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Abstract

Artificial intelligence (AI) is being intensely studied, evaluated, and applied in 
healthcare and especially in medical imaging. Having shown performance equal-
ing that of experienced radiologists in tasks such as detecting pneumonia on 
chest X-rays and identifying cancerous long nodules on X-ray, AI is poised to 
radically optimize many areas of medical practice from early detection of disease 
to prediction of progression and personalization of therapeutic strategy. Artificial 
intelligence extends classical statistical techniques and machine learning, both of 
which characteristically involve manually establishing imaging features hypoth-
esized to modulate a certain outcome. With AI, predictive features are automati-
cally established in a data-driven fashion, which in turn implies that raw 
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unprocessed data can be fully utilized, human bias can be avoided, and previ-
ously unrealized disease mechanisms potentially can be discovered. Here we 
discuss applications of AI in PET imaging for image reconstruction, attenuation 
correction without CT, dose reduction, automatic identification of pathology, and 
differentiation of disease progression. One of the costs of more automated analy-
ses and better accuracy with AI compared to classical machine learning is larger 
volumes of training data; however, the field is rapidly evolving, and we discuss 
possible mitigations as well as other directions for valuable future applications of 
AI in PET imaging.

5.1	 �Introduction

Deep learning may be considered the big bang moment for artificial intelligence 
(AI). The idea of mimicking human brain architecture to build “intelligent” 
machines dates back at least to the period 1930–1950 where research in neurology 
showed that the brain consists of networks of neurons exchanging electrical signals 
and concurrently researchers showed that any form of computation can be per-
formed digitally. Over the years, however, mathematical models based on idealized 
neurons organized in a hierarchical structure were realized to be unstable, brittle, in 
the sense that training the same network more than once led to different solutions 
and networks could yield surprising results given previously unseen input.

The pursuit for electronic brains gave way for less ambitious or “flat” models 
such as support vector machines and even classical logistic regression for tasks 
where a set of input variables should be combined to form a classification or predic-
tion. In general interest in neural networks was replaced by developments in what is 
often referred to as classical machine learning. Despite a much simpler structure, 
classical machine learning techniques often demonstrate good classification or pre-
dictive accuracy, have been extensively applied in medical imaging, and lie at the 
heart of the relatively new field of radiomics, where tissue imaging features are 
manually crafted, for instance, with texture analysis, and combined into estimates of 
tissue type or presence of disease, for instance.

The idea that superior performance could be obtained by replicating neuronal 
architecture was not entirely abandoned, but it was not until the period 2006–2012 
that neural networks accomplished the breakthroughs leading to today’s enthusi-
asm. In this period Geoffrey Hinton, among others, discovered robust methods to 
train neural networks and laid the foundation for the field now known as deep learn-
ing. It centers on artificial neural networks with “neurons” or nodes, as they are 
called, organized in hierarchically connected layers, of which there can be hundreds 
and the total number of free parameters on the scale of millions; see Figure 5.1b for 
a schematic illustration.

As an indicator of progress, the annual ImageNet challenge considers a database 
of one million images from one thousand categories. By 2011 only classical machine 
learning had been attempted with the best algorithms reaching an accuracy around 
75%. In 2012 deep learning yielded a remarkable 84.3% accuracy (Krizhevsky et al. 
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2012). Perhaps the most surprising development was in 2015 where a deep neural 
network was reported to exceed human performance in image classification (He 
et al. 2015).

Clearly a natural domain for application of deep learning is medical imaging, 
and the technology has already demonstrated notable success. One study showed 
that a deep neural network (DNN) outperformed four radiologists in detecting pneu-
monia on chest X-rays (Rajpurkar et al. 2017). Another study found that a DNN 
outperformed 17 out of 18 radiologists in a task of identifying cancerous long nod-
ules on X-rays (Hwang et  al. 2019). With increasing demand for value and effi-
ciency in healthcare, and not least medical imaging, AI is poised—inter alia—to 
improve early disease detection, accelerate image reading, and guide therapeutic 
decision-making.

As a crucial component in routine diagnostics as well as clinical trials, nuclear 
medicine stands to make important advances in combination with AI methodology. 
So far the field appears less explored than other advanced imaging modalities. A 
search on PubMed (October 18, 2019) for deep learning revealed only 65 publica-
tions with positron emission tomography against 271 with computed tomography 
and 420 with magnetic resonance imaging. In the following, we discuss current 
research directions, results, and future opportunities.

