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Abstract This is a survey of stratification theory in the differentiable category from
its beginnings with Whitney, Thom and Mather until the present day. We concentrate
mainly on the properties of C∞ stratified sets and of stratifications of subanalytic or
definable sets, with some reference to stratifications of complex analytic sets. Brief
mention is made of the theory of stratified mappings.

4.1 Stratifications

The idea behind the notion of stratification in differential topology and algebraic
geometry is to partition a (possibly singular) space into smooth manifolds with some
control on how these manifolds fit together.
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In 1957 Whitney [146] showed that every real algebraic variety V in Rn can be
partitioned into finitely many connected smooth submanifolds of Rn. This he called
a manifold collection. Such a partition is obtained by showing that the singular part
of V is again algebraic and of dimension strictly less than that of V . One obtains
thus a filtration of V by algebraic subvarieties,

V ⊃ SingV ⊃ Sing(SingV ) ⊃ . . .

In 1960, Thom [120] replaced the term “manifold collection” of Whitney, by
“stratified set”, introduced the notions of “stratum” and “stratification”, and initiated
a theory of stratified sets and stratified maps. Later, in 1964, Thom proposed that a
stratification should have the property that transversality of a map g : Rm → Rn

to the strata of a stratified set in Rn be an open condition on maps in C∞(Rm, Rn),
and that there should be some “local triviality” in a neighbourhood of each stratum.

As a result Whitney refined his definition in 2 papers [147, 148] which appeared
in 1965, concerning stratifications of real and complex analytic varieties, introduc-
ing his conditions (a) and (b). He proved the existence of stratifications satisfying
these conditions for any real or complex analytic variety, remarked that Thom’s
openness of transversality follows from condition (a) and conjectured a local
fibration property (known as Whitney’s holomorphic fibering conjecture, this was
finally proved by Parusinski and Paunescu in 2017 [102] after a partial version
obtained by Hardt and Sullivan in 1988 [49]). Thom then developed a theory of
C∞ stratified sets, described in detail in his 1969 paper entitled “Ensembles et
morphismes stratifiés” [123]. The following year Mather gave a series of lectures
at Harvard giving a revised account of Thom’s theory of stratified sets and maps,
and it is Mather’s definitions that have been generally used since then. Mather’s
1970 notes of his lectures, which circulated widely via photocopies, were finally
published in 2012 [81]. The reader may profitably consult also [36] and [105] for
detailed presentations of the theory of stratified sets.

I will now describe what has become the accepted notion of Whitney stratifica-
tion.

Definition 4.1.1 Let Z be a closed subset of a differentiable manifold M of class
Ck . A Ck stratification of Z is a filtration by closed subsets

Z = Zd ⊃ Zd−1 ⊇ · · · ⊇ Z1 ⊇ Z0

such that each difference Zi − Zi−1 is a differentiable submanifold of M of class
Ck and dimension i, or is empty. Each connected component of Zi − Zi−1 is called
a stratum of dimension i. Thus Z is a disjoint union of the strata, denoted {Xα}α∈A,
and Z is a stratified set.

Example 4.1.2 The filtration of a realisation of a simplicial complex defined by
skeleta is a C∞ stratification, where the strata are the open simplices.

We would like our stratifications to “look the same” at different points on the
same stratum. This turns out to be possible if “looking the same” is interpreted as



4 Stratification Theory 245

having neighbourhoods which are homeomorphic, a kind of equisingularity. Various
stronger equisingularity conditions, also called regularity conditions, have been
introduced ensuring this. An obvious necessary condition is as follows:

Definition 4.1.3 A stratification Z = ⋃
α∈A Xα satisfies the frontier condition if

∀(α, β) ∈ A × A such that Xα ∩ Xβ 	= ∅, one has Xα ⊆ Xβ . As the strata are
disjoint this means that either Xα = Xβ or Xα ⊂ Xβ \ Xβ .

Definition 4.1.4 One says that a stratification is locally finite if the number of strata
is locally finite.

4.2 Whitney’s Conditions (a) and (b)

The most widely used of the different regularity conditions proposed so as to
provide adequate “equisingularity” of a stratification are the conditions (a) and (b)

of Whitney.

Definition 4.2.1 Take two adjacent strata X and Y , i.e. two C1 submanifolds of M

such that Y ⊂ X \ X, so that X is adjacent to Y . The pair (X, Y ) is said to satisfy
Whitney’s condition (a) at y ∈ Y , or to be (a)-regular at y if : for all sequences
{xi} ∈ X with limit y such that, in a local chart at y, {Txi

X} tends to τ in the
grassmannian GdimM

dimX , one has TyY ⊆ τ .
When every pair of adjacent strata of a stratification is (a)-regular (at each point)

then we say that the stratification is (a)-regular.

Definition 4.2.2 The pair (X, Y ) is said to satisfy Whitney’s condition (b) at y ∈ Y ,
or to be (b)-regular at y if : for all sequences {xi} ∈ X and {yi} ∈ Y with limit y

such that, in a local chart at y, {Txi
X} tends to τ and the lines xiyi tend to λ, one

has λ ∈ τ .
When every pair of adjacent strata of a stratification is (b)-regular (at each point)

then we say that the stratification is (b)-regular.

Definition 4.2.3 Let Z be a closed subset of a differentiable manifold M of class
C1. When Z = ⋃

α∈A Xα is a locally finite (b)-regular stratification satisfying the
frontier condition, we say we have a Whitney stratification of Z.

Remark 4.2.4 It will be a nontrivial consequence of the theory that the frontier
condition is automatically satisfied by pairs of adjacent strata of a locally finite
(b)-regular stratification.

Definition 4.2.5 Let π : TY → Y be the retraction of a C1 tubular neighbourhood
of Y in M . A pair of adjacent strata (X, Y ) is said to be (bπ )-regular if for all
sequences {xi} in X such that xi tends to y and the lines xiπ(xi) tend to λ and the
tangent planes Txi

X tend to τ , then λ ∈ τ .
When every pair of adjacent strata of a stratification is (bπ )-regular (at each

point) then we say that the stratification is (bπ )-regular.
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Exercises

1. (b) ⇒ (a).
2. (b) ⇔ (bπ ) ∀π .
3. (b) holds if both (a) and (bπ ) hold for some π .
4. If (X, Y ) is (b)-regular at y ∈ Y , then dim Y < dim X.

The following standard example due to Whitney shows that (a) does not imply
(b).

Example 4.2.6 Let Z = Z2 = {y2 = t2x2 + x3} ⊂ R3. Set Z1 = {(0, 0, t)|t ∈ R}
and Z0 = ∅. Then Z2 ⊃ Z1 ⊃ Z0 = ∅ is a filtration defining a C∞ stratification
with 4 strata of dimension 2 and one stratum of dimension 1. The strata are defined
as follows : X1 = (Z2 − Z1) ∩ {t > 0} ∩ {x < 0}, X2 = (Z2 − Z1) ∩ {t <

0} ∩ {x < 0}, X3 = (Z2 − Z1) ∩ {y < 0} ∩ {x > 0}, X4 = (Z2 − Z1) ∩ {y >

0} ∩ {x > 0}, Y = Z1. One can check that the pairs of strata (X3, Y ) and (X4, Y )

are (b)-regular, and in fact they form C∞ manifolds with boundary, while (X1, Y )

and (X2, Y ) are not (b)-regular at (0, 0, 0), although they are (a)-regular. Note that
the frontier condition does not hold for (X1, Y ) and (X2, Y ). It is possible to unite
X1 and X2 into one connected stratum by turning Y into a circle, so that the frontier
condition holds. But (b) will still fail.

Next we give examples showing that (bπ ) does not imply (a).

Example 4.2.7 Let Z = {y2 = tx2} ⊂ R3; with filtration Z = Z2 ⊃ Z1 = (Ot) ⊃
Z0 = ∅. The stratification is (bπ )-regular if π is the canonical projection onto the
t-axis, but it is not (a)-regular, and does not satisfy the frontier condition.

