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Abstract The problem of resolution of singularities and its solution in various
contexts can be traced back to I. Newton and B. Riemann. This paper is an attempt
to give a survey of the subject starting with Newton till the modern times, as well as
to discuss some of the main open problems that remain to be solved. The main
topics covered are the early days of resolution (fields of characteristic zero and
dimension up to three), Zariski’s approach via valuations, Hironaka’s celebrated
result in characteristic zero and all dimensions and its subsequent strengthenings and
simplifications, existing results in positive characteristic (mostly up to dimension
three), de Jong’s approach via semi-stable reduction, Nash and higher Nash blowing
up, as well as reduction of singularities of vector fields and foliations. In many
places, we have tried to summarize the main ideas of proofs of various results
without getting too much into technical details.

3.1 Introduction

Let X be a singular irreducible algebraic variety. A resolution of singularities of X

is a birational proper morphism

π : X′ → X (3.1)

such that X′ is non-singular.
A morphism π : X′ → X is said to be birational if there exists a proper algebraic

subvariety Y � X such that π induces an isomorphism

π

∣
∣
∣X′\π−1(Y ) : X′ \ π−1(Y ) → X \ Y .

The subvariety Y is sometimes called the center of the blowing up π and Y ′ :=
π−1(Y ) the exceptional set of π .
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π π

X 0

X

(a)

π

(b)

Fig. 3.1 Resolution of singularities. The center of the blowing up is in blue and the exceptional
set in red. (a) Nodal curve y2 − x2 − x3 = 0. (b) Non-degenerate quadratic cone z2 − x2 − y2 = 0

A morphism π is birational if and only if it induces an isomorphism

K(X) ∼= K(X′)

between the fields of rational functions of X and X′.
Figure 3.1 depicts resolution of singularities of the nodal curve and of the non-

degenerate quadratic cone.
The equivalence relation induced by all the relations of the form X ∼ X′ where

X′ admits a birational morphism (3.1) is called the birational equivalence relation.
A very closely related question is resolution of singularities of analytic varieties.

To state it, replace “algebraic” by “analytic” and “birational” by “bimeromorphic”
in the definitions above.

Locally (in the sense of valuation theory explained in detail below) resolution
of singularities can be understood as parametrizing wedges of the singular variety
X by non-singular algebraic varieties. If X is an (analytically) irreducible curve,
resolution of singularities of X is the same as a parametrization of X by a non-
singular curve.
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The goal of this paper is to give a survey of known results about existence
and various constructions of resolution of singularities in cases where it has been
achieved as well as discuss the status of this problem in cases when it is still open.

3.1.1 Motivation, Significance and Some Applications
of Resolution of Singularities

(1) There are many objects and constructions which can only be defined, or at least
are much easier to define and study for non-singular varieties. These include
Hodge theory, singular and étale cohomology, the canonical divisor, etc.

(2) The classification problem.

In any branch of mathematics, there are usually guiding problems, which are so
difficult that one never expects to solve them completely, yet which provide stimulus
for a great amount of work, and which serve as yardsticks for measuring progress in
the field. In algebraic geometry such a problem is the classification problem. In its
strongest form, the problem is to classify all algebraic varieties up to isomorphism. We
can divide the problem into parts. The first part is to classify varieties up to birational
equivalence. As we have seen, this is equivalent to the question of classifying all the
function fields (finitely generated extension fields over k) up to isomorphism. The
second part is to identify a good subset of a birational equivalence class, such as the
nonsingular projective varieties, and classify them up to isomorphism. The third part
is to study how far an arbitrary variety is from one of the good ones considered above.
In particular, we want to know (a) how much do you have to add to a nonprojective
variety to get a projective variety, and (b) what is the structure of singularities, and how
can they be resolved to give a nonsingular variety?

Robin Hartshorne, Algebraic Geometry, §1.8 What is Algebraic Geometry? [88].

From this point of view, resolution of singularities answers a very natural
question: does every birational equivalence class contain a non-singular variety
(a non-singular model) and, more precisely, is every singular variety X

birationally dominated by a non-singular one as in (3.1)? Once this question
has been answered affirmatively, one may, on the one hand, look for birational
invariants, that is, numbers associated to the given birational equivalence class
and defined in terms of some non-singular model, and, on the other hand,
address the finer questions about the relation between different non-singular
models in the given birational equivalence class and what can be said about the
relation between the resolution of singularities and the original singular variety
which it dominates. This is a very active area of research, known as the Mori
program; it has been the stage of some spectacular recent developments.

(3) Embedded desingularization is a somewhat stronger form of resolution of
singularities, which is particularly useful for applications. Suppose that X is
embedded in a regular variety Z. Embedded desingularization asserts that there
exists a sequence ρ : Z̃ → Z of blowings up along non-singular centers
(this notion will be defined precisely below), under which the total transform
ρ−1(X) of X becomes a divisor with normal crossings, which means that all
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of its irreducible components are smooth hypersurfaces and locally at each
point of Z̃, ρ−1(X) is defined by a monomial with respect to some regular
system of parameters. Geometrically, this means that at every point of Z̃ there
exists a local coordinate system such that ρ−1(X) looks locally like a union of
coordinate hyperplanes, counted with certain multiplicities. Thus divisors with
normal crossings locally have a very simple structure. There are many situations
in which it is useful to know that every closed subvariety can be turned into
a divisor with normal crossings by blowing up. For example, this is used for
compactifying algebraic varieties (problem (b) mentioned in the passage by R.
Hartshorne cited above). Let X be a regular algebraic variety over a field k,
embedded in some projective space P

n
k . If X is not closed in P

n
k , we can always

consider its Zariski closure X̄, which is, by definition, projective over k. The
problem is that even though we started with a regular X, X̄ may well turn out
to be singular. Resolution of singularities, together with its embedded version,
assures us that, after blowing up closed subvarieties, disjoint from X, we may
embed X in a regular projective variety X′ such that X′\X is a normal crossings
divisor.

(4) Finally, resolution of singularities is useful for studying singularities them-
selves. Namely, let ξ ∈ X be a singularity and let π : X̃ → X be a
desingularization. We may adopt the following philosophy for studying the
singularity ξ . All the regular points are locally the same; every singular point
is singular in its own way. We may regard resolution of singularities as a way
of getting rid of the local complexity of the singularity ξ and turning it into
global complexity of the regular variety X̃. Thus some global invariant of X̃

may also be regarded as an invariant of the singularity ξ . For example, if X is
a surface and the singularity ξ is isolated, then π−1(ξ) is a collection of curves
on the regular surface X̃. By embedded resolution for curves, we may further
achieve the situation where π−1(ξ) is a normal crossings divisor (a resolution
of singularities having this property is called a good resolution). If {Ei}1≤i≤n,
are the irreducible components of π−1(ξ), then the intersection matrix (Ei.Ej )

(equivalently, the dual graph of the configuration
n⋃

i=1
Ei ) is an important

combinatorial invariant associated to the singularity ξ . A good illustration of
the usefulness of replacing local difficulties by global is D. Mumford’s theorem
that asserts that a normal surface singularity which is topologically trivial is
regular. More precisely, given a normal surface singularity ξ ∈ X over C, one
may consider its link, which is the intersection of X with a small Euclidean
sphere centered at ξ . The link is a real 3-dimensional manifold. Mumford’s
theorem asserts that if the link is simply connected, then ξ is regular. The
idea behind Mumford’s proof is that the link is nothing but the boundary of

a tubular neighbourhood of the collection
n⋃

i=1
Ei of non-singular curves on the

non-singular surface X̃. This really helps analyze the link.
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3.2 A Brief Early History of the Subject: First Constructions
of Resolution of Curve Singularities

3.2.1 Newton Polygon and Newton’s Rotating Ruler Method
for Resolving Plane Curve Singularities

Resolution of singularities of plane curves is due to Newton and Puiseux.
Consider a polynomial or a power series f (x, y) = ∑

i,j∈N
ajix

iyj , where aij ∈ C,

f (0, 0) = 0 and there exists a strictly positive integer n such that

a0n �= 0 (3.2)

(that is, the monomial yn appears in f with a non-zero coefficient). Newton and
Puiseux proved that, viewed as an equation in y to be solved in functions of x,
f (x, y) = 0 has a solution in Puiseux series of x (by definition, in a Puiseux series
the exponents are rational numbers with bounded denominators).

Theorem 3.2.1 (Newton 1676, Puiseux 1850) There exists a strictly positive

integer m and a Puiseux series y(x) =
∞∑
i=1

cix
i
m such that f (x, y(x)) ≡ 0 as a

series in x
1
m .

Remark 3.2.2 Let K =
∞⋃

m=1
C

((

x
1
m

))

. Theorem 3.2.1 says, in particular, that K

is algebraically closed. This was the motivation and the point of view adopted by
Puiseux.

Newton Polygon
In order to prove Theorem 3.2.1, Newton introduced the notion of Newton

polygon which, together with its generalization to higher dimensions called Newton
polyhedron [60, 94–96, 140] has proved to be one of the most fundamental tools in
the theory of resolution of singularities.

Let R2+ denote the first quadrant of R2.

Definition 3.2.3 The Newton polygon of f , which we will denote by �(f, y), is
the convex hull of the set

⋃

(i,j)∈N2

aij �=0

(

(i, j) + R
2+)

)

⊂ R
2.

Let n be the smallest strictly positive integer satisfying (3.2).

Definition 3.2.4 The vertex (0, n) is called the pivotal vertex of �(f, y). The non-
vertical edge of �(f, y) containing (0, n) is called the leading edge of �(f, y).
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As Newton says, to trace the leading edge we put a vertical ruler through (0, n) and
rotate it till it hits another point (i, j) with aij �= 0 (equivalently, another vertex of
�(f, y)). Let E denote the leading edge of �(f, y). Let inEf := ∑

(i,j)∈E

aij x
iyj .

The polynomial inEf is called the initial form of f with respect to E. The
leading edge, the pivotal point, the initial form of f with respect to an edge and
their generalizations to the higher dimensional context of Newton polyhedra play a
crucial role in many constructions of resolution of singularities today.

We give a sketch of Newton’s proof of Theorem 3.2.1.

Proof If E is horizontal then yn | f , so y = 0 is a root of f of multiplicity n.
Assume that E is not horizontal. Let α be a root of inEf (1, y) and s the multiplicity
of the root α.

Write the slope of E as − q
r

, where q and r are two relatively prime strictly
positive integers. There are two cases to be considered.

Case 1. We have inEf �= a0n

(

y − αx
r
q

)n

. In other words,

s < n. (3.3)

Put x1 = x
1
q and y1 = y

xr
1

− α. Make the substitution

x = x
q
1 (3.4)

y = y1x
r
1 + αxr

1 . (3.5)

Case 2. We have inEf = a0n

(

y − αx
r
q

)n

. Note that in this case, by Newton’s

binomial theorem, we have
(

n − 1, r
q

)

∈ E. This implies that r
q

∈ N (in other

words, q = 1) and ar,n−1 �= 0.

Remark 3.2.5 Here we are using in a crucial way the fact that char C = 0. This
phenomenon will have important repercussions later when we discuss H. Hironaka’s
proof of resolution of singularities in characteristic zero and all dimensions, the
notions of Tschirnhausen transformation and maximal contact used there and the
failure of all them over fields of characteristic p > 0.

Put x1 = x and y1 = y − αxr
1. Make the substitution

x = x1 (3.6)

y = y1 + αxr
1 . (3.7)

In both cases, let f1(x1, y1) denote the polynomial or power series, resulting from
substituting (3.4)–(3.5) (resp. (3.6)–(3.7)) into f . Let

n1 = n − s in Case 1 (3.8)

n1 = n in Case 2. (3.9)
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A direct computation shows the following:

(a) the Newton polygon �(f1, y1) has (0, n1) as a vertex
(b) in Case 2, the slope of the leading edge of �(f1, y1) is strictly greater than − 1

r
.

Now, iterate the procedure to construct (xi, yi) and fi for i ∈ N. Since in Case
1 we have n1 < n, Case 1 can occur at most n times. Take i0 ∈ N such that Case
2 occurs for all i ≥ i0. For i > i0, let − 1

ri
denote the slope of the leading edge

of the Newton polyhedron �(fi, yi). Our iterative procedure produces xi = xi0 ,

yi = yi0 −
i−1∑

j=i0

bjx
rj
i0

for suitable bj ∈ C. According to statement (b) above, the

sequence of integers (ri)i is strictly increasing with i, hence goes to ∞ (it may
happen that the leading edge of �(fi, yi) becomes horizontal for some finite i, in
which case we set all the subsequent coefficients bj to be equal to 0; the procedure

will stop here). Let y∞ := yi0 −
∞∑

j=i0

bjx
rj
i0

, substitute yi0 = y∞ +
∞∑

j=i0

bjx
rj
i0

into

fi0 and let f∞ be the resulting polynomial (resp. power series). The leading edge of
�(f∞, y∞) has slope strictly greater than − 1

ri
for all i, hence it is horizontal. Thus

y
ni0∞

∣
∣
∣ f∞, so yi0

(

xi0

) :=
∞∑

j=i0

bjx
rj
i0

is a root of fi0 of multiplicity ni0 .

Let m :=
i0∏

j=0
qi , Q :=

i0∑

j=0

j∏

�=0
q� and R :=

i0∑

j=0

j∏

�=0
r�. By construction, we have

xi0 = x
1
m (3.10)

and

yi0 = yx
− R

Q + g
(

x
1
m

)

, (3.11)

where g is a suitable polynomial with complex coefficients. Let
∞∑
i=1

cix
i
m be the

Puiseux series x
R
Q

(
∞∑

j=i0

bjx

rj
m

i0
− g

(

x
1
m

)
)

. Making the substitution (3.10)–(3.11)

back into fi0 and setting y(x) :=
∞∑
i=1

cix
i
m , we see that (y − y(x))ni0 | f , that is,

y(x) is a root of f of multiplicity ni0 , as desired. �

Remark 3.2.6 Every time Case 1 occurred in Newton’s algorithm some choices
needed to be made. For example, if Case 1 happens at the first step we had to
choose a root α of inEf . Counted with multiplicity there were s = n − n1 such
choices. Starting with the step i0 we have constructed a root of f of multiplicity ni0 .
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Therefore the total number of roots of f obtained by this procedure, counted with

multiplicity, is ni0 +
i0−1∑

j=0

(

nj − nj+1
) = n.