5.2	 �Artificial Intelligence

To better understand the potential and opportunities for AI in PET imaging, we offer 
a brief introduction and overview of methods from a “user’s” perspective. Although 
the terminology is ambiguous, artificial intelligence is often used as an overarching 
term for methods aimed at identifying and parameterizing patterns in data. This can 
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Fig. 5.1  (a) Graphic representation of the idea of combining a number of input variables into a 
single value. (b) Schematic illustration of an artificial neural network
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be as simple as a classical regression model, where a number of observed quantities 
are combined to form an estimate or prediction of a target quantity. In a linear 
regression, this target is a value such as the volume of a tissue type or the level of 
metabolism. If the target is a category, such as presence or absence of disease, the 
same linear combination can be formed but is then transformed to represent the 
probability for each of the two, or more, classes. This is called logistic regression. 
Figure 5.1a displays graphically the idea of combining a number of input variables 
into a single value.

As we will see below, the state-of-the-art deep learning models, which can be 
said to be at the other end of the spectrum of mathematical complexity compared to 
regression, consist fundamentally of exactly the same simple building blocks, 
namely, linear combinations of predictors. This is illustrated in Figure 5.1b, where 
the small highlighted part of the larger network has exactly the structure of a regres-
sion model shown in Figure 5.1a. The difference is that deep neural networks com-
prise hierarchies of non-linear transformations of the basic linear combinations.

One advantage is that throughout the layers the model itself is able to construct 
combinations of input variables which are predictive for the target outcome. This 
allows tremendous flexibility in transforming—or encoding—the connection 
between predictors and response, where these hierarchical models also have the 
capacity to naturally uncover complex interactions across predictors. Interactions 
are also possible in classical regression models, but they must be specified manually 
a priori, and typically only subsets of pairs of variables are considered practically 
feasible.

Another advantage is that since it is possible to have even very high numbers of 
nodes in the input layer, it is feasible to input raw data such as image volumes (PET, 
MRI, CT), text (electronic health records, clinical findings), and signals (EEG, 
MEG). In contrast, with classical regression, raw data is typically filtered, aggre-
gated, and subjected to manual feature extraction until rather few representative 
quantities are left. Broadly speaking, a regression model can in this case be seen as 
the result of human feature engineering followed by statistical fitting, whereas a 
neural network automates the entire process. The manual steps in classical data 
analyses prompt risk of bias, missing critical information and even overfitting, com-
promising generalizability. The latter is an often overlooked problem in classical 
scientific data analyses. Whereas the regression model itself is thoroughly treated 
by statistical software and estimates are properly corrected for level of data noise 
and number of parameters, the many choices of which parameters to include and 
how they are transformed and combined are not factored into the final results, 
although substantially influencing the degrees of freedom and potentially limiting 
reproducibility (Simmons et al. 2011; Ioannidis 2005).

A third advantage is that deep learning models have the capability to continue 
improving in performance as the volume of input data increases. Simple models 
such as regressions are naturally limited in their ability to model complex relations 
between inputs and outputs, whereas deep neural networks, with up to millions of 
parameters, are able to encode much more complex relations, such as the 

K. Mouridsen and R. Borra



109

differences in disease progression across diverse populations. The volume of param-
eters is at the same time the major limitation of deep neural networks when data is 
scarce, where classical models may be more robustly applied.

5.3	 �Scope of Classical Statistics Versus Deep Learning

As we have seen, modern deep neural networks extend in terms of architecture the 
classical regression model. However, the purpose and the methods for fitting the two 
approaches differ considerably. From a traditional statistical point of view, linear 
combinations are used in an inferential way to quantify the degree (and type) of 
influence a predictor seemingly exerts on an outcome measure. This has been quali-
fied, for instance, by the amount of change in response that would be expected by a 
one-unit change in the value of the predictor. Formally, significance tests have been 
used as an indicator for whether such an effect should be considered manifest or 
could have occurred by chance.

