ending at the depot
O and visiting a sequence of customers i ∈ N is computed as:

pr = pr −
∑

i∈N

airπi > 0

The dual variable π is associated to the partitioning constraints (2). If all
columns have negative reduced cost, the algorithm stops and an optimal solution
is obtained for the linear relaxation of (SPP ) (1–2). For each k-vehicle, SPPRC
is defined on a cyclic graph G = (V,A). V contains |N | + 2 vertices, one vertex
for each customer i ∈ N , and (s, t) pair where s and t both refer to the depot O.
A contains departure arcs (s, j), ∀j ∈ N , arrival arcs (i, t), ∀i N and connecting
arcs (i, j), ∀(i, j) ∈ N so that the client j can be reached after the client i by
a realistic route as indicated by the actual road map. Let Γ = {μ1, μ2, . . . , μ|Γ|}
be the set of resource constraints, and Lμ

i be the label related to the resource
μ ∈ Γ and associated to the vertex i ∈ N such that the resource window [aμ

i , bμ
i ]

is respected.
In our case, we consider the following resources:

– LT
i ∈ [ai, bi]: The time resource indicates the arrival time at customer i ∈ V .

LT
i could be less than ai, i.e., driver might arrive before the starting delivery

period.
– LD

i ∈ [0, qmax]: The demand resource specifies the accumulated load until
customer i ∈ V .



Primal Algorithm for Rich VRP 291

– LW
i ∈ [0, 480min]: The working time resource specifies the total time travelled

by the driver, from {O} to customer i ∈ V .
– Lc

i : The cost resource is unconstrained, and used to compute the reduced cost
of every travel arc (i, j) ∈ A.

The label represents a feasible partial path if: Lμ
i ∈ [aμ

i , bμ
i ], ∀ μ ∈ Γ. In

such case, the label is feasible and extended along the (i, j) ∈ A by calling for
a resources-extension function, denoted fij(L

μ
i ). While the labelling algorithm

solves the subproblem, the SPP calls for ICG algorithm as explained in the
Sect. 6.

5 Preliminaries

For the sake of clarity, we introduce some preliminaries concerning the primal
approach principles, and the ISUD algorithm used in our solution procedure. We
remind that detailed literature and examples could be found in [15,16,19].

As mentioned earlier, the primal methods have paid particular attention to
SPPs. In addition to their popularity in routing and scheduling, these problems
satisfy the Trubin theory. If we denote X the SPP polytope and XS the set of
its integer solutions, [21] shows that every edge of Conv(XS) is an edge of X,
then SPP is said quasi-integral. This property makes it possible to use linear-
programming pivots to reach integer extreme points.

Let consider the (SPP):

z∗ = max
θ

{
p�θ

∣
∣
∣ Aθ = e, θ ∈ {0, 1}n

}
(4)

Let A ∈ {0, 1}m×n be the binary constraint matrix, and let A1, A2, . . . An

be the columns in A indexed in J = {1, 2, . . . , n} such that Aj denotes the jth

column in A.
A =

[
A1 A2 . . . An

]

FSPP ⊆ {0, 1}n denotes the feasible region of SPP, while FR
SPP denotes the

feasible region of the linear relaxation of SPP. θ∗
r ∈ FSPP denotes the optimal

solution and z∗
SPP is the optimal solution value.

Definition 1. A column Aj is said to be compatible with S if Aj ∈ Span(S),
i.e., it can be written as a linear combination of the columns in S, otherwise, it
is said to be incompatible.

Definition 2. The incompatibility degree δj of a column Aj towards a given
integer solution is a metric measure that represents a distance of Aj from the
solution. We note that δj of a compatible column is zero.

Based on the definition of compatibility, ISUD decomposes the columns in A
into three sets such that:

A =
[
S C I

]



292 M. Messaoudi et al.

Where S, C and I denote respectively the working basis (the support of the
current integer solution), compatible columns subset and incompatible columns
subset.

