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Abstract

Innovations in radiochemistry and pharmacology are opening new vistas for 
studies of nicotinic acetylcholine receptors (nAChRs) in human brain by posi-
tron emission tomography (PET) and by single-photon emission computed 
tomography (SPECT). In parallel, instrumentation optimized for molecular 
imaging in rodents facilitates preclinical studies in models of human diseases 
with perturbed nAChR signalling, notably Alzheimer’s disease and other neuro-
degenerative conditions, schizophrenia and other neuropsychiatric disorders, 
substance abuse and traumatic brain injury. The nAChRs are ligand-gated ion 
channels composed of five subunits forming a central pore for cation flux. The 
most abundant nAChRs in the central nervous system are heteropentamers (des-
ignated α4β2), followed by the α7 homopentamer. We present a systematic 
review of published findings with the various nAChR ligands using imaging 
techniques in vivo, emphasizing preclinical models and human studies. Molecular 
PET imaging of the α4β2 nAChR subtype with the antagonist 2-[18F]fluoro- 
A- 85380 is hampered by the long acquisition times. Newer agents such as (−)-
[18F]flubatine, [18F]XTRA or [18F]nifene permit quantitation of α4β2 receptors 
with PET recordings lasting 90 min or less and without the toxicity risk of earlier 
epibatidine derivatives. The early PET studies of α7 nAChRs suffered from low 
pharmacological specificity, further hampered by low natural abundance of the 
receptor. However, several good α7 nAChR ligands such as [18F]ASEM and 
[18F]DBT10 have emerged in the past few years. There are still no ligands selec-
tive for α6-containing nAChRs, despite their importance for nicotine-induced 
dopamine release in striatum. Selective α3β4 nAChR radioligands are under 
development but remain untested in clinical studies of depression and addiction. 
Several nAChR ligands find use for pharmacological occupancy studies, and 
competition from endogenous acetylcholine reduces α4β2 binding site availabil-
ity, a property that enables monitoring by PET of acetylcholine release in liv-
ing brain.
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18.1  Introduction

Nicotine is an addictive drug named after the French diplomat Jean Nicot, who 
introduced cultivation of the tobacco plant (Nicotiana tabacum) in Europe. As early 
as 1828, nicotine was characterized as the major pharmacologically active sub-
stance of this solanaceous herb (Posselt and Reimann 1828). Elucidation of its 
chemical structure followed 60 years later (Pinner and Wolffenstein 1891; Pinner 
1893), and soon thereafter Amé Pictet obtained the first successful synthesis (Pictet 
1903). The stimulation of sympathetic ganglia by nicotine, first observed by John 
Newport Langley in Cambridge (Langley 1901), led to the concept that receptors 
mediate drug actions (Langley 1905; Bennett 2000) and ultimately to the modern 
concept of molecular neurotransmission.

Nicotine and related alkaloids are present in other Solanaceae, such as tomato, 
potato, peppers and eggplant, and also in tea leaves (Schep et al. 2009), such that the 
mean daily dietary nicotine intake is about 1.4 μg per day (Siegmund et al. 1999). 
Nicotine absorption in the gut is rapid, and it is highly permeable to the blood-brain 
barrier (Oldendorf et al. 1979; Allen and Lockman 2003). Indeed, inhaled nicotine 
enters the brain within seconds (Rose et al. 2010), which may account for the perni-
ciousness of smoking as a vehicle for nicotine self-administration. Within the brain, 
nicotine binds with high affinity to heteromeric (mainly the α4β2 subtype) and 
homomeric (mainly the α7 subtype) nicotinic acetylcholine receptors (nAChRs) 
(Changeux 2010; Bouzat and Sine 2018), which are the focus of this chapter. 
Signalling by the endogenous agonist acetylcholine via cerebral nAChRs is criti-
cally involved in attention, vigilance and cognition, as well as locomotion and 
reward mechanisms (Changeux 2010; Graef et  al. 2011). Activation of nAChRs 
stimulates dopamine release in the basal ganglia, especially in the ventral striatum 
(Pradhan et al. 2002; Cumming et al. 2003), which almost certainly underlies the 
addictive potential of nicotine and tobacco smoking (Hogg et al. 2003). Furthermore, 
nAChRs play a major role in brain development (Hruska et al. 2009; Ross et al. 
2010). Recently allosteric modulators of nAChRs are undergoing intensive consid-
eration for drug development (Chatzidaki and Millar 2015; Wang and 
Lindstrom 2018).

Nicotinic receptors, in particular the α7 subtype, are expressed by many classes 
of neurons and indeed by virtually all cell types of the brain, including astrocytes 
(Sharma and Vijayaraghavan 2001), microglia (De Simone et al. 2005; Suzuki et al. 
2006), oligodendrocyte precursor cells (Sharma and Vijayaraghavan 2002) and 
endothelial cells (Hawkins et al. 2005). Perhaps consistent with this protean cellular 
distribution, there is evidence for dysfunction of nAChRs in diverse human neuro-
logical and psychiatric diseases (Jasinska et al. 2014; Bertrand et al. 2015; Dineley 
et  al. 2015), which motivates the present search for optimal molecular imag-
ing agents.

The nAChRs belong to the Cys-loop superfamily of pentameric ligand-gated ion 
channels, which also includes the serotonin 5-HT3, γ-aminobutyric acid (GABAA 
and GABAC) and glycine receptors, as has been reviewed in detail (Paterson and 
Nordberg 2000; Taly et  al. 2009; Plested 2016). Functional nAChRs consist of 
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pentamers of homologous or heterologous subunits forming a central cation channel 
permeable for Na+, K+ and Ca2+ ions. There are at least 17 genes encoding the fol-
lowing subunits: α1–10, β1–4, δ ε and γ (Karlin 2002), all of which occur in mam-
mals except for the avian α8 subunit. Each monomer possesses an extracellular 
N-terminal domain, four transmembrane helices and a small cytoplasmic region 
(Karlin 2002). Also, the 1.76 Å resolution X-ray structure of a nAChR homologue, 
the prokaryotic acetylcholine-binding protein (AChBP), has been reported (Brejc 
et  al. 2001; Bourne et  al. 2005; Hibbs et  al. 2009), and a refined model of the 
membrane-associated nAChR from Torpedo electric organ based on 4 Å resolution 
electron microscopy data has been presented (Unwin 2005). An X-ray crystal struc-
ture is now available for the human α4β2 subtype, bound to nicotine (Giastas 
et al. 2018).

The consensus nomenclature for nAChRs is based on the predominant subunit 
composition of the receptor (Alexander et  al. 2017). Although most functional 
receptors are heteromers, the α7–10 subunits form functional homomers in vivo. 
Most neuronal nAChRs contain α- and β-subunits only (δ, ε and γ are expressed in 
peripheral tissues). Of the various possible αβ permutations, nAChRs with six of the 
α-subunits (2–7) and three of the β-subunits (2–4) have been identified in mamma-
lian brain, with heteromeric α4β2 nAChRs predominating (Gotti et al. 2006). The 
next most abundant cerebral nAChR is the homomeric α7 subtype, which is func-
tionally distinct from the heteromeric nAChRs due to its lower affinity for the ago-
nists acetylcholine and nicotine and higher affinity for α-bungarotoxin, an 
antagonistic derived from snake venom. Indeed, radiolabelled α-bungarotoxin 
serves admirably for selective α7 autoradiography in vitro (Clarke et al. 1984). The 
α7 nAChRs show relatively fast activation and have the highest permeability to Ca2+ 
of all nAChR subtypes, whereas the α4β2 hetero-oligomer is characterized by a 
high affinity for ACh and slow desensitization (Changeux 2010). A recent study 
indicates that heteromeric α7β2 nAChRs are also naturally present in the brain and 
are functionally distinct from the α7 nAChR (Wu et al. 2016).

In general, activation of nAChRs requires cooperativity between subunits, with 
the agonist binding sites being located at subunit interfaces (Taylor et  al. 1994). 
Activation of nAChR heteromers requires binding of two ACh molecules at ortho-
steric binding sites, which are formed within the hydrophilic extracellular domain 
from three peptide domains on the α-subunit and three domains on the adjacent 
subunits (β or other) (Kalamida et  al. 2007). Homomers have five acetylcholine 
binding sites, one between each α-α-subunit interface (Millar and Harkness 2008).

As noted above, the nAChRs can shift between functionally distinct conforma-
tional states. Four such states have been identified: resting (R), activated (A) with 
rapid opening within 1 ms and low affinity (μM to mM) for agonists, and two desen-
sitized, which are closed channel states refractory to opening for intervals lasting 
ms (I, insensitive) or minutes (D, desensitized), although still possessing high affin-
ity (pM to nM) for receptor agonists (Decker et al. 2000; Auerbach 2015). Thus, 
binding of ligands either at the orthosteric site or any of several allosteric sites alters 
the functional state of nAChRs by favouring particular conformational states, con-
sequently modifying the equilibrium between the four states of the receptor (Taly 
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et al. 2009). Activation of nAChRs increases cation influx. This has a spectrum of 
consequences, including (i) immediate effects, such as neurotransmitter release; (ii) 
short-term effects, such as receptor desensitization and recovery; and (iii) long- 
lasting adaptive effects, such as neuroprotection or brain plasticity via altered gene 
expression (Radcliffe and Dani 1998; Leonard 2003; Shen and Yakel 2009). The 
particular pathways of intracellular signalling evoked by activation of nAChRs are 
complex and cell-specific (Frazier et  al. 1998; Schilström et  al. 2000; Berg and 
Conroy 2002).

Neuronal nAChRs in the brain are localized at post-, pre-, peri- and extrasynaptic 
sites of cholinergic or other neurones, affording multiple ways in which to modulate 
brain function. Prolonged exposure of nAChRs to agonists (e.g. nicotine) results in 
upregulation of functional receptors (i.e. an increase in the number of [3H]nicotine 
binding sites) rather than the downregulation typically seen with G-protein-coupled 
metabotropic receptors. This upregulation is thought to occur via altered nAChR 
turnover, resulting in increased insertion of receptors into the cell membrane, or 
decreased removal via altered endocytotic trafficking or degradation rates (Peng 
et al. 1994; Darsow et al. 2005). The predominant nAChRs in the brain, α4β2 and 
α7, seem particularly sensitive to this form of post-translational regulation. In anal-
ogy to dopamine receptors (Cumming 2011), multiple affinity states of nAChRs are 
differentially sensitive to agonist and antagonist ligands. Exposure to acetylcholine, 
other agonists and pharmacological chaperones can alter the affinity states of the 
nAChRs receptor to influence receptor translocation and modulate the cell surface 
expression of nAChR subtypes (Darsow et al. 2005; Kumari et al. 2008; Govind 
et al. 2009; Lester et al. 2009; Crespi et al. 2018).

The total concentration of nAChRs in membrane homogenates from rodent brain 
is between 8 and 15 pmol/g tissue (Wang et al. 2011), and in human brain up to 
10 pmol/g tissue (Shimohama et al. 1985; Marutle et al. 1998), which is similar to 
the abundance of dopamine receptors in striatum (Cumming 2011). The predomi-
nant heteromeric α4β2 nAChRs receptors account for some 80% of the total abun-
dance of brain nAChRs (Wang et al. 2011). For the less abundant α7 nAChRs, a Bmax 
of 5 pmol/g tissue has been described in mice (Whiteaker et al. 1999), while levels 
of [125I]α-bungarotoxin binding in the temporal cortex were only 1 pmol/g tissue for 
human and monkey (Gotti et al. 2006). Notably, these studies are based on tissue 
homogenates. However, the native environment of nAChRs is important for accu-
rate quantitation of nAChRs in the brain (Wang et al. 2011); a very similar phenom-
enon has been described for other receptors, e.g. dopamine (Cumming 2011) and 
opioid receptors (Quelch et al. 2014), suggesting that many receptors may be lost 
during the preparation of membranes or that not all receptors are externalized in the 
plasma membrane. Therefore, to predict the potential of nAChR radioligands for 
molecular imaging, binding to nAChRs should in general be tested by autoradio-
graphic analysis of sections from frozen, intact brain.

The relatively few quantitative autoradiographic studies consistently report 
higher nAChR densities than homogenate-based studies. Autoradiographic studies 
with ligands for heteromeric α4β2 nAChRs characteristically reveal particularly 
intense binding in the thalamus (Fig.  18.1). Using [18F]FNEP, the Bmax for 
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heteromeric nAChRs in human thalamus autoradiograms was 20  pmol/g tissue 
(Gatley et  al. 1998), which is comparable to the density of binding sites of 
2-[18F]fluoro- A- 85380 in porcine thalamus, i.e. 46 pmol/g tissue (Deuther-Conrad 
et al. 2006). In quantitative receptor autoradiographic studies with the α7 selective 
ligands [3H]MLA and [125I]α-bungarotoxin, densities were as high as 40 pmol/g tis-
sue in mouse brain (Whiteaker et  al. 1999), whereas other studies with 
[125I]α-bungarotoxin have indicated densities of 4–20  pmol/g tissue in rat and 
2–10 pmol/g tissue in neonate pig (Hoffmeister et al. 2011). Across species, autora-
diographic studies have revealed a characteristic distribution pattern for α7 nAChRs 
(Fig. 18.1), which is rather diffuse, but with focally high density in the hippocam-
pus, the colliculi and the hypothalamus (except in newborn piglet), with moderate 
radiotracer binding in thalamus and low expression in the cerebellum (Breese et al. 
1997; Whiteaker et al. 1999; Hoffmeister et al. 2011). The regional distribution of 
the α7 nAChR ligand [3H]AZ11637326 in rat brain by autoradiography ex vivo (in 
which the tracer had been administered while the animal was alive) was consistent 
with autoradiography findings in vitro (Maier et al. 2011).

Molecular brain imaging of nAChRs in general refers to the use of radiolabelled 
receptor ligands, although optical imaging has been used to investigate the cholin-
ergic system (Prakash and Frostig 2005). Furthermore, clinical imaging of α4β2 
nAChR in Alzheimer’s disease is reviewed elsewhere (see Sabri et al. in PET and 
SPECT in Neurology). Therefore, the current review is focussed primarily, albeit 
not exclusively, on preclinical aspects of PET and SPECT brain imaging of the 

Fig. 18.1 Representative autoradiograms of rat (upper row) and neonate pig brains (lower row) 
obtained with an α7 nAChR ligand ([125I]α-bungarotoxin) and the semi-selective α4β2 ligand 
[3H]epibatidine. For anatomic reference, the right-hand side of the figure shows comparable sagit-
tal planes modified from the rat brain atlas (Paxinos and Watson 1998) and the pig brain atlas 
(Felix et al. 1999). Structures marked in the references atlases are Co cerebral cortex, Cd caudate 
nucleus, Cs superior colliculus, Cb cerebellum, Hi hippocampus, Th thalamus, Po pons, Me 
medulla oblongata
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nAChR in vivo, along with a presentation on instrumentation and radiotracer devel-
opment. This review is updated and extended from an earlier chapter on the same 
topic (Brust et al. 2014).

18.2  Advances in Animal PET and SPECT Technology

As noted above, studies of nAChRs abundance in vitro and ex vivo use selective 
radioligands in conjunction with quantitative autoradiography. However, molecular 
imaging with positron emission tomography (PET) or single-photon emission com-
puted tomography (SPECT) enables the detection of neuroreceptors in the living 
brain. Contrary to autoradiography in vitro, imaging procedures in vivo allow for 
longitudinal studies in individual animals, thereby reducing intersubject variability 
and allowing intervention or challenge studies. Animal PET studies using clinical 
scanners, most having a spatial resolution of approximately 5 mm, are barely ade-
quate for resolution of structures within mouse brain, which measures only 10 mm 
along its longest axis.

Although dedicated small-animal PET systems such as the Focus series 
(Siemens), microPET P4 (Concorde Microsystems) or ClearPET (Raytest) enable 
microPET imaging in rodents and small non-human primates with high resolution 
and sensitivity, these instruments are no longer commercially available. However, 
current efforts aim to improve the performance of stand-alone small-animal PET 
scanners by using detector systems approaching the physical limits of spatial reso-
lution (circa 1 mm) with optimized reconstruction algorithms (Yang et al. 2016). 
Other approaches are to improve the spatial resolution of commercially available 
systems by optimizing the arrangement of detectors (Bolwin et al. 2017), or apply-
ing new detector material (Abbaszadeh and Levin 2017). Commercial stand-alone 
PET systems designed for small-animal imaging include the beta-CUBE 
(Molecubes) or VECTor (MILabs). Contemporary small-animal PET scanners 
increasingly combine the PET and MRI imaging modalities in one instrument. 
Sequential PET and MR measurements can be realized with instruments such as the 
nanoScan PET/MRI systems (Mediso). The PET CLIP-ON system (MR Solutions). 
The PET/MR 3T system (Bruker) or the PET INSERT system (MR Solutions) give 
simultaneous multimodal acquisitions.