Considering regression as a (very) simple machine learning model means chang-
ing one’s perspective. Instead of focusing on quantification of individual predictor’s 
effect on the response, we focus on making the most accurate predictions. For this 
purpose, the inferential question of whether a predictor is statistically significant is 
less relevant, and instead the focus is on the collective predictive ability. This could 
be conceived as a loss, but if, for instance, the input for a prediction, e.g., prediction 
of progression of dementia, is an entire image, it can be argued that it is not the 
individual voxels but rather their combined effects and interactions which are of 
interest. In this case the notion of effect of a single element may be less meaningful 
in that the voxel may have negligible influence in itself but may contribute via com-
plex interactions with other tissue regions. The matter of whether an element pro-
vides actual information, however, persists but manifests in a different way. Namely, 
if a predictor does not consistently contribute to prediction of the response, its coef-
ficient parameter will typically be low or zero. This is ensured by a mechanism 
during model development referred to as cross-validation, which may be seen as an 
even stricter control than traditional statistical inference based on p-values. During 
model development data used for fitting is typically split in a training partition and 
a validation partition. This systematically simulates the real-world setting where the 
model must make predictions for new and previously unseen cases. Hence if a pre-
dictor has an apparently strong effect on the outcome in the training data, but per-
formance on the validation data is low, then the estimated strength of each predictor 
is adjusted accordingly. As a result, the final model will have “proven” that it per-
forms well on the data on which it was trained but is also expected to perform well 
on unseen cases. This is a very important and valuable criteria especially for meth-
ods intended to be used in actual clinical settings. It is important to note that in tra-
ditional statistics, all data points are typically used for model fitting and p-values 
used for inference are based on in-sample estimates. Hence it can be argued that 
artificial intelligence algorithms undergo a stricter scrutiny than traditional 
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statistical models and foster greater requirements for predictors than traditional 
inference.

As an additional note, p-values are influenced not only by the size of the effect 
they are associated with but also by the number of observations in the study. 
Accordingly, as studies increase in volume of samples, assuming that the effect of a 
predictor remains constant, the p-value will in any case become smaller. Therefore 
even the most scientifically negligible effects will eventually become statistically 
significant. In contrast, the actual influence and therefore predictive ability of the 
variable remain the same, and therefore the performance of the model will not 
change (Mouridsen 2015). Measurement of model performance can therefore be 
argued to give a more robust picture of the face value of predictors.

5.4	 �Inferring CT and MR Information

A challenge for quantitative PET imaging is the spatially accurate source of photon 
emission. The tissue-dependent attenuation, such as Compton scatter, of the gamma-
rays compromises precise volumetric reconstruction. A common resolution to this 
problem is to acquire an additional CT, typically in combined PET/CT systems, 
which yield clear identification of bone structures which can be used as a basis to 
establish a photon attenuation correction map. However this may not always be a 
practical solution wherefore deep learning has been considered to alleviate this 
problem in different settings.

For instance, with combined PET/MR scanners, a CT scan for attenuation correc-
tion is unavailable. At the same time, while standard MRI sequences are excellent at 
displaying soft-tissue contrast, MRI poorly displays bone and can therefore not be used 
per se as a basis for attenuation correction. This can be mediated to some extent using 
very short echo times, but errors remain in the attenuation correction. As an alternative 
it has been suggested to generate a pseudo-CT image from MRI (Liu et al. 2018a). 
With 40 subjects for whom T1 MRI as well as plain CT was acquired, an encoder-
decoder type neural network was constructed aiming to input an MR image and output 
a segmented CT image. The pseudo-CT images were shown to match actual segmented 
CT with a Dice coefficient of 0.803 ± 0.021 for bone. In a prospective study with five 
patients, a significantly lower PET reconstruction error was demonstrated with deep 
learning-based attenuation correction than with standard Dixon-based soft-tissue and 
air segmentation and anatomic CT-based template registration.

An alternative idea is to directly estimate a pseudo-CT image with tissue seg-
mentation from the uncorrected PET image, thereby avoiding the extra step involved 
in acquiring a second image modality. One procedure for this was recently proposed 
(Liu et al. 2018b). This study uses a similar encoder-decoder structure network as in 
Liu et al. (2018a) except for the addition of short-cut connections making the archi-
tecture appear comparable to the U-net (Ronneberger et al. 2015). The network was 
trained based on 100 subjects and validated on an additional 28. The authors report 
a Dice coefficient for bone segmentation of 0.75 ± 0.03 compared to actual non-
contrast CT and 18F-FDG-PET errors less than 2% compared to CT.
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Looking beyond attenuation correction, the possibility for image-to-image transla-
tion may also be useful, for instance, in diagnostic workup where two modalities are 
necessary. For instance, amyloid deposition is a useful biomarker in patients suspected 
of cognitive decline, where absence of amyloid depositions in the cortex can rule out 
Alzheimer’s disease. Being established as SUV relative to a reference region, PET 
imaging should therefore ideally be supplemented by a structural MR acquisition. 
However, this may not be feasible in the clinic. As an alternative (Choi and Lee 2018) 
suggests producing a pseudo-T1 MRI from 18F-florbetapir PET.  The model was 
trained using 163 patients from the ADNI study. The authors used a so-called genera-
tive adversarial neural network which is an approach in which two competing net-
works are trained in parallel (Goodfellow et al. 2014). One is trained with the aim to 
generate realistic MR images from PET, while the other is trained to determine 
whether an MR image is artificially generated or actually acquired. Performance test 
in 98 subjects from 8 independent sites showed an absolute error in standardized SUV 
significantly smaller than for other MR-less approaches such as template matching 
and segmentation.