As described in Algorithm 1, the RMP is decomposed into two small subprob-
lems: The complementary problem (CP ) handles the incompatible columns and
finds a descent direction d leading to an improved solution, while the reduced
problem (RP ) handles the compatible columns and seeks to improve the current
solution.
Algorithm 1: ISUD pseudocode
1 Find initial solution θ0 and set θ̄ ← θ0

2 [S C I] ← Partition the binary matrix A into columns subsets
3 do
4 Solve RMP (θ̄, C) to improve the current solution
5 (ZCP , d) ← Solve CP to find a descent direction
6 while ZCP > 0 and d is not integer
7 θ̄ = θ̄ + d
8 return θ̄

Given a current solution θ̄ ∈ FSPP , let d be the direction leading to the next
solution such that Ad = 0. In fact, the set of the decent directions generates the
null space of A which could be an infinite cone. Thus, normalization constraints
W�d = 1 are added to bound the problem where W denotes the weight vector.
The linear program CP finds, if possible, the combination of columns to obtain
a feasible integer descent direction d, i.e., that satisfies the following conditions:

1. p�
r d > 0 (improving)

2. θ + αd ∈ FSPP , α > 0 (integer)

6 Solution Method

ICG is a three-stage sequential algorithm, which merges primal approach in a
column generation context.

The Algorithm 2 summarizes the major steps of the solution method:

1. The initialization step builds an artificial initial solution (θ0, π0). The initial
primal solution θ0 is built such that, in Step 1, each customer i is visited by
a single vehicle k that bears a very large cost. In the initial dual solution π0,
each dual value is set to this large cost.

2. The first step starts by solving the subproblems SP (πt). Using the duals
πt corresponding to the current solution θ, positive-reduced cost routes are
included in RMP. If no such routes are generated, we stop the algorithm and
the best solution found θ∗ is returned.

3. In the second step, ISUD solves the RMP to improve the solution. The cri-
terion minImp decides whether the improvement is sufficient or not. If so,
neighborhood search is explored around θt by invoking a small MIP. This
improvement step is iterated until the number of consecutive improvement
failures consFail reaches maxConsFail.



Primal Algorithm for Rich VRP 293

Algorithm 2: ICG pseudo-code
Parameters: maxConsFail, minImp.
Initialize : t ← 0; (θ, π) ← (θ0, π0); consFail ← 0
Output : (z∗, θ∗)

1 repeat
Step 1: CG

2 Ω′ ← Solve the SP (πt)
3 if Ω′ = ∅ then
4 break
5 end
6 Ω ← Ω′ ∪ Ω
7 t ← t + 1

Step 2: RMP
8 (θt, zt, πt) ← Solve the RMP using ISUD
9 if zt−1−zt

zt−1 ≤ minImp then
10 consFail ← consFail + 1
11 θt

NS ← search an improved solution around θt by solving a
restricted MIP

12 if zt
NS > zt then

13 θt ← θt
NS

14 (θt, zt, πt) ← Resolve RMP using ISUD
15 end
16 else
17 consFail ← 0
18 end
19 (z∗, θ∗) ← (zt, θt)
20 until consFail ≥ maxConsFail
21 return (z∗, θ∗)

Remark 1. The theoretical observations and empirical study made by [17], con-
cluded that there is a strong correlation between the choice of the normalization
weights vector (W�d = 1) and the descent direction obtained. In practice, we
use incompatibility degree δj as a weight vector to favor integrality.

7 Experimentation

Through this section, we discuss the results obtained by the ICG algorithm
on real-life instances. ICG is compared to a well-know branch-and-price diving
heuristic (DH) which is a dual-fractional heuristic based on column generation
[22]. DH uses a depth-first search by exploring a single branch of the search
tree. At each node, candidate columns for selection are evaluated, and the most
fractional variable is set to 1. The process stops when the solution of the master
problem is integer. The computing was performed on 7 real-life instances using
a C++ implementation, under Linux on workstations with 3.3 GHz Intel Xeon



294 M. Messaoudi et al.

E3-1226 processors, and 8 GB RAM. The algorithms were implemented using
IBM CPLEX commercial solver (version 12.4). The SPPRC was solved by
dynamic programming using the Boost library version 1.54.