Example 4.2.8 Let Z = {x3 + 3xy5 + ty6 = 0} ⊂ R3, with filtration Z = Z2 ⊃
Z1 = (Ot) ⊃ Z0 = ∅. Here the stratification is not (a)-regular, but is (bπ )−regular
where π is projection to the t-axis, and satisfies the frontier condition.

Wall [144] conjectured geometric versions of conditions (a) and (b), and these
conjectures were proved in [131]. Different proofs were given later by Hajto [43]
and by Perkal [104]. Recall that each tubular neighbourhood of a submanifold Y of
a manifold M is given by a diffeomorphism φ defined on a neighbourhood U of Y .
We denote by πφ : U → Y the associated retraction and by ρφ : U → [0, 1) the
associated tubular function.

Theorem 4.2.9 (Trotman [131]) Let X, Y be disjoint C1 submanifolds in a C1

manifold M , with Y ⊂ X \ X. Then X is (b)-regular (resp. (a)-regular) over Y if
and only if for every C1 diffeomorphism φ defining a tubular neighbourhood of Y

the map (πφ, ρφ)|X (resp. πφ |X) is a submersion.

The theorem implies that conditions (a) and (b) are C1 invariants. Examples
exist showing that it is not sufficient to take C2 diffeomorphisms φ [62].

One of the main reasons that Whitney stratifications are of interest is because
analytic varieties can be Whitney stratified.
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Theorem 4.2.10 (Whitney [147, 148]) Every analytic variety (in Rn or Cn) admits
a Whitney stratification whose strata are analytic (hence C∞) manifolds.

The main point in the proof of this theorem is to show that the Whitney conditions
are stratifying, i.e. true on an analytic open dense set of a given subspace. This is
proved by contradiction using a wing lemma. Also in 1965, Łojasiewicz proved the
existence of Whitney stratifications of semi-analytic sets [79]. Hironaka and Hardt
proved that the same is true of every subanalytic set [46, 55]. Hironaka’s proof uses
resolution of singularities. More accessible existence proofs for semialgebraic sets
using Whitney’s wing lemma method are due to Thom [122] and to Wall [144].
A more elementary proof for subanalytic sets is due to Denkowska, Wachta and
Stasica [22, 24]. More generally, existence theorems for Whitney stratifications of
definable sets in o-minimal structures [25] have been given by Loi [78], by van den
Dries and Miller [26], and by Nguyen, Trivedi and Trotman [95]. Another proof of
the o-minimal case follows from the work of Halupczok and Yin [44].

Whitney’s theorem above is a pure existence statement, proved by contradiction
using Whitney’s wing lemma. Teissier in [118] obtained a much more precise
result for complex analytic sets: a complex analytic stratification is Whitney (b)-
regular if and only if the multiplicities of its polar varieties are constant along strata.
So Whitney regularity is equivalent to the constance of a finite set of numerical
invariants. The existence theorem follows. Teissier’s theorem also implies the
existence, for a complex analytic set, of a canonical minimal Whitney stratification
of which all others are refinements (see [118]). It also gives rise to the most general
Plücker formula, expressing the degree of the dual variety of a projective variety
in terms of topological characters of its canonical Whitney stratification and its
general plane sections [37]. Another way of characterising Whitney conditions for
complex analytic varieties was developed by Gaffney [32] using the integral closure
of modules. Gaffney also gives real analogues characterising Whitney (b)-regularity
using the real integral closure.

There are other situations where Whitney stratifications arise naturally. The
stratification of a smooth manifold by the orbit types of a proper Lie group action is
Whitney regular (this was known to Bierstone in the 1970s [10] and was reproved
several times, cf. [105]), but in fact a much stronger result holds: it is smoothly
locally trivial [35, 145]! Another situation where a natural Whitney stratification
turns out to be smoothly local trivial is the partition of a compact smooth manifold
into unstable manifolds of a generic Morse function. That this is a Whitney
stratification was proved by Nicolaescu [96], while Laudenbach proved the stronger
smooth local triviality [74].

One can ask why one should study Whitney’s condition (a), as it is strictly
weaker than condition (b). One reason is that it is both simple to understand and
easy to check. A second reason is that it is a necessary and sufficient condition for
transversality to the strata of a stratification to be an open property, as we shall see
in the next theorem, often cited in the literature.
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Definition 4.2.11 We say that a map f : N → M between C1 manifolds is
transverse to a C1 stratification of a closed set Z ⊂ M , if ∀x ∈ N such that
f (x) ∈ Z, then

(df )xTxN + Tf (x)X = Tf (x)M

where X is the stratum containing f (x), i.e. the map f is transverse to each stratum
of the stratification of Z.

Theorem 4.2.12 (Trotman [130]) A locally finite C1 stratification of a closed
subset Z of a C1 manifold M is (a)-regular if and only if for every C1 manifold
N , {f ∈ C1(N,M)|f is transverse to the strata of Z} is an open set in the Whitney
C1 topology.

The sufficiency of (a)-regularity here is due to Feldman in 1965 [28]. A simple
proof of necessity in Theorem 4.2.12 can be extracted from the proof of a recent
relative version of the theorem given by Trivedi and Trotman [125].

A partial version of this theorem in the holomorphic case is due to Trivedi [124].
Let H(M,N) denote the space of holomorphic mappings between two complex
analytic manifolds M and N .

Theorem 4.2.13 (Trivedi) Let M be a Stein manifold and N be an Oka manifold.
Let 	 be a stratification of a complex analytic subvariety in N . Let r be the minimum
of the dimensions of strata in 	. If dim M = dim N − r and there exists a compact
set K in M such that the set of maps TK = {f ∈ H(M,N) : f �K 	} is open in
H(M,N), then 	 is an a-regular stratification.

Another application of Whitney (a)-regularity is the following.

Theorem 4.2.14 (Kuo-Li-Trotman [70]) Let X be a stratum of an (a)-regular
stratification of a subset Z of Rn. For each x ∈ X and for every pair of Lipschitz
transversals M1,M2 to X at x (a Lipschitz transversal is defined to be the graph of
a Lipschitz map NxX → TxX), there is a homeomorphism

(M1, Z ∩ M1, x) → (M2, Z ∩ M2, x).

Such results justify the separate study and verification of (a)-regularity.
A natural geometric operation is to take transverse intersections of geometric

objects. Suppose Z and Z′ are two closed stratified sets of a manifold M . Denote
the set of strata by 	 and 	′ respectively. If 	 and 	′ are transverse, i.e. if for all
X ∈ 	, and for all X′ ∈ 	′, X and X′ are transverse as submanifolds of M , then
we can stratify Z ∩ Z′ by 	 ∩ 	′ = {X ∩ X′|X ∈ 	,X′ ∈ 	′}. Moreover Z ∪ Z′ is
naturally stratified by adding the complements in Z (resp. Z′) {(X\X∩Z′)|X ∈ 	}
(resp. {(X′ \ X′ ∩ Z)|X′ ∈ 	′}).
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Theorem 4.2.15 If (Z,	) and (Z′, 	′) are Whitney (b)-regular (resp. (a)-
regular), and have transverse intersections in M , then (Z ∩ Z′, 	 ∩ 	′) is
(b)-regularly (resp. (a)-regularly) stratified, as is also Z ∪ Z′.

This can often be useful. The case of (b)-regularity was treated by Gibson in 1976
[36]. A general theorem of this kind was proved by Orro and Trotman in 2002
[98, 99] for a large class of regularity conditions including the (w)-regularity of the
next section.

Other useful properties of Whitney stratified sets include stability under taking
products, and triangulability.

Products If Z and Z′ are Whitney stratified then so is Z × Z′. A similar result is
true for the (w)-regular stratified sets of the next section.

Triangulation It is known that compact Whitney stratified sets are triangulable
(Goresky [38], Verona [143], Shiota [112]). The non-compact case follows from
another result of Shiota [111] stating that every Whitney stratified set is home-
omorphic to a subanalytic set, from which triangulability follows by citing the
triangulability of subanalytic sets due to Hironaka [56] and Hardt [47].