5.5	 �Image Reconstruction

PET images are created via a complex process where scintillation in the inorganic 
crystals in the PET scanner is converted to spatially resolved maps of metabolic 
activity. This process holds a number of possible applications for artificial intelli-
gence. Raw data produced in a PET acquisition are in the form of a sinogram repre-
senting the number of photon coincidence detections in pairs of detectors. 
Conversion from sinogram data to tissue maps is known as image reconstruction. 
This can be accomplished with so-called filtered backprojection (FBP) which is 
computationally efficient but has a range of limitations including tendency to pro-
duce streaks across images from high-uptake areas and sensitivity to shot noise. 
Statistical methods acknowledge the randomness in the underlying physical pro-
cesses and avoid the artifacts of FBP but are slow because they require iterative 
maximization of a likelihood function, for instance, using expectation maximiza-
tion (MLEM).

In Cui et al. (2017), the authors suggest improving the MLEM by using stacked 
autoencoders to automatically extract important image features. However it has also 
been suggested to entirely bypass traditional image reconstruction and simply con-
struct metabolic maps from raw sinogram data (Häggström et al. 2019). By presenting 
a neural network on the input side with sinogram data and on the output side spatial 
maps established with traditional, but time-consuming, image reconstruction, the 
authors demonstrate that the network becomes capable of prospectively producing 
spatial maps from sinogram data with similar quality but more than 100 times faster.

PET image quality depends on the features of the scintillating crystals. More 
coarsely pixelated crystals are less sensitive to noise but produce blurred images, 
whereas thin-pixelated crystals yield higher spatial accuracy but at the cost of noise 
sensitivity. Hong et al. (2018) suggest that comparable image resolution and better 
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noise properties can be obtained with large crystals of bin sizes a factor 4 larger than 
thin crystals using a deep residual convolutional neural network. For an application 
of denoising with combined PET/CT data, see, for instance, Cui et al. (2019).

5.6	 �Dose Reduction

One of the main limitations for wider use of PET in the clinic is the necessity of a 
radioactive tracer. Due to radiation exposure, PET imaging is often limited to termi-
nally ill or elderly patients. If the radiation dose could be reduced without substan-
tially compromising image quality, the more general clinical value of PET could 
increase tremendously.

With image quality depending on the balance of bed duration and radiation dose, 
early work (Xiang et al. 2017) used a reduction in acquisition time from 12 min to 
3 min following a standard dose of 18F-2-deoxyglucose to simulate the effect of 
administering a dose 75% below the standard. Using a concatenation of convolu-
tional neural networks with the pseudo-low-dose (i.e., short scan duration) images 
as input and standard-dose (long scan duration) images as output to predict, the 
study shows in 16 patients that in particular when the low-dose PET is comple-
mented by T1 MR competitive image quality is seen relative to a state-of-the-art 
technique however 500 times faster.

Later, Xu et  al. (2017) administered standard-dose 18F-fluorodeoxyglucose 
(370 MBq) in nine patients with glioblastoma with a PET/MR scanner. Low-dose 
PET was simulated by randomly selecting only 0.5% of the count events based on 
raw listmode data corresponding to a 200× reduction in dose. The authors used so-
called residual learning where a neural network is trained to learn the difference 
between low-dose PET as input and standard-dose PET as output. This is found to 
be a more robust training strategy for deep networks. The resulting network demon-
strated to produce superior performance in estimating standard-dose PET from low-
dose PET compared to state-of-the-art techniques.

Clearly synthetic images reconstructed from lower resolution will not match 
standard acquisitions numerically exact, but for clinical purposes, a more relevant 
question is whether similar diagnostic conclusions are reached with the synthetic 
images. To study this, Chen et  al. (2019) considered amyloid (fluorine 18 
[18F]-florbetaben) PET/MR acquisitions in 39 subjects and a neural network archi-
tecture similar to Xu et al. (2017). Expert human assessment of amyloid status with 
synthetic images yielded good accuracy compared to full-dose images with an accu-
racy of 89% corresponding to 71 out of 80 readings and was found to be similar to 
intrareader reproducibility of full-dose images (73 of 80 [91%]).

