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Foreword

When in 2014 the editors published the first edition of this 3-volume series, dedi-
cated to the use of PET and SPECT in the CNS, a major undertaking saw the light
in print. These were significant multi-authored books, providing the most compre-
hensive review of this challenging field at the time.

Now, in 2020, a second edition is launched, demonstrating the success of this
initial endeavour. With a further major effort, over 50% of the numerous chapters
are either entirely novel or rewritten anew, by an impressive list of international
contributors. The team deserves warm congratulations for this achievement.

In 2014, PET-MR had just emerged as a novel imaging modality, and the medical
applications of machine learning, or artificial intelligence, had hardly surfaced. PET
imaging of Tau had just made it.

Now, in 2020, amazing progress in the understanding of the brain is being made,
and even dedicated brain PET and PET-MR imaging instruments are in develop-
ment (Catana 2019). Yet, with its hundred billion neurons, the brain keeps its mys-
tery and continues to engage and stimulate our enquiry.

Little by little progress is being made, from decoding consciousness (Sohn 2019)
to growing neurons from reprogrammed skin fibroblasts (Kofler 2019). We now
understand that protein deposits in the brain may precede clinical manifestations by
years, great advances have been made in extracting quantitative data from such
studies (as shown with PET-CT and amyloid and tau numerical data) and that we
can intervene effectively, inter alia, in receptor deficiencies and in deep brain stimu-
lation. The brain connectome is unravelling, with it, a greater understanding of,
amongst others, pain and drug-induced addictions, the dementias and movement
disorders. All of this and much more is being critically reviewed by 119 chapters
spread into these 3 major volumes.

It is hence perfect timing that the Second Edition shines a new light at the signifi-
cant progress made in PET and SPECT, describing and analysing latest information
from novel biological radionuclide probes, neuroreceptors and the clinical progress
achieved.

University College London Peter Josef Ell,
London, UK
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Preface

Neuroscientists of today dispose of a powerful armament for functional, physiologi-
cal and molecular imaging that has never made more impressive advances than
before, helping to better understand the mechanisms of diseases and to develop and
design drug treatment options with a superior efficacy and safety profile. Among
these instruments, positron emission tomography (PET) and single-photon emis-
sion computed tomography (SPECT) have become forerunners in the in vivo imag-
ing arena, and for this reason, the present trilogy, now in its second, completely
revised and supplemented edition, is dedicated to PET and SPECT. The volumes of
this trilogy are PET and SPECT in Psychiatry, PET and SPECT in Neurology and
PET and SPECT in Neurobiological Systems. In all volumes, we have again assem-
bled the combined expertise of the renowned authors of the first edition and
expanded this by some new authors for the second edition, whose dedication to the
investigation of psychiatric and neurological disorders or of neurobiological sys-
tems through nuclear medicine technology has achieved international recognition.

The editors, who are nuclear medicine specialists, radiochemists and biologists
with a strong exposure to neurosciences, have again invited experts from the psy-
chiatry, neurology, and medical physics fields to enhance the editorial board as
guest editors for each volume of the trilogy. For PET and SPECT in Psychiatry this
was Iris Sommer, professor of cognitive aspects of neurological and psychiatric
disorders; for PET and SPECT in Neurology it remained Klaus (Nico) L. Leenders,
emeritus professor of neurology; and for SPECT in Neurobiological Systems it was
Adriaan A. Lammertsma, professor of medical physics and PET.

We are very happy that our trilogy has become a state-of-the-art compendium
with top downloads already for the first edition. This is certainly also due to the
production and distribution by one of the premier publishers in the field, guarantee-
ing a high quality of reproduction and allowing for the inclusion of many colour
figures, which is essential in the field of neuroimaging. We are intrigued by the
enthusiastic response from contributors from all over the world who made this
endeavour successful and are confident that the second edition continues to live up
to this onus. Finally, we would like to thank Mrs. Gesa Frese from Springer-Verlag
for her continuous help and support during the development of the second edition of
this book series.

We sincerely hope that the new trilogy will still serve as a key tool not only for
all physicians in nuclear medicine, psychiatry, neurology, or geriatrics but also for

vii



viii Preface

all professionals working to understand or treat brain disorders. With today’s ageing
population, PET and SPECT imaging can provide new insights into the processes
that may lead to unhealthy ageing of the brain. May this book series serve as a guide
towards the present use of PET and SPECT in brain disorders and as a catalyst for
future research. The progress achieved by PET and SPECT in the diagnosis of the
many facets of diseases disposed in the neurosciences has been astounding.
Nevertheless, in line with the Socratic paradox “I know that I know nothing”, it
seems that we are still at the beginning of understanding the brain. This book hopes
to provide a renewed platform to further contribute to this quest, at the benefit of
patients suffering from neurologic and psychiatric disorders.

Groningen, The Netherlands Rudi A. J. O. Dierckx
Offenburg, Germany Andreas Otte
Groningen, The Netherlands Erik F. J. de Vries

Groningen, The Netherlands Aren van Waarde
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Abstract

Tracers to investigate neurological disorders with positron emission tomography
(PET) or single-photon emission computed tomography (SPECT) have found
many applications. Several molecular targets can be studied in the human brain
in vivo, both in health and disease. Initially, most attention was given to tracers for
translocator protein (TSPO), deposition of beta-amyloid, and the dopaminergic
system. Many clinical studies have been published with application of a variety of
tracers for these targets. During the past few years, more tracers have reached the
stage of human studies such as imaging agents for tau protein, P2X7 receptor,
SV2A receptor, and the cholinergic system. Other targets of interest that have been
studied in man to a lesser extent are N-methyl-D-aspartic acid (NMDA), serotoner-
gic, adenosine, gamma-aminobutyric acid (GABA), sigma, opioid, and metabo-
tropic glutamate subtype 5 (mGluS) receptors. In addition, several transporter
systems have received a great deal of attention. Many tracers for new molecular
targets are under development and may open new horizons in the future. Most PET
tracers for the brain were initially labeled with ''C but were later replaced by
18F-labeled analogs, since this radionuclide enables longer scanning protocols, dis-
semination to other hospitals, and commercialization. This initial chapter will
highlight PET tracers that have already reached the state of human application.

1.1 Introduction

This chapter describes positron emission tomography (PET) and single-photon
emission computed tomography (SPECT) tracers that have been validated in
humans and are applied in clinical studies. Many other tracers with potentially
improved properties are currently under preclinical evaluation. In Table 1.1, an
overview is given of molecular targets and processes associated with neurological
diseases and available tracers for nuclear medicine imaging in humans.

An ideal nuclear medicine imaging tracer for brain imaging should satisfy the
following requirements:

e Simple automated synthesis procedure suitable for reliable and robust produc-
tion and low radiation burden for personnel. For clinical studies, GMP compli-
ance is a prerequisite.

e Appropriate molar activity which should be sufficiently high, so that tracer
binding is minimally affected by nonradioactive counterparts. Especially for
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Table 1.1 Overview of nuclear medicine tracers and their application in clinical studies

Tracers (human

Target Related disease application) Binding mechanism
TSPO MS, AD, stroke, PD, HD, |[''C]PK11195, DAA | Antagonist
schizophrenia and PBR derivatives,
["*FIGE180
GABA Stroke ["'CY/['*F]Flumazenil | Antagonist
Dopaminergic PD, HD, tardive ['F]FDOPA, [''C] Vesicular storage
system dyskinesia, schizophrenia, | SCH23390 D, antagonist
autism, ADHD, drug ["'C]Raclopride, ['*I] | D, antagonist
abuse, depression IBZM
[M'C]PHNO D, agonist
['8F]FP-CIT, ['®F] Dopamine transporter
FE-PE2I
[*™T¢]TRODAT-1,
['ZI]PE2I,
['#1]-B-CIT
B-Amyloid AD, MCI [''C]PIB Staining agent
['®F]Florbetaben/
florbetapir
NMDA Schizophrenia ["C]GSK-931145 Antagonist
["*FIGE179
P-Glycoprotein Neurodegeneration ["'C]Verapamil, [''C] | Substrate
dLop,
["'C]metoclopramide
Cholinergic AD, PD, HD, [""CIMP4A Acetylcholinesterase
system schizophrenia ['*FIFEOBV inhibitor
VAChT ligand
['SF]FP-TZTP M, antagonist
['F]ASEM, [''C] a;-nAChR ligands
CHIBA-1001 oyP,-nAChHR ligands
["*F]A-85360, ['*F]
flubatine
mGlu-5 Depression, anxiety, [""C]ABP68S, ['*F] Antagonist
schizophrenia, PD PSS232
['*F]FPEB
VMAT2 PD, AD, HD [M'C]DTPZ, [**F]
AV-133
['SF]FP-DTBZ
Adenosine PD, AD, epilepsy, sleep, [""CIMPDX, [''C] A, antagonist
receptor neuroinflammation preladenant A,, antagonist
[MCITSMX A,, antagonist
P2X7 Neuroinflammation ['*F]INJ-64413739 Antagonist
Serotonergic Depression, anxiety, [""C]INI54173717 Serotonin transporter
system OCD, schizophrenia [""C]IDASB ligand
["CIWAY 100635, 5-HT,, antagonist
['SFIMPPF

[''C]Cimbi-36

5-HT,, agonist

(continued)
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Table 1.1 (continued)

Tracers (human

Target Related disease application) Binding mechanism
Norephedrine Depression [''cC] NE transporter ligand
Methylreboxetine

Opioid receptors

Analgesia, shock,

[''C]Carfentanil

Mu opioid receptor

appetite, thermoregulation antagonist
Monoamine Neurodegenerative and [''C]Deprenyl MAQO inhibitor
oxidase inflammatory processes
Energy Neurodegenerative and [YFIFDG Glucose consumption
inflammatory processes
Neuronal activity | Neurodegenerative and [*O]Water Blood flow
SV2A inflammatory processes ["'CI/['*FIUCB-J Synaptic density
Sigma AD [M'C]SA4503, ['*F] Ligands

AD fluspidine
Tau protein AD ["*F]THK523, ['*F] Staining agent
AV1541
Phosphodies- Depression [''C]Rolipram Breakdown of cAMP
terase-PDE-4 Neurodegeneration ["'C]IIMA107, [''C]

Phosphodies-
terase-PDE-10

Lu AE92680, ['*F]
MNI589

Demyelinization

Multiple sclerosis

[''"CIMeDAS

Staining agent

Cannabinoid R2

Neuroinflammation

[''CINE40

Antagonist

targets with low densities, high specific radioactivity is an important issue. In
addition some compounds (e.g., opioid ligands) are pharmacologically active
at very small concentrations, resulting in a need for ultra-high molar
activities.

LogP between 1.5 and 4 in order to passively cross the blood—brain barrier,
enabling high accumulation of target bound radioactivity.

High affinity (i.e., a low value for Kp, resulting in a high binding potential
B.../Kp) to achieve sufficient target-bound radioactivity and high specificity
so that the measured radioactive signal represents binding to the target of
interest.

Metabolic stability to ensure that measured radioactivity represents binding of
the administered tracer and not binding of a metabolite. Metabolites should not
enter the brain.

Low affinity for P-glycoprotein since P-glycoprotein can transport tracers out of
the brain resulting in low brain uptake.

Appropriate radionuclide: the radioactive half-life should match the rate of the
physiological process of interest.

So to summarize: Radioactivity accumulation should represent target density

or functionality, enabling the acquisition of quantitative data (Elsinga 2002).
Since the ideal tracer does not exist, PET data should be interpreted with care.
The following text discusses tracers for the human brain, arranged by molecu-

lar target.



1 Nuclear Medicine Imaging Tracers for Neurology 7

1.2 Glucose Consumption

The most generally applied tracer in PET is 2-['®F]fluoro-2-desoxyglucose (FDG).
In neurology, FDG is used for quantifying the regional cerebral glucose consump-
tion rate. In several neurological diseases (dementia, PD, AD, stroke), glucose con-
sumption is reduced in specific brain regions, indicating impaired functionality of
these areas. Many recent studies with FDG focus on quantification, differential
diagnosis, pattern recognition (Nobili et al. 2018; Kogan et al. 2019), and on dual
modality imaging (PET and MRI) aiming to increase its clinical utility. Numerous
articles including review papers on the use of FDG have appeared in the literature.
In many cases, FDG is applied in combination with tracers for other targets, as
described in Chap. 1 (Demetriades 2002; Mielke and Heis 1998). In addition, sev-
eral chapters in this volume will address the use of FDG-PET imaging.

1.3 Translocator Protein TSPO

Microglia act as resident macrophages in the brain governing the immune response.
Activated microglia cells are associated with neuroinflammation, which plays an
important role in the onset of neurodegenerative disease. TSPO, formerly known as
the peripheral benzodiazepine receptor (PBR), is overexpressed by activated
microglia (Politis et al. 2012). Several PET tracers for TSPO have been developed.
(R)-["'CIPKI11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-
isoquinoline carboxamide] was the first non-benzodiazepine and selective TSPO
ligand (Hashimoto et al. 1989). The compound has nanomolar affinity for TSPO
(Chauveau et al. 2008). This PET tracer is widely applied in TSPO PET imaging.
(R)-["'C]PK11195 has been used in many studies of the human CNS, including
studies in multiple sclerosis, Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis, Huntington’s disease, HIV, herpes encephalitis, and
schizophrenia. Although (R)-[''C]PK 11195 shows increased brain uptake in several
neurodegenerative disorders, the ligand has several disadvantages. The sensitivity is
low, and it is difficult to quantify small changes in TSPO expression. (R)-
[''CIPK11195 displays a low brain penetration, high plasma protein binding, and
high nonspecific binding because of its high lipophilicity. This results in a low
signal-to-noise ratio. The lack of sensitivity and specificity of (R)-["'C]PK11195
has hampered development of a standard method for quantitative data analysis. (R)-
[''C]PK 11195 PET has been used mainly for assessing microglia/macrophage acti-
vation in various neurodegenerative disorders, as an indication of neuronal and
tissue damage. A (metabolite-corrected) plasma input with a reversible two-tissue
compartment model was shown to be the best approach for analyzing (R)-
[''C]PK 11195 kinetics in brain. Because of the disadvantages of (R)-[''C]PK11195,
second- and third-generation TSPO tracers have been developed that should addi-
tionally distinguish TSPO polymorphism. Most of these new TSPO tracers are still
in the early stage of investigation. Preclinical research efforts are aimed to resolve
the following issues: (1) metabolic stability of the tracer, (2) adequate binding
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potential (BP), (3) appropriate kinetics of the ligand receptor interaction, and (4)
suitable quantification methods (Narayanaswami et al. 2018; Best et al. 2019).
Radioligands such as ["'C]PBR28, [''C]DAA1106, ['SFIFEDAA1106, and
['F]PBR111 have been developed to image TSPO in vivo (Dollé et al. 2009; de
Vries et al. 2006). Published data using the second-generation tracers [''C]DAA1106
and ["FJFEDAA 1106 in humans are promising, as they showed significantly higher
brain uptake than [''C]PK11195. Furthermore, increased [''C]DAA1106 binding
was reported in AD patients (Yasuno et al. 2008). A study using [''C]PBR28 found
focal increases of radiotracer binding in the brain of multiple sclerosis patients. In
addition, third-generation TSPO-tracers such as ['F]GE180 have been developed.
['®F]GE180 was studied in a head-to-head comparison with [!!C]PBR28 (Zanotti-
Fregonara et al. 2018). It was concluded that kinetic modeling for ['*F]GE180 was
more challenging than that for [''C]PBR28 because of poor brain penetration.

1.4 GABA Receptor

The development of epilepsy has been associated with the impairment of gamma-
aminobutyric acid (GABA) neurotransmission in the brain. The high-affinity ligand
[''C]flumazenil has been used widely for the investigation of GABA receptors
(Hammers 2004) and was labeled in various positions (Halldin et al. 1988).
[''C]Flumazenil is available commercially in the United States and has been approved
by the Food and Drug Administration (FDA) for use in various clinical trials. Using
[''C]flumazenil with PET in patients with acute hemispheric ischemic stroke, it was
shown that this tracer can distinguish between irreversibly damaged and viable neu-
ronal tissue during early onset of the disease. With [''C]flumazenil, a reduction in the
number of GABA/central benzodiazepine receptors was observed in the hippocam-
pus of patients with mesial temporal lobe epilepsy, caused by unilateral hippocampal
sclerosis. [''C]Flumazenil has also been used to estimate the synaptic density of ben-
zodiazepine receptors in persons who became blind. Compared with sighted con-
trols, a significantly lower benzodiazepine receptor density was reported in the
cerebellum of the blind subjects. In recent years, the '®F-analog ['®F]flumazenil has
become available (Hodolic et al. 2016). As flumazenil contains already a fluorine
atom, ['C]flumazenil and ["*F]flumazenil are chemically and pharmacologically
identical, but with '8F prolonged scanning protocols are possible. However, the syn-
thesis of ["®F]flumazenil proceeds with low radiochemical yields, which has ham-
pered widespread acceptance of ['®F]flumazenil (Zhang et al. 2019).

1.5 Dopaminergic System

The dopaminergic system plays a major role in neurological and psychiatric disor-
ders such as PD, Huntington’s disease, tardive dyskinesia, and schizophrenia. The
neurotransmitter dopamine plays an important role in the control of movement, cog-
nition, and emotion. Changed levels of dopamine also play a role in various
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neuropsychiatric disorders, such as autism, attention deficit hyperactivity disorder,
and drug abuse. Knowledge on altered dopamine synthesis and dopamine receptor
densities is important for understanding the mechanisms underlying the pathogen-
esis and therapy of these diseases (Elsinga et al. 2006).

PET and SPECT tracers have been developed to measure presynaptic dopamine
synthesis and transport. For measuring dopamine synthesis, the most commonly
used tracer is 6-['"*F]FDOPA, whereas for dopamine transport, several radiolabeled
tropane analogs are used in the clinic. Postsynaptically, dopamine exerts actions
through several dopamine receptor subtypes. The dopamine receptor family con-
sists of five subtypes D,;—Ds. In order to investigate the role of each receptor sub-
type, selective and high-affinity PET radioligands are required. To a lesser extent,
work has been published related to radioiodinated tracers for SPECT. For the dopa-
mine D, and D,/D; subtypes, the most commonly used ligands are [!'C]SCH23390
(Kosaka et al. 2010) and [''C]raclopride. ['®F]Fallypride is suitable for the investi-
gation of extrapyramidal D, receptors. For SPECT studies of D,/D; receptors,
['ZI]IBZM is commercially available. For the other subtypes, no suitable radioli-
gands have been developed (Tissingh et al. 1997).

6-['"F]Fluoro-L-DOPA (FDOPA) is used to evaluate the central dopaminergic
function of presynaptic neurons (Eidelberg et al. 1990; Sioka et al. 2010). Uptake of
FDOPA is an indicator of DOPA transport into the neurons, its decarboxylation by
amino acid decarboxylase (AADC) to 6-['®F]fluorodopamine, and the capacity for
dopamine storage, mainly in the striatum. 6-['F]Fluorodopamine can be converted
by catechol-O-methyltransferase (COMT) to 3-O-methyl-6-['3F]fluoro-L-DOPA,
which is uniformly distributed throughout the brain. 6-['8F]Fluorodopamine is also
metabolized via monoamine oxidase to 6-['®F]fluoro-3,4-dihydroxyphenylacetic
acid and subsequently by COMT to yield 6-['®F]fluorochomovanillic acid. In clini-
cal studies, AADC is commonly inhibited with carbidopa. As a result of this inhibi-
tion of peripheral AADC, the delivery of FDOPA to the brain is increased.

The first FDOPA PET study of human brain was reported in 1983, showing
increased accumulation of radioactivity in the striatum. In patients with established
bilateral PD, FDOPA PET showed influx constant reductions in the caudate, puta-
men, striatal nigra, and midbrain. The decline with age in FDOPA uptake was more
rapid in PD than in normal subjects. FDOPA PET is a good tool to monitor the
progression of PD and the impact of therapies. The availability of FDOPA has
improved since several robust nucleophilic [**F]fluorination methods have become
available (Zarrad et al. 2017; Tredwell et al. 2014).

1.5.1 Dopamine Transporter (DAT)

DAT is another important target for investigation of presynaptic dopaminergic func-
tion (Brooks 2010). The function of DAT is critical for the effects of antidepressant
drugs. The use of DAT ligands has a practical benefit. In 6-['"SFJFDOPA PET, for
example, medication with L-DOPA or other drugs is usually stopped before the PET
scan, and patients sometimes receive inhibitors for AADC and COMT to reduce the
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peripheral metabolism of the tracer. Usually, these pretreatments are not needed for
PET scans with DAT tracers. Of course, effects of other medication on DAT images
should be taken into account.

Several PET ligands of different chemical classes have been investigated to
study DAT. The first reported tracers were [''C]nomifensine and ['*F]GBR13119
followed by [''C]d-threo-methylphenidate. Later, tropane analogs have been devel-
oped. [''C]-B-CFT and ["'C]-B-CIT showed high affinity and were metabolically
stable. The major drawback of [''C]-p-CIT was its low selectivity toward DAT,
although ['I]-B-CIT (DaTSCAN, developed in the early 1990s, Innis et al. 1991)
is clinically being used as a SPECT tracer (Nocker et al. 2012). ['**I]-p-CIT is com-
mercially available. A significant correlation of the striatal uptake of ['*I]-B-CIT
with the severity and duration of PD has been reported. ['*I]-B-CIT scan is a useful
tool in daily clinical practice to confirm diagnosis of PD and to differentiate PD
from other diseases. ['’I]-B-CIT SPECT can contribute to treatment selection and
can be used to monitor the effectiveness of therapies. In later years, an ['®F]analog
of B-CIT has been developed. ['F]FP-CIT PET images of striatal uptake were
superior to those of ['?’[]-B-CIT obtained with SPECT. Plasma analysis using
[®F]FP-CIT indicated the presence of only one minor metabolite. ['F]FP-CIT
(Hong et al. 2018; Yoo et al. 2018) has become an equally useful tracer in clinical
practice as ['*I]-B-CIT (Sihver et al. 2007, see also Chap. 32 in this volume).

In order to circumvent the disadvantages, i.e., the limited availability, of
cyclotron-produced radionuclides, *“"Tc-labeled DAT tracers were developed
(Kung et al. 1996). These tracers contain neutral lipophilic complexes that contain
N-(alkylthiolate)tropane, aminobis(ethylthiolate), and a complex of *"Tc.
[*"Tc]TRODAT-1 belongs to this group (Chen et al. 2013). Using [**"Tc]TRODAT-1
scintigraphy, the loss of DAT in PD patients could be measured very accurately.
[*"Tc]TRODAT-1 has been successfully applied to correlate striatal DAT expres-
sion with therapeutic results in patients with attention deficit hyperactivity disorder
(ADHD). Patients with elevated striatal DAT responded better to methylphenidate
therapy than those with lower DAT levels. On the basis of these results, the possible
use of DAT measurements to predict a response to methylphenidate therapy was
suggested. As a follow-up result, the decrease of DAT levels in ADHD patients who
underwent methylphenidate therapy (measured with SPECT and [*™Tc]TRODAT-1)
correlated with an improvement in clinical symptoms. Caution has to be exercised
in the interpretation of [*"Tc]TRODAT-1 scans, since the uptake of this tracer is
affected by age and sex (Mozley et al. 2001). [*™"Tc]TRODAT-1 is still used on
regular basis, and several publications on PD in combination with this SPECT-tracer
have appeared.

Other tropane tracers have been used as a biomarker for the integrity of presyn-
aptic dopaminergic nerve cells in patients with movement disorders. '**I-labeled
N-(3-iodoprop-2E-enyl)-2-p-carbomethoxy-3p-(4-methylphenyl) nortropane, or
PEZ2I, has about tenfold higher in vitro selectivity for the DAT over the serotonin
transporter (SERT) compared to DaTSCAN (Ziebell 2011). Furthermore, [ I]PE2I
has faster kinetics than ['2*I]-p-CIT. Because of its rapid kinetics, ['>’I]PE2I binding
to the DAT can be quantified with kinetic or graphical analysis. Since ['*I]PE2I is a
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selective radioligand with optimal kinetic properties for accurate quantification of
DAT availability in the striatum, it is currently considered the best radioligand for
DAT imaging in the human brain with SPECT. More recently, ''C-methyl and
8F-fluoroethyl analogs of PE2I have been developed for human use. Studies in
nonhuman primates concluded that the kinetics and metabolic behavior of
['"*F]FE-PE2I were more favorable than those of [''C]PE2I. All studies indicated
highest tracer uptake in the striatum. [!!C]PE2I has been used in several human PET
studies comparing controls with myoclonic epilepsy or with addicted counterparts.
Application of various kinetic modeling procedures demonstrated a higher DAT
activity in controls. The radioactive half-life of ''C-PE2I may be too short for proper
estimation of the striatal distribution volume, and ['*F]FE-PE2I may be better in this
respect (Seki et al. 2010). Thus, ['®F]FE-PE2I is now more frequently used in human
PET studies (Jakobson Mo et al. 2018).

1.5.2 D, Receptor

Two PET ligands, [''CINNC112 and [''C]SCH23390, have been applied for human
studies of the dopamine D, receptor (Catafau et al. 2010; Farde et al. 1987). In a
PET study of D, receptor distribution in human brain, [''CINNC112 showed major
localization of radioactivity in the striatum and neocortex. The striatum/cerebellum
and neocortex/cerebellum ratios were 3.8 and 1.8, respectively. In a study in patients
with schizophrenia in comparison with normal subjects, it was shown that the bind-
ing potential of [''C]NNC112 was significantly elevated in the dorsolateral prefron-
tal cortex of patients with schizophrenia compared with healthy controls
(Abi-Dargham et al. 2002). In recent years no new studies have been published with
this radiotracer.

Other PET studies of D, receptor distribution in human brain employed
[M'C]SCH23390, which accumulated mainly in striatum. [''C]SCH23390 is currently
the most common PET-tracer for D, receptors. Striatum-to-cerebellum ratios and
kinetic constants are commonly used as parameters for quantitative imaging. PET
scans of schizophrenic patients were similar to those obtained in healthy control sub-
jects (Karlsson et al. 2002). With [''C]SCH23390, it was possible to assess dopamine
receptor occupancies in the striatum of patients treated with antipsychotics. Binding
potential of the D, receptors in the striatum and frontal cortex decreased with age.
There was no gender difference in D, binding potentials. In a study in patients with
Huntington’s disease, significant reductions of both the D, ([''C]SCH23390) and D,
(["'C]raclopride) binding potentials in the striatum were shown. A comparative study
using ['"C]NNC112 and [''C]SCH23390 was performed in patients with schizophre-
nia and age-matched controls. The D, binding potential of both tracers in the frontal
cortex, anterior cingulate, temporal cortex, and striatum of the schizophrenia patients
was significantly lower than those of controls (Kosaka et al. 2010). Recent publica-
tions with ["'C]SCH23390 are relating DR availability to pathology (Plavén-Sigray
et al. 2018; Stenkrona et al. 2019). Inconsistent results between groups have been
discussed in literature and might by due to demographic factors.
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1.5.3 D, Receptor

The D, receptor in the striatum has been one of the major targets of PET imaging.
[{!C]N-methylspiperone, an analog of butyrophenone neuroleptics, was one of the
first radioligands. Compared to [''C]N-methylspiperone which also has affinity for
the 5-HT, receptor, [''Clraclopride has a higher selectivity for D, receptors.
['!C]Raclopride binds reversibly to D, receptors, which is an ideal property for esti-
mation of B, (Sioka et al. 2010; Elsinga et al. 2006). For this reason, [''C]raclo-
pride has been widely used as a D, receptor ligand. Several lines of evidence have
indicated that [!!C]raclopride binding is reduced when the synaptic concentration of
endogenous dopamine is increased. For the measurement of extrastriatal D, recep-
tors that are expressed in much lower densities than D,R in the striatum, ligands
with very high affinity are required, in order to achieve sufficient binding to D,
receptor. For this purpose, ['!C]JFLB457 was developed (Narendran et al. 2011a).
Another high-affinity benzamide, ['®F]fallypride, was also developed for this pur-
pose. The longer half-life of this '®F-labeled ligand enabled quantification of D,
receptors in the caudate and putamen, using a prolonged scan protocol lasting 2 or
3 h (Millet et al. 2012). Both high-affinity tracers have also been used to measure
dopamine release after administration of amphetamine. It should be noted that com-
pounds within the benzamide class, such as raclopride and FLB457, do not only
bind to D, receptors but also bind to D; receptors. The development of a D2-selective
PET tracer has remained a challenge.

['ZI]IBZM (Kung et al. 1990) is a commercially available SPECT tracer for D,/
D; receptors. Comparative studies have reported a good correlation of the regional
cerebral distribution of ['2’I]IBZM and [!!C]raclopride. Calculated values for recep-
tor density or receptor occupancy of the two tracers show systematic differences,
which can be attributed to either the analysis method or the imaging modality
(Catafau et al. 2009). In recent years, ['*I]IBZM has not been reported anymore in
research articles.

1.5.4 D,/D; Agonists

The use of agonists as imaging tracers may offer several advantages because they
are supposed to bind only to the high-affinity state of the receptor, whereas antago-
nist tracers bind to both the high- and low-affinity binding sites. (—)-['!C]-N-
propylnorapomorphine  (Narendran et al. 2011b) and (+)-['!C]PHNO
(4-propyl-9-hydroxynaphthoxazine) (Willeit et al. 2006) are successful D, receptor
ligands. After exerting effects on second messenger systems, agonists will dissoci-
ate because of a conformational change of the receptor protein, back to the low-
affinity state. In comparison to antagonists, receptor binding of radiolabeled agonists
is expected to be more sensitive to changes in endogenous dopamine levels that
compete with injected radioligands for binding to the receptor. As has been dis-
cussed in the section on dopamine synthesis and transport, the level of extracellular
dopamine is an important parameter in neurological and psychiatric diseases.
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It was shown that the binding of (—)[!!C]-N-propylnorapomorphine was indeed
more sensitive to alterations in endogenous dopamine levels than [!'C]raclopride.
This agonist tracer has not been used anymore in recent years and has been replaced
by (+)-[!!'C]PHNO. Its structure is based on naphtoxazine. (+)-[''\C]PHNO has been
evaluated in several animal species and in humans. PHNO displayed higher binding
potential values compared to [''C]-N-propylnorapomorphine. The affinity of (+)-
[!C]JPHNO for Dj; receptors is higher than for D, receptors. (+)-['!C]JPHNO has
shown to be useful for evaluation of new drugs, estimation of receptor occupancy,
and assessment of levels of extracellular dopamine under pathological conditions
(Graff-Guerrero et al. 2008).

1.6 Beta-Amyloid Deposition

Many advances have been made to understand the neuropathological processes in
AD. The accumulation of beta-amyloid is a primary event leading to the formation
of neurofibrillary tangles and loss of synapses and neurons (Huang and Mucke 2012).
The first clinically useful tracer for beta-amyloid imaging was ''C-labeled Pittsburgh
compound B (PIB) (Klunk et al. 2004). PIB is an analog of thioflavin T that binds to
fibrillar beta-amyloid deposits with high sensitivity and specificity. PIB binds to both
extracellular amyloid plaques and vascular amyloid deposits. At tracer dosages, PIB
does not bind to neurofibrillary tangles or Lewy bodies (Zhang et al. 2012).

To improve the accessibility of beta-amyloid imaging, a second generation of
8F-amyloid tracers was developed. Four '®F-amyloid imaging agents are in advanced
stages of development: flutemetamol, a 3’-fluoro analog of PIB (Thurfjell et al.
2012); florbetapir, a styrylpyridine derivative (Doraiswamy et al. 2012); FDDNP, a
naphthol analog (Ossenkoppele et al. 2012); and florbetaben, a derivative of stilbene
(Barthel and Sabri 2011). With the exception of FDDNP, these tracers show compa-
rable results to PIB in clinical populations, although their nonspecific binding in
white matter appears to be higher.

2-(1-(6-[(2-['®F]Fluoroethyl)(methyl)amino]-2-naphthyl)ethylidene)malononi-
trile (["*)F]JFDDNP) showed higher binding in AD than in the healthy brain. Despite
its slow clearance kinetics, ['*F]JFDDNP is used for the detection of neurofibrillary
tangles and beta-amyloid plaques in patients with AD. In a comparative study
between [''C]PIB and ['®F]FDDNP, [''C]PIB showed higher binding in patients
with AD than in controls and patients with mild cognitive impairment (MCI).
['F]JFDDNP uptake was higher in brains of AD patients than in healthy controls,
but MCI could not be distinguished from AD or from controls. Differences in bind-
ing potentials between patients with AD, or MCI, and healthy controls were more
pronounced for PIB.

['8F]florbetaben, ['®F]florbetapir, and ['8F]flutemetamol are clinically approved.
They show very high sensitivity and specificity to detect beta-amyloid plaques. All
three PET tracers are licensed to pharmaceutical industry. The clinical value of
these tracers and the role of beta-amyloid in AD in particular are still under debate
(Sala-Llonch et al. 2019; Palermo et al. 2019; Paghera et al. 2019).
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With newly developed technology to get antibodies in the brain using transferrin
as a vector, specific bifunctional transferrin beta-amyloid '**I-labeled constructs
were developed that specifically target the soluble neurotoxic beta-amyloid aggre-
gates rather than insoluble fibrils. The expression of these soluble oligomers corre-
lates better with disease severity than the insoluble plaques. The method has not yet
been tested in humans (Sehlin and Syvénen 2019).

1.7 NMDA Receptor, Glycine Transport

Glycine acts as a neurotransmitter and is a modulator of the neuroexcitatory
activity of the N-methyl-p-aspartate (NMDA) receptor. Impaired function of the
NMDA receptor is responsible for cognitive dysfunction in patients suffering
from neuropsychiatric diseases, like schizophrenia (Zorumski and Izumi 2012).
Specific transporters are responsible for the uptake of glycine into the brain. The
high-affinity transporters, GlyT-1 and GlyT-2, terminate the activity of glycine
on the NMDA receptor in the synapse. GlyT-1 has been shown to maintain low
levels of glycine at the synapse. Inhibition of GlyT-1 would increase glycine
concentrations around the synapse, resulting in enhanced activity of the NMDA
receptor. Several imaging agents for GlyT-1, such as ['8F]-2,4-dichloro-N-((1-
(propylsulphonyl)-4-(6-fluoropyridine-2-yl)piperidine-4-yl)methyl)benzamide
(['*FIMK-6577 and [''C]GSK931145, have been developed. Although the tracer
is slowly metabolized, [''C]GSK931145 has been successfully evaluated for the
visualization of GlyT-1a in the human brain (Gunn et al. 2011). ["*F]GE-179
was developed as a next-generation NMDA antagonist and displayed a low
nanomolar affinity of 2.4 nM. The tracer showed favorable kinetic properties.
First human studies showed reproducible brain uptake (McGinnity et al. 2014).
With ['8F]GE-179 it was possible to measure increased uptake around epileptic
foci as a result of enhanced NMDA activation (McGinnity et al. 2015). A fully
automated GMP-compliant synthesis method has been published (Yue
et al. 2019).

1.8 P-Glycoprotein

Permeability of the blood—brain barrier (BBB) is an important factor in the mainte-
nance of cerebral homeostasis (Bartels 2011). The BBB only allows entry of lipo-
philic compounds with low molecular weights by passive diffusion. In addition, the
barrier contains transporters such as P-glycoprotein (P-gp), multidrug resistance-
associated protein (MRP), and organic anion-transporting polypeptides (OATPs).
The action of these carrier systems results in rapid efflux of harmful compounds
from the central nervous system (CNS). P-gp is the most studied efflux transporter.
PET studies related to P-gp were aimed at (1) direct evaluation of the effect of P-gp
modulators on the cerebral uptake of therapeutic drugs, (2) assessment of mecha-
nisms underlying drug resistance in epilepsy, (3) examination of the role of the BBB
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in the pathophysiology of neurodegenerative and affective disorders, and (4) explo-
ration of the relationship between polymorphisms of transporter genes and the phar-
macokinetics of test compounds within the CNS (Colabufo et al. 2010; Elsinga
et al. 2005).

Several radiotracers have been prepared to study P-glycoprotein function
in vivo with PET, whereas some other PET tracers unintendedly proved to be P-gp
substrates. These include alkaloids ([!!C]colchicine), anticancer drugs ([''C]dau-
norubicin, ["®F]paclitaxel, [!!C]tariquidar, [''C]Jelacridar), calcium antagonists
(["'C]-R-(+)-verapamil),  B-adrenoceptor  antagonists  ((S)-[!!C]carazolol,
['®F]-(S)-1"-fluorocarazolol, [!!C]carvedilol), serotonin 5-HT;, receptor antago-
nists (['8F]IMPPF), opioid receptor antagonists ([!'C]loperamide, [''C]carfent-
anil), and various %Cu-labeled copper complexes. (R)-[''C]verapamil is by far the
most investigated PET tracer for P-gp. The tracer has been administered to healthy
volunteers, and blocking studies with the immunosuppressant agent cyclosporin
A were carried out. The results indicated that P-gp activity at the human BBB can
be measured despite the high lipophilicity of (R)-[''C]verapamil. Using tracer
distribution volume as parameter, (R)-[''C]verapamil uptake in the midbrain was
significantly increased (18%) in Parkinson’s disease patients compared with
healthy controls. This suggests a decrease in P-gp activity at the BBB of PD
patients (Bartels et al. 2010). (R)-[!!C]Verapamil has been further investigated in
epileptic patients (Shin et al. 2016), and the effect of age on P-gp function/expres-
sion was investigated (Bauer et al. 2009). A drawback of [''C]verapamil is its
metabolic instability. Therefore deuterated ['®F]fluoroverapamil derivatives have
been synthesized and preclinically evaluated. ["*F]d7-verapamil was shown to be
the most stable verapamil derivative, maintaining its affinity for P-gp (Raaphorst
et al. 2018).

Loperamide is an opiate agonist and a substrate for P-gp at the
BBB. [''C]Loperamide ([''C]Lop) has been applied for studying P-gp function and
multidrug resistance in tumors and normal tissues noninvasively. However, demeth-
ylation of [''C]Lop to [N-methyl-''C]-N-desmethyl-loperamide ([''C]dLop) ham-
pers its use as PET tracer for P-gp function since [''C]dLop is also a good substrate
for P-gp. Therefore, [''C]dLop has been studied as a PET tracer for studying P-gp
function (Seneca et al. 2009). In a study with healthy volunteers, there was minimal
brain uptake of [''C]dLop. There were five hydrophilic radiometabolites. Because
of much lower nonspecific binding, [''C]dLop is preferred over [''C]verapamil.
Surprisingly, the usability of [''C]dLop has not been further investigated in
recent years.

During a search for '®F-labeled Pgp-substrates, ['SFIMC225 was identified as a
promising tracer with improved metabolic stability compared to [''C]verapamil and
an increased basal uptake, as it is a weak P-gp substrate. This may enable not only
assessment of decreased but also increased function/expression of P-glycoprotein
(Savolainen et al. 2017). Another weak P-gp substrate, [!!C]metoclopramide, has
already been evaluated in primates and humans. The relative importance of both the
influx hindrance and the efflux enhancement components of P-glycoprotein was
reported (Tournier et al. 2019).
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1.9 Cholinergic System

Acetylcholine is an endogenous neurotransmitter at cholinergic synapses and acts
on nicotinic and muscarinic receptors to mediate functions, such as attention, mem-
ory, cognition, and consciousness. Degeneration of cholinergic neurons has been
observed in several neurodegenerative diseases, such as AD and PD (van Waarde
etal. 2011). Acetylcholinesterase (AChE) is the enzyme that terminates cholinergic
actions by the rapid hydrolysis of acetylcholine to choline and acetate. AChE has
been a target for radioligand development as well as drug development because its
levels decrease in AD. Radiolabeled AChE inhibitors and substrates have been
developed for mapping AChE in vivo in brain. For measurements of AChE activity,
various labeled esters of 1-methyl-4-hydroxypiperidine have been developed (Irie
et al. 1996). N-["'C]methylpiperidin-4-yl acetate ([''C]MP4A) has a tertiary amine
structure that makes it lipophilic, and therefore, the tracer can passively cross the
BBB. [!!C]MP4A is specifically hydrolyzed by AChE. The hydrophilic metabolite,
N-["'C]methylpiperidinol (['"C]MP4OH), is trapped in the brain. ['!!CJMP4A has
been tested as PET tracer for the AChE activity in patients with AD and PD (Shinotoh
et al. 2004). For kinetic analysis, usually a three-compartment model is used to
measure AChE. The parameter k; reflecting hydrolysis of the tracer is altered in
disease. In a study of patients with AD, cortical regions displayed a reduced k; value
compared with controls. The reduction in k; was both regionally and individually
heterogeneous. In another study with patients with PD and ten Parkinson’s patients
with associated dementia (PDD) compared with age-matched controls, the cortical
ks values for [''CJMP4A were strongly reduced in PDD and slightly decreased in
PD compared with controls. The PDD group had lower parietal k; values for
[''C]MP4A than patients with Parkinson’s disease.

In contrast to AChE which acts both pre- and post-synaptically, the vesicular
acetylcholine transporter (VAChT) is a glycoprotein regulating the accumulation of
acetylcholine only into the presynaptic vesicles of cholinergic neurons. The cholin-
ergic innervation is decreased at early stages of AD and PD. Therefore, VAChT is
considered as a significant diagnostic target and an indicator for cholinergic neuro-
nal integrity and function. A large number of vesamicol derivatives have been tested
for their affinity to VAChT. ["*F]fluoroethyl benzovesamicol (FEOBV) emerged as
a promising PET tracer for VAChT imaging. The compound has high affinity for
VAChT and negligible affinity to sigma receptors. Most vesamicol derivatives have
affinity for both VAChT and sigma receptors. FEOBYV has been successfully used in
human PET studies. These can involve short static scans made 3 h post-injection,
with white matter as a reference region to estimate regional gray matter VAChT
binding (Petrou et al. 2014). Binding data with respect to AD and PD have been
published, showing a decreased uptake of ["|FIFEOBYV in gray matter in patients
compared to healthy control subjects (Aghourian et al. 2017).

Neuronal oyf; nicotinic cholinergic receptors (nAChRs) are part of a heteroge-
neous family of ligand-gated ion channels expressed in the central nervous system.
Their activation by acetylcholine and nicotine causes a rapid increase in cellular
permeability to ions, such as Na* and Ca®*. nAChR dysfunction is implicated in



1 Nuclear Medicine Imaging Tracers for Neurology 17

diseases such as schizophrenia, Huntington’s disease, AD, and PD. nAChRs also
play a significant role in nicotine addiction (Palma et al. 2012). 3-[2(S)-2-
Azetidinylmethoxy]pyridine (A-85380) is a highly potent and selective oy, nAChR
agonist with subnanomolar affinity. 6-["*F]Fluoro-A-85380 and 2-['*F]fluoro-
A-85380 have been studied for a,f3, nAChR imaging in the brain. A-85380 has also
been labeled as 5-['*)I]iodo-A-85380 for SPECT. These compounds displayed slow
kinetics. Next-generation PET tracers based on the (homo)epibatidine scaffold,
['8F]flubatine, ['*F]AZAN, and ["®F]XTRA, were reported to have faster kinetics
enabling scanning times of 90 min, or less. Most effort was put in the further devel-
opment of ['®F]flutabine as a clinical tool to study the human brain (Sabri et al.
2015; Sabri et al. 2018). Recently, ['*F]XTRA and ['®F]nifene have shown to be also
promising for human studies (Coughlin et al. 2018; Mukherjee et al. 2018). Kinetic
modeling and dosimetry studies have been published.

The o subtype of nAChR also plays a role in neurodegeneration. It has been
suggested that this subtype mediates the phosphorylation of tau protein and also
modulates immunological processes. The agonist 4-[''C]Methylphenyl-1,4-
diazabicyclo[3.2.2]nonane-4-carboxylate  ([''C]JCHIBA-1001), a 4-methyl-
substituted derivative of SSR180711, has been developed as a PET agent for the
study of a;-nAChR (Sakata et al. 2011) and was successfully evaluated to determine
receptor occupancy by tropisetron (Ishikawa et al. 2011). ['SFJASEM has been
investigated in patients with schizophrenia (Wong et al. 2018). The data suggest
decreased distribution volume in cingulate cortex, frontal cortex, and hippocampus
in schizophrenic patients compared to healthy controls.

Muscarinic cholinergic M, subtype-selective tracers have been developed since
this subtype is lost in the cerebral cortex in AD. M,-selective PET tracers would
offer the possibility to quantify such losses. Most tracers for cholinergic receptors
have not demonstrated subtype selectivity. Tracers that are subtype selective in vitro
typically do not cross the BBB. 3-((3-(3-Fluoropropyl)thio)-1,2,5-thiadiazol-4-yl)-
1,2,5,6-tetrahydro-1-methylpyridine (FP-TZTP), a muscarinic agonist based on a
series of non-fluorinated analogs, has been radiolabeled with '8F (['*F]FP-TZTP).
['8F]FP-TZTP was found to be a promising imaging agent for the M, receptor
(Podruchny et al. 2003). In human studies, an age-related increase in M, receptor
binding potential was found in healthy control subjects, using ["*F]FP-TZTP and
PET. No recent studies on M, receptors have been reported.

1.10 Metabotropic Glutamate-5 Receptor

Glutamate is an important excitatory neurotransmitter at neuronal synapses in the
brain. Glutamate produces its excitatory effects by acting on cell-surface ionotropic
or metabotropic glutamate receptors (mGluRs). Of the eight subtypes, mGIuRS is
usually found with moderate to high density in postsynaptic neurons of the frontal
cortex, caudate, putamen, nucleus accumbens, olfactory tubercle, and hippocam-
pus, whereas the density in the cerebellum is low (Homayoun and Moghaddam
2010). Dysfunction of mGIluRS is implicated in a variety of diseases of the CNS,
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including anxiety, depression, schizophrenia, PD, drug addiction, and withdrawal.
Radiolabeled analogs of 2-methyl-6-(phenylethynyl)-pyridine (MPEP) have been
developed as potent, highly selective PET tracers for mGIuRS. A drawback is their
high lipophilicity, lack of mGluR subtype selectivity, and unfavorable brain accu-
mulation kinetics. As a second-generation tracer for mGluRS, 3-(6-methyl-
pyridin-2-ylethynyl)-cyclohex-2-enone-O-[''C]-methyl-oxime ([''C]ABP688) was
evaluated. This tracer showed high and specific radioactivity uptake in rodent and
human brain (DeLorenzo et al. 2011). [''C]ABP688 has been used in several studies
to investigate changes of mGlu-5 binding in depression, alcohol abuse, schizophre-
nia, and epilepsy. Except from alcohol abuse, the distribution volume was reduced
in all cases. As a follow-up, 3-(pyridin-2-ylethynyl)-cyclohex-2-enone-O-(3-(2-
['F]fluoroethoxy)propyl-oxime (['*F]PSS232) was developed to enable prolonged
study protocols. First-in-man studies showed that its brain uptake corresponds to
known mGlu-5 distribution and can be quantified using a two-tissue compartment
model. Because reference tissue models are available, no arterial sampling is
needed, making this PET tracer very promising for clinical application (Warnock
et al. 2018).

['8F]FPEB was published at the same time and was synthesized by direct ['*F]flu-
orination and removal of the ylide functionality (Stephenson et al. 2015). ['*F]FPEB
proved to be a weak P-glycoprotein substrate (Jung et al. 2019). Using this tracer,
mGlu5 receptors were shown to be upregulated in PD patients compared to controls.
An upregulation of mGlu5 receptors was also detected in postcentral gyrus and
cerebellum of male subjects with autism. Other human studies with this tracer were
related to alcohol abuse and reward (Leurquin-Sterk et al. 2018).

1.11 Vesicular Monoamine Transporter

The vesicular monoamine transporter (VMAT?2) is present in monoaminergic neu-
rons of the brain and is responsible for transporting neurotransmitters (dopamine,
norepinephrine, and serotonin) into the neuron and storing them in vesicles for syn-
aptic release. Decreases in the VMAT?2 level are implicated in movement disorders,
such as PD, AD, and Huntington’s disease (Brooks et al. 2003). VMAT?2 has been
studied with PET wusing [''C]dihydrotetrabenazine (2-hydroxy-3-isobutyl-
9-[''C]methoxy-10-methoxy-1,2,3,4,6,7,-hexahydro-1 1bH-benzo[a]-quinolizine)
(["'C]DTBZ) (Koeppe et al. 1996). Binding of DTBZ to the vesicular monoamine
transporter is stereospecific. The (+)-enantiomer showed a high-affinity in vitro
binding to the VMAT?2 in rat striatum, whereas the (—)-enantiomer was inactive.
[''C]DTBZ has been applied for investigation of VMAT? in the human brain with
PET (Koeppe et al. 2008). In normal subjects and PD patients, a decrease of the
distribution volume of [''C]DTBZ was found in the putamen with increasing age.
Parkinson patients displayed a significant reduction in distribution volume in the
putamen and in the caudate nucleus. Later studies revealed a significant correlation
of [''C]DTBZ binding reduction with severity of the loss of motor functions. In
addition, it was shown that PET with (+)[''C]DTBZ can differentiate Lewy body
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dementia from AD. The trend that is observed for several targets in this chapter also
holds true for DTBZ, namely, that a promising '8F-analog has become available: the
['8F]fluoropropyl derivative ['*F]FP-DTBZ, also called ['*F]AV-133 (florbenazine).
Its synthesis was already published in 2010. Also for this PET tracer the (+)-enan-
tiomer proved to be active (Naganawa et al. 2018). A human study concerning
VMAT?2 in LBD and AD has been published, showing lowered VMAT?2 densities
(Villemagne et al. 2012). In recent years several studies were conducted in PD
patients, which also examined the link of PD with obstipation.

1.12 Adenosine Receptors

Adenosine is an endogenous modulator of a variety of physiological functions in the
CNS. During the last two decades, the receptor subtypes AR and A,,R have been
extensively studied. There is growing evidence that these adenosine receptor sub-
types could be promising therapeutic targets for neurodegenerative diseases such as
AD and PD and for other neurological pathologies such as epilepsy, ischemic brain
disorders, or sleep disorders.

Several PET tracers for the adenosine receptor have been reported (Ishiwata
et al. 2007). A, receptors have been studied using [l-methyl-''C]-8-
dicyclopropylmethyl-1-methyl-3-propylxanthine (MPDX). [''CIMPDX PET stud-
ies in healthy volunteers showed the highest binding potential in striatum followed
by the thalamus. Also, Logan plot analysis with arterial input was applied. The
distribution pattern of [!!C]MPDX in the brain was different from that of blood flow
as measured by [’O]water (Fukumitsu et al. 2008).

For A,, receptors, PET tracers for human use have also been developed. The
distribution in brain of ["'C]KF18446 is in agreement with the distribution of A,,R
known from postmortem studies in humans as well as in rodents and monkeys. A
two-tissue, three-compartment model was used to measure the distribution of A,4R
in the brain using metabolite-corrected arterial input function.

Furthermore, Mishina reported differences of A,,R and D,R expression in the
striata of drug-naive PD patients and those with dyskinesia and alterations of these
receptor systems after antiparkinsonian therapy. The binding potential of striatal
AnR was  measured using PET and [7-methyl-''C]-(E)-8-(3,4,5-
trimethoxystyryl)-1,3,7-trimethylxanthine ([''C]TMSX) in drug-naive patients with
PD, seven PD patients with mild dyskinesia, and six elderly control subjects
(Mishina et al. 2011). The binding potential of ['"C]TMSX was increased in the
putamen of PD patients with dyskinesia. A, R were asymmetrically downregulated
in the putamen in drug-naive patients with PD, and this asymmetric regulation of
A,,Rs seems to compensate for the decrease in dopamine. Their study also showed
that A,,Rs were increased in human putamen after antiparkinsonian therapy.
[!!C]Preladenant was developed as a PET tracer based on the non-xanthine
SCH442416 scaffold (Zhou et al. 2014). After successful evaluation in rats and
primates, human studies were conducted in healthy subjects (for initial validation)
and in PD patients for investigation of A,, receptor occupancy by the drug
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istradefylline (Ishibashi et al. 2018). Binding potentials were calculated from com-
puted k-values, derived from a SRTM2 fit.

A few ®F-tracers for A,4R have been developed, based on the non-xanthine scaf-
fold SCH442416 (Khanapur et al. 2017). Also, [*F]CPFPX was developed as a
radiofluorinated xanthine for the A; receptor (Nabbi-Schroeter et al. 2018). All
these '®F-fluorinated analogs look promising. ['*F]CPFPX has reached the stage of
human studies and was successfully employed to measure A, receptor occupancies
in the human brain (Elmenhorst et al. 2012).

1.13 Serotonergic System

Serotonin (5-hydroxytryptamine, 5-HT) has diverse physiological roles as a neu-
rotransmitter in the central nervous system. It is also a regulator of smooth muscle
function and platelet aggregation. The brain 5-HT system has been implicated in
several neuropsychiatric disorders, including major depression, anxiety, obsessive—
compulsive disorder, and schizophrenia.

1.13.1 Serotonin Transporter

The transmission of serotonin is controlled in part by the serotonin transporter
(SERT), which regulates the concentration of free and active 5-HT in the synaptic
cleft (Jayanthi and Ramamoorthy 2005). Trans-1,2,3,5,6,10-p-Hexahydro-6-[4-
(["'C]methylthio)phenyl[pyrrolo-[2,1-alisoquinoline ([''C]McN5652) binds selec-
tively to the SERT, and the regional distribution of its binding in humans correlates
well with the known distribution of the SERT. The drawback of [''C]McN5652 is its
high nonspecific binding and slow release from specific binding sites. [''C]-N,N-
Dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ([''C]DASB) was found to
be a promising tracer for SERT imaging (Houle et al. 2000). It displays nanomolar
affinity for SERT and has 1000-fold greater affinity for SERT over dopamine trans-
porter and norepinephrine transporter. Several human PET studies with [''C]DASB
have been performed (Turkheimer et al. 2012). The highest uptake was in the mid-
brain, thalamus, hypothalamus, and striatum, reaching a maximum at 30-40 min.
After blocking with citalopram, an 80% reduction in specific binding of [''C]DASB
in SERT-rich regions was measured. The metabolism of ['!C]DASB was rapid, with
about 50% of the intact compound remaining in plasma at 20 min after injection. No
difference in regional SERT binding potential was found between depressed patients
and normal subjects. However, in patients with major depression and with even
more negativistic dysfunctional attitudes, a higher SERT binding potential was
measured, which led to low extracellular 5-HT. It is concluded that [''"C]DASB is a
useful tool for antidepressant development, PET studies in obsessive—compulsive
disorder (Lee et al. 2018), and alcoholism.

4-[8F]F-ADAM  (N-((E)-4-['8F]Fluorobut-2-en-1-yl)-2p-carbomethoxy-3p-(4'-
fluoro phenyl)nortropane) turned out to be the most suitable SERT tracer out of a
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series of '8F-analogs. The tracer has been used in human studies. Most optimal scan-
ning time was 120-140 min after injection. Subjects with depression had lower
SERT availability than controls (Yeh et al. 2015).

1.13.2 5-HT Receptor Ligands

Effects of 5-HT are also mediated by receptors (5-HT, to 5-HT;). 5-HT,, receptors
function both as presynaptic autoreceptors in the raphe nuclei and as postsynaptic
receptors in the terminal fields. The 5-HT,, receptor is involved in modulation of
emotion and is implicated in the pathogenesis of anxiety, depression, hallucinogenic
behavior, motion sickness, dementia, schizophrenia, and eating disorders. Many
psychiatric drugs modulate serotonergic transmission or specifically target the
5-HT,, receptors. Various compounds have been developed for quantification of
these receptors (Passchier and van Waarde 2001). [""CJWAY 100635 was developed
as a highly selective, silent antagonist at both pre- and postsynaptic sites (Pike et al.
1995; Takano et al. 2011). Analogs of WAY 100635 bearing bulkier cycloalkylcar-
bonyl groups appear to be more resistant to amide hydrolysis. However, the
increased lipophilicity also reduces receptor affinity. Major problem of the WAY
family is the often troublesome radiochemical synthesis. In parallel to evaluation of
the WAY 100635 compound, a series of arylpiperazine benzamido derivatives was
synthesized that selectively bind to 5-HT, receptors. Studies showed that benzoyl
substituents affected the inhibition constant (K;) of the compound. A fluoro analog,
p-[""FIMPPF, displayed a high binding affinity to 5-HT),, receptors (Shiue et al.
1997; Aznavour and Zimmer 2007). A large number of human studies have been
performed both with ['"CJWAY 100635 and ['*F]MPPF under various pathophysio-
logical conditions. The number of PET studies with these tracers is continuously
growing, and no important improvements regarding tracer development have
been made.

The 5-HT,, receptor modulates cortical GABAergic, glutamatergic, and dopa-
minergic neurotransmission. An adequate balance of 5-HT,, receptor activity at
inhibitory and excitatory neurons is needed for normal neuronal functioning. The
5-HT,4 receptor has been implicated in various physiological functions and patho-
logical conditions, including schizophrenia, major depression, anxiety, and sleep
disorders. Various 5-HT,, receptor tracers have been proposed as PET radiophar-
maceutical for 5-HT,, receptor quantification, most notably [''C]N-methylspiperone,
['®F]altanserin, ['®F]setoperone, and [''CIMDL 100,907). [''CIMDL 100,907
appeared to be the most promising 5-HT,, tracer (Lundkvist et al. 1996) because of
its high brain uptake with high target-to-nontarget contrast, prototypical 5-HT,,
receptor selectivity, and absence of blood-brain barrier penetrating radiolabeled
metabolites interfering with 5-HT,, receptor quantification (Talbot et al. 2012).
Despite these results, [''C]MDL 100,907 has become obsolete. [!!C]Cimbi-36, the
first agonist PET tracer for 5-HT,, receptors, proved to be more useful for in vivo
measurements of serotonin release as its binding is more sensitive to endogenous
serotonin levels compared to antagonists. It should be noted that [''C]Cimbi-36 is
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metabolized by '"C-demethylation. The small molecule radiolabeled metabolites
display non-displaceable binding. [''C]Cimbi-36 has been applied in human PET
studies (da Cunha-Bang et al. 2019).

1.14 Nonadrenergic System

Many diseases affect the sympathetic nervous system, and imaging of pathological
changes of noradrenergic neurotransmission has been an important area of PET
research. Most postganglionic sympathetic neurons in the autonomic nervous sys-
tem release the neurotransmitter norepinephrine (NE), which stimulates adrenergic
receptors in various organs. The NET is a transmembrane protein located in the
adrenergic nerve terminals that is responsible for active reuptake (uptake 1) of NE
released from neurons. NE is stored in neuronal vesicles and is released upon stimu-
lation. Brain norepinephrine transporters (NETs) are involved in various neurologi-
cal and psychiatric disorders, including depression, attention deficit hyperactivity
disorder, drug addiction, and eating disorders. NETs are also the site of action of
many antidepressant drugs in the brain. Several radiolabeled NET inhibitors, for
example, [!'C]desipramine, have been tested as radiopharmaceuticals for PET
imaging, but they showed high nonspecific binding. Reboxetine ((RS)-2-[(RS)-2-
ethoxyphenoxy)benzyl]morpholine) is a specific NET inhibitor with a high affinity
and selectivity. It has been developed for the treatment of depressive illness. Among
the different reboxetine derivatives that have been tested, (S,S)-methylreboxetine is
considered a promising PET ligand. [''C]Methylreboxetine ([!!C]MRB,
[!C]MeNER) has been tested in man for the investigation of cocaine addiction
(Ding et al. 2010). The results suggest that (a) brain NET concentration declines
with age in healthy controls and (b) there is a significant upregulation of NET in
thalamus and dorsomedial thalamic nucleus in cocaine-addicted individuals. No
new PET tracers for NETs have been developed during the last few years.

1.15 Opioid Receptors

Opioids such as morphine are commonly used analgesics in clinical practice
(Waldhoer et al. 2004). Three opioid receptors that mediate opioid effects have been
identified: & (enkephalin preferring), k (dynorphin preferring), and p (morphine and
B-endorphin preferring). The opioid receptors play an important role in the regula-
tion of analgesia, shock, appetite, thermoregulation, and cardiovascular, mental, and
endocrine function. The p opioid receptors are the major receptors to mediate the
analgesic effects of opioids, although d and « receptors are also important in antino-
ciception. Opioids have been found to protect cells in the heart and brain from
ischemic injury via the & receptors. On the other hand, k antagonists prevent neuro-
degeneration. The k opioid receptors have been implicated in several brain disor-
ders, including drug abuse, epilepsy, Tourette’s syndrome, and AD. Diprenorphine
is a highly potent and non-subtype-selective opioid receptor antagonist with
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subnanomolar affinity (Koepp and Duncan 2000). Diprenorphine has been labeled
as [6-O-methyl-11Cl]diprenorphine ([''C]DPN). PET studies have been reported in
human brain using high and low specific activity [''C]DPN. After pretreatment with
1 mg/kg naloxone, the uptake of [''C]DPN was reduced to background levels
throughout the brain. [''C]DPN PET has been applied to study endogenous opiate
response to pain in patients with rheumatoid arthritis. There were significant
increases in [''C]DPN binding in association with a reduction in pain in most areas
of the brain. Also, decreases in [''C]DPN binding in various cortical areas and the
thalamus in patients with poststroke pain were found. These findings suggest that
there are substantial increases in opioid receptor occupancy by endogenous opioid
peptides during pain.

Research on k opioid receptors has shifted to the use of agonist tracers and
8F-analogs of antagonists (Li et al. 2018). [''C]LY2795050 has been applied as a
promising tracer for k opioid receptor imaging and has been tested in human studies
(test-retest reproducibility, blocking with LY2456302, receptor occupancy studies)
(Naganawa et al. 2016).

[''C]carfentanil is the tracer of choice for p opioid receptors at this moment. Its
first application goes back to the 1980s. The tracer is mainly taken up in cortical
regions and thalamus. Bound [''C]carfentanil can be displaced by other antagonists;
thus the tracer can be used to determine 1 opioid receptor occupancy and availabil-
ity. Also studies related to addiction and reward were successful (Nummenmaa
et al. 2018). As carfentanil is a very potent drug, the administered dose should be
kept very low (<1 pg), in order to avoid any pharmacological effect. For human PET
studies, [''C]carfentanil should be prepared with ultrahigh specific radioactivity.