Despite spatial resolution approaching 1 mm, images from small-animal PET 
and SPECT instruments suffer from a lack of anatomic information. In common 
practice, the emission images are registered to digitized brain atlases, based on his-
tology or magnetic resonance imaging (MRI) atlases for rodent brain (Jupp et al. 
2007; Rominger et al. 2010). Contemporary multimodal imaging systems combine 
small-animal PET with SPECT, X-ray computed tomography (CT) and/or 
MRI. PET-CT presents a great advantage for brain studies in that a high-resolution 
structural brain image in perfect registration with the PET image is obtained for 
each individual animal, without resorting to some standard atlas. In addition, the CT 
scan serves to correct the PET images for attenuation by tissue, thus providing 
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absolute quantitation of radioactivity concentrations in the brain without requiring 
an additional time-consuming transmission scan. MRI offers better tissue contrast 
than CT, but the combining of PET and MRI instrumentation initially presented a 
greater technical challenge.

Initially, the instrumentation for simultaneous small-animal imaging entailed the 
development of PET inserts, with special efforts made by research teams in aca-
demia and industry to improve the PET detector technology with regard to MRI 
compatibility. An early prototype PET/MRI scanner developed at the University of 
Cambridge (Lucas et al. 2007) was followed by the commercial PET/MRI system 
for rodents developed by Mediso; its 1 tesla permanent magnet limits MRI applica-
tions but offers great flexibility for animal PET studies. PET inserts using silicone- 
based photoelectron multipliers are compatible with magnetic fields (Wehner et al. 
2015), and a recently developed PET insert can operate within the bore of a 7 T 
magnet (Thiessen et al. 2016). Likewise, a SPECT camera that can be placed within 
an MRI magnet has recently been developed for small-animal studies (Meier et al. 
2011). Whereas PET attenuation correction is usually obtained by CT scanning, 
MR-based attenuation correction has been demonstrated for PET and SPECT imag-
ing using clinical scanners (Marshall et al. 2011) and has recently successfully been 
proven for small-animal studies (Kranz et  al. 2014, 2016; Sattler et  al. 2014). 
Despite considerable progress, simultaneous PET/MRI scanners have lower detec-
tion sensitivity in comparison with dedicated PET scanners (Cabello and Ziegler 
2018; Hallen et al. 2018). However, in recent years the focus has shifted towards the 
development of fully integrated scanners (Ko et al. 2016; Parl et al. 2019).

Most animal PET studies are confounded by the need to use anaesthesia, which 
can profoundly alter radiotracer pharmacokinetics. Monkeys are trained to tolerate 
head fixation during PET recordings lasting as long as 30  min (Sandiego et  al. 
2013). The “rat conscious animal PET” (ratCAP) with a head-mounted PET detec-
tor was developed at Brookhaven for imaging in awake, behaving rats (Schulz et al. 
2011). While this technology has been slow to mature, there is a recent report of 
FDG PET recordings in awake, behaving chickens and rats (Gold et al. 2018).

18.3  PET and SPECT Radioligands Targeting nAChR

Many autoradiographic studies of nAChRs in human post-mortem brain specimens 
have employed rather non-selective agonist ligands such as [3H]acetylcholine, 
[3H]nicotine, [3H/125I]epibatidine or [3H]cytisine, or alternately the antagonist ligand 
[3H/125I]α-bungarotoxin (Paterson and Nordberg 2000). These studies suggested the 
existence of at least three native receptor subtypes, i.e. α-bungarotoxin binding at 
homomeric α7 nAChRs and acetylcholine/nicotine binding mainly at heteromeric 
α4β2 nAChRs, plus a relatively small population of heteromeric receptors contain-
ing the α3 subunit. Given the predominance of α4β2 and the α7 subtypes in the brain 
as documented above, they have presented the main targets for molecular imaging 
of nAChRs. The available information on the distribution, density and functional 
role of other subtypes in the brain is relatively sparse (Gotti et al. 2006; Sharma and 
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Vijayaraghavan 2008; Zoli et al. 2015). Furthermore, the current emphasis on α4β2 
and the α7 subtypes as targets for pharmaceutical development may account for the 
paucity of selective high-affinity drugs for the other subtypes (Gündisch and Eibl 
2011) due to a kind of circularity.

18.3.1  Radioligands for α4β2 nAChRs

Reviews summarizing the history of ligand development for the nAChRs (Sihver 
et  al. 2000a, b; Ding and Fowler 2005; Horti and Villemagne 2006; Horti et  al. 
2010) have helped galvanize research groups to generate new lead compounds for 
molecular imaging and therapeutics. Selectivity and high affinity (nM) in vitro are 
necessary but not sufficient for successful visualization of nAChRs. In general, PET 
and SPECT tracers, if they are to be successful, must fulfil a multitude of additional 
criteria. Chief among these are (1) low non-specific binding and absence of brain- 
penetrating radiometabolites, (2) rapid clearance from non-specific brain regions 
and plasma to reduce background in the target tissue, (3) high membrane permeabil-
ity, (4) high permeability and low efflux at the blood-brain barrier (BBB) and (5) 
attainment of equilibrium binding with a tolerable time interval. Settling upon opti-
mal tracers is often a matter of fierce competition.

The vast majority of novel tracers for α4β2 nAChRs derive from three com-
pounds: nicotine, epibatidine and 3-pyridyl ether. Seven of these tracers have so far 
been used successfully to image α4β2 receptors in human brain: S-[11C]nicotine 
(Nordberg 1993); the two halogen-substituted derivatives of A-85380, namely, 
2-[18F]fluoro-A-85380 (Kimes et al. 2003) and 6-[18F]fluoro-A-85380 (Ding et al. 
2000a; Horti et al. 2000); the two epibatidine derivatives (−)-[18F]flubatine and (+)-
[18F]flubatine (Sabri et al. 2018; Tiepolt et al. 2018); [18F]nifene (Betthauser et al. 
2017); and [18F]XTRA (Coughlin et  al. 2018c). Receptor-ligand interactions fre-
quently entail stereoselective features (Smith and Jakobsen 2007), as has been for-
mally demonstrated for the case of nAChRs in human PET studies with the two 
stereoisomers of [11C]nicotine (Nordberg et al. 1991, 1992), and also several of the 
radioligands discussed below. A summary of the compounds that have been investi-
gated for imaging of α4β2 nAChRs with PET and SPECT, their associated refer-
ences, binding affinities and results of biodistribution ex  vivo and PET imaging 
studies is given in Table 18.1.

18.3.1.1  Nicotine Derivatives
The tracer S-[11C]nicotine, one of the very first positron-emitting receptor ligands 
(Maziere et al. 1976), was initially developed to investigate the biodistribution of 
nicotine in the context of tobacco addiction and for investigation of diabetes insipi-
dus and for insecticide research (Soloway 1976; Gündisch 2000). With the advent 
of PET, S-[11C]nicotine was tested for imaging nAChRs in human brain (Nordberg 
1993). However, co-administration of unlabelled nicotine failed to displace much of 
the radioligand, indicating that the PET signal did not sensitively reveal specific 
binding to α4β2 nAChRs (Nybäck et  al. 1994); cerebral S-[11C]nicotine uptake 
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Table 18.1 Molecular structures, IUPAC names, binding affinities and results of biodistribution 
ex  vivo and PET imaging studies in  vivo of the cerebral binding of α4β2 nAChR-selective 
radioligands

Main findings

ON

H N
18F

2-[18F]fluoro-A-85380
((S)-3-(azetidin-2-ylmethoxy)-2-[18F]
fluoropyridine)

Thalamic uptake of radioactivity in rat and 
baboon peaked at 60 min. In humans, 
cerebral uptake pattern was consistent with 
the known distribution of α4β2 nAChRs. 
The total distribution volume was 
significantly higher in smokers than in 
non-smokers, except in the thalamus. 
Radioactivity in the brain reached steady 
state by 6 h. Ki = 0.061 nM (Dollé et al. 
1999; Kimes et al. 2003, 2008; Mukhin 
et al. 2008)

ON

H N

18F

6-[18F]fluoro-A-85380
((S)-3-(azetidin-2-ylmethoxy)-6-[18F]
fluoropyridine)

In baboon dynamic PET, faster peak uptake 
and clearance as well as higher thalamus-
to-cerebellum ratios than obtained for 
2-[18F]fluoro-A-85380. Ki = 0.025 nM 
(Ding et al. 2000a, Horti et al. 2000)

ON

H N

123l

5-[123/125I]iodo-A-85380
(((S)-3-(azetidin-2-ylmethoxy)-5-[123/125I]
iodopyridine)

In rhesus dynamic PET, regional 
distribution in brain consistent with the 
known nAChR distribution pattern. 
Relatively slow kinetics, with maximal 
binding ratios at more than 4 h. In baboon, 
significant displacement of radioactivity 
from cerebellum by cytosine, indicating 
this region inappropriate as reference 
region. Kd (rat) = 10 pM, Kd (human) = 12 
pM (Chefer et al. 1998; Fujita et al. 2000)

ON

H N

C C(CH2)4
18F

[18F]ZW-104
((S)-3-(azetidin-2-ylmethoxy)-5-(6-[18F]
fluorohex-1-yn-1-yl)pyridine)

In baboon dynamic PET, rather slow 
kinetics in thalamus. High affinity towards 
multiple β2-containing nAChR subtypes. 
Ki = 0.21 nM (Valette et al. 2009)

11CH3N

N

S-[11C]nicotine
((S)-3-(1-[11C]methylpyrrolidin- 2- yl)pyridine)

In human and rhesus monkey dynamic PET 
studies, binding was less selective for 
nAChR subtypes than in the case of [11C]
MPA. Ki = 10 nM (Sihver et al. 1999b)
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Table 18.1 (continued)

Main findings

11CH3N

N

[11C]MPA
((S)-3-(1-[11C]methylazetidin- 2- yl)pyridine)

Specific binding in rhesus monkey proven 
by nicotine displacement in dynamic PET 
studies, but specific binding was found to 
be rather low. Kd = 0.011 nM (Sihver et al. 
1999b)

N
11CH3

N O

H3C

[11C]ABT418
((S)-3-[11C]methyl-5-(1- methylpyrrolidin- 2-yl)
isoxazole)

In rhesus dynamic PET, low uptake and 
rapid washout, with no evidence for 
displacement by unlabelled ABT-418. 
Increased uptake following S-(−)-nicotine 
pretreatment. Ki = 3 nM. (Arneric et al. 
1994; Valette et al. 1997; Sihver et al. 
1999b)

11CH3

N

O

N

N-[11C]methylcytisine
([11C]caulophylline) ((1R,5S)-3-[11C]methyl-
2,3,4,5-tetrahydro- 1,5-methanopyrido[1,2-d][1,4]
diazepin-7(1H)-one)

No evidence of specific binding in rhesus 
monkey brain by dynamic PET. 
Ki = 5.7 nM (Valette et al. 1997; Imming 
et al. 2001)

18F
N

O

NH

N

[18F]FPyCYT
((1R,5S)-8-(6-[18F]fluoropyridin- 3- yl)-2,3,4,5-
tetrahydro-1,5- methanopyrido[1,2-d][1,4]
diazepin-7(1H)-one)

In rat biodistribution study, low (0.3% 
ID/g) and uniform brain uptake, with little 
evidence of specific binding. Ki = 24 nM 
(Roger et al. 2003)

18F
N

N

H

[18F]NFEP
((1R,2R,4S)-2-(6-[18F]fluoropyridin-3-yl)-7- 
azabicyclo[2.2.1]heptane)

High brain uptake by mouse biodistribution 
and baboon PET studies and clear 
indication of specific binding. Applications 
in humans limited by high toxicity. 
Kapp = 0.02 nM (Ding et al. 1996, 1999; 
Liang et al. 1997; Villemagne et al. 1997; 
Dolci et al. 1999)

18F

N
N

CH3

[18F]N-methyl-NFEP
((1R,2R,4S)-2-(6-[18F]fluoropyridin-3-yl)-7-
methyl-7- azabicyclo[2.2.1]heptane)

In baboon dynamic PET, higher peak 
uptake in all brain regions than for [18F]
NFEP. Despite milder toxicity than [18F]
NFEP, evidence against safe use in 
humans. Kd = 0.028 nM (Ding et al. 1999)

(continued)
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Table 18.1 (continued)

Main findings

N
N

H 18F

[18F]FphEP
((1R,2R,4S)-2-(6-[18F]fluoro-5- phenylpyridin-3-
yl)-7- azabicyclo[2.2.1]heptane)

In baboon dynamic PET; more favourable 
kinetics than 2-[18F]fluoro-A-85380. Peak 
uptake at 20 min, but no evidence for 
displacement by nicotine challenge. 
Kd = 0.66 nM (Roger et al. 2006; Valette 
et al. 2007)

N
N

H

F

18F

[18F]F2PhEP
((1R,2R,4S)-2-(6-[18F]fluoro-5-(4- fluorophen- 
1-yl)pyridin-3-yl)-7- azabicyclo[2.2.1]heptane)

Dynamic PET in baboon did not indicate 
reduction in brain distribution volume 
following pretreatment with nicotine. 
Ki = 0.029 nM (Valette et al. 2007)

N
N

C

N

CH3

18F

[18F]XTRA, JHU86428
((1R,2R,4S)-2-(2′-[18F]fluoro-[3,3′-bipyridin]-5-
yl)-7-methyl-7- azabicyclo[2.2.1]heptane)

Dynamic PET showed peak activity in 
baboon thalamus at 75 min after bolus, 
requiring several hours for steady-state 
measurement. Ki = 0.058 nM (Horti and 
Wong 2009; Coughlin et al. 2018c)

N
N

N

CH3

18F

[18F]AZAN, JHU87522
((1R,2R,4S)-2-(6-[18F]fluoro-[2,3′-bipyridin]-5′-
yl)-7-methyl- 7-azabicyclo[2.2.1]heptane)

Baboon dynamic PET showed rapid brain 
kinetics, favourable metabolic profile and 
high BPND, reliably measured with 90 min 
scans. However, part of in vivo binding 
could be related to other nAChRs with 
β-subunits. Ki = 0.26 nM (Gao et al. 2008b, 
Kuwabara et al. 2012)
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Table 18.1 (continued)

Main findings

N
N

Cl11CH3

N-[11C]methyl-epibatidine
((1R,2R,4S)-2-(6-chloropyridin-3- yl)-7-[11C]
methyl-7- azabicyclo[2.2.1]heptane)

Different kinetics of brain uptake and 
washout seen for the stereoisomers in rats 
and mice. Dynamic PET showed high 
enrichment of radioactivity in the thalamus 
of the pig, but steady-state not attained 
during 60 min scans. Applications in humans 
limited by high toxicity. Ki = 0.027 nM (Patt 
et al. 1999; Spang et al. 2000)

N
N

Cl11CH3

N-[11C]methyl-homoepibatidine
((1S,5R,6R)-6-(6-chloropyridin-3- yl)-8-[11C]
methyl-8- azabicyclo[3.2.1]octane)

In pig dynamic PET, the (−)-enantiomer 
showed a regional distribution high 
accumulation in the thalamus consistent 
with representative for the aα4bβ2 nAChR, 
which could be displaced cytisine. 
Distribution of the (+)-enantiomer 
non-specific. Applications in humans 
limited by high toxicity. Ki = 0.13 nM 
(Malpass et al. 2001; Patt et al. 2001)

NH

NCl

H3
11C

2-(6-chloro-5-phenylpyridin-3-yl)-7-[11C]
methyl-7- azabicyclo[2.2.1]heptane

Rat biodistribution study showed high 
displaceable binding. Dynamic baboon 
PET showed rapid peak in thalamus but 
increasing ratio relative to cerebellum over 
at least 2 h. Ki = 0.032 nM (Huang et al. 
2004, 2005)

N
N

I
11CH3

[11C]NMI-EPB
((1R,2R,4S)-2-(5-iodopyridin-3- yl)-7-[11C]
methyl-7- azabicyclo[2.2.1]heptane)

Baboon dynamic PET showed high uptake 
and displaceable thalamic binding. Higher 
uptake and faster kinetics than 2-[18F]
fluoro-A-85380; however, (−)-enantiomer 
did not reach steady state within 90 min 
post-injection. Ki = 0.068 nM (Ding et al. 
2006; Gao et al. 2008a)