Remark 3.2.7 In the Newton–Puiseux theorem, assume that f is either a poly-
nomial or a convergent power series. It is not hard to show (by estimating the
coefficients bj at each step of the construction) that the Puiseux series produced
by Newton’s algorithm is also convergent. Assume, in addition, that the plane
complex curve C := {f (x, y) = 0} is irreducible as an analytic space (in other
words, has only one branch near the origin). Then Newton’s procedure gives a
parametrization of C near the origin by a complex disk with the coordinate xi0 ,
that is, a resolution of singularities of a suitable neighbourhood of the origin in C.
Algebraically, this resolution of singularities is described by the birational, injective

ring homomorphism C{x, y} ↪→ C{xi0}, that maps x to xm
i0

and y to
∞∑
i=1

cix
i
i0

.

More generally, if the analytic curve C has several branches, parametrizations
of each of them are obtained by making suitable choices of roots in Newton’s
algorithm.

While we are on the subject of resolution of plane curve singularities and Newton
polygon, we mention an important work [114] by Monique Lejeune-Jalabert that
paved the way to the approach to resolution of singularities and local uniformization
via key polynomials (see below).

Global resolution of singularities of analytic curves is due to B. Riemann and was
achieved using complex-analytic methods. Indeed, the Riemann surface associated
to a complex-analytic curve is its resolution of singularities.

Purely algebraic proofs of resolution of curve singularities were given much later
by Italian geometers like Albanese [13]. Albanese’s proof consists in projecting
a singular curve embedded in a projective space of a sufficiently large dimension
(more than twice than the degree of the curve) from one of its singular points and
showing that this process improves the singularity. Below we will discuss a beautiful
one-step procedure defined by O. Zariski [168] that resolves singularities of curves.

3.3 Blowing Up, Multiplicity and the Hilbert–Samuel
Function

In this section we introduce one of the main tools for constructing resolution of
singularities: blowing up. Blowing up of a variety X along a subvariety Y (more
generally, along an ideal sheaf I) is a birational projective morphism π : X′ → X,
defined below, that induces an isomorphism π

∣
∣
X′\π−1(Y ) : X′ \ π−1(Y ) → X \ Y .

As we will see, blowing up of a non-singular variety along a non-singular subvariety
is again non-singular. Thus a very general idea for constructing a resolution of
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singularities of a variety X, that we will explain in more detail below, goes as
follows.

(1) Embed X in a non-singular variety Z.
(2) Construct a sequence

Z
ρ1←− Z1

ρ2←− . . .
ρi←− Zi (3.12)

of blowings up along non-singular centers and study the strict transform Xi

of X in Zi (defined below) in the hope of improving and eventually eliminating
the singularities of Xi . We now go for precise definitions.

Let X be an affine algebraic variety with coordinate ring A and I = (f1, . . . , fn)

an ideal of A. As usual, V (I) will denote the zero locus of I .

Definition 3.3.1 The blowing up of X along I is the birational projective mor-
phism π : X̃ → X, defined as follows. Consider the morphism φ : X\V (I) →
X ×k P

n−1
k , which sends every ξ ∈ X \ V (I) to (ξ, (f1(ξ) : · · · : fn(ξ))) ∈

X×kP
n−1
k . The blowing up X̃ is defined to be the closure φ(X \ V (I)) ⊂ X×kP

n−1
k

in the Zariski topology.

Remark 3.3.2 Since the blowing up X̃ = φ(X \ V (I)) ⊂ X ×k P
n−1
k , the natural

projection X ×k P
n−1
k → X induces a map X̃ → X. In particular, X̃ is projective

over X.
The natural map π : X̃ → X is an isomorphism away from V (I) (the inverse

mapping is given by φ). This means that the map π : X̃ → X is birational.

Remark 3.3.3 If X is irreducible (that is, A is an integral domain), then X̃ is covered
by n affine charts Ui , i ∈ {1, . . . , n} with coordinate rings

A

[
f1

fi

, . . . ,
fn

fi

]

, 1 ≤ i ≤ n, (3.13)

where the glueing of the charts is implicit in the notation.

Example 3.3.4

1) Blowing up the plane at a point. Let X = k2 be the affine plane, A = k[x, y]
its coordinate ring and I = (x, y) the ideal defining the origin. Let (u1, u2) be
homogeneous coordinates on P

1
k . We have the map k2\{0} → k2 ×P

1
k that sends

the point (x, y) to the point (u1 : u2) ∈ P
1
k .

The blowing up X̃ is defined in k2 ×k P
1
k by the equation xu2 − yu1 = 0. For

example, if k = R, then X̃ is nothing but the Möbius band.
Perhaps the most useful way of thinking about the blowing up X̃ is that it
is a variety glued together from two coordinate charts with coordinate rings

k
[

u1,
u2
u1

]

and k
[

u2,
u1
u2

]

, where, again, the glueing is implicit in the notation.
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2) More generally, we can blow up the affine n-space at the origin. Let

A = k[x1, . . . , xn], I = (x1, . . . , xn).

Let u1, . . . , un denote homogeneous coordinates on P
n−1
k . Then X̃ ⊂

kn × P
n−1
k is the subvariety defined by the equations xiuj − xjui , 1 ≤

i, j ≤ n. Again, X̃ is covered by n coordinate charts with coordinate rings

k
[

u1
ui

, . . . ,
ui−1
ui

, ui,
ui+1
ui

, . . . , un

ui

]

, 1 ≤ i ≤ n.

3) Even more generally, the blowing up X̃ of kn along (x1, . . . , xl) for l < n is the
subvariety of kn × P

l−1 defined by the equations xiuj − xjui , 1 ≤ i, j ≤ l.
The blowing up X̃ is covered by l coordinate charts with coordinate rings

k
[

u1
ui

, . . . ,
ui−1
ui

, ui,
ui+1
ui

, . . . , ul

ui
, ul+1, . . . , un

]

. Intuitively, we may think of

this last construction as first blowing up the origin in kl and then taking the
direct product of the whole situation with kn−l .

3.3.1 The Universal Mapping Property of Blowing Up

We now give a characterization of the blowing up of a variety X along an ideal
I ⊂ A by a universal mapping property (in particular, this characterization makes
no reference to any particular ideal base (f1, . . . , fn) of I ).

Let π : X̃ → X be a morphism of algebraic varieties and I a coherent ideal
sheaf on X. Let X̃ = ⋃

i,j∈
i

Vij and X = ⋃

1≤i≤s

Ui be the respective coverings by

affine charts, where the 
i are certain index sets such that π−1(Ui) = ⋃

j∈
i

Vij ,

1 ≤ i ≤ s. Let Ai denote the coordinate ring of Ui and Bij that of Vij . For each i

and each j ∈ 
i we have a homomorphism Ai → Bij . Let π∗I denote the coherent
ideal sheaf on X̃ whose ideal of sections over Vij is IiBij .

Let X be a scheme and I a coherent ideal sheaf on X. The idea, which we now
explain in detail, is that the blowing up π : X̃ → X of X along I is characterized
by the universal mapping property with respect to making π∗I invertible (see the
Definition below).

Definition 3.3.5 Let I be an ideal in a ring A. The ideal I is said to be locally
principal if for every maximal ideal m of A the ideal IAm is principal. The ideal I

is said to be invertible if for every maximal ideal m of A the ideal IAm is principal
and generated by a non-zero divisor.

Of course, if A is a domain, then invertible and locally principal are the same thing;
this case will be our main interest in the present paper.

Definition 3.3.6 An ideal sheaf I on a variety X is locally principal if there exists
an affine open cover X = ⋃

i

Ui such that, denoting by Ai the coordinate chart of
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Ui , the ideal IUi of sections of I is a principal ideal of Ai for all i. The ideal sheaf
I is said to be invertible if each IUi is principal and generated by an element which
is not a zero divisor.

Again, if X is irreducible then invertible and locally principal are the same thing.
Let the notation be as in (3.13) above. We have

IA

[
f1

fi
, . . . ,

fi−1

fi
,
fi+1

fi
, . . . ,

fn

fi

]

= (f1, . . . , fn)A

[
f1

fi
, . . . ,

fi−1

fi
,
fi+1

fi
, . . . ,

fn

fi

]

=

= (fi )A

[
f1

fi

, . . . ,
fi−1

fi

,
fi+1

fi

, . . . ,
fn

fi

]

, (3.14)

so that π∗I is invertible on X̃. Since we are dealing with a local property, this
statement remains valid even if X is not affine. In other words, if π : X̃ → X is the
blowing up of a coherent ideal sheaf I, then π∗I is invertible.

We now point out that this property is also sufficient to characterize blowing
up. Namely, the blowing up π of I is the smallest (in the sense explained in
Theorem 3.3.7 below) projective morphism such that π∗I is invertible. More
precisely, we have the following theorem.

Theorem 3.3.7 (The Universal Mapping Property of Blowing Up [88], Propo-
sition II.7.14, p. 164) Let ρ : Z → X be a morphism of irreducible algebraic
varieties such that ρ∗I is invertible. Then ρ factors through X̃ in a unique way.

Proof We briefly sketch the idea of the proof. Since ρ∗I is invertible, at each point

of Z it must be generated by one of the fi . Hence Z admits a covering Z =
n⋃

i=1
Vi

by affine charts with coordinate rings Bi such that IBi = (fi)Bi . Then
fj

fi
∈ Bi , so

A

[
f1

fi

, . . . ,
fi−1

fi

,
fi+1

fi

, . . . ,
fn

fi

]

↪→ Bi. (3.15)

The inclusion (3.15) determines a morphism λi : Vi → Ui of affine algebraic
varieties, where Ui is as in (3.13). Glueing together the morphisms λi , 1 ≤ i ≤ n,
gives the desired factorization of ρ through X̃. �

Remark 3.3.8 All of the above definitions, constructions and results can easily be
generalized to the case of varieties that may be reducible. We chose to work with
irreducible ones to simplify the notation and the exposition.

3.3.2 Strict Transforms

Let Z be an irreducible variety and I a coherent ideal sheaf on Z. Let ι : X ↪→ Z

be a closed irreducible subvariety of Z with its natural inclusion ι. Let π : Z̃ → Z
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be the blowing up along I. Let X̃ := π−1(X\V (I)) ⊂ Z̃, where “¯” denotes the
closure in the Zariski topology.

Definition 3.3.9 The variety X̃ is called the strict transform of X under π .

Of course, X̃ ⊂ π−1(X) = X̃ ∪ π−1(V (I)). To distinguish it from the strict
transform, π−1(X) is sometimes called the total transform of X under π . We state
the following useful fact without proof.

Theorem 3.3.10 The variety X̃ together with the induced morphism ρ : X̃ → X is
nothing but the blowing up of the coherent ideal sheaf ι∗I on X.

Example 3.3.11 Let k be a field and u, v—independent variables. Let Z = k2 be
the affine plane with coordinate ring k[u, v], I = (u, v) and X—the plane curve
{

u2 − v3 = 0
} ⊂ Z.

The blowing up Z̃ of Z along I is covered by two affine charts with coordinate
rings

k
[u

v
, v

]

and k
[

u,
v

u

]

.

Let us denote the coordinates in the first chart U1 by u1, v1, so that v = v1, u =
u1v1. Let u2, v2 be the coordinates in the second chart U2, so that u = u2, v = u2v2.

To calculate the strict transform X̃ of U2, we first find its full inverse image. This
inverse image is defined by the equation u2 −v3, but written in the new coordinates:

u2 − v3 = u2
2 − u3

2v
3
2 = u2

2(1 − u2v
3
2).

Here u2 = 0 is the equation of the exceptional divisor. To obtain the strict transform
X̃, we must factor out the maximal power of u2 out of the equation. In this case,
X̃ ∩ U2 is defined by 1 − u2v

3
2. In U1, we have

u2 − v3 = u2
1v

2
1 − v3

1 = v2
1(u2

1 − v1).

Here v1 = 0 is the equation of exceptional divisor, so that X̃ ∩ U1 = V (u2
1 − v1).

In particular, note that although X had a singularity at the origin, X̃ is non-singular.
Thus, in this example we started with a singular variety X with one singular point,
blew up the singularity and found that the strict transform of X became non-singular.
That is, we obtained a resolution of singularities of X after one blowing up.
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3.3.3 Fundamental Numerical Characters of Singularity:
Multiplicity and the Hilbert–Samuel Function

We can now elaborate on the very general description of many constructions of
resolution of singularities by sequences of blowings up, given at the beginning of
this section.

Typically, we embed the variety X we want to desingularize into an ambient
non-singular variety Z. Our goal is to successively construct a sequence (3.12) of
blowings up along non-singular centers (that is, blowings up that are isomorphic
to 3) of Example 1 locally in the classical or étale topology) and study the strict
transform Xi of X in Zi . We want to choose the center of the blowing up ρi

at each step so as to “improve” the singularities of Xi . The precise meaning of
“improve” is the following. Associate to each singular point ξ of Xi a discrete,
upper-semicontinuous numerical character d(ξ), that is, an element of a fixed well-
ordered set, usually a finite string of non-negative integers or a function N → N.
Improving the singularities of Xi means ensuring that

max {d(ξ) | ξ ∈ Xi+1 } < max {d(ξ) | ξ ∈ Xi } . (3.16)

Experience shows that the best bet for achieving the strict inequality (3.16) is to
blow up the largest possible centers contained in the maximal stratum of d(ξ).

In this subsection we define the most fundamental numerical characters that
usually go into the leading place of d(ξ): multiplicity and its generalization—the
Hilbert–Samuel function.

Let k be a field, n a strictly positive integer and X = V (f ) an (n−1)-dimensional
hypersurface in kn. Write f = ∑

α

cαuα, where cα ∈ k, u = (u1, . . . , un), α =

(α1, . . . , αn) runs over a finite subset of Nn and uα =
n∏

j=1
u

αj

j is the usual multi-

index notation. Further, we will use the notation |α| =
n∑

j=1
αj .

Definition 3.3.12 The multiplicity of f at the origin of kn is the quantity

mult0f := min{|α| | cα �= 0}.

The multiplicity at any other point ξ = (a1, . . . , an) of kn is defined similarly, but
using the expansion of f in terms of ui − ai instead of the ui .

Equivalently, the multiplicity of f at ξ is given by multξ f= max {n ∈ N | f ∈ mn },
where m = { g

h

∣
∣ g, h ∈ k[u], g(ξ) = 0 �= h(ξ)

}

is the maximal ideal of the local
ring of kn at ξ .

The only problem with this definition is that it is only valid for hypersurfaces
whereas we would like to work with varieties of arbitrary codimension. The
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generalization of multiplicity that is used in many constructions is the Hilbert–
Samuel function [21], which we now define.

Definition 3.3.13 Let (A,m, k) be a local Noetherian ring. The Hilbert–Samuel
function of A is the function HA,m : N → N, defined by HA,m(n) =
length

(
A

mn+1

)

(considered as an A-module).

