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Abstract

Continued advancement of sophisticated imaging procedures over the last 
decades has allowed the assessment of large-scale functional-anatomic brain net-
works. Among the identified networks, a frequently investigated system is the 
so-called default network. This network was originally identified as a set of brain 
regions consistently deactivated during tasks that require externally oriented 
attention. Later imaging studies showed that this network is active during inter-
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nally focused cognitive processes such as moral decision-making and planning 
of future behavior, and also that it can reliably be identified during resting condi-
tions. A growing number of studies indicate that various brain disorders are asso-
ciated with dysfunction of brain networks, leading to the notion that measures of 
functional network integrity may serve as marker of neurologic and psychiatric 
disease states. For instance, disconnection of default network regions seems evi-
dent in very early stages of Alzheimer’s disease, and a striking topographical 
overlap has been shown between default network regions and the spatial distribu-
tion of different diagnostic markers of Alzheimer’s disease such as amyloid 
deposition, hypometabolism, and brain atrophy. In this chapter, we cover mile-
stones that led to the discovery of the default network, methodological advance-
ments that allow more precise measurements of neuronal networks, pitfalls of 
functional network measures, and a number of potential clinical applications.

7.1  Discovery of the Default Network

The set of brain regions we refer to as the default network, or default mode net-
work, was first noted as a by-product of experiments aimed at mapping human 
brain function. In experiments that were common in the 1990s, positron emission 
tomography (PET) with suitable tracers (e.g., H2

15O) or functional magnetic reso-
nance imaging (fMRI) making use of the blood oxygenation level-dependent 
(BOLD) contrast was used to measure changes in regional cerebral blood flow. 
Before these neuroimaging techniques were available, basic research into brain 
function would consist of animal experiments with more or less successful transla-
tion to humans. Clinical research in those days was aimed at determining cognitive 
deficits in patients with known focal brain damage. The use of PET and fMRI for 
mapping cognitive functions turned out immensely successful because using these 
imaging techniques, scientists were able to determine fairly precisely the location 
of neuronal correlates of cognition in healthy study subjects. In a typical task-
based experiment, or activation study, healthy young adults would perform a cog-
nitive task in the scanner. Brain images acquired during, for instance, a language 
task would then be compared with brain images acquired during a reference condi-
tion that often consisted of simply resting in the scanner. Based on the theory of 
neurovascular coupling, brain regions with higher blood flow during the task would 
then be considered activated by the task. Thus, in the example of a language task, 
areas of the brain showing statistically higher signal during the language task 
would be attributed to language function.

Using neuroimaging techniques such as PET and fMRI, most researchers were 
initially focused on brain regions that showed higher levels of blood flow or oxygen-
ation during specific tasks. However, Shulman et al. (1997) reported that during a 
number of different tasks (object discrimination, visual search, spatial attention, 
language, memory, and imagery), one particular set of brain regions would consis-
tently show lower levels of blood flow during the tasks (see Fig. 7.1a). Blood flow 
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decreases during attention-demanding tasks were interpreted as decreases in brain 
activation, also referred to as deactivation. These consistent decreases during tasks 
suggested the existence of an organized functional-anatomic network that is more 
active during passive task conditions. Since humans are most of the time not engaged 
in attention-demanding goal-directed behavior, Raichle and colleagues referred to 
this network as representing a “default mode of brain function” (Raichle et  al. 
2001). After the publication by Raichle et al., the field started to refer to this set of 
brain regions as the “default network” or “default mode network.” Greicius et al. 
(2003) showed that regions of the default network not only appear as deactivated 
regions during most attention-demanding cognitive tasks but in addition show high 
functional coherence while people are simply resting in the scanner (see Fig. 7.1b).