H
N

N

18F

[18F]flubatine
(((1R,2R,4S)-2-(6-[18F]fluoropyridin-3-yl)-7- 
azabicyclo[2.2.1]heptane))

Higher uptake of radioactivity in mouse 
than for 2-[18F]fluoro-A-85380. Binding 
equilibrium of the (−)-enantiomer was 
reached significantly earlier (~60 min p.i.) 
than that of the (+)-enantiomer. 
Ki(+) = 0.064 nM, Ki(−) = 0.112 nM (Brust 
et al. 2008; Deuther-Conrad et al. 2008)

(continued)
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Table 18.1 (continued)

Main findings

O
N

N
11CH3

[11C]A-84543
((S)-3-((1-[11C]methylpyrrolidin- 2- yl)methoxy)
pyridine)

Mouse biodistribution showed high brain 
uptake and a distribution consistent with 
the density of α4β2 nAChRs. Ki = 0.38 nM 
(Kassiou et al. 1998)

O
N

N

123l

CH3

5-[123I]iodo-A-84543
((S)-3-((1-methylpyrrolidin-2-yl)methoxy)-5-
[123I]iodopyridine)

Nearly homogeneous distribution in mouse 
brain, likewise seen in baboon dynamic 
SPECT. Ki = 0.016 nM (Fan et al. 2001; 
Henderson et al. 2004)

ON

H N

11CH3

5-[11C]methyl-A-85380, 5-MA
((S)-3-((azetidin-2-yl)methoxy)-5-[11C]
methylpyridine)

Mouse biodistribution consistent with α4β2 
nAChRs. Rhesus monkey dynamic PET 
showed high non-specific binding. 
Ki = 0.27 nM (Iida et al. 2004)

ON
NH

76Br

[76Br]BAP
((S)-3-((azetidin-2-yl)methoxy)-5-[76Br]
bromopyridine)

In comparison with rat biodistribution, 
baboon dynamic PET showed higher 
non-specific binding with nicotine or 
cystine displacement. Ki = 0.023 nM 
(Sihver et al. 1999a)

H
N

N

76Br

[76Br]BrPH
((1R,2R,4S)-2-(6-[67Br]bromopyridin-3-yl)-7- 
azabicyclo[2.2.1]heptane)

Rat biodistribution and baboon dynamic 
PET showed binding to nAChRs but 
without subtype selectivity. Kd = 0.008 nM 
(Kassiou et al. 2002)

O

N

N

Cl

N
11CH3

[11C]Me-p-PVC
((S,E)-2-chloro-5-((1-[11C]methylpyrrolidin-2-yl)
methoxy)-3-(2-(pyridin-4-yl)vinyl)pyridine)

Rapid accumulation in mice ex vivo, and 
rhesus PET studies, thus quantifiable with 
2 h recordings, but BPND slightly lower 
than for 2-[18F]fluoro-A-85380. 
Ki = 0.028 nM (Brown et al. 2004)
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Table 18.1 (continued)

Main findings

NH N

N Cl

H3
11C

O

[11C]p-PVP-MEMA,
(R,E)-1-(6-chloro-5-(2-(pyridin- 4- yl)vinyl)
pyridin-3-yloxy)-N-[11C]methylpropan-2-amine.

In dynamic PET studies in baboon, 
[11C]p-PVP-MEMA entered the brain 
rapidly with a peak concentration of 0.5% 
ID/mL 2 min p.i. but with a low thalamus/
cerebellum ratio of about 1 at 1 h p.i., 
possibly due to low metabolic stability of 
the parent compound. Ki = 0.077 nM) 
(Dolle et al. 2008)

O

N

N

Cl

N F
11CH3

[11C]JHU85270
((S,E)-2-chloro-3-(2-(2- fluoropyridin- 4-yl)
vinyl)-5-((1-[11C]methylpyrrolidin-2-yl)methoxy)
pyridine)

O

N Cl

N
O

N

F
11CH3

[11C]JHU85208
((S)-2-chloro-3-((2-fluoropyridin- 4-yl)methoxy)-
5-((1-[11C]methylpyrrolidin-2-yl)methoxy)
pyridine)

O

N Cl

N
O N

Cl

11CH3

[11C]JHU85157
((S,E)-2-chloro-3-(2-(6- chloropyridin- 3-yl)
vinyl)-5-((1-[11C]methylpyrrolidin-2-yl)methoxy)
pyridine)

In baboon dynamic PET, thalamic BPND 
lower than that of 2-[18F]fluoro-A-85380 
due to rapid metabolism to brain-
penetrating metabolites. 
Ki(JHU85270) = 0.09 nM, 
Ki(JHU85208) = 0.05 nM, 
Ki(JHU85157) = 0.02 nM (Gao et al. 2009)

O

N

N
H

18F

[18F]nifene
((S)-3-((2,5-dihydro-1H-pyrrol-2- yl)methoxy)-2-
[18F]fluoropyridine)

In rhesus dynamic PET, fast kinetics with 
peak thalamic binding at less than 10 min, 
thalamus to cerebellum ratio of ~2. 
Ki = 0.5 nM (Pichika et al. 2006)

(continued)
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proved mainly to be determined by blood flow, rather than local abundance of 
nAChRs in vivo (Gündisch 2000), this in keeping with its considerable lipophilicity. 
Indeed, labelled nicotine serves admirably as a cerebral blood flow tracer.

18.3.1.2  Cytisine Derivatives
The nAChR agonist [3H]cytisine is a useful radioligand for characterization of α4β2 
nAChRs in vitro. However, the cytisine derivatives [11C]ABT-418 and N-[11C]meth-
ylcytisine (Valette et al. 1997) failed in vivo due to their low cerebral uptake and 

Table 18.1 (continued)

Main findings

O

N

N
H

18F

[18F]nifrolidine
((S)-3-((2,5-dihydro-1H-pyrrol-2- yl)methoxy)-5-
(3-[18F]fluoroprop-1-yl)pyridine)

In rhesus dynamic PET, good labelling of 
thalamus, with slightly faster kinetics than 
for 2-[18F]fluoro-A-85380, with maximal 
binding at 70 min, and plateau thalamus-to- 
cerebellum ratio of 1.7 at 2 h. Ki = 0.8 nM 
(Chattopadhyay et al. 2005)

O

N

N

Cl

N

18F

[18F]NIDA52189
((S)-2-chloro-6′-[18F]fluoro-5-((1- methylazetidin- 
2-yl)methoxy)-3,3′-bipyridine)

In rhesus dynamic PET, distribution 
consistent with α4β2 nAChRs, but BPND 
2.5 times higher than for 2-[18F]
fluoro-A-85380. Kd = 0.005 nM (Zhang 
et al. 2004)

O

N

N

Cl

N

18F

[18F]NIDA522131
((S)-2-chloro-2′-[18F]fluoro-5-((1- methylazetidin- 
2-yl)methoxy)-3,4′-bipyridine)

In rhesus dynamic PET, BPND in thalamus 
3–4-fold greater than with 2-[18F]
fluoro-A-85380 but at least 8 h recordings 
required for stable estimation. 
Kd = 0.005 nM (Chefer et al. 2008)

OH

N S
11CH3

[11C]SIB-1553A
(4-((2-(1-methylpyrrolidin-2-yl)ethyl)thio)
phenol)

In rat biodistribution study, 0.5% ID/g at 
10 min and 0.25% ID/g at 30 min, but no 
evidence of specific binding discernible 
against high background. SIB-1533A was 
more potent than nicotine on α2β4 
(EC50 = 0.59 μM, (nicotine) = 1.95 μM) 
and α3β4 (EC50 = 1.10 μM, 
(nicotine) = 7.50 μM), but no effect on 
α4β2 and α3β2 receptors was observed 
potentially explaining the absence of 
specific binding in brain (Sobrio et al. 
2008)
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rapid washout. Another derivative, [11C]MPA, showed high-affinity binding to α4β2 
nAChRs (~10–100-fold higher than [11C]ABT-418 and S-[11C]nicotine) in mem-
branes from rat forebrain (Sihver et al. 1998). Furthermore [11C]MPA showed rapid 
uptake into monkey brain, with similar permeability as [11C]ABT-418 and 
S-[11C]nicotine. Pre-administration of unlabelled S-nicotine (0.02 mg/kg) decreased 
the peak uptake of [11C]MPA in monkey brain by about 20%, indicating the pres-
ence of some specific binding to nAChRs (Sihver et al. 1999b), but no further stud-
ies have been published with this ligand. [18F]fluoropyridinylcytisine was developed 
as another candidate radioligand for α4β2 nAChR imaging. However, its distribu-
tion in living rat brain did not match the regional distribution of nAChRs, and block-
ing studies with nicotine failed to demonstrate specific binding of this tracer (Roger 
et al. 2003).

18.3.1.3  Epibatidine Derivatives
Epibatidine, an alkaloid from the skin of the Ecuadoran poison arrow frog 
Epipedobates anthonyi, has long been known for its high-affinity binding to hetero-
meric nAChRs (Daly 1998). It has considerable toxicity due to its potent activation 
of many different neuronal nAChR subtypes (Avalos et al. 2002), notably the α3β4 
nAChR (Tomizawa et al. 2001; Avalos et al. 2002). Nonetheless, radiolabelled epi-
batidine derivatives have found limited use in human PET studies (Bohnen and Frey 
2007). Theoretically, subtype-specific analogues of epibatidine might have favour-
able tracer properties with lesser toxicity (Avalos et al. 2002). Although [18F]NFEP 
([18F]FPH, norchlorofluoroepibatidine) and [18F]N-Me-NFEP showed good brain 
uptake and signal-to-background ratios in mouse and baboon brain (Ding et  al. 
1996; Dolci et al. 1999), their toxicity, even when prepared at high specific activity, 
was too high for use in man (Horti et al. 1997; Molina et al. 1997; Villemagne et al. 
1997; Ding et al. 1999). However, Horti and co-workers successfully synthesized 
epibatidine derivatives with lesser toxicity (Horti et al. 1998a).

Fluorine-18-labelled FPhEP (Roger et al. 2006), a functional nAChR antagonist 
with much reduced toxicity, had faster brain kinetics in baboon than did 2-[18F]fluoro- 
A- 85380 (discussed below), whereas its fluorophenyl analogue [18F]F2PhEP had 
higher specific binding (Valette et al. 2007). Its binding on PET was quantified as 
binding potential (BPND), which is proportional to the ratio Bmax/Kd. However, nico-
tine failed to displace either radioligand, indicating low specific binding. Patt and 
co-workers developed N-[11C]methylepibatidine and N-[11C]methylhomoepibati-
dine (Patt et al. 1999, 2001) and compared the uptake and binding of N-[11C]methy-
lepibatidine enantiomers in the brain of living mouse, rat and pig. Whereas the 
(−)-enantiomer showed slower uptake and gradual accumulation in the brain, the 
(+)-enantiomer had very rapid uptake and washout, indicating distinct binding 
mechanisms. Because of its better kinetics and higher selectivity, N-[11C]methyl-
(−)-epibatidine was investigated in pigs by PET, showing high brain uptake. 
However, steady-state binding in the highest binding regions (thalamus) was not 
attained within 1 h recordings, which is a disadvantage for quantitation of carbon- 11- 
labelled tracers, due to the 20 min physical half-life. Furthermore there was high 
toxicity, precluding its use in humans (Patt et  al. 1999). The analogue 
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N-[11C]methylhomo- epibatidine had a better toxicity profile; as with N-[11C]methy-
lepibatidine, the (−)-enantiomer of N-[11C]methylhomo-epibatidine showed high 
uptake in pig brain, while the (+)-enantiomer was rapidly washed out. Although 
findings of N-[11C]methyl-(−)-homoepibatidine binding in pig brain suggested suit-
ability for PET imaging, its toxicity in mice and rats was comparable to that of 
N-methylepibatidine, again precluding its safe use in humans (Patt et al. 2001).

Further development of epibatidine derivatives has focussed on maintaining or 
improving kinetic profiles while reducing toxicity. One such compound, 
2-(6-chloro- 5-phenylpyridin-3-yl)-7-[11C]methyl-7-aza-bicyclo[2.2.1] heptane, 
showed a thalamus/cerebellum ratio of 4.2 at 90 min after injection, indicating high 
specific binding in rat brain, which was displaceable by nicotine treatment (1 mg/
kg). A preliminary PET study of this tracer in a baboon revealed fast brain uptake 
and high thalamic binding consistent with α4β2 nAChR distribution. However bind-
ing equilibrium was not reached within 2 h, which is the absolute limit for PET 
recordings with 11C-labelled radioligands (Huang et al. 2004).

Mu et al. synthesized another series of labelled epibatidine and homoepibatidine 
analogues (Mu et al. 2006). Of these, the 8-[11C]methyl-8-aza-bicyclo[3.2.1]octane 
derivative had a double bond conjugated with the pyridine nucleus, thus restricting 
free rotation of the pyridine ring. It showed high affinity (2 nM) in vitro and at least 
100-fold selectivity for α4β4 over α7 nAChRs. Furthermore, its toxicity was 50-fold 
lower than for epibatidine. Although promising for PET studies, there are no further 
reports on its evaluation. The antagonistic epibatidine derivative (±)-[11C]NMI-EPB 
(Ding et  al. 2006) had 2.5-fold higher uptake in the baboon brain than did the 
3- pyridyl ether 2-[18F]fluoro-A-85380, which is discussed in more detail below 
(Ding et al. 2006). Surprisingly, separation of the (±)-[11C]NMI-EPB enantiomers 
revealed that (+)-[11C]NMI-EPB had fast kinetics and but low affinity, whereas (−)-
[11C]NMI-EPB appeared to be suitable for imaging but had a slow kinetics (Gao 
et al. 2007a).

Two further sets of epibatidine analogues (Gao et al. 2007a, 2008b) were subse-
quently developed by the group from Johns Hopkins University, including (−)-
[18F]JHU87522 (now termed [18F]AZAN) (Gao et  al. 2008b; Horti et  al. 2010), 
which had promising properties with respect to brain uptake, kinetics, metabolic 
stability and low toxicity. Results of [18F]AZAN toxicology and human radiation 
dosimetry have been reported (Horti et al. 2010). PET studies in baboons confirmed 
that [18F]AZAN rapidly enters brain, attaining steady state within 90 min after injec-
tion (Kuwabara et  al. 2012). Furthermore, blocking experiments with cytisine 
showed [18F]AZAN to bind specifically to β2-containing (predominantly α4β2) 
nAChRs, supporting its suitability for nicotinic drug evaluation. Based on its excep-
tionally high affinity in  vitro and improved lipophilicity over 2-[18F]FA, another 
epibatidine analogue, (−)-[18F]JHU86428 ([18F]XTRA), was proposed as a poten-
tial tracer for the less abundant extrathalamic α4β2 nAChRs (Gao et al. 2008b, Horti 
et al. 2010). An improved radiosynthesis methodology has been reported (Gao et al. 
2010). Following successful imaging in non-human primates (Kuwabara et  al. 
2017), [18F]XTRA proved fit for quantitation of α4β2 nAChRs in hippocampus of 
healthy humans and showed an age-dependent decline (Coughlin et al. 2018c).
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Toxicity of epibatidine analogues arises from high affinity for the ganglionic 
α3β4 receptors. This has motivated the search for derivatives with higher α4β2 
selectivity. To this end, 18F-labelled stereoisomers of the chloro-fluoro-substituted 
homoepibatidine analogue, flubatine (previously called NCFHEB), have been syn-
thesized. The flubatine enantiomers both bind with subnanomolar affinity to mem-
branes from rat thalamus or HEK293 cells expressing the human α4β2 nAChR 
(Deuther-Conrad et al. 2004), with twofold higher affinity for the (+)-enantiomer. 
Previous work shows that fluoro- and norchloro-analogues of epibatidine have 
selectivity for β2-containing receptors (Avalos et al. 2002). Indeed, the affinity of 
both flubatine enantiomers for α4β2 nAChRs was comparable to that of epibatidine, 
but affinity to ganglionic α3β4 nAChRs was 20–60-fold lower (Deuther-Conrad 
et  al. 2004). The increased subtype selectivity of flubatine seemingly results in 
lesser pharmacological side effects compared to epibatidine; injection of 25 μg/kg 
(+)-flubatine or (−)-flubatine to awake mice was without important pharmacologi-
cal effects (Deuther-Conrad et al. 2008). The doses encountered in a human PET 
study with [18F]flubatine was 1000-fold lower (Vaupel et al. 2005), which entails a 
considerable margin of safety. In addition to its selectivity for α4β2, (−)-flubatine 
and (+)-flubatine also had considerably better selectivity for α4β2 over α7 receptors 
than did (−)-epibatidine (Deuther-Conrad et al. 2004).