By additivity of length,

length

(
A

mn+1

)

=
n

∑

i=0

dimk

mi

mi+1 , (3.17)

where the mi

mi+1 are k-modules, that is, k-vector spaces.

Note that since A is Noetherian, each of mi is finitely generated, so that all the
quantities in (3.17) are finite.

Theorem 3.3.14 (Hilbert–Serre) The function HA,m(n) is a polynomial for n �
0. In other words, there exists a polynomial P(n) with rational coefficients, such
that

P(n) = HA,m(n) for n � 0.

The polynomial P(n) is called the Hilbert polynomial of A.

Notation Let d(A) denote the degree of the Hilbert polynomial of A.

Example 3.3.15

1) Let k be a field and A = k[x1, . . . , xd ] the polynomial ring in d variables. Let
m = (x1, . . . , xd) be the maximal ideal corresponding to the origin in kd . Con-
sider the localization Am. The Hilbert-Samuel function of Am is HAm,m(n) =
length

(
A

mn+1

)

= (
n+d
d

)

, which is a polynomial in n of degree d . In this case,

HAm,m(d) is a polynomial for all n, not merely for n sufficiently large.
2) Let B := Am

(f )
, where f is a polynomial of multiplicity μ at the origin and let n

denote the maximal ideal of B. It is not hard to show that

HB,n =
(

n + d

d

)

if n < μ

=
(

n + d

d

)

−
(

n + d − μ

d

)

if n ≥ μ. (3.18)

Now,
(
n+d
d

)−(
n+d−μ

d

)

is a polynomial of degree d−1, whose leading coefficient
is μ

(d−1)! . This shows that in the case of hypersurface singularities multiplicity
can be recovered from the Hilbert–Samuel function. In fact, in this case
multiplicity and the Hilbert–Samuel function are equivalent sets of data.
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An important property of multiplicity, the Hilbert–Samuel function and the Hilbert
polynomial is that they are upper semicontinuous. This means that the stratum
of points on an algebraic variety X where the multiplicity (resp. Hilbert–Samuel
function, resp. the Hilbert polynomial) is greater than or equal to a given value is a
closed algebraic subvariety of X.

3.3.4 Normal Flatness and the Stability of the Hilbert–Samuel
Function Under Blowing-Up

In this subsection we provide further details on the above program of resolving the
singularities of any algebraic variety by constructing a sequence (3.12) of blowings
up that strictly decreases a certain upper semicontinuous numerical invariant d(ξ),
ξ ∈ X.

For a point ξ ∈ X, we denote by OX,ξ the local ring of X at ξ , that is, the ring
formed by all the rational functions g

h
on X whose denominator h does not vanish

at ξ . Let mX,ξ denote the maximal ideal of OX,ξ ; it is the ideal formed by all the g
h

such that g(ξ) = 0. Write HX,ξ for HOX,ξ ,mX,ξ
.

We define the leading component of our numerical invariant d(ξ) to be the
Hilbert–Samuel function HX,ξ (resp. multξX if X is a hypersurface, where multξX
denotes the multiplicity at ξ of a local defining equation of X in an ambient non-
singular variety Z near ξ ).

Let X be an algebraic variety, Y a subvariety of X and ξ a point of Y . Let IY

denote the ideal sheaf, defining Y in X. The normal cone of Y in X is defined to be
the algebraic variety with coordinate ring

∞
⊕

n=0

In
Y

In+1
Y

.

Assume that Y is non-singular.

Definition 3.3.16 (H. Hironaka 1964) We say that X is normally flat along Y at

ξ if
∞⊕

n=0

In

Y,ξ

In+1
Y,ξ

is a free OY,ξ -module. We say that X is normally flat along Y if it is

normally flat at every point ξ ∈ Y (equivalently, if CX,Y is flat over Y ).

Theorem 3.3.17 (B. Bennett, H. Hironaka) The variety X is normally flat along
Y at ξ if and only if HX,η = HX,ξ for all η ∈ Y near ξ (in other words, the Hilbert–
Samuel function of X is locally constant on Y near ξ ).

The next theorem (valid over fields of arbitrary characteristic) constitutes the first
step of the above program of constructing a resolution of singularities of any
algebraic variety by lowering a suitable numerical character d(ξ). Namely, it says



3 Resolution of Singularities: An Introduction 199

that a blowing up along a center Y over which X is normally flat does not increase
the Hilbert–Samuel function (resp. multiplicity).

Theorem 3.3.18 (H. Hironaka 1964) Let Y ⊂ X be a non-singular algebraic
subvariety of X over which X is normally flat. Let H denote the common Hilbert–
Samuel function HX,ξ for all ξ ∈ Y . Let π : X̃ → X be the blowing up along Y and
ξ̃ ∈ π−1(Y ). Then

HX̃,ξ̃ ≤ H (3.19)

(we compare Hilbert–Samuel functions in the lexicographical order, but in fact all
the inequalities we write such as (3.19) hold componentwise, that is, separately for
each n).

A subvariety Y as in the Theorem is sometimes referred to as a permissible center
of blowing up and the blowing π itself as a permissible blowing up.

If we can achieve strict inequality in (3.19), our proof of resolution of singular-
ities will be finished by induction. The difficult question is: what to do if equality
holds in (3.19)?

3.4 Resolution of Surface Singularities over Fields of
Characteristic Zero

Resolution of singularities of surfaces was constructed in late nineteenth—early
twentieth century by the Italian school (P. del Pezzo 1892, Beppo Levi 1897 [115,
116], O. Chisini 1921 [51], G. Albanese 1924 [13]) as well as by H.W.E. Jung 1908
[106], followed by the first completely rigorous algebraic proof by R. Walker 1935
[162] and another one by O. Zariski 1939 [169, 171].

Let k be an algebraically closed field of characteristic zero. Below we briefly
summarize Beppo Levi’s, Jung’s and O. Zariski’s constructions of resolution of
singularities of surface over k, with Beppo Levi’s proof valid only for hypersurfaces.

3.4.1 Beppo Levi’s Method

Let X be an algebraic surface over k, embedded in a smooth threefold Z. For a point
ξ ∈ X let multξX denote the multiplicity at ξ of a local defining equation of X in Z

near ξ . Beppo Levi’s algorithm goes as follows.

1) Let μ = max
{

multξX
∣
∣ ξ ∈ X

}

.
2) Let Sμ = {

ξ ∈ X
∣
∣ multξX = μ

}

. By upper semicontinuity of multiplicity, Sμ

is an algebraic subvariety of X, that is, a union of algebraic curves and points.
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3) First assume that Sμ is not a union of a normal crossings divisor with a finite set
of points.

4) The set of points of Sμ where it fails to be a normal crossings divisor is finite.
Blow up each of these points, and keep doing so until Sμ becomes a union of a
normal crossings divisor with a finite set of points.

5) If Sμ is a union of a normal crossings divisor with a finite set of points, let
π : X̃ → X be a blowing up of an irreducible component of Sμ.

6) By Theorem 3.3.18 (which Beppo Levi proved in the special case of two-
dimensional hypersurfaces over fields of characteristic zero), we have

μ ≥ max
{

multξ̃ X̃
∣
∣
∣ ξ̃ ∈ X̃

}

. (3.20)

7) If equality holds in (3.20), let S̃μ =
{

ξ̃ ∈ X̃

∣
∣
∣ multξ̃ X̃ = μ

}

. Again by

Theorem 3.3.18 we have S̃μ ⊂ π−1(Sμ). Observe that S̃μ is again a union of
a normal crossings divisor with a finite set of points (or the empty set).

8) Keep repeating the procedure of 5) until the locus of points of multiplicity μ

becomes the empty set. This completes the proof by induction on μ.

Remark 3.4.1 Predictably, Beppo Levi’s method of resolution of singularities fails
starting with dimension three. Reference [144] gives an example of a threefold X

in k4 all of whose singular points have multiplicity 2. The locus of multiplicity
2 is a normal crossings subvariety consisting of two lines that meet each other at
the origin. Blowing up any one of the two lines produces a new threefold whose
multiplicity 2 locus is a union of three lines. Blowing up one of those three lines
yields a threefold containing a singularity, isomorphic to the origin in X. Thus there
exists an infinite sequence of blowings up along non-singular components of the
locus of multiplicity 2 which does not resolve the singularities of X.

It was later pointed out by Zariski that none of the proofs of resolution of surfaces
by the Italian geometers was complete and some were outright wrong. The first
completely rigorous algebraic proof was given by R. Walker in 1935 [162].

3.4.2 Normalization

Before discussing the proofs by Jung and O. Zariski of 1939, we need to introduce
the notion of normalization.

Let A be an integral domain with field of fractions K . We may consider the
integral closure Ā of A in K (sometimes it is also called the normalization of A).
If A if of finite type over k, it is the coordinate ring of an irreducible affine algebraic
variety X. The inclusion A ↪→ Ā gives rise to the natural birational finite (hence
projective) morphism π : X̄ → X of irreducible algebraic varieties. The canonical
morphism π is called the normalization of the variety X. Because of the uniqueness
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of normalization, even if X is not affine, the separate normalizations of the various
affine charts of X glue together in a natural way to yield the normalization of X.

Definition 3.4.2 An integral domain is said to be normal if it coincides with its
normalization. An algebraic variety is said to be normal if the coordinate rings of all
of its affine charts are normal.

The notion of normalization was defined (surprisingly late—in 1939) by Oscar
Zariski [168]. This is a great example of the usefulness of the algebraic language
in geometry: this notion, extremely important as it turned out to be, did not
occur to anyone until the algebraic language was developed. The importance of
normalization for resolution of singularities is explained by the following result.

Theorem 3.4.3 (Zariski) Let A be a one-dimensional Noetherian local ring. Then
A is regular if and only if A is normal.

Corollary 3.4.4 (Zariski) If X is a normal algebraic variety,

dim Sing(X) ≤ dim X − 2.

Geometrically, Theorem 3.4.3 says that normalization resolves the singularities of
curves. More generally, it says that for an arbitrary reduced variety normalization
resolves the singularities in codimension 1. When normalization was defined, the
theorem of resolution of singularities of curves was known for almost a century,
yet it was quite a surprise that it had such a simple and elegant proof and that the
procedure for desingularization had such a simple description.

We now summarize Jung’s and Zariski’s methods for the resolution of surfaces.

3.4.3 Jung’s Method

1) Fix a projection σ : X → C
2 from our affine singular surface X to a plane and

consider the branch locus C of the σ .
2) Apply embedded resolution of plane curve singularities to the curve C, that is,

construct a sequence ρ : W ′ → C
2 of point blowings up such that the total

transform of C under ρ is a normal crossings divisor.
3) Let X′ := X ×

C
2 W ′. We obtain a cartesian square

X

σ

X

σ

W
ρ

C
2 (3.21)

4) Let X̄ → X′ be the normalization of X′. The branch locus of X̄ over W ′ is still
a normal crossings divisor.
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5) Observe that the fact that the branch locus of the normal surface X̄ has normal
crossings implies that the singularities of X̄ are of a very special type, namely,
cyclic quotient singularities (that is, singularities obtained from C

2 by taking a
quotient by a cyclic group; these are precisely the toric ones among the normal
surface singularities).

6) Resolve the cyclic quotient singularities by hand.

Remark 3.4.5 Even though normalization was officially defined by Zariski in 1939,
Jung constructs it by hand in this special case. Items 4) and 6) in Jung’s proof use
complex-analytic and topological methods (namely, the theory of ramified coverings
of analytic varieties).

3.4.4 Zariski’s Method

Let k be an algebraically closed field of characteristic zero and X an algebraic
surface over k. Zariski’s method for desingularizing X goes as follows.

1) Let X̄ → X be the normalization of X. According to Corollary 3.4.4, Sing
(

X̄
)

has codimension 2 in X̄, that is, is a finite union of isolated points.
2) Let X′ → X be the blowing up of all the singular points of X̄.
3) Replace X by X′ and go back to step 1). Keep iterating steps 1) and 2) until the

singularities are resolved.

Remark 3.4.6 Zariski’s algorithm has the virtue of being extremely easy to state.
However, proving that it works is technically quite difficult (an improved version of
this result was given later by J. Lipman). An intermediate step in the proof is to show
that after finitely many iterations the resulting surface X(i) has only sandwiched
singularities (see the definition below).

Definition 3.4.7 A surface singularity (X, ξ) is said to be sandwiched if a neigh-
bourhood of ξ in X admits a birational map to a non-singular surface.

Being sandwiched is quite a strong restriction; in particular, sandwiched singulari-
ties are rational.

3.5 Oscar Zariski

The appearance on the scene of O. Zariski and his school marks a completely new
era in the study of resolution of singularities. In the earlier section we mentioned the
introduction of normalization which gives a one-step procedure for desingularizing
curves in all characteristics, as well as Zariski’s proof of resolution for surfaces.
In the late nineteen thirties and early forties Zariski proposed a completely new
approach to the problem using valuation theory (building on some earlier ideas of
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Krull). In a nutshell this approach can be summarized as saying that valuation theory
provides a natural notion of “local” in birational geometry and allows to state a local
version of the resolution problem called Local Uniformization.

3.5.1 Valuations

For a detailed treatment of the basics of valuation theory, we refer the reader to [174]
and [155].

Definition 3.5.1 An ordered group is an abelian group � together with a subset
P ⊂ � (here P stands for “positive elements”) which is closed under addition and
such that

� = P
∐

{0}
∐

(−P).

Remark 3.5.2 The above decomposition induces a total ordering on �:

a < b ⇐⇒ b − a ∈ P.

Thus an equivalent way to define an ordered group would be “a group with a total
ordering which respects addition, that is, a > 0, b > 0 �⇒ a + b > 0”.

Note that an ordered group is necessarily torsion-free.

Example 3.5.3 The additive groupsZ,R with the usual ordering are ordered groups.
Any subgroup � ⊂ R is an ordered group with the induced ordering (more generally,
any subgroup of an ordered group is an ordered group). The group Z

n with the
lexicographical ordering is an ordered group.

All the ordered groups that appear in algebraic geometry are subgroups of groups

of the form
r⊕

i=1
�i , where �i ⊂ R for all i and the total order is lexicographic.

We are now ready to define valuations. Let K be a field, � an ordered group. Let
K∗ denote the multiplicative group of K .

Definition 3.5.4 A valuation of K with value group � is a surjective group
homomorphism ν : K∗ → � such that for all x, y ∈ K∗

ν(x + y) ≥ min{ν(x), ν(y)}. (3.22)

Remark 3.5.5 Let K be a field, ν a valuation of K and x, y non-zero elements of
K such that ν(x) �= ν(y). It is a consequence of Definition 3.5.4 that in this case
equality must hold in (3.22), that is,

ν(x + y) = min{ν(x), ν(y)}. (3.23)
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Example 3.5.6 Let X be an irreducible algebraic variety, K = K(X) its field of
rational functions, ξ ∈ X such that OX,ξ is a regular local ring. Let mX,ξ be the
maximal ideal of OX,ξ . Define νξ : K∗ → Z by

νξ (f ) = multξ f = max
{

n

∣
∣
∣ f ∈ mn

X,ξ

}

, f ∈ OX,ξ .

