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Abstract We give a survey on some aspects of the topological investigation
of isolated singularities of complex hypersurfaces by means of Picard-Lefschetz
theory. We focus on the concept of distinguished bases of vanishing cycles and the
concept of monodromy.

8.1 Introduction

The pioneering fibration theorem of J. Milnor [118] opened the way to study the
topology of isolated complex hypersurface singularities. To study the topology of
real smooth manifolds one can use Morse theory. The idea of Morse theory is that
the topological type of the level set of a real function changes when passing through
a critical value. In order to study the topology of the singularity defined by a complex
analytic function one can investigate the level sets of this function. The complex
analogue of Morse theory is Picard-Lefschetz theory. It is older than Morse theory
and goes back to E. Picard and S. Simart [122] and to S. Lefschetz [104].

W. Ebeling (�)
Institut für Algebraische Geometrie, Leibniz Universität Hannover, Hannover, Germany
e-mail: ebeling@math.uni-hannover.de

© Springer Nature Switzerland AG 2020
J. L. Cisneros Molina et al. (eds.), Handbook of Geometry and Topology
of Singularities I, https://doi.org/10.1007/978-3-030-53061-7_8

449

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53061-7_8&domain=pdf
mailto:ebeling@math.uni-hannover.de
https://doi.org/10.1007/978-3-030-53061-7_8


450 W. Ebeling

Around 1967–1969, the Picard-Lefschetz theory experienced a revival when it
was brought into an algebraic form by A. Grothendieck, P. Deligne, and N. Katz in
[45]. On a more modest scale, the theory was applied in the late 1960s and early
1970s to the analysis of isolated singularities of complex hypersurfaces. The first
fundamental contributions were made by F. Pham [121], Lê Dũng Tráng [101, 102],
E. Brieskorn [28, Appendix], K. Lamotke [97], and A. M. Gabrielov [65–68].
Gabrielov coined the notion of “distinguished bases”. Instead of passing through a
critical value, the fundamental principle of Picard-Lefschetz theory is going around
a critical value in the complex plane. Roughly speaking, to the critical values there
corresponds a distinguished basis of vanishing cycles and the change of the topology
of the level set is given by the “monodromy”. This article is a survey of these
fundamental concepts and the further developments.

Nowadays, there are good references for this subject. There is a survey article by
S. M. Gusein-Zade [73] and a later one by Brieskorn [34]. A very good reference
is the second volume of the book of V. I. Arnold, Gusein-Zade, and A. Varchenko
[13]. The book of E. Looijenga [113] is devoted to isolated complete intersection
singularities, but it also contains relevant information about hypersurface singular-
ities which are a special case. Moreover, there are also textbooks by D. Bättig and
H. Knörrer [16] (in German) and by the author [58]. The author has already written
a survey on the classical monodromy [57]. We keep the intersection with this survey
to a minimum. We give almost no proofs, but provide precise references to these
books as well as to the original articles for details, including proofs.

Let me outline the contents of this article. In the first section, we introduce
the notion of a distinguished basis of vanishing cycles. More precisely, we define
distinguished and weakly distinguished bases. In the second section, we consider
the intersection form, the classical monodromy, and the Seifert form and we show
how matrices of these invariants with respect to distinguished bases are related
to one another. Moreover, we define the concept of Coxeter-Dynkin diagram. In
Sect. 8.4, we consider the change of basis and introduce the action of the braid
group on the set of distinguished bases. In Sect. 8.5, we collect together results
about the computation of intersection matrices and Seifert matrices with respect
to distinguished bases. In Sect. 8.6, we discuss the implication of the irreducibility
of the discriminant to properties of the invariants and we introduce the Lyashko-
Looijenga map. In Sect. 8.7, we review Arnold’s classification of singularities
and compile explicit results for the simple, unimodal, and bimodal singularities.
Sect. 8.8 is devoted to an algebraic description of the monodromy group. Finally,
in Sect. 8.9, we consider the question to which extent the invariants determine the
topological type of the singularities. We conclude with some open problems.

The notion of distinguished bases can also be generalized to isolated complete
intersection singularities, see [55]. We shall not discuss this case in this survey, we
restrict ourselves to isolated complex hypersurface singularities.

There are many further generalizations and applications of the theory, even
outside of singularity theory. We mention some of the results, but mainly indicate
references to the corresponding articles. We do not claim to be complete.
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8.2 Distinguished Bases of Vanishing Cycles

Let f : (Cn+1, 0) → (C, 0) be the germ of a holomorphic function with an isolated
singularity at the origin. This means that

gradf (a) =
(

∂f

∂z0
(a), . . . ,

∂f

∂zn

(a)

)
�= 0

for all points a �= 0 in a small neighborhood of the origin, (z0, . . . , zn) denote the
coordinates of Cn+1. For short, we call f a singularity.

One has the famous result of Milnor [118]: Let ε > 0 be small enough such that
the closed ball Bε ⊂ C

n+1 of radius ε around the origin in C
n+1 intersects the fiber

f −1(0) transversely. Let 0 < η � ε be such that for t in the closed disc � ⊂ C of
radius η around the origin, the fiber f −1(t) intersects the ball Bε transversely. Let

Xt := f −1(t) ∩ Bε for t ∈ �,

X := f −1(�) ∩ Bε,

X∗ := X \ X0,

�∗ := � \ {0}.

By a result of J. Milnor [118], the mapping f |X∗ : X∗ → �∗ is the projection of a
(locally trivial) (C∞)-differentiable fiber bundle. The fiber Xη over the point η ∈ �∗
is a 2n-dimensional differentiable manifold with boundary which has the homotopy
type of a bouquet of μ n-spheres where μ is the Milnor number of the singularity.
This differentiable fiber bundle (X∗, f |X∗ ,�∗, Xη) is called the Milnor fibration
and the typical fiber Xη is called the Milnor fiber. The only non-trivial reduced
homology group is the group H̃n(Xη;Z). It is equipped with the intersection form
〈 , 〉. This bilinear form is symmetric if n is even and skew-symmetric if n is odd. We
shall only consider homology with integral coefficients and we shall write H̃n(Xη)

for H̃n(Xη;Z) in the sequel.

Definition 8.2.1 The group H̃n(Xη) together with the intersection form 〈 , 〉 is
called the Milnor lattice of f and denoted by M .

The Milnor lattice M is a lattice, i.e., a free Z-module of finite rank equipped
with a symmetric or skew-symmetric bilinear form 〈 , 〉. The rank of the Milnor
lattice is the Milnor number μ.

Let ω be the loop

ω : [0, 1] → C

t �→ ηe2π
√−1t .

Then parallel translation along this path induces a diffeomorphism h = hω : Xη →
Xη which is called the geometric monodromy of the singularity f .
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Definition 8.2.2 The induced homomorphism h∗ : M → M on the Milnor lattice
M is called the (classical) monodromy (or the (classical) monodromy operator) of
the singularity f .

Our aim is to study the Milnor fibration, the Milnor lattice M , and the mon-
odromy.

For this purpose, we shall consider a morsification of the function f . This
is defined as follows. An unfolding of f is a holomorphic function germ F :
(Cn+1 × C

k, 0) → (C, 0) with F(z, 0) = f (z) (see [70, 1.2]). A morsification
is a representative F : V × U → C of an unfolding

F : (Cn+1 × C, 0) → (C, 0)

(z, λ) �→ fλ(z)

of f such that for almost all λ ∈ U \ {0} (everywhere except from a Lebesgue null
set) the function fλ : V → C is a Morse function, i.e., has only non-degenerate
critical points with distinct critical values. The Morse function fλ is itself often
called a morsification of f . One can show that f has a morsification (see, e.g., [58,
Proposition 3.18]).

Let λ be chosen so that fλ is a Morse function. Let Y := f −1
λ (�) ∩ Bε and

Yt := f −1
λ (t) ∩ Bε for t ∈ �. Assume that λ �= 0 is chosen so small that all the

critical points are contained in the interior of Y and the fiber f −1
λ (t) for t ∈ �

intersects the ball Bε transversely. Denote the critical points by p1, . . . , pμ and the
critical values by s1, . . . , sμ. Assume that η ∈ ∂� is a non-critical value of fλ. Let
�′ := � \ {s1, . . . , sμ} and Y ′ := Y ∩f −1

λ (�′). Then the mapping fλ|Y ′ : Y ′ → �′
is the projection of a differentiable fiber bundle. The fiber Yt for t ∈ �′ ∩ �∗ is
diffeomorphic to Xt . In particular, Yη is diffeomorphic to Xη. We therefore identify
these fibers.

For a fixed si let γ : I = [0, 1] → � be a piecewise differentiable path which
connects the critical value si with η and does not pass through any other critical
value, i.e. γ (0) = si, γ (1) = η and γ ((0, 1]) ⊂ �′. By the complex Morse lemma
there exists a neighborhood Bi of the non-degenerate critical point pi over si and
local coordinates (z0, . . . , zn) centered at the point pi such that fλ can be written in
Bi in the form

fλ(z0, . . . , zn) = si + z2
0 + . . . + z2

n

and Bi is a ball of radius ε centered at 0 in these coordinates. For sufficiently small
t > 0 the fiber Xγ(t) contains an n-sphere

S(t) := √
γ (t) − si Sn

where Sn is the n-dimensional unit sphere

Sn = {(z0, . . . , zn) ∈ C
n+1 | Im zi = 0,

∑
z2
i = 1}.
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Fig. 8.1 Vanishing cycle

0 t 1

pi

S (t ) S (1)

By parallel translation along γ one obtains an n-sphere S(t) ⊂ Xγ(t) for each t ∈
(0, 1]. For t = 0 the sphere S(t) shrinks to the critical point pi (cf. Fig. 8.1). We now
choose an orientation of S(1). Then S(1) is an n-cycle and represents a homology
class δ in the Milnor lattice M = H̃n(Xη).

Definition 8.2.3 The homology class δ ∈ M is called a vanishing cycle of fλ (along
γ ). Denote by �∗ ⊂ M the set of vanishing cycles of f (for all possible choices of
a morsification, a critical point, a path γ , and an orientation).

A vanishing cycle is well defined up to orientation.
For the self-intersection number of the vanishing cycle δ in the Milnor fiber Xη

one has the following result (see also [13, Lemma 1.4], [58, Proposition 5.3]).