However there remains an outstanding open question [39]: does a Whitney
stratified set (Z,	) have a triangulation whose open simplexes are the strata of a
Whitney stratification refining 	 ? In other words, does every Whitney stratified set
admit a Whitney triangulation ? The existence of Whitney (b)-regular triangulations
was proved by Shiota for semialgebraic sets [114], and by Czapla [19] for definable
sets in o-minimal structures.

As we want our stratifications to “look the same” at different points of a given
stratum one might hope that there is a C1 diffeomorphism mapping neighbourhoods
of a point y1 on Y to neighbourhoods of another point y2 on Y . This is not true in
general, as illustrated by the following celebrated example.

Example 4.2.16 (Whitney) Let Z = {(x, y, t)|xy(x−y)(x− ty) = 0, t 	= 1} ⊂ R3,
stratified by Z = Z2 ⊃ Z1 = (Ot). This is a family of 4 lines parametrised by t .
The stratification is (b)-regular, but there is no C1 diffeomorphism mapping Zt1 to
Zt2 where Zt = Z ∩ (R2 × {t}), because of the cross-ratio obstruction. (A linear
isomorphism of the plane preserving three distinct lines through a point preserves
also any fourth line through that point.)

One may observe that Z in the previous example is a union of eight C1

manifolds-with-boundary, with (0t) the common boundary. Pawłucki [103] proved
a general theorem showing this property: if X and Y are subanalytic adjacent strata
such that X is (b)-regular over Y , and dim X = dim Y+1, then X∪Y is a finite union
of C1 manifolds-with-boundary with common boundary Y . A generalisation to
definable sets in polynomially bounded o-minimal structures was given by Trotman
and Valette [135], who show also that this property fails for definable sets in non
polynomially bounded o-minimal structures.
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Although Example 4.2.16 means we cannot expect to have in general local C1

triviality of Whitney stratified sets even in the real algebraic case, we can obtain
what is known as local topological triviality. The following, together with Whitney’s
existence Theorem 4.2.10, constitutes the fundamental theorem of stratification
theory.

Theorem 4.2.17 (Thom-Mather [81, 123]) Let (Z,	) be a Whitney stratified
subset of a C2 manifold M . Then for each stratum Y ∈ 	 and each point
y0 ∈ Y there is a neighbourhood U of y0 in M , a stratified set L ⊂ Sk−1 and a
homeomorphism

h : (U,U ∩ Z,U ∩ Y ) → (U ∩ Y ) × (Bk, c(L) ∩ Bk, 0)

such that p1 ◦ h = πY , where c(L) is the cone on the link L with vertex 0, Bk is the
k-ball centred at 0, and πY is the projection onto U ∩Y of a tubular neighbourhood.

A typical application of this theorem is Fukuda’s proof that the number of
topological types of polynomial functions p : Rn → R of given degree d is finite
[30].

Theorem 4.2.17 applies without any hypothesis of analyticity or subanalyticity.
If the strata are assumed to be semialgebraic, Coste and Shiota [18] have shown
that the trivialising homeomorphism h may be chosen to be semialgebraic, using
real spectrum methods in their proof. See Shiota’s book [112] for a more general
result applying to definable sets and providing a definable trivialisation. The proof
of Mather [81] of Theorem 4.2.17 uses the notion of controlled vector field, and the
homeomorphism h resulting from Mather’s proof is obtained by integrating such
controlled vector fields, so that the resulting homeomorphism h will not in general
be semialgebraic even if the strata are semialgebraic.

A (stratified) vector field v on a stratified set (Z,	) is defined by a collection
of vector fields {vX|X ∈ 	}. It is controlled when (πY )∗vX(x) = vY (πY (x)) and
(ρY )∗vX(x) = 0 on a tubular neighbourhood TY of Y , where TY is part of a set
of compatible tubular neighbourhoods called control data. See Mather’s notes [81]
for details of the theory of control data and of controlled vector fields. It was not
until 1996 that a proof was published that these stratified controlled vector fields
could be assumed to be continuous : given a vector field vY on a stratum Y of
a Whitney stratified set, or indeed a Bekka stratified set (see Sect. 4.8 below),
there exists a continuous controlled stratified vector field {vX} on M extending vY

(Shiota [112] for Whitney stratified sets, du Plessis [106] for the more general Bekka
stratified sets). This result has been used for example by Hamm [45] to simplify
some statements in stratified Morse theory [41], and by S. Simon to prove a stratified
version of the Poincaré-Hopf theorem [116].

The proof of local topological triviality and conicality of Whitney stratified sets
as stated in Theorem 4.2.17 is in fact an easy consequence of the following more
general first isotopy lemma of Thom [81, 123]:
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Theorem 4.2.18 Let Z be a Whitney stratified subset of a C2 manifold M , and let
f : M → Rk be a C2 map such that f |Z is proper and the restriction of f to each
stratum of Z is a submersion. Then there is a stratum-preserving homeomorphism
h : Z → Rk × (f −1(0) ∩ Z) which commutes with the projection to Rk , so that the
fibres of f |Z are homeomorphic by a stratum-preserving homeomorphism.

There is a second isotopy lemma for stratified maps satisfying Thom’s (af ) con-
dition (see Definition 4.4.1 below), a relative version of condition (a) [81, 82, 123].
These two isotopy lemmas were first used in the proof of the difficult topological
stability theorem : the space of topologically stable mappings is dense in the space of
proper smooth mappings between two smooth manifolds [36, 82, 83, 107, 121, 123].
A recent strengthening of Theorem 4.2.17, obtaining continuity of the tangent
spaces to the leaves defined by fixing points in the normal slice, implies the
density of strongly topologically stable mappings in the space of proper mappings
[89]. Strong topological stability refers to imposing continuity of the commuting
homeomorphisms as functions of a varying map.

4.3 The Kuo-Verdier Condition (w)

Condition (a) for (X, Y ) says that the distance between the tangent space to X at
x and the tangent space to Y at y tends to zero as x tends to y. Kuo and Verdier
studied what happens when the rate of vanishing of this distance is O(|x − πY (x)|)
[67, 142].

Definition 4.3.1 Two adjacent strata (X, Y ) in a C1 manifold M are said to be (w)-
regular at y0 ∈ Y , or to satisfy the Kuo-Verdier condition (w) , if there exist a
constant C > 0 and a neighbourhood U of y0 in M such that

d(TyY, TxX) < C||x − y||

∀x ∈ U ∩ X,∀y ∈ U ∩ Y .

Here, for vector subspaces V and W of an inner product space E,

d(V,W) = sup{inf{sinθ(v,w)|w ∈ W ∗}|v ∈ V ∗}

where θ(v,w) is the angle between v and w.
Note that d(V,W) = 0 ⇔ V ⊂ W , and that d(V,W) = 1 ⇔ ∃v ∈ V ∗, v ⊥ W .

Proposition 4.3.2 (Kuo [66]) For semi-analytic X and Y , (w) ⇒ (b).

Verdier observed that Kuo’s proof that (w) implies (b) in [66] (where Kuo
takes as hypothesis a weaker condition, that he called the ratio test) works too for
subanalytic sets [142], and Loi [78] extended this result to the case of definable sets
in o-minimal structures.
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So (w)-regularity is a stronger regularity condition than (b) for definable
stratified sets (it no longer implies (b) in general for C∞ stratified sets as shown
by Example 4.3.7 below). Moreover it turns out to be generic too, as the following
theorem shows.

Theorem 4.3.3 (Verdier [142]) Every subanalytic set admits a locally finite (w)-
regular stratification.

This is also true for definable sets in arbitrary o-minimal structures as shown by
Loi [78]. Other proofs in the subanalytic case are due to Denkowska and Wachta
[23], and to Łojasiewicz, Stasica and Wachta [80], both of these proofs avoiding
resolution of singularities. Another proof, due to Kashiwara and Schapira [63],
follows from the equivalence of (w) and their microlocal condition μ [134].