The map νξ extends from OX,ξ to all of K in the obvious way by additivity:

νξ

(
f

g

)

= νξ (f ) − νξ (g).

The map νξ induces a group homomorphism because
⊕ mn

X,ξ

mn+1
X,ξ

is an integral domain.

In the above example, note that ξ could be any scheme-theoretic point; for
example, it could stand for the generic point of an irreducible codimension 1
subvariety. In that case, the condition that OX,ξ be non-singular holds automatically
whenever X is normal (Theorem 3.4.3).

Remark 3.5.7 Let X be an irreducible algebraic variety, A its coordinate ring,

K = K(X)

the field of fractions of A, I ⊂ A an ideal. We can generalize the above example as
follows. Define

νI (f ) = max{n | f ∈ In}, for f ∈ A.

In general, νI is a pseudo-valuation, which means that the condition of additivity
in the definition of valuation is replaced by the inequality νI (xy) ≥ νI (x) + νI (y).
The map νI is a valuation if and only if ⊕ In

In+1 is an integral domain (a condition
which always holds if I is maximal and AI is regular).

Valuations of the form νI are called divisorial. The reason for this name is that
if A is the coordinate ring of an affine algebraic variety X, even if dim AI > 1, we
can always blow up X along I . Let π : X̃ → X be the blowing up along I . Then
K(X) = K

(

X̃
)

.

The property that ⊕ In

In+1 is a domain means that the exceptional divisor

D̃ := V (π∗I) = π−1(V (I))

is irreducible. Then OX̃,D̃ is a regular local ring of dimension 1 and νI = νD̃

measures the order of zero or pole of a rational function at the generic point of
D̃. This example illustrates an important philosophical point about valuations: a
valuation is an object associated to the field K , that is, to an entire birational
equivalence class, not to a particular model in that birational equivalence class. Thus
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to study a given valuation, one is free to perform blowings up until one arrives at a
model which is particularly convenient for understanding this valuation.

Valuation Rings
Let K be a field, � an ordered group, ν : K∗ � � a valuation of K . Associated

to ν is a local subring (Rν,mν) of K , having K as its field of fractions:

Rν = {x ∈ K∗ | ν(x) ≥ 0} ∪ {0}
mν = {x ∈ K∗ | ν(x) > 0} ∪ {0}. (3.24)

Example 3.5.8 (Divisorial Valuations) Let X be an irreducible algebraic variety,
D ⊂ X a closed irreducible subvariety, ξ the generic point of D.

Assume that OX,ξ is a regular local ring of dimension 1. Let t be a generator of
mX,ξ . Then K = (OX,ξ )t . Indeed, any element f ∈ OX,ξ can be written as f = tnu,
where n ∈ N and u is invertible. For each f = tnu as above, we have νD(f ) = n.
Then Rν = OX,D .

Definition 3.5.9 Let (R1,m1), (R2,m2) be two local domains with the same field
of fractions K . We say that R2 birationally dominates R1, denoted R1 < R2, if

R1 ⊂ R2 and (3.25)

m1 = m2 ∩ R1. (3.26)

Remark 3.5.10 One of the main examples of birational domination encountered in
algebraic geometry is the following. Let X be an irreducible algebraic variety and
π : X′ → X a blowing up of X. Let ξ ∈ X, ξ ′ ∈ X′ be such that ξ = π(ξ ′). Then
OX,ξ < OX′,ξ ′ .

Theorem 3.5.11 Let (R,m) be a local domain with field of fractions K . The
following conditions are equivalent:

(1) R = Rν for some valuation ν : K∗ � �

(2) for any x ∈ K∗, either x ∈ R or 1
x

∈ R (or both)
(3) the ideals of R are totally ordered by inclusion
(4) (R,m) is maximal (among all the local subrings of K) with respect to birational

domination.

Remark 3.5.12 Although we omit the proof of Theorem 3.5.11, we note that the
proof of the implication (3) �⇒ (1) involves reconstructing the valuation ν (in
a unique way, modulo the obvious equivalence relation) from the valuation ring.
Hence the valuation ring Rν determines ν up to equivalence.

For future reference, we define two important numerical characters of valuations:
rank and rational rank.
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Definition 3.5.13 An subgroup � of an ordered group � is said to be isolated if �

is a segment with respect to the given ordering: if a ∈ �, b ∈ � and −a ≤ b ≤ a

then b ∈ �.

The set of isolated subgroups of an ordered group � is totally ordered by inclusion.

Definition 3.5.14 Let ν be a valuation with value group �. The rank of ν, denoted
rk ν, is the number of distinct isolated subgroups of �. We have rk ν = dim Rν .

Definition 3.5.15 The rational rank of ν is, by definition, rat.rk ν := dimQ �⊗ZQ.

Theorem 3.5.11 (in particular, its part (4)) paves the way for a geometric interpreta-
tion of valuations. This is due to Zariski in the nineteen forties, when he developed
valuation theory with the express purpose of applying it to the problem of resolution
of singularities. To explain how valuations provide a natural notion of “local” in
birational geometry and to give a precise statement of the Local Uniformization
Theorem we need the notion of center of a valuation and also that of local blowing
up with respect to a valuation, which we now define.

Definition 3.5.16 Let (R,m, k) be a local domain with field of fractions K and ν

a valuation of K . We say that ν is centered in R if R < Rν (this is equivalent to
saying that ν(R) ≥ 0 and ν(m) > 0).

If X is an irreducible algebraic variety with K = K(X) and ξ a point of X, we
say that ν is centered in ξ (or that ξ is the center of ν on X) if it is centered in the
local ring OX,ξ , that is, if OX,ξ < Rν .

The center of a given valuation ν on a variety X is uniquely determined by ν.
Let X be an irreducible algebraic variety, ξ a point of X and I a coherent ideal

sheaf on X. Let π : X1 → X be the blowing up of X along I. Take a point
ξ1 ∈ π−1(ξ). The map π induces a local homomorphism σ : OX,ξ → OX1,ξ1 of
local rings.

Definition 3.5.17 A homomorphism of the form σ : OX,ξ → OX1,ξ1 , where ξ1
is a point of π−1(ξ), is called a local blowing up of OX,ξ along IX,ξ . Let ν be a
valuation, centered at OX,ξ . We say that σ is a local blowing up with respect to ν

if ν is centered at OX1,ξ1 , that is,

ν(OX1,ξ1) ≥ 0
(OX1,ξ1

) ≥ 0

and ν
(

mX1,ξ1

)

> 0.

Let X be an irreducible algebraic variety, ξ a point of X and ν a valuation of K =
K(X), centered at ξ . Let π : X′ → X be a birational projective morphism. The
following theorem is a version of the valuative criterion of properness:

Theorem 3.5.18 There exists a unique point ξ ′ ∈ π−1(ξ) such that ν is centered in
ξ ′.
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The notion of center of a valuation together with Theorem 3.5.18 allows us to divide
the problem of resolution of singularities into two parts: local and global. The local
version of resolution of singularities is called Local Uniformization.

Let X, K and ν be as above and assume that ν is centered at a point ξ of X.

Definition 3.5.19 A local uniformization of X with respect to ν is a birational
projective morphism π : X′ → X such that the center ξ ′ of ν in π−1(ξ) is a regular
point of X′.

Zariski proved in 1940 that if X is an algebraic variety over a field of characteristic
zero then X admits a local uniformization with respect to any valuation, centered at
a point of X [170]. The same question is still open for fields of characteristic p > 0
(the papers [130, 131] and [132] show that to prove Local Uniformization in its full
generality, it is sufficient to prove it for valuations of rank 1).

Clearly, a resolution of singularities π : X′ → X also constitutes a local
uniformization simultaneously with respect to every valuation ν, centered at a point
of X. The converse, however, is not so clear: assume that local uniformization is
known with respect to every valuation. Does this imply the existence of resolution
of singularities of X?

To study this question, Zariski introduced what is known today as the Zariski–
Riemann space. Let X be an irreducible algebraic variety. Consider the totality of all
the birational projective morphisms Xα → X. This set naturally forms a projective
system, whose arrows are birational projective morphisms. Indeed, given two such
morphisms

Xα → X and (3.27)

Xβ → X, (3.28)

one can construct a new variety Xαβ together with birational projective morphisms

λα : Xαβ → Xα, (3.29)

λβ : Xαβ → Xβ (3.30)

which make the diagram

Xαβ

λβ

λα

Xβ

πβ

Xα
πα

X (3.31)

commute. The variety Xαβ is the unique irreducible component of the cartesian
product Xα ×X Xβ which maps dominantly onto X, Xα and Xβ . More explicitly,
since πα and πβ are birational, there exist non-empty open subvarieties U ⊂ X,
Uα ⊂ Xα and Uβ ⊂ Xβ such that πα|Uα : Uα

∼= U and πβ |Uβ : Uβ
∼= U . Then
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U ∼= Uα ×U Uβ embeds naturally into Xα ×X Xβ as an irreducible open set. The
variety Xαβ is nothing but the Zariski closure of U in Xα ×X Xβ . Geometrically,
one should think of Xαβ as the graph of the birational correspondence between Xα

and Xβ .
Let S := lim←−

α

Xα.

Theorem 3.5.20 (Zariski) There is a natural bijection between S and the set

M := {valuations ν of K, centered at points of X} .

We briefly sketch the proof.

Proof First, fix a valuation ν of K , centered at a point ξ ∈ X. By Theorem 3.5.18,
for each πα : Xα → X in our projective system, there exists a unique ξα ∈ π−1(ξ)

such that ν is centered at ξα . Therefore we can associate to ν a collection {ξα ∈
Xα}α, compatible with the morphisms in our projective system, that is, an element
of S. This defines a natural map f : M → S.

Conversely, take an element {ξα ∈ Xα}α ∈ S. The local rings OXα,ξα form
a direct system, whose arrows are relations of birational domination. It should
therefore not come as a surprise that the direct limit R := lim−→→α

OXα,ξα of this

system is a local subring of K , maximal with respect to <, that is, a valuation
ring. To prove this rigorously, a short argument using the equivalence (1)⇐⇒(2)
of Theorem 3.5.11 is required. We omit the details.

This defines the map g : S → M . It is routine to check that the maps f and g are
inverse to each other. �

Definition 3.5.21 The set S is called the Zariski–Riemann space associated to X.

Zariski’s original name for this object (in the special case when X was a projective
variety over k) was the abstract Riemann surface of the field K . The thinking was
that in the special case when k = C and dim X = 1, the projective system defining
S is finite and its inverse limit is nothing but the resolution of singularities of X,
that is, a smooth complex projective curve, or a Riemann surface. However, when
dim X ≥ 2, S does not even have a structure of a variety or a scheme, only one of
a ringed space. It resembles more John Nash’s space of arcs than it does anything
like a Riemann surface. This is why the name “Zariski–Riemann space” seems more
appropriate.

In order to address the problem of “glueing” the local uniformizations with
respect to various valuations, it is useful to introduce a topology on S. Namely,
S is naturally endowed with the inverse limit topology (which is usually referred to
as the Zariski topology on S). By definition of inverse limit, for each Xα in our
projective system we have a natural map ρα : S → Xα ; this map assigns to each
valuation ν centered at a point ξ ∈ X the center of ν in Xα , lying over ξ . A base
for the Zariski topology is given by all the sets of the form ρ−1

α (U) where Xα runs
over the entire projective system and U over all the Zariski open sets of Xα . In other
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words, the Zariski topology is the coarsest topology which makes all the maps ρα

continuous.

Theorem 3.5.22 (Zariski [173], Chevalley) The topological space S is compact.

We spell out the main idea of the proof. By definition, S comes with a natural
embedding ι into the direct product

∏

α
Xα . Each Xα is compact with respect to

its Zariski topology, hence so is
∏

α
Xα by Tychonoff’s theorem. If all the topologies

in sight were Hausdorff, ι would be a closed embedding, and the compactness of S

would follow immediately. Indeed, this is how one proves a standard theorem from
general topology: an inverse limit of compact Hausdorff spaces is again compact.

Unfortunately, none of the spaces we are working with here are Hausdorff. The
next idea is to replace the Zariski topology on the Xα by a finer, Hausdorff topology,
pass to the inverse limit and conclude compactness as above, and then observe that
the compactness property is preserved by passing from a finer topology to a coarser
one. This is, indeed, what Zariski did in the special case of projective varieties over
C. He replaced the Zariski topology by the classical Euclidean topology and the
proof was completed as above. Finally, Chevalley came up with a proof, which
follows roughly the same plan, but is applicable to varieties over fields of any
characteristic and even to arbitrary noetherian schemes.

Once Zariski proved the Local Uniformization Theorem in characteristic zero,
his plan went as follows. For each valuation ν ∈ S, let π : X′ → X be the local
uniformization with respect to ν and let ξ ′ be the center of ν on X′. Let U denote
the preimage in S of the set Reg(X′). By definition, U is an open set, containing
ν. Furthermore, for every ν′ ∈ U the map π constitutes local uniformization
also with respect to ν′. Conclusion: once we achieve local uniformization with
respect to some ν ∈ S, we automatically achieve it for all the valuations in some
open neighbourhood U of ν. Since this can be done for every ν ∈ S, we obtain
an open covering of S by sets U , for each of which there exists a simultaneous
local uniformization of all the elements of U . By compactness, this open covering
admits a finite subcovering. Finally, we obtain: there exist finitely many birational
projective morphisms πi : Xi → X, 1 ≤ i ≤ n, having the following property.
Let ρi : S → Xi denote the natural map, given by the definition of projective limit.

Then
n⋃

i=1
ρ−1(Reg(Xi)) = S.

At this point, the problem of resolution of singularities in characteristic zero was
reduced to one of “glueing” the n partial desingularizations Xi together to produce
a global resolution of singularities. More precisely by induction on n it is sufficient
to prove the following:

There exists an algebraic variety X12 together with birational projective mor-
phisms

λ1 : X12 → X1 (3.32)

λ2 : X12 → X2, (3.33)
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having the following properties:

1) the diagram

X12
λ2

λ1

X2

π2

X1
π1

X (3.34)

commutes
2) we have Reg(X12) ⊃ λ−1

1 (Reg(X1)) ∪ λ−1
2 (Reg(X2)).

The glueing problem is highly non-trivial because the local uniformization
algorithms used to construct the partial resolutions Xi depend on the respective
valuations. A priori absolutely nothing is known about the nature of the birational
correspondences among the various Xi .