Proposition 8.2.4 The vanishing cycle δ ∈ M has the self-intersection number

〈δ, δ〉 = (−1)n(n−1)/2(1 + (−1)n) =
⎧⎨
⎩

0 for n odd,
2 for n ≡ 0 (mod 4),

−2 for n ≡ 2 (mod 4).

Proof In order to compute the self-intersection number 〈δ, δ〉 of the vanishing cycle
δ, it suffices to compute the self-intersection number of the sphere Sn in the complex
manifold

Z = {(z0, . . . , zn) ∈ C
n+1 | z2

0 + · · · + z2
n = 1}.

It is easy to see that the manifold Z is diffeomorphic to the total space T Sn of the
tangent bundle of the sphere Sn which can be described as follows:

T Sn =
{
u + √−1v ∈ C

n+1
∣∣∣ ∑ u2

i = 1,
∑

uivi = 0
}

.
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A diffeomorphism from the manifold Z to T Sn can be defined by

zi = xi + √−1yi �→ ui + √−1vi = xi

|x| + √−1yi

where |x| =
√∑

x2
i . This diffeomorphism sends the unit sphere Sn ⊂ Z to the zero

section of the tangent bundle T Sn. The self-intersection number of the zero section
Sn in the total space of the tangent bundle T Sn is equal to the Euler characteristic
χ(Sn) = 1 + (−1)n. However, the natural orientations of the manifolds Z (as a
complex analytic manifold) and T Sn (as the total space of a tangent bundle) differ
by the sign (−1)n(n−1)/2. ��

The path γ : I → � from si to η defines a closed path around the critical value si
in the following way: Let �i be a disc of sufficiently small radius ηi around si such
that γ (I) intersects the boundary ∂�i of �i exactly once, namely at time t = θ

at the point si + ui . Let τ : I → �i, t �→ si + uie
2π

√−1t , be the path starting
at si + ui which goes once around si on the boundary of �i in counterclockwise
direction. Moreover, set γ̃ := γ |[θ,1]. A suitable small deformation ω (avoiding
self-intersections) of the closed path γ̃ −1τ γ̃ with starting and end point η is called
the simple loop associated to γ (cf. Fig. 8.2). The monodromy

hδ := hω∗ : M −→ M

corresponding to the simple loop ω associated to γ is called the Picard-Lefschetz
transformation corresponding to the vanishing cycle δ.

The following theorem is the basic result of the Picard-Lefschetz theory. It
goes back to Picard and Simart [122, p. 95ff.] and Lefschetz [104, Théorème
fondamental, p. 23 & p. 92]. For a proof see [97, §5], [113, Chapter 3], and [13,
1.3]. A proof following the proof in Looijenga’s book [113, Chapter 3] is also given
in [58, §5.3]. For a modern account of Picard-Lefschetz theory see also the article
of Lamotke [98].

Theorem 8.2.5 (Picard-Lefschetz Formula) For α ∈ M we have

hδ(α) = α − (−1)
n(n−1)

2 〈α, δ〉δ.

si

τ
si + ui

γ

/

ω

η

Fig. 8.2 Simple loop ω associated to γ
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When n is even, the intersection form 〈 , 〉 is a symmetric bilinear form and we
can combine the formulas from Proposition 8.2.4 and Theorem 8.2.5 together as

hδ(α) = α − 2〈α, δ〉
〈δ, δ〉 δ.

This means that the operator hδ : M → M is a reflection in the hyperplane of M

orthogonal to δ. Such a reflection is also denoted by sδ , so in this case hδ = sδ .
When n is odd, the intersection form 〈 , 〉 is skew symmetric and Theorem 8.2.5
means that hδ is a symplectic transvection.

We now assume that ε and η are chosen so small that all the balls Bi and all the
discs �i are disjoint. We consider an ordered system (γ1, . . . , γμ) of paths γi : I →
� with γi(0) = si, γi(1) = η and γi((0, 1]) ⊂ �′.

Definition 8.2.6 The system (γ1, . . . , γμ) of paths is called distinguished if the
following conditions are satisfied:

(i) The paths γi are non-selfintersecting.
(ii) The only common point of γi and γj for i �= j is η.

(iii) The paths are numbered in the order in which they arrive at η where one has to
count clockwise from the boundary of the disc (cf. Fig. 8.3).

A system (δ1, . . . , δμ) of vanishing cycles δi ∈ �∗ is called distinguished, if
there exists a distinguished system (γ1, . . . , γμ) of paths such that δi is a cycle
vanishing along γi .

η

γ μ

γ 2

γ 1

Fig. 8.3 Distinguished system of paths
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Since �′ is a disc from which μ points have been deleted, its fundamental group
π1(�

′, η) is the free group on μ generators. If (γ1, . . . , γμ) is a distinguished system
of paths, then π1(�

′, η) is the free group on the generators ω1, . . . , ωμ, where ωi is
the simple loop associated to γi .

Definition 8.2.7 The system (γ1, . . . , γμ) of paths is called weakly distinguished
if π1(�

′, η) is the free group on the generators (ω1, . . . , ωμ), where ωi is the simple
loop belonging to γi .

A system (δ1, . . . , δμ) of vanishing cycles δi ∈ �∗ is called weakly distinguished
if δi is a vanishing cycle along a path γi of a weakly distinguished system
(γ1, . . . , γμ) of paths.

Note that the numbering is important for a distinguished system of paths, but of
no significance for a weakly distinguished system of paths. A distinguished system
of paths is of course also weakly distinguished.

Brieskorn proved the following theorem [28, Appendix] (see also [13, Theo-
rem 2.1], [58, Proposition 5.5]).

Theorem 8.2.8 (Brieskorn) A distinguished system (δ1, . . . , δμ) of vanishing
cycles is a basis of the lattice M , i.e., 〈δ1, . . . , δμ〉Z = M , where 〈δ1, . . . , δμ〉Z
denotes the Z-span of (δ1, . . . , δμ).

From this theorem, one can derive the following corollary (see [13, Theorem 2.8],
[58, Proposition 5.6]).

Corollary 8.2.9 A weakly distinguished system (δ1, . . . , δμ) of vanishing cycles
also forms a basis of M .

Definition 8.2.10 A basis (δ1, . . . , δμ) of M is called distinguished (resp. weakly
distinguished) if (δ1, . . . , δμ) is a distinguished (resp. weakly distinguished)
system of vanishing cycles.

By Theorem 8.2.8 and Corollary 8.2.9 every distinguished or weakly distin-
guished system of vanishing cycles forms a basis.

The concepts “distinguished” and “weakly distinguished” are due to Gabrielov.
In order to distinguish both concepts better, one sometimes says, following a
suggestion of Brieskorn, “strongly distinguished” instead of “distinguished”. The
term “geometric basis” is also used for a distinguished basis.

The group of all automorphisms of a lattice M , i.e., isomorphisms M → M

which respect the bilinear form, will be denoted by Aut(M).

Definition 8.2.11 The image � of the homomorphism

ρ : π1(�
′, η) −→ Aut(M)

[γ ] �−→ hγ ∗

is called the monodromy group of the singularity f .
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If (δ1, . . . , δμ) is a weakly distinguished basis, then the monodromy group of
f is generated by the Picard-Lefschetz transformations hδi

corresponding to the
vanishing cycles δi . Therefore the monodromy group of f is a group with μ

generators. Indeed, the monodromy group is independent of the morsification of
f , see Theorem 8.6.2 below.

Example 8.2.12 (For this example see also [13, 2.9] and [58, Example 5.4].) We
consider the function f : C → C with f (z) = zk+1. (This is the singularity Ak , see
Sect. 8.7.) The Milnor fiber Xη consists of k + 1 points, namely the (k + 1)-th roots
of η. As a morsification of f we consider the function fλ(z) = zk+1 −λz for λ �= 0.
Fix λ ∈ R, λ > 0. The critical points of the function fλ are given by the equation

f ′
λ(z) = (k + 1)zk − λ = 0.

Therefore they are the points

pi = k

√
λ

k + 1
ξi, ξi = e− 2πi

√−1
k ,

with the critical values

si = − λk

k + 1
k

√
λ

k + 1
ξi, i = 1, . . . , k.

As a noncritical value we choose −η, where η ∈ R, η > 0 and

η � λk

k + 1
k

√
λ

k + 1
.

Let γi : [0, 1] → �̄, t �→ (1 − t)si , and let τ be a path from 0 to −η which runs
along the real axis and goes once around the critical value

sk = − λk

k + 1
k

√
λ

k + 1
ξk ∈ R

in the positive direction.
We consider the path system (γ1τ, . . . , γkτ ). This system is homotopic to a

distinguished path system. (For the notion of homotopy of path systems see Sect. 8.4
below.) Let (δ1, . . . , δk) be a corresponding distinguished system of vanishing
cycles in H̃0(X−η).

In order to compute the intersection numbers 〈δi, δj 〉 of the vanishing cycles in
H̃0(X−η) we transport the system (δ1, . . . , δk) by parallel transport along the path
τ−1 to H̃0(X0). We thus consider a system of vanishing cycles in H̃0(X0), which we
again denote by (δ1, . . . , δk), and which is defined by the path system (γ1, . . . , γk).
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The fiber X0 consists of the k + 1 points

x0 = 0, x1 = k
√

λξ1, . . . , xk = k
√

λξk.

Then up to orientation δi is represented by the cycle xi − x0. It is easy to calculate
that xi − x0 vanishes along γi , i.e., that the points xi and x0 fall together along γi .
Let

δi = [xi − x0], i = 1, . . . , k.

Then

〈δi, δj 〉 =
{

2 for i = j,

1 for i �= j.

In this case, the Milnor lattice M , the set of vanishing cycles �∗, and the
monodromy group � can be described as follows. Let e1, . . . , ek+1 be the standard
basis of Rk+1 and 〈 , 〉 the Euclidean scalar product on R

k+1. Denote by Sk+1 the
symmetric group in k + 1 symbols. Then

M = {(v1, . . . , vk+1) ∈ Z
k+1 | v1 + · · · + vk+1 = 0},

�∗ = {ei − ej | 1 ≤ i, j ≤ k + 1, i �= j} = {v ∈ M | 〈v, v〉 = 2},
� = Sk+1.