1.16 Monoamine Oxidase

Monoamine oxidase (MAO) is a mitochondrial enzyme which inactivates dopa-
mine, noradrenaline, and serotonin in the brain. Two isoforms (A and B) of the
enzyme have been identified. MAO-A preferentially oxidizes serotonin and nor-
adrenaline, whereas MAO-B preferentially oxidizes phenethylamine. MAO-B is
highly abundant in astrocytes. Astrocyte activity and thus the activity of MAO-B are
upregulated in neuroinflammatory and neurodegenerative processes including PD
and AD. Dopamine is a substrate for both enzymes. MAO-A is mainly involved in
depression and anxiety, whereas MAO-B is involved in neurodegenerative diseases.

To measure MAO-A activity, the MAO-A inhibitor ['!C]harmine was developed
for PET studies of MAO-A distribution and concentration in the brain of patients
with psychiatric and neurological disorders or with neuroendocrine tumors. It was
shown that tumors in patients with midgut carcinoids and endocrine pancreatic
tumors could be visualized with [!!C]harmine (Sacher et al. 2012). [!!C]-L-deprenyl,
an irreversible inhibitor, has been developed for measurement of MAO-B activity
(Fowler et al. 1987). It was found that [''C]-L-deprenyl uptake was increased in hip-
pocampus, temporal lobes, and white matter of AD patients. The same has been
found in patients with amyotrophic lateral sclerosis (ALS). This increased uptake
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has been ascribed to an increased presence of activated astrocytes. Astrocytosis
measured with deuterated [''C]-L-deprenyl in MCI patients can be considered as an
early phenomenon of AD (Carter et al. 2012). A carbamate-based reversible MAO-B
inhibitor, [''C]SL251188, was synthesized by !'C-carbonylation and showed favor-
able results in nonhuman primates. First-in-man studies have been performed in
controls and patients with depression. Preclinical studies on '8F-fluorinated depre-
nyl analogs are also underway, but these compounds are degraded to brain-
penetrating radioactive metabolites, as is [''C]-L-deprenyl (Nag et al. 2016).

1.17 SV2A Receptors

In recent years, the synaptic vesicle glycoprotein 2A (SV2A) has been proposed as
indicator for the disruption and alteration of synapses, which is associated with
several brain diseases. The SV2A protein plays an important role in proper func-
tioning of the nervous system. A few PET tracers developed by UCB S.A. were used
in human studies: ["'C]JUCB-J and ["*F]UCB-H. Both compounds are very similar
but have either a ['8F]fluoro or a ['!C]methyl substituent on the pyridine ring. These
compounds bind with nanomolar affinity to the SV2A protein. The biodistribution
of the UCB-based PET tracers is uniform throughout the healthy brain. In 2015, a
first-in-man study with ['*FJUCB-H was published, and its biodistribution and radi-
ation dosimetry were determined (Bretin et al. 2015). Slightly later, also [''C]UCB-J
was tested in humans. A comparative study showed that [''C]JUCB-J has a higher
binding potential than ['*FJUCB-H (Mercier et al. 2017). Finally ['*F]JUCB-J, hav-
ing the same methyl group but a ¥F substitution on the trifluorophenyl ring, showed
the same excellent imaging properties than [''CJUCB-J and could benefit from the
longer half-life and lower positron energy of F. For both [''C] and ["*F]UCB-J,
there are still some radiochemical challenges: the reliability and yield of the synthe-
sis should be increased. One study was published in which 10 AD patients and 11
healthy controls were compared. Hippocampal SV2A binding was significantly
reduced in the AD brain (Chen et al. 2018).

1.18 Sigma Receptors

Sigma receptors are categorized in the sigma-1 and sigma-2 subtypes. Sigma-1
receptors are abundantly expressed in the brain. These receptors are located in the
cell membrane and the mitochondria-associated membrane of the endoplasmic
reticulum of neurons, where they are playing a role in regulation of ion channels and
neurotransmitter receptors. Therefore sigma-1 receptors are recognized as poten-
tially interesting targets for imaging and therapy in brain disorders. One of the first
sigma-1 PET tracers was [''C]SA4503, which could be easily prepared by
"C-methylation. [''C]SA4503 showed a decreased uptake in frontal, temporal, and
occipital lobes, cerebellum, and thalamus of patients with early AD (Mishina et al.
2008). The tracer has also been applied in PET studies to determine the receptor
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occupancy of atypical antipsychotics. More recently, (S)-['*F]fluspidine has been
investigated for imaging of sigma-1 receptors in humans (Ludwig et al. 2019). Its
radiosynthesis proceeds through a one-step '®F-fluorination, in high radiochemical
yields. This PET tracer displayed <5% plasma metabolites in healthy volunteers.
Application of (S)-['*F]fluspidine in patients with CNS disorders is still pending.

1.19 Tau Protein Deposition

Tau proteins stabilize microtubuli which play a fundamental role in neuronal activ-
ity. Similar to deposition of beta-amyloid, deposition of tau protein in the form of
neurofibrillary tangles is also associated with neurodegeneration and cognitive
impairment. These tangles already form before disease becomes manifest. Tau pro-
tein can aggregate in different ways, which affects the selectivity of PET tracers. Six
isoforms of tau occur, with either three (3R) or four repeats (4R) of the microtu-
bules. Different isoforms can cause the same tauopathy. Besides accumulation of
tau protein in AD brain and dementia variants, this accumulation is also observed in
other tauopathies including Pick’s disease, PSP, and chronic traumatic encephalopa-
thy. Several PET tracers have been developed for tau imaging. As both tau aggre-
gates and beta-amyloid contain beta sheets, it has been challenging to develop
selective PET tracers. Furthermore densities for tau aggregates are up to ten times
lower than for beta-amyloid. The so-called first-generation tau tracer ['SF]AV-1451
(T807; flortaucipir) shows about 25-fold affinity for tau over beta-amyloid and is
very specific and sensitive for the AD type of tau protein (Saint-Aubert et al. 2017).
This tracer is currently in use at many PET sites because of its favorable kinetics and
uptake pattern, which has been confirmed by Braak staining. ['*F]AV-1451 mainly
binds to paired helical filaments (PHF)-tau which are characteristic lesions in AD
brain. The ultimate value in clinical decision-making using ['*F]AV-1451 is still not
clear, more research is needed to validate ['*F]AV-1451 (Wang and Edison 2019).

Second-generation PET tau tracers have been developed aiming at a more accu-
rate staging of AD, less non-specific binding, and improvement of binding selectiv-
ity. The chemical structures are based on the same scaffolds as the first-generation
tracers, therefore their binding sites are similar, but they display less non-specific
binding. This generation includes ['|F]MK-6240, APN-1607(['"*F]PM-PBB3),
['"®F]GTP1, and ['®F]PI-2620. These tracers have been used in human PET studies
comparing healthy subjects with AD patients. Different PET tracers have affinity
for specific types of tau proteins. Binding differences between tau tracers could thus
be used for the differential diagnosis of tauopathies.

1.20 Phosphodiesterase

Phosphodiesterase 10A is an enzyme responsible for the breakdown of cAMP
and cGMP, which are important second messengers involved in the regulation of
cellular functions through effectors. PDE10A affects the signaling of G-coupled
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receptors, such as dopamine receptors, besides many other physiological pro-
cesses. Within the brain, PDE10A is mainly localized in striatum. PDE10A
inhibitors were developed as potential therapeutic agents in neurodegenerative
diseases. Based on these inhibitors, several tracers were prepared to study
PDE10A with PET. Some of these have reached the stage of human PET studies
and were used to quantify PDE10A in healthy subjects and in different patient
populations. Data acquired in healthy volunteers suggest that [''C]IMA107,
[1'C]Lu AE92686, and ['*F]MNI589 are the most promising tracers for PDE10A,
with the lowest nonspecific binding. Based on the application and logistics of the
scan, one might either prefer an ''C- or a '8F-tracer. The tracers showed a loss of
PDE10A activity in the caudate and putamen of patients with PD or schizophre-
nia (Boscutti et al. 2019).

PDE4 is another isozyme involved in the breakdown of cAMP and implied
in similar pathology as PDE10A. However, PDE4 is expressed in other parts of
the brain, such as cortical regions related to working memory. For imaging of
PDE4 with PET, (R)-[!'C]rolipram is the only radiotracer that has been used in
human studies. Originally the tracer was developed for cardiac studies, but
more recently it has also been applied for the brain. In a study where subjects
received SSRI medication and were scanned with ['!C]rolipram, it was found
that PDE4 inhibitors have antidepressant effects (Fujita et al. 2017). In another
PET study, loss of PDE4 in cortical areas was found in PD patients (Niccolini
etal. 2017).

1.21 P2X7 Receptor

The purinergic P2X7 receptor is an ion channel which is mainly present on activated
microglia and therefore an important target in neurodegeneration and neuroinflam-
mation, like TSPO. Stimulation of these receptors results in release of proinflamma-
tory cytokines. Several preclinical experiments have demonstrated the role of P2X7
receptors in amyloid plaque formation, cognition, neuron loss, and motor coordina-
tion. Antagonism of P2X7 is in many cases neuroprotective. PET imaging of P2X7
receptors can be of great value to obtain more knowledge on neurodegeneration and
to monitor treatment.

[M'C]INJ54173717 is a tracer showing nanomolar affinity for human P2X7 (K|
1.6 nM), good brain penetration, and low nonspecific binding in rats and primates.
The tracer has recently been applied to quantify P2X7 receptors in humans (Van
Weehaeghe et al. 2019). Distribution volumes show little variation in most cortical
regions and are higher in brainstem and striatum. No differences were found
between uptake in healthy controls and patients with PD. ['®F]JNJ64413739 has a
structure related to [''C]INJ54173717 but has a longer radioactive half-life and has
been investigated in healthy subjects (Koole et al. 2019). Future work should prove
the value of this tracer in PET studies on P2X7 receptors.
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1.22 (Re)Myelination

Demyelination is a major hallmark of multiple sclerosis (MS). Neuroinflammation
results in the formation of demyelinated lesions. In the pathogenesis of MS, failure
of compensatory mechanisms such as remyelination results in disability.
Remyelination seems to be a dynamic phenomenon in MS, which is not well under-
stood and is evident in white matter lesions. Some drugs have a positive impact on
remyelination. The development of remyelination strategies may be boosted by
PET with appropriate tracers to quantitatively assess remyelination. Beta amyloid
tracers have been tried for this purpose but are not sufficiently selective. ['!C]MeDAS,
a stilbene derivative, showed favorable binding characteristics for PET imaging of
myelin. Its binding was limited to white matter regions, and [''C]MeDAS showed
high sensitivity and specificity for myelin in animal models (de Paula Faria et al.
2014). The clinical value of ['"C]MeDAS needs to be determined.

1.23 Cannabinoid Receptors

Cannabinoid (CB) receptors are G-protein-coupled receptor proteins. There are two
subtypes CB1 and CB2. CB2 has mostly been studied with PET as this subtype is
involved in neuroinflammatory processes and activated microglia. It has been dem-
onstrated that CB2 is strongly overexpressed during neuroinflammation. The most
promising tracer for CB receptors that has been developed thus far is [''C]NE40.
This tracer has been applied in humans, and its biodistribution in AD patients and
healthy control subjects was compared (Ahmad et al. 2016). Full kinetic modeling
was performed. Surprisingly, the binding of ['!C]NE40 was significantly lower in
AD patients than in controls. The authors suggest that [''C]NE40 may have a higher
affinity/selectivity for CB1 than for CB2 receptors.

1.24 Conclusions

For a variety of neurotransmitter systems and transporters, useful PET and SPECT
tracers are currently available that can be applied to study neurologic and psychiat-
ric diseases in man. These tracers have proven to be able to image the molecular
target of interest. Some of them are labeled with *F and commercially available.
Increased availability of PET tracers will stimulate multicenter studies that may
demonstrate their value for clinical diagnosis and treatment evaluation. Since most
physiological processes interact, studies combining two or more CNS tracers will
become more common. Several examples of such studies have already been pub-
lished in the literature. Clinical applications of PET will be highlighted in more
detail in other chapters of this book.

Recent review papers have summarized the current status of tracers for neurode-
generative diseases (Tiepolt et al. 2019; Narayanaswami et al. 2018; Bauckneht
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Table 1.2 Overview of targets that are under investigation with respect to the development of

nuclear medicine tracers

Tracers (preclinical
Target Related disease application) Binding mechanism
Alpha-synuclein AD, PD No suitable tracers Staining agent
D; receptor Psychosis, Mixed D,/Ds tracers Antagonists
neurodegeneration

ROS Neuroinflammation | [''CJhydromethidine Trapping by

oxidation
Sphingosine MS [''C]TZ3321 CNS homeostasis
1-phophate receptor
Toll-like receptor Neuroinflammation | No tracers available Antagonists
Receptor for advanced | AD ["*FIRAGER Beta-amyloid
glycation end products transport
(RAGE)
NLRP3 AD No tracers available Antagonist
COX-1 Neuroinflammation | ['*F]PS2 Enzyme inhibitor
COX-2 Neuroinflammation | [''C]MCl1 Enzyme inhibitor

et al. 2019). Besides the processes mentioned in Sects. 1.2—1.23, several other tar-
gets in the brain may need to be investigated to gain understanding of the patho-
physiology of neurologic and psychiatric diseases. Table 1.2 summarizes some of
these targets. Several new tracers are in the preclinical stage of development. For the
sake of clarity, only a few tracers are listed in the table.

In conclusion, several tracers have been validated and can be applied in patient
studies in order to measure physiological processes quantitatively. Several new tar-
gets have also been discovered, and tracers for these targets are under development.
This demonstrates the huge interest in clinically validated tracers for PET imaging.
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Abstract

This chapter provides an overview of the basic principles of quantification of
cerebral PET studies using compartmental modelling. Both single- and two-
tissue compartment models are presented with emphasis on volume of distribu-
tion and non-displaceable binding potential as outcome measures. Next, both full
and simplified reference tissue models are introduced, obviating the need for
arterial cannulation. Finally, a brief overview is given of various parametric
methods enabling calculations at a voxel level.
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2.1 Introduction

Positron emission tomography (PET) is a tomographic imaging technique that is
characterized by its quantitative nature and high sensitivity. It allows for accurate
measurements of regional tissue radioactivity concentrations. In general, uptake of
radioactivity in tissue follows intravenous injection of minute (tracer) amounts of
molecules labelled with a positron emitter such as carbon-11 or fluorine-18. As tis-
sue uptake depends on physiological or molecular processes, PET images provide
in vivo information on these biological processes (Phelps 2004) rather than on anat-
omy. By using different tracers, different processes such as perfusion, metabolism,
pre- and postsynaptic receptor density and affinity, neurotransmitter release, enzyme
activity and drug delivery and uptake can be measured.

PET radioactivity measurements are based on coincidence detection, i.e. the
simultaneous detection of the two annihilation photons (travelling in opposite direc-
tions) resulting from a single positron emission. This so-called coincidence detec-
tion of the two annihilation photons means that the line of response along which the
original annihilation took place is known and therefore it is possible to perform
accurate correction for tissue attenuation along this line of response, e.g. by measur-
ing attenuation using an external positron source or by using density information
from an accompanying CT scan. In addition, PET has unrivalled sensitivity allow-
ing for measurements of tracer concentrations at a picomolar level. At present, PET
is the most selective and sensitive method for measuring molecular pathways and
interactions in vivo (Jones 1996).

In routine clinical (nuclear medicine) practice, such as in staging using ['"*F]FDG,
it is customary to inject the tracer, wait (in case of ["*F]FDG for 1 h) and acquire a
static scan of tracer uptake. In general, increased uptake is then associated with an
increase in the physiological or molecular process being monitored. Net uptake at a
certain time after injection, however, is a complex interplay between delivery,
uptake, retention and clearance. Therefore, increased uptake can also be due to
increased availability, i.e. either increased plasma concentration or increased flow,
or decreased clearance. From a single static scan, it is not possible to separate the
various components that contribute to the total signal, such as specific binding, non-
specific binding and free tracer in tissue. This clearly is illustrated in Fig. 2.1, where
an image of total uptake (left) is compared with that of specific binding (right).
Interpreting a change in uptake as being due to a change in specific signal rests on
the assumption that the other components contributing to the total signal do not
change. Although this may seem quite obvious, it is often forgotten in clinical
practice.

2.2  Principles of Modelling

As mentioned above, PET allows for accurate measurements of regional tissue
radioactivity concentrations. The purpose of a PET study, however, is to obtain
quantitative values of parameters that characterize a physiological, biochemical or



2 Tracer Kinetic Modelling 39

Fig.2.1 Uptake of the NK1 receptor ligand [''C]JR116301 in a normal volunteer with (leff) a total
uptake image (60-90 min after injection) and (right) a parametric image on non-displaceable bind-
ing potential (BPyp) representing specific signal only

Fig.2.2 Structure of a b
compartment models with
(a) no-, (b) one- and (c¢)

. Tissue
two-tissue compartments

Tissue

pharmacokinetic process. In other words, a tracer kinetic model, describing the pro-
cess under study, is required to translate the measurements of radioactivity into
quantitative values of these biological parameters. Although other models are avail-
able, in practice, all PET studies are analysed using compartment models (Gunn
et al. 2001). These compartments not necessarily are distinct anatomical compart-
ments but a convenient way to describe different kinetic “states” of the tracer. The
most common models are single- and two-tissue compartment models (Fig. 2.2).
The simplest model, a zero-tissue compartment model (Fig. 2.2a), can be used for
a blood volume tracer, such as [**0O]CO or ['!C]CO (Phelps et al. 1979a). CO binds
to red cells and remains in the vascular space (no tissue compartment). As CO binds
to red cells, a correction for the small- to large-vessel haematocrit ratio is needed to
obtain values of blood volume (Lammertsma et al. 1984). This clearly illustrates that
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one should always be aware of underlying assumptions in the model, as differences
between capillary and large-vessel haematocrit could easily be overlooked.

A more common model is the single-tissue compartment model (Fig. 2.2b). In
this case, the tracer is taken up by tissue, but it has either no further interactions
within tissue (e.g. ['**O]H,0; Frackowiak et al. 1980) or its kinetics are such that no
additional tissue compartments can be identified (e.g. [''C]flumazenil; Koeppe et al.
1991). In a two-tissue compartment model, a second tissue compartment is intro-
duced with additional rate constants to describe exchange of tracer between the two
tissue compartments (Huang et al. 1980). In general, the first compartment repre-
sents free and non-specifically bound tracer and the second compartment metabo-
lized (e.g. ['®F]FDG; Phelps et al. 1979b) or bound (e.g. [!!C]raclopride; Farde et al.
1989) tracer.

Since the introduction of quantitative PET, there has been confusion about the
nomenclature of both the models themselves and the parameters associated with
them. Initially, single-tissue compartment models were referred to as either single
(tissue) or two (blood and tissue) compartment models, and a similar problem
existed for two-tissue compartment models. Fortunately, in recent years, there is
consensus to classify models according to the number of tissue compartments
involved. More importantly, a multitude of symbols has been used to indicate
parameters associated with these models, in particular volume of distribution and
binding potential. To provide clarity, in 2007, consensus was reached about the
nomenclature related to reversibly bound ligands (Innis et al. 2007), and, wherever
possible, this nomenclature will be used here.

2.3  Single-Tissue Compartment Model

As mentioned above, the single-tissue compartment model (Fig. 2.3) can be used
for tracers where no second-tissue compartment is present or identifiable. The dif-
ferential equation describing this model is given by:

dC, (1)/dr =K, -C, (t)—k,-C, (1) 2.1

Fig. 2.3 Schematic Plasma Tissue
diagram of the general
single-tissue compartment
model. Cp and Cy represent
arterial plasma and tissue
concentrations, K, and k,
influx and efflux rate
constants, and Vg blood
volume within the

PET region
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where Ct and Cp are tissue and arterial plasma concentrations as function of time ¢
and K, and k, rate constants for influx into and efflux out of tissue, respectively. This
differential equation provides a mathematical description of the fact that the rate of
change of the concentration in tissue depends on the balance between total rate of
influx and total rate of efflux. The rate constant K; depends on two components
according to:

K =E-F 2.2)

where F is the first-pass extraction fraction and F blood flow (perfusion). It has been
well documented that E itself depends on F according to (Renkin 1959; Crone 1963):

E=1—exp(—PS/F) (2.3)
where PS represents the permeability surface area product. This equation illustrates
that E is constant for flow values that are small compared with PS. For higher flow
values, however, E starts to decrease, reflecting the phenomenon that the chance of
a molecule to cross the capillary wall reduces if flow increases.

An important parameter, independent of the actual model, is the volume of dis-

tribution Vy, which is the ratio of tissue and plasma concentrations under steady-
state conditions, i.e. at equilibrium when both concentrations are time independent:

V. =C,/C, 2.4)
At equilibrium, the single-tissue compartment model reduces to:
0=K,-C, -k, -C; (2.5)

Rearranging results in:

C,/C, =K, /k, (2.6)
In other words, for the single-tissue compartment model, it follows that:
V. =K, /k, 2.7)
The general solution of Eq. (2.1), with or without Eq. (2.7), is:
Cr(1)=K,-C, (1)®exp(—k, 1) =K, -C, (1) ®exp{—(K, /V;)-t}  (2.8)

where @ represents the convolution operation.
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In practice, a PET scanner does not only measure uptake in tissue but rather total
uptake in a region of interest (ROI) or voxel. In other words, intravascular activity
should also be taken into account. Consequently, the concentration measured by the
PET scanner is given by:

Copr (1) =(1-V,)-Cy (1) +V, - C, (1) 2.9

where Vg represents (fractional) blood volume, C,(7) represents arterial whole blood
concentration as function of time and Cr(¢) is given by Eq. (2.8).

2.4  Principles and Practice of Quantification

Equation (2.9) illustrates a couple of basic principles of quantification of PET stud-
ies. Firstly, it clearly illustrates that activity is delivered to tissue through the circu-
lation, and therefore, for full quantification, the arterial plasma concentration Cp(f)
needs to be measured as function of time. If the tracer is metabolized and (ideally)
its radioactive metabolites do not cross the blood-brain barrier, Cp(f) represents the
time-activity curve of parent tracer only. In other words, in general, the metabolite-
corrected arterial plasma curve is needed. Secondly, although Cp(?) provides input
to tissue, intravascular activity is a mixture of parent tracer, its radiolabelled metab-
olites and indeed tracer (or metabolites) bound to blood cells. Consequently, as a
second input function, the non-metabolite-corrected arterial whole blood curve
C(?) is needed. Thirdly, the convolution in Eq. (2.9) indicates that the tissue con-
centration Cr(f) does not depend on the instantaneous Cp(f) value but rather on its
history. This is just a mathematical representation of the fact that tissue clearance is
not instantaneous. Finally, apart from the measured variables Cp(f), Ca(f) and
Crer(?), Eq. (2.9) contains two tissue related unknown parameters K, and V. With
two unknown parameters, it will be clear that it is not possible to solve Eq. (2.9)
using a single (static) scan (i.e. Figure 2.1b cannot be derived from Fig. 2.1a without
additional information).

To derive quantitative values of both K; and V3, dynamic scanning is required. In
contrast to most diagnostic procedures where a static scan is acquired sometime
after tracer injection, in a dynamic scanning protocol, the patient is first positioned
within the scanner. With the patient in the scanner, the tracer is injected, and, at the
same time, a (dynamic) scan is started with an overall length that is dictated primar-
ily by the kinetics of the process/tracer under study. To date, most scanners acquire
data in list mode (each event has a time stamp), but during data processing, counts
are binned into successive time frames. Reconstruction of these frames provides a
series of images as function of time. From these frames, time-activity curves (i.e.
C1(7)) can be generated at either a voxel or a region of interest (ROI) level.

C(f) can be obtained by continuous arterial blood sampling (Boellaard et al.
2001) during scanning. Additional manual arterial blood samples are needed to
obtain Cp(f). These samples are needed to obtain plasma to whole blood ratios and
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parent fractions, both as function of time. Curves are fitted to both manual data sets,
and C,(¢) is multiplied with both curves, resulting in Cp(f). When all data are avail-
able, a voxel or ROI time-activity curve Cr(f) can be fitted for K, and Vr (or k,) using
the operational equation (Eq. 2.9), together with input functions Cp(f) and C,(7) and
standard non-linear regression techniques (Cunningham 1985).

2.5 An Example: Measurement of CBF Using ['°O]H,0

As mentioned earlier, the single-tissue compartment model can be used for tracers
that enter tissue but have no further interaction within that tissue. Such a tracer is
ideal for measuring tissue perfusion, and the best example is ['*O]H,0 (Lammertsma
et al. 1989). Water is freely diffusible in the brain, at least at normal and reduced
flow values. In addition, it is metabolically inert (no interaction in tissue). Being
freely diffusible means that the first-pass extraction fraction is 100%, i.e. E = 1.
From Eq. (2.2), it follows that K, = F and, from Eq. (2.7), k, = F/Vy where, in the
brain, F represents cerebral blood flow (CBF).

For perfusion, not the arterial plasma concentration is relevant but rather the
whole blood concentration. For water, this makes little difference, as concentrations
are nearly the same. In this case, V= C1/C, (at equilibrium), and it can be seen that
the volume of distribution is identical to the partition coefficient of water.

As the partition coefficient of water is close to 1 (Herscovitch and Raichle 1985;
Lammertsma et al. 1992), the venous concentration of ['?O]JH,O will be similar to
the tissue concentration, and it will not be possible to separate these from each
other. In other words, the fractional blood volume in Eq. (2.9) is essentially the
fractional arterial blood volume V,, which in the brain is in the order of about 1%
(except in the vicinity of large arteries). In practice, V, is left out of the equation, as
it reduces precision (one more parameter to fit) and it has been shown that fitted F
values are essentially the same when V, is included or excluded. Therefore, for
[OJH,0, Eq. (2.9) reduces to:

Coer (1) =C1 (1) = F-C, (t)®@exp{~(F /V; )1} (2.10)

A schematic diagram showing the principles of obtaining F and Vy from mea-
sured tissue and arterial blood time-activity curves is shown in Fig. 2.4.

2.6 Two-Tissue Compartment Model

The most widely used tracer kinetic model is the two-tissue compartment model
(Fig. 2.5), as it is used for both metabolism and neuroreceptor studies. The standard
(reversible) two-tissue compartment model contains four rate constants (K, to k),
but for tracers that are trapped in the final compartment, it reduces to an irreversible
two-tissue compartment model in which k, = 0.
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Fig. 2.4 Schematic diagram showing the fitting process, in this case, for flow F and volume of
distribution Vy using [POJH,O as tracer. The left panel shows arterial blood and whole brain
['*O]JH,0 time-activity curves. The tissue curve is then fitted using the arterial whole blood curve
as input function together with the model shown in the right upper panel. The best fit is shown in

the lower right panel. Note that additional parameters are needed to account for delay and disper-
sion of the arterial input function

It should be noted that, for receptor studies, the reversible two-tissue compart-
ment model is already based on an important assumption. In reality, the total tissue
signal obtained with a receptor ligand is the sum of three components: free ligand,
non-specifically bound ligand (e.g. protein binding) and specifically bound ligand.
The corresponding compartment model would require six rate constants, but deriv-
ing six parameter values from a single tissue time-activity curve essentially is
impossible. In addition, in nearly all cases, a third compartment is not identifiable.
Therefore, the assumption is made that kinetics of non-specific binding are fast
enough, so that free and non-specific compartments can be lumped together into a
single non-displaceable compartment, resulting in a model with four rate constants

(Fig. 2.5). Equation (2.9) also applies to this model, except that in this case Cr is
given by:

C(1)=Cy (1)+C5 (1) (2.11)

where Cyp and Cs represent concentrations in non-displaceable and specific com-
partments, respectively.

From Fig. 2.5, it can be seen that the underlying differential equations are
given by

dCyp (1)/dt = K,C, (1)~ kyCopy (1)~ K, Cop (1) + k,Cs (1) (2.12)
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Plasma Tissue

Fig. 2.5 Schematic diagram of the two-tissue compartment model. Cyp, Cyp and Cs represent arte-
rial plasma, non-displaceable tissue and specific tissue concentrations, K to k4 rate constants char-
acterizing transport between compartments, and Vj blood volume within the PET region

dCy (1) /dt = k,Cy, (1)~ k,Cs (1) 2.13)

Solving these differential equations results in a non-linear equation which, in
contrast to the single-tissue compartment model, contains two convolutions (Phelps
et al. 1979b). Again, as for the single-tissue compartment model, a voxel or ROI
time-activity curve Cr(#) can then be fitted for the four rate constants and Vy using
Eq. (2.9), combined with the operational equation derived from Egs. (2.12) and
(2.13). Fitting five parameters from a single time-activity curve, however, can be
quite challenging, especially in the presence of noise. As a result, precision of the
fitted rate constants (also called micro-parameters) can be quite poor. Fortunately,
from a biological point of view, macro-parameters (i.e. a combination of various
micro-parameters) are still of great interest. Especially for receptor studies, the most
interesting macro-parameter is the non-displaceable binding potential BPyp, which
is given by:

BP,, =k, /k, (2.14)

For a receptor, ligand, the rate constants k; and k, are related to pharmacological
parameters (Innis et al. 2007):

k3 :fND.kon.B

avail

(2.15)

k, =k, (2.16)

where fp represents the free fraction in the non-displaceable compartment and B,
the number of available receptors and k,, and k. represent the rate constants for
association and dissociation of the ligand-receptor complex, respectively.

The free fraction fyp is needed in Eq. (2.15), as free and non-specific compart-
ments had been lumped together. In addition, Eq. (2.15) contains B,,.;, as occupancy
by endogenous neurotransmitters cannot be excluded in an in vivo study. Only if
this level of occupancy is low, B,,; will approach the pharmacological parameter



46 A.A.Lammertsma

B ., the maximum number of receptors. Another pharmacological parameter is the
equilibrium dissociation constant K, (Innis et al. 2007):

K, =k

off

lk,, (2.17)
From Egs. (2.14-2.17), it follows that (Mintun et al. 1984):

BPy, = fap - B 1 K, (2.18)

Equation (2.18) illustrates that, if fyp is constant, BPyp depends on both number
of available receptors (B,y.;) and affinity of the ligand for the receptor (Kj). Often it
is assumed that a change in BPyp, reflects a change in receptor density. This assump-
tion, however, is only valid when there is independent evidence that affinity is
unchanged. B,,,; and K, can be measured separately, but this requires multiple scans
in the same subject using tracer injections with different specific activities.

For many tracers fitted BPyp cannot be used because of lack of precision. In that
case, data can be analysed using the volume of distribution Vr (Eq. 2.4). Clearly, the
relationship given in Eq. (2.7) does not hold for a two-tissue compartment model.
Again, however, it is possible to derive a relationship between V; and the various
rate constants by considering equilibrium conditions. In this case, both dCyp()/d?
and dCs(#)/dt can be set to 0. From Eq. (2.13), it follows that:

Cs=(ky/k,) - Cyp (2.19)

where Cs and Cyp are independent of time.
From Egs. (2.4), (2.11) and (2.19), it follows that:

Ve =(Cap +C5)/Cp =(1+ky 1 k) - Cp 1 G, (2.20)
Next, from Egs. (2.12) and (2.13), it follows that under equilibrium conditions:
Cw =(K,/K,)-C, (2.21)
Finally, combining Egs. (2.14), (2.20) and (2.21) results in:
Vo =K, Ik,-(1+k,/ k) =K, /k,-(1+BPy,) (2.22)
Although in practice it is never used, it is of interest to consider non-specific
binding as a separate kinetic process with rate constants ks and ks. Analogues to the

derivation of Eq. (2.22), it can be shown that the volume of distribution V7 is then
given by:

Ve =K, /ky- (1+BPy, +k / k) (2.23)
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Equation (2.23) clearly shows that Vy represents the total tissue signal, i.e. the
sum of specific and non-specific signals. The large discrepancy between summed
and parametric BPyp images in Fig. 2.1 can be explained by a relatively large non-
specific signal. Note, however, that a V; image is only “contaminated” by non-
specific binding, whilst a summed image also suffers from flow and plasma clearance
effects.

Vr can be used as outcome measure of receptors studies, provided the signal is
dominated by specific binding. A classical example is [''C]flumazenil, where the
non-specific binding is approximately 10% (Koeppe et al. 1991).

If a direct measurement of BPyp, cannot be used due to lack of precision, it is still
possible to extract it indirectly from Vi provided there is a region in the brain that is
devoid of the receptor under study, a so-called reference region. In that case, Vr for
the target region is given by Eq. (2.22) and the volume of distribution V" of the
reference region by Eq. (2.7):

V. =K, Ik, (2.24)

If the level of non-specific binding is constant across the brain, the following
equality holds:

K, /k =K Ik, (2.25)

By combining Egs. (2.22), (2.24) and (2.25), it follows that (Lammertsma
et al. 1996):

BP, =V, /(K, 1 k) ~1=V, /V; -1 (2.26)

2.7 Reference Tissue Models

Using Eq. (2.26), BPyp can still be obtained even if direct fitting results in unstable
estimates. The main disadvantage of the method represented by this equation is the
fact that it still requires a metabolite-corrected arterial plasma input function to
estimate Vr and V. To overcome this problem, the so-called reference tissue mod-
els have been developed that use the time-activity curve of the reference region (i.e.
a region devoid of receptors) as an indirect input function, obviating the need for
arterial cannulation. If such a reference tissue exists, it is also possible to derive
BPyp directly without arterial sampling. Figure 2.6 shows the (full) reference tissue
model. The corresponding differential equations are:

dCyp (1)/d1 = K,C, (1)~ kyCop (1) = ks Cop () + K, Cs (1) (2.27)

dC, (1) /dt = k,Cyp (1) - k,Cy (1) (2.28)
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Fig. 2.6 Schematic Plasma Tissue

diagram of the full-
reference tissue model. K
Cyp and Cs represent 3
non-displaceable and T.arget
specific concentrations in Tissue
the target tissue, and Cy
represents the
concentration in the
reference tissue
Reference
Tissue
dCy (¢)/dr =K ,C, (1)~ k,Cy (1) (2.29)

where Cy(f) represents the tissue concentration as function of time in the refer-
ence tissue.

Solving Egs. (2.27)—(2.29) results in an equation in which C+(¢) is expressed as
function of Cy(#) and the parameters R, (=K,/K,"), k,, k3 and BPyp (Lammertsma
et al. 1996). As the target tissue curve is now expressed as a function of the refer-
ence tissue curve rather than the plasma input function, K, cannot be estimated but
only the ratio R), i.e. K| target tissue relative to K,” reference tissue. These K, values
do not have to be the same, and so the model does take into account differences in
delivery between target and reference tissues.

The full-reference tissue model essentially combines a two-tissue compartment
model for the target region with a single-tissue compartment model (no receptors)
for the reference tissue. Although this gives full account of all kinetic parameters, in
practice fits converge slowly mainly because of high correlation between k, and k.
To obtain more stable fits, the model was further simplified by reducing the number
of parameters from four to three (Lammertsma and Hume 1996). This was achieved
by assuming that the exchange between non-displaceable and specific compart-
ments is relatively fast, i.e. by treating the target tissue also as a single-tissue com-
partment with an apparent rate of clearance that is reduced by a factor 1 + BPyp. The
resulting simplified reference tissue model (SRTM) is shown in Fig. 2.7, and its
kinetics can be described by the following differential equations:

dC, (1)/d1 = K,Cy (1)~ k,Cy (1) /(14 BPy) (2.30)

dC, (1)/dr = K,C, (1)~ k,Cy (1) 231)

Solving Eqgs. (2.30) and (2.31) again results in an equation in which Cx(?) is
expressed as function of Cy(?), in this case, with three parameters R, k, and BPyp
(Lammertsma and Hume 1996):
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Fig. 2.7 Schematic Plasma Tissue

diagram of the simplified

reference tissue model. Cr

and Cy represent total

concentrations in target

and reference tissues, Target

respectively Tissue
Reference

Tissue

Cr(1)=R -y (1) + {k2 — R, -k, /(14 BP )} Cr (1)@ exp {—k2 -1/ (1+BPy, )} (2.32)

The main differences with the full-reference tissue model are (1) reduction of
the number of parameters from four to three and (2) reduction of the number of
convolutions from two to one. Although SRTM assumes fast exchange between
non-displaceable and specific compartments, this assumption does not seem to
be too critical (Buchert and Thiele 2008). Indeed, originally SRTM was devel-
oped and validated for analysing [''C] raclopride kinetics, which are best
described by two-tissue compartments. Nevertheless, BPyp values obtained using
SRTM and full-reference tissue models were identical (Lammertsma and
Hume 1996).

Although reference tissue models are convenient, as they do not require arterial
cannulation and labour-intensive measurements of radiolabelled plasma metabo-
lites, it is important to stress that, for new tracers and applications, use of any refer-
ence tissue model should be validated against the most appropriate plasma input
model for that tracer.

2.8 Parametric Methods

In general, the model equations presented so far are used to fit ROI data, i.e. time-
activity curves generated for specific (predefined) ROIs. Ideally, fits should be per-
formed at the voxel level, thereby generating images of the parameters of interest
(the so-called parametric images). Although, in theory, it is possible to fit individual
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voxel data, in practice, this is not feasible. Firstly, non-linear regression is too slow
to generate parametric images within a reasonable amount of time. Secondly, non-
linear regression is sensitive to noise, resulting in noisy images with outliers.

To generate parametric images, some form of linearization of the model equa-
tions is required. Several methods have been developed using either a graphical
approach or multilinear regression analysis (Patlak et al. 1983; Blomqvist 1984;
Logan et al. 1990, 1996; Ichise et al. 2002, 2003). These methods involve some sort
of transformation of variables or direct integration of differential equations. As
such, they are “approximations” of the full compartmental equations, and a given
linearized model should be validated against the full non-linear model.

An interesting, more general, approach is the basis function method, which in
theory can be used for all compartment models. The method is best known for its
implementation of SRTM, also known as RPM (Gunn et al. 1997). Equation (2.32)
contains both a linear and a convolution term. The basic idea of the basis function
method is to pre-calculate the convolution for a set of “basis” functions that cover
the entire range of physiological values. For a pre-calculated convolution, Eq. (2.32)
becomes linear, and the coefficients can be obtained by linear regression. This pro-
cess is repeated for each basis function, and the linear fit with the lowest residual
sum of squares is kept. From the coefficients of this fit, the actual model parameters
are calculated.

Using SRTM at a voxel level (i.e. RPM) provides the opportunity to reduce the
number of parameters even further (Wu and Carson 2002), as R, and k, are obtained
for all voxels. Given R, and k», k,” can be calculated using Eq. (2.25). However, k,’
should be a constant as it refers to the same reference region. This can be utilized by
running RPM twice. After the first run, k,” is calculated for each voxel (from R, and
k,), and in the second run, k,” is fixed to the median value (not mean, as this would
be sensitive to outliers) from the first run, effectively reducing the number of param-
eters to two.

Parametric methods should be validated against their full compartmental coun-
terparts. For each tracer, several parametric methods should be investigated, as no
single method is ideal for all applications. In other words, for each new ligand, the
optimal parametric method should be determined separately.

2.9 Conclusions

Quantitative analysis of PET data requires dynamic scanning and measurements of
both arterial whole blood and metabolite-corrected plasma input functions. In case
of neuroreceptor studies, reference tissue models can be used provided a region
devoid of these receptors is available. To fully utilize the spatial resolution of the
scanner, parametric methods should be used. The optimal model should, however,
be determined for each new ligand, and simplifications such as reference tissue
models and parametric methods should always be validated.
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Abstract

An absolute cerebral blood flow (CBF) measurement is necessary for detection
of diffuse cerebral involvement and helpful for management of patients. Of the
various measurement methods that have been employed in single photon emis-
sion computed tomography (SPECT), a noninvasive method using radionuclide
angiography of *™Tc-labeled tracers has been widely used because of its sim-
plicity without the need for any blood sampling. Brain perfusion index (BPI) is
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determined by graphical analysis of time activity curves for aortic arch and brain
within 30 s immediately after bolus injection of the tracer. This BPI is converted
to global CBF using a regression line equation between BPI and global CBF
measured using **Xe-SPECT. Then, regional CBF is calculated from global
CBF, a linearization correction factor, and global mean SPECT counts. Obtained
CBEF values show good correlations with those obtained by other invasive meth-
ods with arterial blood sampling. This noninvasive technique has been applied to
various neuropsychiatric diseases including cerebrovascular diseases, neurode-
generative disorders, and mood disorders for the early and differential diagnosis
and objective evaluation of therapeutic effects.

3.1 Introduction

Quantitative evaluation of cerebral blood flow (CBF) allows assessment of diffuse
cerebral involvement and enables longitudinal studies. Absolute CBF measure-
ments hold promise for optimal patient selection and management, especially in
cerebrovascular disease. They may also provide added value in larger patient popu-
lations with various neuropsychiatric disorders.

Various approaches have been described for the absolute CBF quantification
by means of single photon emission computed tomography (SPECT). The earliest
method applied '*3Xe, which was either inhaled or injected intravenously. Following
equilibrium, the regional CBF (rCBF) is calculated from regional clearance of the
inert 33Xe gas washout by means of a pixel-based exponential fit derived from
dynamic SPECT data sets. The blood time-activity curve is noninvasively estimated
from an end-tidal air activity curve. Despite high precision this method suffers from
several disadvantages mainly due to low spatial resolution related to the low gamma
energy of '33Xe and instrumentation applied. In addition, there is a need for dedicated,
sensitive instrumentation with fast dynamic SPECT capabilities. Instrumentation, in
addition involves a xenon trap and room ventilation, and a cooperative patient will-
ing and able to breathe through a tightly fitting breathing mask for the duration of
the study. '%*Xe SPECT studies have markedly decreased in number due to these
disadvantages and have been replaced by methods employing either N-isopropyl-
(iodine-123)-p-iodoamphetamine (*>)I-IMP) or the technetium-99 m labeled prod-
ucts ethyl cysteinate dimer (*"Tc-ECD) and hexamethylpropylene amine oxime
(*"Tc-HMPAO). However, most of these approaches require some form of arterial
blood sampling. Although several investigators have proposed one-point sampling
of arterial blood instead of invasive continuous or interval arterial sampling to esti-
mate the integral of the input function for quantification of CBF (lida et al. 1994),
even single-point sampling is difficult in daily clinical practice. For clinical appli-
cations, noninvasive SPECT techniques without any blood sampling are desirable.

Two decades ago the author developed a noninvasive method for CBF quan-
tification using radionuclide angiography of *™Tc-labeled tracers (Matsuda et al.



3 Quantification in Brain SPECT: Noninvasive Cerebral Blood Flow Measurements... 55

1992, 1993, 1995). This simple method without the need for any blood sampling has
been used worldwide and was listed as a method for absolute CBF quantification
in the guidelines and recommendations for perfusion imaging in cerebral ischemia
from the council on cerebrovascular radiology of the American Heart Association
(Latchaw et al. 2003). This article reviews the methodology and clinical applica-
tions of this noninvasive method.

3.2 Method
3.2.1 Theory of Graphical Analysis

The theoretical model of blood-brain exchange was employed to measure CBF
using *"Tc-labeled tracers. In the unidirectional transfer process across the blood-
brain barrier, brain radioactivity as a function of time, B(¥), is expressed as follows:

B(t):kujA(r)dr+Vn-A(t) (3.1)

0

where A(?) is the arterial activity as a function of measurement time (), 7 is time,
k, 1s the unidirectional influx rate constant, and V,, is the initial distribution volume
for the tracer which is the space of the exchangeable region plus the plasma space.
Dividing Eq. (3.1) by A(?) yields

+V, 3.2)

The graphical approach by plotting B(¢)/A() versus IA(T )/ A(t) from each

group of data gives an unidirectional influx rate of ku as :1 slope of a straight line
and Vn as the ordinate intercept of this line. This graphical Patlak-Gjedde analysis
(Patlak et al. 1983; Patlak and Blasberg 1985) does not require the determination of
a specific compartment model.

3.2.2 Brain Perfusion Index (BPI)

In this method, the passage through the thoracic aorta to the brain is monitored after
bolus injection of a *™Tc-labled tracer into the right brachial vein using a large-field
gamma-camera. Following the injection, a sequence of 100 frames at 1-s intervals
is started in a 128 x 128 format, with the patient lying in the supine position, facing
the detector (Fig. 3.1).
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Fig. 3.1 Radionuclide angiography of *"Tc-ECD. The passage through the thoracic aorta to the
brain is monitored using a large-field gamma camera. A sequence of 100 frames at 1 s intervals is
acquired. Each sequential image of three merged frames is shown

Regions of interest (ROI) are hand-drawn over the aortic arch (ROI,,) and bilat-
eral brain hemispheres (ROI,;,). The size of the ROIs is approximately 55 pixels
and 300 pixels for ROI,, and ROI,,,;,, respectively. The activity of the aortic arch
is monitored instead of the arterial activity to minimize the invasiveness of the pro-
cedure without the need for arterial blood sampling. Time-activity curves for these
ROIs are processed with a five-point smoothing technique. Then, the time delay of
the brain activity to the aortic arch activity is corrected by shifting the brain activity
curve to the left to match the peak times or ascending parts of both curves. A fully
automatic setting program for an ascending aorta ROI was proposed to improve the
throughput, repeatability, and reproducibility (Masunaga et al. 2014).

In this graphical approach, a linear phase is discernible during an 8—12 s period
within the first 30 s after tracer injection, indicating the presence of unidirectional
tracer uptake (Fig. 3.2). Thereafter the tracer transfer into brain is less than expected
if transport into the brain tissue continues to be unidirectional. The divergence of
expected and measured activities reflects both the loss of radioactivity from the brain
to blood and the rapid decrease of the lipophilic content of the tracer in the blood.

Graphically obtained slope (k,) according to Eq. (3.2) depends on the size ratio
of ROI,,,;, to ROL,,,. To eliminate this dependence, a brain perfusion index (BPI) is
developed as follows, where the size ratio of ROI,,;, to ROI,, is set to 10 for stan-
dardization. This standardization makes it possible to compare BPI among subjects.

10#(size of ROI,,)
(size of ROI )

BPI =100 *k, * (3.3)

Direct comparison of BPI for "Tc-HMPAO with that for **Tc-ECD in the
same individuals demonstrated a highly significant correlation between these
two tracers but approximately 7% lower BPI values for **Tc-ECD than those for
PmTc-HMPAO (Matsuda et al. 1995). This lower BPI might be due to low first-pass
brain extraction for *™Tc-ECD as compared with that for **Tc-HMPAO. Friberg
et al. (1994) reported an average first-pass extraction ratio of 0.60 for *"Tc-ECD
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Fig. 3.2 Determination of brain perfusion index. Regions of interest (ROI) are hand-drawn over
the aortic arch and bilateral brain hemispheres. Patlak-Gjedde graphical analysis of time activity
curves for aorta and brain provides a linear phase during an 8—12 s period within the first 30 s after
tracer injection. Brain perfusion index is calculated from graphically obtained slope (k,) after cor-
rection of size of ROIs for brain hemisphere and aortic arch

when CBF was 46 ml/100 g/min, while Andersen et al. (1988) reported a higher
average first-pass brain extraction ratio of 0.72 for *"Tc-HMPAO when CBF was
59 ml/100 g/min. BPI represents the unidirectional influx rate from blood to brain,
which is proportional to a product of CBF and the first-pass extraction ratio. Thus
BPI depends on the first-pass extraction ratio for the used tracer under constant
CBF. However, differences between “"Tc-ECD BPI and *"Tc-HMPAO BPI were
smaller than were expected from the difference in the first-pass extraction ratios,
possibly attributable to a difference in radiochemical purity between the two tracers.
The radiochemical purity of *"Tc-HMPAO is somewhat lower than that of *™Tc-
ECD. The lower the radiochemical purity, the smaller BPI becomes.

Reproducibility for calculation of BPI was evaluated. To determine the influence
of ROI selection and curve shift for correction of time delay of brain and aortic arch
curves independent observers conducted a repeat analysis of the same radionuclide
angiograms. Intra-observer coefficients of variation ranged from 4.0% (Matsuda
et al. 1992) to 5.3, 5.6, and 7.9% (Van Laere et al. 1999). Interobserver coefficient
of variation was reported to be 4.8% (Zaknun et al. 2008). Automated setting of
ROI,,, can improve both intra- and interobserver reproducibility particularly for
naive observers (Groiselle et al. 2000).
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Attention must be paid to dead-time count loss by gamma camera during radio-
nuclide angiography. The brain activity curve is inevitably delayed in relation to the
aortic arch activity curve. The total count rate is higher during estimation of activity
in the aortic arch than during estimation of cerebral activity. Most of the injected
tracer is present in the field soon after the injection, and thus counting efficiency
is lower during the estimation of aortic arch activity. Arterial input appears to be
underestimated due to excessive count loss, resulting in overestimation of BPI by
over 3% when injecting 370 MBq of *"Tc-labeled tracers (Inoue et al. 1997).

3.2.3 Comparison of BPl and CBF Values Measured by Other
Invasive Methods

Hemispheric BPI values for "Tc-HMPAO and CBF values obtained from dynamic
SPECT measurements by the '**Xe inhalation method were compared in 38 hemi-
spheres of 19 same individuals (Matsuda et al. 1992). BPI values showed a highly
significant positive correlation (correlation coefficient = 0.926) with global CBF
(gCBF) obtained from the early picture method in a '**Xe-SPECT study. The regres-
sion line equation is global CBF =2.75 x BPI + 17.7.

In comparison with CBF values measured using '*I-IMP SPECT with continu-
ous arterial blood sampling (Murase et al. 1999), BPI showed significant correlation
coefficients of 0.629 and 0.856 for " Tc-HMPAO and *"Tc-ECD, respectively.

In comparison with CBF values measured using H,'"O PET with continuous
arterial blood sampling (Takasawa et al. 2004), BPI for *"Tc-HMPAO showed a
significant correlation coefficient of 0.831.

3.2.4 Alternative Approach to Estimation of BPI

Murase et al. (1999, 2001) proposed spectral analysis for the estimation of BPI using
radionuclide angiography for *™Tc-labeled tracers. This analysis has been mostly
applied to dynamic positron emission tomography measurements. This analysis has
been introduced as a non-compartmental tracer kinetic modeling technique, which
can be used to characterize the reversible and irreversible components of acyclic,
connected systems and to estimate the minimum number of compartments. This
technique is applicable to systems in which the measured data can be expressed as a
positively weighted sum of convolution integrals of the input function with an expo-
nential function that has real-valued non-positive decay constants. BPI measured
using graphical analysis and spectral analysis showed highly significant correlations
(Murase et al. 1999; Van Laere et al. 2001) with equal interobserver reproducibility
(Takasawa et al. 2003). Since BPI measured using spectral analysis appears to be
proportional to CBF because of independence from the first-pass brain extraction
ratio, it is larger by over 20% and more highly correlated to CBF values obtained
from 'I-IMP SPECT with continuous arterial blood sampling than BPI measured
using graphical analysis (Murase et al. 1999). These results suggest that spectral
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analysis provides a more reliable BPI than graphical analysis particularly in acet-
azolamide challenge (Takasawa et al. 2002). However this spectral analysis has not
prevailed among users because of unavailability of an automated program.

3.2.5 Calculation of Regional CBF from BPI

To calculate regional CBF (rCBF) and to correct for incomplete retention of *™Tc-
labeled tracers in the brain, Lassen et al. (1988) proposed the following linearization
algorithm of a curve-linear relationship between the brain activity and CBF. This
algorithm is based on kinetic models for *"Tc-HMPAO (Fig. 3.3) and *Tc-ECD
(Fig. 3.4):

o_p. () 34
b [1+a=(c1C)]

where F; and F, represent rCBF values for a region i and a reference region, respec-
tively, and C; and C, are the SPECT counts for the region i and the reference region
respectively. Acquisition of SPECT data usually starts at 10 min after tracer injec-
tion. Global brain is used as the reference region in this method. « is a correction
factor for the linearization. The optimum value of the correction factor a is esti-
mated from the following equations:

Blood Brain Barrier

Blood Brain
ky - ks
Lipophilic | ks Lipophilic (k) Hydrophilic

Fig. 3.3 Three-compartment unit-membrane model of solute exchange of lipophilic *™Tc-
HMPAO. The first compartment is the freely diffusible lipophilic tracer in the blood pool outside
the brain. The second compartment is the freely diffusible lipophilic tracer inside the brain. The
third compartment is the hydrophilic form retained in the brain. K| is the influx constant, k; is the
back diffusion rate constant, k5 is the lipophilic to hydrophilic conversion constant, and &, is the
hypothetical reverse conversion constant. Experimentally, it has been shown that no such reverse
conversion takes place; therefore k, = 0
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Fig. 3.4 Three- Blood Brain Barrier
compartment unit- . )
membrane model of solute Blood 1 Brain
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not subject to detectable / " _ y N
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Table 3.1 Average values of 9mTe-HMPAO 9mTe-ECD
transfer co.n.stants, brai.n—to— k, (min-!) 0.69 0.22
blood partition coefficient (1) -
and a ratios for *™Tc- ks (mfn‘ ) 0.8 0.57
HMPAO and *"Tc-ECD ky (min™") 0 0
ks (min~") 0 0.0038
A (ml/g) 0.67 1.33
a 1.18 2.59
k
o=— (3.5)
k2r
K E-F
ky =l = = (3.6)
A A

where k; is the conversion rate constant from lipophilic to hydrophilic tracer in the
brain, k,, is the rate of the back-diffusion from a reference region in the brain to
the blood, and K, is the influx rate constant from the blood to a reference region
in the brain. A is the brain-blood partition coefficient of the lipophilic tracer and £
describes the first-pass brain extraction of the lipophilic tracer across the blood-brain
barrier. Average values for these rate constants and 4 have been reported (Table 3.1).
Lassen’s correction algorithm assumes that k; and 4 are the same in all regions. k;
and 1 were set to the reported mean values of 0.80 and 0.67 for *"Tc-HMPAO and
0.57 and 1.33 for *™Tc-ECD, respectively. An almost threefold smaller k,, value for
mTc-ECD than that for " Tc-HMPAO results in the higher default a value of 2.6 in
the linearization algorithm for *™Tc-ECD than the default a value of 1.5 in that for
PmTc-HMPAO. When CBF in the reference region ranged from 20 to 60 ml/100 g/
min, optimum « values estimated using Eqgs. (3.5) and (3.6) ranged from 3.2 to 1.2
for #"Tc-HMPAO and from 6.3 to 2.1 for **"Tc-ECD. The use of the fixed « value
in the linearization algorithm gives rise to deviation of the obtained rCBF values
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Radionuclide angiography SPECT
1 frame / second
128 X 128
100 seconds

Graphical plot
Global BPI

Global mean SPECT counts

threshold at 40 to 50 % of maximum counts

{ Regression line equation ]

Determination of o
value in Lassen’s
Global CBF correction algorithm
I
\[ Lassen’s correction algorithm ]

| rCBF measurements |

Fig. 3.5 Flowchart of the rCBF measurement procedure comprising radionuclide angiography
and SPECT using *“™Tc-labeled tracers. The gCBF converted from BPI using a regression line
equation between BPI and gCBF measured using '**Xe-SPECT, the linearization correction factor
a, and the global mean SPECT counts obtained from the threshold at 40-50% of maximum counts
are substituted into Lassen’s algorithm for the linearization correction (Eq. 3.4) to estimate
rCBEF. The default value of a is 1.5 for "Tc-HMPAO and 2.6 for *"Tc-ECD

from true rCBF values when using optimized « values that vary with CBF in a refer-
ence region. However, less deviation of obtained rCBF values from true values may
be expected in the presence of a higher a value.

A flowchart of the rCBF measurement procedure comprising radionuclide angi-
ography to estimate gCBF and SPECT to estimate rCBF using *Tc-labeled trac-
ers is demonstrated in Fig. 3.5. Global mean SPECT counts are calculated from
threshold at 40-50% of maximum SPECT counts. Thus original SPECT images
(Fig. 3.6a) are converted to rCBF SPECT images without any blood sampling
(Fig. 3.6b).

3.2.6 Consecutive rCBF Measurements at Baseline
and Acetazolamide Challenge

Takeuchi et al. (1997) applied these noninvasive rCBF measurements using *™Tc-
ECD to a split dose protocol (Fig. 3.7) for the consecutive evaluation of baseline
rCBF and cerebral perfusion reserve with acetazolamide challenge. Radionuclide
angiography after bolus injection of *™Tc-ECD is performed for 100 s to obtain
g¢CBF at baseline using graphical analysis. Ten minutes after the first injection
of "Tc-ECD, first SPECT at baseline is started. Then 10 min before the second
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Fig.3.6 Conversion of original "Tc-ECD SPECT to rCBF SPECT images. (a) Original SPECT
images. (b) rCBF SPECT images
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#mTc-ECD acetazolamide **"Tc-ECD
¢ 10 min Y
€ — 1t SPECT [ —>| 2" SPECT
10 min 10 min

Radionuclide angiography

Fig. 3.7 Study protocol for the consecutive evaluation of baseline rCBF and cerebral perfusion
reserve with acetazolamide challenge. Radionuclide angiography after bolus injection of *™Tc-
ECD is performed for 100 s to obtain gCBF at baseline using graphical analysis. Ten minutes after
the first injection of " Tc-ECD, first SPECT at baseline is started. Then 10 min before the second
injection of *"Tc-ECD, acetazolamide is intravenously injected during acquisition of projection
data for the first SPECT. Immediately after the completion of the first SPECT an additional dose
of "Tc-ECD is injected and 10 min later the second SPECT is started

injection of *"Tc-ECD, 1000 mg acetazolamide is intravenously injected during
acquisition of projection data for the first SPECT. Acetazolamide does not modify
the tracer distribution of the brain during this acquisition of the first SPECT since
tracer distribution has been already determined during radionuclide angiography.
Immediately after the completion of the first SPECT an additional dose of *™Tc-
ECD is injected and 10 min later the second SPECT is started. Total time span
required for this procedure is less than 50 min.

To extract SPECT data for the acetazolamide challenge, the first SPECT data
were subtracted from the second SPECT data after decay correction of *™Tc. Post-
acetazolamide gCBF is estimated from the baseline gCBF, baseline global mean
SPECT count, and post-acetazolamide global mean SPECT count as follows:

post-acetazolamide gCBF = baseline gCBF - _*x 3.7
(I+a—-yx)

where y is post-acetazolamide global mean SPECT count/baseline global mean
SPECT count. Using these baseline gCBF and post-acetazolamide gCBF, rCBF
values at baseline and acetazolamide challenge are measured using SPECT data
according to Eq. (3.4). Acetazolamide induced a 40% gCBF increase in subjects
without apparent vascular lesions, in contrast to only a 13—16% increase in sub-
jects with bilateral vascular lesions (Takeuchi et al. 1997). This noninvasive method
without any blood sampling is easy to use and is helpful to detect regional abnor-
malities of hemodynamic reserve in cerebrovascular diseases.

3.3 Clinical Application
3.3.1 Cerebrovascular Diseases

Many investigators have used quantitative assessment of gCBF and rCBF using
PmTc-labeled tracers to aid therapy planning in patients with cerebrovascular
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diseases. Automatic estimation of rCBF has been often performed by a three-
dimensional stereotaxic ROI template on anatomically standardized SPECT mages
(Takeuchi et al. 2002).

In acute cerebral ischemia, affected tissue inevitably develops infarction unless
early recovery of cerebral blood flow is achieved. Shimosegawa et al. (1994)
reported predictability of complete infarction within 6 h of onset using semi-
quantitative analysis of brain perfusion SPECT. Intravenous thrombolysis with
recombinant tissue plasminogen activator or endovascular recanalization has been
attempted for acute hemispheric ischemic stroke, but the problem of symptomatic
intracerebral hemorrhage has been recognized. When thrombolytic therapy is con-
sidered, it is important to identify patients who are at increased risk of hemorrhagic
transformation. Umemura et al. (2000) demonstrated that the regions where residual
rCBF ranged from 25 to 35 ml/100 g/min could be recovered by early recanaliza-
tion within 7 h after onset. However, the regions where residual rCBF was severely
decreased to less than 20 ml/100 g/min were at risk of hemorrhagic transformation,
and the use of thrombolytic or anticoagulation agents would be likely to promote
the development of serious hemorrhage. On the other hand, the presence of hyper-
perfusion on brain perfusion SPECT 1 hour after thrombolysis using tissue plas-
minogen activator was predictive of symptom improvement in the first 24-h period
(Abumiya et al. 2014).

Garai et al. (2002) observed no effect of acetazolamide provocation on gCBF in
patients awaiting carotid endarterectomy with severe stenosis of the internal carotid
artery on at least one side, indicating a lack of cerebrovascular reserve capacity.
On the other hand, migraine patients showed a significant increase of over 20% in
gCBF after acetazolamide provocation.

Hyperperfusion syndrome is a critical complication after carotid endarterectomy
and carotid artery stenting. Once an intracerebral hemorrhage occurs, serious morbid-
ity or mortality may ensue. It is important, therefore, to estimate in advance whether
candidates for elective carotid artery stenting are at higher risk of hyperperfusion
syndrome following stenting. Fujimoto et al. (2004) and Iwata et al. (2011) identi-
fied decreased cerebral vasoreactivity in the affected middle cerebral artery territory
measured using pre- and post-acetazolamide challenge SPECT as a good predictor of
hyperperfusion syndrome after surgery. Moreover pre- and post-acetazolamide chal-
lenge SPECT was also effective for narrowing down patients at high risk of hemody-
namic ischemic stroke during cardiac surgery (Imasaka et al. 2015).

The balloon occlusion test of the unilateral internal carotid artery has been used
to predict whether the patient can tolerate either temporary or permanent occlusion
of the internal carotid artery. Ratio of rCBF during balloon occlusion over that at
baseline well correlated with mean stump pressure of the internal carotid artery
(Torigai et al. 2013). In contrast asymmetry index of rCBF during balloon occlusion
did not correlate with mean stump pressure. These results suggest that dual rCBF
measurements during balloon occlusion and at baseline are able to detect cerebral
collateral-flow redistribution more accurately than asymmetry index alone during
balloon occlusion.
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For secondary prevention of stroke, blood pressure should be carefully con-
trolled in hypertensive stroke patients with carotid artery occlusive diseases.
Some conventional antihypertensive medications lower CBF and worsen outcome
after acute ischemic stroke, probably as a result of reduced cerebral perfusion
within and adjacent to the affected area. Walters et al. (2001) and Nazir et al.
(2004, 2005) investigated the effect of the angiotensin-converting enzyme inhibi-
tor, perindopril, or angiotensin II receptor antagonist, losartan, on gCBF using
#mTc-HMPAO. They found that both perindopril and losartan lowered blood pres-
sure without lowering gCBF. rCBF measurements were also elucidative of pre-
ventive mechanism of calcium channel blocker, lomerizine, for migraine (Ikeda
et al. 2018). Lomerizine treatment increased rCBF in an elderly migraineur by
approximately 20%.