For complex analytic sets a major result proved in 1982 by Teissier, with a
contribution by Henry and Merle, implies the equivalence of (b) and (w) [50, 118].
Real algebraic examples showing that (b) does not imply (w) are common because
(b) is a C1 invariant [131] while (w) is not a C1 invariant (although it is a C2

invariant), as shown by the following example.

Example 4.3.4 (Brodersen-Trotman [15]) Let Z = {y4 = t4x + x3} ⊂ R3. Then
the stratification of Z defined by Z = Z2 ⊃ Z1 = (Ot) is (b)-regular but not
(w)-regular. Z is actually the graph of the C1 function f (x, t) = (t4x + x3)1/4.

Infinitely many real algebraic examples with (b) holding but not (w) may be
found in the combined classifications of Juniati, Noirel and Trotman [59, 60, 97,
133]. The first such semialgebraic example was given in [128].

One can characterise (w)-regularity using stratified vector fields as follows.

Proposition 4.3.5 (Brodersen-Trotman [15]) A stratification is (w)-regular ⇔
every vector field on a stratum Y extends to a rugose stratified vector field in a
neighbourhood of Y .

Here a stratified vector field {vX : X ∈ 	} is called rugose near y0, in a stratum Y ,
when there exists a neighbourhood U of y0 and a constant C > 0, such that for all
adjacent strata X, ∀x ∈ U ∩ X,∀y ∈ U ∩ Y ,

‖ vX(x) − vY (y) ‖≤ C ‖ x − y ‖ .

This resembles an asymmetric Lipschitz condition, and poses the question of
when the extension of a Lipschitz vector field can be chosen to be Lipschitz. This
we will discuss in Sect. 4.5.

There is a somewhat weaker version of the Thom-Mather isotopy theorem, due to
Verdier [142] in 1976, for his (w)-regular stratified sets. He obtains local topological
triviality but not the local conicality of Theorem 4.2.17.

Theorem 4.3.6 (Verdier) Let (Z,	) be a (w)-regular C2 stratified subset of a C2

manifold M . Then for each stratum Y ∈ 	 of codimension k in M , and each point
y0 ∈ Y there is a neighbourhood U of y0 in M , a stratified set N ⊂ Bk and a rugose
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homeomorphism

h : (U,U ∩ Z,U ∩ Y ) → (U ∩ Y ) × (Bk,N, 0)

such that p1 ◦ h = πY , where Bk is the k-ball centred at 0, and πY is the projection
onto U ∩ Y of a tubular neighbourhood.

The proof is by integration of rugose vector fields [142]. Another approach to
this isotopy theorem was given by Fukui and Paunescu [31].

Example 4.3.7 The topologist’s sine curve in R2, with Z the closure of {y =
sin(1/x) : x > 0}, provides an example of a (w)-regular stratified set Z which is
not Whitney stratified : (bπ ) fails at every point of the 1-dimensional stratum on the
y-axis. Clearly the conical conclusion of the Thom-Mather isotopy Theorem 4.2.17
fails to hold.

Remark 4.3.8 The homeomorphism obtained in the Thom-Mather isotopy Theo-
rem 4.2.17 is also rugose, because it is controlled, given by integrating controlled
vector fields (see [81]).

4.4 Stratified Maps

Knowing that subanalytic sets may be stratified with regularity conditions ensuring
local topological control one can ask whether similar structure theorems can be
proved for mappings. Hardt [46] proved that every proper real analytic mapping
between real analytic manifolds may be stratified, in the sense that one may find
Whitney stratifications of source and target such that restricted to each stratum of the
source the map is a submersion onto the stratum in the target. However Thom[120]
had already observed in 1962 that in a family of polynomial maps the topological
type can vary continuously. He proposed a type of regularity condition on maps to
avoid this phenomenon [123] as follows.

Definition 4.4.1 A map f defined on a stratified set in a manifold M with Y a
stratum is said to satisfy the Thom condition (af ) at y ∈ Y when f is of constant
rank on each stratum and

Ty(Y ∩ f −1(f (y))) ⊂ limx→yTx(X ∩ f −1(f (x))),

where, for X a stratum and x ∈ X tending to y, the limit is taken in the appropriate
grassmannian GdimM

dimX−k if f restricted to X has rank k.

When the map f is constant on X and Y this is just (a)-regularity.
Thom conjectured in the 1960s that proper stratified maps satisfying (af ) should

be triangulable. This was proved by Shiota in 2000 [113] after an earlier partial
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result by Verona in his book [143]. See also [115] for the non-proper semialgebraic
case.

A striking result [76] by Lê and Saito in complex equisingularity, showing the
naturality of Thom’s condition, is that constancy of the Milnor numbers of a family
of isolated hypersurface singularities defined by

F : (Cn × C, 0 × C) → (C, 0)

is equivalent to the map F satisfying (aF ) with respect to the stratification with 3
strata,

Cn+1 ⊃ F−1(0) ⊃ (0 × C).

If instead of inclusion in Definition 4.4.1 which says the distance between the two
tangent spaces goes to zero, one requires that this distance is bounded above by a
constant times the distance of x to Y , one then obtains a condition (wf ) generalising
the Kuo-Verdier condition (w) of Definition 4.3.1. A study of (wf ) in the complex
analytic case with geometric characterisations, analogous to Teissier’s study of (w)

and (b) in [118] was carried out by Henry, Merle and Sabbah [53]. Gaffney and
Kleiman give algebraic versions of (wf ) in the complex case see [33]. In the real
C∞ case (wf ) is one of a family of regularity conditions on maps and spaces studied
by Trotman and Wilson in [137].

For subanalytic functions one can always stratify a map so that (wf ) holds
(Hironaka [57] for (af ) and Parusiński [100] for (wf )). The blowup of a point
in the plane provides a counterexample to the existence of a stratification (af ) when
the target space has dimension at least 2.

Associated to Thom maps (stratified maps satisfying (af )) there is a second
isotopy lemma for which we refer to [81] and [82]. This is important in the study of
topological stability of mappings [83], Mather using it to complete the proof of the
density of the set of topologically stable mappings between smooth manifolds.

Having seen that conditions (a) and (w) have relative versions (af ) and (wf )

one may wonder about a possible relative version (bf ) of condition (b). So far
there have been 3 different conditions called (bf ) in the literature, introduced
and used respectively by Thom [123], by Henry and Merle [51] and by Nakai
[90]. There is also a condition (D) due to Goresky [39]. No comparative study
of these conditions has been undertaken. However Murolo has recently worked out
properties of Goresky’s condition (D) [88].

4.5 Lipschitz Stratifications

Mostowski in 1985 [85] introduced conditions (L) on a stratification, which
further strengthen the Kuo-Verdier condition (w) and these imply the possibility of
extending Lipschitz vector fields and can indeed be characterised by the existence
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of certain Lipschitz extensions of Lipschitz vector fields (see Theorem 4.5.3 below)
[101].

Definition 4.5.1 (Mostowski) Let Z = Zd ⊃ · · · ⊃ Z� 	= ∅ be a closed stratified

set in Rn. Write
◦
Zj= Zj −Zj−1. Let γ > 1 be a fixed constant. A chain for a point

q ∈ ◦
Zj is a strictly decreasing sequence of indices j = j1, j2, . . . , jr = � such that

each js(s ≥ 2) is the greatest integer less than js−1 for which

dist(q, Zjs−1) ≥ 2γ 2dist(q, Zjs ).

For each js, 1 ≤ s ≤ r , choose qjs ∈ ◦
Zjs such that qj1 = q and |q − qjs | ≤

γ dist(q, Zjs ).

If there is no confusion we call {qjs }rs=1 a chain of q.

For q ∈ ◦
Zj , let Pq : Rn → Tq(

◦
Zj ) be the orthogonal projection to the tangent space

and let P ⊥
q = I − Pq be the orthogonal projection to he normal space (Tq(

◦
Zj )

⊥.