Zariski was able to solve this problem in dimension 2 by proving his famous
factorization theorem: a birational morphism between non-singular surfaces is a
composition of point blowings up (see [10] for a much more difficult version of this
result in higher dimensions). It is also worth mentioning that Zariksi’s factorization
theorem together with Castelnuovo’s criterion for contractibility of rational curves
on non-singular surfaces implies the existence of minimal resolution for surfaces,
that is, a resolution such that every other resolution of singularities factors through
it.

With much greater difficulty Zariski advanced to dimension three [172]. This
work of Zariski was recently generalized and systematized by O. Piltant [136].
Thanks to this, we now have a general procedure for glueing local uniformizations in
dimension three in a much more general context and for much more general objects
than just algebraic varieties or schemes.

3.6 Resolution of Singularities of Algebraic Varieties over
a Ground Field of Characteristic Zero

Almost twenty-five years have passed after Zariski’s proof of his Local Uniformiza-
tion Theorem until H. Hironaka proved the existence of resolution of singularities
in characteristic zero without using valuations or the Zariski–Riemann space. This
(next) revolution in the field of resolution of singularities is the subject of the present
section.

Theorem 3.6.1 (H. Hironaka [93]) Every variety X over a ground field of charac-
teristic zero admits a resolution of singularities.

Hironaka’s original proof of this was over 200 pages long. It is one of the most
technically difficult and one of the most often quoted results of the twentieth century
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mathematics. We give a very brief sketch of the main ideas of the proof, as seen from
55 years into the future.

Proof

Step 1. The definition of normally flat (see Definition 3.3.16 and Theo-
rem 3.3.17).

Step 2:

Proposition 3.6.2 Let X be an algebraic variety and Y a smooth subvariety of X.
Assume that X is normally flat along Y . Let π : X̃ → X be the blowing up of
X along Y . Take a point ξ̃ ∈ π−1(Y ). Then the Hilbert–Samuel function HX̃,ξ̃ is
smaller than or equal to the common Hilbert–Samuel function HX,ξ of all the points
ξ ∈ X. In particular, the blowing up π does not increase the maximal value of the
Hilbert–Samuel function HX,ξ of all the points ξ ∈ X. �

To complete the proof of the Theorem, it is sufficient to construct a sequence of
blowings up of X that decreases the Hilbert–Samuel function strictly.

Step 3. Reduce the problem to the case when X is an n-dimensional hypersurface
embedded into kn+1:

X = V (f ), where f ∈ k[x, y], y is a single variable and x = (x1, . . . , xn).

(3.35)

This amounts to choosing a Gröbner basis (or a standard basis in Hironaka’s
terminology) (f1, . . . , fr ) of the defining ideal I of X having the following
properties.

(a) The maximal locus of the Hilbert–Samuel function of X is equal to the
intersection of the loci of maximal multiplicity of the polynomials fi . In
particular, a blowing up center Y is permissible for X if and only if it is
simultaneously permissible for each of the hypersurfaces V (fi). This property
holds after any permissible sequence of blowings up under which the maximal
value of the Hilbert–Samuel function does not decrease.

(b) Let

π : X̃ → X (3.36)

be a permissible sequence of blowings up. The sequence π strictly decreases
the maximal value of the Hilbert–Samuel function of X if and only if it
strictly decreases the maximal multiplicity of a singularity of at least one of
the hypersurfaces V (fi).

Remark 3.6.3 In 1977 H. Hironaka proved that, regardless of the characteristic of
the ground field there exists a basis (f1, . . . , fr ) of I such that (a) and (b) hold [97].

Step 4. From now on, assume that X is a hypersurface as in (3.35). Let μ :=
mult0f ; assume that μ is the greatest multiplicity of a singular point of X. Using
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the Henselian Weierstrass Preparation Theorem, further reduce the problem to

the case when f has the form f (x, y) = yμ+
μ∑

i=1
φi(x)yμ−i , where mult0φi ≥ i.

This requires replacing X by a suitable étale covering, but we will not dwell on
this point here.

Step 5. Make the Tschirnhausen transformation, that is, the change of coordi-
nates y → y + 1

μ
φ1(x). This amounts to ensuring that in the new coordinates we

have

φ1(x) = 0. (3.37)

We will assume that (3.37) holds from now on. In this situation we say that y is
a maximal contact coordinate for X.

Step 6. The following Proposition is proved by an easy direct calculation.

Proposition 3.6.4

(1) The maximal contact hyperplane W := {y = 0} contains all the points of X

of multiplicity μ sufficiently close to the origin. In particular, every permissible
center Y is contained in W .

(2) Let (3.36) be a permissible blowing up with center Y . Take a point ξ̃ ∈ π−1(Y )

and let f̃ be a local defining equation of X̃ near ξ̃ . If multξ̃ f̃ = μ then ξ̃ lies in
the strict transform of W . �


This looks like a good setup for induction on dim X. Indeed, on the one hand, we
are only interested in blowing up centers Y that are contained in the hyperplane W .
On the other hand, the only points we are interested in studying after blowing up
belong to the strict transform of W . Thus the next idea is to try to define a variety
V strictly contained in W and relate the problem of desingularizing V to that of
desingularizing our original variety X.

Step 7. In fact, instead of a variety V we need to consider a more general object:
a scheme, defined by the idealistic exponent, associated to f . Precisely, consider

the ideal H :=
(

φ
μ!
i

i

)

2≤i≤μ

⊂ k[x]. After defining the notion of a permissible

blowing up center for V (H) and showing that a center Y is permissible for V (H)

if and only if it is permissible for X, one can use the induction assumption to
construct a sequence (3.36) of permissible blowings up that monomializes the
ideal H (by this we mean that π∗H is principal and generated locally near every
point of X̃ by a single monomial in suitable coordinates; this should be thought of
as an embedded resolution of V (H)). This is an important feature of Hironaka’s
construction: in order to construct a resolution of singularities of n-dimensional
varieties, we need embedded resolution in dimension n−1. Because of this, both
resolution and embedded resolution are proved by two simultaneous inductions:
embedded resolution in dimension n − 1 �⇒ resolution in dimension n �⇒
embedded resolution in dimension n.
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Step 8. By Step 7, assume that H is generated by a monomial ω. To monomialize
f it remains to construct a sequence of blowings up along permissible coordinate
subvarieties (3.36) such that at each point of X̃ one of the monomials ω and yμ!
divides the other. This is a special case of a purely combinatorial problem that
has been variously called Hironaka’s game, Perron’s algorithm and resolution
of (not necessarily normal) toric varieties by permissible blowings up. It is the
combinatorial skeleton of resolution of singularities that appears, implicitly or
explicitly in every desingularization algorithm that consists of a sequence of
blowings up along non-singular subvarieties of the ambient regular variety. We
refer the reader to [71, 142, 170] and [125] for various solutions of this problem
(see [143] for a counterexample to a harder version of Hironaka’s game, needed
for resolution in characteristic p > 0). �


Remark 3.6.5 The assumption char k = 0 is used crucially in Step 5. Naively,
one sees that 1

μ
makes no sense when char k = p > 0 and p | μ. More

seriously, R. Narashimhan [128] gave the following example showing that in
positive characteristic there might not exist a non-singular subvariety satisfying (1)
of Proposition 3.6.4, that is, containing all the points of multiplicity μ sufficiently
near the origin.

Example 3.6.6 Let k be a perfect field of characteristic 2 and consider the hyper-
surface X defined by f (x, y) = y2 + x1x

3
2 + x2x

3
3 + x3x

7
1 = 0 in k4. This

threefold has multiplicity 2 at the origin and all of its points are either non-singular
or have multiplicity 2, so its multiplicity 2 locus coincides with the singular locus.
The singular locus Sing(X) is defined by ∂f

∂x1
= ∂f

∂x2
= ∂f

∂x3
= 0, that is,

x3
2 +x3x

6
1 = x1x

2
2 +x3

3 = x2x
2
3 +x7

1 = 0. We find that Sing(X) is the parametrized
curve t → (

t7, t19, t15, t32
)

and that this curve has embedding dimension 4 at the
origin. Thus it is not contained in any proper non-singular subvariety of k4 passing
through the origin. This shows that in this case there does not exist a non-singular
variety W satisfying (1) of Proposition 3.6.4.

Much work has been done since 1964 to simplify and better understand
resolution of singularities in characteristic zero. We mention [18, 20, 22–35, 41–
43, 65, 76, 77, 90, 112, 150–152, 160, 163, 166, 167].

Many of the later proofs (starting with Bierstone–Milman and Villamayor) have
the following transparent structure. One defines a discrete, upper semi-continuous
numerical character of singularity d(ξ), consisting of the Hilbert–Samuel function
followed by a finite string of non-negative integers. We regard the set of possible
values of d(ξ) as being totally ordered by the lexicographical ordering. One stratifies
the singular variety X according to d(ξ). By upper semi-continuity, the maximal
stratum Smax of d(ξ) is a closed subvariety of X. One shows that Smax is a normal
crossings subvariety and chooses one of its coordinate subvarieties Y in a canonical
way (discussed and explained below by example). One lets π : X̃ → X be the
blowing up along Y and one shows that for every ξ̃ not belonging to the strict

transforms of components of Smax other than Y we have d
(

ξ̃
)

< d(ξ). Repeating
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this procedure for the other components of Smax we strictly lower the maximum
value of d(ξ). This completes the proof by induction on d(ξ).

3.6.1 Functorial Properties of Resolution in Characteristic
Zero

The later proofs cited above are functorial with respect to smooth morphisms (flat
morphisms with non-singular fibers). This means that they produce a functor from
the category of varieties and smooth morphisms to the category of non-singular
varieties and smooth morphisms that assigns to each variety X its resolution of
singularities X̃. Being a functor simply means that each smooth morphism of
varieties φ : X → V lifts (necessarily uniquely) to a smooth morphism φ̃ : X̃ → Ṽ

of their resolutions. In particular, if φ is an open embedding (resp. an isomorphism),
so is φ̃. In this way we obtain that our procedure of resolution of singularities is
equivariant with respect to automorphisms of X, any group actions on X, etc.

Choosing a Unique Coordinate Subvariety of Smax in a Canonical Way
We illustrate the situation by example.

Example 3.6.7 Consider the surface X defined by the equation z2 − x3y3 = 0.
Its singular locus coincides with its locus of multiplicity 2 and is the union of the
x-axis and the y-axis. These two axes play a symmetric role (in fact, they can
be carried into each other by an automorphism X). From a naive point of view,
blowing up the origin does not seem to improve the singularity, so one is tempted
to blow up one of the one-dimensional components of Sing(X). However, there is
no way to do this and respect the functoriality described above. Even if one did not
care for functoriality in its own right, a desingularization algorithm that involves an
arbitrary choice of a branch would present serious problems: after all, there could
be a singularity that locally looks like X but such that the two branches of Sing(X)

are in fact two branches of the same irreducible curve.

The modern solution to this problem goes as follows. Start by blowing up the
origin since it is the only canonical choice that can be made. The multiplicity 2
locus Sing

(

X̃
)

of X̃ now consists of three lines: the respective strict transforms L̃x

and L̃y of the x- and the y-axes and the exceptional divisor E. At first glance the
singular points E ∩ L̃x and E ∩ L̃y look worse than the singularity at the origin
that we started with, and Sing

(

X̃
)

is again a union of two lines near each of those
points. However, they have one important new advantage: there is a natural ordering
on the set of irreducible components of the equimultiple locus, namely, the order of
appearance of those components in the history of the resolution process until this
point. This settles the difficult issue of which component should be blown up first.

This points to another important feature of all the known resolution procedures
by permissible blowings up: the choice of the blowing up center at each step depends
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not only on our singular variety itself but also on the history of the resolution process
up to the given point.

Two recent preprints, [11] and [122], get around this problem by working in the
2-category of excellent Deligne–Mumford stacks instead of varieties or schemes
(stacks are beyond the scope of this survey, but a definition of excellent and quasi-
excellent schemes is given in the Appendix).

Finally, we mention a construction of resolution of singularities of analytic
varieties due to J.M. Aroca, H. Hironaka and J.L. Vicente Cordoba [14–16] as well
as the paper [98] by H. Hironaka.

3.7 Resolution of Singularities of Algebraic Varieties over
a Ground Field of Positive Characteristic

3.7.1 Resolution in Dimensions 1, 2 and 3

As mentioned above, resolution of curve singularities in arbitrary characteristic was
settled in 1939 when Zariski defined normalization: this one-step procedure works
equally well in characteristic zero and characteristic p > 0.

The first proof for surfaces is due to S. Abhyankar in 1956 [1] with subsequent
strengthenings by H. Hironaka [100] and J. Lipman [117] to the case of more general
2-dimensional schemes, with Lipman giving necessary and sufficient condition for
a 2-dimensional scheme to admit a resolution of singularities. See also [64].

The next breakthrough came in 1966, again due to S. Abhyankar, who proved
resolution of singularities for threefolds except in characteristics 2, 3 and 5. The
idea of Abhyankar’s proof is the following. The starting point of the proof is an
Auxiliary Theorem which says that any d-dimensional variety over an algebraically
closed ground field can be birationally transformed to a variety having no e-fold
point for any e > d!. The proof of this Auxiliary Theorem generalizes an argument
used by Albanese [13] in the surface case combined with the Veronese embedding.
Since 3! = 6, in the special case d = 3 we obtain that our variety has singularities
of multiplicity at most 6. If p > 6 then all the singularities have multiplicity strictly
smaller than the characteristic of the ground field (this is precisely the reason for the
restriction on the characteristic of the ground field in Abhyankar’s proof). Roughly
speaking, in this situation one can imitate characteristic zero methods to finish the
proof. Still, Abhyankar’s proof is extremely technical and difficult and comprises a
total of 508 pages [2–6]. For a more recent and more palatable proof we refer the
reader to [66].

Resolution of singularities for surfaces was reproved by J. Giraud in 1983 [80],
using a novel idea that has proved to be very influential for subsequent work (see
also [52, 57–59]). Namely, let k be a perfect field of characteristic p > 0 and
consider the (typical and significant) special case of a surface in k3, defined by
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an equation of the form

f (x1, x2, y) = yp − g(x1, x2) = 0, (3.38)

where g is some polynomial in two variables of multiplicity strictly greater than p.
If we wanted to imitate characteristic zero methods, we would naturally study the
transformation law for g under blowing up and try to relate the resolution problem
for f to the problem of monomialization of g. We already mentioned in the previous
section that the main obstruction to imitating characteristic zero proof in the case of
characteristic p > 0 is the non-existence of maximal contact coordinates in the
situation when p divides the multiplicity of a defining equation. A natural idea for
a replacement of maximal contact coordinates in the case of Eq. (3.38) is to use a
transformation of the form

y → y + φ(x1, x2) (3.39)

to make sure that no monomials which are p-th powers appear in g. However, unlike
maximal contact coordinates in characteristic zero which are stable under coordinate
changes in the x variables and under blowings up that do not lower the Hilbert–
Samuel function, the above “maximal contact” coordinates in positive characteristic
can be destroyed even by the simplest of linear homogeneous coordinate changes,
as the following example shows.