N-methyl and N-ethyl derivatives of flubatine have been synthesized but dis-
played lower target affinities and were consequently not considered for radiolabel-
ling (Deuther-Conrad et al. 2004). Similar distribution patterns for (+)-[18F]flubatine 
and (−)-[18F]flubatine were observed in mice, rat and porcine brain (Brust et  al. 
2008; Deuther-Conrad et al. 2008; Sabri et al. 2008). Allen et al. provided evidence 
that nicotine analogues are transported into the brain via the blood-brain barrier 
(BBB) choline transporter (Allen et al. 2003); this mechanism may also be involved 
in the brain uptake of epibatidine and homoepibatidine derivatives (Deuther-Conrad 
et al. 2008). Indeed, addition of flubatine to the incubation medium inhibited with 
an IC50 of 370 ± 90 μM the uptake of [3H]choline in immortalized rat brain endothe-
lial cells, which are known to express the blood-brain barrier (BBB) choline trans-
porter (Deuther-Conrad et al. 2008). This result is comparable to the Ki of 65 μM 
obtained for hemicholinium-3  in the same experimental system (Friedrich et  al. 
2001). Furthermore, in vivo experiments in rats have confirmed the postulated inter-
action of flubatine with the BBB choline transporter; 50 μM flubatine reduced the 
transport rate of [3H]choline by 21%, whereas equimolar epibatidine resulted in 
a ~ 40% reduction (Deuther-Conrad et al. 2008). The stronger interaction of epiba-
tidine is consistent with its higher uptake in mouse brain (London et al. 1995) com-
pared to (+)-[18F]flubatine or (−)-[18F]flubatine.

PET studies in young pigs were performed to compare the brain uptake and 
kinetics of (+)-[18F]flubatine and (−)-[18F]flubatine with that of 2-[18F]fluoro- 
A- 85380, a 3-pyridyl ether discussed in detail below. The brain uptake of both enan-
tiomers proved to be two- to threefold higher than that of 2-[18F]fluoro-A-85380. 
The binding equilibrium of (−)-[18F]flubatine was reached significantly earlier (~ 
60 min p.i.) than that of the (+)-enantiomer (Brust et al. 2008), consistent with its 
lesser affinity in vitro. The specific binding of (−)-[18F]flubatine in porcine brain 
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was comparable to that of 2-[18F]fluoro-A-85380, but (+)-[18F]flubatine displayed 
about twofold higher specific binding. Thus, both [18F]flubatine enantiomers may 
present advantages over 2-[18F]fluoro-A-85380 for application in human PET stud-
ies, especially as pertains to the time to equilibrium binding.

The metabolites of (+)-[18F]flubatine in pig urine and plasma have been deter-
mined by HPLC-MS (Ludwig et al. 2018). Displaceable binding of (−)-[18F]fluba-
tine in human cerebellum upon smoking (Bhatt et al. 2018) raises a red flag for its 
quantitation through reference tissue methods, which assume absence of specific 
binding in the reference region. Nonetheless, (−)-[18F]flubatine PET studies in non- 
human primate showed complete displacement with nicotine, revealing a non- 
displaceable distribution volume (VND) of 6 mg/ml, and BPND of 4 in the thalamus, 
1 in the frontal cortex and putamen and only 0.1 in the cerebellum (Bois et al. 2015), 
consistent with an earlier semi-quantitative analysis in non-human primate (Hockley 
et al. 2013). The extensive displaceable binding in human cerebellum might reflect 
a species difference.

18.3.1.4  3-Pyridyl Ethers
First developed as experimental treatments for Alzheimer’s disease, the 3-pyridyl 
ethers were identified as promising radioligands for nAChRs imaging (Gündisch 
2000; Horti and Villemagne 2006; Horti et al. 2010). The 3-pyridyl ethers are equi-
potent to epibatidine at the mainly α4β2 nAChR [3H]cytisine binding sites in the 
brain but are 100-fold less potent than epibatidine as agonists at α3β4 nAChRs 
(Abreo et al. 1996). As noted above, this predicts larger dose safety margins with 
minimal cardiovascular or other toxic side effects. The prototype compound 
A-85380 has similar binding affinities at recombinant α2β2, α3β2 and α4β2 nAChRs 
in vitro (Xiao and Kellar 2004). In addition, the iodinated derivative 5-[125I]iodo- 
A- 85380 binds with high affinity to α6β2β3 nAChRs in monkey and rat striatum 
(Kulak et al. 2002). Therefore, 3-pyridyl ethers are properly regarded as β2-selective 
compounds (Jensen et al. 2005; Lai et al. 2005), also considering their lack of affin-
ity for the α7 nAChR (Sullivan et al. 1996).

As noted above, 2-[18F]fluoro-A-85380 and 6-[18F]fluoro-A-85380 (Horti et al. 
1998b, 2000) showed early promise for PET imaging, having less toxicity than 
epibatidine analogues. Of the two, 6-[18F]fluoro-A-85380 (Scheffel et al. 2000) had 
superior kinetics, characterized by earlier peak and faster clearance from the brain 
(Ding et al. 2004), and better target-to-background ratios than were obtained with 
2-[18F]fluoro-A-85380  in a comparative study in baboon (Ding et  al. 2000a). 
Although 6-[18F]fluoro-A-85380 has nonetheless not yet found wide use, both 
derivatives proved successful in human brain imaging (see Sabri et al. in PET and 
SPECT in Neurology). The SPECT analogue 5-[123I]iodo-A-85380 was tested in 
non-human primates (Chefer et al. 1998), and has also served for nicotine challenge 
studies in human smokers (Esterlis et al. 2010a), as described below. Although suf-
fering from slow kinetics, 5-[123I]iodo-A-85380 was sensitive to competition from 
endogenous acetylcholine (Fujita et  al. 2003), a property also to be discussed in 
some detail below. The methyl-substituted derivative 5-[123I]iodo-A-84543 
(Henderson et  al. 2004) displayed faster kinetics, but homogenous uptake of 
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radioactivity in baboon brain, in contrast to the spatially heterogeneous pattern of 
specific binding for the analogue [11C]A-84543 seen in mouse brain (Kassiou et al. 
1998). PET studies in pigs with [11C]A-186253, a structurally similar tracer, showed 
little displacement by cytisine, indicating excessive non-specific binding (Itier 
et al. 2004).

The comparably low brain uptake of 2-[18F]fluoro-A-85380 was similar to that 
previously found with 5-[11C]methyl-A-85380 (2.2% ID/g brain tissue at 30 min p.i. 
(Iida et al. 2004)). This may be related to their rather high polarity (Zhang et al. 
2004), which is a critical parameter for brain radiotracer uptake (Waterhouse 2003). 
Nevertheless 2-[18F]fluoro-A-85380 was successfully used to image nAChRs in 
non-human primates (Chefer et al. 1999, 2003; Valette et al. 1999; Le Foll et al. 
2007) and in rat microPET studies (Vaupel et al. 2007). An optimized radiosynthe-
sis of 2-[18F]fluoro-A-85380 and improved analytical techniques (Mitkovski et al. 
2005; Schmaljohann et al. 2005; Kimes et al. 2008) have facilitated its use in human 
PET studies (Ellis et al. 2009b) (Lotfipour et al. 2012b). Despite the disadvantage of 
its slow binding kinetics, requiring interrupted or continuous PET recordings last-
ing at least 6 h (Gallezot et al. 2005; Horti and Villemagne 2006), 2-[18F]fluoro- 
A- 85380 remains the most frequently utilized ligand in human PET studies (see 
Sabri et al. in PET and SPECT in Neurology); despite its limitations, it remains for 
the present the standard against which other nAChR PET ligands have been 
compared.

A series of 5-substituted-6-halogeno derivatives of A-85380 have potentially 
improved lipophilicity and affinity (Zhang et al. 2004). PET studies in rhesus mon-
key with two such [18F]-labelled derivatives showed higher lipophilicity than for 
2-[18F]fluoro-A-85380, resulting in enhanced target-to-background ratios. Imaging 
studies with another 5-substituted A-85380 derivative, [11C]5-MA (Iida et al. 2004), 
demonstrated lower total brain uptake and lower target-to-background ratios than 
for 2- or 6-[18F]fluoro-A-85380. A further analogue, [18F]ZW-104 has had initial 
testing (Kozikowski et al. 2005; Valette et al. 2009; Saba et al. 2010). In baboon 
PET studies, [18F]ZW-104 showed regional radioactivity distribution resembling 
that of 2-[18F]fluoro-A-85380 and some superior properties, including higher accu-
mulation in the brain, earlier peak uptake in the thalamus and faster washout kinet-
ics. However, it also displayed considerable affinity for α3β2 and α2β2 receptors 
in vitro (Valette et al. 2009) and rather high non-displaceable (by nicotine) uptake 
in the striatum, a region with comparably low density of nAChRs.

Many further derivatives have been tested in rodent and non-human primate PET 
studies: [76Br]BAP (Sihver et  al. 1999a); [76Br]BrPH (Kassiou et  al. 2002); 
[11C]Me-p-PVC (Brown et  al. 2004) and its analogues [11C]JHU85208, 
[11C]JHU85157 and [11C]JHU85270 (Gao et al. 2007b, 2009); [18F]nifene (Pichika 
et  al. 2006; Easwaramoorthy et  al. 2007); and two carbon-11- and fluorine-18- 
labelled isotopomers of one pyridine-derived ligand. While some of these ligands 
had better kinetics than 2-[18F]fluoro-A-85380, their low BPND, high non-specific 
binding or non-selectivity discouraged further development for human imaging 
(Easwaramoorthy et al. 2007). Despite this, specific binding of [18F]nifene was later 
attributed entirely to α4β2 nAChRs based on studies in β2-knockout mice (Bieszczad 
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et al. 2012), and subsequent human studies demonstrated the safety and test-retest 
reliability of [18F]nifene (Betthauser et al. 2017; Lao et al. 2017). This was further 
supported by a study showing no significant decline in [18F]nifene binding over five 
decades of healthy human ageing (Mukherjee et al. 2018). Despite the partial selec-
tivity of the tracer for α4β2 nAChRs, there was low binding in human habenula 
(which contains α3β2 nAChRs) and in the red nucleus (which contains abundant 
α2β2 nAChRs).

PET imaging of α4β2 nAChRs using the pyridyl ether analogue [18F]nifrolidine 
has been tested in non-human primate (Chattopadhyay et al. 2005). Although hav-
ing favourable kinetics, the thalamus-to-cerebellum ratio was lower than that of 
other α4β2-targeting pyridyl ether analogues (Chattopadhyay et al. 2005), attaining 
a value of 4 at several hours after administration in non-human primate and showing 
considerable displaceability by nicotine (Pichika et al. 2013). Similarly, there have 
been no follow-up reports on the nifrolidine homologue [18F]nifzetidine (Mukherjee 
et al. 2004), except for a report showing a continuous increase of the thalamus/cer-
ebellum ratio up to 3 h after administration to non-human primates (Pichika et al. 
2011). Such slow kinetics is unfavourable for quantitation.

The series of pyridyl ether-based compounds [18F]NIDA52189, [18F]NIDA522131 
and [18F]NIDA52289 have been synthesized and evaluated by PET in rhesus mon-
keys (Horti and Villemagne 2006), especially intended for imaging of the relatively 
sparse extrathalamic α4β2 nAChRs. Among these, [18F]NIDA52189 (Zhang et al. 
2004) and [18F]NIDA522131 (Chefer et al. 2008) were deemed superior to 2-[18F]FA 
with respect to extrathalamic binding but suffered from slow kinetics in vivo.

18.3.1.5  Non-Epibatidine-and-Non-A-85380-Related Compounds
Carbon-11-labelled Me-p-PVC (Brown et  al. 2002) and p-PVP-MEMA, which 
were selected from the class of (4-pyridinyl)vinylpyridines developed by Abbott 
Laboratories, possessed picomolar affinity towards α4β2 receptors. Nevertheless, 
[11C]Me-p-PVC had low BPND in thalamus of non-human primate (Brown et  al. 
2004), and [11C]p-PVP-MEMA had a low target-to-background ratio in a prelimi-
nary PET study (Dollé et al. 2008).

18.3.2  Imaging of Heteromeric β4-Containing nAChR Subtype

The putative β4-selective agonist [11C]SIB-1553A was assessed by biodistribution 
and ex vivo brain autoradiography in rats (Sobrio et al. 2008). Its low specific bind-
ing did not encourage further development, and there was no attempt made to sepa-
rate and individually investigate the enantiomers of this racemic radioligand.

18.3.3  Radioligands for α7 nAChRs

Efforts to develop a radiopharmaceutical for PET imaging of α7 nAChR have met 
with growing success in the past few years. Structurally diverse classes of 
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compounds meet the steric and electronic requirements of this binding site, as 
reviewed recently (Brust et al. 2012; Mo et al. 2014). As noted above, the cerebral 
expression of α7 nAChR is comparatively low, constituting perhaps one quarter of 
the density for α4β2 receptors (Spurden et al. 1997; Whiteaker et al. 1999; Hellström-
Lindahl and Court 2000). Because of this low natural abundance of α7 sites, high 
affinity is particularly important for an effective PET tracer. Binding properties of 
various α7 tracers tested to date are summarized in Table 18.2.

Table 18.2 Results of biodistribution ex vivo and PET imaging studies in vivo of the cerebral 
binding of α7 nAChR selective radioligands

Main findings

N

O

O
125l

[125I]4
((1′S,2R,4′S)-5-(2-[125I]iodofuran-3-yl)-3H-4′-
azaspiro[benzofuran-2,2′-bicyclo[2.2.2]
octane])

Biodistribution in CD1 mice showed very 
limited uptake in brain, and no evidence of 
displaceable binding. Ki = 0.33 nM (Pomper 
et al. 2005)

N

O N

O
Br

11C

[11C]1
((1S,3R,4S)-quinuclidin-3-yl (4-bromophenyl)
[11C]carbamate)

Biodistribution study in rats showed no 
regionally selective or specific binding. 
Affinity has not been reported (Dollé et al. 
2001)

N N
N

N

N
11CH3

[11C]NS12857
((1R,5S)-3-(6-(1H-indol-5-yl)pyridazin-3- yl)-
9-[11C]methyl-3,9-diazabicyclo[3.3.1]nonane)

High uptake in pig brain by dynamic PET but 
lack of displacement in vivo. Ki = 0.51 nM 
(Lehel et al. 2009)

N N N

O N

N

11CH3

[11C]NS14492
(2-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-5-(1-
[11C]
methyl-1H-pyrrol-2-yl)-1,3,4-oxadiazole)

Dose-dependent decline in cerebral binding 
after receptor blockade in pigs. Ki = 2.2 nM 
(Ettrup et al. 2011)

(continued)
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Table 18.2 (continued)

Main findings

N N

O N

N

18F

[18F]NS10743
(2-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-5-(4-
[18F]fluorophenyl)-1,3,4-oxadiazole)

High uptake in the pig brain by dynamic PET, 
with clear evidence of displaceable binding in 
regions of relatively high tracer accumulation. 
Ki = 9.27 nM (Deuther-Conrad et al. 2011)

N
N

N N

O

N
18F

[18F]NS14490
(((1R,5S)-3-(6-(1-(2-[18F]fluoroethyl)
indol-5-yl)pyridazin-3-yl)-9-methyl-3,9- 
diazabicyclo[3.3.1]nonane))

Moderate uptake in the pig brain by dynamic 
PET, with clear evidence of displaceable 
binding in brain and cerebral vasculature. 
Ki = 2.5 nM (Rötering et al. 2014)

N

N

O11CH3

H3
11CO

2/4-methoxy-[11C]GTS21
((E)-3-(2,4-dimethoxybenzylidene)-3,4,5,6-
tetrahydro-2,3′-bipyridine)

In baboon dynamic PET, very high initial 
uptake followed by rapid clearance; relatively 
little evidence for specific α7 nAChR binding. 
Brain penetrating radiometabolites detected in 
plasma. Ki = 211 nM (Kim et al. 2007b)

N

O

O

N
11CH3

[11C]MeQAA
((1S,3R,4S)-quinuclidin-3-yl 3-([11C]
methylamino)benzoate

In rhesus monkey dynamic PET, the 
R-enantiomer had high cerebral uptake and 
distribution consistent with α7 nAChRs. 
Ki = 41 nM (Ogawa et al. 2010)

N

N

O

O

76Br

[76Br]SSR180711
(4-[76Br]bromophenyl 1,4-diazabicyclo[3.2.2]
nonane-4-carboxylate)