8.3 Coxeter-Dynkin Diagram and Seifert Form

Definition 8.3.1 Let (δ1, . . . , δμ) be a weakly distinguished basis of M . The matrix

S := (〈δi, δj 〉)i=1,...,μ
j=1,...,μ

is called the intersection matrix of f with respect to (δ1, . . . , δμ).

By Proposition 8.2.4, the diagonal entries of the intersection matrix satisfy

〈δi, δi〉 = (−1)
n(n−1)

2 (1 + (−1)n) for all i.

It is usual to represent the intersection matrix by a graph called the Coxeter-
Dynkin diagram.
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Definition 8.3.2 Let (δ1, . . . , δμ) be a weakly distinguished basis of M . The
Coxeter-Dynkin diagram of the singularity f with respect to (δ1, . . . , δμ) is the
graph D defined as follows:

(i) The vertices of D are in one-to-one correspondence with the elements
δ1, . . . , δμ.

(ii) For i < j with 〈δi, δj 〉 �= 0 the i-th and the j -th vertex are connected by
|〈δi, δj 〉| edges, weighted with the sign +1 or −1 of 〈δi, δj 〉 ∈ Z. We indicate
the weight

w =
{

(−1)
n
2 for n even,

(−1)
n+1

2 for n odd

by a dashed line, the weight −w by a solid line.

These diagrams are usually called Dynkin diagrams. However, according to
A. J. Coleman [40, p. 450], they first appeared in mimeographed notes written by
H. S. M. Coxeter (around 1935). Therefore we call them Coxeter-Dynkin diagrams.

Example 8.3.3 We continue Example 8.2.12. The Coxeter-Dynkin diagram with
respect to (δ1, . . . , δk) is a complete graph with only dashed edges (i.e., each two
vertices are joined by a dashed edge).

If (δ1, . . . , δμ) is a distinguished basis then the classical monodromy operator of
f can be expressed as follows:

h∗ = hδ1 · · ·hδμ.

We call this product the Coxeter element corresponding to the distinguished basis.
This follows from the fact that the loop ω corresponding to h∗ is homotopic to the
combination ωμωμ−1 · · · ω1 of the simple loops associated to hδμ, hδμ−1 , . . . , hδ1 .

We have the following algebraic proposition (cf. [26, Ch. V, §6, Exercice 3]).

Proposition 8.3.4 Let M be a free Z-module of rank � with a basis (e1, . . . , e�)

and A = (aij ) an � × �-matrix with integral coefficients. Consider the operator
si : M → M defined by

si(ej ) = ej − aij ei

and let c = s1 · · · s�. Let C be the matrix of c with respect to the basis (e1, . . . , e�), I

the � × � unit matrix, and let U = (uij ) and V = (vij ) be the matrices defined by

uij =
{

aij if i < j,

0 otherwise,
vij =

{
0 if i < j,

aij otherwise.
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Then

C = (I + U)−1(I − V ).

Let S2n+1
ε be the boundary of the ball Bε. The set K = f −1(0) ∩ S2n+1

ε is called
the link of the singularity f . Let T be an (open) tubular neighborhood of K in S2n+1

ε .
Milnor [118] has shown that the map

� : S2n+1
ε \ T −→ S1 ⊂ C

z �−→ f (z)
|f (z)|

is the projection of a differentiable fiber bundle. Moreover, this fibration is equiv-
alent to the restriction of the fibration f |X∗ : X∗ → �∗ to the boundary S1

η of �

[118, §5]. In particular, the fiber Zw/|w| := �−1(w/|w|) is diffeomorphic to Xw for
w ∈ S1

η . Let gt : Z1 → Ze2πit be the parallel transport along ω(t) = e2πit . For the
definition of the linking number see [13, 2.3], [58, 4.7].

Definition 8.3.5 The Seifert form of f is the bilinear form L on H̃n(Z1) ∼= H̃n(Xη)

defined by L(a, b) = l(a, g1/2∗(b)) where l( , ) is the linking number.

Let (δ1, . . . , δμ) be a distinguished basis of f and let

• S := (〈δi, δj 〉)i=1,...,μ
j=1,...,μ be the intersection matrix,

• L := (L(δi, δj ))
i=1,...,μ
j=1,...,μ be the matrix of the Seifert form, and

• H be the matrix of the monodromy h∗ with respect to the basis (δ1, . . . , δμ).

Then one has the following theorem.

Theorem 8.3.6 The following holds:

(i) The matrix L is a lower triangular matrix with −(−1)n(n−1)/2 on the diagonal.
(ii) S = −L − (−1)nLt .

(iii) H = (−1)n+1(Lt )−1L.

Proof (i) This is [13, Lemma 2.5]. (Note that, according to [13, Remark in 2.5], the
matrix of the bilinear form in [13] is written down as the matrix of the corresponding
operator and hence corresponds to the transpose matrix in our convention. See also
[58, Corollary 5.3 (i)], where, unfortunately, there is a misprint: “upper” should be
“lower”.)

For the proof of (ii) see [13, Theorem 2.4] (see also [58, Corollary 5.3 (ii)]).
(iii) follows from (i) and (ii) by applying Proposition 8.3.4. (Note that the formula

of [58, Proposition 5.9] has to be modified correspondingly.) ��
It follows from Theorem 8.3.6 that each of these matrices determines the other

two. It is clear that S and L determine the matrix H . That the matrix H of the
classical monodromy operator with respect to a distinguished basis determines
the intersection matrix S was first proved by F. Lazzeri [100] and follows from
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Theorem 8.3.6 and a simple fact in linear algebra [13, Lemma 2.6] (see also [58,
Lemma 5.5]).

A. B. Givental [69] introduced q-analogues of the invariants and formulas above.
He considered a Picard-Lefschetz theory with “twisted” coefficients. As an upshot,
he obtained a bilinear form on the free module Mq := M ⊗ Z[q, q−1] defined by
the matrix Sq := −L − qLt with respect to a distinguished basis of f , where q

is a variable, which can take non-zero complex values, and Z[q, q−1] denotes the
ring of Laurent polynomials in q. Proposition 8.3.4 (with the ring Z replaced by
Z[q, q−1]) yields a matrix Hq = −q(Lt )−1L = qH . This interpolates between the
symmetric (q = 1) and the skew symmetric (q = −1) versions of these invariants.
The q-analogue of the monodromy group was studied by G. G. Il’yuta [86].

8.4 Change of Basis

A distinguished or weakly distinguished system (γ1, . . . , γμ) of paths can be chosen
in many various ways. Next we consider elementary operations on path systems
which preserve the property of being distinguished or weakly distinguished.

Let (γ1, . . . , γμ) be a distinguished system of paths from the critical values
s1, . . . , sμ to the non-critical value η and let (δ1, . . . , δμ) be a corresponding
distinguished system of vanishing cycles. Furthermore, let (ω1, . . . , ωμ) be a
corresponding system of simple loops.

Definition 8.4.1 The operation αj for 1 ≤ j < μ is defined as

αj : (γ1, . . . , γμ) �→ (γ1, . . . , γj−1, γ̃j , γ̃j+1, γj+2, . . . , γμ),

where γ̃j+1 = γj and γ̃j is a small homotopic deformation of γj+1ωj such that γ̃j

has no self-intersection points and intersects the other paths only at η, for t = 1 (see
Fig. 8.4).

Then (γ̃1, . . . , γ̃μ) is again a distinguished system of paths.

Fig. 8.4 The operation αj

γ j

γ j = γ j+1

γ j+1
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This induces the following operation on the corresponding system (δ1, . . . , δμ)

of vanishing cycles which will be denoted by the same symbol:

αj : (δ1, . . . , δμ) �→ (δ1, . . . , δj−1, hδj
(δj+1), δj , δj+2, . . . , δμ)

where

hδj
(δj+1) = δj+1 − (−1)n(n−1)/2〈δj+1, δj 〉δj .

Definition 8.4.2 The operation βj+1 for 1 ≤ j < μ is defined as

βj+1 : (γ1, . . . , γμ) �→ (γ1, . . . , γj−1, γ
′
j , γ

′
j+1, γj+2, . . . , γμ)

where γ ′
j = γj+1 and γ ′

j+1 is a small homotopic deformation of γjω
−1
j+1 with the

properties above (see Fig. 8.5). Then (γ ′
1, . . . , γ

′
μ) is again a distinguished system

of paths.
This induces the following operation on the corresponding system (δ1, . . . , δμ)

of vanishing cycles which will also be denoted by the same symbol:

βj+1 : (δ1, . . . , δμ) �→ (δ1, . . . , δj−1, δj+1, h
−1
δj+1

(δj ), δj+2, . . . , δμ)

where

h−1
δj+1

(δj ) = δj − (−1)n(n−1)/2〈δj+1, δj 〉δj+1

is the inverse Picard-Lefschetz transformation.

Two distinguished systems (γ1, . . . , γμ) and (τ1, . . . , τμ) of paths are called
homotopic if there are homotopies φi : I ×I → �̄ between γi and τi , i = 1, . . . , μ,
such that for all u ∈ I and paths φu

i : I → �̄, t �→ φi(u, t), i = 1, . . . , μ, the
following properties are satisfied:

(i) φu
i (0) = si, φu

i (1) = η.
(ii) The paths φu

i are double point free.
(iii) Each two paths φu

i and φu
j have, for i �= j , only the end point η in common.

Fig. 8.5 The operation βj+1
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One can easily show (see [58, Lemma 6]):

Lemma 8.4.3 The operations αj and βj+1 are mutually inverse, i.e., the applica-
tion of αjβj+1 and βj+1αj to a distinguished path system (γ1, . . . , γμ) yields a
homotopic distinguished path system.

Up to homotopy of distinguished path systems we have

(i) αiαj = αjαi for i, j with |i − j | ≥ 2,
(ii) αjαj+1αj = αj+1αjαj+1 for 1 ≤ j < μ − 1.

These are the relations of Artin’s braid group [14, 15] (see also [25]). Therefore
we have an action of the braid group Brμ on μ strings on the set of the homotopy
classes of distinguished path systems and so also on the set of all distinguished
systems of vanishing cycles. One can show the following result ([73], see also [58,
Proposition 5.15]).