7.1 Instance Description

The real-life instances are provided by a major logistics provider. The instances
correspond to home appliances’ distribution of 7 weekdays and involve from
n = 34 to n = 140 customers. We consider heterogeneous fleet of 6 types of
vehicles. The fleet size is unlimited since the company can use external vehicles.

For each day, the order form indicates the customer index, his location, the
quantity requested, the delivery deadline, and the allowed time frame. Following
several tests, the ICG algorithm was implemented with the following parameters
values: minImp = 0.0025, maxConsFail = 5. The Table 2 shows the compu-
tational performance of both ICG and DH. Column 1 indicates the name of
the instance (Name). Column 2 indicates the number of customers (n) in each
instance. For both ICG and DH runs, columns 3 and 7 display the number of
iterations (Iter). Columns 4 and 8 display the total computing time in seconds
(Time). Column 6 indicates the total number of integer solutions found (nb.Sol).
Finally, columns 5 and 9 report the optimality gap in percentage (Gap) between
the cost of the best integer solution found and the linear relaxation optimal
value.

7.2 Numerical Results

Table 2. Computational results on 7 realistic instances

Instances ICG DH

Name n Iter Time Gap% nb.Sol Iter Time Gap%

J2 34 4 0.95 0 5 7 0.23 0

J3 40 7 4.48 0.94 8 8 1.14 1.3

J7 66 9 22.6 1.3 28 33 14.4 1.77

J18 106 7 32 0.14 16 17 31.6 1.3

J25 136 12 515 1.62 51 94 1181.4 2.3

J19 140 9 168 0 20 18 321 0.05

J23 126 6 126 0.09 66 48 804 1.03

One can observe that ICG clearly outperforms DH. Indeed, the primal-based
method has successfully obtained a feasible solution for all instances, within a
competitive computing time ∈ [0.95 s, 515 s]. Optimality gap varies from 0.00%
to 1.6%. For DH, the computing time ∈ [0.23 s, 1181.4 s], and optimality gap
varies from 0.00% to 1.77%. ICG reduces the DH computing time by a factor of



Primal Algorithm for Rich VRP 295

2.7 on average. ICG performs fewer iterations (at most 12) than DH (between
7 and 94). This can be explained by the ISUD algorithm which generates a
large set of columns at each iteration. The Fig. 1 displays the time evolution
according to the number of customers. ICG shows a remarkable performance on
large instances. In fact, DH time was sped up by a factor of 3.5 on average. The
authors [19] also noticed this finding while experimenting ICG on large VCSP
and CPP instances.

Fig. 1. Comparative computing times on large instances n = 126, 136, 140

We easily notice that ICG yields a large number of integer solutions (from
5 to 66), furthermore, ISUD generates a large number of columns. Thus, this
important behaviour helps to improve the objective function since the first iter-
ations. We notice that, for all instances solved with ICG algorithm, no branching
method has been activated to obtain integer solutions. One recall that branch-
and-bound methods could obtain a good solution with a good tuning and a
proper branching strategy.

8 Conclusion and Further Work

In this paper, we have experimented for the first time a primal algorithm (ICG)
on a complex routing problem. ICG combines the primal algorithm ISUD into
column generation framework, and considers a set partitioning formulation. The
computational indicators have shown the effectiveness of ICG algorithm while
tested on real data reaching 140 customers and a realistic network.



296 M. Messaoudi et al.

Since the subproblem is a time-consuming, we would like to propose a new
intelligent network modelling based on realistic data analysis. We are testing
another ICG version that dynamically augments the search space to quickly find
integer solutions without any branching recourse.