Brain regions associated with the default network are the posterior cingulate cor-
tex, medial prefrontal cortex, inferior parietal lobule, lateral temporal cortex, and 
regions of the parahippocampal and entorhinal cortex (Buckner et al. 2008; Greicius 
et al. 2003; Raichle et al. 2001; Shulman et al. 1997; Ward et al. 2014). The relative 
ease of measuring this network during rest using standard neuroimaging techniques, 
in combination with initial findings of vulnerability of the default network to neuro-
logic and psychiatric disease states, caused the default network to be a popular brain 
network to study which, in turn, led to an explosion of the number of papers on this 
topic published each year (see Fig. 7.2).

There is a growing interest in measuring structural connectivity of the default 
network and of other neuronal systems. While measures of brain structure, such as 
structural brain connectivity using diffusion magnetic resonance imaging, are 
beyond the scope of the present chapter, we would like to mention that several large 

ba

Fig. 7.1 (a) The default network of the human brain as it was originally identified in a meta- 
analysis of nine positron emission tomography (PET) studies (132 healthy young adults) from 
Shulman et al. (1997) (Reprinted with permission). The colored brain regions were more active in 
passive task states as compared to active tasks states. (b) The default network identified using 
functional connectivity MRI (fcMRI) while a single subject was resting in the scanner. The color 
scale indicates functional connectivity (Pearson correlation coefficient after Fishers r-to-z transfor-
mation) with the signal from a seed region placed in the posterior cingulate cortex as indicated by 
the green arrow (Adapted from Van Dijk et al. (2012b))
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multisite collaborative projects, such as the “Human Connectome Project” in the 
United States and the “Developing Human Connectome Project,” “Human Brain 
Project,” and the “UK Biobank” in Europe, are expected to shed more light on the 
complex relationship between brain structure and function during health and dis-
ease states.

7.2  Measuring Default Network Function

The main methods to assess default network function are (1) observing regions of 
deactivation during attention-demanding cognitive tasks, (2) probing the network 
with tasks that specifically rely on default network activation, (3) assessment of 
functional connectivity in terms of coherent BOLD fMRI signals either during task 
states or during the resting state, and finally (4) using FDG-PET to determine the 
molecular function and metabolic connectivity.

7.2.1  Deactivation During Attention-Demanding 
Cognitive Tasks

While the most commonly used clinical radiotracer for the assessment of brain 
function is 18 F-FDG (18-fluorodeoxyglucose for measuring glucose consumption), 
scientific activation studies performed in healthy young adults in the late 1980s and 
into the 1990s primarily used H2

15O (oxygen-15-water for measuring cerebral blood 
flow). Those studies were aimed at mapping cognitive functions such as language 
and decision-making under attention-demanding experimental conditions. The half- 
life of H2

15O is only 122 s (as opposed to 110 min for 18 F-FDG), which made it 

Fig. 7.2 There has been a steady increase in the number of papers published on the default net-
work since the publication by Raichle et al. (2001) in which the term default mode was associated 
with the network described by Shulman et al. (1997). The graph shows the number of publications 
per year from 2001 until 2018 for the search terms [“motor network” OR “somatomotor 
network”[(open bars) and [“default network” OR “default mode network” (closed bars)] (source 
https://www.ncbi.nlm.nih.gov/pubmed/, December 1, 2019)
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suitable for repeated assessment of blood flow during different experimental condi-
tions within one scanning session. Using H2

15O-PET, many brain regions were iden-
tified that were implicated in a range of cognitive abilities. As mentioned in the 
previous section, an analysis by Shulman et al. (1997) of data of several PET experi-
ments indicated that a common set of brain regions—which was only later termed 
the default network—showed consistent deactivation during various attention- 
demanding cognitive tasks. This means that those regions are more active in passive 
task conditions relative to many active task states. When it turned out that changes 
in blood oxygenation, as indirect measure of neuronal function, could be deter-
mined using BOLD fMRI without the use of radiotracers (Kwong et  al. 1992; 
Ogawa et al. 1992), fMRI became the method of choice for studying brain function 
in healthy young adults. Parametric manipulation of task difficulty during BOLD 
fMRI experiments confirmed that the more a person is focused on an attention- 
demanding task, the more deactivation of the default network occurs (McKiernan 
et al. 2003).

