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Abstract We consider a reduced complex surface germ (X, p). We do not assume
that X is normal at p, and so, the singular locus (�, p) of (X, p) could be one
dimensional. This text is devoted to the description of the topology of (X, p). By
the conic structure theorem (see Milnor, Singular Points of Complex Hypersurfaces,
Annals of Mathematical Studies 61 (1968), Princeton Univ. Press), (X, p) is
homeomorphic to the cone on its link LX. First of all, for any good resolution ρ :
(Y,EY ) → (X, 0) of (X, p), there exists a factorization through the normalization
ν : (X̄, p̄) → (X, 0) (see H. Laufer, Normal two dimensional singularities, Ann.
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of Math. Studies 71, (1971), Princeton Univ. Press., Thm. 3.14). This is why we
proceed in two steps.

1. When (X, p) a normal germ of surface, p is an isolated singular point and the
link LX of (X, p) is a well defined differentiable three-manifold. Using the good
minimal resolution of (X, p), LX is given as the boundary of a well defined
plumbing (see Sect. 2.2) which has a negative definite intersection form (see
Hirzebruch et al., Differentiable manifolds and quadratic forms, Math. Lecture
Notes, vol 4 (1972), Dekker, New-York and Neumann, A calculus for plumbing
applied to the topology of complex surface singularities and degenerating
complex curves, Trans. Amer. Math. Soc. 268 (1981), p. 299–344).

2. In Sect. 2.3, we use a suitably general morphism, π : (X, p) → (C2, 0),
to describe the topology of a surface germ (X, p) which has a 1-dimensional
singular locus (�, p). We give a detailed description of the quotient morphism
induced by the normalization ν on the link LX̄ of (X̄, p̄) (see also Sect. 2.2 in
Luengo-Pichon, Lê ‘s conjecture for cyclic covers, Séminaires et congrès 10,
(2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa).

In Sect. 2.4, we give a detailed proof of the existence of a good resolution of
a normal surface germ by the Hirzebruch-Jung method (Theorem 2.4.6). With
this method a good resolution is obtained via an embedded resolution of the
discriminant of π (see Friedrich Hirzebruch, Über vierdimensionale Riemannsche
Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen,
Math. Ann. 126 (1953) p. 1–22). An example is given Sect. 2.6. An appendix
(Sect. 2.5) is devoted to the topological study of lens spaces and to the description
of the minimal resolution of quasi-ordinary singularities of surfaces. Section 2.5
provides the necessary background material to make the proof of Theorem 2.4.6
self-contained.

2.1 Introduction

Let I be a reduced ideal in C{z1, . . . , zn} such that the quotient algebra AX =
C{z1, . . . , zn}/I is two-dimensional. The zero locus, at the origin 0 of Cn, of a set
of generators of I is an analytic surface germ embedded in (Cn, 0). Let (X, 0) be its
intersection with the compact ball B2n

ε of radius a sufficiently small ε, centered at
the origin in C

n, and LX its intersection with the boundary S2n−1
ε of B2n

ε . Let � be
the set of the singular points of (X, 0).

As I is reduced � is empty when (X, 0) is smooth, it is equal to the origin when
0 is an isolated singular point, it is a curve when the germ has a non-isolated singular
locus (in particular we do not exclude the cases of reducible germs).

If � is a curve, K� = �∩S2n−1
ε is the disjoint union of r one-dimensional circles

(r being the number of irreducible components of �) embedded in LX. We say that
K� is the link of �. By the conic structure theorem (see [18]), for a sufficiently
small ε, (X,�, 0) is homeomorphic to the cone on the pair (LX,K�) and to the
cone on LX when � = {0}.
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On the other hand, thanks to A. Durfee [7], the homeomorphism class of
(X,�, 0) depends only on the isomorphism class of the algebra AX (i.e. is
independent of a sufficiently small ε and of the choice of the embedding in (Cn, 0)).
We say that the analytic type of (X, 0) is given by the isomorphism class of AX

and, we say that its topological type is given by the homeomorphism class of the
pair (X, 0) if 0 is an isolated singular point, and by the homeomorphism class of the
triple (X,�, 0) if the singular locus � is a curve.

Definition 2.1.1 The link of (X, 0) is the homeomorphism class of LX if 0
is an isolated singular point (in particular if (X, 0) is normal at 0), and is the
homeomorphic class of the pair (LX,K�) if the singular locus � is a curve.