Ischemic stroke is a common cause of morbidity and mortality in cocaine addicts.
Johnson et al. (1998b) demonstrated dose-dependent cocaine-induced reductions of
gCBF and rCBF in dopamine-rich areas. This cocaine-induced ischemia was pre-
vented by the L-type calcium channel antagonist, isradipine pretreatment (Johnson
et al. 1998a).

Diabetes mellitus considerably increases the risk of stroke due to cerebral artery
damage. Macrovascular complications are typically seen in type 2 diabetes mel-
litus, while cerebral microvascular injury can be detected in both types 1 and 2.
Hyperglycemia leads to structural damage of capillaries and endothelial dysfunc-
tion, and the permeability of the blood-brain barrier is also altered in diabetics.
Kaplar et al. (2009) investigated whether there was any difference of gCBF in the
effects of these two types of diabetes mellitus. They found that both baseline and
acetazolamide challenged gCBF were significantly lower in type 2 than in type 1
patients. Regionally the circulation of the frontal lobe is particularly damaged in
type 2 patients. These findings call attention to the necessity of a “holistic view”
of treatment, including lifestyle modifications to preserve CBF and reduce disease
progression.

There has been striking improvement in the survival of patients with acute cere-
brovascular disease in recent years. There has therefore been increased interest in the
social rehabilitation of these patients and in their functional outcome. Accordingly,
attempts have been made to predict in advance the social rehabilitation, functional
outcome, and independence of cerebrovascular disease patients who have survived
the acute phase of the disease. Tamamoto et al. (2000) focused on the relationship
between rehabilitative efficacy evaluated by the Barthel index score and CBF. They
found that global CBF before the start of rehabilitation tended to be more correlated
with the Barthel Index scores after rehabilitation than those before rehabilitation.
Regionally the strongest correlation was found between the rCBF of the frontal lobe
and the Barthel index score after rehabilitation. rCBF measures of the frontal lobe
may be helpful for prediction of the efficacy of rehabilitation and drawing up the
rehabilitation protocol for each individual patient.
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3.3.2 HeartFailure

Identifying predictors of survival in patients with systolic heart failure is an area of
intense investigation. Kim et al. (2012) proposed measures of gCBF using radio-
nuclide angiography of **Tc-ECD as a good predictor. They reported that patients
with global CBF less than 35.4 ml/100 g/min were at increased risk of death or
urgent heart transplantation. Brain circulation is characterized by the autoregula-
tion of blood flow over a wide range of perfusion pressures. Compensatory mecha-
nisms exist that maintain perfusion to vital organs, such as the brain in response to
the progressive reduction of cardiac output. However brain perfusion is reversibly
decreased, and cognitive dysfunction develops in the advanced stages of systolic
heart failure despite these compensatory mechanisms. This CBF decrease may result
from a neurohormonal response to maintain cardiac output and systemic hemody-
namics. In patients with heart failure, the activity of the sympathetic and renin-
angiotensin systems becomes exaggerated. This heightened neurohormonal system
activity in patients with advanced heart failure may increase vascular resistance
and contribute to the reduction of CBF (Choi et al. 2006). Angiotensin-converting
enzyme inhibitors and angiotensin II receptor agonists have been shown to increase
gCBF measured using *"Tc-HMPAO (Kamishirado et al. 1997) and prevent cogni-
tive impairment in patients with heart failure.

3.3.3 Idiopathic Normal Pressure Hydrocephalus

The diagnosis of idiopathic normal pressure hydrocephalus as a contributing cause
of dementia is difficult in patients with dementia of mixed origins, for example, nor-
mal pressure hydrocephalus associated with multi-infarct dementia or Alzheimer’s
disease. Correction of the hydrocephalic process should improve morbidity and
achieve the best outcome for such patients. However, the usefulness of cerebrospi-
nal fluid shunting is unclear because the resultant ventricular dilatation is difficult
to relate to a true hydrocephalic process, and the degree to which hydrocephalus
contributes to the neurological deficits is uncertain. Chang et al. (2009) investi-
gated gCBF and cerebrovascular reactivity to acetazolamide in 162 patients with
a proposed diagnosis of idiopathic normal pressure hydrocephalus. Preoperative
gCBF did not differ between responders and non-responders to shunt placement.
On the other hand responders showed lower preoperative cerebrovascular reactiv-
ity than non-responders. Responders with the complete triad of normal pressure
hydrocephalus had significantly lower preoperative gCBF and cerebrovascular reac-
tivity than those with the incomplete triad. Postoperative gCBF and cerebrovascu-
lar reactivity increased significantly in responders. Impairment of cerebrovascular
reactivity in responders is probably due to compression of small-caliber vessels by
increased water content and high tissue pressure in the periventricular white matter
resulting from increased bulk diffusion of cerebrospinal fluid flow through the brain
interstitium.
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3.3.4 Neurodegenerative Disorders

Global CBF in patients with Parkinson’s disease has been reported to be lower than
that in normal controls by several investigators. Imon et al. (1999) reported gCBF
decreases of 11% and 20% in patients with Hoehn and Yahr stage I and II disease
and stage III and IV disease respectively as compared with healthy controls. This
decrease may result from vasoconstriction due to loss of dopaminergic innervation
of blood vessels more prominently in advanced Parkinson’s disease. Medication-
induced hallucination in Parkinson’s disease has been reported to be associated with
rCBF reduction particularly in left temporal areas (Okada et al. 1999). Dementia
with Lewy bodies showed decreased rCBF in occipital lobes in 76% of patients,
possibly related to visual hallucination (Tateno et al. 2008). In the recent diagnostic
criteria for dementia with Lewy bodies (McKeith et al. 2017), “generalized low
uptake on SPECT/PET perfusion/metabolism scan with reduced occipital activity
+/— the cingulate island sign on FDG-PET imaging” was listed as one of three sup-
portive biomarkers. Imabayashi et al. (2016) reported a 7% decrease of gCBF in
patients with dementia with Lewy bodies as compared with those with Alzheimer’s
disease.

The clinical differential diagnosis between Parkinson’s disease, Parkinson vari-
ant of multiple system atrophy, and progressive supranuclear palsy is often difficult
in the early stages of the disease because of the similarity of symptoms and the lack
of diagnostic markers. Kimura et al. (2011) demonstrated rCBF reduction in the
anterior cingulate gyrus and thalamus in progressive supranuclear palsy and rCBF
reduction in the cerebellum in multiple system atrophy. These rCBF changes may
be helpful for the differential diagnosis of Parkinsonian syndrome. Quantification
of rCBF in patients with corticobasal degeneration has revealed widespread rCBF
decrease in the frontal, parietal, and temporal cortices, basal ganglia, thalamus,
pons, and cerebellum (Hossain et al. 2003).

Spinocerebellar ataxia type 6 is an autosomal dominant cerebellar ataxia caused
by CAG trinucleotide expansion. This disease causes rCBF decrease only in the
cerebellum. This rCBF decrease is associated with both the duration of illness and
severity of dysarthria (Honjo et al. 2004). The efficacy of transcranial magnetic
stimulation on rCBF has been investigated in patients with inherited spinocerebel-
lar degeneration. Shiga et al. (2002) found a significant alleviation of truncal ataxia
in patients after 3 weeks of active transcranial magnetic stimulation. rCBF showed
11% and 15% increases selectively in cerebellum and pons, respectively. In patients
with autoimmune cerebellar ataxia, intravenous immunoglobulin therapy has been
reported to alleviate the ataxia with rCBF increase in cerebellum (Nanri et al. 2009).

Kogure et al. (2000) reported a 9% decrease of gCBF in patients with early
Alzheimer’s disease as compared with healthy controls. Longitudinal rCBF reduc-
tions in Alzheimer’s disease were more prominent in parieto-temporal areas than
in other areas (Kimura et al. 2012). Parietal rCBF along with posterior volume of
white matter hyperintensity on MRI negatively correlated with cognitive function
(Tabei et al. 2017).
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White matter lesions were associated with decreased rCBF in frontal, parietal,
and medial temporal lobes in patients with mild cognitive impairment (Ishibashi
et al. 2018).

3.3.5 Mood Disorders

A circuit that connects the limbic system, thalamus, and prefrontal cortex is pro-
posed as a neuroanatomical model that plays an important role for the regulation of
mood. Depression may cause frontal dysfunction that can be evaluated using SPECT
as frontal hypoperfusion (Narita et al. 2004). lidaka et al. (1997) demonstrated sig-
nificant negative correlations between the Hamilton scale for depression and rCBF
in the bilateral lower frontal cortex in patients with mood disorder. Ohgami et al.
(2005) reported an increase of gCBF in remission from that in depressive state in
patients with major depression. Significant negative correlations were seen between
gCBF and duration of previous episode of depression.

3.3.6 Other Neuropsychiatric Diseases

Noninvasive gCBF and rCBF quantification using *™Tc-labeled tracers has been
applied to various other neuropsychiatric diseases. Patients with chronic pain showed
rCBF decrease in bilateral thalami (Nakabeppu et al. 2001). rCBF reduction is fre-
quently observed in patients with traumatic brain injury, which is related to symptoms
in the absence of other objective findings, such as post-traumatic amnesia, vertigo or
personality changes (Kinuya et al. 2004: Hofman et al. 2001). Patients with neuropsy-
chiatric systemic lupus erythematosus showed lower gCBF than non-neuropsychiatric
patients (Tatsukawa et al. 2005). This result supports the contention that the patho-
physiology underlying neuropsychiatric systemic lupus erythematosus is related to
microvascular damage, small vessel vasculopathy, and autoantibody-mediated neu-
ronal cell injury. Suzuki et al. (2010) reported rCBF decrease in the limbic system in
chronic alcoholic patients. This decrease may be related to the occurrence of memory
impairment, emotional disorders, and blackouts attributable to alcohol consumption.
Right-side dominant rCBF asymmetry was reported in patients with oral cenesthopa-
thy (Umezaki et al. 2013). This asymmetry in oral cenesthopathy disappeared after
modified electroconvulsive therapy (Uezato et al. 2012).

34 Conclusion

Routine quantification of gCBF measured using a short period of radionuclide
angiography of ***Tc-labeled tracers is a simple and reproducible method, which
can be easily added to the standard brain perfusion SPECT without additional cost
or increase in the patient’s radiation burden. Combined with rCBF quantification
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it provides an additional tool for the management of acute and chronic cerebro-
vascular diseases and for the early and differential diagnosis of various neuropsy-
chiatric diseases and serves as a tool for the objective evaluation of therapeutic
effects.
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Abstract

Imaging of brain glucose metabolism with ¥F-2-fluoro-2-deoxy-D-glucose posi-
tron emission tomography ("*F-FDG PET) can give important information
regarding disease-related changes in underlying neuronal systems, when com-
bined with appropriate analytical methods. One such method is the scaled sub-
profile model combined with principal component analysis (SSM PCA). This
model takes into account the relationships (covariance) between voxels to iden-
tify disease-related patterns. By quantifying disease-related pattern expression
on a scan-by-scan basis, this technique allows objective assessment of disease
activity in individual subjects. This chapter provides an overview of steps
involved in pattern identification in "*F-FDG PET data and is divided into three
sections. Section 1 introduces basic concepts in nuclear imaging and explores the
cellular underpinnings of signals measured with "F-FDG PET. Section 2
describes relevant basic concepts in '®F-FDG PET image analysis including ana-
tomical registration, normalization, and analysis of variance and covariance.
Section 3 is dedicated to SSM PCA specifically. The goal of this chapter is to
make the technique more accessible to readers without a mathematics or neuro-
imaging background. Although many excellent texts on this topic exist, the
current chapter aims to provide a more conceptual overview, including some
discussion points that are not always formally described in literature.

4.1 '8F-FDG PET Imaging
4.1.1 Basic Conceptsin PET

Positron emission tomography (PET) allows measurement of the local tissue accu-
mulations of injected radioactive tracers. The type of tracer that is used depends
on the focus of the PET study. For instance, tracers can bind to specific receptor
sites, allowing quantification of the distribution of a receptor in a tissue. Tracers can
also be metabolically active compounds and allow measurement of the activity of a
particular enzyme or biochemical pathway. Tracers are “tagged” with a radioactive
atom. Radioactive decay of this atom is central to PET technology. A simplified
explanation of radioactive decay necessary to understand PET technology is pro-
vided in the next paragraphs.

Atoms consist of protons, neutrons, and electrons. Protons and neutrons can be
found in the nucleus, whereas electrons orbit around the nucleus. Protons have a



4 From Positron to Pattern: A Conceptual and Practical Overview of '®F-FDG... 75

positive charge, and electrons are negatively charged. The number of protons deter-
mines to what chemical element the atom belongs. Elements can have multiple
isotopes. Isotopes of an element have the same number of protons in their nucleus,
but a variable number of neutrons. In order for a nucleus to be stable, a certain bal-
ance is needed between protons and neutrons in the nucleus. Most naturally occur-
ring isotopes have stable nuclei. Isotopes of an element with an unstable nucleus
are referred to as radioisotopes. These isotopes will spontaneously emit particles or
photons (or both) from its nucleus in order to regain stability. In this process, mass
is converted into energy. This is called radioactive decay.

Different modes of radioactive decay exist. PET is designed to measure positron
emission. In radioactive decay by positron emission, a proton in the nucleus is trans-
formed into a neutron and a positron. A positron is the antiparticle of an electron (i.e.,
a positively charged electron, also called a f+ particle). When a positron is emitted,
it travels a distance before it annihilates with an electron (a f— particle) from the
surrounding matter. The annihilation of the masses of the two p particles results in
the conversion and emission of two gamma (y) rays. Gamma rays consist of high-
energy photons. In the case of positron emission and annihilation, each y-ray con-
tains 511 keV in energy. These two y-rays always originate simultaneously and are
emitted in opposite directions. They form a so-called back-to-back pair (Fig. 4.1a).
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Fig. 4.1 Schematic of an annihilation event in positron emission (a) and its detection (b). (a)The
positron travels a short distance before it loses its kinetic energy and then annihilates with an elec-
tron (p7) from the surrounding matter. The mass of the two particles is converted into two opposing
photon beams (y-rays), traveling at approximately 180° from each other with an energy of 511 keV
each. (b) In a PET camera, a ring of detectors is placed around the patient. Opposing detectors,
connected via a coincidence circuit, record annihilation photons only when they arrive simultane-
ously. The origin of the annihilation event is inferred along the line of response (LOR)
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A PET camera consists of a large number of small scintillation detectors posi-
tioned on a ring around the patient. Scintillation detectors use inorganic crystals that
absorb y-rays and then fluoresce. The y-rays are converted into visible light by the
crystal. The light signal is multiplied and transformed into an electric current. The
strength of this current is proportional to the intensity of the light from the crystal
and thus to the energy of the y-ray that was detected.

A PET camera can determine the origin of the detected y-ray in the tissue of the
patient, by using the principle of y-ray pairs. If one y-ray is detected by a crystal,
then its twin must be detected by the opposite crystal within a certain time win-
dow (a few nanoseconds). Such an event is called a coincidence event. Opposing
crystals are linked via coincidence circuits. From a coincidence event, the origin of
the annihilation can be inferred along a “line of response” (LOR) running between
the two detectors (Fig. 4.1b). Modern electronics permit measurement of the time
interval between detection of the first and the second photon of the same photon
pair. This means that the origin of the photon pairs (the point of annihilation) can
be pinpointed to a part of the LOR, close to the true event (Karp et al. 2008; Surti
and Karp 2016). PET data thus consists of many back-to-back photon pairs, con-
nected with LORs through the patient, from which the locations of the multiple
annihilations are estimated. Because the detector system is a stationary ring that
completely surrounds the patients, it is possible to acquire data from many differ-
ent angular views (projections) simultaneously. From these multiple projections of
the detected emissions, images can be reconstructed using mathematical algorithms
(Cherry et al. 2012). In the final 3D PET image, each pixel (or voxel) has a value
which reflects the number of coincidence events (“counts”) that belong to that par-
ticular coordinate. Thus, the more radioactive decay in a certain part of the tissue,
the higher the counts for the corresponding pixel in the image.

The spatial resolution of PET depends on its accuracy and precision in pinpoint-
ing the exact location of annihilation events. Even with sophisticated computerized
techniques, the reconstructed location of the annihilation event is not exact. Current
state-of-the-art PET systems have a maximum resolution of just under 3 mm. This
limitation is inherent to physical properties of PET. First, the PET system assumes
y-rays pairs to be emitted at a 180° angle, but this is not always the case. Second,
after emission, the positron travels a short distance (a few millimeters (Phelps et al.
1975)) before it annihilates with an electron.

Some commonly used PET tracers in neurology and their half-lives are listed
in Table 4.1. Fluorine-18 ('F) is the most commonly used radioisotope in clinical

Table 4.1 Commonly used isotopes in PET

Isotope | Half-life (min) | Product | Examples of tracers
nc 20.38 "B "C-methionine: amino-acid transport
"C-raclopride: dopamine receptors
50 2.03 N 130-water: perfusion
50-oxygen: oxygen utilization
18F 109.8 B(0] F-FDG: glucose utilization
I8FE-Fdopa: activity of aromatic amino-acid decarboxylase
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practice. It is produced in a particle accelerator (cyclotron). An important advantage
of BF is its relatively long half-life, which facilitates regional production of '8F
tracers and distribution to other hospitals. The main application of *F is labeling of
fluorodeoxyglucose (FDG), which provides a measure of glucose utilization in the
cells of the body. *F-FDG is the most widely used positron-emitting radiopharma-
ceutical with a wide range of clinical applications.

4.1.2 '®F-FDG PET Imaging

The tracer "®F-2-fluoro-2-deoxy-D-glucose ('F-FDQG) is an analogue of glucose. In
normal conditions, glucose is the predominant metabolic substrate for brain tissue,
and the brain’s oxygen consumption is almost entirely for the oxidative metabolism
of glucose (Fox et al. 1988). The brain holds minimal glycogen stores, and therefore,
a permanent supply of glucose via the blood is necessary. Glucose is transported
through the blood-brain barrier via GLUT transporters. Once in the cell, glucose
undergoes numerous transformations to end up in three main metabolic pathways.
The goal of each of these pathways is to create energy (in the form of ATP) for
cells to function. The first step for any of these pathways is the phosphorylation of
glucose into glucose-6-phosphate, a reaction catalyzed by the enzyme hexokinase.
Hexokinase is the rate-controlling enzyme for all of the subsequent pathways. The
enzymatic rate of this first step is equivalent to measuring the glucose utilization
rate (Fig. 4.2a).

It has been attempted to quantify regional glucose metabolism with “C-glucose,
but the many transformations and pathways for radioactively labeled glucose to
enter are complex, leading to many different metabolites. Moreover, '“C-glucose
is very rapidly converted to CO, and H,O, and CO, is too rapidly cleared from the
cerebral tissue to allow measurement (Raichle et al. 1975; Sacks 1957). In the 1970s,
this problem was solved by Sokoloff and colleagues, who applied a deoxyglucose
analogue, 2-deoxy-D-glucose (2-DG), labeled with “C (Sokoloff et al. 1977). The
deoxy variant of glucose is phosphorylated by hexokinase, at a definable rate relative
to that of glucose. However, unlike glucose-6-phosphate, '*C-2-DG-6-phosphate is
not metabolized further and is essentially trapped in the tissue, allowing quantifica-
tion of hexokinase. Therefore, regional deoxyglucose uptake measured with PET
reflects the first step of the glucose metabolic pathway. Reivich et al. were the first
to measure cerebral glucose metabolism with the deoxyglucose method in humans
(Reivich et al. 1979). Instead of “C, '8F was used as the radioisotope. *F-FDG
behaves similarly as '*C-DG and glucose (because fluorine behaves biochemically
like hydrogen) and can measure glucose utilization accurately and reliably.

The kinetics of accumulation of "®F-FDG-6-PO, can be described with a three-
compartment model (Reivich et al. 1979). A description of tracer kinetic model-
ing is beyond the scope of this chapter and can be found elsewhere (Heiss 2014).
In brief, after intravenous administration of *F-FDG, the regional cerebral meta-
bolic rate of glucose (CMRglc) can be determined using the '8F concentration in
the tissue (measured with PET), the concentration of '®F-FDG in the arterial plasma
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Fig. 4.2 (a) Schematic of the behavior of glucose and '®F-FDG in brain tissue. Glucose and '*F-
FDG are similarly transported over the blood-brain barrier (BBB) and are both metabolites for the
enzyme hexokinase. FDG-6-phosphate (*F-FDG-6-PO,) is trapped in the brain tissue, whereas
glucose-6-phosphate (G-6-PO,) can be metabolized further and has many metabolites. The dashed
arrow represents the activity of glucose-6-phosphatase (G-6-P), which catalyzes the hydrolysis of
G-6-PO, and "®F-FDG-6-PO, back to glucose, and "*F-FDG, respectively. This is a slow process
(Sokoloff et al. 1977). (Adapted from (Heiss 2014) with permission from Springer Verlag
Heidelberg). (b) Visual representation of an 'SF-FDG PET study of a 65-year-old healthy individ-
ual. The participant fasted for at least 6 h before the investigation. '®F-FDG PET imaging was
performed in a 3D mode using a Siemens Biograph mCT-64 PET/CT system. A 6 min static frame
was acquired starting 30 min after the injection of 205 MBq "$F-FDG in 4 mL saline. '*F-FDG
uptake and image acquisition were performed in the resting state with eyes closed in a dimly lit
room with minimal auditory stimulation. The image was iteratively reconstructed with OSEM 3D,
including point spread function and time-of-flight modeling (3 iterations/21 subsets, matrix 400),
and smoothed with a Gaussian 2 mm full-width at half-maximum filter. Voxel size is 2 mm. Scatter
and attenuation corrections were applied based on the acquired low-dose CT

(time-activity curve of blood tracer concentration), and the concentration of glucose
in the plasma. In this situation, multiple sequential PET images are obtained (i.e.,
a dynamic protocol). When performed in this manner, PET provides absolute mea-
sures of regional CMRglc (i.e., in physiological units).

Thus, for a fully quantitative determination of absolute regional glucose utiliza-
tion, arterial blood sampling is required, which is an invasive and time-consuming
procedure. Already early on it was recognized that “raw counts” data could be ana-
lyzed instead of physiological units, obviating the need for arterial blood sampling
(Fox et al. 1984). In current clinical practice and most experimental designs, arterial
blood sampling is not strictly necessary, because the relative regional distribution of
BE-FDG (raw counts) can be visually assessed and/or statistically analyzed.

In a clinical setting, "*F-FDG is injected intravenously, and patients subsequently
rest in a quiet, dimly lit room for 30—45 min, at which time metabolic equilibrium is
reached. Next, a single static image with a frame duration of 5-15 min is acquired,
and a low-dose CT scan is performed for attenuation correction. The corrected,
reconstructed "®F-FDG PET images are visually assessed by an expert reader in
the context of the available clinical information. When performed according to the
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guidelines, "*F-FDG PET imaging in a clinical setting is easy, reliable, and accu-
rate (Varrone et al. 2009). '8F-FDG PET has an established role for a number of
diagnostic indications in neurology, one of which is the differential diagnosis of
neurodegenerative brain diseases.

An example of an ¥F-FDG PET image of a healthy control participant is given
in Fig. 4.2b. Resting-state '*F-FDG uptake is much higher in gray matter compared
with white matter. In healthy controls, '®F-FDG uptake is typically highest in the
basal ganglia, primary visual cortex, cingulate cortex, and frontal cortex, with
lower values in other cortical and subcortical areas, brain stem, and cerebellum
(Heiss 2014).

4.1.3 Studying Brain Function with '®F-FDG PET

The goal of neuroimaging is to understand how the brain functions under different
circumstances and conditions, including disease. In the past decade, the focus of
neuroimaging studies has converged on the study of brain networks (Friston 2011).
Networks encompass connections between neurons and can be described in terms
of structure and function. Structure dictates which neurons are connected. Function
is dynamic, and this term is used to describe neuronal activity that assembles on the
backbone of a relatively fixed anatomical structure (Buzsaki et al. 2013). A synapse
may be present between two neurons, but the connection may be used to different
degrees depending on the situation (Fornito et al. 2016). The main principle of func-
tional neuroimaging techniques is that localized changes in neuronal activity can be
mapped by measuring changes in energy metabolism or hemodynamics, which are
thought to reflect the underlying cellular events.

Brain activity is determined by signaling between neurons. Neural signaling is
achieved with the generation and propagation of action potentials across synapses.
Energy metabolism (glucose metabolism) increases almost linearly with the fre-
quency of action potentials (Kadekaro et al. 1985). Action potentials themselves
do not require energy, as they are passive electrical consequences of K* and Na*
fluxes across the cell membrane upon depolarization. Restoring ionic gradients
and resting membrane potentials in the cell after an action potential does require
energy. In primates, the major energetic burden is located at the nerve terminals
from the postsynaptic neuron (the neuropil) (Sokoloff 1993). This is because there
are a large number of synapses per neuron, and during signaling, postsynaptic pas-
sive Na* influx acts as an amplifier of the initial signal. Reversing ion fluxes after
postsynaptic currents has been estimated to cost 74% of the energy used in signal-
ing (Attwell and Laughlin 2001). Of note, energy metabolism in the postsynaptic
neuron increases with both excitatory (glutamatergic) and inhibitory (GABA-ergic)
signaling (Buzsaki et al. 2007; Jueptner and Weiller 1995). The only way to deter-
mine which has occurred is to look downstream at the next synapses in the projec-
tion zones of those neurons (Sokoloff 1993).

To sustain brain activity, neurons continuously require energy in the form of
adenosine triphosphate (ATP). Under normal physiological conditions, generation
of ATP is supported almost exclusively by the oxidative (i.e., aerobic) metabolism
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of glucose. Only around 10% of ATP is generated by anaerobic metabolism through
glycolysis (Vaishnavi et al. 2010). The products of glycolysis, such as lactate, can
subsequently be metabolized further using oxygen. Astroglia are thought to play
an important role in the latter process, in which lactate is also exchanged between
neurons and glia cells (Magistretti and Allaman 2015).

Glucose and oxygen supplies are maintained by an adequate regulation of cere-
bral blood flow (CBF). The relationship of the cerebral metabolic rate of glucose
(CMRglc), the cerebral metabolic rate of oxygen (CMRO,), and cerebral blood flow
(CBF) to the underlying cellular events is complex and still not completely under-
stood. Counter-intuitively, CBF increases do not simply serve to adjust glucose and
oxygen delivery to the variable energy demands of neuronal tissue. Activation stud-
ies have shown that in response to a task (i.e., an increase in neuronal activity), CBF
and CMRglc increase together, but far exceed CMRO, (Fox and Raichle 1986; Fox
et al. 1988). Several models have been used to explain the cellular underpinnings
of neurovascular coupling and uncoupling (Lin et al. 2008; Lin et al. 2009; Lin
et al. 2010).

An important advantage of measuring CMRglc is that it provides a direct, physi-
ologically specific signal that can be quantified. This was elegantly demonstrated
by several early autoradiography studies with “C-deoxyglucose (Sokoloff 1993).
For example, in rats, retinal stimulation with flashes of light of a known, calibrated
intensity resulted in proportional increases in local CMRglc in the primary projec-
tion areas from the retina, whereas local CMRglc remained unchanged in structures
that did not receive direct projections from the retina (Batipps et al. 1981)."8F-FDG
PET measurements are indicative of a steady state of neuronal activity during the
uptake and scanning interval.

Relative to other tissues, the brain’s energy demand is high in the resting state
and during sleep and increases with only a fraction of its baseline metabolism with
activity. In the resting state, most of this energy is also devoted to neuronal signaling
(i.e., synaptic function) (Sibson et al. 1998). In activation (or task-based) studies,
local changes in '8F-FDG uptake in response to a task are studied to localize brain
functions. Studies in which subjects are in a resting state, which means there is
no specific sensory stimulation and patients are not engaged in any behavioral or
physical task, can give information about time-invariant aspects of brain function.
Several neuroimaging and electroencephalography (EEG) studies have shown that
spontaneous neuronal activity is highly organized at rest and that several conditions
(including disease) can alter resting-state neuronal activity.

4.2  Analysis of Resting-State '®F-FDG PET Images
4.2.1 Image Registration
Voxel-wise image analyses usually start with the registration of each image to stan-

dard space. This is because this type of analysis of brain images is hampered by the
differences in brain morphology between subjects. In image registration, the brain
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Original image Registered to a template

Fig.4.3 Example of two healthy controls showing the reconstructed *F-FDG PET image, and the
images after registration to an F-FDG PET specific template in standard space (Della Rosa
et al. 2014)

images of subjects are translated to another image (usually a template), such that
voxels/regions can be compared between subjects. Image registration entails the
estimation of the optimal spatial transformation between two images. '*F-FDG PET
images are often directly registered to a template such that all the images are in the
same space. An example of '®F-FDG PET image registration is given in Fig. 4.3. A
more detailed explanation of image registration can be found elsewhere (Herholz
et al. 2004).

4.2.2 Normalization
By adhering to strict scanning protocols, it is attempted to minimize the differences

between each scanning session (Varrone et al. 2009). By image registration, mor-
phological differences are accounted for. However, considerable inter-individual
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Fig.4.4 Two types of normalization. Raw voxel values (i.e., raw count data) (a); ratio-normalized
voxel values (b); and voxel values normalized according to the SSM (c) are depicted for five dif-
ferent coordinates in three healthy controls (S}, S,, and S3). The average voxel value was calculated
for each subject, by taking all voxels in the image within a gray matter mask. This average voxel
value is indicated for each subject in (a) with the dashed line (uS;, uS,, and pS;). In (b) each voxel
value was divided by the corresponding subject average. This results in voxel values centered
around 1 for each subject. In (¢) voxel values within the same mask were log-transformed, and
subsequently the log mean was subtracted from the data. This results in voxel values centered
around zero for each coordinate and each subject. In (a and b), data is non-negative. In (¢), negative
values are present

differences in '*F-FDG uptake remain present. This is because there may be slight
differences in the dose of '®F-FDG injected, or due to baseline metabolic differences
between people (even after fasting). This is apparent in Fig. 4.4a, which shows the
average brain FDG uptake for three healthy controls, scanned with identical proto-
cols. These large inter-individual differences will obscure underlying task-evoked
or disease-dependent patterns of altered metabolism.

This can be solved with tracer kinetic modeling, which transforms count data
into physiological units using information from arterial blood sampling. However, as
stated previously, this entails an invasive, time-consuming procedure. A solution is
normalizing the raw count data to a reference value. It should be noted that any '3F-
FDG PET study that does not apply arterial blood sampling cannot study absolute
differences of *F-FDG uptake, but can only make inferences on relative differences.

Several approaches are used to normalize raw count data. Some researchers
choose a reference region which is thought to be unaffected by the disease process.
The average '8F-FDG uptake in that region is measured, and all voxel values in each
image are subsequently divided by this value (Borghammer et al. 2008). An impor-
tant limitation of this approach is that it requires a priori assumptions. For example, in
the study of Parkinson’s disease, some authors have chosen the cerebellum as a refer-
ence region, whereas it is now known that the cerebellum plays an important part in
parkinsonism (Bostan et al. 2013; Rodriguez-Oroz et al. 2009). For '*F-FDG studies
which study brain-wide metabolism, choosing a reference region may therefore be
problematic. Still, in other radiotracer studies, a reference region can be very useful.

A frequently used alternative is to ratio-normalize each voxel value to the sub-
ject’s average whole-brain uptake (usually within a gray matter mask), which is
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referred to as global mean normalization (Fig. 4.4b). An equivalent approach is the
scaled subprofile model (SSM), in which the data is first log-transformed, and sub-
sequently the log mean is subtracted (Fig. 4.4c). The appendix provides additional
details on these two methods and the associated issues.

4.2.3 Analysis of Variance and Covariance

After applying some type of normalization, a straightforward approach to investi-
gating differences in cerebral glucose metabolism between patients and controls is
by comparing the mean 'SF-FDG uptake in each region (or each voxel) between the
groups with multiple # tests. This is an example of analysis of variance. Variance is
a measure of spread of the data. It is equal to the square of the standard deviation

of the data:
n —\2
Zi:l(Xi B X)

(n=1)

where X indicates the average of variable X. This formula can be rewritten as:

> (X -X)(X, -X)
()

Multiple ¢ tests between voxel values in two or more groups can be easily per-
formed. If a cluster of voxels holds significantly lower values in patients compared
to controls, then this brain region shows decreased 'SF-FDG uptake in the disease
state, which reflects a loss of synaptic integrity. The interpretation of such statisti-
cal parametric mapping (SPM)-based group contrasts is thus very straightforward.
Several studies have used a voxel-based SPM analysis to identify group differences
between patients with a neurodegenerative disease and healthy age-matched con-
trols (Eckert et al. 2005; Juh et al. 2004; Teune et al. 2010; Yong et al. 2007). These
univariate patterns give a good impression of the brain regions involved in disease.

Covariance is a measure of how much two variables change together. The for-
mula for covariance is very similar to the formula for variance, but includes an
additional variable (variable Y):

var(X)=s" =

var(X) =

2% X))
(n=1)

A positive covariance indicates that as X increases, so does Y; and a negative
covariance indicates that as X increases, Y decreases (or vice versa). If the cova-
riance is zero, X and Y are unrelated. The concepts variance and covariance are
explained in a schematic in Fig. 4.5.

If there are more than two variables (i.e., more than two dimensions), covariance
(C) can be stored in a matrix. If we have three variables (x, y, and z), the diagonal

cov(X,Y)=
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Fig.4.5 A schematic, easy representation of variance and covariance (mock data). Two voxels are
considered in a patient group and a control group. The mean in "*F-FDG uptake (normalized
counts) in voxel X is compared between patients and controls with a 7 test (a), which does not show
a significant difference. The mean value for voxel Y does show a significant difference (patients
higher than controls) (b). Voxel X and voxel Y are correlated; a higher value in voxel X predicts a
higher value in voxel Y. These two variables thus show positive covariance (C)

entries in this matrix reflect the variance. The off-diagonal entries reflect the cova-
riance between x and y, x and z, and y and z. The matrix is symmetric around the
diagonal.

cov(xx) cov(xy) cov(xz)
C=| cov(yx) cov(yy) cov(yz)
cov(zx) cov(zy) cov(zz)

4.2.4 Principal Component Analysis

In data with only a few dimensions, it is easy to appreciate the “patterns” in the
data (i.e., the relationship between variables). However, when the dimensionality
of the data increases, as is the case in typical neuroimaging data (>100,000 voxels
and dozens of subjects), relationships between variables can no longer be presented
graphically. Principal component analysis (PCA) reduces the number of dimensions
and can hereby aid in identifying patterns in complex datasets. In this section, we
will explore what PCA does in a simple, two-dimensional example.

Imagine we have studied the values of two voxels (X and Y) in ten controls and ten
patients. PCA requires a dataset with a mean of zero. Therefore, we first subtract X
from each observation of X and ¥ from each observation of Y. A plot of the data is
shown in Fig. 4.6 (this is mock data, so the values do not represent true voxel values).

From Fig. 4.6b, it is clear that the two voxels are related. We can infer that these
two variables have a positive covariance. The variance-covariance matrix for these
variables is:
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Fig.4.6 Two voxels were studied in 20 subjects (mock data). The data points were demeaned (a).
(b) shows these values for voxel X and voxel Y in ten controls (grey circles) and ten patients (black
triangles). In (c), the first eigenvector (PC1) and the second eigenvector (PC2) are drawn. PC2 is
perpendicular (orthogonal) to PC1. PC = principal component

2297 11.57
11.57 6.01

The variance of voxel X is 22.97 and the variance of voxel Yis 6.01. The covari-
ance of the two voxels is 11.57. From the covariance matrix, we can calculate the
eigenvectors and the eigenvalues of this dataset (how this is done is beyond the
scope of this chapter):

cov(X,Y)=

) 045 -0.89 . 0.14
eigenvectors = eigenvalues =
-0.89 -0.45 28.84

The eigenvectors describe the lines that are plotted in Fig. 4.6¢. The first eigen-
vector, called principal component (PC) 1, almost perfectly fits the data points. The
second eigenvector, PC2, describes how much the data points deviate from PCI.
Thus, this process of taking the eigenvectors from the covariance matrix has enabled
the extraction of lines that characterize the data.

The first eigenvector explains most of the variability in the data. This eigenvec-
tor therefore has the highest eigenvalue. In PCA, eigenvectors (or components) are
always ordered in terms of how much of the variability in the data they describe.
The component with the highest eigenvalue is principal component 1, the one with
the second highest eigenvalue is principal component 2, and so on. The number of
principal components depends on the dimensionality of the data. A PC is always
perpendicular (also called orthogonal) to all other PCs.

The rest of the steps involve transforming the data such that they are expressed
in terms of PC1 and PC2. This means that each data point will obtain a new value
in terms of PC1 and PC2. This is essentially a rotation by which PC1 and PC2
describe the new axes. Note that in Fig. 4.7a, this rotation effectively removes the
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Fig.4.7 Rotation of the data such that PC1 values are plotted along the x-axis, and PC2 values are
plotted along the y-axis (a). The data can be reduced in dimensionality (from two-dimensional to
one-dimensional) when only one PC is considered (b). PC1 contains the information of interest (it
separates the two groups), and PC2 can be discarded

covariance from the data. The new values can be calculated by multiplying the orig-
inal, demeaned voxel values with each eigenvector. We could also decide to only
keep PC1, since this eigenvector describes the most important effects in the data,
and we can discard PC2. This is a way of reducing the dimensionality of the data
(Fig. 4.7b). We have discarded some of the information (the PC with the lowest
eigenvalue), but kept the most important effects in one dimension (the PC with the
largest eigenvalue).

In the example above, we have explained PCA with 20 subjects but just 2 voxels.
In that mock data, there were only two eigenvectors. In neuroimaging studies, there
are many more voxels than there are subjects. In such studies, the number of possi-
ble eigenvectors is limited to the number of subjects minus 1. This can be intuitively
understood when we imagine a situation where we have just two subjects with three
voxels each (voxels x, y, and z). The voxels determine the axes: a three-dimensional
grid with axes x, y, and z. The subjects are plotted in this three-dimensional grid:
each subject has a value for each voxel. With only two subjects, just one eigenvec-
tor (running exactly between the two points) can be calculated. Now imagine we
have three subjects in the same space. In this situation, two eigenvectors can be
calculated. Since these three subjects are in one plane, a third eigenvector cannot be
determined. This same principle works for multi-dimensional space. In other words,
the possible number of eigenvectors depends on the length of the shortest dimen-
sion. As noted above, in neuroimaging, the shortest dimension is usually the number
of subjects. For example, in the typical situation where we have 40 subjects (20
controls and 20 patients) and > 100,000 voxels, 39 eigenvectors can be determined.



4 From Positron to Pattern: A Conceptual and Practical Overview of '®F-FDG... 87

43 SSMPCA

Now that the concepts variance, covariance, and PCA have been explained, we will
give an overview of the steps involved in scaled subprofile model (SSM) and prin-
cipal component analysis (PCA). SSM PCA was first introduced by Moeller and
colleagues for region-of-interest (ROI) data (Eidelberg et al. 1994; Moeller et al.
1987; Moeller and Strother 1991) and was later extended to whole-brain voxel-
wise analyses (Eidelberg 2009; Habeck et al. 2008; Ma et al. 2007; Spetsieris and
Eidelberg 2011). This approach combines a type of normalization (SSM) with
principal component analysis (PCA) to find patterns (components) that can poten-
tially discriminate between neuroimaging data of two groups. Here, we explain the
method in a conceptual manner, such that an audience with a limited mathematics
background can follow the steps involved.

4.3.1 Defining the Data

Usually, SSM PCA is applied to '®F-FDG PET data that are acquired in a static imag-
ing protocol and registered to a template in Montreal Neurological Institute (MNI)
brain space. The data are typically smoothed (8—10 mm full width at half maximum)
to improve the signal to noise ratio. A threshold of the whole-brain maximum is
applied to remove out-of-brain voxels. The threshold value is usually chosen as the
value that is 35% of the whole-brain maximum. This results in a mask of mainly gray
matter (see Spetsieris and Eidelberg (2011) for details and alternatives). This mask is
created for each subject, and the masks for all subjects are combined to include only
those voxels that are shared between all participants. The remaining data can be stored
in a matrix where subjects are in rows and voxels are in columns (Fig. 4.8).

4.3.2 Normalization with the Scaled Subprofile Model (SSM)

First, the SSM is applied, which refers to the normalization of the raw count data.
This preprocessing starts with the log transformation of each voxel value for each

Fig. 4.8 Data matrix (D) Voxels (n)
with m subjects (S,,) and n T SV, SV, SV, SV, )
voxels (v,). Removal of the = Row-centering
sub]ecF mean (row- S 8V, SV, SV, . SV,
centering) and group mean g
.(co!umn—centermg) is D sy, SV, SV, SV,
indicated
va1 SmVZ SmV3 van

Column-centering
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subject. Subsequently, the mean for each subject is removed (row-centering). These
two steps combined serve to remove subject-specific scaling effects (also see the
appendix and Fig. 4.4c). Next, the mean per voxel is removed (column-centering).
This mean per voxel is referred to as the group mean profile (GMP). The remaining
data matrix consists of residual voxel values for each subject. For each subject, this
is termed the “subject residual profile” (SRP). Because all SRPs are in the same
scale, the SRPs can now be compared between subjects (and thus between groups).

4.3.3 Calculating Eigenvectors from a Covariance Matrix

After normalization, a PCA is performed on the SRP data matrix. First, a covariance
matrix is determined. The formula for covariance was introduced previously:

(X - X)(¥ -7)

cov(X,y)=<= )

Remember that the SRP matrix has a mean of zero, because the data was log-
transformed and the mean was subtracted. Therefore, we can ignore the terms X
and Y . In other words:

cov(X.Y) =

The covariance between all voxels across all subjects can be determined from the
voxel * voxel covariance matrix. We arrive at the voxel * voxel covariance matrix
by multiplying the transpose of D with D itself (D" * D). This can be visualized as
follows (Fig. 4.9):

Since we usually have thousands of voxels, the voxel * voxel data matrix (Sy)
will be quite large, and calculating the eigenvectors from S,,, will require a lot of
computational power. This can be solved by determining the eigenvectors from the
subject * subject covariance matrix (Sy,,) instead and left-multiplying these with the
transposed SRP (Spetsieris and Eidelberg 2011).

The eigenvectors from S, are referred to as group invariant subprofiles (GIS) in
literature (Eidelberg 2009; Spetsieris and Eidelberg 2011). The terms eigenvector,
GIS, and PC are often used interchangeably. As described in Sect. 2, the compo-
nents in PCA are always ordered in terms of variance accounted for. Thus, PC1
explains most of the variance in the data, PC2 less, and so on. The last component
accounts for only a small percentage of the total variance.
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Fig. 4.9 The product (not shown here) will show the variance across the diagonal of the matrix,
and the off-diagonal entries will show the covariance between the voxels. Thus, the entire matrix
describes the spatial variance and covariance relationships between voxels across subjects

4.3.4 Calculating Subject Scores and Selecting
Disease-Related Components

In order to reduce the dimensionality of the data, we need to project each data point
(each SRP) onto each PC. Each subject will receive a score on each PC. These
so-called subject scores (SS) are easily computed by the inner product of the two
vectors:

SS=SRP*PC

In the case of n subjects, this will result in a matrix of subject scores on each PC,
with a maximum of n —1 PCs (Fig. 4.10):

The subject scores will determine which PC is of interest to the study. On some
PCs, the subject scores will be significantly different between patients and controls.
These components may thus contain the disease-related changes that are of interest
and may be selected for further analysis. Of note, the subject scores on each PC are
inspected, to ensure that the mean subject score in patients is higher than the mean
subject score in controls. This convention aids in the interpretation of the PC maps,
as will be discussed later. In case the calculated mean scores are higher in controls
than in patients, both the subject scores and the associated PC are multiplied by —1.

There are several ways to decide which PC (or combination of PCs) constitute(s)
the final disease-related pattern (Spetsieris and Eidelberg 2011). In some studies, a
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single PC is chosen (usually PC1) if it discriminates significantly between controls
and patients. Consecutive, smaller PCs are not included (even if these also discrimi-
nate between patients and controls) (Niethammer and Eidelberg 2012; Wu et al.
2013; Wu et al. 2014). A disadvantage of that approach is that it assumes that the
relevant disease-related information is captured in a single component, which may
not be the case. On the other hand, an important consideration is the risk of overfit-
ting. Including more components may yield a pattern that gives a better fit of the
initial sample, but may be limited in its relevance or generality across new datasets
from the same population.

In previous studies by our group (Meles et al. 2018a; Meles et al. 2018b; Teune
et al. 2013; Teune et al. 2014a; Teune et al. 2014b), combinations of principal com-
ponents were selected using a forward stepwise logistic regression model. First, the
components that explain the top 50% of the total variance in the data are selected.
This is an arbitrary threshold that assumes that the lower 50% includes only noisy
components that explain very small sources of variance in the data (a few percent)
and are probably not disease-related. The combination of components that together
give the lowest Akaike information criterion (AIC) of the model is selected (Akaike
1974). In other words, we combine the least possible number of components that
together give the optimum discrimination between groups (trade-off between dis-
criminative power and parsimony of the model). The selected components are
subsequently combined linearly into a single PC vector using the coefficients deter-
mined by the logistic regression model.

We have re-evaluated the data in previously published disease-related patterns
(Teune et al. 2013; Teune et al. 2014a; Teune et al. 2014b) and found that a combi-
nation of components as selected by the logistic model gave better discrimination of
groups compared to the selection of PC1 alone. This does not imply that this model
can be applied blindly to any dataset. In every analysis, each separate component
should be inspected carefully, for instance, by visually checking if the component
could potentially reflect disease activity or noise.

An important consideration is that PCA is susceptible to outliers. One outlier
may contribute overwhelmingly to the variance, resulting in a first PC that accounts
for most of the variance (i.e., >90%). The rest of the components are always orthog-
onal to this first, “faulty” PC, and thus even the remaining PCs are influenced by
this issue, even though they reflect the effects of interest in the data (Habeck et al.
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2010). It is thus advisable to always check each PC visually and in terms of vari-
ance accounted for. It may be necessary to re-run the analysis, excluding a prob-
lematic case.

Of note, when PCA is performed without this double-centering procedure, the
chance that the first few components will reflect group-dependent differences in
brain function is reduced (Moeller and Strother 1991; Spetsieris and Eidelberg
2011). In such a scenario, the first PC will reflect major sources of variance stem-
ming from global mean values. This PC does not discriminate patients from con-
trols. The disease-related pattern (i.e., the component that can discriminate between
groups) shifts in order of importance, to a lower eigenvalue.

4.3.5 Prospective Application of the Pattern

Once a pattern has been identified, it can be applied to new scans. Scans of new
subjects are registered to the same template and masked using the same parameters
as in the original dataset. Next, the data are log-transformed, the mean per subject is
subtracted, and the SRP for each subject is calculated by subtracting the group mean
profile (GMP) that was determined from the original pattern identification dataset.
Finally, the pattern is projected onto the new data to calculate the subject score:

SS =SRP*PC

Subject scores are usually z-transformed with reference to the control group:

_ SS = Ussue
(o2

SS
SSHC

SS refers to the (“raw”) subject score, pgs e refers to the mean raw subject score
of the control group, oss e refers to the standard deviation of the raw subject scores
in the control group, and Zss refers to the z-transformed subject score of the new
subject. This implies that the mean z-score of controls will be set to zero, with a
standard deviation of 1. If the new dataset was acquired in a different manner than
the original pattern identification dataset (for instance, the subjects were scanned on
adifferent PET system), it may be necessary to z-transform the new data to a control
cohort that was acquired under the same circumstances (Kogan et al. 2019).

4.3.6 Validation

One cannot assume that components that result from PCA are intrinsically mean-
ingful. PCA is a mathematical operation, and aspects such as variance ordering and
orthogonality are true by design (Habeck and Moeller 2011). Even if the signals
only consist of noise, PCA will achieve a data reduction. Disease-related patterns
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may be found by coincidence, and therefore, it is important to check empirically if
the findings that were determined on the derivation set hold in a completely new
dataset. If the pattern successfully discriminates between patients and controls in a
new dataset, it is likely that this pattern can be interpreted as disease-related. This
can be substantiated if subject scores correlate to other markers of disease such as
disease duration or severity (measured with a validated scale) in new subjects. If
significant correlations are found, this would mean that the identified component
has some meaning other than a purely mathematical dimension.

In some cases, a testing set may not be available. This can be (partly) solved
using a leave-one-out cross validation (LOOCYV). In LOOCY, the analysis described
above is repeated several times, each time leaving out one subject. Imagine patient
x is part of our identification sample. We have included 20 controls and 20 patients.
We leave out patient x and re-determine the pattern on the remaining 20 controls and
19 patients. We subsequently calculate the subject score of this pattern in patient
x. We now have the LOOCV subject score for patient x. This procedure can be
repeated for each subject (patients and controls). It results in subject scores for each
subject, which are independent from the pattern identification step. The difference
between LOOCYV subject scores in controls and patients can be determined with a
t test. If significant, the original pattern is considered a predictor for the disease in
new cases.

4.3.7 \Visualization and Interpretation of PC Maps

PCs can be visualized as 3D brain images, in which each voxel has a weight (the
voxel value). Positive and negative weights indicate the direction of the principal
component vector with respect to the mean. Voxels with a greater absolute weight
in the pattern will be dominant in determining the subject score on that PC. This
does not mean that weaker voxel weights should be discarded. “Although highly
weighted regions may have a greater influence on the pattern score, regional values
alone are not as predictive as whole pattern expression in performance measures”
(Spetsieris et al. 2015). PCs are vectors, which do not have a direction. If controls
have higher subject scores on a PC compared to patients, then the PC map is multi-
plied with —1 by convention. Subsequently, positive voxel weights are color-coded
red in PC maps, and negative voxel weights are color-coded blue.

In order to interpret the pattern topography itself, it is useful to apply a thresh-
old to the PC image, which somehow indicates which regions are most important.
Several approaches have been applied in literature. For instance, all voxel values in
the PC map can be transformed to Z-values. Next, only the highest and lowest voxel
values in this “Z-map” are displayed (at a certain threshold, for instance, Z > 1.96
corresponding to P < 0.05). Regions that survive this threshold are interpreted as
the most important regions of the pattern; these regions are likely most involved in
the disease process.

An important issue arises when small sample sizes (20/20) are used, as is usually
the case in neuroimaging studies. Pattern maps will likely be variable depending on
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the specific sample of patients and controls. Thus, voxel weights in the pattern may
fluctuate (this is also the case for univariate approaches). Identification of the areas
most affected by the disease process becomes less reliable. This could be solved
by collecting many different datasets of controls and patients and determining the
disease-related pattern for each dataset. Imagine we have 1000 datasets of 20 con-
trols and 20 patients. Then we can derive 1000 patterns. We can study the distribu-
tion of voxel weights across the different patterns. For each voxel, we can determine
the mean voxel weight and its standard deviation. If a particular voxel has a similar
weight in each pattern and does not fluctuate much across populations (i.e., it has
a small standard deviation), then this voxel gives a reliable contribution to the pat-
tern and is interpreted as being important in the disease. In contrast, if a voxel has a
negative weight in some populations, but a positive voxel weight in others (i.e., the
distribution straddles 0), then this voxel is probably unreliable. In summary, if we
have such a distribution of voxel weights for each voxel, we can test which voxels
in the pattern are reliable.

In reality, such a study is hampered by small numbers of subjects in most datasets
and varying imaging protocols across centers which impedes pooling of datasets.
To approximate this distribution per voxel, we apply a bootstrap estimation proce-
dure. A bootstrap estimation procedure entails repeating the PCA several (~1000)
times on randomly sampled data (with replacement) from the pool of patients and
controls. In each iteration, the control and patient group contain the same number
of images. This means that some subjects are represented more than once in some
iterations, whereas others are completely omitted. We are thus creating multiple
datasets from just one derivation set, which is similar to the LOOCYV procedure. In
contrast to the LOOCYV, a bootstrap allows us to reuse subjects. For each iteration,
each voxel will get a voxel weight. With multiple iterations, it is possible to analyze
the distribution of weights of a voxel with a point estimate (average) of w and a stan-
dard deviation of s,. Using this distribution, we can determine thresholds, which can
subsequently be used to display only those voxels that we consider stable enough to
be interpreted as part of the disease topography.

Again, one approach to this threshold is to make a Z-map using the bootstrap dis-
tribution. Each voxel will receive a z-value: z = w/s,,. “Sufficiently small variability
of a voxel weight around its point estimate results in a Z-value of large magnitude,
and indicates a reliable contribution to the covariance pattern” (Habeck et al. 2008).
One can chose a certain z-threshold to show only stable voxels (e.g., Iz > 1.96 cor-
responding to a P-value of <0.05).

In previous studies, we chose to apply the confidence interval (CI) as a threshold.
For each average voxel weight (w), we can determine a CI interval based on the
distribution of the voxel weights from the bootstrap. This confidence interval (e.g.,
90%) has an upper and a lower bound. For positive regions, we display only those
voxels for which the lower bound of the confidence interval is larger than zero. For
the negative regions, we display only those voxels for which the upper bound of the
confidence interval is smaller than zero. Voxels for which the confidence interval
straddles zero are not visualized.
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The maps that follow from the bootstrap estimation procedure are only used for
visualization. It is likely that those voxels that survive the chosen threshold after
a bootstrap estimation procedure are truly related to the disease process and not
coincidentally found in a given sample. Thus, if a pattern were to be identified in a
completely new set of controls and patients, it is likely that those regions would be
identified again.

In summary, several validation procedures are necessary when identifying a
disease-related pattern with SSM PCA. First, it is important to calculate its expres-
sion in a new dataset to ascertain that the pattern can be generalized to new subjects.
If a validation set is not available, a leave-one-out cross validation can be applied.
This approach tests whether the pattern is a good predictor of the disease in a new
subject. Ideally, subject scores are also correlated to some aspects of the disease,
such as disease duration or severity of symptoms. Finally, the stability of the pattern
is assessed with a bootstrap estimation procedure. Stable regions will probably be
found again if the pattern was to be re-derived in a completely new population and
may thus be interpreted as important regions in the pathophysiology of the disease.

4.3.8 Advantages of SSM PCA Over Univariate SPM Models

In reality, neither mass-univariate nor SSM PCA can provide an exact description
of the pathophysiological mechanisms that underlie the disease and give rise to
alterations in neuroimaging signals (Moeller and Habeck 2006). That said, SSM
PCA has a few advantages over univariate approaches. The core issue in univariate
approaches is that they assume that voxels are independent, which is not the case.
The signal in neuroimaging data stems from the communication between neurons
over synapses. The strength of neuroimaging lies in the detection of these inter-
actions, to ultimately understand the network-level changes in certain conditions.
Disregarding interactions between voxels means that most of the data of interest is
in fact discarded (O'Toole et al. 2007). Multivariate approaches such as SSM PCA
take into account the interactions (covariance) between voxels, and patterns that
result from these analyses are more easily interpreted in the context of network-
level changes.

The assumption of independent voxels in mass-univariate analyses also leads to
a technical issue. In voxel-by-voxel comparisons, 10* to 10° voxels are compared
between two groups, with an equal number of ¢ tests. Performing multiple 7 tests
leads to an inflation of the error rate. In such cases the a-level has to be corrected
for multiple comparisons. This correction can be either too liberal (leading to type I
errors) or too conservative (leading to type II errors), potentially “correcting away”
true effects of interest in the data. Some solutions have been proposed (Genovese
et al. 2002), but investigators are often willing to tolerate higher (p > 0.05) false-
positive rates. For example, voxel clusters at uncorrected levels of P < 0.001 are
often reported for standard F- or T-statistics (Moeller and Habeck 2006). In con-
trast, multivariate analyses such as SSM PCA have enhanced statistical power, as
correction for multiple comparisons is not necessary.
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In addition, it is generally accepted that PCA-based multivariate approaches
have better sensitivity and replicability compared to univariate approaches (Habeck
et al. 2008; Habeck et al. 2010). SSM PCA is especially relevant when making
predictions in new cases. Habeck et al. compared SSM PCA pattern analysis to
univariate approaches in the study of Alzheimer’s disease (AD). In the univariate
approach, AD patients and controls were compared using SPM with a ¢ test. The
area that gave the best group separation in the derivation sample was chosen as
the region of interest (ROI). The ROI in this study was the right parietotemporal
area. Signal values in this ROI were inspected in new AD subjects, which were
subsequently classified as AD if the signal in that ROI surpassed a fixed threshold
level obtained from the derivation sample. The multivariate approach entailed the
identification of the AD-related pattern (ADRP) with SSM PCA. ADRP subject
scores were calculated in scans of new AD patients, and these subjects were clas-
sified as AD if the subject score surpassed a fixed threshold level obtained from
the derivation sample. Although both methods were able to distinguish between
patients and controls in the derivation sample, the classification of new subjects
was significantly better when the ADRP was used. Even when the most important
area was omitted from the scans (i.e., the voxel values in the right parietotempo-
ral area were set to zero in each subject), ADRP subject scores remained stable.
According to the authors, “this demonstrates how multivariate analysis takes into
account the interregional correlation structure in the data, and is thus not criti-
cally dependent on the inclusion of any particular brain region and can withstand
dropping out even the most salient areas” (Habeck et al. 2008). This also supports
the concept that pathological processes have a widely distributed effect on brain
function in neurodegeneration.

Appendix: Effects of Normalization

In this example we demonstrate effects of ratio normalization versus log transforma-
tion and subtraction of the mean, as applied in the scaled subprofile model (SSM).
In this example, we consider '®F-FDG uptake in two regions, A and B, in healthy
controls and patients. Region B is affected by the disease. Metabolism in this region
has changed compared to the control population with AB. In our example, region
A is unaffected in both groups. For each subject, there is a scaling factor ¢ which
accounts for effects due to, for instance, the amount of radioactive label adminis-
tered. The term ¢ is a subject-specific scaling factor which we need to eliminate
from the data.

Controls Patients

Region A Region B Region A Region B

q,4 q,8 q,A q,(8 + AB)
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We introduce another term n, which indicates the relative size of region A.

Mean brain uptake : nA+(1-n)B O<n<l

Often, *F-FDG uptake is altered in a few areas due to the disease. In such a case,
A will contribute much more to the whole-brain average than B. Situations where B
contributes only a small proportion to the whole-brain average include, for instance,
early Parkinson’s disease, or even its prodromal phases.

One can imagine situations where large parts of the brain are affected by the dis-
ease. For instance, in advanced Alzheimer’s disease, we would expect hypometabo-
lism in large parts of the cerebral cortex. In that case, B contributes overwhelmingly
to the whole-brain average. As a result, whole-brain and average "*F-FDG uptake
will be lower in patients compared to controls.

As discussed in the main text, a normalization is needed. Two options are dis-
cussed. The first method is global mean normalization by proportional scaling, which
is commonly applied and entails dividing each voxel value by the subject mean. The
second method is the normalization procedure as applied in SSM PCA. In the SSM,
data is first log-transformed and subsequently the subject mean is subtracted. In this
example we will show that:

1. Scaling effects (g) are eliminated in both methods.
2. Both normalization techniques can introduce artifacts in (the unaffected)
region A.

Global Mean Normalization
In global mean normalization, "*F-FDG uptake in each voxel is divided by the

mean uptake of the whole brain. For our example, the corrected values are shown
in below figure

/ Region A

q,4
q,(nA+ (1-n)B)

Controls Patients

Region B \ Region A Region B

q,B q,A q,(B + AB)
q,(nA+ (1 —-n)B) q,(nA+ (1 —n)(B+4B))  q,(nAd+ (1 —n)(B + AR))

Eh'mi(rare q; Eliminate q,

B A i (B + AB)
A+ (1-n)B) A+ (1—-n)(B +AB)) (A + (1—n)(B + AB))

A
mA+(1=-n)B)

Although ®F-FDG uptake in region A is the same in the control and patient
population, the values in this area are different after global mean normalization.
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Thus, the change in signal in region B due to pathology resulted in an altered
signal in region A after global mean normalization (i.e., it produced an artifact).

Log Transformation and Demean in the SSM

In the SSM, the data are first log-transformed, and next we subtract the mean (see
below figure). The fact that factor ¢ can be eliminated in the SSM indicates that any
multiplicative effect in the data can be removed, just like it can be eliminated in the
global mean normalization. Thus, both methods are invariant to scaling effects (also
see Spetsieris and Eidelberg (2011)).

Practical Examples

We modeled the formulas above in MATLAB, with two values for n (0.9 and 0.1)
and variable values for AB. For A and B, we chose the same (realistic) fixed values.

Controls Patients

Region A Region A
A A
(mA+ (1 —n)B) (mA+ (1 —n)(B + ABR))

Patients
Regian A Ragion 8
logiga4) log{gz(B + AB))
Subtract the mean Subtract the mean
tag(q,4)  [n1og(g,4) + (1 — mllog q,(8 + A8)| logg, (B + AB) — [nlog(g,4) + (1 — m)logg, (B + B)I
logq, + logAd = [nlogg, + nlogd + (1 = n)logg, + (1 = nhlog(B + AR)) logqs + log(B + AB) — [nlog gz + nlogd + (1 — n)logqz (1 — n)log(B + AB))
Eliminate g, Eliminate g,
logA — [nlaga + (1 — n)lag(& + AB)) log(B + AB) — [nlogA + (1 — n)log(B + &)
logA — nlagA — (1 — n)log( + AB)| log(B + AB) — nlogA = (1 = m)log(B + AB)
logA — nlogA — lag(B + AE) + nlog(B + AB) = lag(B + AB) — nlogA — lag(B + AB) + nlog(B + AR)
logA — log(B + AR) — n{logA — log(B + AB)) = —nlogd + nlog(# + AF)
= (1= n){logA — log(E + AR = n(log(# + AH) — logA)
A (B +AB)
i1 n}[ay(s_‘_ﬂm = n]'ogT

For controls, AB is set
to 0, and g2 is replaced
by q1
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Example 1: Changes in a few regions.