7.2.2  Tasks That Rely on Default Network Activation

In addition to attention-demanding tasks that deactivate the default network, one 
can also ask people to perform tasks in the scanner that specifically activate the 
default network. Tasks relying on conceptual knowledge, moral decision-making, 
the ability to think what other people are thinking (i.e., theory of mind), remember-
ing the past, and imagining the future are all associated with activation of default 
network regions and are therefore considered core functions of the network (e.g., 
Addis et al. 2007; Binder et al. 1999; Buckner et al. 2008; Mitchell et al. 2006; 
Shenhav and Greene 2012). Another suggested role of the default network is the 
exploratory monitoring of the external environment, a function that is suspended 
when a person is engaged in a task that requires focused attention (Gusnard et al. 
2001; Shulman et al. 1997). In situations when people are left to think to them-
selves, the default network seems to integrate information from past experiences, 
replay events from memory, and construct mental simulations about possible future 
events (Buckner et al. 2008; Schacter et al. 2007).

7.2.3  Assessment of Functional Connectivity

Functional connectivity, defined as temporally correlated remote neurophysiologi-
cal events (Friston 1994), can be estimated within individual subjects using func-
tional neuroimaging measures such as EEG, MEG, and fMRI. The most commonly 
used method for assessing brain functional connectivity is fMRI and is often referred 
to as functional connectivity MRI (fcMRI). Using fcMRI, patterns of synchronous 
fluctuations in the blood oxygenation level-dependent (BOLD) signal are measured 
(Biswal et  al. 1995). These analyses involve data processing, including steps to 
remove unwanted signals such as physiological noise caused by heart rate, 
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breathing, and head motion. If, after data preprocessing, two or more brain regions 
show a similar pattern in fluctuations over time, we designate these regions as being 
functionally connected. While functional connectivity does not equate to structural 
connectivity, fcMRI can be used as noninvasive probe of integrity of neuronal sys-
tems (for review, see Van Dijk et al. 2010).

Biswal and colleagues in 1995 used BOLD fMRI to show that a region in the left 
somatomotor cortex exhibits signal fluctuations that are highly correlated with sig-
nal fluctuations in the whole somatomotor system including contralateral somato-
motor cortex (Biswal et al. 1995). It is important to realize that the somatomotor 
system exhibits these coherent signal fluctuations when a person is simply resting in 
the scanner, that is, when a person is not engaged in active behavior that relies on 
the somatomotor system. This technique of mapping functional systems by analyz-
ing coherent fluctuations in remote brain areas increased in popularity when 
Greicius et  al. (2003) decided to place a region of interest—also called a “seed 
region”—in a core node of the default network. When they extracted the signal from 
that seed region and computed the correlation strength between the seed and every 
other voxel in the brain, the results robustly revealed the default network (Greicius 
et al. 2003). During those years, data-driven techniques that do not rely on choosing 
a specific seed region also revealed coherent activity patterns in large-scale brain 
systems such as the somatomotor and default network (Beckmann et al. 2005; De 
Luca et al. 2006). While it is relatively easy to measure these networks while people 
are resting in the scanner, it is important to note that most networks, including the 
default network, also show functional connectivity during many tasks (Fransson 
2006; Smith et al. 2009; Van Dijk et al. 2010). This means that functional connectiv-
ity methods can be applied to data acquired during rest but also during active task 
conditions (for applications and discussion, see Fair et al. (2007). When one is inter-
ested in how functional connectivity changes during different conditions of a task, 
other methods, such as psychophysiological interaction analysis, are suitable 
(Friston et al. 1997; McLaren et al. 2012).