References

1. Dantzig, G.B., Ramser, J.H.: Manag. Sci. 6(1), 80 (1959)
2. Clarke, G.U., Wright, J.W.: Oper. Res. 12(4), 568 (1964)
3. Coelho, L.C., Renaud, J., Laporte, G.: Road-based goods transportation: a sur-

vey of real-world applications from 2000 to 2015. Technical report, FSA-2015-007,
Québec, Canada (2015)

4. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications, vol. 18.
SIAM (2014)

5. Lenstra, J.K., Kan, A.H.G.: Networks 11(2), 221 (1981)
6. Letchford, A.N., Lodi, A.: Math. Methods Oper. Res. 56(1), 67 (2002)
7. Vanderbeck, F.: Implementing mixed integer column generation. In: Desaulniers,

G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 331–358.
Springer, Boston (2005). https://doi.org/10.1007/0-387-25486-2 12

8. Lübbecke, M.E., Desrosiers, J.: Oper. Res. 53(6), 1007 (2005)
9. Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In:

Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 33–
65. Springer, Boston (2005). https://doi.org/10.1007/0-387-25486-2 2

10. Desrochers, M., Soumis, F.: INFOR: Inf. Syst. Oper. Res. 26(3), 191 (1988)
11. Ben-Israel, A., Charnes, A.: J. Soc. Ind. Appl. Math. 11(3), 667 (1963)
12. Young, R.D.: Oper. Res. 16(4), 750 (1968)
13. Thompson, G.L.: Comput. Optim. Appl. 22(3), 351 (2002)
14. Rönnberg, E., Larsson, T.: Eur. J. Oper. Res. 192(1), 333 (2009)
15. Zaghrouti, A., Soumis, F., El Hallaoui, I.: Oper. Res. 62(2), 435 (2014)
16. Elhallaoui, I., Metrane, A., Desaulniers, G., Soumis, F.: INFORMS J. Comput.

23(4), 569 (2011)
17. Rosat, S., Elhallaoui, I., Soumis, F., Lodi, A.: Integral simplex using decomposition

with primal cuts. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS,
vol. 8504, pp. 22–33. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07959-2 3

18. Zaghrouti, A., El Hallaoui, I., Soumis, F.: Annals of Operations Research (2018).
https://doi.org/10.1007/s10479-018-2868-1

19. Tahir, A., Desaulniers, G., El Hallaoui, I.: EURO J. Transp. Logist. 1–32 (2018)
20. Feillet, D., Dejax, P., Gendreau, M., Gueguen, C.: Networks 44(3), 216 (2004)
21. Trubin, V.: Soviet Mathematics Doklady, vol. 10, pp. 1544–1546 (1969)
22. Joncour, C., Michel, S., Sadykov, R., Sverdlov, D., Vanderbeck, F.: Electron. Notes

Discret. Math. 36, 695 (2010)

https://doi.org/10.1007/0-387-25486-2_12
https://doi.org/10.1007/0-387-25486-2_2
https://doi.org/10.1007/978-3-319-07959-2_3
https://doi.org/10.1007/978-3-319-07959-2_3
https://doi.org/10.1007/s10479-018-2868-1


Correction to: The Knapsack Problem
with Forfeits

Raffaele Cerulli, Ciriaco D’Ambrosio, Andrea Raiconi,
and Gaetano Vitale

Correction to:
Chapter “The Knapsack Problem with Forfeits”
in: M. Baïou et al. (Eds.): Combinatorial Optimization,
LNCS 12176, https://doi.org/10.1007/978-3-030-53262-8_22

The original version of this chapter was revised. A typo in the second author’s family
name was inadvertently introduced during the publication process. The family name
has been corrected to “D’Ambrosio.”