Definition 4.5.2 (Mostowski) A stratification 	 = {Zj }dj=� of Z is said to be a
Lipschitz stratification, or to satisfy the (L)-conditions, if for some constant C > 0

and for every chain {q = qj1 , . . . , qjr } with q ∈ ◦
Zj1 and each k, 2 ≤ k ≤ r ,

| P ⊥
q Pqj2

· · · Pqjk
| ≤ C | q − qj2 | /djk−1(q) (L1)

and for each q ′ ∈ ◦
Zj1 such that | q − q ′ | ≤ (1/2γ ) dj1−1(q),

| (Pq − Pq ′)Pqj2
· · · Pqjk

| ≤ C | q − q ′ | /djk−1(q) (L2)

and

| Pq − Pq ′ | ≤ C | q − q ′ | /dj1−1(q) (L3).

Here dist(−, Z�−1) ≡ 1, by convention.
It is not hard to show that for a given Lipschitz stratification ∃ C > 0 such that

∀x ∈ ◦
Zj ,∀y ∈ ◦

Zk, k < j then

|P ⊥
x Py | ≤ C|x − y|

dist(y, Zk−1)
,

and because |P ⊥
x Py | = d(Ty

◦
Zk,

◦
Zj ), (w)-regularity follows with a precise

estimation for the constant (which can tend to infinity as y approaches Zk−1).
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Parusiński has given the following characterisation of Mostowski’s Lipschitz
conditions in terms of extensions of vector fields.

Theorem 4.5.3 (Parusiński [101]) A stratification Z = Zd ⊃ Zd−1 ⊃ · · · ⊃
Z0 ⊃ Z−1 = ∅ is Lipschitz if and only if there exists a constant K > 0 such that for
every subset W ⊂ Z such that

Zj−1 ⊂ W ⊂ Zj

for some j = �, . . . , d where � is the lowest dimension of a stratum of Z,
each Lipschitz 	-compatible vector field on W with Lipschitz constant L which
is bounded on W ∩ Z� by a constant C > 0, can be extended to a Lipschitz 	-
compatible vector field on Z with Lipschitz constant K(L + C).

He also proved an existence theorem for subanalytic sets.

Theorem 4.5.4 (Parusiński [101]) Every subanalytic set admits a Lipschitz strat-
ification. Moreover such Lipschitz stratifications are locally bilipschitz trivial.

The initial existence theorem for Lipschitz stratifications was for complex analytic
sets, due to Mostowski in 1985 [85]. It is not true that definable sets in arbitrary
o-minimal structures admit Lipschitz stratifications.

Example 4.5.5 (Parusinski) Let X(t) be the union of the x-axis and the graph y =
xt (x > 0) in R3 = (x, y, t). Then the Lipschitz types of X(t) are distinct for all
t > 1. By Miller’s dichotomy every non polynomially bounded o-minimal structure
contains this as a definable set.

However we do have an existence theorem in the polynomially bounded case.

Theorem 4.5.6 (Nguyen-Valette [93]) Every definable set in a polynomially
bounded o-minimal structure admits a definable Lipschitz stratification.

Halupczok and Yin have given another proof of this result [44].
It is clear that the (L)-conditions are much more of a constraint than is (w). Here

are some simple examples showing that the two conditions are distinct.

Example 4.5.7 (Mostowski) In C4 or R4 let Z = {y = z = 0} ∪ {y = x3, z = tx}.
Then (w) holds along the t-axis, but (L) fails.

Example 4.5.8 (Koike-Juniati [61]) In R3 let Z = {y2 = t2x2 + x3, x ≥ 0} and
stratify by Z = Z2 ⊃ Z1 = 〈Ot〉. It is easy to check that (w) holds for this
semialgebraic example, while (L2) fails : let q = qj1 = q2 = (t2,

√
2t3, t), q ′ =

(t2,−√
2t3, t), qj2 = q1 = (0, 0, t), as t → 0.
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4.5.1 Teissier’s Criteria for a Good Equisingularity Condition

In his 1974 Arcata lectures [117] Teissier gave a list of criteria for a good equisingu-
larity condition E on a stratification of a complex analytic set; E-regularity should
in particular:

1) be as strong as possible;
2) be generic, i.e. every complex analytic set should possess an E-regular stratifi-

cation;
3) imply local topological triviality along strata;
4) imply equimultiplicity;
5) be preserved after intersection with generic linear spaces containing a given

stratum, locally linearised (E ⇒ E∗, see below for a precise definition).

Criteria 2) to 5) hold for Whitney (b)-regularity (see Teissier [118]), which turns
out to be equivalent to (w) in the complex case as noted above. Criterion 5) is an
essential part of the proof of this result via the equimultiplicity of polar varieties.
(Recall that (b) does not imply (w) for real algebraic varieties by Example 4.3.4.)

Criterion 4) is a theorem of Hironaka from 1969 [54].

Theorem 4.5.9 (Hironaka) For a complex analytic Whitney stratified variety V

the pointwise multiplicity m(V, p) is constant on each stratum.

Definition 4.5.10 (E∗-regularity) Let M be a C2 manifold. Let Y be a C2

submanifold of M and let y ∈ Y . Let X be a C2 submanifold of M such that y ∈ X

and Y ∩X = ∅. Let E denote an equisingularity condition (e.g. (b), (w), (L)). Then
(X, Y ) is said to be Ecodk-regular at y (0 ≤ k ≤ codY ) if there exists an open dense
subset Uk of the grassmannian of codimension k subspaces of TyM containing TyY ,
such that if W is a C2 submanifold of M with Y ⊂ W near y, and TyW ∈ Uk , then
W is transverse to X near y, and (X ∩ W,Y) is E-regular at y.

One says finally that (X, Y ) is E∗-regular at y if (X, Y ) is Ecodk-regular for all
k, 0 ≤ k < codY .

Theorem 4.5.11 (Navarro Aznar-Trotman [92]) For subanalytic stratifications,
(w) ⇒ (w∗), and if dim Y = 1, (b) ⇒ (b∗).

The fact that (b∗)-regular stratifications exist for subanalytic sets allows one to
prove that stratified Morse functions (in the sense of Goresky and MacPherson [41])
exist and are generic, using (bcod1). The rapid spiral is an example of a Whitney
stratified set for which no (stratified) Morse functions exist [41].

Question: Is it true that (b) ⇒ (b∗) for subanalytic stratifications in general, i.e.
when dim Y ≥ 2 ?

Theorem 4.5.12 (Teissier [118]) For complex analytic stratifications, (b) ⇒ (b∗).

Theorem 4.5.13 (Juniati-Trotman-Valette [61]) For subanalytic stratifications,
(L) ⇒ (L∗).



258 D. Trotman

According to the 1974 criteria of Teissier [117], Whitney regularity is a good
equisingularity condition. Because Mostowski’s Lipschitz condition (L) is stronger
it may be considered better as it also satisfies Teissier’s criteria.

Many results concerning E∗-regularity for different equisingularity conditions E

in the complex analytic context are described in [77], including a kind of converse
to the Thom-Mather local triviality Theorem 4.2.17, namely that (T T ∗) implies (b),
where (T T ) means local topological triviality along strata.

4.6 Definable Trivialisations

We have seen that Whitney (b)-regularity ensures local topological triviality.
Mostowski and Parusiński proved that an (L)-regular stratification of a subanalytic
set is locally bilipschitz trivial (Theorem 4.5.4). It is natural to ask if such
trivialisations can be chosen to be definable. Or specifically if Z is a semialgebraic
set, is there some stratification which is locally semialgebraically trivial ? This was
proved by Hardt in 1980 [48]. His method was improved by G. Valette who obtained
local semialgebraic bilipschitz triviality [139, 140].

Theorem 4.6.1 (Hardt) Semialgebraic sets admit locally semialgebraically trivial
stratifications.

Theorem 4.6.2 (Valette) Semialgebraic sets admit locally semialgebraically bilip-
schitz trivial stratifications.