Over the last years, different authors have focused on different networks as mea-
sured during rest. Besides the default network, often-mentioned systems are those 
involved in keeping attention focused on a task (dorsal attention network or salience 
network; see, e.g., Fox et al. 2005 and Seeley et al. 2007, respectively) or networks 
performing executive control functions such as allocating attention to one stimulus 
and then actively switching attention to another stimulus when cued to do so (Seeley 
et al. 2007; Vincent et al. 2008). Efforts of determining an exact number of mean-
ingful neuronal networks will offer different results based on the methods employed 
and the behavior of the subject during the scan. Moreover, while these fcMRI met-
rics show fairly stable measurements from one session to the next (e.g., Shehzad 
et al. 2009; Van Dijk et al. 2010), the correlational measures do not capture moment- 
to- moment changes in coherence (Chang and Glover 2010; Hutchison et al. 2013; 
Lurie et al. 2020).

Potential pitfalls when using fcMRI to determine functional network integrity 
are contamination of the BOLD signal by the before-mentioned sources of 
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physiological noise such as heart rate, respiration (Birn et  al. 2006; Chang and 
Glover 2009), and head motion (Power et al. 2012; Satterthwaite et al. 2012; Van 
Dijk et al. 2012a). It is crucial that investigators that apply fcMRI are aware of these 
confounding factors since they often bias results in studies where patients are com-
pared to healthy controls in the direction of hypothesized effects. For instance, one 
might find lower coherence in the default network in the patient group which may 
not be due to a specific brain disorder but rather to more head movement in the 
patient group during the scan. Discussion of additional caveats when working with 
measures of functional network integrity and interpretation of functional network 
changes when structural brain changes are also present are beyond the scope of this 
chapter but are topics of active research.

With the increasing availability of high-quality neuroimaging datasets and 
advances in computational approaches to complex biological systems, a field has 
emerged in which the brain is treated as graph with brain regions as nodes and func-
tional or structural connections as edges or links between the nodes (Bullmore and 
Sporns 2009; Drzezga et al. 2011; Rubinov and Sporns 2010; Sepulcre et al. 2010; 
Stam and Reijneveld 2007; van den Heuvel et al. 2008). Graph theory applied to 
structural and functional brain images has shown that the human brain is shaped by 
an economic trade-off between minimizing costs and maximizing efficiency of 
information processing whereby the brain exhibits properties of a complex network 
that sits in between a regular low-cost/low-efficiency lattice network and a high- 
cost/high-efficiency random network (see Fig. 7.3).

While complex brain network analysis techniques often take the whole brain into 
account and are not necessarily aimed at identifying (just) the default network, it 
turns out that the brain’s main cortical hubs largely—but not fully—overlap with 

Fig. 7.3 The human brain exhibits properties of a complex network that sits in between an orderly 
regular lattice structure and an unorderly random network. The healthy human brain shows a bal-
ance between minimizing costs and maximizing processing efficiency. While the default network 
is known to include many key relay stations that are important for this cost/efficiency trade-off, 
graph theoretical measures of the human brain go beyond the default network and are starting to 
show promise to identify changes in brain network structure in neurologic and psychiatric disease 
states (Adapted with permission from Macmillan Publishers Ltd.: Nature Reviews Neuroscience, 
Bullmore and Sporns, copyright 2012)
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default network regions (see Fig. 7.4). One potential role of these hub regions is that 
they act as relay stations for information processing serving as connector regions 
between different (sub)networks. Other complex brain network analyses suggest 
that default network regions display extensive local connectivity between and within 
certain bordering brain areas (see Buckner et al. 2009; Sepulcre et al. 2010; Tomasi 
and Volkow 2010 for discussion). Complex brain network analysis relies first on 
time-series analyses within an individual subject, but the next step requires analyses 
of patters across large groups of subjects. This may have utility in detecting abnor-
mal connectomics due to neurologic and psychiatric disease states (Bullmore and 
Sporns 2012; Rubinov and Sporns 2010; Dichter et al. 2015; Derks et al. 2017), but 
the practical utility of network measures for diagnostic and/or treatment decisions 
within an individual patient remains to be determined.