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-53262-8_22

© Springer Nature Switzerland AG 2020
M. Ba ı̈ou et al. (Eds.): ISCO 2020, LNCS 12176, p. C1, 2020.
https://doi.org/10.1007/978-3-030-53262-8_25

https://doi.org/10.1007/978-3-030-53262-8_22
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_25&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_25&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53262-8_25&amp;domain=pdf
https://doi.org/10.1007/978-3-030-53262-8_22
https://doi.org/10.1007/978-3-030-53262-8_25


Author Index

Aissi, Hassene 81
Ait Aba, Massinissa 143
Argiroffo, Gabriela 3

Baïou, Mourad 15
Barahona, Francisco 15
Barbato, Michele 27
Bendotti, Pascale 156
Bérczi, Kristóf 167
Bianchi, Silvia 3
Bökler, Fritz 89

Cerulli, Raffaele 263
Chen, Rui 54
Chimani, Markus 89
Chrétienne, Philippe 156

D’Ambrosio, Ciriaco 263
D’Ambrosio, Claudia 102
Dash, Sanjeeb 54
de Araújo, Olinto C. B. 179
Diarrassouba, Ibrahima 42
Diniz, Pedro 273

El Hallaoui, Issmail 286

Fampa, Marcia 179
Fouilhoux, Pierre 156
Frangioni, Antonio 227

Gendron, Bernard 193, 227
Gorgone, Enrico 227
Grappe, Roland 27
Günlük, Oktay 54

Homsi, Gabriel 193

Jena, Sanjay Dominik 193

Király, Tamás 167

Lacroix, Mathieu 27
Lancini, Emiliano 27
Lee, Jon 102, 115
Lucarini, Yanina 3

Madarasi, Péter 202
Mahjoub, A. Ridha 81
Martinelli, Rafael 273
Masumura, Yuya 237
Messaoudi, Mayssoun 286
Miyazawa, Flávio K. 128
Moura, Phablo F. S. 128
Munier, Alix 143

Oki, Taihei 237
Omlor, Simon 167
Ota, Matheus J. 128

Paat, Joseph 115
Pass-Lanneau, Adèle 156
Poggi, Marcus 273

Raiconi, Andrea 263
Rousseau, Louis-Martin 286

Skipper, Daphne 102
Soraya, Chaghoub 42
Stallknecht, Ingo 115
Subramani, K. 249

Tahir, Adil 286
Takazawa, Kenjiro 214
Taktak, Raouia 66
Thomopulos, Dimitri 102
Trindade, Renan Spencer 179



Uchoa, Eduardo 66

Vitale, Gaetano 263

Wagler, Annegret 3
Wagner, Mirko H. 89
Wakabayashi, Yoshiko 128
Wiedera, Tilo 89

Williamson, Matthew 249
Wojciechowski, P. 249

Xu, Luze 115

Yamaguchi, Yutaro 237

Zaourar, Lilia 143

298 Author Index


	Preface
	Organization
	Contents
	I Polyhedral Combinatorics
	Polyhedra Associated with Open Locating-Dominating and Locating Total-Dominating Sets in Graphs
	1 Introduction
	2 Polyhedra Associated to OLD- and LTD-Sets
	3 Complete p-Partite Graphs
	4 Some Families of Split Graphs
	5 Concluding Remarks
	References

	On the p-Median Polytope and the Directed Odd Cycle Inequalities
	1 Introduction
	2 Preliminaries
	3 The Proof of Theorem 2
	3.1 G Does Not Contain a Non-directed g-Odd Y-Cycle
	3.2 G Contains a Non-directed g-Odd Y-Cycle

	4 Concluding Remarks
	References

	On k-edge-connected Polyhedra: Box-TDIness in Series-Parallel Graphs
	1 Definitions and Preliminary Results
	1.1 Graphs
	1.2 Box-Total Dual Integrality
	1.3 k-edge-connected Spanning Subgraph Polyhedron