Proposition 8.4.4 The braid group Brμ acts transitively on the set of all homotopy
classes of distinguished path systems, i.e., any two distinguished path systems can
be transformed one to the other by iteration of the operations αj and βj+1 and a
succeeding homotopy.

Definition 8.4.5 Let

• B be the set of all distinguished bases of vanishing cycles of f ,
• D be the set of Coxeter-Dynkin diagrams of distinguished bases of f .

One also has a braid group action on the sets B and D. Moreover, one can change
the orientation of a cycle. Let Hμ be the direct product of μ cyclic groups of order
two with generators κ1, . . . , κμ, where κi acts on B by

κi : (δ1, . . . , δi , . . . , δμ) �→ (δ1, . . . ,−δi, . . . , δμ).

The braid group Brμ acts on Hμ by permutation of the generators κ1, . . . , κμ: αj

corresponds to the transposition of κj and κj+1. Let Br�μ = Hμ � Brμ be the semi-
direct product. It follows from Proposition 8.4.4 that the action of the group Br�μ on
B is transitive.

The set B depends on the chosen morsification. In order to get an invariant of the
singularity, Brieskorn [33] proposed a more general notion of distinguished bases.
Namely, he considered the natural action of the monodromy group � on the set B:
An element h ∈ � acts as follows:

h : (δ1, . . . , δμ) �→ (h(δ1), . . . , h(δμ)).

Brieskorn called a basis B of M geometric if it is obtained by any choice of
a distinguished path system, of orientations, and of h ∈ �. He introduced the
notions

• B∗ for the set of all geometric bases of f ,
• D∗ for the set of Coxeter-Dynkin diagrams of geometric bases of f .
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The sets B∗ and D∗ are invariants of the singularity. In fact, the set D∗ coincides
with D. The action of � commutes with the action of the group Br�μ . It follows from
Proposition 8.4.4 that the action of the group � × Br�μ on B∗ is transitive. One can
derive from this that the invariants B∗ and D∗ determine each other, see [33].

Note that, unfortunately, in [60] the set B was considered but denoted by B∗.
The braid group action above first appeared in a paper of A. Hurwitz [80] from

1891 where he describes a braid group action on certain sets of Riemann surfaces
(cf. [94]). It was also studied by Brieskorn and his students, see [34]. In [34],
Brieskorn introduced a simple unifying concept, the notion of an automorphic set.

Definition 8.4.6 An automorphic set is a set � with a product ∗ : �×� → � such
that all left translations are automorphisms, i.e., one has the following properties:

(i) For all a, c ∈ � there is a unique b ∈ � such that a ∗ b = c.
(ii) For all a, b, c ∈ � one has (a ∗ b) ∗ (a ∗ c) = a ∗ (b ∗ c).

The set �∗ of vanishing cycles of f is an automorphic set with the product a ∗
b := ha(b) for a, b ∈ �∗.

If � is an automorphic set, then one has a canonical braid group action on the
n-fold cartesian product �n of �:

αi : (x1, . . . , xn) �→ (x1, . . . , xi−1, xi ∗ xi+1, xi, xi+2, . . . , xn).

The concept of an automorphic set is a basic concept which is also studied under the
following names: left self-distributive system, self-distributive groupoid, quandle,
wrack, and rack, see, e.g., the book of P. Dehornoy [42].

This braid group action is also considered in the representation theory of
algebras, see, e.g., [41, 92, 124]. It has also been applied in mathematical physics,
see, e.g., [37, 63, 64].

Example 8.4.7 We continue Example 8.3.3. By the transformations

αk−1, αk−2, . . . , α1;αk−1, αk−2, . . . , α2; . . . ;αk−1, αk−2;αk−1,

the distinguished basis (δ1, . . . , δk) is transformed to a distinguished basis with the
Coxeter-Dynkin diagram depicted in Fig. 8.6. This is the classical Coxeter-Dynkin
diagram of type Ak .

Finally, we consider operations that transform weakly distinguished path systems
again into weakly distinguished path systems.

Fig. 8.6 Standard
Coxeter-Dynkin diagram Ak 1 2

· · ·
k −1 k
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Let (γ1, . . . , γμ) now be a weakly distinguished path system from the points
s1, . . . , sμ to η, let (ω1, . . . , ωμ) be a corresponding system of simple loops and let
(δ1, . . . , δμ) be a corresponding weakly distinguished system of vanishing cycles.

Definition 8.4.8 We define operations αi(j) and βi(j) for i, j ∈ {1, . . . , μ}, i �= j ,
as follows:

αi(j) : (γ1, . . . , γμ) �→ (γ1, . . . , γj−1, γjωi, γj+1, . . . , γμ) ,

βi(j) : (γ1, . . . , γμ) �→ (γ1, . . . , γj−1, γjω
−1
i , γj+1, . . . , γμ).

These operations induce the following operations on the corresponding systems
of simple loops, and we denote them by the same symbols:

αi(j) : (ω1, . . . , ωμ) �→ (ω1, . . . , ωj−1, ω
−1
i ωjωi, ωj+1, . . . , ωμ) ,

βi(j) : (ω1, . . . , ωμ) �→ (ω1, . . . , ωj−1, ωiωjω
−1
i , ωj+1, . . . , ωμ).

If ω1, . . . , ωμ forms a generating system for π1(�
′, η), then π1(�

′, η) is also
generated by the new simple loops that arise from application of the operations
αi(j) and βi(j). Hence αi(j) and βi(j) transfer weakly distinguished path systems
again to weakly distinguished path systems.

These operations thus induce operations on the corresponding weakly distin-
guished systems of vanishing cycles too, which we denote by the same symbols,
and they appear as follows:

αi(j) : (δ1, . . . , δμ) �→ (δ1, . . . , δj−1, hδi
(δj ), δj+1, . . . , δμ),

βi(j) : (δ1, . . . , δμ) �→ (δ1, . . . , δj−1, h
−1
δi

(δj ), δj+1, . . . , δμ).

The operations αi(j) and βi(j) are again mutually inverse in the sense above.
For even n they even agree.

If (γ1, . . . , γμ) is a distinguished path system and if τj,j+1 ∈ Sμ denotes the
transposition of j and j + 1, then, up to homotopy,

αj = τj,j+1 ◦ αj (j + 1),

βj+1 = τj,j+1 ◦ βj+1(j).

We now also have the following proposition:

Proposition 8.4.9 Let (ω1, . . . , ωμ) and (ω′
1, . . . , ω

′
μ) be two free generating

systems of the free group π1(�
′, η) such that ωi and ω′

i are conjugate to one another
for i = 1, . . . , μ. Then one can obtain (ω′

1, . . . , ω
′
μ) from (ω1, . . . , ωμ) by the

application of a sequence of operations of type αi(j) or βi(j).

This proposition was conjectured by Gusein-Zade [73] and proved by
S. P. Humphries [79] in 1985. It also follows, as remarked by R. Pellikaan, from an
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old result of J. H. C. Whitehead from the year 1936 (cf. [116, Proposition 4.20]).
We refer to [79].

It follows from Proposition 8.4.9 that any two weakly distinguished systems of
vanishing cycles can be transformed one to the other by iteration of the operations
αi(j) and βi(j) and a succeeding change of orientation of some of the cycles.

J. McCool [117] found a presentation of the subgroup of the automorphism group
of a free group generated by the operations αi(j) and βi(j).

8.5 Computation of Intersection Matrices

The Sebastiani-Thom sum of the singularities f : (Cn+1, 0) → (C, 0) and g :
(Cm, 0) → (C, 0) is the singularity of the function germ f ⊕ g : (Cn+m+1, 0) →
(C, 0) defined by the formula

(f ⊕ g)(x, y) = f (x) + g(y)

(x ∈ C
n+1, y ∈ C

m, (x, y) ∈ C
n+m+1 ∼= C

n+1 ⊕ C
m).

M. Sebastiani and R. Thom [130] proved that the monodromy operator of the
singularity f ⊕ g is equal to the tensor product of the monodromy operators of the
singularities f and g. If Lf , Lg , and Lf ⊕g denote the Seifert form of f, g, and
f ⊕g respectively, then by a result of Deligne (see [46], see also [13, Theorem 2.10])

Lf ⊕g = (−1)(n+1)mLf ⊗ Lg.

Gabrielov [65] showed how to calculate an intersection matrix of f ⊕ g from
the intersection matrices of f and g with respect to distinguished bases (see also
[13, Theorem 2.11]). As a corollary, he obtained certain intersection matrices for
singularities of the form

f (x) = z
a0
0 + · · · + zan

n , for ai ∈ Z, ai ≥ 2, i = 0, . . . , n.

These singularities are called Brieskorn-Pham singularities. They were considered
by Brieskorn [27] and Pham [121] (see also [77]). For such a singularity, already
Pham [121] had found a basis and calculated the intersection matrix with respect to
this basis. Gabrielov showed that Pham’s basis can be deformed to a distinguished
basis and the intersection matrix is given by the same formulas which Gabrielov
obtained. Independently, these intersection matrices with respect to distinguished
bases were also calculated by A. Hefez and Lazzeri [75].

A special case of the Sebastiani-Thom sum of f and g is the case when g(y) =
y2

1 +· · ·+y2
m. This is called a stabilization of f . The following theorem is a special

case of Gabrielov’s result (see also [13, Theorem 2.14]).
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Theorem 8.5.1 Let fλ be a morsification of the singularity f , let (γ1, . . . , γμ)

be a distinguished path system for fλ, and let (δ1, . . . , δμ) be a corresponding
distinguished basis.

Then fλ(x) + y2
1 + . . . + y2

m is a morsification of the singularity f (x) + y2
1 +

. . . + y2
m, with the same critical values, (γ1, . . . , γμ) is also a distinguished path

system for this singularity, and for a corresponding distinguished basis (̃δ1, . . . , δ̃μ)

we have

〈̃δi, δ̃j 〉 = [sign(j − i)]m(−1)(n+1)m+ m(m−1)
2 〈δi, δj 〉 for i �= j.