5.7	 �Automated Detection of Pathology

Combined PET and CT imaging plays a major role in managing oncological patients 
and in particular for radiation therapy planning. Outlining the gross tumor as well 
as pathological lymph nodes is a time-consuming manual task. In addition to the 
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time requirement, the manual intervention also limits reproducibility and standard-
ization. Automation of this task is therefore potentially a clinically valuable applica-
tion of artificial intelligence. This task has previously been approached with 
traditional machine learning methods such as k-nearest neighbors, Markov random 
fields, adaptive random walk with k-means, and decision trees (Yu et  al. 2009; 
Comelli et al. 2018; Yang et al. 2015; Stefano et al. 2017; Berthon et al. 2017).

Using a deep learning approach, Moe et al. (2019) describe a method for auto-
matic delineation of gross tumor volume as well as pathological lymph nodes. This 
is based on the often used U-Net convolutional architecture (Ronneberger et  al. 
2015). Imaging regimen included FDG-PET and CT. The best correspondence with 
manual outlining was seen when using PET and CT images in combination, fol-
lowed by PET only. The Dice coefficient for PET/CT was 0.75 ± 0.12, whereas for 
CT only this dropped to 0.65 ± 0.17. This was based on a training set of 142, valida-
tion set of 15, and test set of 42 patients stratified on tumor T-stage.

In a smaller study (Huang et al. 2018), however with combined PET and CT data 
from two sites, a convolutional architecture also based on the U-net was proposed 
to segment gross tumor volume. To mitigate the challenge of a lower number of 
patients, this study explicitly used simulated data augmentation in the form of rotat-
ing the images, horizontal mirroring, changing the contrast, and image scaling. The 
resulting median Dice score as calculated with leave-one-out cross-validation was 
0.785 with a range of 0.482 to 0.868.

Correct delineation of tumor volume in clinical practice also depends on the abil-
ity to differentiate between lesions due to tumor progression and tissue damage due 
to radiotherapy. For instance, radiosurgery treatment of patients with brain metasta-
ses may result in radiation necrosis rates between 25% and 50% (Minniti et  al. 
2011). Mis-interpretation of treatment-induced change as tumor progression may 
lead to unwarranted treatment approaches or cessation of effective therapy as well 
as biased estimation of therapeutic success in clinical trials.

Whereas reports (Chao et al. 2001) on the use of FDG-PET for differentiating 
metastasis relapse from radiation damage are ambiguous on the clinical value, with 
sensitivities and specificities ranging from 40% to 100%, the MET and FDOPA 
PET have more consistently demonstrated clinical feasibility with sensitivities and 
specificities around 80%. Similarly for the differentiation of treatment-related dam-
age and progression of glioma, PET imaging with FET and FDOPA has shown 
clinically relevant performance. While artificial intelligence may be hypothesized to 
improve these performances by a more detailed analysis of lesion extent and texture 
notably the implementation of dynamic PET (Galldiks et al. 2012), where subtle 
patterns in the uptake curves may hold further clues, which can be exploited by 
computationally intensive methods.

Detection of disease can also have a more global aim than regional gross tumor 
or metastasis identification and delineation. For instance, detection of Alzheimer’s 
disease (AD) is important for diagnostic purposes and is expected to become even 
more critical with the advent of therapies to potentially delay onset, slow progres-
sion, or even cure the disease. At the heart of this task is separation of prodromal AD 
cases from patients with mild cognitive impairment (MCI) who will not progress to 
AD. It is speculated that a deeper understanding of the progression from MCI to AD 
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is necessary also at the time of development of pharmacological interventions—
since only a fraction of patients with symptoms of MCI develop AD, the patients 
who would not progress to AD will seemingly dilute actual therapeutic effects for 
those who will progress. Being able to design studies such that only patients pre-
dicted to progress to AD from MCI are included will increase the statistical power 
for detection of actual effects.

FDG-PET plays an important role in the diagnosis of AD due to its ability to 
show metabolic activity which is recognized to preceed anatomical changes, as 
observed with MRI, and account for the cognitive and functional decline observed 
with the disease. However, success in developing automated methods for predicting 
which MCI cases will progress to AD has been limited with accuracies typically not 
exceeding 80% (Lu et al. 2018).