7.2.4  Molecular Function and Metabolic Connectivity

The abovementioned fcMRI methods rely on functional connectivity between brain 
regions to be estimated within individual subjects. 18F-FDG-PET traditionally does 
not provide information regarding change in neuronal function over time but rather 
offers a snapshot reflecting synaptic glutamatergic activity which then serves as 
summary measure of neuronal function over the duration of the scan. This means 
that within one subject, connectivity between two given regions (region A and B) 
cannot be computed using traditional FDG-PET as in both regions only a single 
value will be obtained. However, a correlation between the values in region A can 
be computed with the values in region B across subjects. This approach using PET 

a b

Fig. 7.4 (a) Map of the default network as voxels exhibiting greater activity during blocks of pas-
sive fixation than during externally directed tasks. Six independent fMRI blocked-design studies 
were included, each comprising 30 participants matched on age and gender for a total of 180 
healthy young adults. The scale is average t-score. The map of the default network is consistent 
with prior meta-analyses (e.g., Shulman et al. (1997) as shown in Fig. 7.1a). (b) Overlap of the 
default network with a map of degree connectivity representing cortical hubs (Adapted with per-
mission from Buckner et al. (2009))
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was used before the availability of fMRI BOLD methods (e.g., Horwitz et al. 1984; 
McIntosh 1999), and the same concept has successfully been applied to structural 
MRI data of older adults with and without dementia (e.g., He et al. 2008; Seeley 
et al. 2009). Across-subject analysis of FDG-PET data has been termed “metabolic 
connectivity” in a study by Morbelli et  al. (2012), in which they demonstrated 
reduced resting metabolic connectivity in prodromal Alzheimer’s disease both in 
hypometabolic and non-hypometabolic areas and they suggested that metabolic dis-
connection (reflecting early diaschisis) may antedate remote hypometabolism (early 
sign of synaptic degeneration) (Morbelli et al. 2012).

Thanks to increasing temporal resolution of modern PET imaging systems, met-
abolic connectivity can now also be studied within a single subject or patient using 
functional PET (fPET; Villien et al. 2014). This method employs a constant infusion 
of radiotracer and enables assessment of changes in brain metabolism over the 
course of a task paradigm or during resting-state conditions.

7.2.5  Clinical Relevance of Measuring Default Network Integrity

There are several lines of evidence indicating that default network integrity may 
serve as marker of brain function with relevance for several neurologic and psychi-
atric disease states (for review, see Fox and Greicius 2010; Teipel et al. 2016). One 
example where loss of deactivation during task conditions and disconnection mea-
sured during resting-state conditions across the spectrum of prodromal and clinical 
disease phases is Alzheimer’s disease. Loss of task-related deactivation in 
Alzheimer’s disease was shown for the default network using fMRI (Lustig et al. 
2003) and for other association regions using H2

15O PET (Drzezga et al. 2005). With 
the development of PET tracers such as 11C-Pittsburgh compound B (11C-PiB; 
Klunk et al. 2004; Mathis et  al. 2004), in vivo measurement of fibrillar amyloid 
beta, one of the major neuropathological hallmarks of Alzheimer’s disease, became 
possible. It turned out that older adults who presented with elevated 11C-PiB uptake, 
but who were otherwise still cognitively normal, showed loss of deactivation of the 
default network during fMRI task performance (Sperling et al. 2009).

In situations where patients may have difficulty performing a cognitive task in 
the scanner, or in multisite collaborative studies where it is difficult to implement 
a behavioral task protocol and monitor task compliance, a resting-state fMRI scan 
has been shown to be useful. Disconnection of regions of the default network dur-
ing rest has been reported in Alzheimer’s disease (Greicius et al. 2004) and also in 
patients who are at high risk of developing the disease (Filippini et al. 2009; Sorg 
et  al. 2007). In addition, even older adults who show no clinical signs of 
Alzheimer’s disease but who have elevated amyloid values as measured using 
11C-PiB-PET showed decreases in fcMRI measures of the default network 
(Hedden et al. 2009; Mormino et al. 2011; Sheline et al. 2010). Finally, regional 
overlap of default network disconnection, amyloid burden, and neuronal dysfunc-
tion was shown using resting-state fcMRI, 11C-PiB-PET, and 18F-FDG-PET, 
respectively (Drzezga et  al. 2011), lending support to the hypothesis that 
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Alzheimer’s disease-associated amyloid deposition tends to concentrate in default 
network areas (Buckner et al. 2005) or more generally in functional hubs of the 
brain that overlap with typical default network areas and other critical nodes of 
large-scale functional networks (Buckner et al. 2009). These findings indicate that 
assessment of the default mode network and other major neuronal networks may 
serve as marker of functional brain integrity, prior to occurrence of symptoms of 
memory loss due to Alzheimer’s disease- related pathology and also prior to ana-
tomical changes that will only later become visible with structural brain imaging 
techniques (Sperling et al. 2011).