It follows from Theorem 8.5.1 that, by taking a suitable stabilization, one
can assume that n ≡ 2 mod 4. In this case, the intersection form is symmetric
and the vanishing cycles have self intersection number −2. The Picard-Lefschetz
transformation hδi

acts on M by the formula

hδi
(α) = sδi

(α) = α + 〈α, δi〉δi .

This is a reflection in the hyperplane orthogonal to the vanishing cycle δi . In
accordance with the definition in Sect. 8.3, in the Coxeter-Dynkin diagram, edges
of weight +1 are depicted by solid lines and edges of weight −1 are depicted by
dashed lines. Note that the definition of a Coxeter-Dynkin diagram in [13, 2.8] is
slightly different: It encodes the intersection matrix in the case n ≡ 2 mod 4, and
the i-th and j -th vertices are joined by an edge of multiplicity 〈δi, δj 〉.
Example 8.5.2 Consider the germ of the function f : C

2 → C defined by
f (x, y) = x5 + y3. (This is the singularity E8, see Sect. 8.7.) By Example 8.4.7
and the result of Gabrielov [65] there is a distinguished basis of f with a Coxeter-
Dynkin diagram of the shape of Fig. 8.7. By the transformations

α7, α6, α5, α4, α3, α2, α1;β5, β4;β7, β6, β5;β7, β6, β5;β8, β7, β6; κ2, κ7, κ8,

the Coxeter-Dynkin diagram is transformed to the classical Coxeter-Dynkin dia-
gram of type E8, see Fig. 8.8. It follows from Theorem 8.7.1 below that the
numbering can be changed by braid group transformations to an arbitrary number-
ing.

Fig. 8.7 Gabrielov diagram
of E8

2 4 6 8

1 3 5 7



468 W. Ebeling

Fig. 8.8 Standard
Coxeter-Dynkin diagram E8

7 6 5 4 3 2 1

8

Another method to compute an intersection matrix with respect to a distinguished
basis of f is the polar curve method of Gabrielov [68].

If n = 1, so f : (C2, 0) → (C, 0) defines a curve singularity, there is
an especially nice method to compute an intersection matrix with respect to a
distinguished basis using a real morsification of the singularity. This method is
independently due to N. A’Campo [2] and Gusein-Zade [71, 72].

P. Orlik and R. Randell [120] computed the classical monodromy operator for
weighted homogeneous polynomials of the form

f (z0, . . . , zn) = z
a0
0 + z0z

a1
1 + . . . + zn−1z

an
n , n ≥ 1.

Moreover, they formulated the following conjecture. Let rk = a0a1 · · · ak for k =
0, 1, . . . , n, r−1 = 1, and define integers c0, c1, . . . , cμ by

n∏
i=−1

(tri − 1)(−1)n−i = cμtμ + · · · + c1t + c0.

Conjecture 8.5.3 (Orlik-Randell) There exists a distinguished basis of f such that
the Seifert matrix L of f is given by

L = −(−1)n(n+1)/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 0 · · · · · · 0 0 0
c1 c0 0 · · · · · · 0 0
c2 c1 c0 0 · · · · · · 0
...

...
...

. . .
. . .

...
...

cμ−3 cμ−4 cμ−5 · · · c0 0 0
cμ−2 cμ−3 cμ−4 · · · c1 c0 0
cμ−1 cμ−2 cμ−3 · · · c2 c1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This conjecture is still open. However, recently D. Aramaki and A. Takahashi
[7] proved an algebraic analogue of this conjecture. Namely, they considered the so
called Berglund-Hübsch transpose ([20], see also [59])

f̃ (z0, . . . , zn) = z
a0
0 z1 + z

a1
1 z2 + . . . + z

an−1
n−1 zn + zan

n
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of the polynomial f . They showed that the triangulated category of maximally-
graded matrix factorizations for f̃ admits a full exceptional collection with this
matrix.

8.6 The Discriminant and the Lyashko-Looijenga Map

Let f : (Cn+1, 0) → (C, 0) be a holomorphic function germ with an isolated
singularity at 0, grad f (0) = 0. Then one obtains a universal unfolding F of f

as follows (see [70, 1.3] or [58, Proposition 3.17]): Let g0 = −1, g1, . . . , gμ−1 be
representatives of a basis of the C-vector space

On+1

/(
∂f

∂z0
, . . . ,

∂f

∂zn

)
On+1,

which has dimension μ. Then put

F : (Cn+1 × C
μ, 0) −→ (C, 0)

(z, u) �−→ f (z) +
μ−1∑
j=0

gj (z)uj .

Let

F : V × U → C

be a representative of the unfolding F , where V is an open neighborhood of 0 in
C

n+1 and U is an open neighborhood of 0 in C
μ. We put

Y := {(z, u) ∈ V × U | F(z, u) = 0},
Yu := {z ∈ V | F(z, u) = 0}.

Since F(z, 0) = f (z), there is an ε > 0 such that every sphere Sρ ⊂ V around 0 of
radius ρ ≤ ε intersects the set Y0 transversally. Let ε > 0 be so chosen. Then there
is also an θ > 0 such that for |u| ≤ θ the set {u ∈ C

μ | |u| ≤ θ} lies entirely in U

and Yu intersects the sphere Sε transversally. Let θ be so chosen. We put

X◦ := {(z, u) ∈ Y ∣∣ |z| < ε, |u| < θ},
X := {(z, u) ∈ Y ∣∣ |z| ≤ ε, |u| < θ},

∂X := {(z, u) ∈ Y ∣∣ |z| = ε, |u| < θ},
S := {u ∈ U

∣∣ |u| < θ},
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p : X −→ S

(z, u) �−→ u.

Let C be the set of critical points and D = p(C) ⊂ S the discriminant of p. We
have the following result (see, e.g., [58, Proposition 3.21]).

Theorem 8.6.1 For a suitable θ > 0 we have:

(i) The map p : X → S is proper.
(ii) C is a nonsingular analytic subset of X◦ and is closed in X.

(iii) The restriction p|C : C → S is finite (i.e., proper with finite fibers).
(iv) The discriminant D is an irreducible hypersurface in S.

By the Ehresmann fibration theorem the map

p′ := p|X\p−1(D) : X \ p−1(D) −→ S \ D

is then the projection of a differentiable fiber bundle, and the fibers of p′ are
diffeomorphic to a Milnor fiber Xη of f .

Let s ∈ S \ D and Xs := p−1(s) = (p′)−1(s). Then p′ defines a representation

ρ : π1(S \ D, s) −→ Aut(H̃n(Xs)).

One has the following theorem (see [13, Theorem 3.1] or [58, Proposition 5.17]).

Theorem 8.6.2 The image � of the homomorphism

ρ : π1(S \ D, s) −→ Aut(H̃n(Xs))

coincides with the monodromy group of the singularity.

In particular, Theorem 8.6.2 implies that the monodromy group is independent
of the chosen morsification.

As a corollary of the irreducibility of the discriminant (Theorem 8.6.1(iv)) and
Theorem 8.6.2 we obtain the following result which was first proved by Gabrielov
[66] and independently by Lazzeri [99, 100].

Corollary 8.6.3 (Gabrielov, Lazzeri) The Coxeter-Dynkin diagram with respect
to a weakly distinguished system (δ1, . . . , δμ) of vanishing cycles is a connected
graph.

One can show that if 0 is neither a regular nor a non-degenerate critical point
of f , then there are two vanishing cycles δ, δ′ of f with 〈δ, δ′〉 = 1. This follows
from the following result due to G. N. Tyurina [136, Theorem 1] and D. Siersma
[133, Proposition (8.9)] (see also [13, Theorem 3.23], [58, 5.9]) and the fact that, if
0 is neither a regular nor a non-degenerate critical point of f , then f deforms to the
singularity g with g(z) = z3

0 + z2
1 + · · · + z2

n.
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Theorem 8.6.4 (Tyurina, Siersma) Let ft : (Cn+1, 0) → (C, 0), t ∈ [0, 1], be a
continuous deformation of the singularity f0 = f with μ(f0) = μ, μ(ft ) = μ′ for
0 < t ≤ 1. Then one has μ ≥ μ′, one has a natural inclusion of the Milnor lattice
Mft of ft in the Milnor lattice Mf0 of f0, and a distinguished basis of ft can be
extended to a distinguished basis of f0.

From these results one obtains another corollary of the irreducibility of the
discriminant (cf. [13, Theorem 3.4], [58, Proposition 5.20]):

Corollary 8.6.5 If not both (i) n is odd and (ii) 0 is a non-degenerate critical point
of f , then the set of vanishing cycles �∗ is the only �-orbit, i.e., the monodromy
group � acts transitively on �∗.

Using these results, K. Saito [128] showed that the monodromy group �

determines the Milnor lattice M .
We can also deduce from these results that the classical monodromy operator

acts irreducibly (cf. [13, Theorem 3.5]). (An earlier result for curves was obtained
by C. H. Bey [23, 24].)

Corollary 8.6.6 Let (δ1, . . . , δμ) be a distinguished basis of f and let I be a subset
of the set of indices I0 = {1, . . . , μ} such that the linear span of the basis elements
δi with i ∈ I is invariant under the classical monodromy operator h∗. Then either
I = ∅ or I = I0.

Corollary 8.6.7 If the classical monodromy operator of a singularity is the multi-
plication by ±1, then the singularity is non-degenerate.

This was first proved by A’Campo [1, Théorème 2] as an answer to a question of
Sebastiani. It was deduced from the following result.

Theorem 8.6.8 (A’Campo) The trace of the classical monodromy operator of f is

tr h∗ = (−1)n.

The corank of a singularity f is the corank of the Hesse matrix of f . Using a
result of Deligne (see [4]), the author proved the following result [56, Proposition 5].

Proposition 8.6.9 Let n ≡ 2 mod 4 and let c(f ) denote the corank of f . Then

tr h2∗ = (−1)c(f ).

A very important result on the classical monodromy is the following theorem.

Theorem 8.6.10 (Monodromy Theorem) The classical monodromy of f is quasi-
unipotent, i.e., its eigenvalues are roots of unity.

For the history of this theorem and further properties of the classical monodromy
see the survey article [57]. The usual proofs of Theorem 8.6.10 use a resolution of
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the singularity, see e.g. [61] for an instructive one. For a proof which does not use a
resolution see [102].