In rhesus monkey dynamic PET, substantial 
and heterogeneous brain accumulation. 
Binding globally reduced to level seen in 
cerebellum by pretreatment with the α7 
nAChR agonist SSR180711. Biton et al. 
(2007) reported Ki values of 22 ± 4 and 
14 ± 1 nM in rat and human, respectively 
(Hashimoto et al. 2008)
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Table 18.2 (continued)

Main findings

NN
N N

H3
11C

[11C]A-582941
(2-[11C]methyl-5-(6-phenylpyridazin-3-yl)
octahydropyrrolo[3,4-c]pyrrole)

NN O

O

H3
11C

[11C]A-844606
(2-(5-methylhexahydropyrrolo[3,4-c]
pyrrol-2(1H)-yl)-9H-xanthen-9-one)

In rhesus monkey dynamic PET studies, 
evidence for regional distribution consistent 
with α7 nAChR expression. Ki (A-582941, 
rat) = 10.8 nM, Ki (A-582941, 
human) = 17 nM, IC50 (A-844606, 
rat) = 11 nM (Toyohara et al. 2010)

N

N

O

O

11CH3

[11C]CHIBA-1001
(4-[11C]methylphenyl)-1,4- diazabicyclo[3.2.2]
nonane-4-carboxylate)

In a PET study of one healthy human, 
evidence for preferential binding in the 
hippocampus, cortex and basal ganglia, with 
slow washout, and least binding in cerebellum. 
Ki = 35 nM (Toyohara et al. 2009)

N

N
H

O

18F

[18F]4
(4-[18F]fluoro-N-((1S,3R,4S)-quinuclidin- 3- yl)
benzamide)

Low brain uptake in rats, homogenous 
distribution. Ki = 14 nM (Pin et al. 2014)

NN
S
OO18F

[18F]ASEM
(7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-4-
[18F]fluorodibenzo[b,d]thiophene 5,5-dioxide)

The radiotracer readily entered the baboon 
brain and specifically labelled 
α7-nAChR. SSR180711 blocked the binding 
in the baboon brain in a dose-dependent 
manner. Ki = 0.84 nM (Horti et al. 2014; 
Teodoro et al. 2015)

NN
S
OO

18F

[18F]DBT10
(7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-
[18F]fluorodibenzo[b,d]thiophene 5,5-dioxide)

Uptake of the radiotracer in monkey brain 
occurred rapidly, reaching SUV values of 
2.9–3.7 within 30 min. There was dose-
dependent blockade by ASEM throughout the 
brain. Ki = 0.60 nM (Hillmer et al. 2016b)

(continued)
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18.3.3.1  Quinuclidine-Based Ligands
The lead compound of a series of azabicycle carbamate α7 receptor agonists devel-
oped by Astra Laboratories has been labelled with carbon-11 and evaluated in rats 
(Dollé et al. 2001). Despite having relatively good brain uptake, no regionally selec-
tive or specific binding could be seen. Another series of potential α7-selective imag-
ing agents based on the quinuclidine moiety has been labelled with carbon-11 and 
iodine-125 (Pomper et al. 2005). Target selectivities of these compounds were mod-
est, and the most affine compounds had significant binding to the 5-HT3 receptor, a 
structural homologue of α7 nAChR (Zwart et al. 2004).

18.3.3.2  GTS-21
Other potential α7 ligands originate from benzylidene anabasein compounds such 
as GTS-21 (de Fiebre et  al. 1995; Meyer et  al. 1998). Indeed, GTS-21 
(3-(2,4-dimethoxybenzylidene)-anabaseine) showed early promise as a α7 nAChR 
agonist medication for improving cognition in patients with schizophrenia 
(Freedman et al. 2008; Tregellas et al. 2011). It has been labelled with iodine-123 
(Zhang et al. 2001) and carbon-11 (Kim et al. 2007b). Consistent with the relatively 
low affinity and specificity of GTS-21 for α7 nAChRs, the distribution and kinetics 
of 5- [123I]GTS-21 and 2- [11C]GTS-21 in the brain of living baboon and mice were 
dominated by non-specific binding (Kim et al. 2007a).

18.3.3.3  Diazabicyclononane Derivatives
The 1,4-diazabicyclo-[3.2.2]nonane skeleton (Bunnelle et al. 2004) was identified 
as a motif for α7 nAChR ligands, and the two novel diazabicyclononane-derived 
PET ligands [76Br]SSR180711 and [11C]CHIBA-1001 were evaluated by PET in 
conscious non-human primates, with testing in a model of schizophrenia (Hashimoto 
et al. 2008). Of the two tracers, [11C]CHIBA-1001 demonstrated superior accumula-
tion in the brain, revealing a heterogeneous regional distribution consistent with the 
localization of α7 in the brain; specific binding was blocked by selective α7 but not 
α4β2 agonists revealing some potential for measuring occupancy by pharmaceuti-
cals at α7 nAChRs. A first clinical PET study confirmed the suitability of 
[11C]CHIBA-1001, although the regional binding differences were small in the 
human brain (Toyohara et al. 2009). Notably, α7-specific binding could not be dem-
onstrated in vitro: there was no displacement of 30 nM [3H]CHIBA binding from rat 

Table 18.2 (continued)

Main findings

NN

O18F

[18F]FLN28
(7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-1-
[18F]fluoro-9H-fluoren-9-one)

A fluoren-9-one derived α7 nAChR selective 
PET ligand (Teodoro et al. 2018) with high 
brain uptake in mice and rats. Ki = 2.98 nM 
(Wang et al. 2018)
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brain membranes by 1 μM α-bungarotoxin (Tanibuchi et al. 2010). Another rodent 
study reported low in vitro binding affinity of [3H]CHIBA and poor in vivo selectiv-
ity to α7 nAChRs in rodent brain (Ding et al. 2012). Furthermore, differences in the 
regional distribution of the binding sites of CHIBA-1001 relative to 
[125I]α-bungarotoxin were evident in monkey and human brain samples (Tanibuchi 
et al. 2010).

The 1,4-diazabicyclo[3.2.2]nonane derivatives developed by NeuroSearch 
emerged as promising PET ligands for imaging of cerebral α7 nAChR (Peters et al. 
2007). Two carbon-11 radioligands were developed, [11C]NS12857 (Lehel et  al. 
2009) and [11C]NS14492 (Ettrup et al. 2011), along with the fluorine-18 compounds 
[18F]NS10743 (Deuther-Conrad et  al. 2009) and [18F]NS14490 (Rötering et  al. 
2014). The cerebral uptake of these three 1,4-diazabicyclo[3.2.2]nonane derivatives 
exceeded that of [11C]CHIBA-1001. Although the uptake of [11C]NS12857 was not 
displaced by α7 nAChR-selective compounds, specific binding was clearly evident 
for [11C]NS14492, [18F]NS14490 and [18F]NS10743, the ligands with higher target 
affinity (Brust et al. 2012).

NS14492 has been labelled with tritium to allow in vitro autoradiographic stud-
ies on α7 nAChR assessing α7 nAChR density in the porcine brain and by extension 
other species (Magnussen et  al. 2015). Figure  18.2 shows the autoradiographic 
comparison of a saturating concentration of [125I]α-bungarotoxin and [3H]NS14492 in 
whole brain sections from newborn piglets. Brain region-specific binding pattern of 
[3H]NS14492 is very similar to that of [125I]α-bungarotoxin, with the non-specific 
binding being considerably lower. Furthermore, the use of [3H]NS14492 provides a 
higher resolution, which is especially noticeable in the laminar layers of the neocor-
tex. [3H]NS14492 therefore is an interesting alternative to [125I]α-bungarotoxin 
when assessing α7 nAChR density in the porcine brain and by extension other 
species.

The general suitability of the diazabicyclononane derivatives for PET imaging of 
α7 nAChRs was shown by preclinical PET studies in pigs (Lehel et  al. 2009; 
Deuther-Conrad et al. 2011; Ettrup et al. 2011), although the magnitude of BPND, 
about 0.5, is rather low for a useful PET tracer. In view of the low natural abundance 

5 nMol/L [125l]-α-BTX 5 nMol/L [3H]NS14492

Fig. 18.2 Autoradiographic comparison of [125I]α-bungarotoxin and [3H]NS14492 binding to 
brain sections from newborn piglets. For anatomic reference see Fig. 18.1
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of the α7 nAChR in the brain, a substantial increase in α7 affinity of PET radiotrac-
ers may be required for sensitive quantitation (Brust et al. 2012); target affinities of 
[11C]CHIBA-1001 (Ki ~ 35 nM) (Hashimoto et al. 2008; Toyohara et al. 2009) and 
[18F]NS10743 (Ki ~ 10 nM) (Deuther-Conrad et al. 2009) do not predict adequate 
specific signal in vivo, given the low Bmax (Koeppe 2001). NS14490, a novel diaz-
abicyclononane derivative, with a Ki of 3 nM may be more promising in this regard 
(Brust and Deuther-Conrad 2012). The distribution of [18F]NS14490 binding in 
mouse brain autoradiograms correlated with the known pattern of α7 nAChR 
expression and was displaced with the α7 nAChR ligand methyllycaconitine (Brust 
and Deuther-Conrad 2012).

With tilorone, an amphiphilic molecule possessing high interferon-inducing 
potential, a novel α7 nAChR pharmacophore has been identified (Briggs et al. 2008; 
Schrimpf et  al. 2012), leading to a new series of diazabicyclononane-substituted 
dibenzothiophene derivatives for PET imaging developed independently by two 
groups (Gao et al. 2013; Scheunemann et al. 2014). The 2-fluoro dibenzothiophene 
sulfone derivative (DBT10) and 4-fluoro dibenzothiophene sulfone derivative 
(ASEM) have been identified as potential α7 nAChR imaging agents, as shall be 
discussed in more detail below. In addition, a small library of further tilorone-based 
derivatives was synthesized to explore further the impact of the isomeric effect and 
effects of different cationic centres on the ligand features. However, an isomer, sub-
stituted with fluorine and the cationic centre in the same benzo ring, did not achieve 
criteria for further 18F-labelling. Increased flexibility of the tertiary amine of the 
cationic centre 9-methyl-3,9-diazabicyclo[3.3.1]nonane and 3-methyl-3,8- 
diazabicyclo[3.2.1]octane resulted in a remarkable loss of binding affinity (Teodoro 
et al. 2015). Most recently, a series of novel fluoren-9-one-based diazabicyclonon-
ane derivatives has been developed, showing low nM affinity towards the α7 nAChR 
and >1000-fold selectivity over the α4β2 nAChR (Teodoro et al. 2018; Wang et al. 
2018). Two derivatives were radiolabelled leading to the corresponding carbonyl 
bioisosteres of [18F]DBT10 and [18F]ASEM. The carbonyl derivative of [18F]DBT10 
exhibited high initial brain uptake (12% ID/g at 15 min post-injection) and displace-
able binding (Wang et al. 2018).

Both [18F]DBT10 and [18F]ASEM have been investigated as PET tracers in non- 
human primates, showing a favourable kinetic profile for quantitation of the α7 
nAChR in living brain (Horti et al. 2014; Hillmer et al. 2016b). Recently, a direct 
comparison in rhesus monkey of [18F]DBT10 and [18F]ASEM indicated very similar 
pharmacokinetics (Hillmer et al. 2017). A blocking study with [18F]DBT10 in pigs 
revealed a 75% decrease of the binding potential BPND after treatment with 3 mg∙kg−1 
i.v. of the α7 nAChR partial agonist NS6740 (Fig. 18.3) (Teodoro et al. 2015). The 
total distribution volume (VT; ml g−1) of [18F]ASEM has been quantified in non- 
smoking healthy volunteers over a broad range of ages, showing a positive correla-
tion between [18F]ASEM VT and age in various brain regions of interest, with VT 
increasing from 20 to 30 ml g−1 (Coughlin et al. 2018b). Occupancy by the experi-
mental drug DMXB-A at central α7 nAChRs could be estimated from [18F]ASEM 
binding changes in the brain of healthy volunteers (Wong et al. 2018).
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Given this success and in expectation of future human applications, an auto-
mated cGMP-compliant radiosynthesis of [18F]DBT10 was established, and toxicity 
and radiation dosimetry studies were performed. The single-dose toxicity in rats 
(No-Observed-Effect-Level = 620 μg∙kg−1) and the effective dose estimated from 
mouse and pig studies (12.7 and 13.7 μSv/MBq, resp.) indicated the safe use of 
[18F]DBT10 in human PET studies ((Kranz et al. 2014; Teodoro et al. 2015).

18.3.3.4  [11C]A-582941 and [11C]A-844606
A new series of octahydropyrrolo[3,4-c]pyrrole derivatives was described by Abbott 
Laboratories, two of which were selected for labelling with carbon-11 (Toyohara 
et al. 2010). Whereas no regional heterogeneity or displaceable binding was evident 
in mouse brain ex vivo, pretreatment with an α7-specific agonist decreased the total 
distribution volumes of both tracers in conscious monkey PET studies, indicative of 
a BPND close to 0.5, as with the NeuroSearch (NS) compounds cited above.

18.3.3.5  [125I]I-TSA
A diazabicyclooctane-derived PET ligand with high affinity and selectivity has been 
radiolabelled and evaluated in mice (Ogawa et al. 2006). Despite a subnanomolar 
affinity, the high non-specific binding made [125I]I-TSA inadequate for imaging of 
brain α7 receptors.
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18.3.3.6  R-[11C]MeQAA
The two enantiomers of [11C]MeQAA, an azabicyclooctylester-derived compound, 
were evaluated in mice and conscious monkey PET studies (Ogawa et al. 2009). 
Although (R)-[11C]MeQAA showed target-specific accumulation, the in vivo selec-
tivity was insufficient due to binding to the serotonin 5HT3-R.  Nonetheless, the 
tracer was used more recently in a multitracer study of aged monkeys (Nishiyama 
et  al. 2015). The hippocampal binding of (R)-[11C]MeQAA correlated inversely 
with binding of a marker for mitochondrial complex I and positively with the bind-
ing of a marker for beta-amyloid deposition in the aged animals. The authors inter-
preted their results to indicate a significant (adaptive?) upregulation of α7 nAChRs 
in metabolically compromised and degenerating brain tissue.

18.3.4  Radioligands for α3β4 nAChRs

Recently, a series of quinuclidine anti-1,2,3-triazole derivatives was synthetized 
with the aim of developing an 18F-labelled radioligand for imaging the α3β4 nAChR 
in the brain. This subtype attracts interest because of its involvement in drug addic-
tion and depression pathways (Rahman et al. 2015). In contrast to α4β2 and α7, the 
α3β4 subtype expression is mainly in the autonomic ganglia (hence the toxicity of 
epibatidine) but also in some specific brain regions and neuronal subpopulations. 
These regions notably include the medial habenula, nucleus interpeduncularis, dor-
sal medulla, pineal gland and retina (Gotti et  al. 2009). Binding studies in  vitro 
revealed that stereochemistry at the C3 position of the quinuclidine scaffold plays 
an important role in the nAChR subtype selectivity (Sarasamkan et  al. 2016). 
Whereas the (R)-enantiomers are selective to α7 over α4β2 (by factors of 44–225) 
and to a smaller degree over α3β4 (3–33), their (S)-counterparts prefer α3β4 over 
α4β2 (62–237) as well as over α7 (5–294). Two potent compounds (S)-T1 and (S)-
T2 were identified that bind selectively to α3β4 nAChR over α7 nAChR. The com-
pound (S)-T1 was chosen for radiolabelling and first preclinical evaluation 
(Sarasamkan et  al. 2017). The brain uptake and the brain-to-blood ratio of (S)-
[18F]T1  in mice at 30 min post-injection were 2.02 (SUV) and 6.1, respectively. 
According to an ex vivo analysis, the tracer remained intact (>99%) in the brain. 
Only one major radiometabolite was detected in plasma and urine samples. In vitro 
autoradiography on pig brain slices revealed binding of (S)-[18F]T1 to brain regions 
associated with the expression of α3β4 nAChRs, which could be reduced by the 
α3β4 nAChR selective drug AT-1001. These findings suggest (S)-[18F]T1 as a prom-
ising tool for non-invasive PET imaging of α3β4 nAChRs in the brain.