In this situation, 'F-FDG changes are present in a few brain regions. In patients,
most of the brain is unchanged, and thus A contributes most to the average (n is
close to 1).

We plotted the values for A and B after global mean normalization (“A,.,,~ and
“Biean”) and after SSM normalization (“A,,” and “By,,”). On the x-axis, we show the
values for AB, ranging from —1000 (i.e., a decrease in B) to +1000 (i.e., an increase
in B). Furthermore, we chose: A = 1001, n = 0.9 and B = 1001. The result is shown
in Fig. 4.11a.

It is clear that there is an offset difference between the two methods. This is
inherent to subtracting the mean versus dividing by the mean. When region B
becomes hypometabolic, there is a slight (artificial) increase in region A. However,
the changes in region A as a function of AB, even for extreme values of AB, are
relatively small. The slope for the new values in A and B after each normalization
procedure are almost equal.

Example 2: Changes in most of the brain.

In this situation, most of the cortex of the brain shows altered "®F-FDG uptake
in patients. Only a few brain regions have intact '®F-FDG uptake (A), and these
brain regions only contribute marginally to the whole-brain average. The altered
brain areas (B) dominate the whole-brain metabolism, and AB is large. To simulate
this situation, we repeated the example (A = 1001, B = 1001), but this time we
chose n = 0.1. The result is shown in Fig. 4.11b. This example illustrates that both
methods can cause an artifactual increase in A, when there is extreme hypometabo-
lism in B.

To summarize, the grand mean normalization and the normalization in the SSM
are equivalent methods. We illustrated that normalization to any mean is useful to
eliminate subject-specific scaling factors in 'SF-FDG-PET data, but inherently can
induce artificial increases and decreases. This is a known issue in any imaging study
where absolute values are not available, be it univariate or multivariate. It is there-
fore important that patients and controls have similar values of average '*F-FDG
brain uptake (i.e., global metabolic rate (GMR)).

This issue has been addressed in several publications concerning the spatial
covariance pattern that was identified in Parkinson’s disease (Parkinson’s disease-
related pattern, PDRP). This pattern is characterized by relatively increased metabo-
lism in subcortical structures (globus pallidus, putamen, thalamus, cerebellum, and
pons), relatively increased metabolism in the sensorimotor cortex, and relatively
decreased metabolism in the lateral frontal and parieto-occipital areas (Fig. 4.12). It
has been posited that the PDRP reflects normalization artifacts due to GMR differ-
ences between controls and patients (Borghammer et al. 2008; Borghammer et al.
2009). Specifically, widespread cortical decreases, rather than subcortical increases,
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Fig. 4.11 The normalized values for region A are plotted for the global mean normalization
method (A,.,: black) and for the SSM (A,,,: red). The normalized values for region B are also plot-
ted for both regions (B, and Byy,). In a, the results of example 1 are shown (n=0.9; A = 1001 and
AB ranges from —1000 to 1000). In b, the results of example 2 are shown (n =0.1; A = 1001 and
AB ranges from —1000 to +1000)
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X=-2

Fig. 4.12 The Parkinson’s disease-related pattern (PDRP) identified in 17 controls and 19 PD
subjects. Stable voxels are displayed, determined after a bootstrap resampling (90% confidence
interval not straddling zero). Overlay on a 7, MRI template. Positive voxel weights are color-coded
red (relative hypermetabolism), and negative voxel weights are color-coded blue (relative hypome-
tabolism). L = Left. Coordinates in the axial (Z) and sagittal (X) planes are in Montreal Neurological
Institute (MNI) space

were suggested to be characteristic of the PD disease process (Borghammer et al.
2010). However, both theoretical and empirical evidence is available to support the
contention that the PDRP topography holds true pathophysiological meaning and
that the “red PDRP nodes” are central to PD pathophysiology.

Spetsieris et al. showed that GMR reductions in PD patients were not significant
relative to healthy controls after 15 years of illness. GMR reductions also did not cor-
relate with symptom duration (in contrast to PDRP scores) (Spetsieris and Eidelberg
2011). Ma et al. analyzed absolute '*F-FDG uptake (with arterial blood sampling) in
24 patients with early-stage PD (Hoehn and Yahr I-II) and 24 controls. Both absolute
(physiological units) and relative (after global mean ratio normalization) scan data
was analyzed with a univariate model (SPM). A group contrast of relative count data
revealed increased metabolism in the globus pallidus, ventral thalamus, dorsal pons/
midbrain, and sensorimotor cortex, but cortical metabolic decreases were not found.
There was no significant difference in mean whole-brain CMRglc between patients
and controls. When absolute measures (physiological units without global mean nor-
malization) were compared between groups in a similar univariate SPM analysis,
no differences were found between controls and patients. This was attributed to the
marked reduction in between-subject variability achieved with the normalization
step. A similar analysis was also performed in repeat scans of PD patients. Globally
normalized values for the “hypermetabolic regions” showed greater reproducibil-
ity than the corresponding absolute values (in physiological units). Thus, instead of
introducing bias, the authors concluded that, when the global metabolic rate is care-
fully matched across groups, global normalization enhances the sensitivity of PET
to detect meaningful regional differences. The SSM PCA disease-related pattern that
was identified in the same data was similar to the SPM pattern but also included
some additional regions (Ma et al. 2009).

A PDRP has also been identified by first normalizing the data to the cerebellum
(non-log; every voxel divided by average cerebellar uptake), which was very similar
to the original PDRP. In addition, the “red” and “blue” parts of the PDRP have also
been used as separate vectors to calculate subject scores. Interestingly, both were
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able to discriminate between controls and PD patients of a new dataset, in which the
red pattern performed the best (Spetsieris and Eidelberg 2011). In addition, when
the “red” and “blue” vectors were calculated separately in longitudinal FDG PET
scans of de novo PD patients and controls (three scans per subject over a 48-month
period), the rate of progression of the red regions was the greatest and significantly
higher compared to controls. By contrast, the expression of the blue pattern did not
differ from controls at any of the three time points (Ma et al. 2009). Moreover, if the
“blue” areas in the PDRP define or cause the “red” areas in the PDRP, then the “red”
areas should disappear when the PDRP is re-derived in a subspace that excludes
the “blue” areas. This was not the case; a PDRP derived in the red voxel subspace
was very similar to the “red” vector of the original PDRP, and subject scores for
these two patterns were significantly correlated (Spetsieris and Eidelberg 2011).
Finally, Dhawan et al. studied a group of healthy participants in whom global meta-
bolic activity was experimentally decreased by sleep induction (with secobarbital).
Participants were scanned with '"F-FDG PET while awake and during stage II sleep
(monitored with EEG recordings). Sleep-induced reductions in global metabolic
activity did not increase PDRP expression in these controls. In addition, an SSM
PCA pattern comparing sleep and wake scans did not disclose any PDRP-like sub-
cortical increases (Dhawan et al. 2012).
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Abstract

Artificial intelligence (AI) is being intensely studied, evaluated, and applied in
healthcare and especially in medical imaging. Having shown performance equal-
ing that of experienced radiologists in tasks such as detecting pneumonia on
chest X-rays and identifying cancerous long nodules on X-ray, Al is poised to
radically optimize many areas of medical practice from early detection of disease
to prediction of progression and personalization of therapeutic strategy. Artificial
intelligence extends classical statistical techniques and machine learning, both of
which characteristically involve manually establishing imaging features hypoth-
esized to modulate a certain outcome. With Al, predictive features are automati-
cally established in a data-driven fashion, which in turn implies that raw
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unprocessed data can be fully utilized, human bias can be avoided, and previ-
ously unrealized disease mechanisms potentially can be discovered. Here we
discuss applications of Al in PET imaging for image reconstruction, attenuation
correction without CT, dose reduction, automatic identification of pathology, and
differentiation of disease progression. One of the costs of more automated analy-
ses and better accuracy with Al compared to classical machine learning is larger
volumes of training data; however, the field is rapidly evolving, and we discuss
possible mitigations as well as other directions for valuable future applications of
Al in PET imaging.

5.1 Introduction

Deep learning may be considered the big bang moment for artificial intelligence
(AI). The idea of mimicking human brain architecture to build “intelligent”
machines dates back at least to the period 1930-1950 where research in neurology
showed that the brain consists of networks of neurons exchanging electrical signals
and concurrently researchers showed that any form of computation can be per-
formed digitally. Over the years, however, mathematical models based on idealized
neurons organized in a hierarchical structure were realized to be unstable, brittle, in
the sense that training the same network more than once led to different solutions
and networks could yield surprising results given previously unseen input.

The pursuit for electronic brains gave way for less ambitious or “flat” models
such as support vector machines and even classical logistic regression for tasks
where a set of input variables should be combined to form a classification or predic-
tion. In general interest in neural networks was replaced by developments in what is
often referred to as classical machine learning. Despite a much simpler structure,
classical machine learning techniques often demonstrate good classification or pre-
dictive accuracy, have been extensively applied in medical imaging, and lie at the
heart of the relatively new field of radiomics, where tissue imaging features are
manually crafted, for instance, with texture analysis, and combined into estimates of
tissue type or presence of disease, for instance.

The idea that superior performance could be obtained by replicating neuronal
architecture was not entirely abandoned, but it was not until the period 2006-2012
that neural networks accomplished the breakthroughs leading to today’s enthusi-
asm. In this period Geoffrey Hinton, among others, discovered robust methods to
train neural networks and laid the foundation for the field now known as deep learn-
ing. It centers on artificial neural networks with “neurons” or nodes, as they are
called, organized in hierarchically connected layers, of which there can be hundreds
and the total number of free parameters on the scale of millions; see Figure 5.1b for
a schematic illustration.

As an indicator of progress, the annual ImageNet challenge considers a database
of one million images from one thousand categories. By 2011 only classical machine
learning had been attempted with the best algorithms reaching an accuracy around
75%. In 2012 deep learning yielded a remarkable 84.3% accuracy (Krizhevsky et al.
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Fig. 5.1 (a) Graphic representation of the idea of combining a number of input variables into a
single value. (b) Schematic illustration of an artificial neural network

2012). Perhaps the most surprising development was in 2015 where a deep neural
network was reported to exceed human performance in image classification (He
et al. 2015).

Clearly a natural domain for application of deep learning is medical imaging,
and the technology has already demonstrated notable success. One study showed
that a deep neural network (DNN) outperformed four radiologists in detecting pneu-
monia on chest X-rays (Rajpurkar et al. 2017). Another study found that a DNN
outperformed 17 out of 18 radiologists in a task of identifying cancerous long nod-
ules on X-rays (Hwang et al. 2019). With increasing demand for value and effi-
ciency in healthcare, and not least medical imaging, Al is poised—inter alia—to
improve early disease detection, accelerate image reading, and guide therapeutic
decision-making.

As a crucial component in routine diagnostics as well as clinical trials, nuclear
medicine stands to make important advances in combination with Al methodology.
So far the field appears less explored than other advanced imaging modalities. A
search on PubMed (October 18, 2019) for deep learning revealed only 65 publica-
tions with positron emission tomography against 271 with computed tomography
and 420 with magnetic resonance imaging. In the following, we discuss current
research directions, results, and future opportunities.

5.2  Artificial Intelligence

To better understand the potential and opportunities for Al in PET imaging, we offer
a brief introduction and overview of methods from a “user’s” perspective. Although
the terminology is ambiguous, artificial intelligence is often used as an overarching

term for methods aimed at identifying and parameterizing patterns in data. This can
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be as simple as a classical regression model, where a number of observed quantities
are combined to form an estimate or prediction of a target quantity. In a linear
regression, this target is a value such as the volume of a tissue type or the level of
metabolism. If the target is a category, such as presence or absence of disease, the
same linear combination can be formed but is then transformed to represent the
probability for each of the two, or more, classes. This is called logistic regression.
Figure 5.1a displays graphically the idea of combining a number of input variables
into a single value.

As we will see below, the state-of-the-art deep learning models, which can be
said to be at the other end of the spectrum of mathematical complexity compared to
regression, consist fundamentally of exactly the same simple building blocks,
namely, linear combinations of predictors. This is illustrated in Figure 5.1b, where
the small highlighted part of the larger network has exactly the structure of a regres-
sion model shown in Figure 5.1a. The difference is that deep neural networks com-
prise hierarchies of non-linear transformations of the basic linear combinations.

One advantage is that throughout the layers the model itself is able to construct
combinations of input variables which are predictive for the target outcome. This
allows tremendous flexibility in transforming—or encoding—the connection
between predictors and response, where these hierarchical models also have the
capacity to naturally uncover complex interactions across predictors. Interactions
are also possible in classical regression models, but they must be specified manually
a priori, and typically only subsets of pairs of variables are considered practically
feasible.

Another advantage is that since it is possible to have even very high numbers of
nodes in the input layer, it is feasible to input raw data such as image volumes (PET,
MRI, CT), text (electronic health records, clinical findings), and signals (EEG,
MEQG). In contrast, with classical regression, raw data is typically filtered, aggre-
gated, and subjected to manual feature extraction until rather few representative
quantities are left. Broadly speaking, a regression model can in this case be seen as
the result of human feature engineering followed by statistical fitting, whereas a
neural network automates the entire process. The manual steps in classical data
analyses prompt risk of bias, missing critical information and even overfitting, com-
promising generalizability. The latter is an often overlooked problem in classical
scientific data analyses. Whereas the regression model itself is thoroughly treated
by statistical software and estimates are properly corrected for level of data noise
and number of parameters, the many choices of which parameters to include and
how they are transformed and combined are not factored into the final results,
although substantially influencing the degrees of freedom and potentially limiting
reproducibility (Simmons et al. 2011; Ioannidis 2005).

A third advantage is that deep learning models have the capability to continue
improving in performance as the volume of input data increases. Simple models
such as regressions are naturally limited in their ability to model complex relations
between inputs and outputs, whereas deep neural networks, with up to millions of
parameters, are able to encode much more complex relations, such as the
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differences in disease progression across diverse populations. The volume of param-
eters is at the same time the major limitation of deep neural networks when data is
scarce, where classical models may be more robustly applied.

5.3 Scope of Classical Statistics Versus Deep Learning

As we have seen, modern deep neural networks extend in terms of architecture the
classical regression model. However, the purpose and the methods for fitting the two
approaches differ considerably. From a traditional statistical point of view, linear
combinations are used in an inferential way to quantify the degree (and type) of
influence a predictor seemingly exerts on an outcome measure. This has been quali-
fied, for instance, by the amount of change in response that would be expected by a
one-unit change in the value of the predictor. Formally, significance tests have been
used as an indicator for whether such an effect should be considered manifest or
could have occurred by chance.

Considering regression as a (very) simple machine learning model means chang-
ing one’s perspective. Instead of focusing on quantification of individual predictor’s
effect on the response, we focus on making the most accurate predictions. For this
purpose, the inferential question of whether a predictor is statistically significant is
less relevant, and instead the focus is on the collective predictive ability. This could
be conceived as a loss, but if, for instance, the input for a prediction, e.g., prediction
of progression of dementia, is an entire image, it can be argued that it is not the
individual voxels but rather their combined effects and interactions which are of
interest. In this case the notion of effect of a single element may be less meaningful
in that the voxel may have negligible influence in itself but may contribute via com-
plex interactions with other tissue regions. The matter of whether an element pro-
vides actual information, however, persists but manifests in a different way. Namely,
if a predictor does not consistently contribute to prediction of the response, its coef-
ficient parameter will typically be low or zero. This is ensured by a mechanism
during model development referred to as cross-validation, which may be seen as an
even stricter control than traditional statistical inference based on p-values. During
model development data used for fitting is typically split in a training partition and
a validation partition. This systematically simulates the real-world setting where the
model must make predictions for new and previously unseen cases. Hence if a pre-
dictor has an apparently strong effect on the outcome in the training data, but per-
formance on the validation data is low, then the estimated strength of each predictor
is adjusted accordingly. As a result, the final model will have “proven” that it per-
forms well on the data on which it was trained but is also expected to perform well
on unseen cases. This is a very important and valuable criteria especially for meth-
ods intended to be used in actual clinical settings. It is important to note that in tra-
ditional statistics, all data points are typically used for model fitting and p-values
used for inference are based on in-sample estimates. Hence it can be argued that
artificial intelligence algorithms undergo a stricter scrutiny than traditional
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statistical models and foster greater requirements for predictors than traditional
inference.

As an additional note, p-values are influenced not only by the size of the effect
they are associated with but also by the number of observations in the study.
Accordingly, as studies increase in volume of samples, assuming that the effect of a
predictor remains constant, the p-value will in any case become smaller. Therefore
even the most scientifically negligible effects will eventually become statistically
significant. In contrast, the actual influence and therefore predictive ability of the
variable remain the same, and therefore the performance of the model will not
change (Mouridsen 2015). Measurement of model performance can therefore be
argued to give a more robust picture of the face value of predictors.

5.4 Inferring CT and MR Information

A challenge for quantitative PET imaging is the spatially accurate source of photon
emission. The tissue-dependent attenuation, such as Compton scatter, of the gamma-
rays compromises precise volumetric reconstruction. A common resolution to this
problem is to acquire an additional CT, typically in combined PET/CT systems,
which yield clear identification of bone structures which can be used as a basis to
establish a photon attenuation correction map. However this may not always be a
practical solution wherefore deep learning has been considered to alleviate this
problem in different settings.

For instance, with combined PET/MR scanners, a CT scan for attenuation correc-
tion is unavailable. At the same time, while standard MRI sequences are excellent at
displaying soft-tissue contrast, MRI poorly displays bone and can therefore not be used
per se as a basis for attenuation correction. This can be mediated to some extent using
very short echo times, but errors remain in the attenuation correction. As an alternative
it has been suggested to generate a pseudo-CT image from MRI (Liu et al. 2018a).
With 40 subjects for whom T1 MRI as well as plain CT was acquired, an encoder-
decoder type neural network was constructed aiming to input an MR image and output
asegmented CT image. The pseudo-CT images were shown to match actual segmented
CT with a Dice coefficient of 0.803 + 0.021 for bone. In a prospective study with five
patients, a significantly lower PET reconstruction error was demonstrated with deep
learning-based attenuation correction than with standard Dixon-based soft-tissue and
air segmentation and anatomic CT-based template registration.

An alternative idea is to directly estimate a pseudo-CT image with tissue seg-
mentation from the uncorrected PET image, thereby avoiding the extra step involved
in acquiring a second image modality. One procedure for this was recently proposed
(Liu et al. 2018b). This study uses a similar encoder-decoder structure network as in
Liu et al. (2018a) except for the addition of short-cut connections making the archi-
tecture appear comparable to the U-net (Ronneberger et al. 2015). The network was
trained based on 100 subjects and validated on an additional 28. The authors report
a Dice coefficient for bone segmentation of 0.75 + 0.03 compared to actual non-
contrast CT and "®F-FDG-PET errors less than 2% compared to CT.
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Looking beyond attenuation correction, the possibility for image-to-image transla-
tion may also be useful, for instance, in diagnostic workup where two modalities are
necessary. For instance, amyloid deposition is a useful biomarker in patients suspected
of cognitive decline, where absence of amyloid depositions in the cortex can rule out
Alzheimer’s disease. Being established as SUV relative to a reference region, PET
imaging should therefore ideally be supplemented by a structural MR acquisition.
However, this may not be feasible in the clinic. As an alternative (Choi and Lee 2018)
suggests producing a pseudo-T1 MRI from '8F-florbetapir PET. The model was
trained using 163 patients from the ADNI study. The authors used a so-called genera-
tive adversarial neural network which is an approach in which two competing net-
works are trained in parallel (Goodfellow et al. 2014). One is trained with the aim to
generate realistic MR images from PET, while the other is trained to determine
whether an MR image is artificially generated or actually acquired. Performance test
in 98 subjects from 8 independent sites showed an absolute error in standardized SUV
significantly smaller than for other MR-less approaches such as template matching
and segmentation.

5.5 Image Reconstruction

PET images are created via a complex process where scintillation in the inorganic
crystals in the PET scanner is converted to spatially resolved maps of metabolic
activity. This process holds a number of possible applications for artificial intelli-
gence. Raw data produced in a PET acquisition are in the form of a sinogram repre-
senting the number of photon coincidence detections in pairs of detectors.
Conversion from sinogram data to tissue maps is known as image reconstruction.
This can be accomplished with so-called filtered backprojection (FBP) which is
computationally efficient but has a range of limitations including tendency to pro-
duce streaks across images from high-uptake areas and sensitivity to shot noise.
Statistical methods acknowledge the randomness in the underlying physical pro-
cesses and avoid the artifacts of FBP but are slow because they require iterative
maximization of a likelihood function, for instance, using expectation maximiza-
tion (MLEM).

In Cui et al. (2017), the authors suggest improving the MLEM by using stacked
autoencoders to automatically extract important image features. However it has also
been suggested to entirely bypass traditional image reconstruction and simply con-
struct metabolic maps from raw sinogram data (Haggstrom et al. 2019). By presenting
a neural network on the input side with sinogram data and on the output side spatial
maps established with traditional, but time-consuming, image reconstruction, the
authors demonstrate that the network becomes capable of prospectively producing
spatial maps from sinogram data with similar quality but more than 100 times faster.

PET image quality depends on the features of the scintillating crystals. More
coarsely pixelated crystals are less sensitive to noise but produce blurred images,
whereas thin-pixelated crystals yield higher spatial accuracy but at the cost of noise
sensitivity. Hong et al. (2018) suggest that comparable image resolution and better
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noise properties can be obtained with large crystals of bin sizes a factor 4 larger than
thin crystals using a deep residual convolutional neural network. For an application
of denoising with combined PET/CT data, see, for instance, Cui et al. (2019).

5.6 Dose Reduction

One of the main limitations for wider use of PET in the clinic is the necessity of a
radioactive tracer. Due to radiation exposure, PET imaging is often limited to termi-
nally ill or elderly patients. If the radiation dose could be reduced without substan-
tially compromising image quality, the more general clinical value of PET could
increase tremendously.

With image quality depending on the balance of bed duration and radiation dose,
early work (Xiang et al. 2017) used a reduction in acquisition time from 12 min to
3 min following a standard dose of '®F-2-deoxyglucose to simulate the effect of
administering a dose 75% below the standard. Using a concatenation of convolu-
tional neural networks with the pseudo-low-dose (i.e., short scan duration) images
as input and standard-dose (long scan duration) images as output to predict, the
study shows in 16 patients that in particular when the low-dose PET is comple-
mented by T1 MR competitive image quality is seen relative to a state-of-the-art
technique however 500 times faster.

Later, Xu et al. (2017) administered standard-dose 'SF-fluorodeoxyglucose
(370 MBq) in nine patients with glioblastoma with a PET/MR scanner. Low-dose
PET was simulated by randomly selecting only 0.5% of the count events based on
raw listmode data corresponding to a 200x reduction in dose. The authors used so-
called residual learning where a neural network is trained to learn the difference
between low-dose PET as input and standard-dose PET as output. This is found to
be a more robust training strategy for deep networks. The resulting network demon-
strated to produce superior performance in estimating standard-dose PET from low-
dose PET compared to state-of-the-art techniques.

Clearly synthetic images reconstructed from lower resolution will not match
standard acquisitions numerically exact, but for clinical purposes, a more relevant
question is whether similar diagnostic conclusions are reached with the synthetic
images. To study this, Chen et al. (2019) considered amyloid (fluorine 18
['8F]-florbetaben) PET/MR acquisitions in 39 subjects and a neural network archi-
tecture similar to Xu et al. (2017). Expert human assessment of amyloid status with
synthetic images yielded good accuracy compared to full-dose images with an accu-
racy of 89% corresponding to 71 out of 80 readings and was found to be similar to
intrareader reproducibility of full-dose images (73 of 80 [91%]).

5.7 Automated Detection of Pathology

Combined PET and CT imaging plays a major role in managing oncological patients
and in particular for radiation therapy planning. Outlining the gross tumor as well
as pathological lymph nodes is a time-consuming manual task. In addition to the
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time requirement, the manual intervention also limits reproducibility and standard-
ization. Automation of this task is therefore potentially a clinically valuable applica-
tion of artificial intelligence. This task has previously been approached with
traditional machine learning methods such as k-nearest neighbors, Markov random
fields, adaptive random walk with k-means, and decision trees (Yu et al. 2009;
Comelli et al. 2018; Yang et al. 2015; Stefano et al. 2017; Berthon et al. 2017).

Using a deep learning approach, Moe et al. (2019) describe a method for auto-
matic delineation of gross tumor volume as well as pathological lymph nodes. This
is based on the often used U-Net convolutional architecture (Ronneberger et al.
2015). Imaging regimen included FDG-PET and CT. The best correspondence with
manual outlining was seen when using PET and CT images in combination, fol-
lowed by PET only. The Dice coefficient for PET/CT was 0.75 + 0.12, whereas for
CT only this dropped to 0.65 + 0.17. This was based on a training set of 142, valida-
tion set of 15, and test set of 42 patients stratified on tumor T-stage.

In a smaller study (Huang et al. 2018), however with combined PET and CT data
from two sites, a convolutional architecture also based on the U-net was proposed
to segment gross tumor volume. To mitigate the challenge of a lower number of
patients, this study explicitly used simulated data augmentation in the form of rotat-
ing the images, horizontal mirroring, changing the contrast, and image scaling. The
resulting median Dice score as calculated with leave-one-out cross-validation was
0.785 with a range of 0.482 to 0.868.

Correct delineation of tumor volume in clinical practice also depends on the abil-
ity to differentiate between lesions due to tumor progression and tissue damage due
to radiotherapy. For instance, radiosurgery treatment of patients with brain metasta-
ses may result in radiation necrosis rates between 25% and 50% (Minniti et al.
2011). Mis-interpretation of treatment-induced change as tumor progression may
lead to unwarranted treatment approaches or cessation of effective therapy as well
as biased estimation of therapeutic success in clinical trials.

Whereas reports (Chao et al. 2001) on the use of FDG-PET for differentiating
metastasis relapse from radiation damage are ambiguous on the clinical value, with
sensitivities and specificities ranging from 40% to 100%, the MET and FDOPA
PET have more consistently demonstrated clinical feasibility with sensitivities and
specificities around 80%. Similarly for the differentiation of treatment-related dam-
age and progression of glioma, PET imaging with FET and FDOPA has shown
clinically relevant performance. While artificial intelligence may be hypothesized to
improve these performances by a more detailed analysis of lesion extent and texture
notably the implementation of dynamic PET (Galldiks et al. 2012), where subtle
patterns in the uptake curves may hold further clues, which can be exploited by
computationally intensive methods.

Detection of disease can also have a more global aim than regional gross tumor
or metastasis identification and delineation. For instance, detection of Alzheimer’s
disease (AD) is important for diagnostic purposes and is expected to become even
more critical with the advent of therapies to potentially delay onset, slow progres-
sion, or even cure the disease. At the heart of this task is separation of prodromal AD
cases from patients with mild cognitive impairment (MCI) who will not progress to
AD. It is speculated that a deeper understanding of the progression from MCI to AD
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is necessary also at the time of development of pharmacological interventions—
since only a fraction of patients with symptoms of MCI develop AD, the patients
who would not progress to AD will seemingly dilute actual therapeutic effects for
those who will progress. Being able to design studies such that only patients pre-
dicted to progress to AD from MCI are included will increase the statistical power
for detection of actual effects.

FDG-PET plays an important role in the diagnosis of AD due to its ability to
show metabolic activity which is recognized to preceed anatomical changes, as
observed with MRI, and account for the cognitive and functional decline observed
with the disease. However, success in developing automated methods for predicting
which MCI cases will progress to AD has been limited with accuracies typically not
exceeding 80% (Lu et al. 2018).

One larger study (Lu et al. 2018) considers 1.051 patients from the publicly avail-
able ADNI dataset with structural MRI as well as FDG-PET. Subjects were divided
in normal controls, stable mild cognitive impairment (sMCI) class, progressive mild
cognitive impairment (pMCI) class, and those clinically diagnosed with Alzheimer’s
disease. A deep learning approach was suggested which simultaneously analyzes
images across different spatial resolutions. This produces a number of classifiers,
which are then combined into a single result via so-called ensemble learning. An
accuracy of 82.51(5.35) was demonstrated for automatically differentiating between
stable and progressive MCI. For the classification of NC versus AD, the accuracy
reported was 93.58 (5.20). The principle of combining multiple classifications into
one has also previously been explored in a subset of the ADNI data (Ortiz et al. 2016).

This study employed a strategy of pre-training the neural network using a so-called
autoencoder approach. Autoencoders have previously shown efficiency in detection of
AD in a smaller subset of 311 subjects from the ADNI data (Liu et al. 2014). One of the
challenges in deep learning models, which contain a large number of unknown param-
eters, is finding suitable starting values (known as initialization). An autoencoder can
be used to mitigate this problem by effectively reducing the complex information in
raw data to more compact distillation. This is accomplished by channeling the high-
dimensional raw data through a lower-dimensional layer of hidden units in neural net-
work and then optimizing this layer such that it can at the same time reproduce the
input data. This is similar to traditional principal component analysis, where raw data
is reduced to principal components which are linear combinations of data input.
Autoencoders generalize this approach by using non-linear transformations. The many
layers in a deep neural network can now be initialized in a bottom-up approach where
each layer is initialized by the hidden layer of an appropriate autoencoder.

5.8 Considerations for the Future

Across medical imaging and healthcare in general, there are a seemingly endless
stream of new ideas for application of Al and a corresponding multitude of proof-
of-concept-level studies. However the uptake in clinical practice is still minimal. In
2017 and 2018, only around 14 algorithms were approved by the Food and Drug
Administration (FDA) in the USA. It is a concern that few of the companies behind
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these products have published peer-reviewed papers let alone conducted prospective
clinical trials. This shows a trend where validation of technology as well as actual
clinical value is lacking.

One reason for the lack of validation studies is that datasets in medical imaging
are typically small. While some of the largest medical imaging datasets used for
deep learning contains in the order of 100.000 patients, run-of-the-mill research
studies are much smaller with cohort sizes from around 30 to a few thousands. This
may be due to limited funding, but privacy concerns also make compilation of large
data volumes from different sites across the world let alone commercial participa-
tion difficult. Research publications, such as those reviewed here, do offer valida-
tions, but only the so-called cross-validations which are essentially made by
randomly splitting the dataset into training and testing. The testing dataset there-
fore, statistically, has the same properties as the training data which may not be the
case if new data is acquired with another machine or at another hospital. Also inclu-
sion and exclusion criteria must be exactly identical. For clinical uptake not only
larger datasets with representative samples are critical to show consistent high accu-
racy, but the technologies must be tested prospectively in the clinic to show actual
value. With smaller datasets the risk of bias also increases, and bias in Al is a con-
cern. However in fairness this should be compared to human bias which has also
been reported to be significant (Topol 2019). In the case of Al, the bias is in princi-
ple avoidable by having representative data samples. Finally although cross-valida-
tion is the typical performance metric used in Al studies, the field lacks a standard
for how this is performed. Without such standardization, it is difficult to compare
performance across studies. In classical statistics, p-values have the role of a stan-
dardized measure of significance. Although such single measures may be misused
or overinterpreted, as has been the case with p-values (Ioannidis 2005), efforts
toward developing standardized reporting practices will be beneficial.

For the first wave of Al enthusiasm algorithm performance has been the center of
attention. To move the field forward, increase trust in Al technology, and increase
clinical acceptance, the pursuit to develop explainable Al will likely have a substan-
tial role. A common criticism of deep neural networks is that they are black boxes
unable to account for their otherwise high accuracy. In Europe, the General Data
Protection Regulation (GDPR) stipulates that decisions relating to a patient may not
fully rely on automated processing, often taken to mean that patients have a right to
an explanation for decisions. As the field moves forward, the ability of algorithms
to account for their decisions may not only benefit patients but also be the source of
many new insights and discoveries based on combinations of imaging and health
record data made possible by modern versions of artificial intelligence.
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Abstract

Multimodal brain imaging has become an established clinical and research tool
for diagnosis and disease progression of brain disorders. Among available
imaging modalities, magnetic resonance imaging (MRI) and positron-emission
tomography (PET) can provide a wide spectrum of data for the in vivo mapping
of neurobiological functions and brain morphology while demonstrating to
relationships between behavioral and neurobiological factors. Since MRI
mostly uses endogenous contrast mechanisms to visualize and quantify tissue
characteristics, optimal sequence design is essential for the diagnostic informa-
tion of MRI. On the other hand, PET imaging is always based on the exogenous
contrast of an injected PET tracer. Therefore, characteristics of the PET tracer
determine the quantitative and diagnostic potential of PET. This chapter will
focus on both of these modalities and shortly discuss the potential of multi-
modal or hybrid MR/PET imaging. We will not cover MR spectroscopy nor
specific applications of H,'*O PET since this will be discussed in other chapters
of this book.

6.1 MRI Basics

6.1.1 Nuclear Magnetic Resonance (NMR) (Gibby 2005; Pooley
2005.; McRobbie 2003; NessAiver 1997; Elster
and Burdette 2001)

Nuclei with an odd mass or odd atomic number have an intrinsic spin angular
moment with an associated magnetic moment. In the presence of an external mag-
netic field By, the magnetic moment of nuclei with a one half spin will line up in
parallel with the applied magnetic field with an either spin-aligned or spin-opposed
orientation. The energy difference between the two orientations is very small at
room temperature with a small majority of nuclei populating the lower energy spin-
aligned orientation. This will cause a net macroscopic magnetization M, which will
be directed parallel to B, and which strength will depend on the spatial spin density
and the magnetic field strength. Next to this magnetization, nuclei will tend to pre-
cess in phase around the magnetic field with a frequency depending on the nucleus,
the molecular structure, and the strength of the magnetic field. This frequency is
traditionally called the Larmor frequency. Generating a MR signal is a two-phase
process. During the transmission phase, a radio frequency (RF) signal induces a
“spin flip” resulting in a rotating transversal magnetization in the plane perpendicu-
lar to the longitudinal external magnetic field B, and in a residual longitudinal com-
ponent if the flip angle (FA) is not 90°. During the receiving phase, the transversal
magnetization is picked up to generate the MR signal. During transmission, the RF
excitation frequency must fit the Larmor frequency to have optimal resonance
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conditions, hence the term magnetic resonance. The Larmor frequency for the 'H
nucleus amounts to 42.58 MHz/Tesla (Fig. 6.1).

After excitation and during the receiving phase, relaxation occurs when magne-
tization returns to the state prior to RF excitation. One can differentiate two types
of relaxation. Longitudinal relaxation describes the relaxation where the longitudi-
nal magnetization component is exponentially restored to initial net longitudinal
magnetization M,. This relaxation is referred to as spin-lattice relaxation and is
quantified by the longitudinal relaxation time constant 7;. Transverse relaxation
corresponds to the so-called spin-spin relaxation and describes the exponential
decrease of the transverse magnetization component perpendicular to the longitu-
dinal external magnetic field. The representative parameter is the transverse relax-
ation time constant 7,. Both relaxation processes take place simultaneously with
relaxation times 7, and 7, being characteristic for a specific tissue type. While the
T)-relaxation time is within the range of 300 ms (fat) to 3000 ms (fluids), 7>-
relaxation times are always much shorter ranging from 30 ms (muscle) to 2000 ms

MRI

Morphology Blood Flow
T1, T2(*), PD, IR H,'°0

Diffusion Weighted Imaging Glucose Metabolism
DWI, DTI, ADC 18F-FDG

Perfusion Weighted Imaging Protein deposition
ASL, DSC, DCE e.g. ''C-PIB

Functional Imaging Amino Acids
BOLD 11C-methionine/'8F-FET

Vascular Anatomy Enzymatic activity
MR Angiography e.g. ''C-MP4A

Metabolites Neurotransmission
MR Spectroscopy e.g. 'C-raclopride

Fig. 6.1 Schematic overview of MRI and PET imaging potential
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(fluids) (De Bazelaire et al. 2004). Specifically for brain imaging and for a 3 T
magnetic field, 7}-relaxation times are 832 ms for white matter and 1331 ms for
gray matter, while 7,-relaxation times are 79.6 and 110 ms, respectively (Wansapura
et al. 1999).

6.1.2 Magnetic Resonance Imaging (MRI) (Paschal and Morris
2004; Hennig 1999; Elster and Burdette 2001; NessAiver
1997; McRobbie 2003)

MRI consists of applying the NMR principle to construct an image representing the
proton density of different tissue voxels. Many of those protons are water protons
such that MRI is particularly well suited for imaging soft tissue structures. The fre-
quency of the proton MR signal is proportional to the magnetic field to which they
are subjected during relaxation. An image can be made by producing a set of well-
calibrated magnetic field gradients in all directions so that a certain magnetic field
strength can be associated with a given location. In the longitudinal direction, a slice
selective excitation is induced by applying a magnetic field gradient, a so-called
slice selection gradient. This way, Larmor frequency and RF excitation fulfill the
resonance condition in a specific axial slice such that only the magnetization of that
slice is excited and contributes to the signal. In one of the transversal directions,
phase encoding is applied with different phase-encoding gradients between RF
excitation and readout. This is achieved by briefly switching on a magnetic field
gradient in that direction when neither excitation nor readout is performed. This
additional magnetic field gradient will induce differences in spinning rate such that
when the gradient is switched back off again, proton spinning is dephased along this
direction, and the signal is phase encoded. Finally, frequency encoding is applied
along the other transversal direction by applying a readout gradient. This way, the
frequency of the signal during readout is dependent on the spatial location in that
direction. The signal of all voxels from the selected slice is recorded simultaneously
in the so-called k-space by performing sequentially different phase-encoding steps.
This k-space represents the Fourier transform of the MR image. The central part of
k-space covers the lower spatial frequency range of the image representing the con-
trast and signal-to-noise content, while the outer part of k-space contains the high
frequencies or resolution content. In case of contrast-enhanced MRI, the central part
of k-space could be sampled first using a more centric approach, while for very fast
scan techniques, spiral-like trajectories could be considered instead of the line at a
time strategy. Multi-slice imaging and exploiting k-space symmetry can further
reduce the acquisition time substantially.

During the phase encoding, phase is also encoded outside of the field of view
(FOV), such that structures or body parts that are positioned outside of the FOV but
within the encoded image slice contribute to the image and can cause aliasing arti-
facts in the phase-encoding direction. Other artifacts that mainly propagate in the
phase-encoding direction are motion artifacts due to the movement of spins between
the phase encoding and signal reading. During movement through the magnetic
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gradient field, spins change frequency and thus acquire an additional phase shift
causing a spatial mismapping of the signal of these protons. In the frequency-
encoding direction, the pace of spatial encoding and sampling is such that physio-
logical motion only causes limited spatial blurring in that direction.

In contrast, chemical shift artifacts can arise in the frequency-encoding direction.
The chemical bounding of protons causes a shift in their precession frequency due
to magnetic shielding provided by the electron shell. For the same field strength,
protons bound to water have higher resonance frequencies than protons bound to
lipids. Therefore, spatial encoding by the frequency-encoding gradient will shift fat
relative to water in the frequency-encoding direction resulting in dark and/or white
band at the interfaces between water and fat. This chemical shift artifact can be
reduced by suppressing the signal from fat using saturation or inversion recovery
techniques. Another method to minimize chemical shift artifacts is to use a wider
receiver bandwidth, such that the bandwidth for each pixel is wider and thus a given
chemical shift corresponds to fewer pixels. Drawback of wider receiver bandwidth
is however a lower signal-to-noise ratio.

6.2 MRImaging Sequences (Bitar et al. 2006; Boyle et al.
2006; Poustchi-Amin et al. 2001)

In standard clinical setting, parameters of MR sequences are chosen such that
images are generated with a contrast depending on the proton density, and thus tis-
sue composition, or on the differences between T)- and/or T)-relaxation times
between different tissue types. To understand how contrast is generated, one needs
to be aware that after RF excitation, signal intensity of the transversal magnetization
decays very fast due to 7, relaxation. This is called the free induction decay (FID)
of the signal. Due to local microscopic magnetic field inhomogeneities and chemi-
cal shift effects, the signal actually decays much faster with a shorter effective time
constant 7,*. Therefore, an echo of the original signal is generated and measured.
The time between initial excitation RF pulse and the echo signal is the echo time TE
and one of the key sequence parameters together with the repetition time TR which
represents the time between two consecutive RF excitation pulses. In general, stan-
dard MRI sequences can be subdivided in three classes depending on how the echo
of the original signal is generated and how the readout of the signal is performed.

6.2.1 Spin Echo (SE) Sequence

Following the excitation pulse, the net magnetization in the transverse plane will
start to dephase due to 7, relaxation, and signal intensity will drop very fast. A short
time after the excitation pulse, a 180° pulse is transmitted causing the spins to
rephase and the signal to rise again. This signal is sampled and called an echo of the
initial net transversal magnetization. Echo time is twice the time between the initial
excitation RF pulse and 180° RF pulse. The initial excitation pulse used to induce a
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flip angle (FA) of 90°; however, smaller or larger flip angles are used as well.
Advantage of a SE sequence is the strong signal which is compensated for local
field inhomogeneities and different chemical shifts and is therefore less susceptible
to artifacts. Rephasing however requires longer minimal echo times due to the addi-
tional 180° pulse and longer repetition times for an acceptable signal. This will
increase total scan time and therefore the risk for motion, while a larger amount of
RF energy will be deposited in the body. In order to reduce acquisition time, mul-
tiple echoes are generated after a single excitation pulse using an echo train (Harms
et al. 1986). The sequences are called turbo spin echo (TSE) or fast spin echo (FSE)
sequences. The number of echoes is called the turbo factor, and measurement time
is reduced by this factor compared to standard SE imaging. However, contrast in
fast spin echo needs to be described differently compared to standard spin echo
sequences since multiple echoes are generated at different echo times. From these
echoes, the ones corresponding to the central part of the k-space will determine
image contrast, and the time between these echoes and the excitation pulse is called
the effective TE.

Since a 180° rephasing pulse is used for the echo, SE and FSE sequences are
insensitive to microscopic magnetic field inhomogeneities caused by iron deposi-
tion or specific tissue composition. Therefore, real 7, weighting is only possible by
this kind of sequences, excluding 7,* contrast and opposed-phase imaging. On the
other hand, SE and FSE sequences generate a strong signal compensated for local
field inhomogeneities and therefore less sensitive to artifacts. Examples of 7,
weighting can be found in Figs. 6.2 and 6.3.

6.2.2 Gradient Echo (GE) Sequence

GE sequences differ from SE sequences in the way the echo is formed. GE sequences
create an echo by reversing the polarity of the readout or frequency-encoding gradi-
ent. A gradient pulse directly after the RF pulse enhances dephasing of spin fre-
quencies such that the FID occurs considerably faster than under normal conditions.
By reversing the polarity of the gradient, dephasing of the spins is reversed and
spins start rephasing till at a certain moments all spins are in phase again and the
echo is generated and measured. This gradient polarity reversal technique can work
much faster than a 180° pulse for rephasing spins. This technique can be combined
with a partial FA, which means smaller than 90°, making this approach very suitable
for fast imaging sequences. Since a partial FA decreases the amount of magnetiza-
tion flipped into the transverse plane, longitudinal magnetization is recovered faster,
allowing a shorter TE and TR and thus decreased scan times while preserving image
quality and limiting RF deposits. On the other hand, GE sequences are susceptible
to microscopic magnetic field inhomogeneities and chemical shift effects. GE imag-
ing sequences therefore produce 7,*-weighted images reflecting faster spin dephas-
ing and signal loss due to both spin-spin interactions and magnetic field
inhomogeneities and allowing opposed-phase imaging. Due to different resonance
frequencies of water and fat, the signal intensity from a voxel containing both water
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Fig. 6.2 T,-weighted TSE (left column) and FLAIR (right column) brain imaging. First row:
subcortical white matter hyperintensities better visible on FLAIR compared to 7,. Second row:
cerebellar infarct visible on 7, TSE which can be missed on FLAIR

and fat will oscillate, reaching a minimum when fat and water are out of phase and
a maximum when they are in phase. If the echo is created with fat and water in
phase, their signals will add up. When the echo is performed when they are out of
phase, their signals will be subtracted. This way, water and fat can be separated. For
spin echo sequences, these effects are not feasible since phase shifts due to chemical
shift are canceled by the 180° refocusing pulse.

6.2.3 Echo-Planar Imaging (EPI) Sequence

EPI sequences are a very fast way of acquiring MRI data and form the basis for
many advanced MRI applications such as diffusion, perfusion, and functional imag-
ing. The excitation pulse is followed by a gradient echo train to continuously mea-
sure the MR signal and fill the k-space completely (single shot) or partially
(segmented acquisition) within a single TR interval. The gradient echo train consists
of fast oscillating gradients for frequency encoding in the readout direction and
short gradient pulses for phase encoding. Therefore, a high-performance gradient
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Fig. 6.3 T,-weighted TSE (left column) and SWI (right column) brain imaging. First row: diffuse
axonal injury in an 8-year-old girl—multiple hypointense focal lesions on SWI not visible on 7,
TSE, secondary to susceptibility from blood products after trauma. Second row: normotensive
demented patient with cerebral amyloid angiopathy—multiple black dots on SWI in subcortical
white matter in parietal and occipital lobes

system is required with short rise times to allow frequent gradient switching.
Specific compositions of readout and phase-encoding gradients define the spatial
encoding and the trajectory to fill up k-space. Several types of trajectories such as
spiral trajectories can be compiled to optimize sampling of k-space and reduce scan-
ning time. However, this often results in poorer spatial resolution. Spatial encoding
of EPI sequences is sensitive to magnetic susceptibility and can be disturbed by
gradient imperfections. Increasing the scan time and using segmented rather than
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single-shot sequences can reduce artifacts. Due to the narrow readout bandwidth in
the phase-encoding direction, chemical shift artifacts are possible in this direction
requiring fat signal suppression.

The contrast generated with an EPI sequence is determined by the echo sequence
and additional contrast-related gradient pulses. Both SE-EPI and GE-EPI are
available.

6.3 MRImaging Contrasts

The possibility of performing MRI with different image contrasts often results in
considering MRI as a multimodal imaging technique or at least as multispectral
imaging. Different contrast mechanisms are available such as proton density con-
trast and contrast based on relaxation along and perpendicular to the static magnetic
field; chemical shift contrast of particular use for molecular imaging; motion-
weighted contrast for imaging blood flow, tissue perfusion, and diffusion;
susceptibility-weighted contrast used for functional MRI; and other advanced con-
trast mechanisms such as magnetization transfer.

6.3.1 T, T,, and PD-Weighted Image Contrasts (Gibby 2005;
Pooley 2005; McRobbie 2003; NessAiver 1997)

In case of SE sequences, the effect of 7, relaxation on the image is controlled by TE,
while the impact of 7 relaxation is dependent on TR. For a sequence with a short
TR and very short TE, spins will undergo very limited dephasing due to 7, relax-
ation, and without 7} relaxation, all tissue types would generate a similar MR signal.
However, the short TR will not allow the net magnetization in the longitudinal
direction to recover fully between two RF excitation pulses. The recovered longitu-
dinal magnetization will depend on the 7'-relaxation time of the underlying tissue
type. Fat, for instance, with a shorter T)-relaxation time will have a larger net longi-
tudinal magnetization restored than water with a longer T7)-relaxation time.
Consequently, the transversal magnetization generated during the next RF excita-
tion pulse will be higher for fat than for water, and therefore, the contribution of
fluids to the overall signal will be lower. In this case the MR signal is 7} weighted,
meaning that contrast is dependent on T relaxation differences between tissues
where tissues with longer 7'-relaxation times contribute less to the signal and there-
fore appear darker in the MR image.

If the TE of a SE sequence is prolonged, dephasing of spins due to 7, relaxation
will be more pronounced and will depend on the differences in 7,-relaxation times
between tissue types. If a longer TE is combined with a relatively long TR, full
recovery of the net longitudinal magnetization is obtained for all tissues, and tissue
differences in 7 relaxation are canceled out. Consequently, the transversal magne-
tization generated during the next RF excitation pulse is the same for all tissues such
that the MR signal will be dependent only on differences in 7, relaxation and the
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MR image contrast will be T, weighted. Water, for instance, has a long 7)-relaxation
time and will still show some phase coherence in case of a long TE, while most
other tissues will have dephased much more and will contribute less to the MR sig-
nal. Hence, water will appear bright in a 7,-weighted image, while other tissue types
will have lower intensities (see Figs. 6.2 and 6.3).

If a sequence combines a short TE with a long TR, 7, relaxation will have a very
limited impact on the image contrast, while the net longitudinal magnetization will
have recovered for most tissue types. Thus, the MR contrast will be dominated nei-
ther by 7 relaxation nor by 7, relaxation but will depend only on the proton density
(PD) of the different underlying tissue types. A tissue type with a high proton den-
sity such as water will produce a high MR signal and appear bright, while tissues
containing few protons will generate a low signal and appear dark.

SE sequences are especially suited for acquiring images of the same slice with
different contrast. Generating a second echo with a longer TE within the same TR
interval and with the same phase encoding will generate a PD-weighted image for
the echo with the short TE and a more 7,-weighted image for the echo with longer
TE. This way, a T,- and PD-weighted image of the same slice position can be
acquired without increasing overall acquisition time. Specifically for FSE sequences,
a short TR for T)-weighted sequences limits the echo train length. Therefore, FSE
sequences are preferably used for 7,-weighted imaging.

Contrary to SE sequences where the FA is mostly fixed to 90°, GE sequences use
a range of flip angles, and contrast is determined mainly by FA and TE. If FA
decreases, T,* weighting is favored since the residual longitudinal magnetization
will be higher and the recovery of longitudinal magnetization for a given 7, and TR
will be more pronounced. A high FA and short TE will generate 7', weighting, while
a medium FA and short TE corresponds to PD-weighted contrast.

Given these types of contrast, it is not easy to decide on the best image contrast
for a given pathology. In general, T}-weighted contrast allows a clear delineation of
anatomical brain structures, while for brain pathologies involving edema, 7>- or
PD-weighted contrast could be preferred (Fullerton 1984).

6.3.2 Inversion Recovery (IR)

Inversion recovery (IR) sequences are frequently used to generate 7'-contrast-
weighted images. IR sequences can be considered a standard sequence preceded by
a 180° excitation pulse in the longitudinal direction. This 180° excitation pulse will
induce T relaxation that takes twice as long as for a standard sequence. No 7, relax-
ation will occur since no transversal magnetization component is generated. After a
specific time interval of 7 relaxation, called the inversion time TI, a standard
sequence is applied to generate an image. Because of this preceding 180° excitation
pulse, one can make better use of differences in 7 relaxation between various tis-
sues to create higher 7'-weighted image contrast. This is however at the expense of
longer acquisition times compared to standard 7'-weighted sequences. TR time is
now defined as the time interval between two 180° excitation pulses in the
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longitudinal direction. Since TE is relatively short compared to TI, image contrast
of IR sequences is mainly determined by TI. Choosing this TI appropriately will
suppress the signal from specific tissue types. If, for instance, the standard sequence
part of an IR sequence is started at the time the longitudinal magnetization vector of
fat or cerebrospinal fluid (CSF) crosses the zero line, no magnetization can be
flipped into the transversal plane, and therefore no signal can be generated for this
tissue type. In case of fat, this type of IR sequence is called short TI inversion recov-
ery (STIR) (de Kerviler et al. 1998) and is very effective in those cases where fat
signal interferes with the given pathology such as the detection of water in fatty
tissue in case of inflammation in the joints or infiltrating tumors in bone marrow.
The IR sequence for suppressing the signal of CSF is called fluid-attenuated inver-
sion recovery (Eastwood and Hudgins 1998; Simonson et al. 1996) (FLAIR) (see
Fig. 6.2). This sequence is very useful for visualizing demyelinating diseases and to
assess vascular white matter hyperintensities and infarctions.

6.3.3 Susceptibility-Weighted Imaging (SWI)

The uniformity of the static magnetic field B, is slightly distorted by the magnetic
susceptibility or magnetizability of substances that are present in the FOV. This
magnetic susceptibility exhibited by a tissue or substance will result in signal loss
(Wendt et al. 1988). In particular the magnetic susceptibility of oxygenated and
deoxygenated blood differ, with oxygenated blood being diamagnetic and decreas-
ing local field strength, while deoxygenated blood is paramagnetic and increasing
local field strength. Protons in the tissue surrounding the blood vessels are affected
by this microscopic field variation, resulting in a loss of phase coherence. This
induces signal cancelation and a decrease in total signal intensity. Next to phase
changes at blood/tissue interfaces, the difference in magnetic susceptibility between
oxygenated and deoxygenated blood, although small, also induces 7>* changes
between the arterial and venous bed of the vascular system. Using 3D GE sequences,
susceptibility-weighted imaging (SWI) picks up these subtle differences in mag-
netic susceptibility in order to detect bleedings and small iron depositions (Chavhan
et al. 2009) (see Fig. 6.3) or as part of a multimodal imaging approach for neurode-
generative diseases (Haller et al. 2010) such as Alzheimer’s (Ramani et al. 2006)
and multiple sclerosis (MS) (Langkammer et al. 2013; Tavazzi et al. 2007; Walsh
etal. 2014).

6.3.4 Diffusion-Weighted Imaging (DWI) (Luypaert et al. 2001;
Bammer 2003; Le Bihan et al. 2006; Huisman 2003;
Hagmann et al. 2006)

Diffusion reflects the Brownian, a random movement of water molecules at micro-
level. This random motion is hindered by cell membranes, fibers, or large molecules
such as proteins, while concentration of these obstacles depends on tissue type or
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pathology (tumor tissue, abscess, and edema). Measuring the mobility of water mol-
ecules therefore gives indirect information about the tissue structures in terms of
cell density and granularity such that tissue types can be better characterized and
differentiated.

The contrast of diffusion-weighted imaging (DWI) is based on the mobility of
the extracellular water by adding diffusion gradients to the imaging sequence. The
spins of immobile water molecules will dephase by the first gradient pulse but will
rephase by the second gradient pulse such that no impact on the signal is observed.
Contrary, the spins of water molecules moving along the direction of the diffusion
gradients during the time interval between the gradients will not be rephased by the
second gradient and will stay dephased compared to the spins of the immobile water
molecules, and thus the signal will decrease. The more water molecules diffuse dur-
ing the time interval between the two diffusion gradients, the more they will remain
dephased after the second gradient, and the more the recorded signal will be weak-
ened. Weakening of the signal is limited to diffusion along the direction of the gra-
dients, so diffusion gradients are applied in three perpendicular spatial directions.
The diffusion magnitudes calculated along these three directions are averaged to
provide a measure for a global diffusion-weighted image called a trace image.

DWTI sequences are usually 7,-weighted ultrafast 3D SE-EPI sequences sensi-
tized for diffusion by adding diffusion gradients symmetrically before and after the
180° rephasing pulse. Therefore, contrast of DWI images is both diffusion and 7,
weighted such that a strong signal could correspond to diffusion restriction as well
as T, shine through of a 7,-sensitive lesion. The diffusion gradient pulses are char-
acterized by the b value which is essentially dependent on the gradient amplitude,
gradient duration, and time interval between the two gradients. In clinical practice a
T,-weighted image with a b value of zero is combined with a diffusion-weighted
image with a high b value (see Fig. 6.4).

If DWI images are acquired for different b values, the amount and speed of
movement can be quantified by the apparent diffusion coefficient (ADC)

Fig. 6.4 Left frontal abscess after complicated sinusitis with ring enhancement on T;-weighted
DCE-MRI with Ga-DTPA and restricted diffusion (high DWI and low ADC) in the border and
central in the lesion
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(Vandecaveye et al. 2008; Thoeny et al. 2012) (see Fig. 6.4). The ADC is calculated
by fitting an exponential diffusion model to the signal intensities from images
acquired with different b values. This way, only information on diffusion is retained,
and T, shines through of 7,-sensitive lesions is avoided. Whereas fast-moving mol-
ecules will quickly lose all of their phase coherence and signal intensity, even at low
b values, slow-moving molecules will retain high signal intensities far into the
higher ranges of b values. A solid tumor will show high signal intensity on a high b
value image and low signal intensity on the corresponding ADC map, whereas
apoptosis or necrosis will commonly appear as areas of low signal intensity on high
b value images with high signal intensity on the corresponding ADC map.

This way, post-therapeutic changes induced by radiation therapy or chemother-
apy generate a high signal intensity (edema) or low signal intensity (necrosis) on
high b value images but generally show high signal intensity on corresponding ADC
map. ADC information proves clinically relevant for other brain pathologies
(Schaefer et al. 2000) such as degenerative (Vitali et al. 2011; Kim et al. 2011;
Horsfield and Jones 2002) (Creutzfeldt-Jakob’s disease) or inflammatory patholo-
gies (MS) (Tavazzi et al. 2007).

6.3.5 Perfusion-Weighted Imaging (PWI)

Generally, two approaches can be applied for perfusion-weighted MRI. The first
approach uses endogenously generated contrast, while the second approach relies
on the intravenous administration of MR-sensitive contrast agents. PWI information
can be used to quantify brain blood volume and extract temporal information about
brain blood flow on the level of microcirculation.

6.3.5.1 Arterial Spin Labeling (ASL)
Arterial spin labeling (Detre et al. 1992; Williams et al. 1992; Ferré et al. 2013; Van
Laar 2008) is a PWI technique that does not require exogenous contrast agents. It
uses the intravascular water in the arterial blood compartment as endogenous tracer.
Water molecules are magnetically labeled by applying locally a 180° RF pulse to
invert the longitudinal magnetization of arterial blood upstream just below the
region of interest. With a time delay called the transit time TI, this arterial blood,
tagged with an inverted net magnetization, will flow into the region of interest and
act as a freely diffusible paramagnetic tracer. The inflowing inverted spins of the
arterial water molecules will start to exchange with water molecules in brain tissue,
reducing tissue magnetization and consequently weakening MR signal and image
intensity. Next to this tag image, a reference image is acquired by repeating the
sequence without tagging the hydrogen nuclei of the intravascular water. Reference
and tag image are subtracted to provide a perfusion image, reflecting the amount of
arterial blood entering the region of interest during the TI interval.

Major drawback of ASL is the rapid 7 relaxation and therefore limited life span
of the tracer. Since a TI interval is required for blood to flow from the labeling loca-
tion to the region of interest, labeled water within the arterial blood is decaying, and
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labeling efficiency is decreased depending on the spatial position of the labeling
region, blood flow, and vessel geometry. This can make ASL particularly challeng-
ing for studying cerebral vascular pathologies with limited blood flow.

Because ASL techniques require image subtraction and the flow-related signal is
only a few percent of the tag and reference signal, motion can significantly degrade
image quality and lead to large errors of the cerebral blood flow estimation. Ultrafast
imaging sequences, such as EPI and FSE, or interleaved acquisitions of reference
and tag data, provide higher SNR data and can significantly attenuate the effects
of motion.

Techniques for ASL perfusion imaging can be sorted into two categories. The
first category, continuous ASL (CASL) (Detre and Alsop 1999), uses a flow-driven
continuous inversion technique where a constant RF pulse is applied off-resonance
in the presence of a constant labeling gradient along the flow direction of the arterial
blood. The frequency offset of the RF pulse is determined by the gradient strength
and the desired distance from the inversion plane (called the labeling plane) to the
region of interest. As arterial blood flows along the direction of the labeling gradi-
ent, the spins of arterial water experience a frequency sweep and are being inverted
as they pass through the labeling plane. Once inverted, these water molecules will
flow into the region of interest and influence the magnetic properties of the vascular
bed of the target tissue.

The CASL approach requires arteries in a fairly straight segment along the label-
ing gradient and a sufficiently high blood flow such that frequency sweep is large
compared to the relaxation time of arterial blood and small with respect to the
amplitude of the RF pulse. Therefore, larger gradient strengths are required for
smaller arteries with lower blood flow. Applying off-resonance RF pulses continu-
ously during CASL causes saturation of protons bound to macromolecules (pro-
teins, membranes, etc.) as their 7, is very short, giving a very wide frequency band.
The permanent exchanges between the unbound protons in water close to the mac-
romolecules and protons bound to these molecules result in a magnetization transfer
(MT) from the bound to unbound protons, reducing the observed MRI signal from
the unbound protons in tissue and affecting quantification. To overcome this effect,
a distal labeling is performed in the control experiment to produce identical MT
effects. A small separate labeling coil, placed on the neck to label the common
carotid arteries, can also avoid this effect since the FOV of the labeling coil is con-
fined to the neck region and does not reach the brain, thus eliminating off-resonance
effects, with the added benefit that it also greatly reduces the RF power deposition
compared to a volume coil. Substantial RF power deposition in the body during
CASL may be of concern for the routine use at high magnetic field strengths.

Next to CASL, pulsed arterial spin labeling (PASL) (Edelman et al. 1994; Kim
1995; Wong et al. 1997) can also be used as a technique for tagging water in arterial
blood. Unlike CASL, where arterial blood is continuously inverted in a thin labeling
plane, PASL techniques rely on a short RF pulse for inverting magnetization of all
the water molecules contained in a thick region or slab proximal to the brain.
Following this inversion, blood from this slab flows into the region of interest during
an inflow time TI and interacts with the non-inverted water of brain tissue, after
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which the image is acquired. The control image is acquired in the absence of the
slab-selective inversion.

Advantages of PASL over CASL (Wong et al. 1998) are the small MT effects and
the lower RF power deposition due to the use of short RF labeling pulses, compared
to the long continuous pulses used in CASL. The latter may become an important
issue at high magnetic field strengths, such as 7 T and above. The major advantage
of CASL techniques is the higher SNR compared to PASL, combined with a higher
labeling efficiency because the labeling plane can, on average, be placed closer to
the region of interest compared to the thick labeling slabs required in PASL. A post-
labeling delay between end of the labeling interval and start of image acquisition
can be included in the sequence. If this delay is longer than expected TI, all labeled
water will have entered the region of interest prior to image acquisition, and concen-
tration of labeled water in the arterial vessels will be minimized to avoid overesti-
mation of blood flow and vascular volume artifacts. For PASL, determining the
temporal width of the volume of labeled water is not straightforward since it depends
on the spatial extent of the inversion slab, the arterial blood flow, and the geometry
of the proximal vessels, while for CASL, estimating the TI is more evident.