	2 Box-TDIness of Pk(G)
	3 TDI Systems for Pk(G)
	4 Conclusions
	References

	A Polyhedral Study for the Buy-at-Bulk Facility Location Problem
	1 Introduction
	2 Integer Programming Formulation and Polyhedron
	3 Facets from Facility Location Problem
	4 New Facets
	4.1 Network Loading and Valid Inequalities
	4.2 Lifted Rounded Cut-Set Inequalities

	5 Conclusion
	References

	Cardinality Constrained Multilinear Sets
	1 Introduction
	2 Preliminaries
	3 When S is a Family of Nested Sets
	3.1 Convex Hull Description of X0,u
	3.2 Convex Hull Description of Xl,n
	3.3 Convex Hull Description of Xl,u

	4 Conclusions
	References

	On the Multiple Steiner Traveling Salesman Problem with Order Constraints
	1 Introduction and Related Works
	2 Integer Linear Programming Formulation
	2.1 Notations
	2.2 ILP Formulation

	3 Polyhedral Analysis
	4 Valid Inequalities
	4.1 Steiner Cut Inequalities
	4.2 Steiner Non-successive Terminals Inequalities
	4.3 F-partition Inequalities

	5 Computational Results
	6 Conclusion
	References

	I Integer Programming
	On the Linear Relaxation of the s-t-cut Problem with Budget Constraints
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Structural Properties of the Linear Relaxation
	References

	An Experimental Study of ILP Formulations for the Longest Induced Path Problem
	1 Introduction
	2 Preliminaries
	3 New Models
	4 Polyhedral Properties of the LP Relaxations
	5 Algorithmic Considerations
	6 Computational Experiments
	7 Conclusion
	References

	Handling Separable Non-convexities Using Disjunctive Cuts
	1 A Piecewise-Convex Under-Estimator
	2 Disjunctive Cuts
	2.1 Disjunctive Cuts in General
	2.2 Our Disjunction
	2.3 Possible Improvements and Another Disjunction: Inviting the z-variables to the Party

	3 Computational Experiments
	4 Conclusions and Outlook
	References

	Improving Proximity Bounds Using Sparsity
	1 Introduction
	1.1 Statement of Results and Overview of Proof Techniques

	2 Proofs Regarding Sparsity
	3 Results on Proximity
	References

	Cut and Flow Formulations for the Balanced Connected k-Partition Problem
	1 Introduction
	2 Some Known Results and Our Contributions
	3 Cut Formulation
	4 Polyhedral Results for Unweighted BCPk
	5 Flow Formulation
	6 Separation Algorithms
	6.1 Connectivity Inequalities
	6.2 Cross Inequalities

	7 Computational Results
	8 Conclusion and Further Research
	References

	I Scheduling
	Polynomial Scheduling Algorithm for Parallel Applications on Hybrid Platforms
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Solution Method
	4.1 Phase 1: Formulation (P) and Its Relaxation (P')
	4.2 Phase 2: Formulation (P1)
	4.3 Phase 3: Scheduling Algorithm

	5 Numerical Results
	6 Conclusion and Perspectives
	References

	Anchored Rescheduling Problems Under Generalized Precedence Constraints
	1 Introduction
	2 Polynomiality of -AnchRe(GenPrec)
	3 Particular Cases
	3.1 Anchored Rescheduling with Deadline Constraints
	3.2 Towards Machine Rescheduling

	4 Sensitivity Analysis of -AnchRe(GenPrec) with Respect to Tolerance
	5 Conclusion
	References

	Scheduling with Non-renewable Resources: Minimizing the Sum of Completion Times
	1 Introduction
	2 Preliminaries
	3 The Problem 1|rm=1,aj=1|Cj
	3.1 Strong NP-completeness
	3.2 Shortest Processing Time First for Unit Resource Requirements

	4 The Problem 1|rm=1,pj=0|Cjwj
	4.1 PTAS for Constant q
	4.2 PTAS for Arbitrary q

	References

	Arc-Flow Approach for Parallel Batch Processing Machine Scheduling with Non-identical Job Sizes
	1 Introduction
	2 Problem Definition
	3 Arc Flow Approach
	4 Computational Results
	5 Conclusion
	References