18.4  nAChR Imaging of Neurodegenerative Diseases

Reductions in cortical nAChR binding have been found in patients with diverse 
forms of neurodegeneration, including Alzheimer’s disease, Parkinson’s disease, 
Lewy body disease, progressive supranuclear palsy and Down’s syndrome (Perry 
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et al. 1986; Picciotto and Zoli 2002) (see also Sabri et al. in PET and SPECT in 
Neurology). However, there have been few preclinical PET and SPECT studies of 
nAChRs in animal models of neurodegenerative disease. This is attributable to two 
considerations: First, models in transgenic mice have only recently become avail-
able for some of these diseases, while remaining lacking for others, and second, the 
spatial resolution of small-animal PET and SPECT instruments has until recently 
been inadequate for regional analysis of neuroreceptors in rodent brain, as noted in 
the instrumentation section above. Therefore, the majority of such investigations 
use autoradiography in vitro. Furthermore, the occurrence of species differences is 
a hindrance to the interpretation of preclinical imaging studies (Pauly et al. 1989; 
Quik et al. 2000; Han et al. 2003). Despite these limitations, molecular imaging is 
emerging as a powerful tool for investigating pathophysiological changes in animal 
models of neurodegenerative diseases, especially when conducted in conjunction 
with techniques such as in vivo microdialysis, electrophysiology and histopathol-
ogy (Higuchi et al. 2012).

18.4.1  Alzheimer’s Disease

A link between cognitive performance and α4β2 nAChR expression in the forebrain 
of healthy rats has been demonstrated in a PET study using the ligand [18F]nifene 
(Bieszczad et al. 2012), as confirmed by autoradiography ex vivo and in vitro. The 
three imaging methods showed the same rank order of specific binding by brain 
region. We anticipate that [18F]nifene PET should allow tracking of dynamic changes 
in nAChRs during learning acquisition and memory consolidation, in rodents and 
also in large-brained animals. In contrast to the case for humans (Zanardi et  al. 
2002), normal ageing does not seem to reduce nAChR density in rat brain (Picciotto 
and Zoli 2002; Schliebs and Arendt 2011).

The hallmark histopathological features of Alzheimer’s disease are extraneuro-
nal amyloid plaques composed of aggregated amyloid-β peptides (Aβ), and intra-
neuronal neurofibrillary tangles, which are composed largely of hyperphosphorylated 
forms of tau, a microtubule-associated protein (Thal and Braak 2005). Molecular 
imaging studies in animal models have primarily targeted fibrillar protein assem-
blies such as β-amyloid and tau depositions, neuroinflammatory processes and cere-
bral glucose metabolism (Higuchi et al. 2012). However, these features are closely 
related to cholinergic hypofunction found in Alzheimer’s disease and relevant ani-
mal models (Schliebs and Arendt 2011).

Cognitive impairment in Alzheimer’s disease is at least partially associated with 
loss of cortical nAChRs, which may arise due to toxicity of soluble β-amyloid 
(Zanardi et al. 2002; Schliebs 2005; Schliebs and Arendt 2011). Nicotine treatment 
in a transgenic mouse model (3xTg-AD) can mediate increased tau phosphorylation 
and decrease β-amyloid load (Rubio et al. 2006). Impaired cholinergic neurotrans-
mission has been described in the brain of Tg2576 mice, which express the Swedish 
mutation of human β-amyloid precursor protein (Apelt et al. 2002). Enzyme activi-
ties for acetylcholine synthesis (choline acetyltransferase) and degradation 
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(acetylcholine esterase; AChE) did not differ between transgenic mice and non-
transgenic littermates. However, a reduction of high-affinity choline uptake and M1-
muscarinic receptor density was observed. Autoradiography with [3H]cytisine 
revealed a significant 20% loss of α4-containing nAChRs in cingulate and parietal 
cortices of these animals at an age of 17 months. However, there was no change in 
the number of basal forebrain cholinergic neurons in the transgenic mice, compared 
to age- matched wild-type animals.

Evidence for an involvement of α7 nAChR in Alzheimer’s disease was first pre-
sented three decades ago (Davies and Feisullin 1981). More recently, a very high- 
affinity binding of (soluble) β-amyloid to α7 nAChRs has been described in vitro 
(Wang et al. 2000), supporting the hypothesis that β-amyloid at very low concentra-
tions may initiate neuronal degeneration via an α7 nAChR-mediated inflammatory 
process (Bencherif and Lippiello 2010). A 20% reduction in α7 nAChRs labelled 
with [125I]α-bungarotoxin was evident in the hippocampus, retrosplenial and parietal 
cortices and thalamus of 3xTg-AD mice at 6 months of age. There was a significant 
correlation between intraneuronal β-amyloid and reduced α7 nAChR binding in the 
same mouse model (Oddo et al. 2005). Whereas chronic nicotine administration did 
not alter α7 nAChR levels in these mice, there was an increase in α4β2 nAChRs 
labelled with [125I]epibatidine (Oddo et al. 2005). In contrast to the earlier report, no 
alteration in α7 nAChR binding was noted in a subsequent study of the triple trans-
genic 3xTg-AD mice, which closely emulate several features of natural Alzheimer’s 
disease (Hedberg et al. 2010); this unexpected negative finding was attributed to 
unknown environmental and/or genetic factors.

The abundance of α7 nAChRs was determined using nanogold-conjugated 
α-bungarotoxin in the APP(SWE) mouse model of Alzheimer’s disease (Jones et al. 
2004). Interestingly, the α7 nAChR binding increased in the transgenic animals 
until 9 months of age but had declined at 12 months, most notably in areas of gliosis 
associated with β-amyloid plaques (Jones et  al. 2006). Also [125I]α-bungarotoxin 
binding decreased in APP(SWE) mice between 9 months of age and 16  months 
(Hellström-Lindahl et al. 2004).

With the establishment of reliable cholinergic PET tracers, a number of molecu-
lar imaging studies of Alzheimer’s disease have appeared in recent years. The first 
phase of this research consisted of studies of the α4β2 subtype of nAChR with 
2-[18F]fluoro-A-85380 (2-FA). One such quantitative PET study of 14 early AD 
patients showed no difference in VT compared to healthy controls, nor was there any 
relationship between tracer uptake and cognitive scores (Ellis et al. 2008). The same 
research group did not detect any reduction in binding with healthy ageing (Ellis 
et al. 2009a), and did not find any effect of precognitive treatment with galantamine 
on 2-FA binding in Alzheimer’s disease patients (Ellis et al. 2009b). Another study 
with 2-FA using a white matter reference tissue calculation of binding potential 
(BPND) found a 40% reduction in cerebral cortex of a group of nine patients with 
moderate Alzheimer’s disease, but no such change in the thalamus (Kendziorra 
et al. 2011). Similar findings in a group of mild cognitive impairment (MCI) patients 
suggested that the loss of α4β2 sites was already complete at the prodromal state of 
the disease. Others reported a 20–40% decline in 2-FA VT/fp (i.e. the distribution 
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volume corrected for the plasma free fraction) in the thalamus, caudate, hippocam-
pus anterior cingulate cortex and insula in a group of 24 Alzheimer’s disease patients 
compared to a healthy control group (Sultzer et al. 2017). Similarly, a dual tracer 
study with 2-FA and the beta-amyloid tracer [11C]PiB showed an inverse relation-
ship between the binding ratio of α4β2 tracer and the amyloid BPND in the medial 
frontal cortex and basal forebrain of Alzheimer’s disease patients (Okada et  al. 
2013). While the preponderance of such studies indicates a widespread loss of α4β 
binding sites in Alzheimer’s disease, there is a certain lack of congruence about its 
spatial extent and magnitude. This may reflect the various endpoints used for quan-
titation and the very long interval of 4–6 h required for attainment of equilibrium 
binding with 2-FA. Another PET study with (−)-[18F]flubatine PET in patients with 
early Alzheimer’s disease showed the reductions in α4β2 nAChR mainly in target 
regions of the basal forebrain-cortical and septohippocampal cholinergic projec-
tions. The same study showed relationship between lower α4β2 nAChR availability 
and impairment of distinct cognitive domains, notably episodic memory and execu-
tive function/working memory (Sabri et  al. 2018). Further details, in particular 
related to the α4β2 radioligands (−)-[18F]flubatine and (+)-[18F]flubatine, are 
reviewed elsewhere (Sabri et al. 2014).

Very recently, uptake of the α7 nAChR ligand [11C]-(R)-MeQAA was measured 
in groups of 20 Alzheimer’s disease patients and 10 healthy age-matched controls. 
In the nucleus basalis magnocellularis and medial prefrontal cortex, the α7 nAChR 
binding correlated positively with individual beta-amyloid PET results. Furthermore, 
the α7 nAChR binding correlated positively with memory and executive function 
(Nakaizumi et al. 2018). This stands in agreement with findings in aged monkeys 
cited above, where [11C]-(R)-MeQAA binding, ostensibly to α7 NAChR, was asso-
ciated with increased beta-amyloid binding (Nishiyama et  al. 2015). Similar 
increases in Alzheimer’s disease mice were attributed to microglial activation 
(Matsumura et al. 2015) at sites of amyloid deposition. At time of writing, the jury 
is out whether this might represented a compensatory and salutogenic reaction, or 
another aspect of pathology.

[18F]fluoroethoxybenzovesamicol (FEOBV) is a novel PET radiotracer, which 
binds selectively to the vesicular acetylcholine transporter in terminals of basal 
forebrain neurons. SUVR analysis of this tracer showed widespread decreases in 
tracer binding in a group of Alzheimer’s disease patients (Aghourian et al. 2017). 
Together with findings reported above, this suggests pre- and postsynaptic elements 
of basal-forebrain cholinergic pathways are compromised in Alzheimer’s disease.

18.4.2  Movement Disorders

Parkinson’s disease is, after Alzheimer’s disease, the second most common neuro-
degenerative disorder. The hallmark neuropathology of Parkinson’s disease is selec-
tive degeneration of midbrain dopaminergic neurons of the substantia nigra pars 
compacta (SNpc) and the presence of intra-cytoplasmic inclusions (Lewy bodies) 
consisting of aggregated α-synuclein (Spillantini et al. 1997) in surviving dopamine 
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neurons. Neurotoxins such as MPTP and 6-hydroxydopamine have been used in 
animal models emulating the nigrostriatal degeneration of Parkinson’s disease 
(Quik 2004). Lesions of the nigrostriatal pathway in rats reveal a population of 
[3H]nicotine binding sites on dopamine terminals, where they are positioned to 
influence dopamine release (Clarke and Pert 1985). More recently, the stimulation 
of striatal dopamine release by nicotine has been linked specifically to α6β2β3 and 
α6α4β2β3 nAChRs, which predominate in the basal ganglia (Quik et  al. 2011). 
Quantitative analysis with the α6β2 nAChR subtype ligand [125I]α-conotoxin MII in 
conjunction with plasma membrane dopamine transporter measurements in MPTP- 
lesioned mice shows an association with presynaptic nigrostriatal terminals (Quik 
et al. 2003). In that study, much smaller reductions in the binding of [125I]epibatidine 
(multiple sites) and 5-[125I]iodo-A-85380 (β2-sites) were noted after dopamine 
lesioning, while no change was detected in α7 nAChRs measured with 
[125I]α-bungarotoxin binding after nigrostriatal lesions. Displacement of 
[125I]α-conotoxin MII binding with the analogue E11A was biphasic, allowing reso-
lution of the α6β2β3 and α6α4β2β3 components (Bordia et al. 2007); autoradio-
graphic studies in MPTP-treated mouse and non-human primates, as well as in 
material from idiopathic Parkinson’s disease patients, revealed the α6α4β2β3 
nAChR subtype population to be selectively vulnerable to nigrostriatal damage. 
Chronic oral nicotine administration was able to protect nicotinic receptors and 
dopaminergic markers in MPTP-treated monkeys (Bordia et al. 2006; Quik et al. 
2006). Treatment of rats with a selective α7 nAChR agonist protected against 
nigrostriatal degeneration in the 6-OHDA model of parkinsonism, an effect that was 
linked to attenuated microglial activation (Serriere et al. 2015).

In a 2-[18F]fluoro-A-85380 PET study, the density of α4β2 nAChRs was slightly 
reduced in the basal ganglia of non-smoking Parkinson’s disease patients (Kas et al. 
2009). Another 2-[18F]fluoro-A-85380 PET study of Parkinson’s disease patients 
reported a widespread reduction of α4β2 nAChR availability in cortical and subcor-
tical regions, which correlated with the severity of mild cognitive or depressive 
symptoms (Meyer et al. 2009). There have been no α7 nAChR studies in Parkinson’s 
disease, despite the preclinical evidence suggesting a role for these receptors in 
protecting against nigrostriatal degeneration. There is a current lack of agents for 
molecular imaging of the particular α6-containing nAChRs subtypes present in the 
basal ganglia, which may be of great relevance to Parkinson’s disease given their 
involvement in dopamine release.

Huntington’s disease is an autosomal dominant hereditary disorder proceeding to 
severe cognitive impairment and motor symptoms, notably hyperkinetic involuntary 
movements (chorea) (Roos 2010). A transgenic rat model of HD, which carries a 
truncated huntingtin cDNA fragment with 51 CAG repeats under control of the 
native rat huntingtin promoter, has been developed (von Horsten et al. 2003). Early 
investigations of nicotinic receptors in post-mortem brain from Huntington’s dis-
ease patients did not reveal any significant changes (Perry et al. 1987; Whitehouse 
and Kellar 1987). However, autoradiographic assessment of 2-year-old transgenic 
rats revealed significant increase of nAChR in various regions in heterozygous but 
not homozygous animals (Bauer et al. 2005). There have not yet been any PET stud-
ies of nAChR in patients with Huntington’s disease.
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18.5  Epilepsy

Some forms of epilepsy have recently been associated with alterations of α4 nAChR 
subtype expression (Raggenbass and Bertrand 2002), and there is experimental evi-
dence that the α7 nAChR may play a role in epileptogenesis (Dobelis et al. 2003). 
The autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) can be caused 
by mutations in the neuronal nicotinic acetylcholine receptor (nAChR) subunit 
genes CHRNA4 and CHRNB2 (Steinlein et al. 1995; Phillips et al. 2001). Relative 
to age-matched non-smoking subjects, there was a 10–20% increase in the binding 
of 2-[18F]fluoro-A-85380 to α4β2 receptors in the brain of patients with ADNFLE 
(Picard et al. 2006); knock-in mice bearing a culprit mutant α4 gene have been pre-
pared (Lipovsek et al. 2008), but have not been investigated by receptor autoradiog-
raphy or PET. A recent clinical PET study of patients with idiopathic generalized 
epilepsy using the α4β2 nAChR ligand [18F]A-85380 showed focal 25% increases 
in the binding ratio within the anterior cingulate cortex (ACC), which could distin-
guish individual patients from healthy controls (Garibotto et al. 2019).

18.6  nAChR Imaging of Stroke and Neuroinflammation

Stroke is the leading cause of adult disability in the United States and Europe and 
the second leading cause of death worldwide. Stroke is characterized by a loss of 
brain functions due to rapid disturbances in cerebral blood supply, either as reduced 
blood flow by thrombosis or embolism (ischemic stroke) or bleeding (haemor-
rhagic stroke). Hyperacute mechanisms of stroke-related brain tissue damage, such 
as excitotoxicity, can be discriminated from delayed factors such as inflammation 
and apoptosis. All cellular components of the so-called neurovascular unit, which 
includes neurons, astrocytes and endothelial cells, express nAChRs (Paulson et al. 
2010). Insofar as long-term tobacco smoking is a risk factor for ischemic stroke 
(Hawkins et  al. 2002), it may be relevant that nAChRs were altered in a post- 
mortem study of smokers; α4 expression was increased in neurons and dendritic 
processes, and α7 expression was decreased in hippocampal neurons and astro-
cytes (Teaktong et al. 2004). In hypertensive stroke-prone rats, cortical α7 nAChRs 
are reduced, without concomitant changes in the α4β2 nAChRs (Ferrari et  al. 
1999). Activation of nAChRs by nicotine promotes endothelial cell proliferation 
(Villablanca 1998) and leucocyte migration (Yong et al. 1997), which together may 
increase thrombotic risk. However, nAChR agonism was neuroprotective against 
excitotoxicity in vitro, an effect mediated by growth factors (Belluardo et al. 1998) 
and also by inactivation of the toxins (O’Neill et  al. 2002). These effects were 
blocked by the α7 nAChR antagonist α-bungarotoxin (Donnelly-Roberts et  al. 
1996). Interestingly, nicotine increased oedema/infarct size in a rodent stroke 
model (Paulson et  al. 2010). A particular contribution of α7 nAChRs to stroke-
related excitotoxicity might reflect their high Ca2+ permeability, especially under 
depolarizing conditions. Treatment with the acetylcholinesterase inhibitor meth-
anesulfonyl fluoride attenuated stroke-induced learning and memory deficits in rats 
(Borlongan et al. 2005).
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These rather discordant findings of effects of nAChR agonism in stroke models may 
reflect the different contributions of excitotoxicity and neuroinflammatory processes. 
The α7 nAChRs expressed on microglia (Shytle et al. 2004a) seem particularly poised 
to mediate inflammatory responses. Nicotinic agonism at these sites suppressed inflam-
mation by decreasing TNF-α production, while nicotine antagonists had the opposite 
effect (Shytle et al. 2004a). In addition to central mechanisms, cholinergic signalling in 
the “cholinergic anti-inflammatory pathway” involving the vagus nerve may suppress 
the release of pro-inflammatory cytokines and influence migration of T cells from the 
periphery to brain areas affected by stroke or multiple sclerosis (Borovikova et  al. 
2000) by a mechanism sensitive to α–bungarotoxin (Pavlov et al. 2003).