A hybrid approach that simulates CASL using many short pulses termed “pseudo
continuous” or “pulsed continuous” ASL (pCASL) (Dai et al. 2008; Wu et al. 2007)
combines these two approaches to provide better sensitivity and ease of implemen-
tation for body coil transmitters. Several methods also exist for spatially selective
labeling, uniquely allowing the perfusion distribution of single arterial territories to
be measured. Velocity-selective labeling (VS-ASL) (Wong et al. 2006) has also
been explored as a means of eliminating arterial transit time dependence. With this
technique, the tagging scheme selectively saturates flowing spins with no spatial
selectivity. This is accomplished with an RF and gradient pulse train that effectively
dephases the MR signal from protons that are flowing faster than a specified cutoff
velocity while rephasing the signal from slower flowing protons. The advantage of
this approach is a small and uniform transit delay for the delivery of the tagged
blood to the tissues of interest.

Clinical applications of ASL have demonstrated the challenge of optimizing
labeling timing, in particular the post-labeling delay or TI time, to allow all labeled
blood to enter the microvasculature while not losing too much signal to 7' decay
because of delay times. Several studies of ASL in acute stroke have been reported
revealing that ASL underestimates flow in many of the cases (Chalela et al. 2000;
Siewert et al. 1997), and imaging performed with a longer wait before acquisition,
either post-labeling delay or TI, was more consistent with other findings (Yoneda
et al. 2003; Wolf et al. 2003).

ASL can provide either baseline measurements for between group comparison or
serial measurements in individual subjects. As a serial measure, it can be used for
fMRI with shorter timescale changes within a single scanning session or for changes
on longer timescales to image the changes in the brain with normal aging (Wang
et al. 2008).

On the other hand, the repeatability and noninvasiveness of ASL makes this tech-
nique suitable for monitoring neurological effects of pharmacologic agents and
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drug administration (Wang et al. 2011; Chen et al. 2011; Detre et al. 2009; Nordin
etal. 2013), although vascular and neuronal effects of ASL cannot be separated. The
temporal stability of ASL makes it also valuable for the study of brain activation
changes over longer timescales (Wang et al. 2005). Activation studies with ASL
may improve understanding of a number of important neural functions, such as
memory consolidation or emotional state (Brown et al. 2007; O’ Gorman et al. 2008).

In terms of clinical applications for ASL, stroke and cerebrovascular diseases are
logical indications, but ASL also offers several important advantages for tumor
blood flow assessment (Warmuth et al. 2003). Because of its insensitivity to vascu-
lar permeability, blood flow measurements are not confounded by permeability fac-
tors as in dynamic susceptibility contrast. Therefore, absolute blood flow
quantification is feasible such that tumor blood flow can be used as an indicator of
tumor grade (Jarnum et al. 2010; Schlemmer et al. 2009; Wolf et al. 2005) and
tumor blood flow values can be compared throughout the duration of therapy. Since
ASL is insensitive to susceptibility variations that can result from surgical interven-
tions or hemorrhage and high-resolution anatomical information can be acquired in
the same scanning session, it can be a useful pre- and postoperative tool.

In the context of dementia, ASL may be useful in the early detection of AD-related
changes in subjects with mild cognitive impairment (Alsop et al. 2000, 2008, 2010;
Wolk and Detre 2012; Johnson et al. 2005). Loss of tissue and metabolic function
are important hallmarks of dementia. In Alzheimer’s disease, loss of tissue is
detected in the medial temporal lobes including the hippocampus. Metabolic imag-
ing has demonstrated functional decreases in the posterior-inferior temporal cortex,
the superior temporal-parietal association cortex, the posterior cingulated cortex,
and in advanced cases also the frontal association cortex. ASL perfusion MRI to
patients diagnosed with AD has found similar regions of decreased function, while
blood flow was relatively preserved in the medial temporal, superior temporal, and
inferior frontal regions.

6.3.5.2 Dynamic Susceptibility-Weighted Contrast-Enhanced MRI
(DSC-MRI)

DCS-MRI (Sourbron 2010; Ostergaard et al. 1996a, 1996b; Verma et al. 2013) uses
an intravenous bolus injection of a paramagnetic tracer such as a gadolinium-DTPA
chelate (diethylenetriaminepentaacetic acid) combined with dynamic imaging tech-
nique which measures the signal changes induced by the tracer in the tissue as a
function of time. Using T,*-weighted ultrafast EPI sequences, data sampling is per-
formed on a timescale smaller than typical tracer transit times through the capillary
bed. This way the tracer is essentially intravascular during the first pass of the bolus,
and pure perfusion weighting is achieved. With these sequences, 7,* signal loss due
susceptibility effects of the contrast agent during first pass is picked up, and this
signal decrease is used to compute the relative perfusion of that region (see Fig. 6.5).
The DSC-MRI hemodynamic parameters are typically obtained from the time sus-
ceptibility curve while eliminating tracer recirculation effects. Typical quantitative
parameters are time to peak (TTP), mean transit time (MTT), cerebral blood volume
(CBV), and cerebral blood flow (CBF = CBV/MTT).
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CBV DSC MRI

Fig. 6.5 T, hyperintense lesion in left frontal lobe and left frontoparietal white matter in a patient
after resection and radiotherapy of low-grade astrocytoma. Enhancement and elevated CBV indi-
cating degeneration to high-grade astrocytoma

In comparison to other MR perfusion techniques (Weber et al. 2003), DSC-MRI
has several advantages, such as better SNR, shorter scan times, ease of use, and
greater availability for commercial scanners. These advantages make DSC-MRI the
most widely used perfusion technique for the brain, although it is increasingly being
challenged in recent years because of quantification issues (Calamante 2009). Since
the technique remains highly sensitive to susceptibility artifacts, its application in
patients with hemorrhages, calcifications, or surgical clips is limited. The adminis-
tration of a contrast agent also makes DSC-MRI more invasive compared to ASL
and difficult to conduct in patients with renal impairment. On the other hand, 7}
shortening of the blood due to the administration of a contrast agent, such as
gadolinium-DTPA, prohibits further ASL acquisitions. Contrast media in larger
vessels in the field of view can interfere with the blood flow measurements, whereas
this effect is small for ASL. In case of blood-brain barrier breakdown, the tracer
extravasates into the interstitial space causing an accelerated 7| relaxation of the
surrounding brain tissue, loss of 7,* weighting, and potential errors in the calcula-
tion of the hemodynamic parameters.

6.3.5.3 Dynamic Contrast-Enhanced (DCE) MR
While 7,* effects are significantly stronger for intravascular paramagnetic contrast
media such as gadolinium-DTPA, T relaxation of water molecules of surrounding
brain tissue is strongly accelerated as well. This signal can be picked by T;-weighted
DCE-MRI sequences using EPI or rapid gradient echo techniques (Cha 2003).
Although in the brain, DCE-MRI signal changes remain weaker than DSC-MRI,
technological advances leading to shorter echo times, and higher field strengths
have improved the DCE-MRI data quality. While DCE-MRI has less temporal reso-
lution than DSC-MRY, it has some advantages compared to DSC-MRI such as better
spatial resolution that allows a better characterization of the vascular microenviron-
ment of the lesion and robustness to the presence of susceptibility artifacts.
Specific indications are vessel wall imaging and imaging of inflammation where
an increased vascular permeability is expected, imaging of neovascularization
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corresponding to an increased vascularity, and fibrous tissue characterization which
induces an increased distribution volume (Bley et al. 2005; Kerwin et al. 2003;
Desai et al. 2005; Yuan et al. 2002; Wasserman et al. 2002; Kramer et al. 2004).

6.3.6 MR Angiography (MRA)

MRI sensitivity to movement in terms of spatial encoding perturbations and arti-
facts can be used to develop vascular imaging approaches based on signal changes
that are linked to flow. Techniques such as time-of-flight MRA (TOF MRA) or
phase-contrast MRA (PC MRA) apply endogenous vascular contrast, while
contrast-enhanced MRA exploits the relaxation properties of exogenous contrast
agents to visualize vascular structures (van Laar et al. 2006; Ozsarlak et al. 2004).

MR angiography techniques are generally 7;-weighted echo-gradient-based
sequences. When endogenous vascular contrast is used, strategies are implemented
to suppress the background signal represented by the stationary tissue such that
vascular signal is favored over that of the surrounding tissues (Foo et al. 2005).

TOF MRA generates contrast between blood flow and stationary tissue by chang-
ing the magnitude of magnetization such that moving spins generated a high signal,
while the signal of stationary tissue spins will be diminished. Using repetition times
much shorter than the relaxation times of brain tissue, spins in a predefined slice do
not fully recover after each repetition, and the MR signal decreases with the number
of excitation pulses until equilibrium is reached. Moving spins that flow into this
slice are not saturated and therefore have a greater signal, creating contrast between
saturated stationary tissue and blood. Drawbacks are the long acquisition time and
saturation of in-plane blood vessels, while the signal of stationary tissues with short
T-relaxation time such as fat, hematoma, or thrombus can be poorly suppressed.

PC MRA on the other hand generates contrast between blood flow and stationary
tissue by changing the phase of magnetization such that the phase of moving spins
is shifted relative to the phase of stationary spins. This technique uses a bipolar flow
encoding gradient of given intensity to dephase spins in the transversal direction in
proportion to their velocity in the direction of the gradient. This generated phase
difference between stationary and moving spins can be picked up to derive contrast
between flowing blood and brain tissue.

Next to TOF MRA and PC MRA, time-resolved ASL (Robson et al. 2010) has
been developed as a noninvasive alternative to angiography.

In the case of CE MRA (Zhang et al. 2007a), signal differences are achieved not
only by employing the appropriate sequence parameters but also by intravenously
injecting a contrast agent into the vascular system to selectively shorten the 7', relax-
ation of the blood. Using a 7-weighted imaging sequence during the first pass of
the contrast agent, the shortened 7, relaxation of blood causes the blood to give rise
to a very large signal producing a very high contrast between arteries and surround-
ing tissues and veins.

While MRA using endogenous contrast can be disturbed by complex or turbulent
flows, the blood signal of CE MRA is minimally affected by dephasing caused by
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complex flows and susceptibility variations. The key factor for CE MRA signal is to
acquire data at the right moment, during the passage of the contrast agent bolus.
Because the CE MRA techniques are relatively insensitive to this signal loss, they
provide high-quality images with fewer artifacts than the non-CE methods. Because
effects of saturation are minimal, large fields of view can be imaged with high SNR
to demonstrate large vascular areas in a short acquisition time. The short imaging
time permits acquisition in a single breath-hold interval, providing high-quality
images even in areas affected by respiratory motion.

6.3.7 Advanced Functional MRI Techniques

Next to the MRI techniques which were mentioned above and which are used exten-
sively in a clinical setting, other MRI techniques will be discussed in brief. These
methods are mainly used for addressing scientific questions rather than for clinical
diagnosis or therapy evaluation. However, for specific brain pathologies, they could
move from a research setting into clinical tools in the near future.

6.3.7.1 BOLD fMRI

Neuronal activity not only increases local oxygen consumption but also induces an
even higher increase in local blood supply, due to neurovascular coupling. Therefore,
neuronal activity is reflected by a higher oxygenated over deoxygenated blood ratio,
which causes a local paramagnetic effect. This blood-oxygenation-level-dependent
(BOLD) effect can be picked up by MRI as a weak, transient 7,*-weighted signal
rise, very similar to SWI. Since the BOLD contrast is poor, fast 7,*-sensitive
sequences with high SNR and sufficient temporal resolution are required for func-
tional MRI (fMRI) studies. Disadvantages of using BOLD contrast for fMRI studies
are related to motion artifacts caused by head motion, breathing, and cardiac pulsa-
tion and susceptibility artifacts causing signal distortion or signal loss at tissue
interfaces with bone structures and air cavities. BOLD fMRI also maps neuronal
activity using an indirect effect which can lead to imprecise localization of the acti-
vated zone due to spatial discrepancies between activated neurons and correspond-
ing vascular variations in the oxy- over deoxy-hemoglobin ratio.

As an alternative to BOLD fMRI, ASL can be used to detect variations in perfu-
sion after neuronal activation. Like BOLD, ASL only indirectly reflects neuronal
activity by detecting vascular changes. However, it provides an absolute quantita-
tive measure of cerebral blood flow (CBF) compared to BOLD, which is a complex
function of a number of physiological variables, especially oxygen utilization, cere-
bral blood flow, and cerebral blood volume. Moreover ASL fMRI is less sensitive to
baseline signal drift and low-frequency noise and may provide higher spatial speci-
ficity for neuronal activity. Several studies have shown that ASL measurements
have decreased intersubject and intersession variability as compared to BOLD
(Aguirre et al. 2002, 2005; Tjandra et al. 2005), possibly due to a more direct link
between CBF and neural activity. On the other hand, SNR of ASL is lower, while in
general less imaging coverage and lower temporal resolution is provided than with
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BOLD fMRI. This is because of the acquisition of a tag and control dataset, the need
to wait for tagged blood to flow into the imaging region and the need to acquire data
before the tagged blood signal, has fully relaxed. Therefore, ASL fMRI is particu-
larly suitable for experimental paradigms with task repetitions at low frequency or
with long stimulus durations (Wang et al. 2003). However, further development of
single-shot ASL acquisition protocols (Wong et al. 2000; Giinther et al. 2005) with
whole-brain coverage will keep on challenging BOLD fMRI, as these sequences
provide similar temporal resolution and spatial coverage with improved temporal
stability and without susceptibility artifacts. It has also been suggested to combine
ASL with BOLD imaging, as ASL perfusion measurements can aid in the interpre-
tation of the BOLD signal change and, when combined with BOLD, provide an
indicator of oxygen utilization (Hoge et al. 1999).

In a research setting, fMRI is widely used for neuropsychological and cognitive
studies. In task-based fMRI, specific tasks are performed during fMRI data acquisi-
tions; such that the neuronal activity changes during task performance can be moni-
tored. Acquisitions are repeated in time during a succession of different tasks
following an activation paradigm. This activation paradigm comprises the task
sequence and mode of repetition. It consists of at least a baseline task and other
tasks, which only differ from the baseline task by a specific activity. Analysis is
based on a statistical comparison of the signal variations measured in each pixel
between different states of activation and thus relate to the differences between the
two tasks.

Next to task-based fMRI, fMRI can also be used to study brain functioning,
while subjects are not engaged in any specific task. These resting-state fMRI or
RS-fMRI studies monitor the functional brain activity during resting state as spon-
taneous low-frequency BOLD signal fluctuations (Van Dijk et al. 2010; Buckner
et al. 2008). Interregional temporal correlations of these BOLD signal fluctuations
provide estimates for the temporal correlation between neurophysiological mea-
surements obtained in different brain areas and thus for resting-state functional con-
nectivity (RSFC). This coherent activity of functionally related brain areas is an
important feature of healthy brain functioning (Fox and Raichle 2007; van den
Heuvel et al. 2009).

Since RS-fMRI is noninvasive and does not require cognitive task performance
during image acquisition, its setup is substantially simpler than other functional
neuroimaging methods. RS-fMRI detects multiple brain networks presenting con-
sistent intercorrelations of low-frequency activity, including the primary sensorimo-
tor network, the primary visual and extrastriate visual networks, the frontoparietal
attention networks, and the default-mode network (DMN), which is directly associ-
ated with episodic memory retrieval, self-referential processes, social cognition,
and mind wandering (van den Heuvel and Hulshoff Pol 2010; De Luca et al. 2006).
Functional connectivity abnormalities in one or more of those networks may be
found in psychiatric and neurological disorders while showing significant correla-
tions with behavioral changes and cognitive deficits (Broyd et al. 2009; Greicius
2008; Damoiseaux et al. 2012; Galvin et al. 2011; Kwak et al. 2010; Sheline et al.
2010; Cole et al. 2011; Anticevic et al. 2012). Given its feasibility and reliable and
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replicable results (Chou et al. 2012; Koch et al. 2010), RSFC abnormalities associ-
ated with the above disorders could have future potential as a disease biomarker in
a clinical setting, both for diagnosis and treatment monitoring (Koch et al. 2012;
Van Dijk and Sperling 2011).

6.3.7.2 Diffusion Tensor Imaging (DTI) MRI

While DW-MRI measures differences in water mobility without taking into account
the direction of the displacements, DTT MRI detects motion of water molecules in
different directions and can characterize the mobility in terms of anisotropic diffu-
sion (fractional anisotropy), main diffusion direction, and preferred directions or
restrictions (Hagmann et al. 2006). This is particularly of interest for nerve fibers
since it can be applied indirectly to reconstruct nerve fiber trajectories. Since nerve
fibers consist of axon bundles running in parallel with concentric layers of myelin-
restricting transversal diffusion, water diffusion will preferably follow the direction
of the fibers while being restricted in the direction perpendicular to the fibers. This
causes anisotropic diffusion in white matter tissue of the brain. By performing
diffusion-weighted acquisitions in different directions, a tensor can be determined
characterizing the diffusion. This diffusion tensor can give information about nerve
fiber lesions in white matter or spinal cord and allows tracking of the nerve fiber
trajectories in the brain. The latter can provide valuable preoperative information
for brain tumor resection or can be of diagnostic use (Stahl et al. 2007; Agosta et al.
2011; Horsfield and Jones 2002). Fiber tractography (Nucifora et al. 2007) can also
be combined with fMRI to study the connectivity between functionally different
brain regions and to analyze brain maturation and development in terms of
myelinization.

The accuracy of fiber tractography is limited by possible fiber crossings in the
same voxel leading to errors in fiber trajectories. Diffusion measurements in more
different directions can increase the accuracy, albeit at the expense of longer acqui-
sition times.

6.3.8 High-Field MRI

Increasing the magnetic field strength yields images with a better signal-to-noise
ratio (SNR), a higher spatial resolution, shorter acquisition times, and a better con-
trast for tissue characterization (Schick 2005; Stafford and Challenges 2003;
Panebianco et al. 2013; Mri and Quick 2011). In terms of relaxation times, 7T-
relaxation time increases, while T,-relaxation time decreases. Therefore, MRI
sequences require appropriate adjustment for the slower longitudinal relaxation,
while a shorter TE is needed to comply with the reduced 7,-relaxation time.

Both TOF MRA (Nguyen and Yang n.d.) and ASL benefit from the intrinsically
higher SNR and the lengthening of blood 7 relaxation providing better contrast
between tissue and the circulating blood. Increased contrast between tissue and
paramagnetic contrast agents will allow a reduced injection dose of these agents.
Higher sensitivity to magnetic susceptibility has a positive impact on the detection
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of hemorrhages, first-pass perfusion imaging, and BOLD fMRI signal. In terms of
chemical shift, the larger gap between the resonance frequencies of fat and water
makes saturation of the fat signal much easier and more homogeneous.

Besides these advantages, high-field MRI has some limitations as well (Schick
2005; Stafford and Challenges 2003). Due to the shortened wavelength of the RF
pulse, now being much shorter than the FOV, RF excitation occurs much more inho-
mogeneous. On the other hand, the increased magnetic susceptibility can be dimin-
ished by reducing the TE and making the sequence less 7,* sensitive or by choosing
segmented rather than single-shot sequences and increasing the bandwidth. Finally,
during high-field MRI, the amount of RF energy deposited in tissue is increased
significantly and needs to be addressed by increasing TR, limiting the number of
slices, reducing the flip angle, or shortening the length of echo train.

In this context, it is also worthwhile to briefly mention parallel imaging (Glockner
et al. 2005; Deshmane et al. 2012; Setsompop et al. 2008). Multiple small diameter
coil elements can be combined in a phased array to record signals simultaneously
and independently. Each coil element has a limited receiving range and a sensitivity
profile that depends on the distance from the coil element. Therefore, the signal
received by each coil element contains spatial data such as position coil position,
reception level, and sensitivity level. This information can be combined with the
gradient-induced spatial encoding to reconstruct the image. Since small diameter
coils have higher signal-to-noise ratios than coils with larger diameters and noise
between the different elements in the phased array is not correlated, the signal will
have a better SNR than that one large coil.

Techniques combining the signals of several coil elements in a phased array to
reconstruct an image are called parallel acquisition techniques. These techniques
can be used to increase SNR, improve image quality for the same acquisition time,
or reduce the acquisition time. The latter is particularly suitable for breath-hold
sequences or for improving the temporal resolution of perfusion imaging (Oliver-
taylor 2012), functional imaging, and dynamic imaging of movements while reduc-
ing flow and motion artifacts. Especially cardiac and abdominal MRI or MRA
(Wilson et al. 2004) can benefit from this approach.

In terms of reconstruction, two approaches have been presented (Blaimer et al.
2004). The first approach combines the images from each coil to reconstruct the
global image in the spatial domain (i.e. SENSE or sensitivity encoding) (Zhang
et al. 2007b) and is the most widely spread in present commercially available paral-
lel MR sequences, while the second approach combines the frequency signals of
each coil in the Fourier domain (GRAPPA or generalized autocalibrating partially
parallel acquisition) (Hoge and Brooks 2008).

In the context of ultrahigh-field MRI (Wiesinger et al. 2006), parallel transmis-
sion techniques, where the independent RF pulses from an array of small coils can
be combined to a more complex and adaptive RF pulse, offer multiple potential
improvements in radio frequency transmission (Katscher et al. 2003; Katscher and
Bornert 2006). More advanced RF transmission can lead to shorter pulse duration
and reduce energy disposition in the patient, while patient-specific inhomogeneities
can be corrected for, especially in ultrahigh-field MRI. Therefore, advanced parallel
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acquisition techniques allow sequences of the echo-planar type and ultrafast gradi-
ent echo type, even at a very high field (Webb and Collins 2010; Harvey and
Hoogeveen n.d.).

6.4 PET Basics

PET has extensively been used to explore a variety of physiological, biochemical,
and pharmacological processes and to study aspects of the complex interaction of
several neurotransmitter systems in the brain (Kenneth et al. 2002; Savitz and
Drevets 2013; Smith and Jakobsen 2009). Because of the extremely low amounts of
PET radiotracers (a compound labeled with a radionuclide) needed for imaging, its
administration causes no pharmacological or functional changes in the physiology
of the organism. Therefore, PET can measure nanomolar molecular concentrations
and is highly sensitive and quantitative compared to MR-based techniques. The
most challenging aspect is the development of suitable PET tracers for brain imag-
ing which need to match a relatively small window of appropriate lipophilicity and
molecular weight and affinity while demonstrating high target specificity and appro-
priate behavior in terms of metabolization.

A typical PET study involves the injection of a radiotracer into the venous blood
stream of a subject. This radiotracer is delivered to the brain by the arterial flow.
After crossing the blood-brain barrier, it might bind reversibly or irreversibly to its
targets, which may either be neuroreceptors, transporter vesicles, or be metabolized
by endogenous enzymes. If the tracer is inert, it will diffuse across the blood-brain
barrier and will not be bound or trapped. In parallel to these biochemical processes,
the radioactive label will decay, emitting a positron that annihilates through the
simultaneous emission of two 511 keV photons in opposite directions. These pho-
ton pairs will be detected by the PET scanner within a predefined timing window
(usually 6-10 ns) as a pair of coinciding detections. Therefore, PET is also being
referred to as coincidence imaging. Over the total duration of the emission scan,
data are acquired and corrected for physical effects such as attenuation, scatter, dead
time, and detector response. These corrected data are binned into different time
frames, and each time frame is reconstructed using an analytical or iterative recon-
struction algorithm. This way a three-dimensional image of the radiotracer distribu-
tion in the brain is generated at various time points after tracer injection. These PET
data are denoted dynamic and represent the temporal and spatial distribution of
radiotracer concentration in brain tissue. The temporal evolution of radiotracer con-
centration in individual brain voxels or regions can be visualized by a time-activity
curve (TAC). These TACs form the basis for quantifying the physiological (e.g.,
blood flow) and/or pharmacological aspect (e.g., receptor-binding site density,
enzyme activity) of the system of interest.

Appropriate in vivo quantification of molecular targets with PET imaging is rela-
tively complex due to the fact that tracers are administered intravenously and not
directly applied to the target tissue. Therefore, delivery of the tracer to the brain can
be influenced by the local blood flow, free tracer concentration in the plasma, and
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peripheral tracer clearance due to metabolization and excretion. Moreover, total
brain activity is measured with PET brain imaging, while often specifically bound,
nonspecifically bound, and free tracer need to be separated to estimate the specific
tracer kinetics.

In terms of mathematical analysis, brain uptake of a radioactive tracer is often
described within the theoretical framework of compartments. Compartment model-
ing allows the description of systems that vary in time, but not in space. One of the
assumptions for compartmental modeling is that there are no spatial concentration
gradients within each department but only gradients in time. In fact, a compartment
represents a unique state of the tracer and is defined as a space with separate uptake
and clearance rate constants where the radioactive tracer concentration is assumed
homogeneous. Rate constants of each compartment are assumed time invariant at
least over the duration of the study and considered to be representative for the steady
state of the system and the properties of the ligand. A compartment may have a
physical analog such as the interstitial fluid compartment but can also be considered
as a tracer being in bound or unbound state. Once the exchange paths between com-
partments have been specified, the mass balance for each compartment can be
described as a set of ordinary differential equations where the tracer concentration
in the vascular arterial compartment drives the model.

In the next paragraphs, brain PET perfusion imaging will be discussed, introduc-
ing elementary compartmental modeling. The basic kinetic blood flow model will
be linked to a more general one-tissue compartment model and extended to a two
tissue compartment model. The latter will be considered for the quantification of
[¥F]FDG brain PET imaging. Finally, the potential to acquire PET information
from multiple tracers simultaneously will be discussed.

6.5 ['*O]H,0 Brain PET

PET can be used to study neuronal activation by measuring the changes in regional
cerebral perfusion and local large vessel blood flow since changes in neuronal activ-
ity are very closely related to perfusion. These PET studies use blood flow tracers
like radiolabeled water or butanol which enter brain tissue via diffusion. Kety and
Schmidt first described this basic exchange model for nonradioactive substances
using the Fick principle (Kety and Schmidt 1948). The Fick principle states that,
when a fluid with known flow F runs through a compartment which is in steady
state, the rate at which a substance is extracted from the fluid by the compartment is
equal to the difference in concentration of this substance when entering and leaving
the compartment. Applying this principle to the passage of tracer within capillaries
and considering the smallest scale such that the blood compartment represents a
single capillary and the compartment is the tissue in the immediate vicinity, the
change in tracer concentration in tissue over time Cjg(f) can be described as differ-
ence between the tracer concentration in arterial blood Ci(#) and in venous blood
Clenous(0):
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dCtissue (t)

dr = F(Carterial (t) - Cvenous (t)) (6 1)

The partition coefficient p is defined as the ratio of the tissue to venous blood
concentration of the tracer. For tracers with high extraction, one can assume that the
tracer concentration in the venous blood will be in equilibrium with the tissue con-
centration. Therefore, the tracer concentration in tissue over time Clu(?) is
described by:

dClissue ( t )
dr

=FC, (;)—fcﬁm (1). (6.2)

Since the tracer concentration can be measured in arterial blood and in tissue and
one typically assumes that the same input function is valid for all brain tissue,
Eq. 6.2 can be solved for blood flow F and partition coefficient p as a function of
Clissue(?) and Ceria(f). Note that this model is only valid when blood flow remains
constant during PET imaging and the PET tracer is inert and rapidly and freely dif-
fusible in brain tissue.

Since the radioisotope ['°O] has a very short half-life of only 2 min, blood flow
measurements with PET require a cyclotron in the proximity of the PET scanner in
order to produce [°O] on demand and immediately before tracer injection and data
acquisition. Moreover, quantification involves the invasive procedure of arterial
blood sampling. These prerequisites limit the number of imaging centers capable of
performing these PET blood flow measurements.

6.6 ['®F]FDG Brain PET

The approach for modeling blood flow tracers is closely related to a one-tissue com-
partment model which describes the bidirectional flux of tracer between blood and
tissue. This model is characterized by the time-varying tracer concentration in tissue
Ciissie(?) and in the arterial blood C,.ia(#) and two first-order kinetic rate constants
K, and k. In this way the tracer flux from arterial plasma to tissue is K;Cpama(?),
while the tracer flux from tissue to blood is k,Ciu(?). Therefore, the net tracer flux
into tissue is describes as:

dClissue (t)

dt = chplasma (t) - kzcnssue (t) (63)

To solve Eq. 6.3 for K, and k,, both Cjjyma(?) and Cy(?) need to be determined.
Chiasma(?) can be measured by drawing blood samples from an arterial line at regular
time points during the PET scan. On the other hand, Cy,.(f) can be determined from
the PET measurement. Since PET measures however all activity present in the
brain, both intra- and extravascular, the activity concentration in brain tissue Cis(?)
relates to the total activity concentration measured by PET Cpgr(7) as:



144 G. Schramm et al.

CPET (t) = (1 - Vblood )Clissue (t) + Vblood Cblood (t) . (64)

Vilood Tepresents the blood fraction present in the brain (0 < Vipq < 1), while
Chiooa(t) denotes the activity concentration in the blood compartment of the brain.
For the human brain, the blood is assumed to occupy about 5% of the brain volume
(Phelps et al. 1979); hence, Vy,00q typically has a value of about 0.05.

The partition coefficient in the context of high extraction tracers can be defined
more generally as the ratio of the steady-state concentrations between two compart-
ments and is numerically identical to the tissue distribution volume Vi. If we con-
sider tracer concentrations in blood and tissue in equilibrium, i.e., no net tracer

dC. t
transfer between the two compartments, the gradient “:iL() in Eq. 6.3 can be
t
set to zero, and the following equation for the distribution volume V7 is valid:
C. t K
VT — ussue( ) — _1 (65)

Cplasma ( t ) k2

If the tracer is inert and does not interact with any receptor system or does not
undergo any chemical changes, but simply diffuses into and back out of the cells, a
one-tissue compartment model would be an appropriate model.

This assumption is not valid for measuring energy metabolism with 2-fluoro-2-
deoxy-D-glucose labeled with the fluorine radioisotope *F (['*F]FDG). The sub-
stance is a glucose analog that is trapped in brain tissue since it is being metabolized
in the mitochondria to its 6-phosphate form FDG-6-PO, through the enzyme hexo-
kinase. Therefore, a one-tissue compartment model needs to be extended with an
extra compartment to accurately describe the trapping behavior of the tracer (see
Fig. 6.6). In this case the activity concentration in brain tissue Cig,(f) can be
written as:

Clissue (t) = Cfree (t) + Clrapped (t)’ (66)

The concentration of free radioligand in tissue is denoted by Ci..(f), while
Crappea(?) Tepresents the concentration of tracer trapped in tissue. Since no dephos-
phorylation of FDG-6-PO, is observed (Lucignani et al. 1993) for a PET measure-
ment of less than 1 h post injection, no tracer clearance from this trapping
compartment is expected (k; = 0) (see Fig. 6.6). Therefore, only the uptake rate
constant needs to be taken into account for this compartment, and the tracer concen-
tration in the two compartments can be described by the following partial differen-
tial equations:

d Cfree ( t )

dt = chplasma (t) - kZCfree (t) - kBCfree (t)’ (67)

d Clrappcd ( t )

o =k,Ch.. (t) (6.8)
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Fig.6.6 Schematic overview of a one-tissue (/7CM) and two-tissue compartment model (27CM)
with corresponding rate constants. For ['*F]JFDG, the clearance rate constant for the second com-
partment k4 can be assumed zero

If we assume steady-state conditions for the free tracer in tissue, the gradient in
Eq. 6.7 can be set to zero, and the trapping rate can be expressed as:

dctrapped (t ) -K ky
=By
dr k, +k,

C oo (1) (6.9)

Instead of Vi, the influx rate constant K;, also named metabolic rate, trapping
rate, or accumulation rate constant, can be considered as an endpoint, defined as:

k
K, =K —2
k, +k,

(6.10)

Since ["®F]FDG is a glucose analog, trapping rate has proven to be proportional
to the glucose metabolic rate. The value of the ratio between ['*F]FDG and glucose
metabolic rate is called the lumped constant (LC), which is determined by a combi-
nation of several factors. For human brain tissue, LC values are assumed to be
around 0.8.

For radioligands with irreversible kinetic behavior, late static scanning can be
considered as is common for ["*F]JFDG-PET. These radioligands often provide high-
specific to nonspecific binding ratios such that tracer uptake at a later time point
postinjection reflects the amount of specific tracer binding and therefore represents
valid quantitative endpoint for the underlying physiological process.

For regional analysis, ['*F]FDG brain PET scans are typically spatially normal-
ized to a predefined stereotactic template space using an average ['*F]JFDG brain
PET template. In this way anatomical structures can more easily be identified in a
spatially standardized fashion and predefined volumes of interest can be projected
onto the brain PET data to allow a VOI-based quantification of ['*F]FDG uptake. In
addition, this spatial standardization allows cortical tracer uptake to be projected
onto the cortical surface of a standard brain. These so-called stereotactic surface
projections (3D-SSP) provide a convenient 3D visualization for visual inspection
and further quantitative analysis. In a next step, ['*F]FDG brain PET datasets can be
compared individually on a voxel-by-voxel basis with an age- and gender-matched
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database of normal values. Z-scores on a voxel level, determining the deviation from
normal mean uptake values in terms of number of standard deviations, can be cal-
culated and displayed as overlay in 3D-SSP views. These Z-score maps allow
straightforward identification of brain regions with abnormal uptake values and of
hypometabolic patterns that can be specific for neurodegenerative diseases (see
Fig. 6.7).

Static, normalized ['*F]FDG brain PET scans are a valuable early and differential
diagnostic tool for neurodegenerative diseases (Grimmer et al. 2004) and can be
used for differentiation of movement disorders, for localization of the functional
deficit zone in epilepsy, and to assess brain tumor burden and staging. Combined
with [''C]PIB brain PET reflecting the amyloid burden in brain tissue (Villemagne
et al. 2011, 2012) (see Fig. 6.8), FDG-PET can be part of a multimodal and multi-
tracer approach to differentiate different types of dementias such as Alzheimer’s
disease, dementia with Lewy bodies, frontotemporal lobar degeneration, semantic
dementia, primary progressive nonfluent aphasia, and multiple system atrophy
(Drzezga 2010).

6.7 Simultaneous ['*0]H,0 and ['®F]FDG Brain PET

In contrast to MRI, where different types of tissue contrast can be generated during
one scanning session, information provided by a PET imaging session is typically
limited to a single tracer. Multiple tracer protocols for PET imaging generally
require that the signal of one tracer has decayed to sufficiently low levels due to both
physical and biological decay before the signal of subsequent tracers can be mea-
sured. In this context, consecutive brain PET imaging with [!!C]PIB and ["*F]FDG
takes up to a little more than 2 h, where first a 1-h dynamic ['!C]PIB brain PET scan
is acquired starting at the time of injection, followed by the injection of ['*F]JFDG
and an additional time interval of 1 h between the end of the [''C]PIB brain PET
scan and the start of the static ['"®F]FDG brain PET scan (Meyer et al. 2011). This
way, cross talk between the ['!C]PIB and ['®F]FDG signal is avoided as the ['*F][FDG
brain PET scan is started 2 h after the injection of [''C]PIB, corresponding to a
delay of six times the half-life of [''C].

However, in some cases it is possible to acquire the PET signal of two different
PET tracers simultaneously and separate the signal afterward based on the different
kinetic behavior of the two tracers (Kadrmas et al. 2013; Kadrmas and Hoffman
2013; El Fakhri et al. 2013; Joshi et al. 2009; Black et al. 2009). As an example,
kinetics of [*OJH,O and ["*F]FDG brain PET, for instance, generate highly distinct
TACs, enabling the use of temporal information to separate the tracer signals. For
this purpose, two sets of temporal basis functions are defined, which model either
the slowly decaying ["®F]FDG or the fast-decaying water dynamics (Verhaeghe and
Reader 2013). These basis functions are formed by convolution of a generating
function, estimated from the measured head curve, with a set of predetermined
decaying exponential functions. Moreover, this temporal basis function approach
effectively permits fully 4D image reconstruction such that every time point in the
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Lateral and medial 3D-SSP view with cortical Z-score maps superimposed

Fig. 6.7 ['*F]FDG brain PET data of a patient suffering from Alzheimer’s disease (AD)
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Grid overview of transaxial slices

Lateral and medial 3D-SSP view

Fig. 6.8 [''C]PIB brain PET data of the same AD patient as in Fig. 6.7

reconstructed image benefits from far more acquired data than a conventional
frame-by-frame approach. Based on simulation studies, simultaneous imaging
using the basis function method reduces noise to below that of conventional indi-
vidual imaging, while ["SO]H,O activation maps created using the basis functions
method showed increased t-values in the activated region, indicating increased con-
fidence that the difference between activated and baseline conditions is genuine
rather than noise related. These simulation studies showed that dual-tracer imaging
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Noise free Separate Simultaneous

Fig. 6.9 Example of reconstructed images from simulated PET data for simultaneous imaging of
[F]FDG and ['*O]H,0. Simultaneous imaging (right) compared to separate imaging (middle) and
the noise-free “ground truth” image (lef?)

using basis functions to separate ["*F]JFDG and [*O]H,0 components is feasible,
and resulting image data are comparable to those obtained from individual PET
scans (see Fig. 6.9).

Another approach to separate the information of two different PET isotopes is to
use the different decays schemes of the radioisotopes. If one of the two radioactive
isotopes is a pure positron emitter and the second isotope emits an additional high-
energy gamma in a cascade simultaneously with positron emission, detection of this
auxiliary prompt gamma in coincidence with the annihilation event allows us to
identify the corresponding 511 keV photon pair as originating from the second iso-
tope (Andreyev and Celler 2011).

6.8 Integrated PET/MRI Quantification

Currently available hybrid PET/MRI systems allow a straightforward integration of
MRI and PET information (Catana et al. 2012). Figure 6.11 gives some examples of
the imaging potential of a hybrid PET/MRI system for brain imaging where differ-
ent types of image information can be acquired in a “one-stop shop” setting (Drzezga
et al. 2012; Martinez-Moller et al. 2012). At the moment, fully integrated PET/MRI
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Fig.6.10 Some examples of the imaging potential of hybrid PET/MRI

systems are also being commercialized which allow simultaneous acquisition of
MRI and PET information (Delso et al. 2011; Grant et al. 2016) (Fig. 6.10).

In terms of reconstruction, the most challenging of fully integrated PET/MR
brain imaging is the attenuation correction and the creation of a reliable attenuation
map (Torigian et al. 2013). While an attenuation map relies on the information about
tissue electron density, MRI only gives information about tissue proton density.
Different methodologies are suggested to generate an attenuation map based on
MRI information (Hofmann et al. 2009; Bezrukov et al. 2013). One of these
approaches is to use a dedicated DIXON MRI sequence such that segmentation of
MRI data into four tissue classes, i.e., background, lungs, fat, and soft tissue, is
rather straightforward (Martinez-Moller et al. 2009). Actually a DIXON MRI
sequence acquires MRI datasets with fat and water in phase and fat and water out of
phase, such that datasets with only fat tissue and only water can be generated very
easily. Based on these MRI data, an attenuation map is generated by assigning
appropriate narrow beam attenuation values to these four tissue classes, while other
tissue classes such as cortical bone are discarded. This approach proved to be a good
approximation for quantitative ['*F]JFDG whole-body PET imaging except for bone
lesions (Drzezga et al. 2012; Kim et al. 2012). However, in case of ['*F]FDG brain
PET imaging, 3.7-17.7% reduced activity is observed in cortical regions compared
to the center of the brain with the underestimation increasing in image planes with
relative higher skull contribution. Therefore, hybrid methods combining DIXON
and UTE MRI sequences are presented (Berker et al. 2012). While DIXON
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sequences perform well for separating, air, water, and fat, ultrashort echo time
(Keereman et al. 2010) or UTE sequences allow the visualization of cortical bone
since the very short echo times of these sequences are adapted to the very fast 7,
relaxation of cortical bone due to the very limited water content of these tissues
types. This way, attenuation of the skull can be included in the attenuation map lead-
ing to improved quantification of ['"SF]FDG uptake in the brain (Ladefoged et al.
2017; Sekine et al. 2016).

In terms of quantification, high-resolution anatomical MR information can be
used to facilitate manual or semiautomatic delineation of the appropriate volume of
interest (VOI) especially when the PET data itself provide limited anatomical land-
marks. While manual delineation can be time-consuming and observer dependent,
methodologies have been developed that allow automatic VOI generation (Svarer
et al. 2005; Hammers et al. 2003) with freesurfer (https://surfer.nmr.mgh.harvard.
edu/) currently being considered as the state of the art for brain parcellation. These
methods create an individualized VOI probability map on the basis of a database of
several MRI datasets, where a template VOI set has been defined manually on each
MRI dataset. Nonlinear image registration between these MRI datasets and the MRI
dataset of interest allows transfer of these individually defined templates VOI sets to
the MRI dataset of interest. Based on the degree of overlap of the transferred VOI
sets, a VOI probability map is created specifically for that particular PET dataset.
When the generated VOI map is based on more than one template VOI set, VOI
delineation proved to be better reproducible and showed less variation as compared
to manual delineation or transfer of only a single template VOI set. This methodol-
ogy allows a fast, objective, and reproducible assessment of regional brain
PET values.

In addition, a high-resolution anatomical MRI image spatially aligned to the PET
image offers the possibility to migitate partial volume effects in brain PET imaging.
Due to the limited resolution of PET imaging, the reconstructed activity distribution
will be a blurred version of the true activity distribution. Furthermore, the typical
brain PET reconstruction voxel size (2 x 2 x 2 mm or bigger) is relatively large
compared to the cortical thickness. Hence, many of the studied PET voxels are only
partly composed of the target brain tissue, which, in most cases, is a specific gray
matter brain structure. Indeed, the PET estimate actually reflects the blurred activity
concentration of different underlying adjacent tissue types, like gray matter, white
matter, and cerebrospinal fluid, with different activity concentrations. Therefore, the
estimated PET signal of the target tissue is confounded. One can correct for this
partial volume effect by using aligned spatial distribution maps for gray matter,
white matter, and cerebrospinal fluid, generated by segmenting the structural MRI
image (Rousset et al. 2007). This correction is often performed after PET recon-
struction. In that case, the actual tracer concentration in the target tissue is estimated
based on the segmentation information and on an estimate of the resolution in the
reconstructed image (see Fig. 6.11). Many different partial volume correction
(PVC) techniques have been proposed in the past (Erlandsson et al. 2012). These
approaches recover the true activity concentration very well in most cortical regions,
but their accuracy typically depends heavily on the accuracy of the MRI
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Fig. 6.11 Brain phantom experiment to illustrate partial volume correction methodology to cor-
rect for PVE between gray matter (GM) and white matter (WM) in ['*F]FDG brain PET imaging

segmentation. As an alternative, the resolution of the PET images can be improved
by modeling the system resolution during PET reconstruction. Unfortunately, these
images suffer from Gibbs artifacts. These can be suppressed, e.g., by applying a
smoothing prior during reconstruction, which penalizes fast intensity changes. To
avoid that the tissue edges get blurred too, the smoothing prior should only be
applied between voxels of the same tissue class, by exploiting the segmentation
maps from the aligned MRI (Baete et al. 2004). This method is referred to as PET
reconstruction using a segmentation-based anatomical prior. While this approach
still requires accurate segmentation of the MRI data, new anatomical priors have
been proposed that improve the PET reconstruction by incorporating the aligned
high-resolution anatomical MRI image without the need for segmentation (Vunckx
et al. 2012; Somayajula et al. 2011; Bowsher et al. 2004) (see Fig. 6.12). Post-
reconstruction PVC methods provide an estimate for the actual tracer uptake per
unit gray matter tissue, whereas PET reconstruction with an anatomical prior yields
an accurate estimate for the uptake in each voxel, which can be converted to an
estimate for the gray matter tracer uptake through the use of tissue distribution maps
(Baete et al. 2004). Correction of the PVE is particularly important when comparing
healthy volunteers with elderly subjects or with patients suffering from neurodegen-
erative disorders where the presence of regional cerebral atrophy is suspected.
Finally, MR angiography of large vessel structures can be used to facilitate the seg-
mentation and extraction of the arterial PET signal such that an image-derived arterial
input function can be determined and integrated into the pharmacokinetic modeling of
PET data. This approach will potentially result in a noninvasive and more accurate
quantification of the biological and physiological parameters of the target tissue.
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Fig. 6.12 Comparison of different types of brain PET reconstruction in terms of resolution
properties

6.9  Future Perspectives of Hybrid PET/MRI

In terms of patient care, integrated PET/MRI offers several potential advantages.
Since two modalities are combined in a “one-stop shop,” scanning can be done in a
more time-effective way, while sedation, if needed, can be limited to one scanning
session. Therefore, overall patient comfort can be improved. Meanwhile, the tracer
dose for PET imaging could be reduced since the MRI protocols now determine
total scan time compared to the PET imaging protocols in the case of PET/CT.

In terms of radiation exposure, hybrid PET/MRI limits radiation exposure to the
PET component and as such substantially reduces the total radiation dose, especially
compared to whole-body PET/CT when a diagnostic CT is acquired. While this is
desirable for all patients, this especially concerns pediatric patients and adult cancer
patients with good prognosis but needing frequent follow-up imaging. More person-
alized treatments could also result in multiple molecular imaging sessions with
labeled antibodies. Since kinetics of antibodies are such that labeling with long-lived
positron emitters such as ¥zirconium and '**iodine is required for quantification,
radiation exposure of the patient can become a critical aspect of the treatment.

Whether simultaneous acquisition of PET and MRI data has really clinical added
value in brain imaging may be questioned, since information from different modali-
ties can be integrated by software registration. While this approach could be suffi-
cient to answer most clinical questions, the conceptual advantage of simultaneous
data acquisition becomes imperative when addressing questions which require syn-
chronous recordings of region-bound functional parameters that change rapidly
over time. This specifically applies for brain connectivity analysis where function-
ally or effectively connected brain networks will be investigated by component and
correlation analyses of simultaneous acquired functional MRI data and ["*F]FDG-
PET data. On the other hand, simultaneous PET/MRI can measure BOLD or ASL
fMRI, MR spectroscopy, and PET receptor-binding kinetics in nonsteady-state
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conditions of a fast functional brain response. This way high-resolution structural
MRI, fMRI responses, and changes in neurotransmission obtained from PET can be
correlated spatially and temporally such that temporal relatedness and physiological
equivalence of the separately observed regional phenomena can be demonstrated.

On the other hand, an integrated PET/MRI approach will facilitate cross-
validation and multimodal interpretation of the integrated image data provided by
both modalities. This way, MRI and PET information can be evaluated as comple-
mentary, confirmatory, or redundant such that MRI/PET imaging protocols can be
developed to maximize the potential of combining both modalities. Meanwhile,
clinical applications can be identified where PET and MRI information are likely to
be complementary. This can contribute to more effective and rational use of MRI/
PET imaging. As an example, cerebral blood flow can be measured simultaneously
with the PET data using MRI techniques (Wintermark et al. 2005). Using the MRI
instead of the PET component for brain blood flow measurements may not only
make the measurement more time efficient but also more accessible for centers
which do not have a cyclotron for onsite tracer production. As the MRI is used for
brain blood flow measurements, other more specific PET tracers can be used with
regard to the brain pathology being studied. This could also apply for ASL MRI
which uses blood as an endogenous, freely diffusible tracer for cerebral blood flow.
Since ["®F]JFDG-PET and ASL MRI identify similar regional abnormalities and
could have comparable diagnostic accuracy as proven in a small population of AD
patients (Musiek et al. 2012), other PET tracers could be considered instead of
['*F]FDG-PET targeting other pathways of the AD pathology and therefore provid-
ing better insight in the relationship between structural, functional, and metabolic
changes in Alzheimer’s disease in specific or neurodegenerative disorders in general.

To conclude, hybrid PET/MRI could prove beneficial for many clinical applica-
tions. For brain tumors, a combined PET/MRI approach could improve diagnostic
accuracy, therapy planning, and therapy monitoring of medication and/or radiother-
apy. For cerebrovascular disorders, simultaneously PET/MRI might help in under-
standing the relationship and penumbra mismatch between MR PWI/DWI and
PET. This could lead to new PWI imaging thresholds for a better selection of
patients beyond 4.5-h time window who could benefit from thrombolytic therapy. In
case of epilepsy, hybrid PET/MRI can provide the accurate spatial co-registration of
PET and MRI data which is crucial for surgery planning. In the context of dementia,
a hybrid PET/MRI approach could improve early diagnosis and monitoring of dis-
ease progression. Future studies will determine the potential of hybrid PET/MRI in
terms of clinical value and cost-effectiveness.
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Abstract

Continued advancement of sophisticated imaging procedures over the last
decades has allowed the assessment of large-scale functional-anatomic brain net-
works. Among the identified networks, a frequently investigated system is the
so-called default network. This network was originally identified as a set of brain
regions consistently deactivated during tasks that require externally oriented
attention. Later imaging studies showed that this network is active during inter-
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nally focused cognitive processes such as moral decision-making and planning
of future behavior, and also that it can reliably be identified during resting condi-
tions. A growing number of studies indicate that various brain disorders are asso-
ciated with dysfunction of brain networks, leading to the notion that measures of
functional network integrity may serve as marker of neurologic and psychiatric
disease states. For instance, disconnection of default network regions seems evi-
dent in very early stages of Alzheimer’s disease, and a striking topographical
overlap has been shown between default network regions and the spatial distribu-
tion of different diagnostic markers of Alzheimer’s disease such as amyloid
deposition, hypometabolism, and brain atrophy. In this chapter, we cover mile-
stones that led to the discovery of the default network, methodological advance-
ments that allow more precise measurements of neuronal networks, pitfalls of
functional network measures, and a number of potential clinical applications.

7.1 Discovery of the Default Network

The set of brain regions we refer to as the default network, or default mode net-
work, was first noted as a by-product of experiments aimed at mapping human
brain function. In experiments that were common in the 1990s, positron emission
tomography (PET) with suitable tracers (e.g., H,'3O) or functional magnetic reso-
nance imaging (fMRI) making use of the blood oxygenation level-dependent
(BOLD) contrast was used to measure changes in regional cerebral blood flow.
Before these neuroimaging techniques were available, basic research into brain
function would consist of animal experiments with more or less successful transla-
tion to humans. Clinical research in those days was aimed at determining cognitive
deficits in patients with known focal brain damage. The use of PET and fMRI for
mapping cognitive functions turned out immensely successful because using these
imaging techniques, scientists were able to determine fairly precisely the location
of neuronal correlates of cognition in healthy study subjects. In a typical task-
based experiment, or activation study, healthy young adults would perform a cog-
nitive task in the scanner. Brain images acquired during, for instance, a language
task would then be compared with brain images acquired during a reference condi-
tion that often consisted of simply resting in the scanner. Based on the theory of
neurovascular coupling, brain regions with higher blood flow during the task would
then be considered activated by the task. Thus, in the example of a language task,
areas of the brain showing statistically higher signal during the language task
would be attributed to language function.

Using neuroimaging techniques such as PET and fMRI, most researchers were
initially focused on brain regions that showed higher levels of blood flow or oxygen-
ation during specific tasks. However, Shulman et al. (1997) reported that during a
number of different tasks (object discrimination, visual search, spatial attention,
language, memory, and imagery), one particular set of brain regions would consis-
tently show lower levels of blood flow during the tasks (see Fig. 7.1a). Blood flow
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Default network as revealed by PET and functional MR
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Fig. 7.1 (a) The default network of the human brain as it was originally identified in a meta-
analysis of nine positron emission tomography (PET) studies (132 healthy young adults) from
Shulman et al. (1997) (Reprinted with permission). The colored brain regions were more active in
passive task states as compared to active tasks states. (b) The default network identified using
functional connectivity MRI (fcMRI) while a single subject was resting in the scanner. The color
scale indicates functional connectivity (Pearson correlation coefficient after Fishers r-to-z transfor-
mation) with the signal from a seed region placed in the posterior cingulate cortex as indicated by
the green arrow (Adapted from Van Dijk et al. (2012b))

decreases during attention-demanding tasks were interpreted as decreases in brain
activation, also referred to as deactivation. These consistent decreases during tasks
suggested the existence of an organized functional-anatomic network that is more
active during passive task conditions. Since humans are most of the time not engaged
in attention-demanding goal-directed behavior, Raichle and colleagues referred to
this network as representing a “default mode of brain function” (Raichle et al.
2001). After the publication by Raichle et al., the field started to refer to this set of
brain regions as the “default network” or “default mode network.” Greicius et al.
(2003) showed that regions of the default network not only appear as deactivated
regions during most attention-demanding cognitive tasks but in addition show high
functional coherence while people are simply resting in the scanner (see Fig. 7.1b).

Brain regions associated with the default network are the posterior cingulate cor-
tex, medial prefrontal cortex, inferior parietal lobule, lateral temporal cortex, and
regions of the parahippocampal and entorhinal cortex (Buckner et al. 2008; Greicius
et al. 2003; Raichle et al. 2001; Shulman et al. 1997; Ward et al. 2014). The relative
ease of measuring this network during rest using standard neuroimaging techniques,
in combination with initial findings of vulnerability of the default network to neuro-
logic and psychiatric disease states, caused the default network to be a popular brain
network to study which, in turn, led to an explosion of the number of papers on this
topic published each year (see Fig. 7.2).

There is a growing interest in measuring structural connectivity of the default
network and of other neuronal systems. While measures of brain structure, such as
structural brain connectivity using diffusion magnetic resonance imaging, are
beyond the scope of the present chapter, we would like to mention that several large
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Increasing number of publications on the default network
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Fig. 7.2 There has been a steady increase in the number of papers published on the default net-
work since the publication by Raichle et al. (2001) in which the term default mode was associated
with the network described by Shulman et al. (1997). The graph shows the number of publications
per year from 2001 until 2018 for the search terms [“motor network” OR “somatomotor
network”[(open bars) and [“default network” OR “default mode network” (closed bars)] (source
https://www.ncbi.nlm.nih.gov/pubmed/, December 1, 2019)

multisite collaborative projects, such as the “Human Connectome Project” in the
United States and the “Developing Human Connectome Project,” “Human Brain
Project,” and the “UK Biobank™ in Europe, are expected to shed more light on the
complex relationship between brain structure and function during health and dis-
ease states.

7.2 Measuring Default Network Function

The main methods to assess default network function are (1) observing regions of
deactivation during attention-demanding cognitive tasks, (2) probing the network
with tasks that specifically rely on default network activation, (3) assessment of
functional connectivity in terms of coherent BOLD fMRI signals either during task
states or during the resting state, and finally (4) using FDG-PET to determine the
molecular function and metabolic connectivity.

7.2.1 Deactivation During Attention-Demanding
Cognitive Tasks

While the most commonly used clinical radiotracer for the assessment of brain
function is ¥ F-FDG (18-fluorodeoxyglucose for measuring glucose consumption),
scientific activation studies performed in healthy young adults in the late 1980s and
into the 1990s primarily used H,"*O (oxygen-15-water for measuring cerebral blood
flow). Those studies were aimed at mapping cognitive functions such as language
and decision-making under attention-demanding experimental conditions. The half-
life of H,"O is only 122 s (as opposed to 110 min for ¥ F-FDG), which made it
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suitable for repeated assessment of blood flow during different experimental condi-
tions within one scanning session. Using H,"*O-PET, many brain regions were iden-
tified that were implicated in a range of cognitive abilities. As mentioned in the
previous section, an analysis by Shulman et al. (1997) of data of several PET experi-
ments indicated that a common set of brain regions—which was only later termed
the default network—showed consistent deactivation during various attention-
demanding cognitive tasks. This means that those regions are more active in passive
task conditions relative to many active task states. When it turned out that changes
in blood oxygenation, as indirect measure of neuronal function, could be deter-
mined using BOLD fMRI without the use of radiotracers (Kwong et al. 1992;
Ogawa et al. 1992), fMRI became the method of choice for studying brain function
in healthy young adults. Parametric manipulation of task difficulty during BOLD
fMRI experiments confirmed that the more a person is focused on an attention-
demanding task, the more deactivation of the default network occurs (McKiernan
et al. 2003).

7.2.2 Tasks That Rely on Default Network Activation

In addition to attention-demanding tasks that deactivate the default network, one
can also ask people to perform tasks in the scanner that specifically activate the
default network. Tasks relying on conceptual knowledge, moral decision-making,
the ability to think what other people are thinking (i.e., theory of mind), remember-
ing the past, and imagining the future are all associated with activation of default
network regions and are therefore considered core functions of the network (e.g.,
Addis et al. 2007; Binder et al. 1999; Buckner et al. 2008; Mitchell et al. 2006;
Shenhav and Greene 2012). Another suggested role of the default network is the
exploratory monitoring of the external environment, a function that is suspended
when a person is engaged in a task that requires focused attention (Gusnard et al.
2001; Shulman et al. 1997). In situations when people are left to think to them-
selves, the default network seems to integrate information from past experiences,
replay events from memory, and construct mental simulations about possible future
events (Buckner et al. 2008; Schacter et al. 2007).

7.2.3 Assessment of Functional Connectivity

Functional connectivity, defined as temporally correlated remote neurophysiologi-
cal events (Friston 1994), can be estimated within individual subjects using func-
tional neuroimaging measures such as EEG, MEG, and fMRI. The most commonly
used method for assessing brain functional connectivity is fMRI and is often referred
to as functional connectivity MRI (fcMRI). Using fcMRI, patterns of synchronous
fluctuations in the blood oxygenation level-dependent (BOLD) signal are measured
(Biswal et al. 1995). These analyses involve data processing, including steps to
remove unwanted signals such as physiological noise caused by heart rate,
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breathing, and head motion. If, after data preprocessing, two or more brain regions
show a similar pattern in fluctuations over time, we designate these regions as being
functionally connected. While functional connectivity does not equate to structural
connectivity, fcMRI can be used as noninvasive probe of integrity of neuronal sys-
tems (for review, see Van Dijk et al. 2010).

Biswal and colleagues in 1995 used BOLD fMRI to show that a region in the left
somatomotor cortex exhibits signal fluctuations that are highly correlated with sig-
nal fluctuations in the whole somatomotor system including contralateral somato-
motor cortex (Biswal et al. 1995). It is important to realize that the somatomotor
system exhibits these coherent signal fluctuations when a person is simply resting in
the scanner, that is, when a person is not engaged in active behavior that relies on
the somatomotor system. This technique of mapping functional systems by analyz-
ing coherent fluctuations in remote brain areas increased in popularity when
Greicius et al. (2003) decided to place a region of interest—also called a “seed
region”—in a core node of the default network. When they extracted the signal from
that seed region and computed the correlation strength between the seed and every
other voxel in the brain, the results robustly revealed the default network (Greicius
et al. 2003). During those years, data-driven techniques that do not rely on choosing
a specific seed region also revealed coherent activity patterns in large-scale brain
systems such as the somatomotor and default network (Beckmann et al. 2005; De
Luca et al. 2006). While it is relatively easy to measure these networks while people
are resting in the scanner, it is important to note that most networks, including the
default network, also show functional connectivity during many tasks (Fransson
2006; Smith et al. 2009; Van Dijk et al. 2010). This means that functional connectiv-
ity methods can be applied to data acquired during rest but also during active task
conditions (for applications and discussion, see Fair et al. (2007). When one is inter-
ested in how functional connectivity changes during different conditions of a task,
other methods, such as psychophysiological interaction analysis, are suitable
(Friston et al. 1997; McLaren et al. 2012).

Over the last years, different authors have focused on different networks as mea-
sured during rest. Besides the default network, often-mentioned systems are those
involved in keeping attention focused on a task (dorsal attention network or salience
network; see, e.g., Fox et al. 2005 and Seeley et al. 2007, respectively) or networks
performing executive control functions such as allocating attention to one stimulus
and then actively switching attention to another stimulus when cued to do so (Seeley
et al. 2007; Vincent et al. 2008). Efforts of determining an exact number of mean-
ingful neuronal networks will offer different results based on the methods employed
and the behavior of the subject during the scan. Moreover, while these fcMRI met-
rics show fairly stable measurements from one session to the next (e.g., Shehzad
etal. 2009; Van Dijk et al. 2010), the correlational measures do not capture moment-
to-moment changes in coherence (Chang and Glover 2010; Hutchison et al. 2013;
Lurie et al. 2020).

Potential pitfalls when using fcMRI to determine functional network integrity
are contamination of the BOLD signal by the before-mentioned sources of
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physiological noise such as heart rate, respiration (Birn et al. 2006; Chang and
Glover 2009), and head motion (Power et al. 2012; Satterthwaite et al. 2012; Van
Dijk et al. 2012a). It is crucial that investigators that apply fcMRI are aware of these
confounding factors since they often bias results in studies where patients are com-
pared to healthy controls in the direction of hypothesized effects. For instance, one
might find lower coherence in the default network in the patient group which may
not be due to a specific brain disorder but rather to more head movement in the
patient group during the scan. Discussion of additional caveats when working with
measures of functional network integrity and interpretation of functional network
changes when structural brain changes are also present are beyond the scope of this
chapter but are topics of active research.

With the increasing availability of high-quality neuroimaging datasets and
advances in computational approaches to complex biological systems, a field has
emerged in which the brain is treated as graph with brain regions as nodes and func-
tional or structural connections as edges or links between the nodes (Bullmore and
Sporns 2009; Drzezga et al. 2011; Rubinov and Sporns 2010; Sepulcre et al. 2010;
Stam and Reijneveld 2007; van den Heuvel et al. 2008). Graph theory applied to
structural and functional brain images has shown that the human brain is shaped by
an economic trade-off between minimizing costs and maximizing efficiency of
information processing whereby the brain exhibits properties of a complex network
that sits in between a regular low-cost/low-efficiency lattice network and a high-
cost/high-efficiency random network (see Fig. 7.3).