	I Matching
	Dynamic and Stochastic Rematching for Ridesharing Systems: Formulations and Reductions
	1 Introduction
	2 Problem Definition
	3 The Myopic Problem
	4 The Static Problem
	5 The Stochastic Problem
	5.1 Reductions Based on the System Environment
	5.2 Reductions Based on the First-Stage Solution Structure

	6 Conclusions and Future Work
	References

	The Distance Matching Problem
	1 Introduction
	2 Complexity and Tractable Cases
	2.1 FPT Algorithm Parameterized by d
	2.2 Efficient Algorithm for Constant |T|

	3 LP-Based Approach
	4 A Combinatorial (2-1d)-Approximation Algorithm
	5 (3/2+)-Approximation Algorithm for the Unweighted d-distance Matching
	6 Optimal Permutation of S
	References

	Notes on Equitable Partitions into Matching Forests in Mixed Graphs and b-branchings in Digraphs
	1 Introduction
	1.1 Matching Forests
	1.2 b-branchings
	1.3 Organization of the Paper

	2 Equitable Partition into Matching Forests
	3 Equitable Partition into b-branchings
	References

	I Network Design
	Quasi-Separable Dantzig-Wolfe Reformulations for Network Design
	1 Introduction
	2 Quasi-Separable Lagrangian Dual
	3 Comparison with Disaggregated DW Reformulation
	4 Illustration with the BMCUND
	References

	Dynamic Programming Approach to the Generalized Minimum Manhattan Network Problem
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Restricting a Feasible Region to the Hanan Grid
	2.3 Specialization Based on Intersection Graphs

	3 An O(n2)-Time Algorithm for GMMN[Star]
	3.1 Observation on Sharable Segments
	3.2 Reduction to the Longest Path Problem in DAGs
	3.3 Computational Time Analysis with Simplified DAGs

	4 An O(n5)-Time Algorithm for GMMN[Tree]
	4.1 Constructing Auxiliary DAGs for Subproblems
	4.2 Computational Time Analysis

	References

	On Finding Shortest Paths in Arc-Dependent Networks
	1 Introduction
	2 Statement of Problems
	3 On the Computational Complexity of the SADSP Problem
	4 Negative Cycles in Arc-Dependent Networks
	5 Inapproximability
	6 An Exact Exponential Algorithm
	6.1 A Naive Approach
	6.2 An Improved Exponential Algorithm
	6.3 A Lower Bound

	7 Integer Programming Formulation
	8 Conclusion
	References

	I Heuristics
	The Knapsack Problem with Forfeits
	1 Introduction
	2 Notation and Mathematical Formulation
	3 Algorithms
	3.1 GreedyForfeits Algorithm
	3.2 CarouselForfeits Algorithm

	4 Computational Results
	5 Conclusions
	References

	An Efficient Matheuristic for the Inventory Routing Problem
	1 Introduction
	2 Iterated Local Search
	3 Network Simplex
	3.1 Formulation
	3.2 Fast Flow Calculation

	4 Computational Experiments
	5 Conclusion
	References

	Solving a Real-World Multi-attribute VRP Using a Primal-Based Approach
	1 Introduction
	2 Related Literature
	2.1 Organization of the Paper and Contributions

	3 Problem Statement
	4 Mathematical Models
	4.1 Master Problem
	4.2 SPPRC on G(V,A)

	5 Preliminaries
	6 Solution Method
	7 Experimentation
	7.1 Instance Description
	7.2 Numerical Results

	8 Conclusion and Further Work
	References

	Correction to: The Knapsack Problem with Forfeits
	Correction to: Chapter “The Knapsack Problem with Forfeits” in: M. Baïou et al. (Eds.): Combinatorial Optimization, LNCS 12176, https://doi.org/10.1007/978-3-030-53262-8_22 

	Author Index