Despite this extensive background, there have been very few molecular imaging 
studies of nAChRs in relevant neuroinflammation models. We have undertaken PET 
studies to assess α7 nAChR alterations in the sheep stroke model (Boltze et  al. 
2008). Here, we measured [18F]DBT10 binding at different time points after perma-
nent medial cerebral artery occlusion (pMCAO) by dynamic imaging using a clini-
cal hybrid PET/MRI system. We found increased tracer uptake in the stroke-border 
zone 14 days after pMCAO. In these areas, microglia activation and macrophage 
infiltration were histologically confirmed. Ongoing studies aim to establish better 
the time course and histological correlates of the α7 nAChR changes in our stroke 
model. A recent dual tracer study monitored longitudinal changes in 2-[18F]fluoro-
 A85380 and [11C]PK11195 binding during a month after middle cerebral artery 
occlusion (MCAO) in rats. In the ischemic territory, both ligands showed progres-
sive binding increase from day 3 to 7 post-injury, followed by a progressive decrease 
(Martin et  al. 2015). Post-mortem analysis linked the changes to increased α4β2 
nAChR and TSPO expression on microglia and macrophages.

In PET studies in a rat stroke model with transient MCAO occlusion, the PET 
signal from the α7 nAChR ligand [11 C]NS14492 increased around the core of the 
infarct, consistent with activation of microglia and astrocytes following the injury 
(Colas et al. 2018). In that study, treatment with the α7 agonist PHA 568487 1 week 
after the stroke lowered TSPO binding (suggesting a rescue from microgliosis) 
while diminishing the ultimate infarct volume. Thus, the α7 nAChR is a promising 
target for disease-altering interventions against stroke.

Atherosclerosis is a kind of chronic inflammatory condition that brings a high 
risk of cardiovascular events. Especially the “vulnerable” atherosclerotic plaques 
have a high risk of rupture, which is predictable from their avidity on FDG PET, as 
an index of macrophage infiltration into the vessel wall. As such, α7 nAChR PET 
presents an unexplored channel for investigating inflammatory changes in athero-
sclerosis (Boswijk et al. 2017). This follows also for a wide range of chronic inflam-
matory conditions such as rheumatoid arthritis, Crohn’s disease, etc.

18.7  nAChR Imaging of Traumatic Brain Injury

Traumatic brain injury is a permanent or temporary impairment of brain functions 
with an associated diminished or altered state of consciousness caused by external 
mechanical force transferring kinetic energy to the brain tissue. In developed 
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countries, TBI is the most important cause of death and disability in young adults, 
in both civilian and military contexts (Olesen and Leonardi 2003) (Dewan et  al. 
2018). Indeed, TBI causes some 30–50% of all injury-related deaths (de Ramirez 
et al. 2012; Kamal et al. 2016). Apart from the distinct acute injuries, TBI is a con-
tinuous disease process (Masel and DeWitt 2010), with survivors often suffering 
from persistent or permanent physical and cognitive impairments (Fleminger and 
Ponsford 2005) occurring as long-term sequelae of the initial injury. This profile 
imposes a considerable socio-economic burden (Humphreys et al. 2013), which is 
further exacerbated by the failure of clinical trials aiming to improve outcomes 
(Loane and Faden 2010; Gruenbaum et al. 2016).

18.7.1  Animal Models of TBI

Experimental animal models of TBI provide a solid body of evidence for specific 
cholinergic alterations. A plethora of different TBI models has been developed since 
the late 1940s. There is a distinction to be made between closed head injuries and 
open-head models, whereby in the former model the underlying cortical tissue is 
damaged by impact on the intact dura mater. Most animal studies of cholinergic 
responses to TBI make use of fluid-percussion injuries (FPI), weight drop and con-
trolled cortical impact (CCI) (Xiong et al. 2013) (O’Connor et al. 2011). This can 
be performed either through a fluidic wave, as in the FPI models (Thompson et al. 
2005), rigid impactors such as weight drop (Marmarou et al. 1994) or CCI models 
(Lighthall 1988). Unfortunately, there is little data on cholinergic alterations pro-
voked by the more clinically relevant (repeated) closed-head or concussive models. 
The CCI model, which was first developed in small animals (Lighthall 1988) and 
later used in pigs (Duhaime et al. 2000; Alessandri et al. 2003; Manley et al. 2006), 
entails a piston strike, which results in more focal brain injury than is afforded by 
the FPI model.

Early evidence of the involvement of the cholinergic system in TBI was obtained 
in dogs and cats, in which increased acetylcholine concentration was noted in cere-
brospinal fluid up to 48 h post-injury (Bornstein 1946). In subsequent years, studies 
of TBI implicate diverse aspects of cholinergic neurotransmissions, including mus-
carinic and nicotinic receptors, enzymatic pathways and vesicular transporters 
(Hayes et al. 1992; Arciniegas 2011; Kelso and Oestreich 2012; Shin and Dixon 
2015). In an autoradiographic study of rats with TBI, there were widespread and 
substantial bilateral reductions in cortical and hippocampal α7 nAChRs labelled 
with [125I]α-bungarotoxin, in contrast to lesser, more focal and ipsilateral effects on 
heteromeric nAChRs labelled with [3H]epibatidine (Verbois et al. 2000). We have 
seen a similar decline in α7 binding in the brain of rats and neonate piglets follow-
ing FP injuries (Donat et al. 2008, 2010a, b; Hoffmeister et al. 2011). In a saturation 
binding study, the reductions were linked to declines in Bmax, rather than affinity 
changes (Verbois et al. 2002), an issue that must always be considered in autoradio-
graphic or PET studies performed with a single ligand concentration. Peak effects 
occurred at 2 days post-injury but persisted for as long as 2 weeks. Brain regions not 
directly subjected to mechanical damage, such as the thalamus, were found to 
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exhibit reduced density of α7 and α3/4 nAChR, indicating retrograde and antero-
grade changes.

Most interestingly, brain areas showing reduced nAChR binding after TBI also 
showed delayed neuroinflammation, as indicated by increased binding of a tracer 
for the 18 kDA translocator protein, a marker of microglial activation (Donat et al. 
2016), suggesting that nAChRs regulate neuroinflammatory responses (Egea et al. 
2015). Indeed, in a model of blast-induced TBI, midbrain structures showed low-
ered gene transcripts of muscarinic and α7 nAChR, accompanied by increased gene 
transcripts of pro-inflammatory markers (Valiyaveettil et al. 2013). Treatments with 
agonists and positive allosteric modulators of α7 nAChR attenuated microglia acti-
vation after TBI while rescuing blood-brain barrier permeability increases and 
reducing motor deficits (Gatson et al. 2015; Dash et al. 2016). This is consistent 
with anti-inflammatory effects α7 nAChR activation on microglia and potentially 
endothelial cells (Kimura, Dohgu et  al. 2018), as indicated before (Cortes et  al. 
2017; Zhang et al. 2017).

Cognitive impairment was demonstrated in the rat FPI model (Scheff et al. 1997), 
suggesting that the α7 nAChR reductions may contribute to these cognitive deficits 
caused by brain trauma. Also in the FPI paradigm, prolonged treatment with nico-
tine partially attenuated the cognitive deficits seen in the Morris water maze perfor-
mance and reduced the magnitude and spatial extent of the α7 changes (Verbois 
et al. 2003a, b). Indeed, nicotine has been effective in a number of other brain lesion 
models (Visanji et  al. 2006; Huang et  al. 2009; Zafonte et  al. 2009; Quik et  al. 
2010), even though human patients who are smokers do not show improved out-
come after TBI (Ostberg and Tenovuo 2014), because of smoking-associated health 
impairments such as vascular diseases. Furthermore, investigations in α7 knockout 
mice failed to show much effect of α7 receptor expression on lesion volume or 
microglia activation (Kelso et al. 2006), which could be confounded by compensa-
tory mechanisms (Smith et al. 2014). Nonetheless, dietary choline supplements par-
tially rescued the spatial memory deficits and α7 receptor deficits after CCI (Guseva 
et al. 2008; Guseva et al. 2013).

18.7.2  Human TBI Studies

Neuroinflammation, a process mediated primarily by glia cells, i.e. microglia and 
astrocytes, is not just a hallmark pathology of TBI, but also a potential avenue of 
intervention (Morganti-Kossmann et al. 2019). Activated microglia, which are the 
resident macrophages of the brain, can assume many different roles post-injury, as 
characterized by diverse morphologies and molecular expression patterns. The 
dichotomy of pro-inflammatory M1 microglial phenotype versus anti-inflammatory 
M2 phenotype (Donat et al. 2017) may be an oversimplification (Ransohoff 2016), 
but it should not be assumed that all microglia are equal. A similar model of func-
tions and phenotypes has been recently reported for astrocytes (Liddelow et al. 2017).

Glial activation can persist for many years after TBI (Ramlackhansingh et  al. 
2011). TBI is a risk factor for neurodegenerative diseases including chronic 
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traumatic encephalopathy (McKee et al. 2016) and dementias, including Alzheimer’s 
disease (AD) (LoBue et  al. 2018). The link between TBI and dementia may be 
mediated either by tau pathology or by altered cholinergic neurotransmission par-
ticularly involving hetero- and homomeric nAChR, as proposed for AD in the 1980s 
(Shimohama et  al. 1986), in association with the cholinergic hypothesis of AD 
(Bohnen et al. 2018; Hampel et al. 2018). Historically, nAChR changes were linked 
to cognitive symptoms (Wallace and Bertrand 2013), as most α7 and α4/3β2/4 
nAChR are expressed on cortical neurons. However, cholinergic enzymes and 
receptors are also implicated in central and peripheral inflammatory response (Fujii 
et al. 2017), pointing to the above-mentioned cholinergic anti-inflammatory path-
way (Martelli et al. 2014). Acetylcholine receptors may be essential mediators of 
this pathway and are likely involved in the neuroinflammatory response after TBI 
(Ren et al. 2017). Indeed, microglia express α7 nAChR (Shytle et al. 2004b), as do 
astrocytes (Shen and Yakel 2012), where they seem to be directly involved in regu-
lating glia activation. Reduced α7 nAChR expression or antagonist exposure can 
promote the pro-inflammatory phenotype, while treatment with agonists may shift 
microglia towards an anti-inflammatory phenotype (Cortes et  al. 2017; Zhang 
et al. 2017).

Several studies have investigated key players of the cholinergic neurotransmis-
sion following TBI. However, only very few studies investigated human patients or 
tissue samples. In a human post-mortem study, performed after traumatic brain 
injury, reduced choline acetyl transferase activity and synaptophysin immunoreac-
tivity in cerebral cortex were found, indicating damage of the cholinergic innerva-
tion, but nAChR binding determined by either [3H]nicotine or [125I]α-bungarotoxin 
was unchanged (Murdoch et al. 1998), suggesting mainly presynaptic mechanisms. 
Post-mortem cortical tissue from patients acquired between 1 and 300 h after injury 
showed a reduction in choline acetyltransferase activity, but no change in musca-
rinic (M1 and M2 receptors) or nicotinic receptors, determined by either [3H]nico-
tine or [125I]α-bungarotoxin (Dewar and Graham 1996; Murdoch et  al. 1998). 
Reduced synaptophysin immunoreactivity was seen as an indicator of mainly pre-
synaptic pathomechanisms, even though a follow-up study showed extensive dam-
age in basal forebrain cholinergic neurons (Murdoch et  al. 2002). Interestingly, 
diffusion tensor imaging indicated axonal injury in the same areas (Hong et  al. 
2012). More importantly, recent studies of CTE showed a gradual emergence of 
pretangle pathology and oligomeric tau accumulation in cholinergic neurons of the 
basal forebrain, which might directly relate to cholinergic impairments and ulti-
mately to cognitive dysfunction and immune dysregulation (Mufson et al. 2016). 
Laser capture microdissection and gene profiling of these neurons showed, among 
other findings, a reduction in CHRNB2 transcripts, encoding the nAChR β2 subunit 
(Mufson et al. 2018). Another potential factor in TBI is autoimmune consequences 
(Raad et al. 2014). One study reported a significant increase in blood autoantibodies 
to regions of the α7 subunit in children with TBI, which correlated to severity 
(Sorokina et al. 2012).

In vivo molecular imaging with nAChR subtype-specific tracers is still lacking in 
clinical TBI.  However, PET imaging with [11C]MP4A in chronic TBI patients 
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indicated loss of AChE activity (Östberg et al. 2011; Ostberg et al. 2018). Treatment 
of post-traumatic cognitive deficits using cholinergic compounds, e.g. acetylcholin-
esterase inhibitors, has been attempted in several studies of small patient groups. 
However, most of these exploratory studies did not meet their endpoints justifying 
larger randomized placebo-controlled studies, and systematic reviews therefore 
concluded only weak evidence of efficacy (Wheaton et  al. 2011; Bengtsson and 
Godbolt 2016).

18.8  nAChR Imaging of Addiction and Psychiatric Disorders

18.8.1  Physiological Effects of Nicotine in the Context 
of Addiction

Whereas acetylcholine is rapidly inactivated by AChE, nicotine exerts prolonged 
agonism due to its metabolic stability. This property accounts for the well-known 
phenomenon of desensitization of nicotinic receptors by nicotine (Govind et  al. 
2012), in which inactivated receptors concentrate in the plasma membrane due first 
to agonist-evoked conformational changes, which is followed by decreased degra-
dation of subunits (Govind et al. 2012). In the case of α4β2 nAChRs, upregulation 
is mediated by activation of protein kinase C, which results in phosphorylation of 
the α4 subunit (Wecker et al. 2010). This mechanism is supported by studies in rats 
and 3xTd-AD mice showing upregulation of α4β2 nAChR after chronic nicotine 
administration (Flores et al. 1992; Oddo et al. 2005). Chronic nicotine treatment 
persistently increased the binding of the α4β2 ligand 5-[123I]iodo-A-85380 by 
approximately 50% in the brain of baboons (Kassiou et  al. 2001). Similarly, a 
2-[18F]fluoro-A-85380 PET study in chronic smokers abstinent for at least 24  h 
revealed persistent upregulation of α4β2 nAChR throughout the brain (Mukhin 
et al. 2008); these findings stress the requirement for strict control of exposure to 
nicotine in the design of clinical and preclinical imaging studies of nAChRs. Thus, 
exposure of rats to tobacco smoke not only induced nicotine dependence but also 
increased the α7 nAChR density in the CA2/3 area (+ 25%) and the stratum oriens 
(+ 18%) of the hippocampus (Small et al. 2010).

Since the nAChRs are ligand-gated cation channels, their activation facilitates 
depolarization and enhances the release of dopamine and other neurotransmitters. 
Consistent with the increased energy demands associated with depolarization, acute 
challenge with nicotine increases the cerebral metabolic rate for glucose (CMRglc) 
as measured by [14C]-deoxyglucose autoradiography; these effects are most notable 
in the thalamus and other rat brain regions in which nicotinic receptors are most 
abundant (London et al. 1988; Marenco et al. 2000). Despite the phenomenon of 
upregulation/desensitization of nAChRs, stimulation of CMRglc in rat brain was 
still evident after reinstatement of nicotine following a period of withdrawal 
(Schröck and Kuschinsky 1991). Effects of nicotine on CMRglc are poorly docu-
mented in human brain, but one PET study showed that nicotine-evoked stimulation 
of 2-[18F]fluorodeoxyglucose uptake in non-smokers was dependent on the hostility 
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trait, as was also seen in smoking subjects treated with a higher dose of nicotine 
(Fallon et al. 2004). The latter finding seems consistent with desensitization of the 
cerebrometabolic response to nicotine challenge in the smoking group. Smoking 
provoked a delayed increased in the cerebral consumption of oxygen in the brain of 
acutely withdrawn smokers, suggesting a global effect of nicotine or other constitu-
ents of tobacco smoke on mitochondrial respiration as distinct from glycolysis 
(Vafaee et al. 2015).