Example 3.7.1 Take g = x1x
2p−1
2 in (3.39). Then g is a single monomial that is not

a p-th power. However, after a coordinate change (x1, x2) → (x1 + x2, x2) the new
equation involves the monomial x

p

2 .

Giraud’s idea for dealing with this difficulty was to study the behaviour of the
differential dg (instead of that of g itself) under permissible blowings up. The point
is that the differential dg is stable under coordinate changes of the form (3.39). The
drawback of this approach is that the transformation rules of dg under blowing up
are much more complicated than those for g itself. In spite of this, Giraud was able
to give a new proof of resolution of surface singularities using this idea.

The method of Giraud was systematically exploited by his Ph.D student V.
Cossart to give, in his Ph.D thesis [53], a proof of resolution of singularities of
threefolds defined by equations of the form yp − f (x1, x2, x3) = 0, which for a
long time had been considered to be the basic and significant special case, exhibiting
most of the phenomena and difficulties of the general problem.

The same result was obtained independently and by different methods by T.T.
Moh [124]. Both works are of a formidable technical difficulty and comprise
hundreds of pages.

It was not until much later that V. Cossart and O. Piltant settled the problem of
resolution of threefolds in complete generality (their theorem holds for arbitrary
quasi-excellent noetherian schemes of dimension three, including the arithmetic
case) in a series of three long papers spanning the years 2008 to 2019 [61–63],
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building on the earlier works [54–56]. The overall method is based on the idea
of Giraud mentioned above. The main point is to prove the Local Uniformization
Theorem. After that global resolution of singularities becomes an immediate
consequence of Piltant’s work [136] that axiomatizes Zariski globalization in three
dimensions.

3.7.2 Resolution and Local Uniformization in Dimension Four
and Higher

In this subsection we briefly mention and discuss known recent partial results,
programs and attempts at proofs in arbitrary dimension.

In the paper [153] Michael Temkin proves a version of the Local Uniformization
Theorem in which the required desingularization map π : X̃ → X is generically
finite instead of being birational (in other words, it induces a finite extension

ι : K(X) ↪→ K
(

X̃
)

of function fields instead of an isomorphism). In Temkin’s proof the extension ι can
be taken to be purely inseparable. Among other things, he gives a rigorous proof of
a fact that until then was a mere philosophical belief: to prove Local Uniformization
(for varieties over fields of characteristic p > 0) it is sufficient to prove it for
hypersurfaces defined by equations of the form yp + g(x1, . . . , xn) = 0.

A similar, though in some sense complementary result was obtained by H. Knaf
and F.-V. Kuhlmann [111]: they also prove Local Uniformization after a finite
extension ι of function fields, but in their case the extension ι is Galois (combined
with a purely inseparable extension of the residue field of the valuation ring in the
case of non-perfect residue fields). In the paper [110] the same authors prove Local
Uniformization with respect to Abhyankar valuations. A valuation ν is said to be
Abhyankar if equality holds in Abhyankar’s inequality:

rat.rk ν + tr.deg(kν/k) = tr.deg(K/k),

where k denotes the ground field, K = K(X) is the field of rational functions of the
variety X we want to desingularize and kν is the residue field of the valuation ring.

It is well known that to prove the Local Uniformization Theorem it is sufficient to
prove it for the case of hypersurfaces (since in the case of general varieties one can
handle the defining equations one by one). Let X be a hypersurface in kn defined by
an equation f (u1, . . . , un) = 0. We would like to construct a local uniformization
with respect to a given valuation ν. Consider the extension

θ : k(u1, . . . , un−1) ↪→ k(u1, . . . , un−1)[un]
(f )

(3.40)

of valued fields.
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One way of thinking of the main difficulty of constructing a local uniformization
of X with respect to ν is in terms of the defect δ of the extension θ (this point of view
has been promoted by F.-V. Kuhlmann among others, see [113]). Defining defect
is beyond the scope of this survey, but we briefly mention some of its properties
relevant to us.

Let

p = 1 if char kν = 0 (3.41)

= char k if char kν > 0. (3.42)

The defect δ is always a power of p, hence is equal to 1 if char k = 0. We
have δ = 1 as well in the case of Abhyankar valuations (this explains why the
characteristic zero case as well as the case of Abhyankar valuations is easier to
handle than the case of arbitrary valuations in characteristic p > 0). The philosophy
that “all the difficulty of local uniformization lies in the defect” has been understood
for some time, but we would like to mention two recent works that make the above
statement precise: J.-C. San Saturnino [139, Theorem 6.5] and S. D. Cutkosky–H.
Mourtada [67].

We mention two papers by B. Teissier, [148] and [149], that propose another
possible approach to constructing Local Uniformization using the graded algebra
associated to the given valuation ν and trying to interpret this graded algebra as the
coordinate ring of an (infinite-dimensional) toric variety that is a deformation of the
variety X we want to desingularize, inspired by the case of plane curve singularities
[12, 81].

Finally, for the approach to local uniformization via key polynomials we refer
the reader to [7, 8, 68, 69, 91, 92, 118–120, 133, 138, 139, 147, 156–159]. J.
Decaup’s Ph.D. thesis carries out the program of proving a strengthening of the
Local Uniformization Theorem over fields of characteristic zero, but with a view to
generalizing the result to fields of positive characteristic.

There has also been recent work whose goal is to construct (or at least make
progress toward constructing) global resolution of singularities directly, without
going through valuation theory and local uniformization, but the jury is still out
on how close to or far from a complete proof we are: [19, 36–39, 44, 89, 101–
104, 107, 108].

3.8 An Alternative Approach by J. de Jong et al. via
Semi-stable Reduction

In 1996 a major event occurred in the field of resolution of singularities: J. de Jong
[70] proved the existence of resolution of singularities for varieties over fields of
arbitrary characteristic by alterations:
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Definition 3.8.1 An alteration is a proper surjective morphism

π : X̃ → X (3.43)

such that the induced homomorphism K(X) ↪→ K
(

X̃
)

of function fields is finite.

Theorem 3.8.2 Let X be a variety over a ground field k. There exists an alter-
ation (3.43) such that X̃ is non-singular. In fact, we can choose X̃ to be a
complement of a normal crossings divisor in some regular projective variety X′.

We briefly summarize his proof which uses the compactification of moduli stacks
of curves of genus g by stable curves (in the special case when X is projective).

Proof

Step 1. Take a sufficiently general projection ρ : X → Y to a variety Y of
dimension dim X − 1, so that the fibers of ρ are curves.

Step 2. Normalizing X, we may assume, in addition, that X is normal. After
further modifying X by a birational transformation, we may choose the fibration
morphism to Y to be generically smooth along any component of any fiber.

Step 3. Choose a sufficiently general and sufficiently ample relative divisor H on
X over Y . After taking a base change with an alteration Y ′ → Y , we may assume
that H is a union of sections σi : Y → X:

H =
n

⋃

i=1

σi(Y )

(this is one of the places in the proof where we actually need to use an alteration
rather than a birational map).

Step 4. Since H was chosen sufficiently general and sufficiently ample, for every
component of every fiber of ρ there are at least three sections σi , intersecting it
in distinct points of the smooth locus of ρ. Therefore there exists a Zariski open
subset U ⊂ Y such that for each η ∈ U the fiber ρ−1(η), together with the points
determined by the σi , is a stable n-pointed curve of certain genus g. By definition
of the moduli stack Mg,n of stable curves of genus g with n marked points, we
obtain a unique morphism U → Mg,n such that the family

ρ

∣
∣
∣ρ−1(U) : ρ−1(U) → U (3.44)

is the pullback of the universal family of stable n-pointed curves of genus g over
Mg,n. Now, Mg,n admits a finite étale covering M → Mg,n by a projective
scheme M; the universal family of stable n-pointed curves of genus g can be
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lifted to M . Putting U ′ := U ×Mg,n
M , we obtain a cartesian diagram

U
θ

λ

M

U Mg,n (3.45)

where λ is an alteration and the pullback of the family of curves (3.44) under λ

coincides with the pullback of the universal family by θ (this is the second place
in the proof where we genuinely need to use alterations rather than birational
morphisms).

Step 5. Let XU denote the preimage of U in X. Let Y ′ be the closure of

Im(U ′ → Y × M̄) ⊂ Y × M̄.

Then Y ′ is a projective variety over k and Y ′ → Y is an alteration which is
generically étale. The smooth stable n-pointed curve (XU , σ1|U , . . . , σn|U)×U ′
extends to a stable n-pointed curve X′ over Y ′.

Step 6. Replacing Y by Y ′ and X by X′ we reduce the problem to the case in
which there exist a stable n-pointed curve (C, τ1, . . . , τn) over Y , a nonempty
open subvariety U ⊂ Y and an isomorphism β : CU → XU mapping the section
τi |U to the section σi |U (where CU denotes the preimage of U in C). It can be
proved that the rational map β can me be made into a morphism, possibly after
base change by a birational projective transformation of Y .

To Summarize the Result of Steps 4–6 We started out with a morphism ρ whose
generic fiber was a stable n-pointed curve of genus g. We ended up with a morphism
ψ , all of whose fibers are stable n-pointed curves. In other words, we have reduced
the problem to the case where all the fibers of ρ are stable pointed curves (and the
generic fiber is non-singular).

Step 7. By induction on dim X, resolve the singularities of Y . Furthermore, by
the induction hypothesis in the non-projective case we may assume that the non-
smooth locus of the morphism ρ is a normal crossings divisor (note that we are
using the induction hypothesis in the non-projective case even to prove the result
for projective X).

Step 8. At this point the only singularities of C are given by equations of the form

xy = t
n1
1 . . . t

nd

d .

These are resolved explicitly by hand. �

Now assume that char k = 0. Shortly after the appearance of de Jong’s theorem on
alterations D. Abramovich and J. de Jong [9] took it as a starting point to give a new
proof of resolution of singularities by birational morphisms in characteristic zero.
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Their proof goes as follows. Fix an alteration X′ → X such that X′
is non-singular. We may assume that the corresponding finite extension
K(X) ↪→ K(X′) of function fields is Galois. Let G denote the Galois group
Gal(K(X′)/K(X)). Then G acts on X′ and the quotient of this action birationally
dominates X. By induction on dim X we may assume that the subvariety
{

ξ ∈ X′ ∣
∣ g(ξ) = ξ for some g ∈ G

}

of points of X′ fixed by at least one g ∈ G

is a normal crossings divisor. A few auxiliary blowups make the quotient X′/G

toroidal. Finally, the authors apply the well known result on resolution of toroidal
singularities [109, Theorem 11∗] to finish the argument.

Another proof of resolution of singularities in characteristic zero based on the
same idea but quite different in detail from the Abramovich–de Jong one was given
independently by F. Bogomolov and T. Pantev [40].

3.9 Resolving Singularities in Characteristic Zero by Nash
and Higher Nash Blowing Up: Results and Conjectures

The goal of this section is define Nash and higher Nash blowing up and to give an
overview of both known results and conjectures involving their desingularization
properties.

H. Hironaka’s proof that every algebraic variety over a field of characteristic
zero admits a resolution of singularities provided an inspiration to John Nash for
several extremely fruitful ideas, one of the most important being the introduction of
Nash blowing up as a conjectural method for constructing a canonical resolution of
singularities of varieties in characteristic zero.

Let k be a field and X an affine irreducible algebraic variety of dimension n

embedded in kN .

Definition 3.9.1 The Gauss map φ : X \ Sing(X) → G := Grass(N, n) is the
map that sends every non-singular point ξ ∈ X to its tangent space, viewed as a
point of G.

Definition 3.9.2 The Nash blowing up NX of X is the closure graph(φ) of
graph(φ) in X × G.

We have a canonical map μ : NX −→ X induced by the canonical projection of
X × G onto the first factor. Over X \ Sing(X) the variety μ−1(X \ Sing(X)) is the
graph of the Gauss map, hence isomorphic to X \ Sing(X). Thus μ is birational.
Since G is a projective variety, the morphism μ is projective.

If X is a complete intersection defined by equations

f1(x1, . . . , xN) = · · · = f�(x1, . . . , xN) = 0
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then μ coincides with the blowing up of the Jacobian ideal, that is, the ideal

generated by all the (� × �)-minors of the Jacobian matrix
(

∂fi

∂xj

)

1≤i≤�
1≤j≤N

. Even if

X is not a complete intersection, there is a similar description of Nash blowing
up in terms of the Jacobian matrix, though it took mankind much longer to come
up with it. Namely, let r = N − n = codim(X, kN). Let M be a submatrix of
the Jacobian matrix formed by r rows that are linearly independent as K-vectors
(where, as usual, K = K(X) denotes the field of rational functions of X). Then μ

coincides with the blowing up of the ideal generated by all the (r × r)-minors of the
matrix M .

The above constructions seem, a priori, to depend on the chosen embedding
ι : X ↪→ C

N . We now give two other characterization of Nash blowing up, both of
them independent of ι.

This construction of an ideal whose blowing up coincides with the Nash blowing
up is a special case of a more general construction of the determinant of a module
(in this case, the module of Kahler differentials of X) due to Rossi in the analytic
case and to O. Villamayor [161] in the general setting. Namely, let R be a domain,
K its field of fractions and M and R-module. Let r := dimK(M ⊗R K) denote the
generic rank of M .

Definition 3.9.3 The determinant of M is Im
(∧r

M −→ ∧r
M ⊗R K ∼= K

)

.

We think of the determinant as a fractional ideal, that is, an R-submodule of
K . Clearing denominators, we can construct a non-canonical isomorphism of R-
modules between a fractional ideal and an honest ideal of R. To obtain an ideal
whose blowing up coincides with Nash blowing up, we take the determinant of the
module �1

X/C of Kahler differentials whose generic rank is n.
Finally, Nash blowing up can be characterized by a universal mapping property.

Namely, we have the following

Proposition 3.9.4 Let μ : X′ → X be the Nash blowing up of X. The following
statements hold.

(1) The OX′ -module
μ∗�n

X/C

torsion is locally principal (that is, generated by a single
element).

(2) the Nash blowing up μ has the universal mapping property with respect to (1).
This means, by definition, that every birational morphism λ : V → X such that
λ∗�n

X/C

torsion is locally principal factors through X′ in a unique way.