The bifurcation variety Bif is the set of all λ ∈ S such that fλ does not have
μ distinct critical values. Looijenga [109] in 1974 and independently Lyashko (in
the same year, but his work was only published later in [114, 115]) introduced the
following mapping: The Lyashko-Looijenga mapping LL sends a point λ ∈ S to the
unordered collection of critical values of the function fλ or, what amounts to the
same thing but is sometimes more convenient, to the polynomial which has these
critical values as roots. If Pμ denotes the set of monic polynomials of degree μ,
then this is the mapping

LL : S −→ Pμ

λ �−→ ∏μ
i=1(t − si)

where s1, . . . , sμ are the critical values of the function fλ. Let � ⊂ Pμ denote the
discriminant variety in Pμ. Then there exists a neighborhood U ⊂ S of 0 ∈ S such
that LL|U\Bif : U \ Bif → Pμ \ � is locally biholomorphic [109, Theorem (1.4)].

8.7 Special Singularities

We shall now consider what is known about these invariants for special classes of
singularities.

Let f, g : (Cn+1, 0) → (C, 0) be holomorphic function germs with an isolated
singularity at 0. The germs f and g are called right equivalent if f is taken to g

under (the germ of) a biholomorphic mapping of the domain space which leaves
the origin invariant. The modality (or module number) of f is the smallest number
m for which there exists a representative p : X → S of the universal unfolding
F : (Cn+1 × C

μ, 0) → (C, 0) of f such that for all (z, u) ∈ X the function germs
Fu : (Cn+1, z) → (C, F (z, u)) given by Fu(z

′) = F(z′, u) fall into finitely many
families of right equivalence classes depending on at most m (complex) parameters.
Singularities of modality 0,1 and 2 are called simple, unimodal (or unimodular),
and bimodal (or bimodular), respectively.

V. I. Arnold classified the singularities up to modality 2 [10]. He listed certain
normal forms. A normal form determines a class of singularities. This class
corresponds to a μ=const stratum: Any two singularities of a μ=const stratum are μ-
equivalent, see Sect. 8.9 below. By Proposition 8.9.7 below, the class D is the same
for all singularities of a μ=const stratum. Gabrielov [66] proved that the dimension
of the μ=const stratum is equal to the modality of the singularity. Arnold found that
in the lists of classes, all the classes are split into series which are now called the
Arnold series. However, as Arnold writes in [10], “although the series undoubtedly
exist, it is not at all clear what a series is”. Let us look at Arnold’s classification.
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Table 8.1 Simple
singularities

Notation Function Notation Function

Ak xk+1, k ≥ 1 Dk x2y + yk−1, k ≥ 4

E6 x3 + y4 E7 x3 + xy3

E8 x3 + y5

Let us first assume that f : (Cn+1, 0) → (C, 0) defines a simple singularity. Up
to stabilization, the simple singularities are given by the germs of the functions of
Table 8.1. There are many characterizations of simple singularities, see [49]. They
are the only singularities where, for n ≡ 2 mod 4, the intersection form is negative
definite [49, Characterization B5]. They are also the only singularities where the set
D contains a tree [49, Characterization B7], [3, 5]. Moreover, this is also the only
case where the monodromy group � is finite [49, Characterization B8]. The author
[60] has recently shown that they are the only singularities where the set B is finite.

Let f : (Cn+1, 0) → (C, 0) define a simple singularity and n ≡ 2 mod 4. Then
�∗ is a root system of type Ak,Dk,Ek . (Note that the usual bilinear form of [26]
has to be multiplied by −1.) The Milnor lattice M is the corresponding root lattice,
the group � is the corresponding Weyl group, and the classical monodromy operator
h∗ is a Coxeter element of the corresponding root system. Let c ∈ � be a Coxeter
element. Define

�c := {(s1, . . . , sk) | si ∈ � reflection, s1 · · · sk = c}.

Deligne [44] in a letter to Looijenga (with the help of J. Tits and D. Zagier) showed
the following theorem.

Theorem 8.7.1 (Deligne) The braid group Brk acts transitively on �c.

From this we obtain the following result.

Corollary 8.7.2 One has

B = {(δ1, . . . , δk) ∈ (�∗)k | 〈δ1, . . . , δk〉Z = M, sδ1 · · · sδk
= h∗}.

The sets �c, B, and D are finite sets. The cardinality of these sets was calculated
in the letter of Deligne (see also [95, 139]).

Example 8.7.3 For E8 one has |DE8 | = 283456 = 324 000 000.

The first published proof of Theorem 8.7.1 is due to D. Bessis and can be found
in [21]. This theorem has been generalized and it has also applications outside
of singularity theory, see [17]. K. Igusa and R. Schiffler generalized this result
to arbitrary Coxeter groups of finite rank [82, Theorem 1.4] (see also [17, 18]).
Recently, B. Baumeister, P. Wegener, and S. Yahiatene [19] generalized it to certain
extended Weyl groups (see below). The theorem has applications in the theory
of Artin groups, see [21, 47], and in the representation theory of algebras, see
[78, 81, 82].
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Let Rk be a vector space on which the Weyl group W = � acts in a canonical
way and let C

k = R
k ⊗R C be its complexification. The action of W on R

k

extends in a natural way to an action of W on C
k . Let H be the union of the

complexifications of the reflection hyperplanes of W . Let S be the base space and
D the discriminant of the universal unfolding of the simple singularity f . Then the
pair (S,D) is analytically isomorphic (in a neighborhood of the origin) to the pair
(Ck/W,H/W) [8]. Brieskorn [29] proved that the fundamental group of the space
C

k/W \ H/W is the generalized Brieskorn braid group π [30, 35] of the Weyl
group W . He conjectured [30] and Deligne [43] proved that this space is in fact
a K(π, 1)-space. (A K(π, 1)-space is a topological space with fundamental group
π and trivial higher homotopy groups.) From this it follows that the complement
S \ D is a K(π, 1)-space as well (see also [13, Theorem 3.9]). Brieskorn asked [31,
Problème 15] whether this is true in general.

Now we consider the Lyashko-Looijenga map in the case of the simple singular-
ities. Looijenga [109] and Lyashko [114, 115] showed that the mapping LL|U\Bif :
U \ Bif → Pk \ � is a covering of degree

d = k!Nk

|�|
where N is the Coxeter number of the corresponding root system. I. S. Livshits
[106] determined the Galois group of this covering (see also [142]). Let p ∈ Pk \�.
It is well known that

π1(Pk \ �,p) ∼= Brk.

Therefore the complement of the bifurcation variety of a simple singularity is a
K(π, 1), where π is a subgroup of index d in the braid group Brk .

Similar questions were also answered for complex reflection groups, see [22,
125, 126].

Looijenga already proved Theorem 8.7.1 in the case Ak [109, Corollary (3.8)].
Moreover, in this case, he established a correspondence between generic polyno-
mial coverings of the complex sphere and trees with totally ordered edges. By
considering a generalized version of the Lyashko-Looijenga mapping, more general
combinatorial results were obtained by Arnold [11], D. Zvonkine and S. K. Lando
[143], and B. S. Bychkov [36].

By studying the Lyashko-Looijenga mapping, Jianming Yu [141] determined
the number of Seifert matrices with respect to distinguished bases of a simple
singularity.

Gusein-Zade [74] gave a characterization of distinguished bases for simple
singularities. Let f : (Cn+1, 0) → (C, 0) define a simple singularity of Milnor
number μ. He showed that, if (δ1, . . . , δμ) is an integral basis of the homology group
M in which the matrix of the Seifert form is lower triangular, then (δ1, . . . , δμ) is a
distinguished basis of vanishing cycles. The proof is based on the following result:
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Table 8.2 Simple elliptic
singularities

Notation Function Restrictions

Ẽ6 x3 + y3 + z3 + axyz a3 + 27 �= 0

Ẽ7 x2 + y4 + z4 + ay2z2 a2 �= 4

Ẽ8 x2 + y3 + z6 + ay2z2 4a3 + 27 �= 0

Let n be even. For any vanishing cycle δ and any distinguished basis (δ1, . . . , δμ)

for f , there exists a distinguished basis (δ′
1, . . . , δ

′
μ) with the first element δ′

1 = ±δ.
H. Serizawa [131] showed that the latter result is false for a non-simple singularity.

The next case are the simple elliptic singularities (see also [127]). These are
the singularities Ẽ6, Ẽ7, and Ẽ8. Up to stabilization, they are given by the one-
parameter families of Table 8.2. These singularities can be characterized as follows:
For n ≡ 2 mod 4, the intersection form is not negative definite but negative semi-
definite [49, Characterization C5]. Therefore, the simple elliptic singularities are
also called the parabolic singularities. The monodromy group is not finite but has
polynomial growth [49, Characterization C6]. (For the notions of polynomial and
exponential growth, see e.g. [119]. See also Remark 8.8.7 below.) The set B is
infinite but the set D is finite [60].

Let f : (Cn+1, 0) → (C, 0) define a simple elliptic singularity of type Ẽk, k =
6, 7, 8, and let n ≡ 2 mod 4. If M is a lattice, denote by M# = Hom(M,Z) the dual
module and by

j : M −→ M#

v �−→ lv with lv(x) = 〈v, x〉, x ∈ M,

the canonical homomorphism. The Milnor lattice M is the orthogonal direct sum
of the root lattice Ek and the radical ker j which is two-dimensional. The set �∗ of
vanishing cycles is an extended affine root system of type E

(1,1)
k in the sense of Saito

[129]. The monodromy group � is the semi-direct product of the group ker j⊗j (M)

and the Weyl group W(Ek) of Ek , where the group ker j ⊗ j (M) acts on M by
(v ⊗ w#)(x) = x + w#(x)v and the action of W(Ek) on ker j ⊗ j (M) is trivial
on the first factor and canonical on the second one, see [110, Proposition (6.7)]. It
follows from this description that the monodromy group has polynomial growth.

P. Kluitmann extended Corollary 8.7.2 to the simple elliptic singularities [93].
He also calculated the cardinality of D for Ẽ6 and Ẽ7. In [90, 91], P. Jaworski
considered the Lyashko-Looijenga map for the simple elliptic singularities and
showed that the complement of the bifurcation variety of a simple elliptic singularity
is again a K(π, 1) for a certain subgroup of the braid group Brμ [90, Corollary 2].
Recently, C. Hertling and C. Roucairol [76] used a different approach to study the
Lyashko-Looijenga map for the simple and simple elliptic singularities and refined
and extended the results of Kluitmann and Jaworski.