There are also subanalytic versions of these results. For semialgebraic (b)-
regular stratifications Coste and Shiota [18] proved a semialgebraic isotopy theorem
using real spectrum methods. See the book of Shiota [112] for further details and
references.

A recent (2017) very powerful theorem by Parusiński and Paunescu [102],
proving the Whitney fibering conjecture of 1965 [147], produces a subanalytic
trivialisation of a given stratified analytic variety (real or complex) which is
moreover arc-analytic, as is its inverse. The hypothesis on the stratified set is a type
of Zariski equisingularity, stronger than (w)-regularity, hence implying Whitney
(b)-regularity by Proposition 4.3.2. The relation between this notion of Zariski
equisingularity and Mostowski’s Lipschitz condition of Definition 4.5.2 is currently
being studied in the case of complex analytic varieties by Parusiński and Paunescu.
See Parusiński’s contribution to this handbook for details of their work.

4.7 Abstract Stratified Sets

One may begin the study of differentiable manifolds in two ways, either by starting
with the abstract definition and eventually proving the existence of an embedding
into euclidean space [58], or by starting with submanifolds of euclidean space
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[42] so that the abstract concept is obtained by taking an equivalence class by
diffeomorphisms. In a similar way there is a definition of abstract stratified set, due
to Mather [81]. He developed this definition by adapting ideas of Thom [123], who
gave a different definition of an abstract stratified set, so that the resulting spaces
are called Thom-Mather stratified sets.

Definition 4.7.1 An abstract stratified set is a triple (Z,	,T) satisfying 9
axioms:

A1) Z is a locally compact second countable Hausdorff space, hence metrisable.
A2) 	 is a partition of Z into locally closed subsets, called the strata.
A3) Each stratum is a topological manifold with a differentiable structure of class

Ck .
A4) 	 is locally finite.
A5) 	 satisfies the frontier property.
A6) T is a triple ({TX}, {πX}, {ρX}) where for each X ∈ 	, TX is an open

neighbourhood of X in V , πX : TX −→ X is a continuous retraction of TX

onto X, and ρX : TX −→ [0,∞) is a continuous function. We call TX the
tubular neighbourhood of X, πX the local retraction of TX onto X, and ρX the
tubular function of X.

A7) X = {v ∈ TX : ρX(v) = 0}.
Notation For strata X, Y , let TX,Y = TX ∩ Y , let πX,Y = πX|TX,Y

: TX,Y −→ X

and let ρX,Y = ρX|TX,Y
: TX,Y −→ (0,∞).

A8) For each pair of strata X, Y , (πX,Y , ρX,Y ) : TX,Y −→ X × (0,∞) is a Ck

submersion (hence dim X < dim Y if TX,Y 	= ∅).
A9) For strata W < X < Y we have πW,X ◦ πX,Y (z) = πW,Y (z), and ρW,X ◦

πX,Y (z) = ρW,Y (z). These are called control conditions .

Such abstract stratified sets are triangulable, as shown by Goresky [38] and by
Verona [143].

Mather’s proof in [81] of the first isotopy lemma of Thom for stratified
submersions on Whitney stratified sets (Theorem 4.2.18 above) uses Mather’s result
that every Whitney stratified subset of a manifold admits the structure of an abstract
stratified set. He then proves the isotopy lemma in the abstract context.

It is then natural to ask about an embedding theorem for abstract stratified sets,
similar to the embedding theorem for smooth manifolds. Teufel [119] and Natsume
[91] proved that every abstract stratified set of dimension n can be embedded
in R2n+1 as a Whitney stratified set. Noirel [97] improved their statements by
showing that the resulting Whitney stratified set may be made subanalytic as may the
induced local retractions and tubular functions. Also he showed that the embedded
stratification may be made (w)-regular (hence also (b)-regular by the subanalytic
version of Proposition 4.3.2). Moreover the embedded set and the induced control
data can be made semialgebraic if the set is compact [97].

Note that in the C∞ category (w)-regular stratified sets do not in general admit
the structure of a Thom-Mather abstract stratified set because they are not always
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locally conical as shown by Example 4.3.7. However they are locally topologically
trivial as shown directly by Verdier using integration of rugose stratified vector fields
[142].

Much work has been done generalising the differential properties of smooth
manifolds to abstract stratified sets in the above sense. See Sect. 4.11 below for
some references.

4.8 K. Bekka’s (c)-Regularity

It can be important to be more precise as to when a stratification is locally
topologically trivial in the sense of Theorem 4.2.17, for example when classifying
topologically or when studying topological stability (cf. work of Damon, Looijenga,
Wirthmüller and the book of du Plessis and Wall [107]). Then one needs the weakest
regularity condition on a stratification ensuring local topological triviality. This
principle led to the introduction of the following condition.

Definition 4.8.1 (K. Bekka) A stratified set (Z,	) in a manifold M is (c)-regular
if for every stratum Y of 	 there exists an open neighbourhood UY of Y in M

and a C1 function ρY : UY → [0,∞) such that ρY
−1(0) = Y and the restriction

ρY |UY ∩Star(Y ) is a Thom map, where Star(Y ) = ⋃{X ∈ 	|X ≥ Y }, i.e. ∀X ∈
Star(Y ), with ρXY = ρY |X and x ∈ X,

limx→yTx(ρXY
−1(ρY (x))) ⊇ TyY ∀y ∈ Y.

Note that ρY : UY → [0,∞) is defined globally on a neighbourhood of Y . So this
is not a local condition. Local (c)-regularity is developed and used by Schürmann
[109].

Theorem 4.8.2 (Bekka [4]) (c)-regular stratifications are locally topologically
trivial along strata.

The proof is by proving the existence of an abstract stratified structure of Thom-
Mather which allows the use of Mather’s theory of controlled stratified vector fields
[81] and implies that the conclusions of Theorems 4.2.17 and 4.2.18 are satisfied.
If one only requires constance of homological or cohomological data then one can
weaken (c) even further—see chapter 4 of the book of Schürmann [109].

Characterisations of condition (c) are given by Bekka and Koike in [5].
We saw how (w) and (L) are characterised by the existence of appropriate lifts

of vector fields. Here is the corresponding result for (c)-regularity.

Theorem 4.8.3 (du Plessis-Bekka [106]) A stratification is (c)-regular ⇔ every
C1 vector field on a stratum Y admits a continuous controlled stratified extension to
a neighbourhood of Y .



4 Stratification Theory 261

This means that there exists a family of vector fields {vX|X ∈ Star(Y )} such that
v = ⋃

vX is continuous (in T M), while being controlled as defined above.
How do (b) and (c) compare ?
I proved [131] that (b) over a stratum Y is equivalent to the property that for

every C1 tubular neighbourhood TY of Y the restriction to neighbouring strata
of the associated map (πY , ρY ) is a submersion, where πY : TY → Y is the
canonical retraction and ρY : TY → [0, 1) the canonical distance function (see
Theorem 4.2.9).

In comparison, (c) says that there exists some C1 function ρ vanishing on
Y (not necessarily associated to a tubular neighbourhood: ρ can be degenerate,
e.g. weighted homogeneous, or even flat on Y ) such that for every C1 tubular
neighbourhood TY of Y the restriction to neighbouring strata of the map (πY , ρ)

is a submersion [4].
One can prove easily that (b) implies (c) while there are examples showing

that the converse is false [4]. See [6] for real algebraic examples. There are
complex algebraic examples due to Briançon and Speder [14]: these consist of 1-
parameter families of complex hypersurfaces with isolated singularities defined by
F : C3 × C, 0 × C → C, 0 such that (F−1(0), 0 × C) is (c)-regular (because
weighted homogeneous) but not (b)-regular. It is unknown whether topologically
trivial complex analytic stratifications are always (c)-regular, or even whether they
are (a)-regular (a question of Thom).

Several authors have used (c)-regularity as a means of providing sufficient
conditions for the existence of a real Milnor fibration associated to a real analytic
map [108, for example].