With a view of constructing a resolution of singularities of X, consider the sequence

X
μ1←− X1

μ2←− . . .
μi←− Xi

μi+1←− . . . (3.46)

where each μi is either a Nash blowing up or a normalized Nash blowing up (that
is, a Nash blowing up followed by normalization). The question posed to Hironaka
by Nash was: does Xi become non-singular for i � 0?
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An affirmative answer to this question would provide a very simple and natural
algorithm for resolving singularities over fields of characteristic zero.

Unfortunately, very little is known about Nash’s question, despite considerable
effort by many mathematicians. Let us briefly summarize the existing results.

In order to have any hope for the answer to be affirmative, we must at least
ensure that no singular variety remains unchanged after Nash blowing up. This is
the content of Nobile’s Theorem:

Theorem 3.9.5 (Nobile [129]) The Nash blowing up μ : X′ → X is an
isomorphism if and only if X is non-singular.

The “if” part of the Theorem is trivial, so its main content is “only if”.

Corollary 3.9.6 If dim X = 1 iterating Nash blowing up produces a resolution of
singularities.

Proof Let X̃ → X be the resolution of singularities of X. As we saw earlier, X̃ is
nothing but the normalization of X. In particular, OX̃ is a finite (hence a noetherian)
OX-module. Now, the sequence of morphisms (3.46) induces a sequence

OX

μ∗
1−→ OX1

μ∗
2−→ . . .

μ∗
i−→ OXi

μ∗
i+1−→ . . . (3.47)

of homomorphisms of rings, with all the OXi contained in OX̃. Since OX̃ is a
noetherianOX-module, the sequence (3.47) must stabilize after OXi for some i ∈ N.
By Nobile’s theorem, Xi is non-singular. �

Remark 3.9.7 Assume that char k = p > 0, fix a prime number q �= 2 and consider
the plane curve X = {f (x, y) = yp + xq = 0}. This is a complete intersection
variety whose Jacobian ideal J is principal (since ∂f

∂y
= 0). Hence the Nash blowing

up μ : X′ → X is an isomorphism. Thus Nobile’s theorem does not hold over
fields of positive characteristic. There seems to be little hope to devise a plausible
approach to resolution over fields of characteristic p > 0 along the lines of Nash
blowing up.

Theorem 3.9.8 (Rebassoo [137]) Iterating Nash blowings up gives resolution of
singularities of any surface X defined in C

3 by an equation of the form

za − xbyc = 0. (3.48)

The proof is quite long and technical. One of the difficulties is that after Nash
blowing up X stops being a hypersurface, though, as we will see below, it remains
a toric variety.

Theorem 3.9.9 (Hironaka [99]) Starting with a surface X, consider a
sequence (3.46) of morphisms such that each μi dominates the Nash blowing
up of Xi−1 (that is, μi is a composition of Nash blowing up with another birational
projective morphism). There exists i ∈ N such that the normalization X̄i of Xi
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dominates a non-singular surface (in other words, X̄i has at most sandwiched
singularities).

Using this result as a starting point, M. Spivakovsky proved in 1985 that iterating
normalized Nash blowings up resolves the singularities of any surface over a field
of characteristic zero:

Theorem 3.9.10 ([146]) Assume that dim X = 2 and each μi in (3.46) is a
normalized Nash blowing up. Then Xi is non-singular for i � 0.

By Hironaka’s result, it is enough to prove this Theorem in the case when X has
at most sandwiched singularities. Again, the proof is long and technical. The first
step is a classification of sandwiched surface singularities, accomplished in [146],
building on a classification of valuations in function fields of surfaces [145].

Another important ingredient in the proof is a geometric characterization of Nash
blowing up in terms of polar curves, inspired by [83, 84].

3.9.1 Nash Blowing Up and the Base Locus of the Polar Curve

Consider a variety X of dimension n embedded in C
N .

Definition 3.9.11 (Lê–Teissier) The first polar variety of X is the closure of the
critical locus of a generic projection X → C

n, restricted to X \ Sing(X). If X is a
surface, the first polar variety is referred to as the polar curve of X; it is the critical
locus of a generic projection X → C

2.

One should think of the polar curve as a linear system: as we vary the generic
projection, we obtain a family of polar curves, all of them linearly equivalent to
each other. In this way, we may talk about the base locus of the polar curve. Another
way of thinking of polar curves is as zeroes of sections of the sheaf �2

X/C of Kahler
differentials. This is why making this sheaf (modulo torsion) locally principal is
equivalent to removing the base locus of the strict transform of the polar curve.

Proposition 3.9.12 ([146]) Let X be a variety of dimension n.

(1) Consider a birational transformation μ : X′ → X, dominating the Nash
blowing up of X. The linear system formed by the strict transforms of the first
polar variety has no base points (we say that Nash blowing up resolves the base
points of the first polar variety).

(2) Conversely, assume that μ resolves the base points of the first polar variety and
that X′ is normal. Then X′ dominates the Nash blowing up of X.
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This leads to the following method of computing the normalized Nash blowing up of
any given normal surface singularity (this method is essentially due to G. Gonzalez-
Sprinberg [83, 84]). Consider the commutative diagram

Y
σ

π

Y

π

X
μ

X (3.49)

where π and π ′ are the respective minimal resolutions of singularities of X and X′,
μ is the normalized Nash blowing up and σ the factorization of μ ◦ π ′ through Y

given by definition of the minimal resolution Y .
By Zariski’s factorization theorem, σ is a sequence of blowings up of points.

Now, μ resolves the base points of the polar curve, hence so does μ ◦ π ′. Since,
by Theorem 3.9.12, μ is the “smallest” birational transformation with this property,
σ is the smallest sequence of point blowings up that resolves the base points of
the strict transform of the polar curve of X in Y . The method for studying the
desingularization properties of Nash blowing up, inspired by [83–85], consists of
computing directly the strict transform of the polar curve in Y , particularly, its base
points, and thus deducing information about σ and Y ′.

Once we classify sandwiched singularities, we consider a subclass of them called
minimal singularities (rational singularities of surfaces with reduced fundamental
cycle; this includes all the toric surface singularities). In the case of minimal
singularities the polar curve, and thus σ and Y ′, can be computed explicitly. We
show that the number of irreducible exceptional curves of π ′ is at most one half of
the number of irreducible exceptional curves of π . Thus, if we let E be the number
of irreducible exceptional curves in the minimal resolution of the surface X, the
singularities of X are resolved after at most log2 E normalized Nash blowings up.

In the case of non-minimal sandwiched singularities our results are much less
explicit, but we are able to get enough information about the polar curve to give
an indirect proof that if X has at most sandwiched singularities then after finitely
many normalized Nash blowings up the resulting surface Xi has at most minimal
singularities. This completes the proof.

3.9.2 Nash Blowing Up of Toric Varieties

Recently, there has been a resurgence of interest in resolution of singularities by
iterating Nash blowing up, particularly, in the case of (not necessarily normal) toric
varieties. We summarize some of the main advances here.



226 M. Spivakovsky

Let n be a strictly positive integer. Consider a semigroup 
 ⊂ Z
n having the

following properties:

(1) 
 generates Zn as an additive group
(2) the cone C generated by 
 in R

n ⊃ Z
n is strictly convex (this means that

C contains no straight lines). Let γ1, . . . , γs be a set of generators of 
 (not
necessarily minimal).

Definition 3.9.13 The affine toric variety X determined by 
 is the image of the
map

C
n → C

s

defined by t → (tγ1 , . . . , tγs ) (here we are using the multi-index notation: t =
(t1, . . . , tn), each γi is an n-vector and tγi =

n∏

j=1
t
γij

j ).

As everything else related to toric varieties, the Nash blowing up of such a
variety can be described combinatorially. More precisely, we can compute the
logarithmic Jacobian ideal explicitly in terms of the elements γ1, . . . , γs . This task
was accomplished, independently, in [82] and [86] (the latter paper includes the case
of reducible toric varieties). Namely, the module �n

X,C is generated by elements of
the form dtγi1

∧ · · · ∧ dtγin , where (i1, . . . , in) runs over all the n-tuples of distinct
elements of {1, . . . , s}. We have

dtγi1
∧

· · ·
∧

dtγin = det
(

γi1 , . . . γin

)

t

n∑

j=1
γij

−n

dt1
∧

· · ·
∧

dtn.

Thus the logarithmic Jacobian ideal we must blow up to compute the Nash blowing

up is the ideal generated by all the monomials t

n∑

j=1
γij

−n

as (i1, . . . , in) runs over all
the n-tuples of distinct elements of {1, . . . , s} satisfying

det
(

γi1, . . . γin

) �= 0. (3.50)

Picking one of these monomials specifies a coordinate chart of the Nash blowing
up. For example, assume that det (γ1, . . . , γn) �= 0 and consider the coordinate

chart determined by the monomial t

n∑

j=1
γj −n

. The semigroup 
1 that determines the
corresponding affine toric variety is generated by γ1, . . . , γs and all the vectors of
the form

n∑

j=1

γij −
n∑

j=1

γj , (3.51)
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where (i1, . . . , in) runs over all the n-tuples of distinct elements of {1, . . . , s}
satisfying (3.50). Now, an important special case to be considered is one when there
exists j ∈ {1, . . . , n} such that ij ′ = j ′ for all j ′ ∈ {1, . . . , n} \ {j } and ij �= j .
Then the condition (3.50) amounts to saying that

det
(

γ1, . . . , γj−1, γij , γj+1, . . . , γn

) �= 0. (3.52)

One can show that after a permutation of the n-tuple (i1, . . . , in) we can achieve the
situation where condition (3.52) holds for all j ∈ {1, . . . , n} simultaneously. This
shows that 
1 is generated by γ1, . . . , γs and all the differences of the form

γi − γj , j ∈ {1, . . . , n}, i ∈ {n + 1, . . . , s}
such that det

(

γ1, . . . , γj−1, γi, γj+1, . . . , γn

) �= 0 (3.53)

A complete list of coordinate charts on the Nash blowing up of the toric variety
X is obtained in this way, after imposing the additional condition that the resulting
semigroup determines a strictly convex cone.

One way of thinking of the choice of an affine coordinate chart on the Nash
blowing up is in terms of valuations. We saw earlier that by a theorem of Zariski
fixing a valuation ν of the rational function field K(X) of X is equivalent to
specifying a (scheme-theoretic) point called the center of ν on every blowing up of
X. Here we are interested in a less precise version of this statement: specifying the
values ν(t1),. . . ,ν(tn) of the torus variables t1,. . . ,tn limits the choice of a coordinate
chart to those charts that contain the center of ν. Namely, a coordinate chart as above
contains the center of ν if and only if for every pair i, j as in (3.53) we have

ν
(

tγi
) ≥ ν

(

tγj
)

. (3.54)

In general, even under this restriction the choice of the coordinate chart is not
uniquely determined, unless the inequality in (3.54) is strict for all the choices of
i, j as in (3.53). This last statement holds whenever the values ν(t1),. . . ,ν(tn) are
Q-linearly independent.

In [72] and [73] it is shown that if dim X = 2 and the rank of the group
generated by ν(t1) and ν(t2) coincides with its rational rank then iterating Nash
blowing up resolves the singularities of X in all the coordinate charts compatible
with the valuation ν. In [82] the same result is proved for X of arbitrary dimension.

The simplest case of a group whose rank differs from its rational rank is that of
rank 1 and rational rank 2. Thus the simplest case in which resolution of singularities
of toric varieties by iterating Nash blowing up is not known is the following.

An Open Problem
Let 
 = (γ1, . . . , γs) ⊂ Z

2 be a semigroup which generates Z2 as a group, such
that the cone generated by it is strictly convex. Let α be an irrational number. Let
L : Z2 → R be the map given by L(x, y) = x + αy. Assume that L(
 \ {0}) > 0
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and that L(γ1) < L(γ2) < L(γj ) for j > 2. Let 
1 be the semigroup generated by
γ1, γ2 and all the differences of the form γi − γ1 and γj − γ2 where det(γi, γ2) �= 0
and det(γj , γ1) �= 0. Replace 
 by 
1 (as we explained above, this corresponds to
performing a Nash blowing up of our toric surface and picking the unique coordinate
chart prescribed by the valuation such that ν(t1) = 1 and ν(t2) = α). Question: is it
true that after finitely many iterations of this procedure the resulting semigroup 
i

is generated by two elements?
There is overwhelming computer evidence that the answer to this question is

affirmative. Rebassoo’s theorem is a special case of this, providing further evidence.
On this subject we also mention the paper [17].

3.9.3 Higher Nash Blowing Up

Let X ⊂ C
N be an irreducible affine algebraic variety of dimension n and R its

coordinate ring. Consider the map λ : R ⊗k R → R which sends a ⊗ b to ab. Let
I = Ker(λ). We view I as an R-module via the map R → R ⊗k R, r → r ⊗ 1.

For i ∈ N, i ≥ 2, the higher Nash blowing up NiX of X was defined by Oneto

and Zatini [134] in terms of the Grassmanian of the i-jet module
(

I
I i+1

)∗
and by

Takehiko Yasuda [164] using Hilbert schemes of points of length
(
n+i
n

)

, with an
alternative, explicit characterization by E. Chavez, D. Duarte and A. Giles in terms
of the generalized Jacobian matrix [50]. We summarize the first two constructions
here.

For a point x ∈ X. Let (Rx,mx) be the localization of R at the point x and Ix the
localization of I . Consider the following C = Rx

mx
-vector space:

T i
xX :=

(
Ix

I i+1
x

⊗R C

)∗

This is a vector space of dimension L = (
i+n
n

) − 1 whenever x is a non-singular

point. Since X ⊂ C
N , we have T i

xX ⊂ T i
xC

N = C
M where M = (

N+i
N

) − 1, that is,
we may view T i

xX as an element of the Grassmanian G(M,L). Consider the Gauss
map:

Gi : X \ Sing(X) → G(M,L) (3.55)

x → T i
xX. (3.56)

Denote by Xi the Zariski closure of the graph of Gi . Call μi the restriction to Xi of
the projection of X × G(M,L) to X.

Definition 3.9.14 ([134, Definition 1.1]) The pair (Xi, μi) is called the Nash
blowing up of X relative to I

I i+1 .
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Similarly to the usual Nash blowing up, the Nash blowing up relative to I

I i+1

coincides with the blowing up of the determinant of the module I
I i+1 [134].