While complex brain network analysis techniques often take the whole brain into
account and are not necessarily aimed at identifying (just) the default network, it
turns out that the brain’s main cortical hubs largely—but not fully—overlap with

Human brain exhibits properties of a complex network

Regular lattice Complex Random

Low cost >  High cost

Low efficiency <€ High efficiency

Fig.7.3 The human brain exhibits properties of a complex network that sits in between an orderly
regular lattice structure and an unorderly random network. The healthy human brain shows a bal-
ance between minimizing costs and maximizing processing efficiency. While the default network
is known to include many key relay stations that are important for this cost/efficiency trade-off,
graph theoretical measures of the human brain go beyond the default network and are starting to
show promise to identify changes in brain network structure in neurologic and psychiatric disease
states (Adapted with permission from Macmillan Publishers Ltd.: Nature Reviews Neuroscience,
Bullmore and Sporns, copyright 2012)
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Default network regions overlap with cortical hubs
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Fig.7.4 (a) Map of the default network as voxels exhibiting greater activity during blocks of pas-
sive fixation than during externally directed tasks. Six independent fMRI blocked-design studies
were included, each comprising 30 participants matched on age and gender for a total of 180
healthy young adults. The scale is average r-score. The map of the default network is consistent
with prior meta-analyses (e.g., Shulman et al. (1997) as shown in Fig. 7.1a). (b) Overlap of the
default network with a map of degree connectivity representing cortical hubs (Adapted with per-
mission from Buckner et al. (2009))

default network regions (see Fig. 7.4). One potential role of these hub regions is that
they act as relay stations for information processing serving as connector regions
between different (sub)networks. Other complex brain network analyses suggest
that default network regions display extensive local connectivity between and within
certain bordering brain areas (see Buckner et al. 2009; Sepulcre et al. 2010; Tomasi
and Volkow 2010 for discussion). Complex brain network analysis relies first on
time-series analyses within an individual subject, but the next step requires analyses
of patters across large groups of subjects. This may have utility in detecting abnor-
mal connectomics due to neurologic and psychiatric disease states (Bullmore and
Sporns 2012; Rubinov and Sporns 2010; Dichter et al. 2015; Derks et al. 2017), but
the practical utility of network measures for diagnostic and/or treatment decisions
within an individual patient remains to be determined.

7.2.4 Molecular Function and Metabolic Connectivity

The abovementioned fcMRI methods rely on functional connectivity between brain
regions to be estimated within individual subjects. "*F-FDG-PET traditionally does
not provide information regarding change in neuronal function over time but rather
offers a snapshot reflecting synaptic glutamatergic activity which then serves as
summary measure of neuronal function over the duration of the scan. This means
that within one subject, connectivity between two given regions (region A and B)
cannot be computed using traditional FDG-PET as in both regions only a single
value will be obtained. However, a correlation between the values in region A can
be computed with the values in region B across subjects. This approach using PET
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was used before the availability of fMRI BOLD methods (e.g., Horwitz et al. 1984;
Mclntosh 1999), and the same concept has successfully been applied to structural
MRI data of older adults with and without dementia (e.g., He et al. 2008; Seeley
et al. 2009). Across-subject analysis of FDG-PET data has been termed “metabolic
connectivity” in a study by Morbelli et al. (2012), in which they demonstrated
reduced resting metabolic connectivity in prodromal Alzheimer’s disease both in
hypometabolic and non-hypometabolic areas and they suggested that metabolic dis-
connection (reflecting early diaschisis) may antedate remote hypometabolism (early
sign of synaptic degeneration) (Morbelli et al. 2012).

Thanks to increasing temporal resolution of modern PET imaging systems, met-
abolic connectivity can now also be studied within a single subject or patient using
functional PET (fPET; Villien et al. 2014). This method employs a constant infusion
of radiotracer and enables assessment of changes in brain metabolism over the
course of a task paradigm or during resting-state conditions.

7.2.5 Clinical Relevance of Measuring Default Network Integrity

There are several lines of evidence indicating that default network integrity may
serve as marker of brain function with relevance for several neurologic and psychi-
atric disease states (for review, see Fox and Greicius 2010; Teipel et al. 2016). One
example where loss of deactivation during task conditions and disconnection mea-
sured during resting-state conditions across the spectrum of prodromal and clinical
disease phases is Alzheimer’s disease. Loss of task-related deactivation in
Alzheimer’s disease was shown for the default network using fMRI (Lustig et al.
2003) and for other association regions using H,"O PET (Drzezga et al. 2005). With
the development of PET tracers such as ''C-Pittsburgh compound B (11C-PiB;
Klunk et al. 2004; Mathis et al. 2004), in vivo measurement of fibrillar amyloid
beta, one of the major neuropathological hallmarks of Alzheimer’s disease, became
possible. It turned out that older adults who presented with elevated ''C-PiB uptake,
but who were otherwise still cognitively normal, showed loss of deactivation of the
default network during fMRI task performance (Sperling et al. 2009).

In situations where patients may have difficulty performing a cognitive task in
the scanner, or in multisite collaborative studies where it is difficult to implement
a behavioral task protocol and monitor task compliance, a resting-state fMRI scan
has been shown to be useful. Disconnection of regions of the default network dur-
ing rest has been reported in Alzheimer’s disease (Greicius et al. 2004) and also in
patients who are at high risk of developing the disease (Filippini et al. 2009; Sorg
et al. 2007). In addition, even older adults who show no clinical signs of
Alzheimer’s disease but who have elevated amyloid values as measured using
IC-PiB-PET showed decreases in fcMRI measures of the default network
(Hedden et al. 2009; Mormino et al. 2011; Sheline et al. 2010). Finally, regional
overlap of default network disconnection, amyloid burden, and neuronal dysfunc-
tion was shown using resting-state fcMRI, '"C-PiB-PET, and "*F-FDG-PET,
respectively (Drzezga et al. 2011), lending support to the hypothesis that
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Alzheimer’s disease-associated amyloid deposition tends to concentrate in default
network areas (Buckner et al. 2005) or more generally in functional hubs of the
brain that overlap with typical default network areas and other critical nodes of
large-scale functional networks (Buckner et al. 2009). These findings indicate that
assessment of the default mode network and other major neuronal networks may
serve as marker of functional brain integrity, prior to occurrence of symptoms of
memory loss due to Alzheimer’s disease-related pathology and also prior to ana-
tomical changes that will only later become visible with structural brain imaging
techniques (Sperling et al. 2011).

Availability of in vivo assessment of tau aggregates using tracers such as *F-
AV-1451 (T807; Chien et al. 2013; Xia et al. 2013) as well as adaptation of PET tau
imaging in large longitudinal cohort studies such as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) has offered a view that multiple networks may be
differentially affected by pathologies that may show its effects at different (pre)
clinical disease stages (see, e.g., Jones et al. 2017; Hoenig et al. 2018; Sepulcre
et al. 2018).

Applying PET tracers for imaging amyloid and tau deposition in the brain, recent
studies were able to identify characteristic networks of amyloid deposition in the
brain as well as specific “tau networks” of tau distribution in patients with
Alzheimer’s disease (Pereira et al. 2018; Kim et al. 2019; Hoenig et al. 2018).
Substantial overlap between amyloid deposition, tau aggregation, and functional-
anatomic networks was demonstrated, particularly for the default network. These
findings indicate that Alzheimer pathology shows a preference for development
within the default network, potentially due to high susceptibility of this network and
potential spreading of the molecular pathologies along its connectivity pathways.
These findings have further fueled the so-called network degeneration hypothesis,
postulating that neurodegenerative disorders are possibly characterized by the way
molecular pathologies are spreading along functional networks of the brain (see, for
review, Drzezga 2018).

It is unlikely that default network dysfunction is exclusively indicative of (pre-
clinical) Alzheimer’s disease because this network has been implicated in a range of
different conditions (for an early review, see Fox and Greicius 2010). In addition,
most studies referenced in this chapter showed functional network characteristics
based on group averages of normal control subjects or group differences between
patients and controls, but it has become clear that these large-scale functional net-
works, when measured at high spatial resolution in individual subjects, show con-
sistent fractionation within individuals (Braga et al. 2019) of which clinical utility
remains to be determined. In the coming years, we will likely learn more about
sensitivity and specificity of measures of neuronal network dysfunction and its clin-
ical utility in a range of different conditions.

Besides investigating which neurologic and psychiatric disease affects which
brain system, there are a number of other clinical applications for measuring the
connectional architecture of the brain. One such example is presurgical mapping of
functional brain areas in patients that might otherwise be scanned while performing
a task but who have difficulty with task comprehension and/or task compliance (Liu
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et al. 2009; Lee et al. 2016) with recent publications confirming utility but also call-
ing for further investigations into subject-level variability before widespread clini-
cal implementation (Sair et al. 2017). Another potential clinical application is
determining brain function in individual patients with disorders of consciousness
where a minimal conscious state might be differentiated from vegetative state using
default network measures (Fernandez-Espejo et al. 2012). And finally, resting-state
functional network measures have been used for image-guided manipulation using
transcranial magnetic stimulation (TMS) of brain networks in psychiatric diseases
(Fox et al. 2012). With continued efforts of improved data acquisition and analysis
techniques, including higher spatial and temporal resolution MRI (Smith et al.
2011; Triantafyllou et al. 2005; Setsompop et al. 2012; Van Dijk et al. 2012b), and
simultaneous PET/MR data acquisition (Heiss 2009; Marsden et al. 2002), addi-
tional translational research for clinical applications is likely to follow.
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Abstract

We introduce basic concepts of brain networks and discuss methods to model
and analyze brain molecular connectivity using positron emission tomography
(PET) and single-photon emission computed tomography (SPECT). Basic ele-
ments of network analytic methods, including graph theory, and the connectivity
matrix as a basis for network analysis will be discussed in more detail. Statistical
methods to compare networks will be reviewed. A specific brain network analy-
sis method called sparse inverse covariance estimation (SICE) is presented as an
alternative to Pearson correlation to estimate the brain molecular connectivity
matrix. Finally, we will discuss examples from published research to illustrate
the practical application of brain molecular connectivity analysis concepts.

8.1 Introduction

This chapter will focus on the construction and analysis of brain molecular net-
works using nuclear medicine molecular neuroimaging. The advance of multimodal
neuroimaging techniques and mathematical analysis methods has provided a great
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opportunity to more comprehensively capture brain network functioning. Traditional
methods of nuclear medicine molecular neuroimaging analysis have emphasized
analysis based on a single or small number of brain regions. This reductionist
approach of using a “process of elimination” has led to a better understanding of
brain functioning. Although this method is fruitful to understand the relationship
between a specific brain region and behavioral or clinical function, it generally will
fail to more fully capture the wide spectrum of behavioral functions or clinical
symptomatology. That is because dysfunction of one specific brain region will prop-
agate through the larger network and will affect regions that are both directly struc-
turally connected or indirectly functionally connected. A classic example of this is
diaschisis where local dysfunction in a single brain region may cause remote deaf-
ferentation effects (Monakow 1914).

In recent years there has been a growing interest in multivariate methods to ana-
lyze nuclear medicine molecular images. The first attempts to model brain networks
using multivariate analysis methods were made in the last two decades of the last
century by analyzing covariations of FDG-PET data (Horwitz et al. 1984; Horwitz
etal. 1987; Metter et al. 1984; Clark and Stoessl 1986; Moeller et al. 1987; Eidelberg
et al. 1994). For example, studies by Eidelberg et al. (1994) demonstrated the exis-
tence of specific brain metabolic covariance profiles in Parkinson disease (PD) that
were associated with some of the motor and cognitive symptoms of PD (Eidelberg
et al. 1994).

The dawn of the so-called connectomic era spurred mainly MR-based brain con-
nectivity analysis (Sporns et al. 2005). Brain networks were modeled by analyzing
structural connectivity using diffusion tensor images (DTI) and functional connec-
tivity through functional magnetic resonance imaging (fMRI) as well as electroen-
cephalography (EEG) and magnetoencephalography (MEG) (Fornito and Bullmore
2015). More recently, there is a renewed interest in brain molecular connectivity,
based on molecular PET and SPECT, to define networks using radiotracers that can
capture network of brain metabolism, neurotransmission, and proteinopathies
among others. Many of the ideas and methods developed for the analysis of brain
networks for MRI/EEG/MEG neuroimaging modalities have been gradually
adapted for the analysis of brain networks based on PET and SPECT. Prevailing
methods include seed-based correlation analysis (Lee et al. 2008), principal compo-
nent analysis (PCA) (Manzanera et al. 2019), independent component analysis
(ICA) (Gu et al. 2019), and methods based on pairwise covariance of brain regions
(Yakushev et al. 2017; Sala and Perani 2019; Huang et al. 2010). The feasibility of
the latter has also been shown in the analysis of cerebral blood flow (CBF) networks
using SPECT (Melie-Garcia et al. 2013; Sanchez-Catasus et al. 2017; Sanchez-
Catasus et al. 2018).

Perhaps due to its relative simplicity and practical feasibility, one of the most
widespread methods is based on a pairwise covariance analysis of brain regions in
conjunction with graph theory. This methodology allows for using metrics that cap-
ture the strength or “health” of the brain network. A specific type of the pairwise
covariance approach is the sparse inverse covariance estimation (SICE) methodol-
ogy that has gained recent interest (Huang et al. 2010). In this chapter, we aim to
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introduce and discuss the basic elements of these methods targeting readers work-
ing in the field of neuro-nuclear medicine who may not be familiar with the underly-
ing principles of these approaches.

Section 2 presents basic concepts of network and graph theoretical analysis.
Section 3 defines the concept of the connectivity matrix which may have especially
application for networks based on nuclear medicine molecular neuroimaging. In
Sect. 4, frequently used network metrics are discussed in more detail. Section 5
presents the analysis of brain molecular connectivity based on the statistical com-
parison of metrics from at least two networks. Section 6 addresses the SICE meth-
odology as an alternative to more standard Pearson correlation coefficient-based
method. Finally, Sect. 7 will briefly discuss some recently published studies to illus-
trate the major concepts explained in this chapter.

8.2 From Topography to Topology: The Graph
Theoretical Analysis

A key concept of graph theory is the notion of topology. Topology can be illustrated
with a common network concept that one can encounter when traveling by subway
in a large city. In Fig. 8.1, the left map of the London subway shows a precise spatial
description of the railway (or lines) layout, i.e., the subway topography, the right
map represents the relative locations of subway stations and connecting lines, i.e.,
the subway topology. These two maps do not coincide with regard to the relative

From Topography to Topology

Railway layout

Station

/ (node)
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Fig. 8.1 The topographical (left) and the topological maps (right) of the London subway. Both
maps are partially shown and modules (large circles) and hubs (small circles) are for illustrative
purposes only. Topographical map source: https://en.wikipedia.org/wiki/File:London_
Underground_with_Greater_London_map.svg. Topological map source: https://en.wikipedia.org/
wiki/List_of London_Underground_stations
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position of the stations, neither in distance nor in location of lines. For example, two
stations may be topographically (physically) distant but with a direct connection
they can be topologically close and vice versa. The direct connection cannot be eas-
ily derived from the topographical map but is readily recognized from the topologi-
cal map. The topological map is a “graph” and represents a network.

A graph is composed of two main topological elements (see also Fig. 8.1), the
nodes (the stations in the subway example), and the connectors or edges (the connect-
ing lines). While the topological map makes it easier to extract relevant information
for travel on the subway, this would not be sufficient to compare the London subway
with the subway of another large city, for example, to compare which subway system
is more efficient. This is why quantitative measures of the network (graph) are needed.
Graph theory, founded by Swiss mathematician Leonhard Euler as early as the eigh-
teenth century (Biggs et al. 1986), is the mathematical framework for calculating
these network metrics. In general, network metrics can be grouped into measures of
integration, segregation, and centrality. In this section we will provide an intuitive
concept of these measures. Section 4 will address these measures in more detail.

In network analysis, the concept of integration is related to communication
between all the nodes of the network, i.e., how well-connected are any pair of nodes.
A measure of integration in the example of the London subway would be the aver-
age number of stations that must be crossed to go from any part of the city to
another; the lower the number of stations, the higher the efficiency of the subway
integration.

In contrast to network integration, network segregation is related to the partition
of the network into smaller graphs or a cluster of connected nodes (subgraphs). In
case of the London subway graph, a natural partition is defined by taking different
subgraphs formed by the stations and its direct topological neighbors. In some sta-
tions, neighboring stations are better connected than in others. For example, sup-
pose that a particular station is out of service due to an electrical failure, if its
neighboring stations are well connected to each other, it will be more easy to reroute
(reconnect) the passengers to the final destination.

A more complex metric of segregation is related to what extent the whole subway
can be divided into modules (i.e., groups of stations within the large circles in Fig. 8.1)
in such a way that the number of connections between the stations within the module
is the maximum possible while the number of connections between modules is the
minimal necessary to maintain the whole subway optimally interconnected. For
example, when a group of stations (module) is out of service, the remaining subway
still can continue to operate due to the relative independence among modules.
Therefore, a modular structure increases flexibility, stability, and robustness.

Centrality refers to the level of influence of a node on other nodes. The nodes
with the highest centrality (or influence) are called hubs and are key elements in
network functioning. Some nodes have a high influence on communications between
modules (connector hubs), for example, the subway stations within the small circles
in Fig. 8.1. Other nodes facilitate communication between the nodes that make up
each module (provincial hubs). Connector hubs are crucial for network integration
while provincial hubs are critical for network segregation. In Sect. 4 centrality mea-
sures are described to differentiate these two types of hubs.
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Fig. 8.2 Representation of a computational model of small-world (complex) networks which
positions between regular and random networks. (Adapted from Watts and Strogatz (1998) with
permission)

If networks were to be ranked, at one end of the spectrum would be a regular
(ordered) network. In a regular network each node is directly connected to its neigh-
boring nodes (short direct connection), but without direct connections to distant
nodes; i.e., a network with low integration but high segregation (Fig. 8.2a). At the
other end of the spectrum would be a random network. In a random network, direct
connections between any two nodes are random (Fig. 8.2¢); i.e., in a random net-
work, the integration is high and the segregation is low. In the middle of these two
extremes is a complex network (Fig. 8.2b), in which there is a balance between
integration and segregation. A complex network has a “small-world” topology
(Watts and Strogatz 1998). The concept of “small-world” comes from the social
sciences and reflects the fact that two persons (nodes) who do not know each other
are nevertheless connected by a relatively short chain of persons known to each
other (a.k.a., the “six degrees of separation” theory).

Unlike ordered and random networks, a complex network has a modular struc-
ture and the presence of hubs (see also London subway example). These London
subway concepts can be applied also to brain network analysis. Brain networks fol-
low a “small-world” topology, with an efficient modular structure and the presence
of hubs (Bullmore and Sporns 2009; Rubinov and Sporns 2010; Fornito et al. 2013).
Notably, these properties remain across different spatial scales: from micro (net-
works of neurons) to macro (networks of brain regions).

8.3 Brain Molecular Networks: The Connectivity Matrix

We will use an example with FDG-PET to illustrate the application of network
analysis to molecular imaging. Network analysis is not limited to FDG PET; the
methodology described here can also be applied to PET (or SPECT) of other molec-
ular tracers (see study examples in Sects. 8.7.2 and 8.7.3).



8 Use of Nuclear Medicine Molecular Neuroimaging to Model Brain Molecular... 187

From Topography to Topology
RO " pemr™ oen, ROI1| RO|1|
ROI 30 | A AW ™ s ROI 1 ROI 90
. — . )
= RO|6O ha W PER L W VN
PET (SPECT) data : ROI 1| ~ ROI 90
atlasing ROI 90 | A \p AN WA, ]
ROI 90 ROI 90

Sub.1 ... Sub 30
o

Correlation Matrix (90 x 90 ROls)

Network metrics
— Computation

Fig. 8.3 Construction of a brain glucose metabolic network using FDG-PET data. The color bar
indicates the value of the correlation coefficient coming from the brain metabolic co-variations
among 90 anatomical brain regions (AAL atlas). The diagonal elements of the constructed matrix
(self-correlations) are set to zero

In this example, we assume that there is a group of FDG-PET images corre-
sponding to 30 healthy control subjects (or 30 patients with the same CNS disor-
der). The images of each subject can be segmented into different regions of interest
(ROISs) using a brain atlas, for instance, the automated anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al. 2002). If we plot the mean voxel value of each ROI for
the 30 subjects, we have a measure of how each ROI varies across subjects (Fig. 8.3).
Figure 8.3 shows that ROI 1 and ROI 60 (although with different amplitudes) change
similarly. The same for ROIs 30 and 90. A simple way to measure how similar the
variations are between any pair of ROIs across subjects is by calculating the
Pearson’s correlation coefficient between two different ROIs. If this process is per-
formed for every pair of ROIs, a matrix of Pearson’s correlation coefficients is
obtained (Fig. 8.3).

The correlation matrix defines “the connectivity matrix,” also known as the adja-
cency matrix, and can be seen as a network (or a graph) of interactions between all
pairs of brain regions. In this example, the network nodes are the ROIs (equivalent
to the subway stations) and the connectors are the Pearson correlation coefficients
between any two ROIs; the FDG-PET data of a group 30 individuals have been
transformed from a topographic space to a topological one (the brain glucose meta-
bolic network). This connectivity model assumes that covariations in brain metabo-
lism between different regions form a network.

The connectivity matrix is a basic concept of brain network analysis common to
other neuroimaging modalities. For example, for DTT MRI the connectivity matrix
is based on the number of tracts or streamlines connecting the ROIs, and for fMRI
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the connectivity matrix is based on temporal correlations of the BOLD signal. A
fundamental difference is that the connectivity matrix using PET (or SPECT) is
group-based due to the “static” nature of the data while DTI and fMRI based net-
works can be constructed on an individual base. In recent years, however, several
methods have been developed that allow the extraction of individual information
from a group-based connectivity matrix (Batalle et al. 2013; Raj et al. 2010; Saggar
et al. 2015; Tijms et al. 2012; Zhou et al. 2011). Other alternatives have also been
proposed for single-subject level analysis (Titov et al. 2017; Tomasi et al. 2017).
The development and validation of optimal methods for single-subject analysis is
perhaps one of the most important research directions in the near future, since it
opens the door to the use of molecular network analysis in clinical practice.

In the above FDG-PET example, the Pearson’s correlation was used. One of the
problems with this statistical measure is that it estimates the association between
two brain regions without considering the influence that other brain regions may
have on that relationship. One way to solve the problem is to use the partial correla-
tion measure. This requires, however, more subjects than the number of ROIs, which
could be cost-prohibitive for PET or SPECT imaging studies. One possible solution
is to reduce the number of ROIs, using only those that are relevant in the context of
an a priori hypothesis. However, this approach has the risk that ROIs that could
potentially be important may be ignored. In addition, by reducing the number of
ROlIs, the resulting network may not be a complex network (i.e., small-world, mod-
ularity, and the presence of hubs). Although the use of partial correlation is the
optimal method to build the connectivity matrix, a recent study showed that the
Pearson’s correlation is also valid to study brain molecular connectivity using radio-
tracer probes, albeit with certain limitations (Veronese et al. 2019).

Another important point relates to the connectivity weights between brain
regions. Connections between different neuronal units are not the same in terms of
the number of synapses, axonal density, or the degree of fiber myelination. These
differences can be represented by different connectivity weights between brain
regions, for example, using the value of Pearson’s correlation coefficient between
ROIs as shown in Fig. 8.3. Weights based on the Pearson’s correlation range from
+1 (perfect positive correlation) to —1 (perfect negative correlation or anti-
correlation). Many brain connectivity studies, however, rule out or ignore negative
correlations, since its meaning is not entirely clear. Some network metrics also can-
not be defined if negative correlations are considered. Several researchers attribute
the negative correlations to statistical artifacts (Saad et al. 2012; Murphy et al. 2009;
Murphy and Fox 2017), while other authors believe that negative correlations may
reflect inhibition or deactivation (Anticevic et al. 2012). A possible alternative is to
consider the absolute value of the resulting correlation coefficient when calculating
network metrics, assuming that the relevant biological information is the presence
of a statistical interaction, regardless of the correlation sign. However, the role of
negative correlations will need further clarification for a better understanding in the
case of brain molecular connectivity analysis.

Another important consideration is related to the extent that a given weight rep-
resents a biological connection or may be only due to noise or a spurious link.
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Networks based on correlation matrices have a nonzero value in every off-diagonal
element of the matrix, that is, every node is connected to every other. However,
brain networks tend to be sparse by following a principle of economics, which
means that the total cost of wiring in the network is less than if the same nodes were
randomly connected, but at the same time maximizing the efficiency of information
processing (economically connected) (Bullmore and Sporns 2012).

To address this problem, thresholds are usually applied to the correlation matrix
to eliminate weights that may be due to false connections. In brain molecular imag-
ing connectivity studies, the most used threshold method applies a global threshold
to all elements of the connectivity matrix. Weights that survive the threshold are set
to one (connection) and zero (no connection) otherwise, which results in a binary
graph. This has the advantage that it is easier to not only characterize the network
but also to make statistical comparisons (Sect. 5). The most commonly used method
to define a threshold uses the concept of network density (also termed “cost” or
“sparsity” in the literature). Network density represents the proportion of supra-
threshold connections of all possible connections. Since threshold selection is arbi-
trary, the connectivity matrix is thresholded in a range of network densities instead.
The area under the curve (AUC) across the threshold range is often used as the
descriptor of a given network metric (Fornito et al. 2013).

A widely used criterion to choose the threshold range (both lower and upper
thresholds) is based on avoiding a fragmented or fully connected network. In this
case, the lower threshold is selected as the minimum network density, below which
the network would be fragmented. The network is not fragmented when all its nodes
are connected by an edge path, forming a single connected component. Also, as the
network density decreases, it tends to be a regular network. On the other hand, to
select the upper threshold, a threshold in which the network is fully connected
should be avoided, as this occurs at higher densities.

Furthermore, selection of the lower and upper threshold is often dependent on
the specific brain disorder and type of data used. This often will require an explor-
atory analysis of the data set, which will limit the use of an a priori selection.
Nonetheless, the range between the upper and lower threshold moves typically from
0.1 (10% of all possible connections) to 0.5 (50%). The example in the Sect. 8.7.1
illustrates the concept of network metrics evaluation across a range of network
densities.

In summary, the most common analysis of brain molecular connectivity is
accomplished by using unweighted (binary) undirected graphs, that are based on
Pearson’s correlation, discarding negative weights, and are only based on group-
level analysis. Even with these simplifications, this method can provide important
information about the molecular organization of the brain in various brain disorders.
Moreover, in recent years there have been advances in the weighted graph approach
and increasing calls for use across all neuroimaging modalities (Bassett and
Bullmore 2017). There are also alternative methods for connectivity matrix thresh-
olding. However, each of these thresholding methods has its own advantages and
limitations. Detailed discussion of these methods is beyond the scope of this chapter
but have been reviewed by Fornito et al. (Fornito et al. 2013).
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8.3.1 Brain Molecular Connectivity in the Context of Structural
and Functional Connectivity

Different neuroimaging modalities are proxies of different brain characteristics,
e.g., DTI can be used for estimation of brain structure (principally white matter),
fMRI can be used for function, and molecular imaging (PET and SPECT) for
molecular activity. The information provided by these techniques allows modeling
of different aspects of large-scale brain networks.

Brain structural connectivity based on DTI refers to anatomical connections
between brain areas through fiber bundles. Structural connectivity is relatively sta-
ble on a short time scale (e.g., minutes) although it is subject to change on a larger
time scale. In contrast, brain functional connectivity based on fMRI is related to the
temporal statistical dependence between brain regions, regardless of whether these
regions are connected by nerve fibers (direct structural links), with changes that can
be in short periods of time (e.g., seconds). Previous studies support the notion that
structural and functional connectivity are correlated (Skudlarski et al. 2008; Honey
et al. 2010). If there is a strong structural connection between two brain regions, it
is likely that the corresponding functional connection is also strong, although the
opposite is not always true (Koch et al. 2002; Misié et al. 2016). This is because the
structural connectivity infers a direct physical or anatomical connection between
any two regions, while functional connectivity incorporates direct and indirect sta-
tistical associations. In this sense, molecular-imaging based brain metabolic con-
nectivity is more analogous to fMRI-based functional connectivity, since there
could be indirect metabolic covariations (“‘connections”) without a specific ana-
tomical substrate. Indeed, recent studies have shown an association between func-
tional connectivity by fMRI and glucose metabolism derived from FDG-PET
(Passow et al. 2015; Riedl et al. 2016), suggesting that the analysis of both could be
complementary.

Brain molecular connectivity can also be modeled for radiotracers targeting neu-
rotransmission systems, e.g., dopamine. In this case, the connectivity model reflects
covariations of neurotransmitter binding in a given region with neurotransmitter
binding in other regions (Hahn et al. 2019). Likewise, network analysis of radiotrac-
ers that visualize brain pathology (e.g., f-amyloid plaques) assumes that the pathol-
ogy spreads in a network-like manner (Sepulcre et al. 2013; Pereira et al. 2018).

It is important to note that brain connectivity inferred by either DTI, fMRI, or
based on molecular radiotracers does not make any explicit reference to a specific
directionality, so it is not possible to estimate the causal directionality of the con-
nectivity. This is reflected in the symmetry of the connectivity matrix (in which the
upper half above the main diagonal is a mirror of the lower half) (Fig. 8.3). In these
cases, the graph corresponding to the connectivity matrix is “undirected.” The so-
called “effective connectivity” analysis aims to overcome this limitation through
methods designed to capture the direct causal influences between brain regions
(Friston 2011; David et al. 2008). More recently, a novel approach to infer effective
connectivity has been suggested using the simultaneous acquisition of fMRI and
FDG-PET (Riedl et al. 2016).
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8.4 Network Metrics

The earlier introduced concepts of integration, segregation, and centrality met-
rics can be defined at a local (nodal level) and network-wide level. Figure 8.4
provides a simplification of networks to visually guide the explanation of these
network metrics. Appendix A provides a lexicon of the most commonly used
network metrics. Figure 8.4a shows a connectivity matrix of a hypothetical net-
work of only 24 nodes. These nodes could be 24 London subway stations or 24
brain ROIs based on FDG-PET imaging as explained in Sects. 2 and 3, respec-
tively. Figure 8.4b—d shows the representation of the connectivity matrix in the
form of graphs displaying some simple but fundamental topological measures
(shortest path, B; triad, C; and modules, D). The graph is undirected and binary,
and direct connections (edges) between many pairs of nodes do not exist,
although there may be indirect connections through other intermediate nodes.
This is a real-life representation. For example, many stations in the London sub-
way do not have direct connections, but are interconnected through others.
Similarly, many direct edges in an FDG-PET based connectivity matrix (e.g.,

b Shortest path

C Triad d Modules

Fig. 8.4 Basics of network metrics. (a) Shows a connectivity matrix of a hypothetical network of
24 nodes. The nodes appear in order from 1 to 24 (rows or columns). Each small black square
represents a binary connection between two nodes. (b—d) Display the graphic representation of the
connectivity matrix, showing some fundamental topological measures (shortest path, triad and
modules)
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derived from Pearson’s correlation coefficient) could be weak not surviving a
predefined threshold. This also illustrates the idea that the formation of complex
networks follows a principle of economy as stated in Sect. 3.

8.4.1 Integration

Integration metrics highlight how well-connected any pair of nodes is within the
network. The topological concept of shortest path (Fig. 8.4b) is relevant for this
concept. The shortest path is the topological distance between two nodes, for exam-
ple, between nodes 4 and 24 in Fig. 8.4b. The length is the minimum number of
edges between these nodes. The path length of a particular node (e.g., node 4) rep-
resents the shortest path of that particular node to each of the other nodes in the
graph (i.e., average of shortest path from node 4 to node 5, node 4 to node 6, node
4 to node 7, etc.). As each node is characterized by a path length, the average path
length across all nodes represents the characteristic path length of the network
(average of path length node 4, path length node 5, path length node 6, etc.). Path
length is a measure of nodal integration, and characteristic path length is a measure
of network integration. A large path length of a node reflects a weakly connected
node to the network as a whole. The opposite holds if path length is small. In this
context, the definition of “large” or “small” is based on comparison with the node’s
path length in a reference control network (see Sect. 5 for metrics statistical
comparison).

The global efficiency at the nodal level (also known as nodal efficiency) is another
metric of integration. It is defined as the average of the inverse shortest path from a
given node to all other nodes. Similarly, the global efficiency of the network is the
average of the global efficiency of all nodes. The global efficiency (network-wide)
and the characteristic path length are inversely related.

8.4.2 Segregation

Unlike integration measures, segregation metrics are related to how well the neigh-
bors of a node are connected. A triad is the main concept involved with this measure
(Fig. 8.4c). A triad is formed when a node is connected to any two connected neigh-
bors. A classic measure of segregation is the nodal clustering coefficient, defined as
the ratio between the number of triads present and the maximum number of triads
that could be formed around a node. For example, the clustering coefficient of node
4 in Fig. 8.4 is 0.6 since there are 6 triads around node 4 and the maximum number
of possible triads is 10 (e.g., a possible triad would be formed by the node 4 with
nodes 5 and 2 if they were directly connected). The clustering coefficient can be
interpreted as the probability of connection between any two neighbors of a given
node. So, the average clustering coefficient of the network is the mean nodal clus-
tering index across all nodes.
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Another metric of segregation is the local efficiency. At the nodal level, it is
defined as the global efficiency calculated on the subgraph created by the node’s
neighbors. Note that the concept of global efficiency (network-wide) defined above
as a metric of integration (based on the shortest path) is used here as a metric of
segregation. The difference is that the network, in this case, is only formed by the
neighbors of the specific node (subnetwork or subgraph around the node) after
removing it. Likewise, the average of the local efficiency of all nodes is the whole
network level version of this metric. The local efficiency (network-wide) and the
average clustering coefficient are directly related.

Modularity is a more complex segregation measure (as discussed in Sect. 2).
This metric reflects the extent to which a network can be subdivided into modules
(communities of nodes) with a maximal within-module and minimal between-
module connectivity (Bullmore and Sporns 2009; Rubinov and Sporns 2010;
Fornito et al. 2013; Garcia et al. 2018). Figure 8.4d shows in different colors the
four modules that make up our hypothetical network. The modularity index Q is a
network property that allows quantifying the degree of modularity of a network
(Rubinov and Sporns 2010). The Q index varies from 1 to —1. If Q index >0 and is
also higher than the Q index for random networks, the network has a modular struc-
ture. To calculate the Q index, the community structure needs to be determined first.
In real life, community structure detection methods are based on heuristic algo-
rithms that result in a different partition from run to run. Therefore, to have a robust
estimate of the community, the analysis requires to find a consensus partition repre-
sentative of the modular structure of the network (Garcia et al. 2018).

Characteristic path length and the average clustering coefficient (or equivalent
metrics) are usually considered the two main properties of small-world topology
(introduced in Sect. 2). A metric that summarizes this is the small-worldness (also
termed o). This metric reflects to what extent a network shows an optimal balance
between characteristic path length (integration) and average clustering coefficient
(segregation). To assess o, both characteristic path length and average clustering
coefficient must be relative (ratio) to these identical average measures of a reference
random graph. This results in lambda ()\) for the characteristic path length and
gamma (y) for the average clustering coefficient. c is the ratio between y and A. In
a complex network, ¢ is greater than unity because the characteristic path length of
a complex network and a random network is expected to be similar, unlike the aver-
age clustering coefficient that must be greater in the complex network.

8.4.3 Centrality

The metrics of centrality measure the level of influence of a given node on other
nodes in the network. The simplest measure of centrality is the nodal degree, defined
as the number of direct connections that a node has with other nodes. For example,
the nodal degree of node 4 is six because it has six direct connections to nodes 1-3
and 5-7 (Fig. 8.4b). For binary and undirected graphs, this metric is calculated as
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the sum of the number of connections (black squares) across the rows or columns of
the connectivity matrix (Fig. 8.4a). The mean degree is the average of the degrees of
all nodes (network-wide degree).

The nodal degree version of a weighted (no binary) network is the nodal strength,
defined as the sum of the weights of all edges connected to a node. The mean
strength is the average of the strength of all nodes (network-wide strength). The
strength (both nodal and network-wide) is useful even when using binary matrices
for network metrics calculation. Before binarization, this metric serves as an explor-
atory step of the analysis of the dataset as it is a relatively simple measure of con-
nectivity and less abstract than other high-order metrics. It still may be useful to
normalize the nodal strength by the average across nodes (also known as the strength
of association), as it is a more intuitive summary of nodal connectivity.

Another important property related to the nodal degree (strength) is the distribu-
tion of degree (strength) values across all nodes. The degree (strength) distribution
allows to determine whether the network of interest contains hubs and to understand
possible influences that they may have on the network.

Two other widely used metrics are the closeness and betweenness centralities.
The first is the same metric defined above as nodal efficiency as a measure of inte-
gration, while the second is the ratio between all shortest paths that pass through the
node and all shortest paths in the graph.

Two other, more complex, metrics of centrality are the participation coefficient
and within-module degree z-score. Both these metrics reflect the connectivity of
each node in relation to the modular organization of the brain. The participation
coefficient is defined as the ratio between the number of connections that the node
has outside its module (intermodular) and the total number of connections in the
whole network. For example, nodes 5, 8, 15 and 19 in Fig. 8.4 have a high participa-
tion coefficient compared to other nodes, since they have intermodular connections.
The within-module degree z-score for a given node is the nodal degree (as defined
above), but restricted to only connections inside the module to which that node
belongs. For example, nodes 4, 11, 16 and 22 in Fig. 8.4 have a high within-module
degree z-score compared to other nodes.

These two last metrics provide a more appropriate way to identify the presence
of hubs in correlation-based network analyses (Power et al. 2013). For instance,
connector hubs have a high participation coefficient and relative high within-module
degree z-score (nodes 5, 8, 15 and 19 in Fig. 8.4). Connector hubs have a fundamen-
tal role in network integration, and they are important in network resilience.
So-called “provincial” hubs have low participation coefficient but high within-
module degree z-score (nodes 4, 11, 16 and 22 in Fig. 8.4). Provincial hubs are
fundamental in network segregation.

To identify connector hubs and provincial hubs, the modular structure of the
network must first be determined. Thus, modularity is not just a segregation metric,
it interrelates segregation, integration, and centrality metrics. Modularity is a key
integrative concept in complex network metrics.

Detailed mathematical definitions of network metrics can be found elsewhere
(Rubinov and Sporns 2010). Open-source software is readily available on
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multiple websites to calculate graph metrics and perform brain connectivity
analysis (e.g., (Melie-Garcia et al. 2010; Hosseini et al. 2012; Mijalkov et al.
2017).).

8.5 Brain Connectivity Analysis

Connectivity analysis is generally performed by a statistical comparison of metrics
of at least two networks. For example, comparison of network integrity of patients
with a specific CNS disorder to a group of control subjects, or longitudinal assess-
ment of network changes within a single group.

Data resampling allows for statistical comparison of network metrics (based on
the connectivity matrix) between groups (or time points). One form of resampling
uses a non-parametric permutation test. In this procedure: (1) ROI data of each
subject are randomly reassigned (a “permutation”) to one of the two groups such
that each randomized group has the same number of participants as the original
ones (typically 1000 permutations or more); (2) the connectivity matrix is calcu-
lated for each randomized group; (3) binary connectivity matrices at different
network densities (range of densities) are obtained by applying thresholds (as
described in Sect. 3); (4) network metrics are estimated for all networks (from
randomized groups) in each density; (5) differences in network metrics between
randomized groups, in each density, are obtained resulting in a permutation distri-
bution of the difference under the null hypothesis; (6) the real difference between
groups in network metrics (for each density) is placed in the corresponding per-
mutation distribution and a p-value of two tails is calculated based on its percen-
tile position. As a critical value, the 95% confidence interval of each network
metric distribution is usually considered (two-tailed test of the null hypothesis at
p < 0.05).

Another form of resampling is by generating bootstrap samples from both net-
works. Normally statistical inference is based on sampling distributions of sample
statistics. The bootstrap method is a way to find the sampling distribution, at least
approximately, of a single sample. Therefore, the sample must represent the popula-
tion from which it was extracted. In our particular case, for each of the two groups
(networks), new samples (1000 or more), called bootstrap samples or resamples, are
created by sampling with replacement from the original random sample (each resa-
mple is the same size as the original sample). Replacement means that after ran-
domly drawing one observation from the original sample, we replace it before
drawing the next observation, that results in two randomized groups. From here, the
method follows the steps 2—6 as described above for the permutation test. The main
difference between the two procedures is in how the randomized groups are created.
It is important to emphasize that in the case of the bootstrap method, the original
sample should represent the population at large.

It is also important to control for multiple comparisons when comparing network
metrics at the nodal level. Typically, the false discovery rate correction (FDR) pro-
cedure is used for this purpose (Benjamini and Hochberg 1995).
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8.6 Sparse Inverse Covariance Estimation (SICE)

As discussed earlier, using partial correlation is the preferred method to build the
connectivity matrix. The estimation of partial correlations is usually achieved by
the maximum likelihood estimation (MLE) of the inverse covariance matrix, but
for that estimate to be reliable, the number of subjects must be greater than the
number of ROIs. Huang et al. (2010) introduced the idea of analyzing brain meta-
bolic connectivity based on FDG-PET using so-called graphical lasso, in which a
constraint imposed on MLE allows for estimation of the inverse covariance matrix
even when the number of subjects is less than the number of ROIs (Huang et al.
2010). The connectivity matrix estimated by this approach is binary (1 = connec-
tion, 0 = no connection). Instead of the exact value of the nonzero entries in the
inverse covariance matrix, this methodology discovers the zero entries (i.e., no
connection) by using a regularization parameter (known as A; not related to the
small worldness metric) that controls the zero entries number in the connectivity
matrix. The A parameter controls a trade-off between the likelihood fit of the
inverse covariance estimation and matrix sparsity. A small A will result in a higher
likelihood fit of the inverse covariance estimation, while a large A will result in a
sparser estimation (low network density or sparsity). Since whole brain networks
tend to be sparse, A should be relatively high. Hence the name sparse inverse cova-
riance estimation (SICE). A, however, cannot be too high since it reduces the likeli-
hood fit of the inverse covariance estimation. The determination of A is a key step
when using SICE although there is no gold standard for the selection of this param-
eter. One proposed A selection method is Stability Approach to Regularization
Selection (StARS) (Liu et al. 2010). This method selects the minimum A necessary
to capture the correct structure of the connectivity matrix and at the same time
guarantees a relatively low matrix sparsity (low network density) and replicability
under random sampling. An important assumption of SICE analysis is multivariate
normality distribution of the data.

Since SICE matrices are also graphs, all previously described network metrics
and statistical inference methods are applicable. Nevertheless, the original idea of
the analysis of SICE matrices was based on submatrices and their interactions (also
applicable to any other type of connectivity matrix). The submatrix based approach
involves subdividing the connectivity matrix into smaller submatrices. For example,
Huang et al. (Huang et al. 2010) made this subdivision based on 42 ROIs of cerebral
regions to be the most affected by Alzheimer disease (AD), as revealed by FDG-
PET (Horwitz et al. 1984). These ROIs were then distributed in four submatrices
representing ROIs of the frontal, parietal, occipital, and temporal lobes successively
(Fig. 8.5). The submatrix based analysis consists of calculating the total number of
connections within a submatrix (number of black dots within red squares in Fig. 8.5)
and the total number of connections between two submatrices. The total number of
connections within a submatrix represents the “short distance” connections, while
between two submatrices they represent the “long distance” connections (i.e., the
interaction between two submatrices). For instance, in Fig. 8.5, the connections
within the temporal lobe are decreased in the matrix representing the AD group
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Fig. 8.5 Brain connectivity models using SICE. The figure shows the model for AD dementia,
MCI and normal control (NC) subjects. The red squares, from top left to bottom right, represent
the ROIs of the frontal, parietal, occipital, and temporal lobes. The blue square represents the
interaction between the parietal and occipital lobes. (Image adapted from Huang et al. (2010))

compared to the control group, while they are increased between the parietal and
occipital lobes (blue squares).

In addition, Huang et al. (2010) showed a monotonous property of SICE, which
allowed them to develop a quasi-measure for the strength of functional connections.
The monotonous property of SICE states that if two regions of the brain are not con-
nected at a certain A, they will never be connected as A becomes larger. Recent
articles used this concept (e.g., see (Caminiti et al. 2017; Sala et al. 2017)).

8.7 Example Studies

In this section, findings of selected articles are briefly described to illustrate the
concepts explained in previous sections.

8.7.1 Age-Associated Metabolic Network Changes

This example highlights the utility of characteristic path length and average clus-
tering coefficient (main properties of small-world topology) as well as the between-
ness centrality. Liu et al. (2014) investigated whether small-world topology of the
brain metabolic network changes with aging (Liu et al. 2014). The authors built two
brain networks based on FDG-PET using partial correlation: one from healthy
young adults (mean age = 36.5 years, 113 individuals) and the other from healthy
older adults (mean age = 56.3 years, 110 individuals). The connectivity matrices
associated with each group were binarized and the statistical differences were
assessed using a non-parametric permutation test in a range of network density
(sparsity) between 10% and 50%. They found that networks from both young and
old adults showed small-world topologies. However, the characteristic path length
and the average clustering coefficient were increased in the older group compared
to the younger group (Figs. 8.6 and 8.7, respectively).



198 C. A.Sanchez-Catasus et al.

2.8

26 —— older group

—e— younger group

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Sparsity

Fig. 8.6 The characteristic path length (Lp) as a function of sparsity (S). The graph shows that
two groups have same Lp value when sparsity ranges from 33% to 50% and the older group (red
line) has larger Lp at 10% < S < 33%. (Image reproduced from Liu et al. (2014))
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Fig. 8.7 The average clustering coefficient (Cp) as a function of sparsity (S). The graph shows
that, at a wide range of sparsity (10% < S < 50%), the older subjects (red line) have larger Cp
values than the younger subjects (black line). (Image reproduced from Liu et al. (2014))

Liu et al. (2014) also analyzed nodal centrality using the betweenness. They
found that the younger group showed higher betweenness in the hippocampus and
auditory cortex on the left side, and the amygdala and superior frontal gyrus on the
right side. In contrast, the older group showed higher betweenness in the orbital
frontal cortex bilaterally and the right insula (Fig. 8.8).
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Fig. 8.8 The betweenness centrality (bi) of the two groups. The upper graph shows the regional
changes (Abi, Abi = bi_older -bi_younger) between the two groups. The regions labeled in the
upper graph indicate significant bi changes. These results were obtained from a network density of
16%. (Images adapted from Liu et al. (2014))

Similar results with respect to the characteristic path length have also been
found when comparing age-matched controls with patients with mild cognitive
impairment (MCI) and AD in network analyses based on FDG-PET (Sanabria-Diaz
et al. 2013) and perfusion SPECT (Sanchez-Catasus et al. 2018), in both cases using
simple correlation matrices. The increase of the characteristic path length was
interpreted as a result of loss of brain connectivity due to AD pathology. Findings of
these studies suggest that brain changes, whether age-associated or associated with
cognitive change, can be adequately captured by network metrics based on FDG-
PET and perfusion SPECT. Both age- and cognition-associated brain changes have
a perceptible effect on the topology of the brain metabolic network.

8.7.2 Modularity of Amyloid Networks

In this example, we will focus on the utility of modularity analysis. Pereira et al.
(2018) analyzed the topology of the amyloid network in non-demented individuals
in different stages of AP accumulation (Pereira et al. 2018). The authors analyzed
three groups of subjects according to AP42 levels in the cerebro-spinal fluid (CFS)
and Florbetapir p-amyloid PET biomarkers (CSF—/PET—, n = 291; CSF+/PET—,
n = 81; and CSF+/PET+, n = 272). PET-based p-amyloid networks were created
using partial correlation (Figs. 8.9a, b).

Similar to the previously described study by Liu et al. (2014), they use binary
matrices and non-parametric permutation test in a range of network densities
between 5% and 15%. They performed a modularity analysis and used several net-
work metrics at the nodal level. Two modules were identified that were present in
the three groups (Fig. 8.10). One of these modules comprised several regions that
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Fig. 8.9 (a) Brain parcellation (72 ROIs). (b) Weighted and binary matrices (Image reproduced
from Pereira et al. (2018))
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Fig.8.10 The two modules identified in the three groups studied. The spheres represent the nodes
belonging to each module (orange and blue colors). (Image reproduced from Pereira et al. (2018))

are part of the default mode network (anterior cingulate, posterior cingulate and
precuneus) but also included additional lateral temporal and parietal areas in the
CSF + PET— group and lateral frontal in the CSF + PET+ group. These findings are
in line with the current pathological knowledge of spread of f-amyloid pathology
with progression to AD dementia (Braak and Braak 1991). This suggests that analy-
sis of the topology of the amyloid network could potentially be used to assess dis-
ease progression in stages prior to dementia.

8.7.3 Cerebrovascular Reactivity in MCI

This example will highlight the complementary role of network analysis in inter-
preting univariate analysis results. Sanchez-Catasus et al. (2017) examined cerebro-
vascular reactivity (CVR) in MCI and healthy conditions by analyzing
vasodilator-induced changes in the topology of the CBF network (Sanchez-Catasus
et al. 2017). For this purpose, four networks were constructed (based on simple cor-
relation): two using CBF SPECT data at baseline and under the vasodilatory chal-
lenge of acetazolamide (ACZ) corresponding to 26 MCI patients and two equivalent
networks from 26 matching cognitively normal controls. The strength of association
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and the clustering coefficient were used as network metrics (network-wide and
nodal). The data were analyzed by a 2 (group: Control and MCI) x 2 (condition:
basal and ACZ) design. Simple main effects and their interactions were statistically
determined using the bootstrap resampling approach. A 2 x 2 design was also used
for voxel-based univariate analysis. In addition, voxel-based univariate analysis of
MRI data was carried out. Results showed no significant differences between groups
in response to the ACZ challenge by the univariate approach. In contrast, the net-
work analysis showed different patterns of changes in the strength of association
and clustering coefficient (network-wise and nodal). However, the most striking
finding was the crossover interaction between group and condition found in the
network analysis, particularly for the nodal clustering coefficient (Fig. 8.11a). This
interaction effect showed a pattern of decrease of the clustering coefficient in the
MCI group that partially overlapped with the default mode network, which is a tar-
get of AD-like neurodegenerative process. Surprisingly, this pattern also partially
corresponded with the regional CBF reduction found in the MCI group in the base-
line condition (Fig. 8.11b). The overlap increases if the atrophy found by MRI anal-
ysis is considered (Fig. 8.11c), suggesting that the functional and structural
abnormalities found by the univariate approach in the baseline condition could
explain the ACZ-induced changes found by the graph theoretical analysis. In this
example, both multivariate and univariate analysis approaches provided compli-
mentary information that led to a more comprehensive understanding of CVR in MCI.

Fig. 8.11 (a) Decrease of the clustering coefficient in the MCI group network induced by the
vasodilatory challenge (crossover interaction between group and condition); (b) hypoperfusion in
the MCI group in the baseline condition; and (¢) atrophy in the MCI group. (Images adapted from
Sanchez-Catasus et al. (2017))
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8.7.4 SICE Application to Multimodal Neuroimaging

This example will highlight the versatility of SICE analysis. Li et al. (2018) com-
pared networks of patients with AD (n = 116; 64 m/52f) and MCI (n = 116; 64 m/52
f) to networks constructed with normal subjects (n = 116; 62 m/54 f), based on
structural MRI, FDG-PET and Florbetapir f-amyloid PET (Li et al. 2018). The
authors used the SICE methodology to create connectivity matrices for each group
that included the three image modalities. The authors used the same ROIs as Huang
et al. (2010), excluding frontal ROIs (see Sect. 6). For illustrative purposes results
are only discussed for one of the multimodal connectivity models. The models pre-
sented in Fig. 8.12 demonstrate how network connectivity can be applied to a single
modality but also the interaction between modalities (e.g., interactions of the
B-amyloid network with the metabolic or with a network based on structural brain
volumes). The figure shows a gradient of decreasing number of connections (black
dots) within modalities from control to MCI and then to AD dementia, while the
interaction between modalities gradually increased between these groups. This
analysis would be impossible using simple correlation connectivity matrices and the
partial correlation option would have required a very large sample of data, with a
prohibitive cost in PET studies.

8.8 Final Remarks

The network analysis methods described in this chapter provide a powerful tool for
a better understanding of metabolic, perfusion, neurotransmitter, and neuropatho-
logical brain changes, particularly in the context of aging and neurodegenerative
diseases. These multivariate methods allow for analysis of the neuroimaging data
and subsequent results that could be missed when a univariate brain region or even
voxel-based whole brain analysis is used. Both approaches, however, are comple-
mentary, and simultaneous analysis and interpretation provide a higher level of
understanding of brain function than either one alone.

The abundance of metrics that graph analysis of network properties provides
allows for a detailed description of network properties. For example, nuclear med-
icine neuroimaging-based connectivity studies commonly use the main properties
of small-world topology, i.e., the characteristic path length and average clustering
coefficient (or equivalent network-wide or local metrics). This level of analysis
characterizes networks within the spectrum from random to regular (ordered)
topologies. Other commonly used graph analysis metrics involve centrality met-
rics, which allow the identification of hubs, but without distinction between con-
nectors and provincial hubs. We emphasize that modularity analysis is important
to take into account, as it offers an integrative analysis of complex network met-
rics, properly defining, for example, connectors and provincial hubs.

The plethora of graph analysis metrics to choose from poses also a challenge in
selecting the appropriate measures. A first consideration to be made in the selection
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Fig.8.12 Brain connectivity models using SICE based on multimodal data. (a) Matrix indicative
of the subdivision into submatrices (30 x 30 ROIs) of the data corresponding to AV-45 (Florbetapir-
PET), FDG-PET, and MRI (brain volumes). The figure shows the model for normal control (b),
MCI (c¢), and AD dementia (d). (Images adapted from Li et al. (2018))

of one of these two methods is whether complex multivariate approaches are justi-
fied or if the specific scientific question can be solved with univariate methodology.
A second consideration is to properly select those metrics that will address the a
priori scientific hypothesis. A final consideration, which is especially important for
nuclear molecular neuroimaging studies, is whether network analysis adequately
reflects the underlying biology, for example, known neurotransmitter distribution
and/or neuropathology. Network analysis of radiotracers with limited specificity
will inherently be noisier. However, this problem exists also in univariate analysis
approaches.
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The study of brain molecular connectivity using nuclear medicine neuroimaging
has gradually matured, but there are many remaining challenges. Solving such chal-
lenges will offer new opportunities to expand our knowledge of molecular brain
networks. A multimodal approach using complementary network information from
both MRI and nuclear molecular imaging will ultimately provide a more compre-
hensive insight into brain network functioning. PET and SPECT brain network
analysis tools are now able to overcome limitations of standard univariate approach
in neuro-nuclear medicine. We anticipate that molecular brain network analysis
may become part of clinical nuclear medicine practice in the near future.

A Lexicon of the Most Commonly Used Network Metrics

e Shortest path: Topological distance between two nodes, also called Length, as
the minimum number of edges between two nodes.

e Path length: Shortest path of a given node to each of the other nodes.

* Characteristic path length: Average path length node across all nodes.

e Global efficiency: Average of the inverse shortest path from a given node to all
other nodes. At the network level, it is the average of the global efficiency of
all nodes.

e Triad: Formed when a node is connected to any two connected neighbors.

e Clustering coefficient: The ratio between the number of triads present around a
node and the maximum number of triads that could be formed around that node.
At the network level, it is the average of the clustering coefficient of all nodes.

* Local efficiency (nodal level): The global efficiency calculated on the subgraph
created by the node’s neighbors. At the network level, it is the average of the
local efficiency of all nodes.

e Modularity: The extent to which a network can be subdivided into modules
(communities of nodes) with a maximal within-module and minimal between-
module connectivity.

e The small-worldness (c): The extent to which a network shows an optimal bal-
ance between characteristic path length (integration) and average clustering
coefficient (segregation).

e Degree: The number of direct connections that a node has with other nodes. At
the network level, it is the average of the degrees of all nodes.

e Strength: The sum of the weights of all edges connected to a node. At the net-
work level, it is the average of the strength of all nodes.

e Closeness centrality: The same as the global efficiency at the nodal level.

* Betweenness centrality: The ratio between all shortest paths that pass through
the node and all shortest paths in the graph.

 Participation coefficient: The ratio between the number of connections that the
node has outside its module (intermodular) and the total number of connections
in the whole network.

e Within-module degree z-score: The nodal degree but restricted to only connec-
tions inside the module to which that node belongs.
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Abstract

In neurodegenerative diseases, several studies have increasingly highlighted that
the same neuropathology can trigger different clinical phenotypes or, vice versa,
that similar clinical phenotypes can be triggered by different underlying neuro-
pathologies. This evidence called for the adoption of a pathology spectrum-based
approach. Conditions belonging to the same or different spectrum of diseases
share brain deposition of abnormal protein aggregates, which lead to aberrant
biochemical, metabolic, functional and structural changes. Positron emission
tomography (PET) is a well-recognized and unique tool for the in vivo assess-
ment of brain metabolism, molecular changes and protein load, and novel PET
techniques are emerging for the study of specific protein alterations. The avail-
ability of PET neuroimaging tools for the assessment of brain function, molecu-
lar biology and neuropathology has opened new venues in research, in diagnostic
design and in the conduction of new clinical trials. Appropriate use of PET tools
is crucial in supporting a prompt diagnosis and in evaluating drug targets aiming
to slow down or prevent dementia. This chapter critically reviews the role of
distinct PET molecular tracers (i.e. neurodegeneration, amyloid, tau and neuro-
inflammation) in different neurodegenerative spectrum of diseases, highlighting
their strengths and weaknesses, with special emphasis on methodological chal-
lenges and future applications.

Abbreviations

[''CIJPiB  Carbon-11-labelled Pittsburgh Compound B
[¥FIFDG  Fluorine-18-fluorodeoxyglucose

AD Alzheimer’s disease

ALS Amyotrophic lateral sclerosis

Ap Amyloid beta

bvFTD Behavioural variant of frontotemporal dementia
CBD Corticobasal degeneration

CBS Corticobasal syndrome
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CJID
CSF
DAT
DED
DLB
EOAD
fAD
FFI
FTD
FTLD
FUS
GSS
LOAD
IvAD
1IvPPA
MAO
MAPT
MCI
MRI
MSA
MSA-c
MSA-p
PCA
PD
PDD
PET
PGRN
PNFA
PPA
PSP
SD
SPECT
SPM
SUVrs
SV2A
tAD
TDP-43
TPSO

Creutzfeldt—Jakob disease
Cerebral spinal fluid

Dopamine transporter
Deuterium-L-deprenyl

Dementia with Lewy bodies
Early-onset AD

Frontal variant of AD

Fatal familial insomnia
Frontotemporal dementia
Frontotemporal lobar degeneration
Fused in sarcoma protein
Gerstmann—Striussler syndrome
Late-onset AD

Logopenic variant of AD
Logopenic variant of primary progressive aphasia
Monoamine oxidase
Microtubule-associated protein tau
Mild cognitive impairment
Magnetic resonance imaging
Multiple system atrophy
MSA-cerebellar
MSA-parkinsonian

Posterior cortical atrophy
Parkinson’s disease

Parkinson’s disease with dementia
Positron emission tomography
Progranulin

Progressive non-fluent aphasia variant
Primary progressive aphasia
Progressive supranuclear palsy
Semantic dementia

Single-photon emission tomography
Statistical parametric mapping
Standardized uptake value ratios
Synaptic vesicle glycoprotein 2A
Typical AD

TAR DNA binding protein 43
Translocator specific protein

9.1 Introduction

Dementia encompasses a wide range of disorders which are often difficult to diag-
nose with high accuracy. Dementia disorders can be classified by in vivo biomark-
ers, according to their underlying pathology, including amyloid beta peptide (Ap),
tau and a-synuclein, which can support clinical diagnosis. Alzheimer’s disease
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Fig. 9.1 Clinical and pathological spectrum associated with misfolded proteins in dementia con-
ditions. The figure shows a scheme of the different spectra presented in this chapter. Several neu-
rodegenerative diseases are associated with a misfolded and aggregated protein; hence, the term
“proteinopathies” has been coined to emphasize the biological characterization of these disorders.
Each spectrum includes diseases characterized by common features but also clinical variabilities.
The same misfolded protein can be associated with different clinical phenotypes and the same
clinical phenotype may be the result of deposition of different misfolded proteins. Af amyloid
beta, FUS fused in sarcoma, TDP-43 TAR DNA binding protein 43, PrP* scrapie prion protein,
AD Alzheimer’s disease, tAD typical AD, fAD frontal variant AD, PCA posterior cortical atrophy,
IvAD logopenic variant AD, FTLD frontotemporal lobar degeneration, SD semantic dementia,
PNFA primary progressive non-fluent aphasia, bvFTD behavioural variant of frontotemporal
dementia, ALS amyotrophic lateral sclerosis, PSP progressive supranuclear palsy, CBD cortico-
basal degeneration, a-SYN a-synucleinopathy, DLB dementia with Lewy bodies, PDD Parkinson’s
disease dementia, MSA multiple system atrophy, GSS Gerstmann—Striaussler—Scheinker disease,
CJD Creutzfeldt-Jakob disease, FFI fatal familial insomnia

(AD) is the leading cause of neurodegenerative dementia (Nichols et al. 2019), and
it is pathologically characterized by extracellular amyloid plaques composed of A
and intracellular neurofibrillary tangles composed of hyperphosphorylated tau pro-
tein (Fig. 9.1) (Hardy 2006). The commonest clinical presentation of AD is an insid-
ious cognitive decline which involves primarily episodic memory, progressively
manifesting with visuospatial difficulties and executive and behavioural distur-
bances, interfering with activities of daily living (McKhann et al. 2011). Three
atypical (non-memory) clinical syndromes are also recognized, especially in young-
onset patients: posterior cortical atrophy (PCA), characterized by prominent visuo-
spatial and visuo-perceptual difficulties and dyspraxia; logopenic variant (IvAD),
clinically characterized by difficulties in word finding, anomia and impairments in
working memory; and the frontal variant of AD (fAD), with severe behavioural
disturbances (Dubois et al. 2014). In addition, a 65 years age cut-off has been pro-
posed to distinguish the most common late-onset AD (LOAD) from the early-onset
AD (EOAD), which is characterized by a fast disease progression and frequent
atypical onset (Balasa et al. 2011).
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Frontotemporal lobe degeneration (FTLD) encompasses variable neuropathol-
ogy, including different neuronal inclusions composed by both 3R and 4R tau iso-
forms, TAR DNA binding protein 43 (TDP-43) and fused in sarcoma protein (FUS)
(Fig. 9.1) (Mackenzie and Neumann 2016; Hu et al. 2007). Clinically, FTLD is an
umbrella term which indicates a group of syndromes characterized by a progressive
deterioration in behaviour, executive function, motor performances or language
abilities and constituting the most frequent cause of dementia in the population
younger than 65 years (Bang et al. 2015). Clinically, different major subtypes are
recognized: the behavioural variant of frontotemporal dementia (bvFTD), a dysex-
ecutive syndrome associated with behavioural disturbances and mood disorders; the
progressive non-fluent aphasia variant (PNFA), usually progressing to bvFTD, pro-
gressive supranuclear palsy (PSP) or corticobasal degeneration (CBD) and present-
ing with a language disorder with non-fluent spontaneous speech, agrammatism and
phonemic errors; and the semantic dementia (SD), characterized by problems in
recognizing and understanding words, often associated with changes in personality
and behaviour (Neary et al. 1998). As neurodegenerative disorders primarily involv-
ing language, PNFA and semantic aphasia are gathered together into the clinical
group termed primary progressive aphasia (PPA), which includes also the logopenic
variant (Iv)PPA (Gorno-Tempini et al. 2011). The clinical progression of PPA may
vary from a stable cognitive profile to a progressive deterioration leading to demen-
tia, which can involve executive functions, memory, motor abilities and reasoning,
while the designation of PPA-plus has been suggested to indicate a disease started
as PPA and then progressed into a complex neurodegenerative disorder (Mesulam
etal. 2014).