For the remaining singularities, the sets B and D are infinite [60]. Let f :
(Cn+1, 0) → (C, 0) be such a singularity. We assume n ≡ 2 mod 4. The only
singularities with a hyperbolic intersection form, i.e., an indefinite form with only
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one positive eigenvalue, are the singularities of the series Tp,q,r with 2 ≤ p ≤ q ≤ r

and 1
p

+ 1
q
+ 1

r
< 1 [9]. Up to stable equivalence, they are given by the one parameter

families

Tp,q,r : xp + yq + zr + axyz, a �= 0.

They are also called the hyperbolic singularities. The simple elliptic and hyperbolic
singularities are unimodal singularities. Gabrielov [67] calculated Coxeter-Dynkin
diagrams with respect to distinguished bases for the unimodal singularities. Accord-
ing to [67], the simple elliptic and hyperbolic singularities have Coxeter-Dynkin
diagrams with respect to distinguished bases in the form of Fig. 8.9. Here (p, q, r) =
(3, 3, 3), (2, 4, 4), (2, 3, 6) for Ẽ6, Ẽ7, and Ẽ8 respectively. The Milnor lattice M

of a hyperbolic singularity has a one-dimensional radical ker j generated by the
vector δ2 − δ1. By [67], the monodromy group � is the semi-direct product of the
group ker j ⊗ j (M) and the Coxeter group corresponding to the graph of Fig. 8.9
with the vertex δ2 removed. It can also be described as the extended Weyl group of
a generalized root system as defined by Looijenga [111].

As an application of [19], one obtains an extension of Corollary 8.7.2 to the
hyperbolic singularities.

Looijenga ([111], [112, Chapter III.3]) gave a description of the complement of
the discriminant of a simple elliptic or hyperbolic singularity as an orbit space Y/�.
Using this, H. van der Lek [105] gave a presentation of the fundamental group of

δ2

δ 2
1

· · ·

δ 2
q −1 δ1 δ 3

r −1

· · ·

δ 3
1

δ 1
p −1

· · ·

δ 1
1

Fig. 8.9 The graph Tp,q,r
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· · ·
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q −1 δ1 δ 3
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· · ·
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δ 1
p −1

· · ·

δ 1
1

Fig. 8.10 The graph Sp,q,r

the discriminant complement for such singularities generalizing the results for the
simple singularities.

Besides these singularities, there are 14 exceptional unimodal singularities.
Equations of these singularities can be found in [10, 12]. Coxeter-Dynkin diagrams
for these singularities were also calculated by Gabrielov [67]. He claimed that
by change-of-basis transformations αi(j) and βi(j), the Coxeter-Dynkin diagrams
can be reduced to the “normal form” depicted in Fig. 8.10 for certain triples
(p, q, r). The author showed in his PhD thesis [50] that these diagrams are in
fact Coxeter-Dynkin diagrams with respect to distinguished bases. The necessary
braid group transformations are indicated in the appendix of the thesis which is not
published in [51]. However, they can be found in the paper [56]. Arnold observed a
strange duality between the 14 exceptional unimodal singularities [10]. The relation
to homological mirror symmetry is explained in the survey article [59]. For a
description of the monodromy groups see Sect. 8.8.

V. I. Arnold also classified the bimodal singularities [10, 12]. Gabrielov com-
puted Coxeter-Dynkin diagrams with respect to distinguished bases for the sin-
gularities of all the series of Arnold, including the bimodal singularities [68].
The author suggested a “normal form” for the Coxeter-Dynkin diagrams with
respect to distinguished bases for the bimodal singularities [51, 53]. Jointly with
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D. Ploog [62], he gave a geometric construction of these diagrams. Moreover, he
suggested a “normal form” for the Coxeter-Dynkin diagrams with respect to weakly
distinguished bases of all the singularities of Arnold’s series and calculated their
intersection forms [51].

Il’yuta [83] formulated two conjectures relating the shape of Coxeter-Dynkin
diagrams to the modality of the singularity. He used the definition of the Coxeter-
Dynkin diagram of [13, 2.8]: It is a graph with simple edges where the edge between
δi and δj has the weight 〈δi, δj 〉. (We assume n ≡ 2 mod 4.) A monotone cycle in
a Coxeter-Dynkin diagram is a sequence of vertices (δi1 , . . . , δik ) where i1 < i2 <

. . . < ik and δij is connected to δij+1 for j = 1, . . . , k and j + 1 taken modulo k.
The weight of a monotone cycle is the product

∏〈δij , δij+1〉 where the product is
over j = 1, . . . , k and j + 1 taken modulo k. Now Il’yuta conjectured:

Conjecture 8.7.4 (Il’yuta) The minimum over all D ∈ D of the smallest number of
edges that have to be deleted in order that D does not contain monotone cycles is
equal to the modality of the singularity.

Conjecture 8.7.5 (Il’yuta) The minimum over all D ∈ D of the number of edges of
D of negative weight is equal to the modality of the singularity.

Il’yuta showed that these conjectures hold for the unimodal singularities. The
author [56] showed that both conjectures are even true for the unimodal singularities
if one counts an edge of weight 〈δi, δj 〉 as |〈δi, δj 〉| edges as in the definition of the
Coxeter-Dynkin diagram in Sect. 8.3. However, he gave counterexamples to both
conjectures for the bimodal singularities. Il’yuta also found other characterizations
of Coxeter-Dynkin diagrams of the simple singularities [84, 85, 87].

Using the Lyashko-Looijenga mapping, M. Lönne [107, 108] gave a presentation
of the fundamental group of the discriminant complement for Brieskorn-Pham sin-
gularities which is related to the intersection matrix with respect to a distinguished
basis considered in Sect. 8.5.

V. A. Vassiliev listed some problems about the Lyashko-Looijenga mapping for
non-simple singularities in [137].

8.8 The Monodromy Group

In this section we give a description of the monodromy group in the general case.
Let M be a lattice which is either symmetric and even or skew symmetric. Let

ε ∈ {+1,−1} and let � be a subset of M . If M is symmetric we demand that
〈δ, δ〉 = 2ε for all δ ∈ �. We define an automorphism sδ ∈ Aut(M) by

sδ(v) := v − ε〈v, δ〉δ
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for all v ∈ M . Then sδ is a reflection in the symmetric case and a symplectic
transvection in the skew symmetric case. Let �� ⊂ Aut(M) be the subgroup of
Aut(M) generated by the transformations sδ, δ ∈ �.

Definition 8.8.1 The pair (M,�) is called a vanishing lattice, if it satisfies the
following conditions:

(i) � generates M .
(ii) � is an orbit of �� in M .

(iii) If rank M > 1, then there exist δ, δ′ ∈ � such that 〈δ, δ′〉 = 1.

It follows from Corollary 8.6.5 that, if it is not true that both n is odd and 0 is a
non-degenerate critical point of f , then the pair (H̃n(Xs),�

∗) is a vanishing lattice
with ε = (−1)n(n−1)/2 and � is the corresponding monodromy group.

We introduce some more algebraic notions. Let M# = Hom(M,Z) be the dual
module and j : M → M# be the canonical homomorphism. A homomorphism
h : M → M induces a homomorphism ht : M# → M# of the dual modules. If h

leaves the bilinear form 〈 , 〉 invariant, then ht (j (M)) ⊂ j (M). An automorphism
h ∈ Aut(M) thus induces a homomorphism ht : M#/j (M) → M#/j (M). Let
Aut#(M) ⊂ Aut(M) be the subgroup of those automorphisms h ∈ Aut(M) with
ht = idM#/j (M).

Now let M be a skew symmetric lattice. It has a basis

(e1, f1, . . . , em, fm, g1, . . . , gk)

such that

〈ei, fi〉 = −〈fi, ei〉 = di for di ∈ Z, di ≥ 1, i = 1, . . . m,

all other inner products are equal to zero, and di+1 is divisible by di for i =
1, . . . , m − 1. Such a basis is called a symplectic basis.

Let (e1, f1, . . . , em, fm, g1, . . . , gk) be a symplectic basis of M . Let η2 be the
exponent of 2 in the prime factor decomposition of dm. Let μ = 2m + k. We
identify M with Z

μ through the symplectic basis (e1, f1, . . . , em, fm, g1, . . . , gk).
A subgroup G ⊂ Aut#(M) then corresponds to a subgroup ρ(G) ⊂ Sp#(μ,Z),
where Sp#(μ,Z) is the corresponding subgroup of the symplectic group

Sp(μ,Z) = {A ∈ GL(μ,Z) | AtJA = J }.

Let r ∈ N\{0}. A subgroup G ⊂ Aut#(M) is called a congruence subgroup modulo
r if

ρ(G) = {A ∈ Sp#(μ,Z) | A ≡ E mod r}.

Here E is the unit matrix and A ≡ E mod r means that aij ≡ δij mod r for all
1 ≤ i, j ≤ μ, where A = (aij ).
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A congruence subgroup is obviously of finite index in the group Aut#(M) =
Sp#(M).

The following theorem was proved by W. A. M. Janssen [88] based on previous
work of A’Campo [6], B. Wajnryb [140], and S. V. Chmutov [38, 39]. The notation
〈v,M〉 = Z means that there is a y ∈ M with 〈v, y〉 = 1. We write a ∈ � mod 2 if
there is an element b ∈ M with a − 2b ∈ �.

Theorem 8.8.2 (Janssen) Let (M,�) be a skew symmetric vanishing lattice.
Then

(i) �� contains the congruence subgroup modulo 2η2+1 of Sp#(M),
(ii) � = {v ∈ M | 〈v,M〉 = Z and v ∈ � mod 2}.

As a corollary, we get the following result:

Corollary 8.8.3 Let f : (Cn+1, 0) → (C, 0) be a holomorphic function germ with
an isolated singularity at 0 and let n be odd. Then

(i) � contains the congruence subgroup modulo 2η2+1 of Sp#(M),
(ii) �∗ = {v ∈ M | 〈v,M〉 = Z and v ∈ �∗ mod 2}.
In (ii) it is assumed that 0 is not a non-degenerate critical point of f .