Availability of in vivo assessment of tau aggregates using tracers such as 18F- 
AV- 1451 (T807; Chien et al. 2013; Xia et al. 2013) as well as adaptation of PET tau 
imaging in large longitudinal cohort studies such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) has offered a view that multiple networks may be 
differentially affected by pathologies that may show its effects at different (pre)
clinical disease stages (see, e.g., Jones et  al. 2017; Hoenig et  al. 2018; Sepulcre 
et al. 2018).

Applying PET tracers for imaging amyloid and tau deposition in the brain, recent 
studies were able to identify characteristic networks of amyloid deposition in the 
brain as well as specific “tau networks” of tau distribution in patients with 
Alzheimer’s disease (Pereira et  al. 2018; Kim et  al. 2019; Hoenig et  al. 2018). 
Substantial overlap between amyloid deposition, tau aggregation, and functional- 
anatomic networks was demonstrated, particularly for the default network. These 
findings indicate that Alzheimer pathology shows a preference for development 
within the default network, potentially due to high susceptibility of this network and 
potential spreading of the molecular pathologies along its connectivity pathways. 
These findings have further fueled the so-called network degeneration hypothesis, 
postulating that neurodegenerative disorders are possibly characterized by the way 
molecular pathologies are spreading along functional networks of the brain (see, for 
review, Drzezga 2018).

It is unlikely that default network dysfunction is exclusively indicative of (pre-
clinical) Alzheimer’s disease because this network has been implicated in a range of 
different conditions (for an early review, see Fox and Greicius 2010). In addition, 
most studies referenced in this chapter showed functional network characteristics 
based on group averages of normal control subjects or group differences between 
patients and controls, but it has become clear that these large-scale functional net-
works, when measured at high spatial resolution in individual subjects, show con-
sistent fractionation within individuals (Braga et al. 2019) of which clinical utility 
remains to be determined. In the coming years, we will likely learn more about 
sensitivity and specificity of measures of neuronal network dysfunction and its clin-
ical utility in a range of different conditions.

Besides investigating which neurologic and psychiatric disease affects which 
brain system, there are a number of other clinical applications for measuring the 
connectional architecture of the brain. One such example is presurgical mapping of 
functional brain areas in patients that might otherwise be scanned while performing 
a task but who have difficulty with task comprehension and/or task compliance (Liu 
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et al. 2009; Lee et al. 2016) with recent publications confirming utility but also call-
ing for further investigations into subject-level variability before widespread clini-
cal implementation (Sair et  al. 2017). Another potential clinical application is 
determining brain function in individual patients with disorders of consciousness 
where a minimal conscious state might be differentiated from vegetative state using 
default network measures (Fernandez-Espejo et al. 2012). And finally, resting-state 
functional network measures have been used for image-guided manipulation using 
transcranial magnetic stimulation (TMS) of brain networks in psychiatric diseases 
(Fox et al. 2012). With continued efforts of improved data acquisition and analysis 
techniques, including higher spatial and temporal resolution MRI (Smith et  al. 
2011; Triantafyllou et al. 2005; Setsompop et al. 2012; Van Dijk et al. 2012b), and 
simultaneous PET/MR data acquisition (Heiss 2009; Marsden et al. 2002), addi-
tional translational research for clinical applications is likely to follow.
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