FTLD spectrum comprises also the so-called frontotemporal dementia (FTD)-
related disorders, PSP and CBD (Olney et al. 2017), which are associated with intra-
neuronal and astrocytic aggregates of tau. The typical PSP clinical presentation
includes progressive loss of balance with falls, vertical gaze palsy and problems
with speech and swallowing (Ling 2016). CBD commonly manifests with asym-
metric parkinsonism, dystonia, myoclonus and cognitive decline (Armstrong et al.
2013). PSP and CBD, however, share common pathology and clinical features, and
overlap may exist (Ling 2016). Up to 15% of FTD patients develop amyotrophic
lateral sclerosis (ALS), falling into the clinical syndrome termed FTD/ALS, in
which behavioural and executive disturbance are associated with muscle weakness,
fasciculations, spastic tone, hyperreflexia, dysarthria, dysphagia and respiratory
failure (Olney et al. 2017).

Abnormal accumulation of a-synuclein is the pathological key feature of the
group of neurodegenerative disorders within the a-synuclein spectrum, includ-
ing Parkinson’s disease (PD), PD with dementia (PDD), dementia with Lewy
bodies (DLB) and multiple system atrophy (MSA). In PD, a-synuclein deposi-
tion generates the intracellular Lewy bodies, which mainly affect dopaminergic
pathways (neurons and axons), while in PDD and in DLB, Lewy bodies are also
widely distributed into the cortical areas (Goedert 2001). In MSA pathology,
a-synuclein aggregates affect primarily oligodendrocytes, and the distribution
involves several subcortical and cortical regions (McCann et al. 2014). In
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addition, histopathological evidence suggests that a-synuclein often coexists
with AP plaques and tau neurofibrillary tangles (Fig. 9.1) (Compta et al. 2014;
Horvath et al. 2013). Within a-synuclein spectrum, the different diseases are
clinically well characterized; common clinical features include motor impair-
ments and several non-motor manifestations, namely, neuropsychiatric symp-
toms, visuospatial and executive deficits and dysautonomia (Barker and
Williams-Gray 2016).

Prion diseases are a rare group of neurodegenerative conditions characterized by
the abnormal accumulation of misfolded prion protein that includes syndromes,
such as Gerstmann—Striaussler syndrome (GSS), Creutzfeldt—Jakob disease (CJD)
and fatal familial insomnia (FFI) (Takada and Geschwind 2013) (Fig. 9.1). While
prion diseases share with the proteinopathies a detrimental accumulation of mis-
folded proteins, they are commonly considered as different brain neurodegenera-
tions since they are characterized by the tumultuous development of dementia with
a rapid and inexorable course (Colby and Prusiner 2011).

In clinical practice, patients with different dementias may show substantial
overlap, which hinders clinical decision-making. The last decades have progres-
sively witnessed a shift from a purely clinical diagnosis to a biomarker-supported
diagnosis, and molecular neuroimaging techniques such as positron emission
tomography (PET) have played a leading role in the dementia research diagnostic
workup (McKhann et al. 2011; Gorno-Tempini et al. 2011; Armstrong et al. 2013;
Albert et al. 2011; Rascovsky et al. 2011; Sperling et al. 2011). In the past, the
limited availability and high cost of PET scanning made it possible to defend the
use of single-photon emission tomography (SPECT) imaging in the differential
diagnosis of neurodegenerative disorders (Laforce Jr et al. 2018). The diagnostic
performance of PET is higher than SPECT, and, nowadays, PET applications are
significantly more widely available and affordable (Laforce Jr et al. 2018). For
these reasons, PET has become the instrument of choice in nuclear medicine prac-
tice for the assessment of brain functional and molecular changes in cognitive dis-
orders (O’Brien et al. 2014; Morinaga et al. 2010). Within this framework,
PET-based neuroimaging by using adequate radiotracers plays a leading role in
in vivo assessment of neurodegeneration, brain deposition of abnormal protein spe-
cies and presence of neuroinflammatory responses, as well as many other bio-
chemical and molecular changes (Perani et al. 2019). PET techniques are also
crucial to disentangle the relationship between underlying neuropathology, brain
dysfunction and clinical phenotypes. In this regard much is expected from combin-
ing brain metabolism, AP and tau imaging studies (Villemagne et al. 2018). Such
endeavours should help in confirming whether the presence or concentration of Ap
triggers and/or accelerates the spread of tau deposition (Villemagne et al. 2017).
These pathophysiological processes indeed can further be correlated with neurode-
generation, as measured with flourine-18-fluorodeoxyglucose (['*F]FDG)-PET,
and cognitive impairments. Given the complexity of neuropathological processes,
it is very likely that future therapeutic approaches will necessitate a combined
brain neuroimaging assessment.
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PET techniques have provided major advances, promoting novel approaches to
support an early and differential dementia diagnosis. Accurate ad hoc measures of
PET images are mandatory, allowing the detection of also very subtle, but signifi-
cant brain functional and pathological changes, even before the onset of clinical
symptoms. Of note, several studies demonstrated that PET techniques fully show
their diagnostic and prognostic value especially when appropriate quantitative or
parametric methods are applied (Frisoni et al. 2013; Sokoloff 1981; Caroli et al.
2012; Perani et al. 2014). This is crucial for early interventions, personalized care
planning and subject inclusion in clinical trials (Perani 2014; Iaccarino et al. 2019).
These cardinal issues include timing and protocol of acquisition, parametric mod-
elling and estimation, large normal database for statistical comparison and, in
some cases, the critical definition of the reference region to be used for
semi-quantification.

Here, we review the most recent evidence, advances, strengths and weaknesses
of the four leading PET tools in the dementia research field, namely, the assessment
of brain metabolism, amyloid and tau burden and neuroinflammation (for a sche-
matic summary, see Fig. 9.2). The progressive implementation of these techniques,
together with the standardization of appropriate analysis methodologies, will allow

PET imaging evidence in
Dementia spectrum

AD spectrum FTLD spectrum A-SYN spectrum Prion diseases spectrum
tAD PCA LvAD fAD BvFTD SD ALS CBD PSP DLB/PDD MSA-P MSA-C GSS CJD FFI
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Fig. 9.2 PET neuroimaging evidence in dementia spectra. Graphical representation of the
reviewed literature on neurodegeneration-, amyloid-, tau- and neuroinflammation-PET findings in
dementia spectra. Colour gradients index magnitude of alteration, namely, the combination of
number of reported evidence and consistency. AD Alzheimer’s disease, tAD typical AD, fAD fron-
tal AD, PCA posterior cortical atrophy, /[vAD logopenic variant of AD, FTLD frontotemporal lobar
degeneration, bvFTD behavioural variant of frontotemporal dementia, SD semantic dementia, ALS
amyotrophic lateral sclerosis, PSP progressive supranuclear palsy, CBD corticobasal degeneration,
a-SYN a-synucleinopathy, DLB dementia with Lewy bodies, PDD Parkinson’s disease dementia,
MSA-P parkinsonian type of multiple system atrophy, MSA-c cerebellar type MSA, GSS
Gerstmann-Straussler—Scheinker disease, CJD Creutzfeldt-Jakob disease, FFI fatal familial
insomnia
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unique breakthroughs in the study of neurodegenerative conditions and will have
remarkable implications for diagnostic and prognostic algorithms and therapy
monitoring.

9.2 [18F]FDG-PET: A Marker of Neurodegeneration

The large amount of data concerning the exploration of metabolic mechanism
underlying [18F]FDG-PET lead to well determine its fundamentals (Perani 2014).
The [18F]FDG-PET signal reflects astrocyte/neuron coupled energy consumption
(Sokoloff 1981; Kadekaro et al. 1987; Pellerin and Magistretti 1994; Lundgaard
et al. 2015). ['®F]JFDG-PET signal reflects resting potentials (15% of ['*F]FDG-PET
signal), action potentials (16% of ["®F]JFDG-PET signal) and synaptic processes
(44% of ["*F]FDG-PET signal) (Howarth et al. 2012).

Pioneering studies conducted by Kety and Sokoloff 60 years ago clearly showed
that glucose is the obligatory energy substrate for the brain. Pellerin and Magistretti
proposed that lactate is produced glycolytically by astrocytes and is transported to
neurons to be used as a significant source of energy (Pellerin and Magistretti 1994).
Recently, Zimmer et al. provided evidence that astrocytes account for a substantial
proportion of glucose consumption, thus better defining their coupling (Zimmer
et al. 2017).

[FIFDG-PET is a marker of synaptic integrity (Attwell and Laughlin 2001;
Rocher et al. 2003). Decrease of brain metabolism, assessed by ['*F]FDG-PET, is
considered a surrogate of synaptic dysfunction, which might be related to a variety
of neuropathological events, including altered intracellular signalling cascades and
mitochondria bioenergetics, impaired neurotransmitter release and accumulation of
neurotoxic protein species (Perani 2014; Kato et al. 2016). Of note, tiny perturba-
tions of glucose metabolism can be effectively detected by means of ["*F]FDG-
PET. The high sensitivity of this tool leads to capture neurodegeneration not only
due to local pathological and biochemical alterations but also due to long-distance
functional deafferentations (Kato et al. 2016). At the molecular level, this implies
that ["*F]FDG-PET reveals significant brain hypometabolism when neuronal death
has not occurred yet, detecting the ongoing molecular changes that are perturbing
the physiological synaptic functioning. Consistent evidence for highly specific pat-
terns of ["*F]FDG-PET hypometabolism in distinct dementia conditions has been
provided by several studies (Teune et al. 2010; Cerami et al. 2016; Perani et al.
2016; Teipel et al. 2015; Caminiti et al. 2017; Cerami et al. 2017a; Iaccarino et al.
2015) and before manifest brain atrophy occurs (Chételat et al. 2007; Bateman et al.
2012). Disease-specific hypometabolism, obtained with [*F]JFDG-PET imaging,
can provide support to differential diagnosis of neurodegenerative conditions
(Perani et al. 2014; Teune et al. 2010; Cerami et al. 2016; Caminiti et al. 2017;
2019). ['8F]FDG-PET hypometabolism has therefore been included in the clinical/
research diagnostic criteria of several dementia conditions, as a supportive feature
(McKhann et al. 2011; Gorno-Tempini et al. 2011; Armstrong et al. 2013; Rascovsky
et al. 2011; Sperling et al. 2011; McKeith et al. 2017). To date, the relevance of
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[*FIFDG-PET has been supported by a number of international workgroups and
consortia in the diagnostic workup of neurodegenerative diseases (Garibotto et al.
2017). The modality used to measure ['*F]JFDG-PET patterns, however, critically
influences diagnostic accuracy (Perani 2014; laccarino et al. 2017a). In this regard,
the selection of appropriate and validated procedures represents a cardinal issue in
['*F]FDG-PET data analysis. In order to obtain an objective cut-off between normal
and pathological findings, ad hoc methods need to be used, where the relative quan-
tification or semi-quantification represents largely diffuse approaches worldwide.
Different advanced parametric tools have been introduced to obtain statistical com-
parisons between the subject of interest and a cohort of healthy controls, including
Neurostat, 3D-SSP and statistical parametric mapping (SPM). Overall, these tools
run analysis at the voxel level and provide statistical maps of difference between the
patients and normative data. The implementation of standardized ['F]JFDG-PET
readouts and operator-independent maps is currently being called for by both US
Society of Nuclear Medicine and Molecular Imaging and the European Association
of Nuclear Medicine (Waxman et al. 2009; Morbelli et al. 2015). Brain hypome-
tabolism patterns at single-subject level can be identified by means of a recently
developed optimized SPM procedure, based on comparison with a large dataset of
healthy controls (Perani et al. 2014; Della Rosa et al. 2014). The use of large healthy
subjects datasets of PET scans (>50) is indeed recommended for single-subject
SPM analysis (Gallivanone 2014). SPM single-subject method takes advantage of
an optimized spatial normalization, based on a ['F]JFDG-PET dementia-specific
template (http://inlab.ibfm.cnr.it/inlab/PET_template.php) (Della Rosa et al. 2014),
and it has been also validated for utilization with different scanners (Presotto et al.
2017). The [®F]FDG-PET SPM procedure allows the identification of disease-
specific brain hypometabolism patterns in single individuals and performs better
than visual qualitative assessment of ['®F]JFDG-PET uptake images, as shown in
cross-validation studies for diagnostic accuracy and also in cross-validation studies
with other biomarkers (Perani et al. 2014; Perani et al. 2016; Iaccarino et al. 2017b;
Caminiti et al. 2018). This method has been largely validated for differential demen-
tia diagnosis (Perani et al. 2016; Caminiti et al. 2017; Cerami et al. 2017a) including
also atypical parkinsonisms (Caminiti et al. 2017) and crucially for prognosis in
prodromal cases (Perani et al. 2014; Perani et al. 2016; Iaccarino et al. 2017b;
Caminiti et al. 2018; Cerami et al. 2015a).

9.2.1 Evidencein AD Spectrum

['®F]JFDG-PET represents an accurate tool able to distinguish AD patients from
healthy subjects and other dementia conditions. The disease-specific hypometab-
olism pattern supports AD diagnosis since the earliest clinical phases, such as in
subjects with mild cognitive impairment (MCI), as well as in preclinical cases
(asymptomatic subjects at risk or asymptomatic carriers of pathogenetic muta-
tions) (Perani et al. 2016; Iaccarino et al. 2017b; Caminiti et al. 2018; Cerami
et al. 2015a).
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AD spectrum Single-subject Hypometabolism Map

Fig. 9.3 Representative SPM-t-map at the single-subject level in AD spectrum. Figure shows
prototypical examples of hypometabolism patterns in different variants of AD, from top to the bot-
tom: typical AD-like hypometabolism pattern; frontal variant of AD-like hypometabolism pattern;
posterior variant of AD-like hypometabolism pattern; logopenic variant of AD-like hypometabo-
lism pattern. AD Alzheimer’s disease, tAD typical AD, fAD frontal AD, PCA posterior cortical
atrophy, /vAD logopenic variant of AD

In typical AD, the [¥F]JFDG-PET metabolic pattern typically involves temporo-
parietal association cortices, the precuneus and posterior cingulate cortex (Fig. 9.3).
The AD-like bilateral temporo-parietal hypometabolism was described also in
cohorts of patients with pathologically confirmed AD (Hoffman et al. 2000). The
hypometabolism can start even two decades before symptom onset (Gordon et al.
2018; Benzinger et al. 2013). Frontal hypometabolism can be present, although
more variably and in later stages (Mosconi et al. 2008; Ossenkoppele et al., 2012).
Of note, the characteristic topographic distribution of cerebral hypometabolism rep-
resents the most proximal biomarker associated with clinical expression of AD, thus
the major correlate of memory and cognitive impairments (Perani 2008) and also
highly correlated with tau deposition (Ossenkoppele et al. 2016). Specific ['*F]FDG-
PET regional brain metabolic dysfunctions are also associated with distinct neuro-
psychiatric subtypes of frontal AD patients, classified according to neuropsychiatric
inventory scores (Ballarini et al. 2016). Specifically, a more severe hypometabolism
in frontal and limbic structures was related to high hyperactivity scores implicated
in behavioural control. A comparable positive correlation with these same regions
was found for the affective neuropsychiatric scores. On the other hand, the apathetic
scores were negatively correlated with metabolism in the bilateral orbitofrontal and
dorsolateral frontal cortex known to be involved in motivation and decision-making
processes.
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A more severe bilateral hypometabolism in parietal and posterior cingulate cor-
tices and precuneus is reported in patients with EOAD (onset <65 years) in com-
parison to patients with LOAD (onset >65 years) (Kim et al. 2005; Sakamoto et al.
2002). In addition, there is also evidence of different subtypes of AD (Whitwell
et al. 2012) which have been far less investigated by means of [FJFDG-PET
(Nestor et al. 2018). Notably, ['"*FJFDG-PET reveals variant-specific hypometabo-
lism patterns suggestive of the atypical form of AD, namely, PCA, IvAD and fAD,
and already in prodromal phase (Sala et al. 2020).

In patients with PCA, ["®F]JFDG-PET both at group and single-subject level
reveals hypometabolism patterns involving lateral occipital cortex, lingual gyrus,
cuneus, precuneus, posterior cingulate, the parietal lobe, the lateral posterior tempo-
ral cortex and the thalamus (see Fig. 9.3) (Sala et al. 2020; Whitwell et al. 2017a).
Associative visual areas are usually the most affected regions; however, in few cases
also the primary visual cortex can be involved (Cerami et al. 2015b). ['**FJFDG-PET
revealed also specific hypometabolism of the frontal eye fields, which can occur
secondary to the loss of input from the occipitoparietal regions, representing the
possible neural dysfunctional substrate underlying oculomotor apraxia in PCA
(Cerami et al. 2015b; Nestor et al. 2003). The hypometabolism in the right lateral
temporo-occipital cortex represents a syndrome-specific signature that emerges
from the comparison between PCA, DLB and typical AD cases (Rosenbloom et al.
2011; Spehl et al. 2015). Consistently, PCA can be distinguished from DLB when
['*F]FDG uptake is mostly asymmetric, with reductions in the right lateral temporo-
occipital cortex and a relatively spared left occipital cortex, with 83% sensitivity,
85% specificity and 83% accuracy (Spehl et al. 2015).

In the fAD, ['F]FDG-PET studies demonstrated a marked frontal hypometabo-
lism, in addition to the typical AD hypometabolic pattern, namely, affecting the
temporo-parietal regions and posterior cingulate cortex, reflecting perhaps a great
pathology load (e.g. neurofibrillary tangles) in frontal regions (see Fig. 9.3) (Sala
et al. 2020; Woodward et al. 2015). Moreover, fAD shows a severe hypometabolism
in the characteristic AD regions when compared to bvFTD (Rabinovici et al. 2011),
thus supporting differential diagnosis (Foster et al. 2007).

In IvAD, reduction of metabolism encompasses the left parietal and posterolat-
eral temporal lobes, with a relative sparing of right temporo-parietal cortex (see
Fig. 9.3) (Cerami et al. 2017a). The inferior and middle temporal gyrus, inferior
parietal gyrus and angular gyrus, only in the left hemisphere, represent variant-
specific hypometabolic core regions for IvAD (Sala et al. 2020). Hypometabolism
in left inferior, middle and superior temporal gyri and left supramarginal gyrus is
able to distinguish IvAD patients from typical AD ones, with area under the receiver
operating characteristic curve of 0.89 (Madhavan et al. 2013).

In addition to the shared typical hypometabolism in common core regions,
namely, precuneus and temporo-parietal cortex, bilaterally, the AD variants show
specific hypometabolic hallmarks that are uniquely associated with the different
clinical phenotypes, i.e. occipital regions for the PCA, left temporal regions for the
IvAD and the superior and middle frontal regions for the fAD (Sala et al. 2020).
These disease-specific hypometabolism patterns performed extremely well in
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discriminating the AD variants (typical and atypical) from each other within the AD
spectrum (Sala et al. 2020).

['"*FIFDG-PET is an effective tool also able to differentiate AD from other forms
of dementia (Perani et al. 2014; Perani et al. 2016; Caminiti et al. 2019). AD and
DLB patients may present partially overlapping profile of brain hypometabolism,
except for a marked hypometabolism in the occipital cortex and seldom with rela-
tive preservation of metabolism in the posterior cingulate cortex in DLB (Perani
et al. 2016; Caminiti et al. 2019; Nestor et al. 2018). Consistently, ['*F]FDG-PET
hypometabolism maps show high discriminative power distinguishing DLB from
AD conditions with an accuracy of >90% (Caminiti et al. 2019). As for the differen-
tial diagnosis between AD and FTLD, semi-quantitative assessment of ['*F]FDG-
PET allows a high accuracy in the classification of patients (Perani et al. 2014;
Perani et al. 2016). The level of currently available evidence was rated as good for
differentiating AD from DLB and fair for distinguishing between AD and FTLD
(Nestor et al. 2018).

This evidence suggests that AD variant-specific patterns of brain hypometabo-
lism, highly consistent at single-subject level and already evident in the prodromal
stages, represent relevant markers of neurodegeneration, with highly supportive
diagnostic and prognostic role.

9.2.2 Evidencein FTLD Spectrum

FTLD spectrum is characterized by variable neuropathology which may induce
synaptic dysfunction resulting in a decrease of ['*F]JFDG uptake. ['"*F]FDG-PET has
been largely used to evaluate regional metabolic changes in FTLD spectrum, reveal-
ing a crucial role of this biomarker in differential diagnosis and early detection of
brain functional abnormalities. Specifically, ['*F]JFDG-PET can be regarded as a
reliable imaging tool in the differentiation amongst FTLD subtypes (Matias-Guiu
etal. 2014).

Patterns of hypometabolism in bvFTD have been largely investigated, reporting
a significant hypometabolism in frontal lobe, limbic system and insular and tempo-
ral regions that were also associated with the dysfunction of connected subcortical
structures (see Fig. 9.4) (Cerami et al. 2016; Franceschi et al. 2005; Diehl et al.
2004; Jeong et al. 2005; Salmon et al. 2003; Schroeter et al. 2008). Two bvFTD
variants have been recently described, according to the hypometabolism features,
namely, the frontal and temporo-limbic bvFTD variants (Cerami et al. 2016).
Widespread hypometabolism in the dorsolateral and ventromedial frontal cortex
characterizes frontal bvFTD variant, while predominant hypometabolism in the
temporal lobes, including the poles, the hippocampal structures and amygdala, with
a selective sparing of the dorsolateral prefrontal cortex was associated with the
temporo-limbic variant (Cerami et al. 2016).

Several studies including those with post-mortem pathological confirmation
assessed the role of ['F]JFDG-PET in differential diagnosis of bvFTD and AD,
showing high sensitivity and specificity of this tool (Rabinovici et al. 2011; Foster
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FTLD spectrum Single-subject Hypometabolism Map

Fig. 9.4 Representative SPM-t-map at the single-subject level in FTLD spectrum. Figure shows
prototypical examples of hypometabolism patterns in different variants of FTLD, from top to the
bottom: behavioural variant of FTD-like hypometabolism pattern; semantic dementia-like hypo-
metabolism pattern; PNFA-like hypometabolism pattern; PSP-like hypometabolism pattern; CBD
left-like hypometabolism pattern; CBD right-like hypometabolism pattern. F7LD frontotemporal
lobar degeneration, bvFTD behavioural variant of frontotemporal dementia, SD semantic demen-
tia, PNFA primary non-fluent aphasia, PSP progressive supranuclear palsy, CBD-/ corticobasal
degeneration left, CBD-r corticobasal degeneration right

et al. 2007; Panegyres et al. 2009; Davison and O’Brien 2014). In this framework,
anterior cingulate and anterior temporal cortices showed the higher specificity for
the differential diagnosis with AD (Rabinovici et al. 2011). Although ["*F]FDG and
carbon-11-labelled Pittsburgh Compound B ([''C]PiB)-PET show similar accuracy
in discriminating AD and bvFTD patients, hypometabolism pattern demonstrates
higher specificity when the ['8F]FDG scans were classified quantitatively (Rabinovici
et al. 2011).

PPA syndromes, which include selective language disorders with specific fea-
tures, may be sometimes complicated by the presence of non-language cognitive
symptoms (Mesulam et al. 2014), representing a prodromal stage to more complex
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clinical pictures belonging to AD or the FTLD spectrum. Predominately anterior
temporal lobe pattern of hypometabolism with left dominant asymmetry is consis-
tently reported as the main metabolic signature of SD (see Fig. 9.4) (Iaccarino et al.
2015; Diehl et al. 2004; Nestor et al. 2006; Acosta-Cabronero et al. 2011). However,
[FIFDG-PET hypometabolism pattern, at single-subject level, highlights some
heterogeneity regarding the lateralization of hemispheric involvement (Cerami et al.
2017a; Iaccarino et al. 2015). Furthermore, in SD ['*F]FDG-PET reveals an involve-
ment of limbic structures (Diehl et al. 2004; Kim et al. 2012a; Desgranges et al.
2007), the fusiform gyrus (Diehl et al. 2004; Nestor et al. 2006; Acosta-Cabronero
et al. 2011; Drzezga et al. 2008; Mion et al. 2010) and the caudate and thalamus
(Diehl et al. 2004; Desgranges et al. 2007). The topography of hypometabolism is
highly associated with the clinical features of SD (Matias-Guiu et al. 2014). A lon-
gitudinal study showed that early pathological changes in metabolism are enough to
produce specific neurocognitive profile in SD patients (Diehl-Schmid et al. 2006).

In PNFA patients the asymmetric hypometabolism is more evident in the left
anterior perisylvian cortical area as well as in the fronto-insular cortex and supple-
mentary motor area (see Fig. 9.4) (Nestor 2003). Thus, PNFA are characterized by
asymmetric left frontal hypometabolism, which is subtle in some cases (Feher et al.
1991; Rabinovici et al. 2008). Hippocampal structures and amygdala result selec-
tively spared (Cerami et al. 2017a). Of note, a recent follow-up study showed that
specific metabolic signatures in PNFA patients are able to predict the clinical pro-
gression toward different form of dementia (Cerami et al. 2017a).The hypometabo-
lism in the superior and inferior parietal cortex predicted the conversion to CBD,
and an involvement of the basal ganglia, midbrain and cerebellum was present in
those PNFA patients fulfilling PSP diagnostic criteria at the follow-up.

Asymmetric hypometabolism in the basal ganglia, thalamus and frontoparietal
cortical regions, contralateral to the clinically affected side, was consistently
reported in CBD patients (see Fig. 9.4) (Caminiti et al. 2017; Zhao et al. 2012;
Niethammer et al. 2014). A recent study assessed the utility of ["*F]JFDG-PET in
differentiating amongst different neuropathologic substrata in a cohort of patients
with corticobasal syndrome (CBS) (Pardini et al. 2019). In this study, post-mortem
pathologic diagnosis identified three subgroups: CBS-CBD, CBS-AD and CBS-
PSP. The whole group of CBS patients showed significant hypometabolism in fron-
toparietal regions, including the perirolandic area, basal ganglia and thalamus of the
clinically more affected hemisphere, in comparison to healthy controls. A more evi-
dent, bilateral involvement of the basal ganglia characterized CBS-CBD subgroup.
On the other hand, patients with CBS-AD and CBS-PSP presented with posterior,
asymmetric hypometabolism and a more anterior hypometabolic pattern, including
the medial frontal regions and the anterior cingulate, respectively. All the evidence
suggests that ["*F]JFDG-PET scans can help in the aetiologic diagnosis of CBS
(Pardini et al. 2019).

Hypometabolism pattern in PSP patients involves basal ganglia, midbrain, ante-
rior cingulate cortex, frontal operculi and primary motor cortex (see Fig. 9.4)
(Caminiti et al. 2017; Zhao et al. 2012; Eckert et al. 2005; Hosaka et al. 2002).
Thalamic hypometabolism was also variably reported in PSP (Akdemir et al. 2014).
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Significant reductions of metabolism in the caudate nucleus, thalamus, midbrain
and cingulate gyrus emerges from the comparison of PSP patients with controls but
also with PD and MSA (Juh et al. 2004). Specifically, “pimple sign”—an oval/
round-shaped region representing midbrain hypometabolism—has been proposed
as a hypometabolic feature able to distinguish PSP from MSA and CBS (Botha
et al. 2014). This sign showed high specificity (100%) to identify PSP patients, but
low sensitivity (29%) since it is not present in all cases (Botha et al. 2014). A recent
study reveals that visual rating of t-maps of brain hypometabolism in single sub-
jects, obtained by optimized SPM voxel-wise procedure, allows an accurate differ-
ential diagnosis amongst PSP, CBD, DLB and MSA-cerebellar (MSA-c) patients
with 98% sensitivity, 99% specificity and 99% accuracy (Caminiti et al. 2017).
Histopathological changes in regions affected by brain hypometabolism were
reported by post-mortem examination in PSP patients. Specifically, argyrophilic
globosum neuronal tangles were found in the pons, while neuronal tangles with
cytoplasmic inclusions and neuropil threads were found in the frontal lobe. In addi-
tion, tufted astrocytes were found in the frontal lobe, amygdala and both thalami
(Tang et al. 2010).

PSP clinical subtypes, namely, the PSP-Richardson and the PSP-parkinsonism
(Williams et al. 2005), present distinct patterns of glucose hypometabolism (Eckert
et al. 2005). PSP-Richardson patients are characterized by severe thalamic and fron-
tal cortex hypometabolism, whereas more significant putaminal hypometabolism
can be found in PSP-parkinsonism patients. In this regard, Srulijes and colleagues
identify the putamen/thalamus ['®F]FDG uptake ratio as an index able to discrimi-
nate between PSP-parkinsonism and PSP-Richardson patients (Srulijes et al. 2012).

Dalakas and colleagues in 1987 reported frontal and basal ganglia reduction of
['*F]FDG uptake, with a relative sparing of the cerebellum, in ALS patients (Dalakas
et al. 1987). About 15% of ALS patients develop FTD (FTD/ALS) over the disease
course; in addition 35% of ALS patients can manifest cognitive impairments with
variable severity, generally involving executive functions (Phukan et al. 2012;
Ringholz et al. 2005). [®FJFDG-PET group-level studies in FTD/ALS patients
reported hypometabolism in motor and non-motor cortices, encompassing frontal
temporal and parietal regions (Canosa et al. 2016; Renard et al. 2011; Rajagopalan
and Pioro 2015; Matias-Guiu et al. 2016). A large cohort study assessed brain hypo-
metabolism in 170 ALS cases, including cognitively unimpaired ALS, ALS with
cognitive impairments and FTD/ALS. The study revealed an increasing hypome-
tabolism gradient in frontal brain regions going from cognitively unimpaired ALS
to FTD/ALS patients, where ALS with cognitive impairments showed intermediate
levels of frontal hypometabolism. Based on this background, although ["*F]FDG-
PET is currently not supported in the clinical diagnosis of ALS (Nestor et al. 2018;
Sala et al. 2019), it can be helpful in the diagnostic and prognostic evaluation of
cognitive impairment in FTD/ALS spectrum.

The pattern of neurodegeneration as shown by [*F]FDG-PET in clinically diag-
nosed sporadic and genetic FTLD cases was characterized in many cross-sectional
and also some longitudinal studies, reviewed by (Meeter et al. 2017). A recent study
assessed maps of brain relative hypometabolism and hypermetabolism at
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single-subject level in six FTD/ALS patients carrying the C9orf72 mutation
(Castelnovo et al. 2019). CObvFTD cases were characterized by a prevalent frontal
hypometabolism and C9SD by right temporal polar and lateral involvement, in
accordance with the clinical diagnosis. Variable patterns of hypo- and hypermetabo-
lism, instead, were found in C9ALS bulbar variant patients. The consistency
between brain hypometabolism and different clinical phenotypes supports the diag-
nostic importance to capture specific brain dysfunction at single-subject level.

Unfortunately, the number of studies examining the relation of functional imag-
ing markers with the underlying pathology is limited, and hitherto there is not reli-
able evidence in TDP-43 pathology or FUS by metabolic imaging (Steinacker et al.
2019; Gordon et al. 2016a; Diehl-Schmid et al. 2014).

9.2.3 Evidence in a-Synuclein Spectrum

a-Synuclein oligomers accumulate in synaptic terminals and spread in a prion-like
manner through vulnerable synaptic circuits. Synaptic pathology plays, therefore, a
central role in the pathogenesis of a-synucleinopathies (Calo et al. 2016).
Specifically, the alterations in synaptic structure and function caused by the accu-
mulation of abnormal a-synuclein are reported as a primary event in the pathogen-
esis of a-synuclein-related diseases (Calo et al. 2016). This synaptic dysfunction
can be measured by ['®F]JFDG-PET, which allows the detection of patterns of brain
hypometabolism with disease-specific topography within the a-synuclein spectrum.
['*F]FDG-PET is able to distinguish DLB from MSA patients, identifying also dif-
ferent disease phenotypes such as cerebellar and parkinsonian subtypes of MSA
(Caminiti et al. 2017).

DLB condition is characterized by a selective reduction of ['F]FDG uptake in
occipital cortex, specifically in associative occipital cortex and primary visual cor-
tex (see Fig. 9.5) (McKeith et al. 2017). DLB shares with AD similar hypometabolic
pattern in the temporo-parietal cortices (Perani et al. 2014; Teune et al. 2010;
Caminiti et al. 2019; Presotto et al. 2017). In terms of differential diagnosis, patho-
logical reduction of metabolism in lateral occipital cortex showed the highest sensi-
tivity (88%), whereas the relative preservation of posterior cingulate metabolism
(the “cingulate island sign”) achieved the highest specificity (100%) (Lim et al.
2009). A recent study showed that occipital lobe hypometabolism has the highest
discriminative power distinguishing DL.B from AD and PD conditions with an accu-
racy of >90% (Caminiti et al. 2019). It has been also demonstrated that a posterior
hypometabolism pattern represents an early marker able to distinguish patients with
PD at higher risk of progression to dementia (i.e. PDD/DLB) after 4-year follow-up
from those who will remain with normal cognition (Pilotto et al. 2018).

MSA patients exhibit altered glucose metabolism in the basal ganglia, putamen,
pons and cerebellum, compared to PD and controls (Brajkovic et al. 2017).
Consistently, decreased ["*F]FDG uptake in putamen, brainstem or cerebellum is
part of the diagnostic criteria for possible MSA (see Fig. 9.5) (Gilman et al. 2008).
Decreases in cerebellar glucose metabolism occur early in the course of the disease
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Fig. 9.5 Representative SPM-t-map at the single-subject level in a-synuclein spectrum. Figure
shows prototypical examples of hypometabolism patterns in a-synuclein spectrum, from top to the
bottom (bottom panel): DLB-like hypometabolism pattern; MSA-p-like hypometabolism pattern;
MSA-c-like hypometabolism pattern. Colour scales indicate values of T-scores, corrected for age,
obtained from comparison with a large group of healthy subjects, rendered on a high-resolution
anatomical template. a-SYN a-synucleinopathy, DLB dementia with Lewy bodies, PDD Parkinson’s
disease dementia, MSA-P parkinsonian type of multiple system atrophy, MSA-c cerebellar
type MSA

and contribute to cerebellar symptoms, whereas motor symptoms seem to precede
putaminal hypometabolism (Lyoo et al. 2008). Patients with a diagnosis of probable
MSA showed greater brain hypometabolism than patients with MSA and severe
autonomic dysfunction (Kwon et al. 2009). These findings suggest that the pattern
of glucose metabolism in MSA with predominant involvement of the autonomic
nervous system may differ from that of MSA with involvement of the striatonigral
or olivopontocerebellar systems.

According to the prevalent motor characteristics, MSA can be distinguished into
a parkinsonian (MSA-p, where the predominant motor symptom is parkinsonism)
and a cerebellar (MSA-c, where the predominant motor feature is cerebellar ataxia)
subtype (Fanciulli and Wenning 2015). ["*F]JFDG-PET reveals specific hypometa-
bolic features characterizing the two clinical phenotypes. Specifically, hypometabo-
lism mainly occurs in the putamen bilaterally in MSA-p and in the whole cerebellum
in MSA-c (Fig. 9.5) (Caminiti et al. 2017; Zhao et al. 2012) in line with the neuro-
pathology feature of these MSA subtypes (Ozawa et al. 2004).

9.2.4 Evidencein Prion Diseases Spectrum
Human prion diseases are uniformly fatal, progressive neurodegenerative disorders.

The prion diseases are caused by accumulation of misfolded prion protein in the
human brain. The histopathological features of prion diseases include characteristic
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spongiform changes, neuronal cell loss and gliosis in various regions of the brain
(Takada and Geschwind 2013; Puoti et al. 2012).

An in vivo PET imaging study evaluated ['*F]JFDG-PET in six symptomatic and
asymptomatic carriers of prion protein gene mutations associated with the GSS dis-
ease. Reduction of glucose metabolism was observed extensively in the neocortex,
especially in parietal regions, but also in the basal ganglia and/or thalamus (Kepe
et al. 2010).

The role of ['®F]JFDG-PET in patients with CJD has been investigated only in few
studies. ["®F]JFDG-PET shows widespread hypometabolism in CJD, as opposed to
other dementias such as AD or FTD which show specific patterns of reduced metab-
olism (Henkel et al. 2002; Goldman et al. 1993). Hypometabolism in parietal, tem-
poral, frontal and occipital regions is consistently reported (Henkel et al. 2002;
Goldman et al. 1993; Engler et al. 2003; Renard et al. 2013). In most CJD patients,
alterations were asymmetric. Notably, histopathological astrocytosis (Engler et al.
2003), neuronal death (Goldman et al. 1993) and spongiform change show an asso-
ciation with reduction of ['8F]FDG uptake (Goldman et al. 1993; Matias-Guiu et al.
2017). A SPM semi-quantitative study of ["*F]FDG uptake in patients with CJD
revealed hypometabolism in many cortical areas with an asymmetric pattern and
sparing of the basal ganglia and thalamus (Kim et al. 2012b). Since the vacuolation
and prion deposition did not always correlate with hypometabolism in subcortical
structures (Mente et al. 2017), it can be hypothesized that cortical involvement
occurs earlier in the progression of the disease; therefore, subcortical involvement
can be detected by ['F]JFDG imaging in later stages. Two other studies, however,
found an early involvement of the basal ganglia and thalamus, with ['*F]FDG-PET,
in probable or pathologically confirmed sporadic CJD patients (Xing et al. 2012;
Hamaguchi et al. 2005). A recent study with ['*F]JFDG-PET identified also hyper-
metabolism in the limbic and mesolimbic structures, including medial temporal
lobe in autopsy-confirmed cases of CJD, suggesting a possible relationship with
microglial activation (Mente et al. 2017). ['*F]JFDG-PET is not routinely used in the
diagnostic evaluation of prion disease patients; however, increasing evidence sup-
ports the use in the clinical assessment of CJD (Matias-Guiu et al. 2017).

In FFI patients, a thalamic reduction of ['*F]FDG uptake was consistently found,
proposing this feature as a hypometabolic hallmark of the disease, in agreement with
the neuropathologic findings (Perani et al. 1993; Cortelli et al. 1997; Parchi et al.
1995; Mastrianni et al. 1999; Montagna et al. 2003). Thalamic hypometabolism is
detectable since the early phase of the disease, while the involvement of other brain
regions depends on disease duration (Perani et al. 1993; Cortelli et al. 1997; Parchi
et al. 1995). Cortelli and colleagues (Cortelli et al. 1997) tested also the association
between neuropathological and [®F]JFDG-PET findings in six FFI patients. They
found that the hypometabolism was more widespread than neuronal loss and signifi-
cantly correlated with the presence of protease-resistant prion protein (Cortelli et al.
1997). A recent study showed that FFI patients present a high variability in ["*F]FDG-
PET hypometabolism at single-subject level and a less marked and extensive cortical
involvement in comparison to CJD patients, with a selective involvement of the thal-
amus as the most characteristic finding (Prieto et al. 2015).
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Thus, prion diseases exhibit characteristic patterns of brain hypometabolism,
suggesting that the detection of these patterns by ['*F]JFDG-PET imaging could ori-
ent the diagnosis (Prieto et al. 2015).

9.2.5 Strengths

In the research and clinical field of dementia, ['*F]JFDG-PET is an established and
well-validated marker of neurodegeneration. Results are a direct reflection of neural
tissue state, efficiently depicting regional dysfunctions at the synaptic level, imply-
ing dysfunction without actual loss of neurons. The ability of ["*F]JFDG-PET to
detect disease-specific patterns of neurodegeneration led to the inclusion of brain
hypometabolism as a supportive feature in the clinical/research diagnostic criteria
of multiple dementia conditions (McKhann et al. 2011; Gorno-Tempini et al. 2011;
Armstrong et al. 2013; Albert et al. 2011; Rascovsky et al. 2011; McKeith et al.
2017; Sperling et al. 2014). ['®F]JFDG-PET represents an effective tool to provide
essential information to improve early differential diagnoses amongst neurodegen-
erative diseases belonging to different spectrum and amongst clinical subtypes
belonging to the same disease spectrum (Nestor et al. 2018) (Fig. 9.6).

The supportive role of ['*F]JFDG-PET has also been demonstrated in differentiat-
ing DLB and atypical parkinsonian syndromes, with respect to neuroimaging of the
presynaptic dopaminergic system. Due to the widespread availability of SPECT
scans and approval from Europe (since 2000) and the United States (since 2011),
dopamine transporter (DAT) radiotracers are often used in routine clinical practice,
allowing the assessment in vivo of presynaptic nerve terminals integrity (Booij et al.
2001; Catafau and Tolosa 2004). However, dopamine presynaptic tracers are not a
trustworthy tool to distinguish amongst parkinsonian disorders (Burn et al. 1994;
Vlaar et al. 2007). In this regard, ["*F]JFDG-PET provided a high diagnostic accu-
racy for differentiation between Lewy body diseases and atypical parkinsonism
identifying disease-specific pattern topography (Caminiti et al. 2017; 2019), which
is significantly better than presynaptic dopaminergic system radiotracers (Hellwig
etal. 2012).

A growing body of evidence supports the value of ['*F]JFDG-PET in the diagno-
sis of patients with atypical/unclear conditions (Mosconi et al. 2008; Silverman
et al. 2001; Mosconi 2005; Bohnen et al. 2012; Elias et al. 2014; Herholz et al.
2007; Laforce Jr et al. 2010; Pakrasi and O’Brien 2005; Jagust et al. 2007).
Importantly, ['*F]JFDG-PET improving diagnostic accuracy can lead in the future to
better and earlier treatment and better inclusion in clinical trials.

[*F]FDG-PET shows also a crucial predictive and prognostic value. Indeed,
[*F]FDG-PET patterns of hypometabolism seem to be particularly accurate in pre-
dicting conversion from MCI to dementia, when compared to other biomarkers (e.g.
amyloid-PET, magnetic resonance imaging, cerebrospinal fluid) (Perani et al. 2016;
Anchisi et al. 2005; Bloudek et al. 2011; Dukart et al. 2016; Fellgiebel et al. 2007,
Landau et al. 2010; Prestia et al. 2013; Robb et al. 2017; Shaffer et al. 2013; Yuan
etal. 2009). In particular, ['*F]FDG-PET, analysed with appropriate semi-quantitative
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Fig. 9.6 Qualitative overview of the discriminative power of molecular PET neuroimaging mea-
sures presented in this chapter. Neurodegeneration-, amyloid-, tau- and neuroinflammation-PET
role in differential diagnoses amongst clinical subtypes belonging to the same disease spectrum
(within—left panel) and amongst neurodegenerative diseases belonging to different spectra
(between—right panel). Within: ["*F]JFDG-PET shows high discriminative power in within spec-
trum differential diagnoses for all dementia conditions. Although amyloid-PET is a good bio-
marker to capture AD pathology, it is not able to differentiate clinical phenotypes within the AD
spectrum (Lehmann et al. 2013). Tau-PET has shown to be useful in within spectrum differential
diagnosis for AD (Whitwell et al. 2018b; Nasrallah et al. 2018); however, it presents low specificity
for non-AD-related tauopathies (Marquié et al. 2015). Most studies report evident but non-specific
inflammatory responses in many neurodegenerative diseases. Neuroinflammation-PET imaging
studies show sparse and questionable results in differential diagnosis within the same spectrum,
due to small sample sizes, methodological differences amongst studies and intrinsic limitations of
TSPO tracers (Best et al. 2019). Between: [*F][FDG-PET shows high discriminative power for
differentiating AD from FTLD spectra, and between FTLD and a-syn spectra. Diagnostic chal-
lenges may rise in differentiating PCA from DLB, due to topographical overlap in the hypometa-
bolic pattern between the two conditions (Whitwell et al. 2017a). Amyloid-PET value is high in
differentiating AD spectrum from the FTLD spectrum (Rabinovici et al. 2011), while the co-
occurrence of amyloid and a-syn deposition in DLB/PDD hinders a clear, amyloid-PET-based,
pathological differentiation between the AD and the a-syn spectrum (Ossenkoppele et al. 2015).
However, in the a-syn spectrum, it may help in distinguishing DLB/PDD patients from MSA
patients (Jellinger 2007). The selectivity of the current tau-PET radioligands for non-AD tauopa-
thies is not well understood and affects their role in differential diagnosis amongst spectra (Marquié
et al. 2015; Sander et al. 2016; Ishiki et al. 2017; Kikuchi et al. 2016; Lowe et al. 2016; Josephs
et al. 2016). Low or “NA” discriminative power for neuroinflammation-PET imaging is due to
paucity of studies comparing the different spectra. Abbreviations: [SFJFDG-PET fluorine-18-
fluorodeoxyglucose positron emission tomography, AD Alzheimer’s disease, FTLD frontotempo-
ral lobar degeneration, a-syn a-synucleinopathy, NA not available

parametric approaches, is able to correctly differentiate MCI subjects who converted
to AD dementia or to other dementias (FTD and DLB) from those who remained
stable or reverted to normal cognition (Perani et al. 2016; Caminiti et al. 2018;
Cerami et al. 2015a). Thus, heterogeneous hypometabolism patterns in MCI can be
identified, allowing clinicians to predict conversion not only to AD but also to non-
AD dementia, avoiding multiple additional examinations and unnecessary delay in
proper clinical management (Perani et al. 2016; Cerami et al. 2015a). Given its high
predictive value, ['®F]JFDG-PET will likely play a relevant role for candidate inclu-
sion in future clinical trials as an accurate tool to select subjects at higher risk for
short-term conversion to dementia (Garibotto et al. 2017). An accurate screening of
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participants is crucial for optimizing trial effectiveness. In this regard, the sole use of
amyloid positivity, as eligibility criterion, might lead to inclusion of amyloid-positive
clinically stable subjects, especially in the older individuals (Iaccarino et al. 2019;
Brookmeyer and Abdalla 2018). Of note, it has been recently showed that negative
['*F]FDG-PET scans are able to identify those MCI and healthy subjects who remain
clinically stable with high negative predictive values (>0.80) (Iaccarino et al. 2019).
This evidence further highlights the role of ['"*FJFDG-PET, coupled to amyloid-PET,
in the patient selection for future clinical trials.

9.2.6 Weaknesses

['*F]FDG-PET results evaluating metabolic changes in neurodegenerative condi-
tions have been and are largely based on qualitative methods (i.e. visual inspec-
tion). These approaches greatly depend on the observers’ experience and may
greatly reduce sensitivity and specificity, due to the lack of an objective cut-off
between normal and pathological findings (Perani et al. 2014). A recent Cochrane
review concluded that the current evidence is not enough to support the use of
[FIFDG-PET in clinical diagnostic routine of prodromal dementia phase
(Smailagic et al. 2015). These results are likely due to methodological heterogene-
ity across ['SF]JFDG-PET literature, including data analysis procedures. In order to
overcome these problems, two broad families of quantifications can be considered:
either absolute or relative. Absolute ['SFJFDG-PET quantification requires
advanced research settings since an arterial blood sampling has to be performed
during the scan (Mosconi 2013). On the other hand, relative quantification requires
the utilization of a reference value, such as the global mean or the mean value of
an a priori defined reference region. Relative quantification, or semi-quantification,
is definitely more diffuse worldwide, also because of the invasive nature of the
absolute quantification and the resulting patient discomfort (Varrone et al. 2009).
Despite the increasingly recognized need for objective measurements, few studies
have focused on head-to-head comparisons between visual and quantitative assess-
ments (Perani et al. 2014). Still, few studies have shown higher diagnostic (Foster
et al. 2007) and prognostic (Patterson et al. 2011) performances when using semi-
quantification methods, as well as more accurate differential diagnosis (Rabinovici
etal. 2011).

9.3 PET Markers of Amyloidosis

To date, several tracers are available to assess amyloid plaque burden in vivo, with
[''C]PiB being the pioneering and most frequently used one for research purposes.
[''C]PiB binds to both extracellular amyloid plaques and vascular amyloid deposits
(Bacskai et al. 2003). This tracer has a very high specificity for amyloid plaques,
and it does not bind to non-Ap inclusions such as neurofibrillary tangles or Lewy
bodies (Fodero-Tavoletti et al. 2012; Lockhart et al. 2007). Three other ['®F]-labelled
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AP tracers, ['®F]florbetapir, ['*F]florbetaben and ['®F]flutemetamol, have then
received Food and Drug Administration and European Medicines Agency approval
for clinical use (Villemagne et al. 2018).

9.3.1 Evidencein AD Spectrum

Neuropathologically, AD is typically characterized by the presence of AP plaques
(Braak and Braak 1991). Accumulation of A neuritic plaques is considered one of
the hallmark pathologic changes associated with the AD clinical manifestations,
from typical amnesic disease or LOAD to atypical variants (Galton et al. 2000;
Hardy and Allsop 1991).

AP burden, as measured by PET, has been associated with both age and APOE*e4
carrier status (Morris et al. 2010; Rowe et al. 2010). APOE is a major susceptibility
gene for AD (Roses and Saunders 1994). APOE*e4 carriers present with substan-
tially higher AP deposition than non-carriers that are at the same clinical stage
(Morris et al. 2010; Rowe et al. 2010).

The typical AD-like pattern of amyloid ligand accumulation is diffuse and sym-
metric, with a typical strong load in the posterior cingulate cortex and precuneus,
plus orbitofrontal cortex and temporal lobe, followed by prefrontal and parietal cor-
tices (Villemagne et al. 2018). This pattern of AR PET tracer retention is highly
correlated with regional AP plaque density in post-mortem brain or biopsy samples
(Ikonomovic et al. 2008; Sabbagh et al. 2011; Clark et al. 2011). Pioneering studies
with PET and [''C]PiB consistently demonstrated the ability to capture amyloid
pathology in typical and atypical AD, and these findings have been correlated with
ex vivo histologic measurements of AP} plaque burden (Ikonomovic et al. 2008; Roe
et al. 2013; Wolk et al. 2009). The uptake of ['!C]PiB tracer, however, did not show
distinct topographic patterns associated with each AD variant (Xia et al. 2017)
(Fig. 9.6).

Increased [!!C]PiB uptake in occipital regions relative to that found in typical AD
has been reported in PCA series (Ng et al. 2007; Tenovuo et al. 2008; Formaglio
et al. 2011; Rabinovici et al. 2010; Lehmann et al. 2013; Ossenkoppele et al. 2015;
Santos-Santos et al. 2018). Wolk et al. (Wolk et al. 2012) described a lower ratio of
anterior-to-posterior [!!C]PiB uptake relative to that in typical AD, with the opposite
pattern for ['®F]JFDG-PET, the latter consistent with the lower posterior hypome-
tabolism in PCA. Lehmann et al. also reported some evidence of increased [''C]PiB
uptake in visual association cortex in PCA (Lehmann et al. 2013).

Of note, previous studies consistently reported no significant difference in the
['!C]PiB uptake between patients with EOAD and LOAD (Lehmann et al. 2013;
Cho et al. 2013).

[''C]PiB deposition was recently found in more than 95% of the patients with
sporadic IvPPA (Santos-Santos et al. 2018). The pattern of amyloid uptake in IvPPA,
often progressing to AD, is not clearly different from that in typical AD (Rabinovici
et al. 2008; Lehmann et al. 2013; Wolk et al. 2012; Leyton et al. 2011). Other indi-
vidual studies using in vivo biomarkers or neuropathological examination in patients
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with IvPPA variably detected A pathology in 57-100% of patients, thus supporting
AD diagnosis (Santos-Santos et al. 2018; Spinelli et al. 2017; Giannini et al. 2017).
Despite the prominence of language symptoms and evidence of more focal left
hemisphere neurodegenerative change, these patients did not display any asymme-
try in amyloid plaque distribution as measured by [''C]PiB.

Since 2012, ['®F]-labelled amyloid radiotracers (i.e. ['*F]florbetaben, [**F]flor-
betapir, ['*F]flutemetamol), with longer half-life than [!!C]PiB, entered clinical and
research evaluation to support AD diagnosis (Masdeu 2017). All these amyloid-PET
tracers bind with high affinity to fibrillar amyloid in neuritic plaques and have been
validated against autopsy evidence (Wolk et al. 2011; Choi et al. 2011; Sabri et al.
2015; Klunk et al. 2004). Higher cortical retention of ['*F]florbetaben was found in
AD as compared to age-matched controls or patients with frontotemporal dementia
(Fodero-Tavoletti et al. 2012). ['8F]flutemetamol-PET showed good performance in
differentiating between patients with AD and age-matched healthy controls
(Vandenberghe et al. 2010). It is not fully understood whether or not the three
['®F]-labelled amyloid radiopharmaceuticals are equally specific and sensitive in the
differential diagnosis between AD and healthy controls (Johnson et al. 2013a). All
tracers were validated through a comparison with [''C]PIB, showing high correla-
tion with the latter (Johnson et al. 2013a). In this direction, the Centiloid Project
provided methods to standardize amyloid-PET measures across the different trac-
ers, making results obtained with ['®F]-labelled and ['!C]PiB Ap tracers comparable
(Klunk et al. 2015).

Amyloid-PET imaging has the potential clinical utility of aiding in differential
diagnosis in EOAD and to support the clinical diagnosis of subjects with probable
AD with improved diagnostic accuracy (Suppiah et al. 2019). There are, however,
several problems to be addressed, particularly the presence of amyloid load of com-
parable pattern and amount in cognitively normal elderly individuals (Iaccarino
et al. 2019; Brookmeyer and Abdalla 2018).

9.3.2 Evidencein FTLD Spectrum

AP deposition is not a pathological feature of FTLD, and these patients usually have
no cortical amyloid-PET retention (Drzezga et al. 2008; Rowe et al. 2007; Rabinovici
et al. 2007; Engler et al. 2008). Thus, this imaging tool has a crucial role in the dif-
ferential diagnosis of FTLD and AD (Drzezga et al. 2008; Rowe et al. 2007;
Rabinovici et al. 2007). FTLD and AD are the leading causes of early age-of-onset
dementia, occurring with similar frequency in population younger than the age of
65 (Ratnavalli et al. 2002). Specifically, EOAD and FTLD are characterized by
misdiagnosis rates ranging from 10% to 40%, reported even in expert centres (Alladi
et al. 2007). In 62 EOAD patients and 45 FTLD patients matched for age and dis-
ease severity, [''C]PiB visual reads had 89.5% sensitivity and 83% specificity to
distinguish AD from FTLD patients (Rowe et al. 2007; Rabinovici et al. 2007;
Villemagne et al. 201 1a). Quantitative analysis of [''C]PiB provided 89% sensitiv-
ity and 83% specificity (Rabinovici et al. 2011). However, a proportion of them may
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have been clinically misdiagnosed, with AD as the pathological substrate for their
dementia (Beach et al. 2012). It is possible that amyloid is present as secondary
pathology also in FTLD, or as incidental amyloid deposition due to ageing pro-
cesses, whereas the clinical syndrome is driven by non-AD pathologies (Jellinger
and Attems 2010).

In CBS, a clinically and pathologically heterogeneous entity, mostly associ-
ated with underlying tauopathy, 25-50% present AD as the causative pathology
post-mortem (Alladi et al. 2007; Lee et al. 2011; Ling et al. 2010; Dickson et al.
2002). Niccolini et al. reported no differences in cortical and subcortical amyloid
uptake between patients with CBS and healthy controls, also confirmed at
autopsy (Niccolini et al. 2018). A recent meta-analysis reported that the preva-
lence of AP positivity decreased with age in CBS. This study suggests that AD
may be the causative pathology in young CBS patients, whereas a primary tauop-
athy becomes more likely with increasing age (Ossenkoppele et al. 2015).
Amyloid-PET would theoretically be useful in identifying CBS patients with
underlying AD pathology.

In PSP, two different autopsy studies have highlighted the presence of concomi-
tant AP proteins in the brains (Tsuboi et al. 2003; Dugger et al. 2014). In a series of
clinically PSP patients, evidence of AP deposition was seen by PET imaging in a
relatively high proportion of PSP subjects (40%). However, AP deposition was not
found to be correlated with clinical severity, magnetic resonance patterns of atrophy
or tau deposition, suggesting to be mostly related to an age-dependent phenomenon
(Whitwell et al. 2018a).

AP imaging also has been used to ascertain the absence of AD pathology in
patients with PPA (Drzezga et al. 2008; Rabinovici et al. 2008; Leyton et al. 2011).
A multicentre study involving 1251 patients diagnosed with PPA and a measure of
AP pathology (Cerebral spinal fluid (CSF), PET or autopsy) indicated that Af posi-
tivity is more prevalent in IVPPA (86%) than in PNFA (20%) or SD (16%). The
prevalence of AP positivity increased with advancing age in PNFA and SD, and
those patients carrying APOE €4 allele were more often AP positive than non-
carriers (Bergeron et al. 2018).

The 90% of patients with SD is characterized by TDP-43 pathology, and it is
only rarely due to a primary tauopathy or AD (Mackenzie et al. 2008; Josephs et al.
2004). Consistently, a recent study using [''C]PiB found that five out of six TDP-43
SD patients were amyloid negative (Makaretz et al. 2018). Serrano and colleagues
reported a positive amyloid scan in a patient with clinical FTLD. Post-mortem his-
topathologic examination confirmed the coexistence of amyloid plaques with
TDP-43-positive histopathology (Serrano et al. 2014).

TDP-43 is the major component of aggregates composing the neuropathological
hallmark of about 50% of FTLD cases and of 97% of ALS cases (Steinacker et al.
2019). Visualization of AP deposits in ALS has been investigated suggesting a link
between ALS and AD (Hamilton and Bowser 2004). The relationship between FTD/
ALS and amyloid precursor protein was observed in rodent models, and recent post-
mortem immunohistochemical analysis has also shown A deposition in 35-50% of
all ALS patients, even without co-morbid dementia (Hamilton and Bowser 2004;
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Bryson et al. 2012). Currently, there are three published case reports of ALS patients
with co-morbid dementia scanned with [!!C]PiB. These reports suggest a potential
role for [''C]PIB-PET in the discrimination of various neurodegenerative proteinop-
athies such as AD and ALS with co-morbid FTD (Farid et al. 2015; Yamakawa et al.
2012). Very recently, Matias-Guiu et al., studying amyloid deposition with ['**F]flo-
rbetaben PET in a cohort of ALS patients, showed only a small number of patients
with increased tracer uptake in several brain regions comparable to amyloid load
observed in age-matched controls (Matias-Guiu et al. 2016). Therefore, cautious
interpretation of these data and further investigations are required.

9.3.3 Evidence in a-Synuclein Spectrum

AP and a-synuclein may interact synergistically to enhance each other’s aggrega-
tion and accelerate cognitive decline. The mechanisms by which these two
aggregation-prone proteins interact remain unclear. However, growing evidence
suggests that Ap may influence a-synuclein pathology by modulating protein clear-
ance, driving inflammation, activating kinases or directly altering a-synuclein
aggregation (Marsh and Blurton-Jones 2012).

In DLB, which often presents also in co-morbidity with AD pathology, positivity
to amyloid-PET was reported frequently (Ossenkoppele et al. 2015). Pure DLB
cases are relatively rare (~20%), and AP deposition is often present (McKeith et al.
2017; Marsh and Blurton-Jones 2012). Four studies have compared amyloid brain
imaging in DLB and AD; one found low global [''C]PiB retention ratio in DLB
(Kantarci et al. 2012); two other studies have also found lower cortical [''C]PiB
uptake in DLB compared with AD (Rowe et al. 2007; Villemagne et al. 2011a); and
one study found no difference between DLB and AD, with very similar results in
both groups in all cortical areas (Gomperts et al. 2008). Amyloid burden is higher in
patients with DLB compared to PDD, but not as high as [''C]PiB levels observed in
AD (Gomperts et al. 2008; Fujishiro et al. 2010). [''C]PiB binding has been linked
to cognitive impairment in DLB (Gomperts et al. 2012). In PDD, [''C]PIB binding
was reported not to differ from PD patients or healthy individuals (Gomperts et al.
2008). However, cortical [!!C]PIB retention has been shown to predict cognitive
decline in PD (Gomperts et al. 2012). Neuropathology studies confirm these find-
ings by demonstrating greater amyloid pathology in DLB versus PDD/PD (Harding
and Halliday 2001) and in PDD versus PD (Irwin et al. 2012). The presence of Ap
pathology in DLB may be the trigger of dementia onset and may influence the
severity of cognitive impairment as well as dementia progression (Gomperts et al.
2012; Foster et al. 2010; Pletnikova et al. 2005).

While amyloid pathology is frequent in DLB, it is very rare in MSA (Jellinger
2007). Claassen et al. (Claassen et al. 2011) found no ['!C]PiB uptake in any of the
three MSA patients included in their study, but in all the three DLB patients included.
Kim et al. (Kim et al. 2013) reported no statistically significant differences in global
[''C]PIB binding between normal controls and MSA patients, neither when com-
paring the subgroups of MSA patients without and with dementia with normal
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controls. These findings suggest that amyloid-PET imaging could be helpful in the
differential diagnosis in cases where DLB and MSA may present with similar clini-
cal symptoms (Fig. 9.6).

9.3.4 Strengths

In patients with dementia, amyloid-PET is recognized as a powerful tool to measure
amyloid deposition (Fig. 9.6). Amyloid-PET imaging has the highest accuracy in
ruling out AD (Chetelat et al. 2016), thus differentiating AD dementia from FTLD
(Rabinovici et al. 2011), and in supporting AD diagnosis in subjects with MCI; in
patients with suspected AD, but atypical presentation or aetiologically mixed pre-
sentation; and in patients with EOAD (Johnson et al. 2013b; Guerra et al. 2015).