Next, we summarize Yasuda’s construction. Consider a C-rational point x ∈ X

and let m be the corresponding maximal ideal of R. Let n = dim X. Let x(i) :=
Spec R

mi+1 be the i-th infinitesimal neighborhood of x. If X is smooth at x, then x(i)

is a closed subscheme of X of length L + 1 = (
i+n
n

)

(that is, R

mi+1 has length L + 1
as an R-module). Therefore, it corresponds to a point [x(i)] ∈ HilbL+1(X), where
HilbL+1(X) is the Hilbert scheme of (L+1)-points of X (see [127, Definition 1.2]).
If Reg(X) denotes the smooth locus of X, we have a map

δi : Reg(X) → HilbL+1(X) (3.57)

x → [x(i)] (3.58)

Definition 3.9.15 ([164, Definition 1.2]) The higher Nash blowup of X of order i,
denoted by NiX, is the closure of the graph of δn in X×k H ilbL+1(X) with reduced
scheme structure. By restricting the projection X ×k H ilbL+1(X) → X to NiX we
obtain a map πn : NiX → X.

This map is projective, birational, and is an isomorphism over Reg(X).

Proposition 3.9.16 ([164, Proposition 1.8]) For every variety X and every strictly
positive integer i, we have a canonical isomorphism (Ni(X), πn) ∼= (Xi, μi). In
particular, N1(X) is canonically isomorphic to the classical Nash blowup of X.

Yasuda conjectured that for i large enough, the i-th Nash blowup of X is non-
singular [164, Conjecture 0.2]. If the conjecture were true, this construction would
give a one-step resolution of singularities. In the same paper, the author proves that
the conjecture is true for curves (here we give the statement only for irreducible
varieties whereas Yasuda’s result is stated and is proved for varieties that may be
reducible.):

Theorem 3.9.17 ([164, Corollary 3.7]) Let X be an irreducible variety of dimen-
sion 1. For i large enough the variety NiX is non-singular.

The proof of this is not trivial and consists of two parts. First, the author shows
that for i � 0 the transformation Ni separates the (analytic) branches of X, that
is, X becomes analytically irreducible at every point. Yasuda goes on to show that
each branch gets desingularized by Ni for i � 0. Precisely, he shows the following.
Assume that X is analytically irreducible at a certain point ξ . The resolution of
singularities of X gives an injection ofOX,ξ into a regular local ring and thus induces
a discrete rank 1 valuation ν on OX,ξ . Consider the semigroup 
 := ν(OX,ξ \{0}) ⊂
N and let 0 = s0, s1, s2, s3, . . . be the complete list of elements of 
 arranged in an
increasing order.

Theorem 3.9.18 ([164, Theorem 3.3]) For an integer i ∈ N the curve NiX is non-
singular if and only if si+1 − 1 ∈ 
.
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Since 
 coincides with N for i � 0, Theorem 3.9.18 immediately implies
Theorem 3.9.17 in the case of analytically irreducible curves.

Yasuda has stated that the A3 singularity (that is, the singularity defined by the
equation z4 − xy = 0) is probably a counterexample to his conjecture (see [166,
Remark 1.5]). Recently Rin Toyama [154] has shown that this is, indeed, the case,
building on earlier work by D. Duarte.

Incredibly, the analogue of Nobile’s theorem (that is, the statement that a higher
Nash blowing up of X is an isomorphism if and only if X is non-singular) is not
known for higher Nash blowing up. The best partial results on this subject are due to
D. Duarte, who proved it for normal toric varieties [74] and for normal hypersurfaces
[75]. It has recently been proved for toric curves [50].

Finally, we mention another conjecture of T. Yasuda about higher Nash blowing
up of (analytically) irreducible curves. Let X be an analytically irreducible curve,

 its associated semigroup and the si elements of 
 listed in increasing order, as
above.

Conjecture 3.9.19 (Yasuda [165]) Let 
i denote the semigroup associated to the
analytically irreducible curve NiX. We have 
i = {s� − sj | � > i, j ≤ i}.
The paper [50] contains the following results:

(1) a definition of the higher-order Jacobian matrix J of an affine algebraic variety,
so that the i-th higher Nash blowing up coincides with the blowing up of an
ideal generated by suitable minors of J in a way completely analogous to that
of usual Nash blowing up described above

(2) a proof that the higher Nash blowings up of a toric variety are themselves toric
varieties

(3) a proof of Conjecture 3.9.19 in the case of toric curves
(4) as an immediate corollary of (3), a proof of the analogue of Nobile’s theorem

for toric curves
(5) a family of counterexamples to Conjecture 3.9.19 in the general case (namely,

the parametrized curves t → (

t4, t4i+2 + t4i+3
)

giving a counterexample for
each positive integer i).

3.10 Reduction of Singularities of Vector Fields, Foliations
by Lines and Codimension One Foliations

Let K be the field of rational functions of a projective algebraic variety M0 of
dimension n over an algebraically closed field k of characteristic zero.

Consider the n-dimensional K-vector space DerkK of k-derivations from K to
itself.
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Definition 3.10.1 A foliation by lines is a 1-dimensional K-vector subspace

L ⊂ DerkK.

Take a regular point P on a projective model M of the field K . We know that

DerkOM,P ⊂ DerkK

is a free OM,P -module of rank n generated by the partial derivatives ∂
∂zi

, i ∈
{1, 2, . . . , n}, for a regular system of parameters z1, z2, . . . , zn of the local ring
OM,P .

Definition 3.10.2 The free rank one submodule LM,P := L ∩ DerkOM,P of
DerkOM,P is called the local foliation induced by L at M,P .

Let mM,P denote the maximal ideal of OM,P .

Definition 3.10.3 A germ of a vector field ξ ∈ DerkOM,P is said to be non-
singular if ξ /∈ mM,P DerkOM,P . The germ ξ is elementary if it is singular and
the k-linear endomorphism

ξ : mM,P

m2
M,P

→ mM,P

m2
M,P

(3.59)

is not nilpotent.
We say that L is non-singular (resp. elementary) at P if there is a germ ξ ∈ LM,P

that is non-singular (resp. elementary). If Y ⊂ M is an irreducible subvariety, we
say that L is non-singular (resp. elementary) at Y if it is so at a generic point of Y .
Note that this definition makes sense only if M itself is non-singular at the generic
point of Y .

A plane vector field D = a ∂
∂x

+ b ∂
∂y

, with a, b two relatively prime polynomials in
x and y, defines a one-dimensional saturated foliation F having singularities at the
zeroes of D (that is, the common zeroes of a and b). It was proved by Seidenberg in
1968 [141] that after a finite number of point blowings up of the ambient plane we
obtain a foliation F̃ which is given locally at each singular point by a vector field D̃

whose linear part has eigenvalues 1 and λ, with λ /∈ Q+ (= strictly positive rational
numbers); see also [45]. The above singularities may be thought of as final forms in
the sense that they are preserved under all subsequent point blowings up. Note also
that these singularities are characterized by the fact that they are elementary in the
sense of Definition 3.10.3 and remain elementary after the subsequent blowings up.
On the other hand, if the eigenvalues are 1, λ ∈ Q+, the linear part of the vector
field (cf. (3.59)) will become nilpotent after finitely many blowings up.

This points to a new feature of the desingularization problem for vector fields
and foliations: in general, it is not possible to make them non-singular by blowings
up, so one must start by defining the final form of the singularity that one is trying
to achieve. This is why in this subject we usually talk about reduction rather than
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resolution of singularities. A counterexample by F. Sanz and F. Sancho shows that
starting with dimension three it is not possible to arrive at elementary singularities
by a sequence of blowings up along non-singular centers (see the Introduction
to [135]). Therefore a new notion of a final form of singularities is needed. In
higher dimensions a useful and natural notion seems to be that of log-elementary
singularities, motivated by the results of [46].

Let the notation be as in the beginning of this section.

Definition 3.10.4 A germ of a vector field ξ ∈ DerkOM,P is said to be log-
elementary if there is a regular system of parameters z1, z2,. . . ,zn of OM,P , and

an integer e, 0 ≤ e ≤ n such that ξ has the form ξ =
e∑

i=1
aizi

∂
∂zi

+
n∑

i=e+1
ai

∂
∂zi

,

where ai ∈ OM,P for i ∈ {1, 2, . . . , n} and aj /∈ m2
M,P for at least one index j . We

say that L is log-elementary at P if there is a germ ξ ∈ LM,P that is log-elementary.
If Y ⊂ M is an irreducible subvariety, we say that L is log-elementary at Y if it is
so at a generic point of Y .

The following result is the main theorem of [49]:

Theorem 3.10.5 Assume that n = 3. Consider a foliation by lines L ⊂ DerkK .
There is a birational projective morphism M → M0 such that L is log-elementary
at all the points of M .

The general structure of the proof is à la Zariski. First, a local uniformization along
any valuation ν of K vanishing on k is established: a sequence of blowings up M →
M0 along non-singular centers is constructed such that L is log-elementary at the
center Y of ν on M . After that Theorem 3.10.5 is deduced from the Piltant–Zariski
general globalization procedure in dimension three [136]: one just has to check that
Piltant’s axioms I–VI hold in this special case. The proof of local uniformization of
three-dimensional vector fields is inspired by [46] and [47].

We mention, without giving the details, the following related results on reduction
of singularities of foliations and vector fields.

(1) The paper [48] constructs a reduction of singularities of codimension 1
foliations in ambient dimension 3.

(2) The paper [135] accomplishes reduction of singularities of real-analytic vector
fields; the real setting is used in an essential way in the proof.

(3) The paper [123] proves reduction of singularities of foliations by curves in
ambient dimension 3 to canonical ones (the condition of being canonical
is somewhat stronger than being log-elementary), but in the 2-category of
Deligne–Mumford stacks.

(4) The papers [78, 79] prove the Local Uniformization theorem for codimension
one foliations in all dimensions, under two restrictions on the given valuation
ν: rk ν = 1 and kν = C.
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3.11 Appendix

It is natural to pose the problem of resolution of singularities in the more general
context of noetherian schemes.

Definition 3.11.1 Let X be a reduced noetherian scheme. A resolution of singu-
larities of X is a blowing up X′ → X along a subscheme of X, not containing any
irreducible components of X, such that X′ is non-singular.

In this Appendix we address the question of the hypotheses that must be imposed
on X in order for resolution of singularities to exist. Let Reg(X) denote the set of
regular points of X. It is obvious that the following condition is necessary for the
existence of a resolution of singularities of X:

(1) Reg(X) must contain a non-empty Zariski open set.
Furthermore, suppose X admits a resolution of singularities π : X′ → X and
let

π̄ : X̄ → X

denote the normalization of X. Then π must factor through X̄. We have X̄ =
Spec π∗OX′ and π∗OX′ is a coherent sheaf of OX-modules. This gives another
necessary condition for the existence of resolution:

(2) X̄ must be finite over X.

Moreover, since the usual methods involve blowing up and induction on dim X,
we are led to assume that (1) and (2) hold for every reduced scheme of finite type
over X. By Nagata’s criterion, (1) then implies that X is a J-2 scheme, that is, for
every scheme X̃, reduced and of finite type over X, Reg(X̃) is open.

Grothendieck [87, IV.7.9] proved that if all of the irreducible closed subschemes
of X and all of their finite purely inseparable covers admit resolution of singularities,
then X must satisfy a somewhat stronger condition than (1)∧(2) above, called quasi-
excellence, which we now define. For a point ξ on a scheme we will denote by κ(ξ)

the residue field of the local ring of that point.

Definition 3.11.2 ([121, Chapter 13, (33.A), p. 249]) Let σ : X → Y be a
morphism of noetherian schemes. We say that σ is regular if it is flat, and for every
ξ ∈ Y the fiber X ×Y Spec κ(ξ) is geometrically regular over κ(ξ) (this means that
for every finite field extension κ(ξ) → k′, the scheme X ×Y Spec k′ is regular).

Remark 3.11.3 If κ(ξ) is perfect, the fiber X×Y Spec κ(ξ) is geometrically regular
over κ(ξ) if and only if it is regular.

Remark 3.11.4 It is known that a morphism of finite type is regular in the above
sense if and only if it is smooth (that is, flat with smooth fibers).
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3.11.1 Quasi-excellent Schemes

Regular morphisms come up in a natural way when one wishes to pass to the formal
completion of a local ring at a singularity:

Definition 3.11.5 ([121, (33.A) and (34.A)]) Let R be a noetherian ring. For a
maximal ideal m of R, let R̂m denote the m-adic completion of R. We say that R is
a G-ring if for every maximal ideal m of R, the natural map Spec R̂m → Spec R

is a regular morphism.

Definition 3.11.6 ([121, (34.A), p. 259]) Let X be a noetherian scheme. We say
that X is quasi-excellent if the following two conditions hold:

(1) X is J-2, that is, for every scheme X̃, reduced and of finite type over X, Reg(X̃)

is open in the Zariski topology.
(2) For every closed point ξ ∈ X, OX,ξ is a G-ring.

Remark 3.11.7 If X = Spec R with R a local noetherian ring then (2) �⇒ (1) in
the above definition [121].

A scheme is said to be excellent if it is quasi-excellent and universally catenary.
In general, rings that arise from natural constructions in algebra and geometry are
excellent. Complete and complex-analytic local rings are excellent (see [121, The-
orem 30.D] for a proof that every complete local ring is excellent and [121, (33.H),
Theorem 78, p. 257] for a proof of finiteness of normalization for quasi-excellent
schemes). Both excellence and quasi-excellence are preserved by localization and
passing to schemes of finite type over X [121, Chapter 13, (33.G), Theorem 77, p.
254]. In particular, every scheme that is essentially of finite type over a field, Z, Z(p),
Zp, the Witt vectors or any other excellent Dedekind domain, or over a complete or
complex-analytic local ring is excellent. See [126, Appendix A.1, p. 203], for some
examples of non-excellent rings.

If X is a quasi-excellent scheme then for every ξ ∈ X the natural map

Spec ÔX,ξ → X

is a regular homomorphism (by Definition 3.11.6 (2)). Thus, the passage to the
formal completion is a natural operation in the category of quasi-excellent schemes;
in particular, it does not change the nature of singularity.

Once local uniformization is proved in a given context, in order to globalize it
and to make it canonical (that is, functorial in the category whose objects are quasi-
excellent noetherian schemes and whose morphisms are regular morphisms), one is
interested in local uniformization algorithms determined, locally at every point ξ ,
by the formal completion ÔX,ξ of OX,ξ .

Grothendieck’s result means that the largest subcategory of the category of
noetherian schemes, closed under passing to closed subschemes and finite purely
inseparable covers, for which resolution of singularities could possibly exist, is that
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of quasi-excellent schemes. In [87, IV.7.9], Grothendieck conjectures that resolution
of singularities exists in this most general possible context.

We take this opportunity to mention a recent paper [105] by L. Illusie, Y. Laszlo
and F. Orgogozo, based on the ideas of Ofer Gabber.
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