A recent theorem of Murolo, du Plessis and Trotman [89] states that for Whitney
(b)-regular or Bekka (c)-regular stratified sets the Thom-Mather isotopy theorem
can be improved so as to provide a smooth form of the Whitney fibering conjecture.
One can ensure that the fibres of the trivialising homeomorphism h in the Thom-
Mather isotopy Theorem 4.2.17 (or Theorem 4.5.4) for fixed points of c(L) have
continuously varying tangent spaces as one goes to the base stratum X, or changes
stratum in the star of X. Moreover the associated wings obtained by fixing a point
on the link L can be made (c)-regular.

Sandwiched between Whitney (b)-regularity and Bekka’s (c)-regularity there is
a condition known as weak Whitney regularity. For a pair of adjacent strata (X, Y )

we assume that for some choice of local coordinates at a point y0 ∈ Y the angle θ

between secant lines and the tangent space to X is bounded away from π/2 : ∃δ > 0
such that

θ(xy, TxX) < π/2 − δ

for all x ∈ X in some neighbourhood U of y0.
We call this condition (δ) and the combined condition (a + δ) (when both (a)

and (δ) hold) is known as weak Whitney regularity . The proof that weak Whitney
regularity implies (c) (for a standard tubular function ρY associated to a tubular
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neighbourhood) is in [6]. Real algebraic examples exist showing that the converse
is not true. No complex examples are known.

It is a curious fact that weak Whitney regularity for a family of complex
hypersurfaces with isolated singularities implies equimultiplicity [136], generalising
Hironaka’s theorem in this case [54]. It is unknown whether topologically trivial
families are equimultiple (a parametrised version of the famous Zariski problem
[150] concerning topological invariance of the multiplicity of an isolated complex
hypersurface singularity). The examples of Briançon and Speder [14] of μ-constant
families of hypersurfaces which are not Whitney regular turn out to be weakly
Whitney regular—see [8] and the correction [9]. One can then ask whether μ-
constant families of hypersurfaces are always weakly Whitney regular. This would
imply topological triviality via (c)-regularity and Bekka’s Theorem 4.8.2 [4] that (c)

implies topological triviality, and thus extend the Lê-Ramanujam theorem (which
uses the h-cobordism theorem) to the missing surface case [75].

We note that weakly Whitney stratified sets in general have similar metric
properties to Whitney stratified sets - they are of finite geodesic diameter if compact
for example [7]. Also weakly Whitney stratified sets with a smooth singular set of
codimension 1 have finite volume. This is not true in general if the singular set has
codimension 2 or if the depth is at least 2 [29].

4.9 Condition (tk)

We return to the first example of Whitney, Z = {y2 = t2x2 + x3}. Slice the surface
by a plane S transverse to the t-axis at 0. Then the topological type of the germ at 0
of the intersection Z ∩ S is constant, i.e. independent of S. Remember that Whitney
(a) holds. Thom noticed this and mentioned it to Kuo, who proved the following
theorem [68].

Theorem 4.9.1 (Kuo 1978) If (X, Y ) is (a)-regular at y ∈ Y then (h∞) holds, i.e.
the germs at y of intersections S ∩ X, where S is a C∞ submanifold transverse to
Y at y ∈ S ∩ Y and dimS + dimY = dimM , are homeomorphic.

It later turned out [132] that one can replace (h∞) by (h1), meaning one considers
all C1 transversals S, and weaken (a) to (t1), defined as follows.

Definition 4.9.2 A pair of strata (X, Y ) is (tk)-regular at y ∈ Y if for every Ck

submanifold S transverse to Y at y ∈ Y ∩ S, there is a neighbourhood U of y such
that S is transverse to X on U ∩ X (1 ≤ k ≤ ∞).

Clearly (a) implies (t1). The converse does not hold as first shown in [127, 129].
The converse does hold in the subanalytic case if we allow transversals of arbitrary
dimension [132]. In the case of transversals of complementary dimension there are
semialgebraic examples with (t1) but not (a) [132], and there are even complex
algebraic examples [34].
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Theorem 4.9.3 (Trotman [132]) If we restrict to transversals of complementary
dimension to Y , (t1) is equivalent to (h1).

Theorem 4.9.4 (Trotman-Wilson [137]) For subanalytic strata, (tk) is equivalent
to the finiteness of the number of topological types of germs at y of S ∩ X for S a
Ck transversal to Y (k ≥ 2) of complementary dimension.

The proofs that I developed with Kuo and with Wilson use the “Grassmann
blowup” introduced by Kuo and myself [71]. Let

En,d = {(L, x)|x ∈ L} ⊂ Gn,d × Rn

for d < n, with projection to Gn,d , denote the canonical d-plane bundle. Let β =
βn,d denote projection to Rn. When d = 1 this is the usual blowup of Rn with
centre 0.

Suppose X, Y ⊂ Rn and 0 ∈ Y with d = codim Y .
Let X̃ = β−1(X) and let Ỹ = {(L, 0)|L is transverse to Y at 0}. The following

striking theorem results from work by Kuo and myself [71], completed by work
with Wilson [137].

Theorem 4.9.5 (X, Y ) is (tk)-regular at 0 ∈ Y if and only if (X̃, Ỹ ) is (tk−1)-
regular at every point of Ỹ (k ≥ 1).

When k = 1, (t0) is equated with (w), the Kuo-Verdier condition of Defini-
tion 4.3.1. So in particular, (w)-regularity is the first in an infinite sequence of
(tk)-regularity conditions !

Now we can see how to prove that (t1) implies (h1) by using the Verdier isotopy
Theorem 4.3.6 for (w)-regular stratifications in the Grassmann blowup, although
this was not the original proof.

The (tk) conditions were used to characterise jet sufficiency by Trotman and
Wilson, generalising theorems of Bochnak, Kuo, Lu and others, and realising part of
the early programme of Thom (1964). See [137] for details. Work with Gaffney and
Wilson [34] developed an algebraic approach to the (tk) conditions, using integral
closure of modules.

To illustrate the difference between (t2) and (t1), and the previous theorem, look
at the Koike-Kucharz example [65] given by Z = {x3 − 3xy5 + ty6 = 0} ⊂ R3

stratified as usual by (X, Y ) with Y the t-axis and X its complement Z − Y . Then
(X, Y ) is (t2) but not (t1) at 0. It is easy to check that there are 2 topological types
of germs at 0 of intersections S ∩ X where S is a C2 submanifold transverse to
Y at 0. However the number of topological types of such germs for S of class C1

is infinite, even uncountable. It is easy to construct similar examples showing (tk)

does not imply (tk−1).
This example arose from the discovery independently by S. Koike and W.

Kucharz that the 6-jet x3 − 3xy5 has infinitely many topological types among
its representatives of class C7, but only finitely many (in fact two) among its
representatives of class C8. Such an example contradicts a conjecture of Thom
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from [123]. The relation of these properties of jets with stratification theory and
the conditions (t1) and (t2) was pointed out by Kuo and Lu [69].

On a historical note, condition (t) with no specification on the differentiability of
the transversals was first introduced by Thom in 1964 [121], before the appearance
of Whitney’s conditions (a) and (b). Thom claimed that (t) implies the openness
of the set of maps transverse to a stratification [121, 123]. This is true in the
semialgebraic case because then (t) implies (a) and one can use Theorem 4.2.12,
but is false for C∞ stratified sets, again using Theorem 4.2.12 and examples with
(t) but not (a) [127].

4.10 Density and Normal Cones

We saw above Hironaka’s Theorem 4.5.9 (from [54]) that complex analytic Whitney
stratifications are equimultiple along strata. What is a real version of this statement
?