9.3.5 Weaknesses

Major weakness is the presence of amyloid deposition in the elderly population as
measured with PET (Rowe et al. 2010), consistently with Af depositions found in
the brain of cognitively normal people at autopsy (Knopman et al. 2003).
Approximately 25-35% of healthy elderly individuals have significant levels of AP
deposition, predominantly in the posterior cingulate, precuneus and prefrontal
regions, without overt clinical symptoms (Rowe et al. 2010; Mintun et al. 2006;
Villemagne et al. 2008). The view that amyloid positivity equals AD dementia diag-
nosis has been challenged by the high prevalence of amyloid positivity in the elderly
(about 44% in nonagenarians) despite normal cognitive function (Jansen et al.
2015). Moreover, brain amyloidosis across subjects appears more as a continuum
rather than a clustered, binomial distribution (Fig. 9.7). In addition, the amyloid-
PET visual reading classically refers to a binary lecture, i.e. negative or positive for
amyloidosis; however, the current clinical experience provides evidence of border-
line pathological values (Payoux et al. 2015). Although the interpretation of
amyloid-PET in clinical practice is predominantly dichotomous through visual
assessment, there is a growing body of evidence on the added value of standardized
uptake value ratios (SUVTrs) in the clinic (see Fig. 9.7 for an example) (Chen and
Nasrallah 2017). The classification of amyloid positivity or negativity is dependent
on the selected cut-off (Chételat et al. 2013), which varies according to the quanti-
fication method adopted for tracer binding estimation. To this regard, different
quantification methods for amyloid-PET have been proposed, including either com-
partmental model binding tools or reference tissue model-based tools, with various
regions of interests being suggested for the latter (see, for instance, (van Berckel
et al. 2013)). Currently, no gold standard for amyloid-PET quantification has been
yet established (van Berckel et al. 2013). Thus, the use of fully quantitative pipe-
lines is highly recommended in intervention studies given the possible dependence
of semi-quantified parameters on influencing factors such as cerebral blood flow
(van Berckel et al. 2013).
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Fig. 9.7 Amyloid-PET quantification steps. (a) Example of ['*F]florbetaben-negative and ['*F]
florbetaben-positive scans. (b) Regions of interest overlaid on a standardized template used to
calculate and estimate regional standardized uptake value ratios (SUVrs), according to Presotto
and colleagues (Presotto et al. 2018). Distribution of SUVT in a heterogeneous sample of subjects
and patients ordered from lowest to highest amyloid-PET uptake, underlying the concept of amy-
loid continuum

As emerged by previous paragraphs, amyloid-PET cannot distinguish specific
AD syndromes (Lehmann et al. 2013; Dronse et al. 2017) and amyloid-based
pathologies, with most studies showing a non-specific pattern of amyloid burden
diffusely distributed throughout the entire cortex across diseases (Maetzler et al.
2009; Kantarci et al. 2017; Baron et al. 2014). In addition, amyloid rate might not
be the best predictor of speed of conversion from MCI to AD, as compared to
[®F]JFDG-PET (Teipel et al. 2015; Iaccarino et al. 2017b). Amyloid-PET studies
showed MCI patients presenting with wide variations in amyloid burden load
(Villemagne et al. 2011b; Landau et al. 2016; Petersen et al. 2013), sometimes
showing an intermediate “grey area” burden, challenging to classify as either posi-
tive or negative (Chételat et al. 2013). For these reasons a continuum in the amyloid
load from negative to low or high deposition should be considered. This is allowed
only by proper measurements.

An open question remains as to which amyloid-PET tracers are the most ade-
quate to evaluate the efficacy of clinical trials. To date, the majority of clinical tri-
als in AD have focused on amyloid therapies (e.g. (Sevigny et al. 2016; Salloway
et al. 2014; Doody et al. 2014)), also including serial amyloid-PET scans to evalu-
ate decreases in cerebral amyloid burden (Sevigny et al. 2016; Salloway et al.
2014). However, the adoption of amyloid-PET imaging for clinical trials has been
criticized, since currently available amyloid-PET tracers measure fibrillary insolu-
ble amyloid burden and are insensitive to toxic soluble amyloid oligomers (Kayed
and Lasagna-Reeves 2013), which are much more clinically relevant and present in
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the early phase of a disease (Haass and Selkoe 2007). Moreover, multi-tracer PET
studies have revealed no clear association between amyloid accumulation and neu-
rodegeneration (Lehmann et al. 2013; Dronse et al. 2017; Jagust et al. 2012; Jack
etal. 2013) and only modest associations with cognitive status (Hedden et al. 2013;
Ossenkoppele et al. 2014). The lack of a strong association between fibrillary amy-
loid burden and measures of cognition and neurodegeneration (Villemagne et al.
2017) suggests that clinical trials should be supported by other more sensitive and
specific biomarkers. Accordingly, a recent study showed that the presence of ongo-
ing downstream neurodegeneration both in healthy controls and amyloid-positive
MCI subjects predicts a worse clinical outcome regardless of the upstream primary
pathology. Adding the ["*F]JFDG-PET status, the authors found a more rapid clini-
cal progression rate in neurodegeneration-positive MCI subjects and healthy con-
trols characterized by an AD-like hypometabolic pattern compared to those with
non-AD patterns (Iaccarino et al. 2019). Thus, the inclusion of biomarkers of neu-
rodegeneration can reduce the number of recruited subjects who are not on a trajec-
tory to dementia, also avoiding exposure to possible side effects of the tested
treatment.

9.4 PET Markers of Tauopathy

One of the most recent advances for in vivo PET imaging is the evaluation of cere-
bral tau burden (Okamura et al. 2016; Okamura et al. 2014a; Villemagne and
Okamura 2014; Villemagne and Okamura 2015).

Tau protein is physiologically associated with the stabilization, assembly and
functional integrity of microtubules, critical structures for cytoskeletal support and
intracellular molecular transport (Wang and Mandelkow 2016; Villemagne et al.
2015). Abnormal tau aggregation is not exclusively present in the brains of AD
patients, as it can also be detected in several other neurodegenerative diseases. Its
hyperphosphorylation and accumulation is a key pathogenic event in a number of
neurodegenerative conditions, i.e. fauopathies, and can potentially trigger remark-
ably different clinical phenotypes and disease courses (Villemagne et al. 2015;
Dickson et al. 2011). In a normal brain, the ratio of 3R/4R tau is 1:1, but it can
change across the different pathologies (Okamura et al. 2016; Villemagne et al.
2015). When agglomerating, hyperphosphorylated tau can additionally assume dif-
ferent conformations, such as paired helical filaments, straight filaments and irregu-
lar filaments (Villemagne et al. 2015). This biological complexity implies a
considerably heterogeneous pathological picture which historically hampered the
development of selective tau radioligands suitable for in vivo PET imaging
(Villemagne and Okamura 2014).

Notwithstanding tau biological complexity, the synthesis of some radioligands is
now available and is rapidly entering into research use and possibly for a potential
validation in clinical practice (Okamura et al. 2016). To date, three broad groups of
radioligands are under extensive evaluation, i.e. [*F]THK5351, ["®F]THK5117 or
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["*FITHK5105 (Okamura et al. 2014b; Harada et al. 2015; Harada et al. 2016),
['8F]T807 (also known as ['8F]AV 1451 or ['®F]flortaucipir) (Chien et al. 2013) and
[''C]PBB3 (Maruyama et al. 2013). Furthermore, novel second-generation tau-PET
tracers, including ['*F]MK-6240 and ['*F]PI-2620, are coming in the research field
with the aim of solving the shortcomings of first-generation tau tracers (no off-
target binding). ["*F]MK-6240 has high affinity for neurofibrillary tangles with neg-
ligible off-target binding to monoamine oxidases (MAO)-A/B, as well as high brain
uptake, homogenous distribution and rapid clearance (Hostetler et al. 2016; Pascoal
et al. 2018). ['®F]PI-2620 has high signal-to-noise ratio and high affinity for neuro-
fibrillary tangles with no MAO-A/B oft-target binding and low-affinity binding to
AP (Mueller et al. 2017).

9.4.1 Evidencein AD Spectrum

In the AD spectrum, tau-PET imaging has provided compelling evidence for a tight
relationship between tau burden and synaptic dysfunction, grey matter atrophy and
cognitive deficits (Ossenkoppele et al. 2016; Johnson et al. 2016; Scholl et al. 2016;
Cho et al. 2016). Early reports additionally suggested that tau-PET was able to reca-
pitulate the neuropathological Braak staging (Braak and Braak 1997), suggesting
that it could be a valuable tool for the in vivo staging of AD pathology progression
(Scholl et al. 2016; Schwarz et al. 2016) and confirming previous post-mortem evi-
dence (Nelson et al. 2012; Murray et al. 2015). AD patients in the initial phases of
the disease show high tracer retention in the medial temporal lobe (Wang and
Mandelkow 2016), followed by involvement of other sentinel cortical regions,
namely, the temporo-parietal cortices as the disease progresses, according to Braak
and Braak stages [-VI (Schwarz et al. 2016).

Multiple reports showed a cross-sectional association between worsening of
cognitive impairment and increasing cortical tau-PET binding, from normal cogni-
tion to MCI and AD dementia stages (Johnson et al. 2016; Scholl et al. 2016; Cho
et al. 2016). Furthermore, PET studies using ['*F]ITHK5351 showed that higher
temporal tau-PET uptake in AD patients was associated with an increased temporal
atrophy and with the severity of cognitive impairment (Lockhart et al. 2016; Saint-
Aubert et al. 2016; Sone et al. 2017). Temporal lobe involvement was associated
with the degree of cognitive decline, regional grey matter atrophy and CSF tau lev-
els (Cho et al. 2016; Brier et al. 2016; Gordon et al. 2016b; La Joie et al. 2018;
Maass et al. 2017; Mattsson et al. 2017). Of note, the correspondence between tau
accumulation, neurodegeneration and clinical manifestations stands in stark con-
trast with amyloid-PET evidence, which is not associated with specific patterns of
neurodegeneration or cognitive impairment. Okamura and colleagues demonstrated
that the degree of ['®F]THK5105 hippocampal retention correlated with cognitive
performances in AD patients, differently from [''C]PiB (Okamura et al. 2014a).
Moreover, ['8F]AV-1451 retention in inferior temporal regions had a stronger cor-
relation with the degree of cognitive impairment when compared to [''C]PiB
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Fig. 9.8 Tau distribution in AD spectrum. ["*F]JAV-1451 uptake topography in patients with typi-
cal and atypical AD. SUVr image intensities were normalized to each individual’s global maxi-
mum. From left to right: typical AD; frontal AD; PCA and IvAD. tAD typical Alzheimer’s disease,
JAD frontal AD, PCA posterior cortical atrophy, /vAD logopenic variant of AD, SUVR standardized
uptake value ratio. (Reprinted from Journal of Alzheimer’s disease, 55, Dronse, Juliana, Fliessbach,
Klausc; Bischof, Gérard.....Drzezga, Alexanderd, In vivo Patterns of Tau Pathology, Amyloid-p
Burden, and Neuronal Dysfunction in Clinical Variants of Alzheimer’s Disease, 465471,
Copyright (2017), with permission from IOS Press)

(Johnson et al. 2016). Similar results have been shown using other tau-PET tracers
including [''C]PBB3 (Maruyama et al. 2013; Shimada et al. 2017), ['*F]THK5317
(Chiotis et al. 2016) and ['®F]THR5117 (Harada et al. 2015; Ishiki et al. 2015).

The topographical specificity of tau-PET uptake distribution especially
emerged for the AD variants (Fig. 9.8), which are known to present phenotype-
specific patterns of neurodegeneration, as assessed with ['*FJFDG-PET. Patients
with typical AD show a similar extent of ['®F]AV-1451 uptake in the entorhinal
and cortical associative regions, whereas patients with atypical AD show higher
levels of tracer uptake in the cortex than entorhinal regions (Whitwell et al.
2018b). EOAD patients show a greater involvement of neocortical regions than
AD patients developing the disease at a later age (Scholl et al. 2017). A younger
age at onset was associated with predominant tau deposition in wide regions of
the neocortex, while an older age at onset was associated with increased
['8F]AV-1451 uptake, specifically in the medial temporal lobe (Ossenkoppele
et al. 2016). Both EOAD and PCA showed symmetric and broadly distributed
['®F]AV-1451 uptake. EOAD had highest effect sizes in medial temporal and
right temporo-parietal regions, while PCA had largest effect sizes in posterior
cortical structures (Nasrallah et al. 2018). High ['8F]AV-1451 uptake in the right
hippocampus, amygdala, fusiform gyrus and cuneus was shown to be associated
with memory impairment in five typical AD patients, while high uptake in the
right lingual gyrus was associated with visuospatial deficits in five PCA patients,
and high uptake in the left anterior superior gyrus was associated with language
deficits in four IvAD patients (Phillips et al. 2018).
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9.4.2 Evidencein FTLD Spectrum

PET imaging has contributed significantly in the characterization of the neuronal
deposition of tau throughout the disease course of FTLD. In the FTLD spectrum,
FTLD-tau is present in ~50% of bvFTD patients and in ~70% of PNFA (Mackenzie
et al. 2008; Kertesz et al. 2005; Rascovsky et al. 2013). FTLD-tau has three repeats
(3R) or four repeats (4R). Accumulation of the 4R tau isoforms is predominant in
PSP, CBD, PNFA and up to one third of patients presenting with bvFTD (Mackenzie
and Neumann 2016; Spinelli et al. 2017; Lee et al. 2011; Perry et al. 2017; Hughes
et al. 2002), whereas the 3R tau isoforms are predominantly accumulated in TDP-43
pathology, in the majority of patients with SD (~80% of cases) and FTD/ALS
(Spinelli et al. 2017; Neumann et al. 2006). A post-mortem autoradiographic analy-
sis demonstrated that ['®F]JAV-1451 strongly binds to tau lesions in AD brains, but
not to non-AD tauopathy or to AB-, a-synuclein- or TDP-43-containing lesions
(Marquié et al. 2015). Consistently, Sander et al. (Sander et al. 2016) found high
specific binding of [8F]AV-1451 in AD post-mortem brain tissue, but moderate
binding in FTLD with parkinsonism and low but displaceable binding in CBD. Yet,
in vivo ['F]AV-1451-PET studies appear to be more encouraging regarding tau
pathology identification in FTLD spectrum (Laforce Jr et al. 2018). A study investi-
gating 20 patients with bvFTD, 20 AD patients and 20 healthy controls revealed
high ['8F]AV-1451 binding in the basal ganglia and in frontal, anterior cingulate and
insula white matter of patients with bvFTD, which was helpful in distinguishing
these patients from AD and healthy controls (Cho et al. 2018). In bvFTD, an autopsy
series of 117 patients demonstrated 34 and 55 cases of FTLD-tau and FTLD-
TDP-43, respectively (Perry et al. 2017). Consistently, a recent study showed a
bimodal separation where five of ten patients with bvFTD showed frontotemporal
tracer ['F]AV-1451 uptake, possibly reflecting the differentiation between tau and
TDP (Tsai et al. 2019).

In another study, using ['*F]AV-1451 in a sample composed of 40 PPA patients,
SD showed elevated uptake (left>right) in anteromedial temporal lobes, compared
to controls and PNFA; PNFA showed elevated uptake (left>right) in prefrontal
white matter and in subcortical grey matter, compared to healthy controls and SD
(Josephs et al. 2018). Another study reported increased ['®F]AV-1451 uptake in left
greater than right frontal operculum, middle/inferior frontal gyri and left superior
frontal gyri in PNFA compared to controls (Tsai et al. 2019). The reported notable
tracer uptake in syndromes associated with TDP-43 pathology, such as SD, raises
concerns about the specificity of ['*F]AV-1451 binding for FTLD tau pathology. In
two patients with PET to autopsy correlation, mild ['*F]AV-1451 binding was seen
in some areas with tau pathology (neurofibrillary tangles or argyrophilic grain dis-
ease), but binding patterns did not correspond with the distribution of FTLD TDP-43
type B inclusions (Tsai et al. 2019).

Recently, [®F]THKS5351 showed greater cortical uptake in FTLD than
['8F]AV-1451 (Jang et al. 2018), which overlaps with brain atrophy on magnetic
resonance imaging (MRI) and shows good correlation with clinical phenotypes
(Jang et al. 2018). Lee and colleagues showed higher binding (left>right) of the
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tracer ['8F]THKS5351 in the antero-inferior and lateral temporal cortices in five SD
patients compared to controls, with a direct correlation with clinical severity and an
inverse correlation with local glucose metabolism as measured with ['*F]FDG-PET
(Lee et al. 2018a). High ["*F]THK-5351 retention in bilateral temporal lobes, pre-
dominantly on the left side, was confirmed by a subsequent study (Kobayashi et al.
2018). Schaeverbeke and colleagues reported increased ['*F]THK5351 binding in
the supplementary motor area, left premotor cortex, thalamus, basal ganglia and
midbrain in PNFA compared with controls and SD and an increased binding in the
temporal lobes bilaterally in SD compared with controls and PNFA (Schaeverbeke
et al. 2018).

The presence of MAO-B may confound the ["®F]THK5351-PET retention, as
indicated by a previous study in which the administration of MAO-B inhibitors
reduced the uptake of ['"!F]THK5351 throughout the entire brain (Ng et al. 2017).

The in vivo PET study of tau burden in patients with PSP is challenging because
of the high levels of off-target binding to neuromelanin and MAO-B in regions typi-
cally involved in this condition (Vermeiren et al. 2018). The tracers mostly found
affected in PSP are ["®F]AV-1451 (Vermeiren et al. 2018; Marquie et al. 2017,
Coakeley and Strafella 2017), ['8F]THK5351 (Ishiki et al. 2018) and ['!C]PBB3
(Perez-Soriano et al. 2017), and off-target binding may explain why some studies
failed to detect differences between PSP patients and controls (Coakeley and
Strafella 2017). Most studies, using [''C]PBB3, ['*F]JFDDNP and [®F]THK5351
tracers, showed a typical distribution involving subcortical areas such as the stria-
tum, thalamus, midbrain and cerebellum (Perez-Soriano et al. 2017; Kepe et al.
2013; Ishiki et al. 2017; Brendel et al. 2017), reflecting the tau distribution that has
been observed in neuropathological studies (Dickson 1999). ['¥F]AV-1451-PET
studies commonly found highly increased radiotracer binding in the globus pallidus
and midbrain relative to controls (Cho et al. 2017a; Passamonti et al. 2017; Smith
et al. 2017a; Whitwell et al. 2017b; Schonhaut et al. 2017). However, this tracer
seems to be not ideal to assess tau pathology in PSP, since no correlation was found
with motor severity in patient groups; there was no increased tracer binding corti-
cally in PSP patients, and variable degrees of subcortical binding were even detected
in controls. One of these studies showed that elevated ['®F]AV-1451 uptake in the
globus pallidus was the most useful feature in distinguishing PSP from healthy con-
trols and PD (Schonhaut et al. 2017). However, another study using the same tracer
found no significant tracer retention in PSP patients compared to PD and controls
(Coakeley et al. 2017).

In CBD, tau-PET studies using different tau radioligands showed increased
uptake in the globus pallidus and in the frontal and parietal cortices contralaterally
to the most affected clinical side (Kikuchi et al. 2016). Tau deposition involving the
basal ganglia, the thalamus and neocortical areas, which clearly distinguished CBD
from AD patients, was found in a longitudinal PET study using ["®F]THK5317
(Chiotis et al. 2018). Higher ['*F]AV-1451 uptake has been found in the basal gan-
glia and in the precentral grey and white matter, mainly contralateral to the clini-
cally most affected side, in 6 Ap-negative CBD patients compared to 20 age-matched
controls (Cho et al. 2017b). In this series, elevated precentral white matter
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['8F]AV-1451 binding correlated with motor severity (Cho et al. 2017b), while
another series reported six of eight patients with CBD with asymmetric ['*F]AV-1451
binding in motor cortex and white matter (Smith et al. 2017b).

9.4.3 Evidence in a-Synuclein Spectrum

Using ['8F]AV-1451 PET, increased neocortical ['*F]AV-1451 retention was reported
in DLB and also correlated to cognitive performances (Kantarci et al. 2017;
Gomperts et al. 2016; Smith et al. 2018). The pattern of tau distribution mainly
involved temporo-parietal cortices (Kantarci et al. 2017; Gomperts et al. 2016;
Smith et al. 2018) but also the precuneus (Gomperts et al. 2016) and occipital cortex
(Kantarci et al. 2017). However, tau binding in DLB patients was relatively lower
than that of AD patients (Kantarci et al. 2017). Notably, 4 out of 17 of the DLB
patients presenting with low amyloid burden had elevated ['*F]AV-1451 uptake in
the inferior temporal cortex, suggesting an independent effect of tau pathology with
respect to amyloid burden (Gomperts et al. 2016). A pattern similar to that of DLB,
but with lower magnitude and extension, was observed in PD in the presence of
cognitive decline ranging from mild to severe impairment (Gomperts et al. 2016).
Lee and colleagues studied 12 idiopathic PD patients, 22 PD with cognitive impair-
ment and 18 DLB patients using ["*F]AV-1451, for tau, and ['*F]florbetaben, for
detection of B-amyloid deposits; the cohort also included 25 AD and 25 healthy
controls (Lee et al. 2018b). DLB showed slightly increased ['*F]AV-1451 binding in
the sensorimotor, parieto-temporal and visual cortices, compared with normal con-
trols, and lower binding in temporal cortices when compared with AD. DLB with
Ap-positive scans also showed an increase of tau deposition in the same cortical
regions (Lee et al. 2018b).

High['®F]AV-1451 binding in the posterior putamen was found in 4 MSA-p. Tau
tracer uptake was more prominent in the side ipsilateral to the greater putaminal
atrophy, together with lower uptake of DAT PET contralateral to the clinically more
affected side (Cho et al. 2017c¢). Considering the low probability for tau pathology
to be present in these cases, as tau pathology was found to be very rare in MSA
histopathology (Nagaishi et al. 2011), the elevated PET signal was most likely
caused by off-target binding to overexpressed MAO in the neuroinflammatory
process.

9.4.4 Strengths

There is tremendous potential for tau imaging to provide novel information on the
earliest events in the pathophysiological cascade of AD and other dementias. Tau
imaging studies show not only that tau tracer retention reflects the known distribu-
tion of aggregated tau in the brain seen in post-mortem studies (Braak and Braak
1997; Delacourte et al. 2002) but also that tau deposition is closely related to neuro-
degeneration, grey matter atrophy and tau CSF levels (Xia et al. 2017; Brier et al.
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2016; Gordon et al. 2016b; Chiotis et al. 2018; van Eimeren et al. 2017). In contrast
to AP imaging, for which the total amount in the brain is more relevant than the
regional AP distribution as a possible driver of cognitive decline, tau-PET imaging
provides crucial information about the topographical distribution of pathology in
the brain (Villemagne et al. 2018). Moreover, several groups found robust differ-
ences in tracer retention between cognitively unimpaired elderly individuals,
patients with AD (Johnson et al. 2016; Schéll et al. 2016; Cho et al. 2016; Okamura
et al. 2017; Sarazin et al. 2016; Wang et al. 2016) and patients with atypical AD
presentations (Ossenkoppele et al. 2016). Tau-PET imaging could be considered a
good candidate biomarker useful to predict progression of AD and/or for disease
staging.

9.4.5 Weaknesses

While providing a wealth of evidence with critical implications for disease tracking
and possibly future monitoring of AD interventions, the above-mentioned studies
have also highlighted several areas of criticisms which need further consideration.
Of note, the selectivity of the current tau-PET radioligands for non-AD tauopathies
is not well established. Previous autoradiographical studies on the most commonly
adopted tau-PET compounds, such as the ['8F]AV-1451, have shown high affinity
for the AD tauopathy (Marqui€ et al. 2015; Lowe et al. 2016), but not for the 4R tau
aggregates typical of primary tauopathies, such as PSP or CBD, where post-mortem
results are more heterogeneous and, overall, present less robust staining (Marquié
et al. 2015; Sander et al. 2016; Ishiki et al. 2017; Kikuchi et al. 2016; Lowe et al.
2016; Josephs et al. 2016). Another area of concern regards consistent non-specific
tau-PET binding in subcortical structures, especially in the striatum and in the cho-
roid plexus, in healthy controls, suggesting that the currently available tau tracers
could present off-target binding, such as to neuromelanin (Marquié et al. 2015;
Lowe et al. 2016). Moreover, as tau pathology is predominantly located intra-
neuronally, tracers have the challenging task not only to cross the blood—brain bar-
rier but also to enter the intra-neuronal compartment. The tracer specificity is further
challenged by the lower concentration of tau aggregates with respect to Ap levels in
AD brain (Bischof et al. 2017). Finally, suitable quantification approaches remain to
be established. Building on these premises, tau-PET diagnostic value, especially in
non-AD tauopathies, needs further validation.

9.5 PET Markers of Neuroinflammation

Increasing evidence suggests that neuroinflammation plays a crucial role in the neu-
rodegeneration processes (Ransohoff 2016). Many neurodegenerative diseases
share the same pathological deposition of specific proteins, hence the term “pro-
teinopathies” that introduced to focus on the biological characterization of these
disorders (Perani et al. 2019). The pathological deposition of these specific proteins



9 PET Neuroimaging in Dementia Conditions 245

is involved in a cascade of deleterious events which in turn lead to synaptic dysfunc-
tion and neuronal loss (Golde et al. 2013). Another common feature in neurodegen-
erative diseases is the chronic activation of innate immune cells within the central
nervous system (Stephenson et al. 2018). Several preclinical studies have shown
that specific protein species, including amyloid, tau and synuclein, can stimulate the
activation of the neuroimmune cells, i.e. microglia and astrocytes (Zhang et al.
2005; Lee et al. 2013; Lian et al. 2016; Brelstaff et al. 2018). Starting from these
evidences, a large part of research in neuroscience focused on the understanding of
physiopathological mechanisms which link neuroinflammation and neurodegenera-
tion (Subhramanyam et al. 2019; Pasqualetti et al. 2015). Elucidating the role of
neuroinflammatory cells and mechanisms in neurodegenerative diseases may pro-
vide evidence for new reliable markers of disease severity and progression, as well
as help in identifying targets for novel therapeutic strategies (Heneka et al. 2014; Du
et al. 2017; Valera et al. 2016).

Microglia and astrocytes are the main constituent of the neuroimmune system,
acting in relation to the cross-talk with other immune system players and depend-
ing on environmental physiological and pathological stimuli (Gentleman 2013).
Microglial function in vivo is heterogeneous, and it is related to the expression of
pro-inflammatory and protective activation phenotypes (Comi and Tondo 2017).
Microglia neuroprotective activities include phagocytosis of apoptotic cells and
cellular debris clearance, synaptic remodelling and neuronal circuits maintenance
and release of steroids and neurotrophic factors (Ji et al. 2013; Kettenmann et al.
2011). Together with astrocytes, microglia represent the first line of response to
any insult to the nervous system. Typically, microglia are activated at first, pro-
moting inflammatory response through the release of signalling molecules, which
activate astrocytes and influence the excitability of neurons (Russo and McGavern
2015). This homeostatic response can be beneficial, promoting recovery from the
original insult, but can be also detrimental and may damage healthy neurons by
producing reactive oxygen species and pro-inflammatory cytokines (Pekny and
Pekna 2014).

Clinical studies confirmed that activation of both microglia and astrocytes is an
early phenomenon in neurodegenerative disorders. However, the precise role of the
different players of neuroinflammatory responses, as well as the complicate interac-
tions during neurodegenerative processes, is still far to be completely clarified
(Schain and Kreisl 2017; Chen et al. 2016; Rodriguez-Vieitez et al. 2016).

A precious tool for in vivo quantification of neuroinflammation is PET imaging,
used for detecting both microglia activation and reactive astrocytosis in different
neurodegenerative conditions (Cerami et al. 2017b; Narayanaswami et al. 2018).
Given its unique ability to detect the dynamic changes characterizing inflammatory
responses in the central nervous system, PET imaging of neuroinflammation can
represent a marker for early disease identification and progression monitoring
(Schain and Kreisl 2017; Best et al. 2019). Furthermore, shedding light on the
pathogenesis of neurodegeneration, PET imaging of neuroinflammation may be
fundamental in exploring the effectiveness of novel treatment targets and monitor-
ing the therapeutic efficacy (Piel et al. 2014).
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Microglia express the 18 kDa translocator protein (TSPO), an intracellular pro-
tein formerly known as peripheral benzodiazepine receptor (Papadopoulos et al.
2006). TSPO is a five-transmembrane domain protein mainly situated to the outer
mitochondrial membrane which is involved in the transport of cholesterol into mito-
chondria, a fundamental step in steroid synthesis. TSPO has been also associated
with other mitochondrial functions, such as mitochondrial membrane permeability,
calcium-mediated signalling, generation of reactive species, cell proliferation and
apoptosis (Gatliff and Campanella 2012). Although its roles are not completely
defined yet, TSPO has been shown to be overexpressed by activated microglia, reac-
tive astrocytes and vascular endothelium and, to a much lesser extent, in neurons, in
case of neuroinflammatory response to insults of various aetiologies (Gatliff and
Campanella 2012). Thus, TSPO density has been used as a biomarker for neuroin-
flammation in various neurological disorders (Chen and Guilarte 2008).

[''C]PK11195 is the progenitor and the most widely used of a series of PET
radiotracers which allow to in vivo measure TSPO levels (Turkheimer et al. 2015).
Although ["'C]PK 11195 provides a great deal of visual information on glial activa-
tion, its use can be problematic. [''C]PK11195 has a low brain permeability and
high non-specific plasma protein binding: this results in a low signal-to-noise ratio
in PET imaging and in low specificity (Banati et al. 2000). In addition, it has a mod-
erate intraindividual reproducibility (Jucaite et al. 2012). Since the introduction of
[''CIPK11195, many second-generation tracers have been developed, generally
with greater specific binding than the prototype and with different sensitivity, signal-
to-noise ratio, accumulation and binding stability (Fujita et al. 2017). They encom-
pass [''C]PBR28, ['®FIDPA-714, ["F]FEPPA, ['®F]JPBRO6, ['SF]PBR11 and
[''C]IDAA1106 which have been used to image glial activation in brain disorders
(Vivash and O’Brien 2016). However, the first studies using second-generation
TSPO tracers already evidenced large interindividual differences in tracer binding
amongst healthy controls. This variation in binding affinity is a shared characteristic
of all tested second-generation TSPO tracers, and it is due to the existence of a
single nucleotide polymorphism in the TSPO gene, the rs6971, which results in
three different genotypes with different binding affinity (Owen et al. 2012). Given
the presence of individuals with low-affinity binding, and consequent negligible
TSPO PET signal, as well as the notable difference in binding between individuals
with mixed and high-affinity binding capacity (Collste et al. 2016), genotype evalu-
ation is mandatory in clinical and research studies to avoid inaccurate interpretation
of results. Of note, the quantification of TSPO overexpression in PET imaging stud-
ies may be particularly challenging, mainly due to the heterogeneous distribution of
TSPO across the brain which hampers the identification of a clear reference region.
Several clustering methods have been proposed to overcome this limitation
(Turkheimer et al. 2007). Differences in analysis method together with the use of
different tracers with different kinetic properties may explain some contrasting
results in TSPO PET imaging studies (Turkheimer et al. 2015).

A third generation of tracers is currently under evaluation. Flutriciclamide
[®F]GE180 and [''C]ER176 are third-generation TSPO tracers insensitive to the
rs6971 polymorphism, but their clinical relevance needs to be totally determined
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(Dupont et al. 2017). To date, [''C]JPK11195 remains the most validated TSPO
radiotracer and is most widely used in human studies.

Astrocytes are the most numerous brain cell type and are involved in many phys-
iological functions, including growth factors production, neuronal microenviron-
ment and homeostasis maintenance and synaptic plasticity support (Vasile et al.
2017). Astrocytes may be activated in response to a plethora of pathogenic stimuli
and participate in the neuroinflammatory response involved in the progression of
neurodegenerative diseases (Li et al. 2019). Astrocyte activation generates different
cellular phenotypes (Anderson et al. 2014) and leads to the production of several
molecules which serve as markers for astrocytosis detection in preclinical and clini-
cal studies (Sriram et al. 2004; Ekblom et al. 1993; Rodriguez-Vieitez and Nordberg
2018). Despite growing literature focusing on the role of astrocytosis in neurode-
generative processes, a high level of controversy remains about its role, given the
complexity of responses and the heterogeneity of possible phenotypes (Li
et al. 2019).

[''C]deuterium-L-deprenyl (DED) is a PET tracer with high affinity and specific-
ity for the MAO-B (Fowler et al. 1987), an enzyme expressed on the outer mito-
chondrial membrane and occurring predominantly in astrocytes (Saura et al. 1996).
Thus the ['!C]DED has been used in several central nervous system diseases, such
as AD, CJD and ALS, as well as in healthy older individuals, to track reactive astro-
cytosis (Engler et al. 2003; Rodriguez-Vieitez et al. 2016; Johansson et al. 2007;
Carter et al. 2012; Santillo et al. 2011).

9.5.1 Evidencein AD Spectrum

Several studies have shown that neuroinflammatory responses are a crucial event in
AD pathophysiology (Calsolaro and Edison 2016). Both AP plaques and tau neuro-
fibrillary tangles have shown to activate microglia and induce neurotoxicity in pre-
clinical studies (Asai et al. 2014; Maezawa et al. 2011; Marlatt et al. 2014; Morales
et al. 2013). In AD brain, activated microglia and reactive astrocytes have been
found to surround AP plaques (Cosenza-Nashat et al. 2009; McGeer et al. 1988).
Consequently, neuroinflammatory responses are now considered to actively contrib-
ute to and drive AD pathogenesis (Heppner et al. 2015).

Most of the PET imaging studies in the neuroinflammation field focused on the
study of microglia activation in AD (Best et al. 2019). The large majority of
[''CI]PK11195 PET in vivo studies reported increased microglia activation, specifi-
cally involving temporo-parietal regions (consistently across different studies) and
frontal, occipital and cingulate cortices (Cerami et al. 2017b). Increased cortical
['C]PK 11195 binding has been found also in MCI condition (Cagnin et al. 2001),
especially in subjects with high cortical amyloid load (Okello et al. 2009; Parbo
et al. 2017). The presence of an early and a late peak of microglia activation with a
protective function in MCI and with a chronic deleterious role in late AD has been
suggested (Fan et al. 2017). The detection of increased TSPO expression in the
prodromal AD stage has obvious repercussions in elaborating and monitoring novel
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disease-modifying therapies. Although some studies reported a relationship between
neuroinflammation and amyloid deposition, as measured by [''C]PIB-PET (Parbo
et al. 2017; Fan et al. 2015a; Edison et al. 2013; Fan et al. 2015b; Edison et al.
2008), the co-localization of microglia activation and amyloid load is debated, due
to the detection of microglia activation in absence of amyloid plaques (Okello et al.
2009; Yokokura et al. 2011), suggesting that these pathological processes may occur
independently (Wiley et al. 2009). When assessed longitudinally, AD patients
showed increased [''C]PK11195 binding over time, associated with both progres-
sively decreased brain metabolism as assessed by ['*F]JFDG-PET and increased cor-
tical amyloid deposition, as assessed by [''C]PIB-PET (Fan et al. 2015b). The
evidence of an inverse correlation between neuroinflammation and brain glucose
hypometabolism suggests that chronic microglia activation may have a detrimental
effect on neuronal function (Fan et al. 2015a), and, as a confirmation, it has been
recently shown that neuroinflammation may impair large-scale network connectiv-
ity in AD (Passamonti et al. 2019). Notably, several studies showed a negative cor-
relation between high levels of microglia activation and cognitive status, indicating
the active role of cortical neuroinflammation in driving neuronal dysfunction (Fan
et al. 2015a; Edison et al. 2008; Yokokura et al. 2011).

A few studies reported no differences in [''C]PK11195 binding between AD and
controls and between MCI and controls (Wiley et al. 2009; Schuitemaker et al.
2013). These negative results are most likely related to the small sample size and to
differences in ["'C]PK11195 binding quantification (Schain and Kreisl 2017,
Turkheimer et al. 2015).

Studies using second-generation TSPO radioligands in AD and MCI have shown
contradictory results (Cerami et al. 2017b; Best et al. 2019). A study using
[''C]PBR28-PET reported that TSPO expression, especially in temporo-parietal
regions, correlated with severity of dementia in AD, but failed to detect any differ-
ence between MCI and healthy controls, proposing [''C]PBR28-PET as a marker of
disease progression (Kreisl et al. 2013). The same group suggested the use of
[''C]PBR28-PET in differentiating AD clinical phenotypes, showing an increased
uptake of [''C]PBR28 in visual cortices in patients with PCA (Kreisl et al. 2017)
and in limbic regions in patients with the amnestic variant of AD (Kreisl et al. 2013).
In addition, these authors reported greater [''C]JPBR28-PET binding in early-onset
AD than late-onset AD patients (Kreisl et al. 2013). Comparing AD patients with
different rate of progression, a large study using ['*F]DPA714 revealed a higher
TSPO expression in patients with slower clinical progression, suggesting a protec-
tive role of neuroinflammation in the early stages of AD (Hamelin et al. 2016).
Opverall, these results along with other findings from studies using second-generation
TSPO tracers (Yasuno et al. 2012; Yasuno et al. 2008; Suridjan et al. 2015; Varrone
et al. 2013; Golla et al. 2015) are not clear-cut, given the small sample size and the
differences in methodological approach for TSPO quantification which may result
in inconsistent data.

Activated astrocytes are key players in neuropathological changes which lead to
neurodegeneration in AD. Astrocytes co-localize with AP plaques in post-mortem
AD brain (Nagele et al. 2003), but their in vivo roles and functions are still not fully
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elucidated. [''C]DED-PET imaging has been used to investigate reactive astrocyto-
sis in both AD patients and MCI subjects. Higher tracer binding has been detected
in frontal, parietal and temporal cortices of AD patients and amyloid-positive MCI
subjects compared to healthy controls (Carter et al. 2012; Santillo et al. 2011). The
correlation between tracer uptake and hippocampal grey matter loss suggests that
early atrocytosis may influence neuronal loss (Choo et al. 2014). Early reactive
astrocytosis has been confirmed in the pre-symptomatic stage of genetic AD, where
[''C]DED binding has been found to correlate with higher amyloid deposition, indi-
cating astrocytosis as an early driving force in AD pathology (Schéll et al. 2015). In
a large longitudinal multi-tracer PET imaging study of subjects with autosomal
dominant or sporadic AD, regional astrocytosis, brain glucose metabolism and cor-
tical amyloid burden were assessed in pre-symptomatic stage and in symptomatic
stage. Amyloid deposition in pre-symptomatic autosomal dominant AD started
17 years before expected symptom onset; at the same time, increased astrocytosis
was found, which was then progressively declining, while amyloid burden increased
with disease progression. As expected, brain glucose metabolism was found to
reduce with disease progression (Rodriguez-Vieitez et al. 2016). These findings
confirmed a prominent astrocyte activation in the early, pre-symptomatic dementia
stage, when promising therapeutic potential is possible.

9.5.2 Evidencein FTLD Spectrum

Microglia activation is thought to play a role also in FTLD and in related tauopa-
thies, and it has been investigated with in vivo PET imaging studies in both symp-
tomatic patients and pre-symptomatic carriers of MAPT mutations (Cagnin et al.
2004; Miyoshi et al. 2010; Bevan-Jones et al. 2019). The first study investigating
neuroinflammation in the FTLD spectrum involved five patients with a clinical
diagnosis of FTD (four patients affected by SD and one patient affected by bvFTD)
and showed increased [''C]PK 11195 binding in frontotemporal regions and in the
putamen bilaterally, reflecting the distribution pattern of synaptic dysfunction and
neuronal degeneration characterizing FTLD (Cagnin et al. 2004). These results have
been recently replicated using the second-generation TSPO tracer [''C]PBR28,
whose binding was reported higher in frontal, temporal but also parietal and occipi-
tal regions in four FTLD patients (Kim et al. 2019).

In vivo characterization of neuroinflammation may serve as a precious tool in
disease monitoring as shown in studies of genetic forms of FTLD (Miyoshi et al.
2010; Bevan-Jones et al. 2019). FTD with parkinsonism linked to chromosome 17
is a FTLD disorder due to mutations in the chromosome 17 involving the
microtubule-associated protein tau (MAPT) or the progranulin (PGRN) gene, usu-
ally characterized by a dysexecutive syndrome associated with behavioural distur-
bances, parkinsonism and aphasia (Boeve and Hutton 2008). A study using a
second-generation tracer, [!!C]DAA1106, investigated microglia activation in three
pre-symptomatic MAPT gene mutation carriers, showing increased microglia acti-
vation in the frontal, occipital and posterior cingulate cortices in carriers compared
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to controls (Miyoshi et al. 2010). In addition, the early presence of microglia activa-
tion has been reported in an asymptomatic MAPT mutation carrier, despite the lack
of atrophy, as measured by MRI, or tau deposition, as measured by ['SF]AV-1451-
PET (Bevan-Jones et al. 2019). These findings suggest the presence of neuroinflam-
mation in genetic tauopathies even in an early, pre-symptomatic stage, representing
a potential marker for monitoring of novel therapeutic approaches.

Microglia activation showing spatial correspondence with the topographical dis-
tribution of tau pathology has been revealed in other tauopathies, i.e. CBD and
PSP. PSP and CBD are neurodegenerative parkinsonism with considerable clinical,
pathological and genetic overlap (Ling and Macerollo 2018). Both diseases are
pathologically characterized by neuronal and glial tau deposition, but with a differ-
ent distribution, which affects primarily subcortical regions in PSP while involving
white matter and cortical regions in CBD (Dickson 1999). Microglia activation has
been reported in post-mortem examination of brains affected by tauopathies, includ-
ing PSP and CBD (Sasaki et al. 2008). In vivo PET studies of neuroinflammation
confirmed that microglia activation in these diseases follows the distribution of the
corresponding pathology. In PSP, significant levels of activated microglia as mea-
sured by ['!'C]PK11195 have been detected in the basal ganglia, midbrain, frontal
lobe and cerebellum (Gerhard et al. 2006a; Passamonti et al. 2018), showing a pat-
tern of distribution which clearly distinguished PSP patients from AD patients.
[''C]PK11195 binding in pallidus, midbrain and pons was found to correlate with
disease severity (Passamonti et al. 2018). In CBD, increased [''C]PK 11195 binding
was detected in basal ganglia, pons, precentral gyrus and post-central gyrus (Gerhard
et al. 2004; Henkel et al. 2004), showing a lateralization according to the clinically
more affected side. This suggested the involvement of microglia activation in CBD
pathogenesis (Henkel et al. 2004).

9.5.3 Evidence in a-Synuclein Spectrum

Synuclein can directly generate a neuroinflammatory response (Reynolds et al.
2008), and activated microglia and reactive astrogliosis are common findings in
post-mortem PD, DLB and MSA patients’ brain (McGeer et al. 1988; Radford et al.
2015; Imamura et al. 2003), indicating a close relationship between neuroinflamma-
tion and neurodegeneration in synucleinopathies.

Coherently with neuropathological findings, in vivo [''C]PK11195 PET studies
in PD patients reported increased tracer bindings in the striatum, substantia nigra,
putamen, brainstem, frontal and temporal cortices (Gerhard et al. 2006b; Ouchi
et al. 2005; Kang et al. 2018; Bartels et al. 2010), positively correlating with motor
impairment (Ouchi et al. 2005; Bartels et al. 2010). In a study comparing PD and
DLB patients, increased microglia activation was detected in the basal ganglia and
substantia nigra in both groups, while the cerebellum and association cortex were
involved only in DLB group, in line with the neuropathology (Iannaccone et al.
2013). In addition, selecting patients within 1 year since the disease onset, the
authors showed that microglia activation is an early phenomenon in
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synucleinopathies (Iannaccone et al. 2013). In DLB a strong correlation between
[''C]PK11195 binding and cognitive decline has been reported, again suggesting a
role of microglia activation in supporting neurodegeneration changes
(Surendranathan et al. 2018). When comparing [''C]PK11195 uptake in PD and
PDD patients, an increased binding was found in cingulate, frontal, temporal and
occipital cortices in both groups, confirming that cortical microglia activation may
be present also in non-demented patients (Edison et al. 2013). However, PDD had a
more widespread tracer cortical distribution, with a correlation with global cogni-
tion impairment, as measured by Mini Mental State Evaluation, and a large overlap
with brain hypometabolism, as measured by ['*F]JFDG-PET (Edison et al. 2013). As
a confirmation, a co-localization between microglia activation and hypometabolism
in frontal, temporal, parietal and occipital lobes was found in another study on PDD,
with increased [''C]PK11195 negatively correlating with MMSE score, thus imply-
ing that microglia activation may drive neuronal dysfunction in PDD (Fan
et al. 2015a).

The presence of activated microglia has also been reported in MSA. In vivo stud-
ies on neuroinflammation in MSA, using [''C]PK11195-PET imaging, showed
increased tracer uptake in patients compared to controls in caudate nucleus, puta-
men, pallidum, substantia nigra, pons and cortical regions (Gerhard et al. 2003;
Kiibler et al. 2019), but without correlation with clinical parameters (Kiibler
et al. 2019).

[''C]PK11195-PET imaging was also adopted to monitor MSA patients involved
in a prospective clinical trial using minocycline, an anti-inflammatory drug (Dodel
et al. 2010). After 24 weeks of treatment, there was a reduction in [''C]PK11195
binding in some patients, showing the effectiveness of minocycline in reducing
microglia activation but, again, without any clinical benefit during the overall study
(Dodel et al. 2010). These findings suggest that microglia activation involves brain
areas typically affected in MSA pathology, but the clinical relevance of these data
still needs further investigation.

9.5.4 Evidencein Prion Diseases Spectrum

Prion diseases are rare, rapidly progressive devastating conditions caused by the
accumulation of abnormally shaped proteins called prions and include sporadic,
genetic and acquired forms (Geschwind and Wong 2014).

CJD is the most common form of human prion disease, and it is pathologically
characterized by the typical spongiform degeneration of neurons which is accom-
panied by reactive astrocytosis and microglia activation (Geschwind and Wong
2014; Muhleisen et al. 1995; Obst et al. 2017; Liberski and Brown 2006). A recent
study investigating in vivo microglia activation in symptomatic CJD showed a
significantly higher [''C]PK 11195 binding in patients than in controls in the thala-
mus, basal ganglia, cerebellum, midbrain and parieto-occipital cortex, with a dif-
ferent pattern of distribution in case of sporadic or genetic transmission (Iaccarino
et al. 2018a). Microglia activation was confirmed, along with neuronal loss and
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astrogliosis, at the post-mortem evaluation (laccarino et al. 2018a). [''C]DED-
PET studies in CJD have provided an in vivo proof of the presence of reactive
astrocytosis co-localized with spongiform neurodegeneration and neuronal loss,
correlating also with brain glucose hypometabolism (Engler et al. 2003; Engler
etal. 2012).

FFI is today considered one of the most common inherited prion diseases world-
wide (Schmitz et al. 2017). Post-mortem studies reported microglia activation asso-
ciated in FFI brains with neuronal apoptosis (Dorandeu et al. 1998). These findings
were confirmed in vivo in a [''C]PK11195-PET study involving one FFI symptom-
atic patient and eight carriers of the pathogenic mutation D178N-129met/val that
showed higher and widespread TSPO expression in the patient and increased
microglia activation, limited to the limbic structures, in half of the pre-symptomatic
carriers (laccarino et al. 2018b). The involvement of key regions in the development
of the disease, as the limbic regions in FFI, indicates again a primary role of microg-
lia activation in driving neuronal alterations (Iaccarino et al. 2018b).

9.5.5 Strengths

Research on neuroinflammation has provided precious insights into the pathologi-
cal processes underlying progressive neurodegeneration. /n vivo PET imaging of
neuroinflammatory responses, especially studies using the validated and widely
used [''C]PK11195 TSPO tracer, can serve as a unique tool in investigating dynamic
changes in microglia activation over the disease course. TSPO expression has been
proposed as a marker of disease progression, correlating with dementia severity
(Fan et al. 2015b; Kreisl et al. 2013), and also as topographical marker of disease,
helping to distinguish between atypical AD phenotypes (Kreisl et al. 2017) and dif-
ferent forms of dementia (Fig. 9.9) (Passamonti et al. 2018). Clarifying the role of
microglia activation in the early phase of neurodegenerative diseases might provide
reliable markers for monitoring novel disease-modifying therapies. TSPO radio-
tracers have been already used to monitor responses to anti-inflammatory therapy in
parkinsonism (Dodel et al. 2010; Jucaite et al. 2015), but the lack of clinical reper-
cussion in those studies imposes further investigations.

9.5.6 Weaknesses

Despite the development of second- and third-generation tracers, neuroinflamma-
tory responses quantification is still a challenge. [''C]PK 11195 is the most validated
TSPO radiotracer, but it has some clear limitations, such as the wide distribution
across different tissues and the low brain permeability which result in a low signal-
to-noise ratio, low specificity and moderate intraindividual reproducibility (Jucaite
et al. 2012). The main limitation in the use of second-generation tracers is the pres-
ence of the rs6971 polymorphism which obliges to conduct the genotyping during
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Fig.9.9 Patterns of [''C]-PK 11195 PET binding potential in three different AD variants. Patterns
of [''C]-PK 11195 PET binding potential obtained in three different single individuals with diag-
nosis of AD. The first subject had a diagnosis of typical AD: [''C]-(R)-PK11195 PET revealed
microglia activation involving the temporal regions, mainly on the right, and the parietal and the
occipital regions bilaterally. The second subject had a diagnosis of frontal AD. [''C]-(R)-PK11195
PET reveals a widespread bilateral microglia activation in frontal, temporal, parietal and occipital
regions. The third subject had a diagnosis of a PCA. [''C]-(R)-PK11195 PET analysis shows an
increased BP in occipital and temporal cortex. L left, R right, fAD typical Alzheimer’s disease, fAD
frontal AD, PCA posterior cortical atrophy. BP binding potential. (Perani Daniela personal data)

the sample selection and to exclude low-affinity binders (Owen et al. 2012). The
high signal of TSPO in the blood-brain barrier masks brain tissue signals, thus
requiring kinetic correction and invasive arterial blood sampling, and, in addition,
second-generation tracer binding still lacks a universally accepted and validated
quantification method (Turkheimer et al. 2015; Rizzo et al. 2019). Lastly, TSPO is
overexpressed by activated microglia, independently on the pro-inflammatory or
anti-inflammatory phenotype, and reactive astrocytes, and to date there is no PET
radiotracer able to distinguish between the different microglia expressions and pop-
ulations that can play different functions.
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9.6 Relationships Amongst Amyloid, Tau, Neurodegeneration
and Neuroinflammation Biomarkers

The independent and/or synergistic effects of underlying pathology on neurode-
generation and cognition in neurodegenerative dementia have been elucidated by
the in vivo molecular imaging. Whether such effects are sequential or parallel and
whether (and if so at what stage of the disease) AP and/or tau either become or
stop being the driver of cognitive decline are key issues in research (Villemagne
et al. 2018). The different molecular paths that PET in vivo biomarkers can reveal
in the timeframe of AD progression reflect the events leading to deposition of Ap
and phosphorylated tau, neuronal injury and neurodegeneration, which can run in
parallel instead of in a sequential manner (Kato et al. 2016). Specifically, it could
be possible to examine the potential interactive relationship between protein
aggregation and neurodegeneration in vivo, in order to understand the contribu-
tion of tau and AP pathology to neurodegeneration. In AD patients, tau pathology
was primarily observed in brain regions related to clinical symptoms and over-
lapped with synaptic dysfunction (Dronse et al. 2017). In contrast, amyloid depo-
sition presents a diffuse distribution over the entire cortex (Dronse et al. 2017).
These results suggest differences in the pathophysiology, with amyloid pathology
deposited extracellularly in a more generalized fashion and tau pathology aggre-
gating inside neurons, more directly linked to regional neuronal dysfunction.
Consistently, multimodal imaging studies combining amyloid-PET with
['®)F]FDG-PET reported a striking dissociation between the patterns of amyloid
deposition and synaptic dysfunction; neurodegeneration prevailed in regions
related to the clinical symptoms, while Af deposition was observed diffusely
throughout the neocortex (Lehmann et al. 2013) showing that regional hypome-
tabolism is unrelated to regional Af burden (Altmann et al. 2015). On the con-
trary, the considerable overlap between tau tracer uptake and glucose
hypometabolism suggests that both biomarkers may represent complementary
and interrelated aspects of AD pathology. A recent study examined the indepen-
dent and interactive influences of neuroimaging biomarkers (i.e. Tau and amyloid-
PET) on cognitive decline in participants ranging from cognitively normal to very
mild symptomatic AD (Aschenbrenner et al. 2018). The authors found that amy-
loidosis may not be enough to cause observable cognitive declines and that tau-
PET was the most consistent and significant predictor of cognitive decline.
However, a strong interaction between tau-PET and amyloid-PET was related to
cognition, indicating that declines in cognition are accelerated when both tau and
amyloid are elevated.

Another multimodal PET imaging study assessed the differential contribution of
neurofibrillary tangles (measured with ["F]JAV-1451) and AP burden (measured
with [''C]PiB) on degree of neurodegeneration (i.e. glucose metabolism measured
with ['®F]JFDG-PET) in patients with AD (Bischof et al. 2016). Most regions showed
a direct relationship of tau pathology and hypometabolism, irrespective of Ap.
However, in the parietal region, an early site of amyloid deposition and decreased
hypometabolism in AD, an interactive effect of Ap and tau was observed, also



9 PET Neuroimaging in Dementia Conditions 255

associated with the most pronounced reduction of glucose metabolism. This result
may be indicative of the joint downstream effect of both protein pathologies in
regions affected early in the course of the disease. From a spreading perspective
(Brettschneider et al. 2015), it could be argued that tau burden starts in temporal
regions and then spreads to adjacent parietal regions, where elevated levels of Ap
accelerate the propagation of tau to other regions. Consistently, two recent studies
showed that cortical ['*F]AV-1451 binding, measured from AD cortical signature
regions, was elevated in presence of high AP load (Johnson et al. 2016; Wang
et al. 2016).

Tau radiotracers potentially offer additional value over ['*F]FDG, since they rep-
resent core elements of AD pathology serving as both neurodegenerative and patho-
physiological biomarkers. Tau is more closely linked to hypometabolism and
symptomatology than amyloid along with current conceptual models of the AD
pathophysiological cascade (Jack Jr et al. 2013), even if the presence of AB may
accelerate the propagation of tau during the neurodegenerative process. In addition,
there may also be differences in metabolic susceptibility to the neurotoxicity of tau
across brain regions and individuals.

In this context instead, the role of neuroinflammation still needs to be completely
clarified. Microglia, the main player in neuroinflammatory responses to several
kinds of insults, can be activated by both AP and tau (Lian et al. 2016; Brelstaff et al.
2018). A protective effect, related to pathologic protein clearance and neurotrophic
factors production, has been hypothesized in the very early stage of neurodegenera-
tion, while chronic microglia activation leads to neuronal dysfunction and loss via
the production of cytokines and reactive oxygen species (Comi and Tondo 2017).
Coherently, a double peak of activation has been suggested in AD, where in the
initial phase microglia would try to repair the damage, while later on the same
inflammatory players chronically activated could be ineffective and deleterious,
conducing to progressive neuronal damage (Fan et al. 2017). Several reports con-
firmed the co-localization between activated microglia, overexpressing TSPO, and
brain glucose hypometabolism, indicating their interplay in synaptic dysfunction
and neuronal loss (Fan et al. 2015a; Edison et al. 2013). In addition, a topographical
distribution of activated microglia in dysfunctional brain areas, clinically corre-
sponding to a specific phenotype, has been reported in different neurodegenerative
diseases (Kreisl et al. 2017; Henkel et al. 2004), reflecting the specific hypometa-
bolic pattern (Nestor et al. 2003; Niccolini et al. 2018). Conversely, the correspon-
dence between microglia activation and A distribution appears less convincing
(Cerami et al. 2017b), given the possibility to have microglia activation indepen-
dently of amyloid load (Okello et al. 2009; Yokokura et al. 2011). Whether microg-
lia activation in amyloidopathies is a cause (i.e. failing in the amyloid clearance) or
the consequence of amyloid deposition is still debated, and the possibility of two
parallel paths needs to be considered. To date, only one study assessed the relation-
ships between levels of cortical microglial activation and the aggregated Af and tau
load in MCI and AD (Parbo et al. 2018). The authors reported high levels of microg-
lia activation in prodromal AD in the absence of detectable tau deposition, again
suggesting that microglia activation is an early phenomenon in AD pathology, and
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it may be an initial protective mechanism that fails in the later stage of the disease
(Parbo et al. 2018).

Future studies with larger samples and longitudinal follow-up should explore the
relationships between brain metabolism, amyloid binding, tau aggregation and
microglia activation from prodromal phases to full-blown dementia.

9.7 PETImaging: New Frontiers in Dementia

Pathological substrates causing neurodegenerative diseases are multiple and hetero-
geneous. Future in vivo imaging techniques will possibly account for this and track
progression of various neuropathology events across networks in time. Some avail-
able PET tracers reveal some disadvantages including, but not limited to, binding
affinity, presence of off-target binding, poor signal-to-noise ratio and clinical suit-
ability issues. Amyloid-, tau- and neuroinflammation-PET techniques have seen a
constant development of new-generation PET tracers in an attempt to overcome
such limitations. In particular, the efforts regarding the development of fluorinated
alternative of [''C]-labelled tracers promoted and facilitated the implementation of
PET techniques in clinical practice.

Notwithstanding the broad efforts, the greatest challenge in PET imaging is still
represented by the lack of standardized methodology, which hampers both repro-
ducibility and biological interpretation of findings. Thus, validation of methodology
of analysis should be encouraged in order to obtain reliable and robust statistics, as
well as identifying new suitable targets or developing new techniques (e.g. 4R tau-
PET or a-synuclein PET). The validation of data analytical procedures for currently
existing PET tracers should be one focus of future research.

Regarding the development of radiotracers for additional molecular applica-
tions, the implementation of PET tracers specific for a-synuclein aggregates is a
crucial challenge. The Michael J. Fox Foundation launched a $2-million-prize
competition (https://www.michaeljfox.org/research/imaging-prize.html) for the
identification of an accurate a-synuclein tracer. The implementation of a com-
pound able to target a-synuclein aggregates by in vivo PET imaging would have
remarkable implications for clinical practice with respect to the a-synuclein spec-
trum, such as for disease monitoring, and clinical trials, thereby facilitating and
accelerating drug development (Kotzbauer et al. 2017). The in vivo investigation
of synaptic density using newly developed ad hoc fracers represents another
exciting and breakthrough molecular imaging frontier, which is currently under
validation (Finnema et al. 2016). ["*F]FDG-PET is a reliable measure of brain
metabolism, considered to be a proxy for neuronal/synaptic activity and density
(Rocher et al. 2003; Magistretti and Pellerin 1999; Stoessl 2017). At present, a
large amount of evidence demonstrates the absolute value of ['F]JFDG-PET in
detecting brain dysfunction and region-specific disorder in neurodegenerative
dementias (Kato et al. 2016). In vivo quantification of synapses, however, may be
possible using PET by means of a synapse-specific radioligand able to bind a
protein ubiquitously present on neuronal synapses. In this regard, recently
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synaptic density PET measurements, targeting the synaptic vesicle glycoprotein
2A (SV2A), began to be investigated, providing promising results (Finnema et al.
2016; Chen et al. 2018). SV2A is homogenously located in presynaptic terminals
across brain regions (Finnema et al. 2016; Bajjalieh et al. 1994). A preliminary
human imaging study showed that the [''CJUCB-J tracer, targeting SV2A, has
excellent properties, such as test-retest reproducibility, high brain uptake, rapid
kinetics and displacement by levetiracetam, an antiepileptic drug targeting SV2A
(Finnema et al. 2016; Finnema et al. 2018). Furthermore, in AD and epilepsy
patients, ["'CJUCB-J reliably detected focal medial temporal synaptic loss
(Finnema et al. 2016; Chen et al. 2018).

Recently, the PET radioligand [''C]BU9908 has been developed for in vivo
quantification of I2BS showing high specificity and selectivity (Kealey et al. 2013;
Parker et al. 2014; Tyacke et al. 2012). PET studies evaluating [''C]BU99008
expression could highlight the role of astroglial activation in disease progression
and associations with symptomatology.

9.8 Conclusion

Recent studies have progressively highlighted how the same pathology can trigger
different functional phenotypes. Given the recent advances in neuroimaging tech-
niques, it is likely that the multimodal integration of pathological and functional
biomarkers will be the key proxy to the most accurate identification of both under-
lying pathology and phenotypic syndromes. The increasing availability of PET
in vivo biomarkers will likely favour the implementation of a spectrum-based
research framework. PET molecular studies can give us the unique opportunity to
understand in vivo specific pathologic contributions along the time course of neu-
rodegenerative conditions, also providing crucial information on possible co-mor-
bidities. The accuracy of a biomarker does not necessarily depend on binding
specificity to a certain protein pathology, but mostly on its ability to discriminate
patients in clinically unclear situations and secondly on its usefulness in the quan-
tification of disease progression, e.g. brain glucose metabolism imaging that repre-
sents a valuable diagnostic biomarker for various conditions and is certainly not
pathology-specific.

Although the clinical usefulness of amyloid-PET is recognized, it is particularly
recommended for specific clinical subpopulations, such as early and atypical clini-
cal presentations. The novel tau tracers are promising, given their tight relationship
with neurodegeneration, but the lack of affinity for different tau isoforms and the
evidence for non-specific bindings shown by several of these radioligands call for
the development of novel compounds overcoming these limitations. In this context,
['*F]FDG-PET provides a well-validated key value to dementia diagnosis and prog-
nosis and should be considered as one of the most demonstrated valuable tools for
monitoring neurodegenerative disease status and progression and also for selecting
candidates for clinical trials and evaluating treatment response in both AD and non-
AD pathologies.
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Nevertheless, in the context of molecular therapy strategies, pathology specific-
ity of a biomarker is indispensable. The tracers’ affinity to their targets strictly influ-
ences the specificity of a PET measure for detecting neuropathology in vivo in the
different neurodegenerative conditions.

The progressive worldwide implementation and adoption of PET imaging tech-
niques paves the way to improved understanding of the pathophysiology of neuro-
degenerative diseases also enabling a more precise approach to interventional trials,
both for screening of participants and for outcome evaluation.
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