Baseline levels of 2-[18F]fluoro-A-85380 binding in the brainstem of healthy 
squirrel monkeys predicted their motivation to subsequently self-administer nico-
tine, as indicated by number of bar presses (Le Foll et al. 2009), suggesting that 
nAChRs mediate a trait vulnerability specifically for nicotine abuse. It is unclear 
whether this association with nicotine addiction generalizes to other addictive 
drugs. However, activation of nAChRs on dopamine neurons and terminals is cen-
tral to the reinforcing and addictive properties of nicotine. Stimulation of striatal 
dopamine release by nicotine has recently been linked to α6β2β3 and α6α4β2β3 
nAChRs, which predominate in the basal ganglia (Quik et al. 2011). Activation of 
these receptors increases the firing rate and augments phasic bursting of midbrain 
dopamine neurons (De Biasi and Dani 2011). The α7 nAChRs in the ventral teg-
mental area may mediate nicotine’s stimulatory effect on mesolimbocortical dopa-
minergic function and consequently its reinforcing and dependence-producing 
properties (Nomikos et al. 2000).

In an early molecular imaging study of nAChRs, binding of the SPECT tracer 
5-[123I]-A-85380 at α4β2 sites was increased by one third in the cortex and striatum 
of smokers with confirmed abstinence for 1 week (Staley et al. 2006). This study 
recapitulated in human smokers the well-known upregulation and inactivation of 
nAChRs following repeated nicotine exposure seen in experimental animals. The 
same group showed normalization of nAChR availability after 6 weeks of absti-
nence (Cosgrove et al. 2009). The competition paradigm affords the possibility of 
detecting occupancy by exogenous nicotine or other drugs at nAChR in living indi-
viduals. Here, comparison of molecular imaging results at baseline and after drug 
challenge reveals the percentage of receptors occupied by the drug. In one such 
5-[123I]-A-85380 SPECT study, smoking to satiety (about two cigarettes) induced a 
67% reduction in their chosen endpoint, VT/fp (Esterlis et al. 2010a). Occupancy 
after use of a nicotine inhaler (56%) was significantly lower than after smoking 
cigarettes to satiety (Esterlis et al. 2010b).

These nAChR occupancies may be underestimated due to the slow kinetics of the 
SPECT tracer relative to the pharmacodynamics of nicotine. Corresponding PET 
studies with 2-[18F]fluoro-A-85380 showed 79% occupancy after smoking a low- 
nicotine cigarette and 26% after smoking a denicotinized cigarette (Brody et  al. 
2009). In another 2-[18F]fluoro-A-85380 PET study, a few puffs on a normal ciga-
rette induced 50% occupancy persisting 3 h later, whereas an entire cigarette pro-
voked 88% occupancy (Brody et al. 2006). Even exposure to second-hand smoke 
led to 20% occupancy (Brody et al. 2011). A single low dose (0.5 mg) of varenicline 
provoked complete saturation of 2-[18F]fluoro-A-85380 binding sites in human 
brain (Lotfipour et al. 2012a). Thus, varencline is apt to evoke full agonism at α7 
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nAChRs, with partial agonism at other sites, i.e. α4β2, as well as α3β4, and α6β2 
subtypes.

Altered dopamine release can be detected in PET studies with [11C]raclopride 
and other benzamide antagonists of D2/3 receptors, wherein ligand binding is reduced 
by competition from endogenous dopamine (Laruelle 2000; Cumming et al. 2003). 
Whereas powerful psychostimulants such as amphetamine can evoke 30% decreases 
in striatal [11C]raclopride binding, challenge with nicotine reduced this binding by 
only 5–10% in striatum of anaesthetized pigs, most notably in the ventral striatum 
(Cumming et al. 2003). There were effects of similar magnitude in the brain of non- 
human primates (Marenco et al. 2004), although others saw no such effects in PET 
scans of awake monkeys (Tsukada et al. 2002), suggesting a confounding effect of 
general anaesthesia. Similarly, intranasal administration of nicotine did not greatly 
reduce striatal [11C]raclopride binding in healthy habitual smokers, although base-
line binding correlated with scores of nicotine dependence, and there was a positive 
relationship between binding changes and individual reports of pleasant subjective 
experience (Montgomery et al. 2007), as likewise seen in another [11C]raclopride 
PET study of smokers (Barrett et al. 2004). In general, preclinical studies with non- 
contingent pharmacological challenge may not replicate the motivational aspects of 
self-administered nicotine.

Dopamine synthesis capacity in living striatum can be measured by PET studies 
with DOPA decarboxylase substrates such as [11C]DOPA or 6-[18F]fluoro-DOPA 
(FDOPA). Whereas acute nicotine treatment had no effect on [11C]DOPA utilization 
in striatum of awake monkeys, this utilization was reduced by one third after over-
night abstinence in monkey habituated to nicotine and normalized rapidly following 
reinstatement of nicotine treatment (Domino et al. 2009). On the other hand, in an 
isolated clinical PET finding, FDOPA utilization was 20–30% higher in striatum of 
human smokers (Salokangas et al. 2000). Another study showed a 20% reduction in 
the striatal utilization of FDOPA in a larger group of dependent smokers (Rademacher 
et al. 2016), which may have greater face validity as an adaptive response to chronic 
nicotine exposure.

18.8.2  Alcohol Dependence

There is very high comorbidity between nicotine and alcohol dependence, and con-
siderable overlap between their neural mechanisms of addiction (Larsson and Engel 
2004). Indeed, a possible role for nAChR in alcohol addiction has been proposed 
(Meyerhoff et al. 2006). Altered nACh receptor density in vitro has been observed 
in rats in response to ethanol using a combination of [3H]nicotine, [3H]MLA and 
[125I]alpha-bungarotoxin, but the direction of change was inconsistent and region- 
specific (Yoshida et al. 1982; Booker and Collins 1997; Robles and Sabria 2008). In 
vivo, binding of the SPECT radioligand [123I]5-IA-85380  in rhesus monkey was 
unaltered following chronic alcohol self-administration, although decreases in cor-
tical and thalamic binding were observed following abstinence (Cosgrove et  al. 
2010). More recently, using [18F]nifene in a PET study in non-human primates, 
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reductions in nACh receptor density were observed following chronic alcohol expo-
sure (Hillmer et al. 2014). Further validation work is required in human subjects to 
resolve these inconsistencies.

18.8.3  Schizophrenia and Depression

Nicotine addiction is notoriously prevalent among patients with schizophrenia 
(Lohr and Flynn 1992), a chronic psychiatric disease characterized by behavioural 
changes, which are difficult to model in experimental animals. The DSM-IV criteria 
for schizophrenia consist of positive symptoms (such as agitation, paranoia and hal-
lucinations), negative symptoms (including emotional blunting, avolition and social 
withdrawal) and specific cognitive and psychomotor deficits (Goldman-Rakic and 
Selemon 1997). An increasing appreciation of the importance of cognitive deterio-
ration has motivated a search for treatments to improve processing speed, attention/
vigilance and working memory (Nuechterlein et al. 2004; Heinrichs 2005). This has 
emerged in the context of a hypothesis implicating gene-mediated dysfunction of α7 
nAChRs (Freedman et al. 1997; Stephens et al. 2009; Dome et al. 2010) in the cog-
nitive impairments of schizophrenia (Nomikos et  al. 2000). Indeed, in one post- 
mortem study, the hippocampal [125I]α-bungarotoxin binding was decreased in a 
schizophrenic patient population consisting mainly of smokers (Freedman et  al. 
1995). Furthermore there were significant differences in α7 nAChR (CHRNA7) 
expression at both mRNA and protein levels between smokers and non-smokers 
with schizophrenia (Mexal et al. 2010).

Nicotinic receptors and treatments have been investigated in a number of murine 
models emulating some behaviour aspects of schizophrenia. An auditory gating 
defect in dilute brown non-Agouti (DBA/2) mice is rectified by treatment with an 
α4β2 agonist (Wildeboer and Stevens 2008), but other nAChR subtypes such as α7 
may also mediate sensory gating in these mice (Radek et al. 2006). Mice lacking the 
plasma membrane dopamine transporter show hyperactivity and cognitive deficits, 
and are hypersensitive to the locomotor stimulant effect of nicotine, which models 
schizophrenia. Treatment of these mice with nicotine improved their performance in 
spatial and cued learning tasks (Weiss et  al. 2007a), whereas autoradiography 
showed a small decline in the β2 subunit, a large decrease in β6 and substantially 
increased α7 nAChR expression (Weiss et al. 2007b). Deficiency of the microtubule- 
stabilizing protein STOP results in impaired hippocampal plasticity and behavioural 
hypersensitivity to psychostimulants, likewise associated with a decrease in β6, and 
a substantial increase in α7 nAChRs (Bouvrais-Veret et al. 2007), suggesting a com-
mon nicotinergic pathway in these two models of schizophrenia.

A preliminary study with the α7-nAChR ligand [18F]ASEM showed a moderate 
reduction of binding in the brain of a group of patients with schizophrenia (Wong 
et al. 2018). This finding was recapitulated in another study of recent onset psycho-
sis (Coughlin et  al. 2018a). Given the association of α7 nAChR expression with 
microglia, the resident brain macrophage, it is a matter of interest if there are 
changes in inflammatory pathways in association with schizophrenia. A recent 
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meta-analysis of many PET TSPO studies in patients with schizophrenia showed an 
overall finding of reduced microglial activation (Plaven-Sigray et al. 2018). While 
this was contrary to general expectation of an active inflammatory process during 
schizophrenia, it may be consistent with the α7-nAChR findings.

Availability of α4β2 nAChR binding sites was globally reduced in a 5-[123I]iodo- 
A- 85380 SPECT study of patients with major depression (Saricicek et al. 2012). 
Changes in behaviour, and in endocrine, and immune and neurotransmitter systems, 
modelling symptoms of patients with major depression have been described in rats 
following bilateral olfactory bulbectomy (Song and Leonard 2005). Such rats pres-
ent characteristic alterations in cholinergic function (Hozumi et al. 2003). Although 
degeneration of cholinergic neurons may well underlie the impairments of learning 
and memory-related behaviour in olfactory bulbectomy rats, densities of nAChRs 
have not yet been investigated in this model. Interestingly, a recent TSPO PET study 
showed globally increased microglial expression in cortex of patients with major 
depression and an association with cognitive deficits (Li et  al. 2018). However, 
there has hitherto been no PET study of α7-nAChR depressed (non-smoking) 
patients.

18.9  nAChR Imaging for Measurement 
of Endogenous Acetylcholine

The competition model for measuring dopamine release by molecular imaging, i.e. 
the [11C]raclopride binding model described above, has delivered substantial 
insights into the role of dopamine in the pathophysiologies of schizophrenia and 
nicotine addiction. However, attempts to generalize the dopamine competition 
model to other neurotransmitter systems have met with mixed success (Paterson 
et  al. 2010; Finnema et al. 2015). A molecular imaging assay for fluctuations in 
extracellular acetylcholine would be a useful tool for evaluating new pharmacologic 
treatments for Alzheimer’s disease and other conditions, and the first demonstration 
of an acetylcholine sensitive α4β2 PET tracer was recently published (Hillmer et al. 
2016a). Competition between endogenous acetylcholine and radioligands targeting 
muscarinic acetylcholine receptors is reported in the literature (Dewey et al. 1993; 
Suhara et al. 1994; Ma et al. 2004; Eckelman 2006), but the case is better estab-
lished for nAChR ligands, the details of which are presented here.

Preclinical studies in rodents suggest that treatment with AChE inhibitors may 
raise acetylcholine levels sufficiently to elicit changes in binding potential with 
PET. Treatment with AChE inhibitors, an important class of compounds used for 
alleviation of Alzheimer’s disease symptoms, affords a convenient way of enhanc-
ing acetylcholine levels in living brain in tests of the competition model. In the first 
such study, the uptake of 2-[18F]fluoro-A-85380 in rat thalamus measured ex vivo 
was 45% reduced by the AChE inhibitor physostigmine (Dollé et al. 1999); decreases 
of similar magnitude were seen in animals treated with typical α4β2 agonist ligands 
(2-fluoro-A-85380, nicotine, epibatidine and cytisine) but not by α7- or 5-HT3-
specific antagonists. Previous microdialysis studies had confirmed that the same 
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dose of physostigmine (300 μg/kg) caused large increases in interstitial acetylcho-
line (Cuadra et al. 1994), thus substantiating the competition model.

In a non-human primate PET study, Ding et al. investigated whether modulation 
of acetylcholine levels could modulate [18F]NFEP binding (Ding et al. 2000b). As 
predicted, binding was 25% lower in the thalamus and striatum following physo-
stigmine administration. Furthermore, treatment with the dopamine D2/3 antagonist 
raclopride reduced the striatal binding of [18F]NFEP by 22%, and the agonist quin-
pirole increased striatal binding by 26%, but selective dopamine D1 drugs had no 
such effects. These findings were consistent with results of cerebral microdialysis 
studies showing that dopamine D2/3 receptors tonically inhibit acetylcholine release 
in the striatum (Damsma et al. 1991; DeBoer et al. 1996).

In a 5-[123I]iodo-A-85380 SPECT study in non-human primate, a bolus plus con-
stant infusion paradigm was used to obtain equilibrium binding prior to physostig-
mine treatment (Fujita et  al. 2003). Due to instability of the plasma 
5-[123I]iodo-A-85380 concentration following physostigmine, the BPND was not cal-
culated, but there was a 14–17% decrease in thalamic tracer uptake. This decline 
was independent of the physostigmine dose administered, suggesting a ceiling 
effect in the competition from endogenous acetylcholine. In a subsequent 
2-[18F]fluoro- A- 85380 study, a more prolonged infusion of physostigmine evoked a 
40% reduction in 2-[18F]fluoro-A-85380 VT in putamen and more modest reduction 
in cerebral cortex (Valette et al. 2005). The effect was dose-dependent, and infusion 
of galantamine, a weaker AChE inhibitor, did not alter 2-[18F]fluoro-A-85380 bind-
ing, which again suggests a fairly narrow relationship between interstitial acetyl-
choline concentration and increased competition.

In PET studies in rats, cortical and thalamic [18F]nifene binding was found to be 
significantly reduced (3–10%) following physostigmine and galantamine adminis-
tration (Hillmer et al. 2013) suggesting this ligand may also be sensitive to changes 
in endogenous acetylcholine. In vitro binding studies with [18F]nifene and [3H]cyto-
sine showed displacement of both ligands upon addition of an AChE inhibitor to the 
medium (Easwaramoorthy et  al. 2007). This highlights the rapid hydrolysis of 
endogenous acetylcholine in the presence of native AChE and raises the consider-
ation that inactivation/upregulation of nAChRs may arise from “supernormal” acti-
vation during AChE inhibition, or during exposure to nicotine or other long-lived 
agonists. Breakdown of released acetylcholine is usually complete within a matter 
of seconds (Bruno et al. 2006). As such, the PET observations described above can-
not unambiguously be ascribed to the competition model; some of the decreases in 
receptor binding after treatment with AChE inhibitors might rather be attributable to 
transition of the receptors to a low-affinity state or to trafficking mechanisms. This 
is especially a consideration in studies with ligands with slow kinetics, such as in 
the above reports.

More recently, (−)-[18F]flubatine ((−)-[18F]NCFHEB) was shown to be sensitive 
to displacement by endogenous acetylcholine in non-human primates. Treatment 
with AChE inhibitors donepezil and physostigmine led to dose-dependent, signifi-
cant reductions (10–34%) in VT in bolus and bolus-infusion protocols, respectively 
(Gallezot et al. 2014). This finding was soon followed by a similar study in human 
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subjects (Hillmer et al. 2016a), in which a bolus and bolus-infusion protocol with 
[18F]flubatine revealed small but significant reductions in VT in cortical regions fol-
lowing physostigmine administration.

Overall these data suggest that measuring acetylcholine changes using selective 
α4β2 nAChR radioligands may be possible and that we should expect future appli-
cations of this methodology in clinical populations such as Alzheimer’s disease, 
substance dependence and schizophrenia.

18.10  Conclusion

The development of selective ligands for nAChRs has been challenging due to the 
diversity of subtypes existing in the brain and due to the unfavourable kinetics and 
toxicity profiles of some lead compounds. Promising novel tracers targeting α4β2 
nAChRs include [18F]AZAN, [18F]nifene, [18F]XTRA and both the (−) and (+) 
enantiomers of [18F]flubatine. For the α7 nAChR, [18F]DBT10 and [18F]ASEM are 
promising candidates. Despite the importance of α6 nAChRs in the action of nico-
tine on dopamine release, selective tracers for this target remain elusive.
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