The multiplicity m(V, p) at a point p of a complex analytic variety V is the
number of points near p in the intersection of V with a generic plane L missing
p, of complementary dimension to that of V . This positive integer is equal to
the Lelong number, or density θ(V, p) of V at p defined as the limit as ε tends
to 0 of the quotient vol(V ∩Bε(p))

vol(P∩Bε(p))
where P is a plane containing p of the same

dimension as V . Kurdyka and Raby showed that the density is well-defined for
subanalytic sets, as a positive real number [72]. It is thus natural to conjecture
(I did so in 1988) that the density of a subanalytic set is continuous along strata
of a subanalytic Whitney stratification, as a generalisation of Hironaka’s theorem
to the real case. This was partially proved by G. Comte in his thesis (1998) for
subanalytic (w)-regular stratifications [17], and more generally for subanalytic (b∗)-
regular stratifications. The general conjecture was proved for subanalytic (b)-regular
stratifications by G. Valette in 2008 [141]. Valette also showed that the density is a
Lipschitz function along strata of a subanalytic (w)-regular stratification. Analogous
theorems for the continuity (resp. Lipschitz variation) of Lipschitz-Killing invariants
along strata of a definable Whitney (resp. (w)-regular) stratification were proved by
Nguyen and Valette in 2018 [94].

For a long time it was thought that Whitney regularity might impose restrictions
on the space of limits of tangents to a stratified set. In the case of an isolated
singularity this was shown not to be the case by a construction of Kwiecinski and
Trotman proving that any continuum (compact connected set) can be realised as
the tangent cone or Nash fibre of a Whitney (b)-regular stratified set at an isolated
singular point [73].

In the paper [54] about equimultiplicity, Hironaka proved results about the
normal cones of complex analytic Whitney stratifications that one can generalise
to the subanalytic case as follows. Suppose Z is a stratified subset of Rn and let
Y be a stratum. Let πY be the projection of a tubular neighbourhood of Y and let
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μ(v) = v
‖v‖ . The normal cone is defined to be:

CY Z = {(x, μ(xπY (x)))|x ∈ Z − Y }|Y ⊂ Rn × Sn−1.

Let p : CY Z → Y be the canonical projection.

Theorem 4.10.1 A (b)-regular subanalytic stratification of a subanalytic set is

(npf) normally pseudo-flat, i.e. p is an open map, and
(n) for each stratum Y and each point y of Y , the fibre (CY Z)y of the normal cone

at y is equal to the tangent cone Cy(Zy) at y to the special fibre πY
−1(y).

The proofs are by integration of vector fields [52, 54, 98].
The result is not true for definable sets in non-polynomially bounded o-minimal

structures, as shown by the following examples, together with Miller’s dichotomy
that an o-minimal structure is polynomially bounded if and only if it does not contain
the exponential function as a definable function [84].

Example 4.10.2 Take Z in R3 to be the graph of the function f : [0,∞) × R → R
defined by

z = f (x, y) = x − x

ln(x)
ln(y + (x2 + y2)

1
2 ).

Stratify Z by Z1 = {0y} ⊂ Z. One checks easily that (CY Z)0 is an arc, while
C0(Z0) is a point so that the criterion (n) above fails. Moreover the example is not
normally pseudoflat, nor (b∗)-regular, but it is Whitney (b)-regular (see [138] and
[135]).

Example 4.10.3 Consider the closure of the graph in R3 of the function

g(x, y) = yx2+1

defined on R × (0,∞]. This is an example of Pawłucki of a definable stratified set
which is (b)-regular but not a C1 manifold with boundary [103]. It is not normally
pseudoflat. Also the three dimensional stratified set defined by the span of this graph
and the plane {z = 0} provides the first example of a definable Whitney stratified
set for which the density is not continuous along a stratum. For details see [135].

In [98] real algebraic (a)-regular examples are given showing that (n) does not
imply (npf ) and conversely.

Example 4.10.4 First let (0z) = Z1 ⊂ Z = {x(x2 +y2)z2 −(x2 +y2)2 +xy2 = 0}.
Then (a) and (n) hold but (npf ) fails.

Example 4.10.5 Finally look again at {y2 = t2x2 + x3}, stratified by the t-axis and
its complement. Here (n) fails, because (CY Z)0 consists of 2 points while C0(Z0)

consists of 1 point, but it is normally pseudoflat.
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4.11 Algebraic Topology of Stratified Spaces

Because stratified sets are a generalisation of smooth manifolds to singular spaces
it is natural to study the analogues of the highly developed theories concerning the
algebraic and differential topology of manifolds.

For example Morse theory has been generalised to stratified Morse theory by
Goresky and MacPherson [41]. Not all Whitney stratified sets admit Morse func-
tions in their sense, however Morse functions (exist and) are dense on subanalytic
sets. See the contribution of Mark Goresky to this handbook for an account of
the current state of stratified Morse theory. Also Poincaré duality is a fundamental
property of compact smooth manifolds. To provide a suitable generalisation of this
duality Goresky and MacPherson developed intersection homology for stratified
spaces in 1980 [40].

In his 1976 thesis Goresky developed a geometric theory for homology and
cohomology carried by Whitney stratified chains and cochains [39]. He proved
that the homology of a compact smooth manifold can be represented by Whitney
stratified cycles, and that the cohomology of a compact Whitney stratified set can
be represented by Whitney stratified cocycles. Murolo [87] showed how to obtain
an isomorphism between the homologies and cohomologies.

A basic theorem in smooth manifold theory is the Poincaré-Hopf theorem
equating the Euler characteristic of a compact manifold, possibly with boundary,
with the total index of a vector field with isolated zeros. For stratified vector fields
on a Whitney stratified set one has to impose restrictions on the vector field, for
example to be radial, i.e. exiting from a family of tubes around each stratum, as
first defined by M.-H. Schwartz [110]. She used in fact the stronger (w)-regular
stratifications in the case of real analytic manifolds with boundary. More general
theorems are due to Simon [116] for radial vector fields on (c)-regular stratified
sets and to King and Trotman [64] who allow more general stratified sets (including
closure orderable subanalytic partitions of a given subanalytic set) and more general
vector fields : semi-radial vector fields (which never point orthogonally into a tube)
and even arbitrary (generic) vector fields by introducing a notion of virtual index.
The very large quantity of results concerning index theorems and Chern classes
for singular real and complex analytic varieties up to 2009, almost always using
Whitney stratifications, is described by Brasselet, Seade and Suwa in their book
[13].

There are versions of the De Rham theorem for stratified spaces and intersection
cohomology due to several authors, including Brasselet, Hector and Saralegui [11],
also Brasselet and Legrand [12]. Extensive work on the signature of compact
stratified pseudomanifolds is due to Albin, Leichtnam, Mazzeo and Piazza [1],
related to Melrose’s iterated fibration construction. These references are mere
examples in a large body of literature.

The study of the topology of Whitney stratified sets is very much alive. Recent
work includes a study of their combinatorial properties by Ehrenborg, Goresky
and Readdy [27], and a stratum-sensitive approach to homotopy theory in Woolf’s
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transversal homotopy theory [149]. The precise relation of Whitney stratified sets
and Thom maps to the deep work of Ayala, Francis, Tanaka and Rozenblyum on
local properties of a new class of conically smooth stratified spaces is currently
conjectural [2, 3].

4.12 Real World Applications

In so far as (a)-regular stratification is essential in the proof that the space
of smooth functions corresponding to the elementary catastrophes is an open
set (by Theorem 4.2.12 [126, 130]), so that the properties of the functions are
stable, there are hundreds of very varied applications of Whitney stratifications in
papers on applications of catastrophe theory to physics (e.g. gravitational lensing),
engineering, ship design, economics, urban geography, paleontology, psychology,
biology, etc.

Canny used Whitney stratifications to define roadmaps (curves connecting two
points in a semialgebraic set) in his prize-winning work on finding simple expo-
nential algorithms for the generalised piano-mover’s problem [16] in theoretical
robotics. He uses a general position trick to avoid using the doubly exponential
algorithm constructing a Whitney stratification of a given algebraic set [86].

More recently Damon, Giblin and Haslinger and Damon with Gasparovic have
used extensively Whitney stratifications in their work on the mathematics of natural
images and on skeletal structures [20, 21].
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