One larger study (Lu et al. 2018) considers 1.051 patients from the publicly avail-
able ADNI dataset with structural MRI as well as FDG-PET. Subjects were divided 
in normal controls, stable mild cognitive impairment (sMCI) class, progressive mild 
cognitive impairment (pMCI) class, and those clinically diagnosed with Alzheimer’s 
disease. A deep learning approach was suggested which simultaneously analyzes 
images across different spatial resolutions. This produces a number of classifiers, 
which are then combined into a single result via so-called ensemble learning. An 
accuracy of 82.51(5.35) was demonstrated for automatically differentiating between 
stable and progressive MCI. For the classification of NC versus AD, the accuracy 
reported was 93.58 (5.20). The principle of combining multiple classifications into 
one has also previously been explored in a subset of the ADNI data (Ortiz et al. 2016).

This study employed a strategy of pre-training the neural network using a so-called 
autoencoder approach. Autoencoders have previously shown efficiency in detection of 
AD in a smaller subset of 311 subjects from the ADNI data (Liu et al. 2014). One of the 
challenges in deep learning models, which contain a large number of unknown param-
eters, is finding suitable starting values (known as initialization). An autoencoder can 
be used to mitigate this problem by effectively reducing the complex information in 
raw data to more compact distillation. This is accomplished by channeling the high-
dimensional raw data through a lower-dimensional layer of hidden units in neural net-
work and then optimizing this layer such that it can at the same time reproduce the 
input data. This is similar to traditional principal component analysis, where raw data 
is reduced to principal components which are linear combinations of data input. 
Autoencoders generalize this approach by using non-linear transformations. The many 
layers in a deep neural network can now be initialized in a bottom-up approach where 
each layer is initialized by the hidden layer of an appropriate autoencoder.

5.8	 �Considerations for the Future

Across medical imaging and healthcare in general, there are a seemingly endless 
stream of new ideas for application of AI and a corresponding multitude of proof-
of-concept-level studies. However the uptake in clinical practice is still minimal. In 
2017 and 2018, only around 14 algorithms were approved by the Food and Drug 
Administration (FDA) in the USA. It is a concern that few of the companies behind 
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these products have published peer-reviewed papers let alone conducted prospective 
clinical trials. This shows a trend where validation of technology as well as actual 
clinical value is lacking.

One reason for the lack of validation studies is that datasets in medical imaging 
are typically small. While some of the largest medical imaging datasets used for 
deep learning contains in the order of 100.000 patients, run-of-the-mill research 
studies are much smaller with cohort sizes from around 30 to a few thousands. This 
may be due to limited funding, but privacy concerns also make compilation of large 
data volumes from different sites across the world let alone commercial participa-
tion difficult. Research publications, such as those reviewed here, do offer valida-
tions, but only the so-called cross-validations which are essentially made by 
randomly splitting the dataset into training and testing. The testing dataset there-
fore, statistically, has the same properties as the training data which may not be the 
case if new data is acquired with another machine or at another hospital. Also inclu-
sion and exclusion criteria must be exactly identical. For clinical uptake not only 
larger datasets with representative samples are critical to show consistent high accu-
racy, but the technologies must be tested prospectively in the clinic to show actual 
value. With smaller datasets the risk of bias also increases, and bias in AI is a con-
cern. However in fairness this should be compared to human bias which has also 
been reported to be significant (Topol 2019). In the case of AI, the bias is in princi-
ple avoidable by having representative data samples. Finally although cross-valida-
tion is the typical performance metric used in AI studies, the field lacks a standard 
for how this is performed. Without such standardization, it is difficult to compare 
performance across studies. In classical statistics, p-values have the role of a stan-
dardized measure of significance. Although such single measures may be misused 
or overinterpreted, as has been the case with p-values (Ioannidis 2005), efforts 
toward developing standardized reporting practices will be beneficial.

For the first wave of AI enthusiasm algorithm performance has been the center of 
attention. To move the field forward, increase trust in AI technology, and increase 
clinical acceptance, the pursuit to develop explainable AI will likely have a substan-
tial role. A common criticism of deep neural networks is that they are black boxes 
unable to account for their otherwise high accuracy. In Europe, the General Data 
Protection Regulation (GDPR) stipulates that decisions relating to a patient may not 
fully rely on automated processing, often taken to mean that patients have a right to 
an explanation for decisions. As the field moves forward, the ability of algorithms 
to account for their decisions may not only benefit patients but also be the source of 
many new insights and discoveries based on combinations of imaging and health 
record data made possible by modern versions of artificial intelligence.
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