Janssen also proved a version of Theorem 8.8.2 for skew symmetric vanishing
lattices over the field F2 and classified skew symmetric vanishing lattices over F2
[88] and over Z [89]. B. Shapiro, M. Shapiro, and A. Vainshtein [132] applied these
results to certain enumeration problems.

Now let M be symmetric and let ε ∈ {−1,+1}. We put

M := M/ ker j, MR := M ⊗ R.

Then MR is a finite-dimensional real vector space with a nondegenerate symmetric
bilinear form. Let h ∈ Aut(M) and h̄ the induced element in O(MR). The
transformation h̄ can be written as a product of reflections

h̄ = sv1 ◦ . . . ◦ svr

with vi ∈ MR, 〈vi, vi〉 �= 0, i = 1, . . . , r . We define

νε(h) :=
{+1 if ε〈vi, vi〉 < 0 for an even number of indices,

−1 otherwise.

The homomorphism νε : Aut(M) → {−1,+1} is called the real ε-spinor norm.

Definition 8.8.4 We define a subgroup O∗
ε (M) ⊂ O(M) as follows:

O∗
ε (M) := Aut#(M) ∩ ker νε.
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If M is non-degenerate, then M#/j (M) is a finite group and hence O#(M) =
Aut#(M) is a subgroup of finite index in O(M) = Aut(M). The subgroup ker νε ⊂
O(M) is of index ≤ 2 in O(M). Thus if M is non-degenerate, then O∗

ε (M) is a
subgroup of finite index in O(M).

Using a result of M. Kneser [96], the author proved the following theorem [54].
A unimodular hyperbolic plane is a two-dimensional lattice with the bilinear form
given by

(
0 1
1 0

)
.

Theorem 8.8.5 (Ebeling) Let (M,�) be an even symmetric vanishing lattice.
Assume that M contains a six-dimensional sublattice K ⊂ M which is the
orthogonal direct sum of two unimodular hyperbolic planes and a lattice of type
εA2. Assume moreover {v ∈ K | 〈v, v〉 = 2ε} ⊂ �. Then

(i) �� = O∗
ε (M),

(ii) � = {v ∈ M | 〈v, v〉 = 2ε and 〈v,M〉 = Z}.
From Theorem 8.8.5 one can derive the following theorem [54]. The statement

for the exceptional unimodal singularities was already proven by H. Pinkham [123]
(see also [52] for the history of the problem and previous results). It was noticed by
Looijenga that (ii) is a consequence of (i).

Theorem 8.8.6 (Ebeling) Let f : (Cn+1, 0) → (C, 0) be a holomorphic function
germ with an isolated singularity at 0 and let n be even, ε = (−1)n(n−1)/2.
Suppose that f is not of type Tp,q,r with 1

p
+ 1

q
+ 1

r
< 1 and (p, q, r) �=

(2, 3, 7), (2, 4, 5), (3, 3, 4). Then

(i) � = O∗
ε (M),

(ii) �∗ = {v ∈ M | 〈v, v〉 = 2ε and 〈v,M〉 = Z}.
In (ii) it is assumed that 0 is not a non-degenerate critical point of f .

Remark 8.8.7 Theorem 8.8.6 follows for the simple and simple elliptic singularities
by the results stated in Sect. 8.7. It is false for the singularities of type Tp,q,r with
1
p

+ 1
q

+ 1
r

< 1 and (p, q, r) �= (2, 3, 7), (2, 4, 5), (3, 3, 4), see [51, §3]. This
follows from the fact that the graph of Fig. 8.9 with the vertex δ2 removed and with
1
p

+ 1
q
+ 1

r
< 1 defines a Coxeter system of hyperbolic type if and only if (p, q, r) =

(2, 3, 7), (2, 4, 5), (3, 3, 4) [26, Ch. V, § 4, Exercice 12]. The three singularities
Tp,q,r with these values of (p, q, r) are the minimal hyperbolic singularities .
Theorem 8.8.6 was proved for these singularities by Brieskorn ([32, Theorem 2],
but no proof is given). A proof following Brieskorn’s proof can be found in [55,
5.5]. A’Campo (unpublished) and Looijenga showed that the monodromy groups of
these singularities have exponential growth. Looijenga’s proof is published in [49,
Appendix II].
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8.9 Topological Equivalence

We shall now consider the question to which extent the invariants determine the
topological type of the singularity.

The topological type of a singularity f : (Cn+1, 0) → (C, 0) is described by
the (local) embedding of the variety f −1(0) in a neighborhood of the singular point
0 ∈ C

n+1.

Definition 8.9.1 Two singularities f, g : (Cn+1, 0) → (C, 0) are topologically
equivalent if there is a homeomorphism of neighborhoods U and V of the origin
which maps f −1(0) ∩ U to g−1(0) ∩ V .

By [118, Theorem 2.10], the variety f −1(0) is locally the cone over its link K .
By [118], the link is a fibered knot. A. Durfee [48] proved the following theorem.

Theorem 8.9.2 (Durfee) Let n ≥ 3. There is a one-to-one correspondence of
isotopy classes of fibered knots in S2n+1 and equivalence classes of integral
unimodular bilinear forms given by associating to each fibered knot its Seifert form.

In view of the preceding remarks and Theorem 8.3.6 we obtain the following
corollary.

Corollary 8.9.3 For n �= 2 the set D of f : (Cn+1, 0) → (C, 0) determines f up
to topological equivalence.

This corollary was also proved by S. Szczepanski [134]. Moreover, she showed
in [135] the following theorem.

Theorem 8.9.4 (Szczepanski) Two singularities f, g : (C3, 0) → (C, 0) are
topologically equivalent if

(i) the singularities have a common Coxeter-Dynkin diagram with respect to
distinguished bases, and

(ii) the Milnor fibers have homeomorphic boundaries and the algebraic isomor-
phism of the Milnor lattices induced by the common Coxeter-Dynkin diagram
is realized geometrically by either an inclusion of one Milnor fiber into
the other or a homotopy equivalence of the Milnor fibers which induces a
homeomorphism of the boundaries.

There is also the notion of μ-homotopy or μ-equivalence (see [34]).

Definition 8.9.5 Two singularities f0, f1 : (Cn+1, 0) → (C, 0) are μ-equivalent if
there is a family ft : (Cn+1, 0) → (C, 0) of analytic function germs with isolated
singularities at the origin continuously depending on the parameter t ∈ [0, 1] with
constant Milnor number μ(ft ).

Lê Dũng Tráng and C. P. Ramanujam [103] proved the following theorem.
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Theorem 8.9.6 (Lê-Ramanujam) If n �= 2, then μ-equivalent singularities are
topologically equivalent.

The following proposition was proved by Gabrielov [67, Proposition 1].

Proposition 8.9.7 (Gabrielov) For two μ-equivalent singularities there exist dis-
tinguished bases whose Coxeter-Dynkin diagrams coincide.

Using this proposition, one obtains the Lê-Ramanujam theorem as a consequence
of Corollary 8.9.3. Moreover, one can derive from Theorem 8.9.4 a Lê-Ramanujam
theorem for n = 2, see [135].

Now let f : (Cn+1, 0) → (C, 0) be an isolated singularity satisfying the
conditions of Theorem 8.8.6. It follows from Theorem 8.8.6 that the invariants � and
�∗ are completely determined by M . The author [51] has found examples of pairs of
singularities (e.g. the bimodal singularities Z17 and Q17 in Arnold’s notation) which
have the same Coxeter-Dynkin diagrams with respect to weakly distinguished bases
and the invariants M, �, and �∗ are the same, but the invariants B∗ and D∗ are
different, the classical monodromy operators are not conjugate to each other, and
the singularities are not topologically equivalent.

We conclude the article with some open questions which were posed to the author
by late Brieskorn (around 1982?). We keep the condition that f : (Cn+1, 0) →
(C, 0) is a singularity satisfying the conditions of Theorem 8.8.6. Let n ≡ 2 mod 4
and let μ be the Milnor number of f .

Question 1 (Brieskorn) Let M be the Milnor lattice (of rank μ) and � be
the monodromy group of f . Let

� := {v ∈ M | 〈v, v〉 = −2}.

Then � acts on �. Are there only finitely many orbits?

Question 2 (Brieskorn) Let

B0 := {(e1, . . . , eμ) ∈ �μ | 〈e1, . . . , eμ〉Z = M}.

Then the group Br�μ acts on B0. Are there only finitely many orbits?
Alternatively, one can consider the set

B̃0 := {(e1, . . . , eμ) ∈ (�∗)μ | 〈e1, . . . , eμ〉Z = M}.
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Question 3 (Brieskorn) The group � acts on B0 (or B̃0) by

γ (e1, . . . , eμ) = (γ e1, . . . , γ eμ).

This action commutes with the action of Br�μ . Are there only finitely many
�-equivalence classes of Br�μ -orbits?

Very little is known about these questions. The answers to these questions are
trivially yes for the simple singularities, since the sets �, B0, and B̃0 are finite in
this case. We have � = �∗ (and hence there is only one �-orbit) for the simple,
simple elliptic, and minimal hyperbolic singularities (for the latter ones see [55,
Proposition 5.5.1]).

An element c ∈ � for which there exists a basis (e1, . . . , eμ) ∈ B0 such that
c = se1 · · · seμ is called a quasi Coxeter element.

Question 4 (Brieskorn) Let c ∈ � be a quasi Coxeter element and let

B0,c := {(e1, . . . , eμ) ∈ B0 | se1 · · · seμ = c}.

The set B0,c is invariant under the action of the group Br�μ . What is the
relation between the orbits of Br�μ on B0 and the sets B0,c?

For the simple singularities, the quasi Coxeter elements were determined up to
conjugacy by E. Voigt [138, 139] and he showed that the group Br�μ acts transitively
on B0,c for each quasi Coxeter element c. For c being the classical monodromy
operator, it is known for the simple (Corollary 8.7.2), the simple elliptic [93],
and the hyperbolic singularities [19] that the group Br�μ acts transitively on B0,c

(see Sect. 8.7 above). To the author’s knowledge, this is all what is known about
Question 4.
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