This paper is devoted to the description of the link of (X, 0).

2.1.1 Good Resolutions

Definition 2.1.2 A morphism ρ : (Y,EY ) → (X, 0) where EY = ρ−1(0) is the
exceptional divisor of ρ, is a good resolution of (X, 0) if :

1. Y is a smooth complex surface,
2. the total transform ρ−1(�) =: E+

Y is a normal crossing divisor with smooth
irreducible components.

3. the restriction of ρ to Y \ E+
Y is an isomorphism.

Definition 2.1.3 Let ρ : (Y,EY ) −→ (X, 0) be a good resolution of (X, 0).
The dual graph associated to ρ, denoted G(Y), is constructed as follows. The

vertices of G(Y) represent the irreducible components of EY . When two irreducible
components of EY intersect, we join their associated vertices by edges whose
number is equal to the number of intersection points. A dual graph is a bamboo
if the graph is homeomorphic to a segment and each vertex represents a rational
curve.

If Ei is an irreducible component of EY , let us denote by ei the self-intersection
number of Ei in Y and by gi its genus. To obtain the weighted dual graph
associated to ρ, denoted Gw(Y ), we weight G(Y) as follows. A vertex associated
to the irreducible Ei of EY is weighted by (ei) when gi = 0 and by (ei, gi) when
gi > 0.

For example if X = {(x, y, z) ∈ C
3, zm = xkyl}, where m, k and l are integers

greater than two and pairwise relatively prime, Fig. 2.1 describes the shape of the
dual graph of the minimal good resolution of (X, 0).

Remark 2.1.4 If (X, 0) is reducible, let (∪1≤i≤rXi, 0) be its decomposition as a
union of irreducible surface germs. Let νi : (X̄i , pi) → (Xi, 0) be the normalization
of the irreducible components of (X, 0). The morphisms νi induce the normalization
morphism on the disjoint union

∐
1≤i≤r (X̄i , pi).
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Fig. 2.1 Gw(Y ) when X = {(x, y, z) ∈ C
3, zm = xkyl}. Here G(Y) is a bamboo. The arrows

represent the strict transform of {xy = 0}. In particular if m = 12, k = 5 and l = 11 the graph has
three vertices with e1 = −3, e2 = −2, e3 = −3 (see [16, p. 759])

Remark 2.1.5 First of all, for any good resolution ρ : (Y,EY ) → (X, 0) there
exists a factorization through the normalization ν : (X̄, p̄) → (X, 0) (see [11, Thm.
3.14]). In Sect. 2.3, we describe the topology of normalization morphisms. After that
it will be sufficient to describe the topology of the links of normal surface germs.

A good resolution is minimal if its exceptional divisor doesn’t contain any
irreducible component of genus zero, self-intersection −1 and which meets only
one or two other irreducible components. Let ρ : (Y,EY ) → (X, 0) be a good
resolution and ρ′ : (Y ′, EY ′) → (X, 0) be a good minimal resolution of (X, 0).
Then there exists a morphism β : (Y,EY ) → (Y ′, EY ′) which is a sequence of
blowing-downs of irreducible components of genus zero and self-intersection −1
(see [11, Thm 5.9] or [1, p. 86]). It implies the unicity, up to isomorphism, of the
minimal good resolution of (X, 0).

As there exists a factorization of ρ′ through ν, (Y ′, EY ′) is also the minimal good
resolution of (X̄, p̄). Let ρ̄ : (Y ′, EY ′) → (X̄, p̄) be the minimal good resolution of
(X̄, p̄) defined on (Y ′, EY ′). What we said just above implies that ρ = ν ◦ ρ̄ ◦ β,
i.e. ρ is the composition of the following three morphisms:

(Y,EY )
β−→ (Y ′, EY ′)

ρ̄−→ (X̄, p̄)
ν−→ (X, 0)

2.1.2 Link of a Complex Surface Germ

In Sect. 2.2, we describe the topology of a plumbing and the topology of its
boundary. We explain how the existence of a good resolution describes the link
of a normal complex surface germ as the boundary of a plumbing of disc bundles
on oriented smooth compact real surfaces with empty boundary. The boundary of a
plumbing is, by definition, a plumbed 3-manifold [10, 20] or equivalently a graph
manifold in the sense of Waldhausen [23]. The plumbing given by the minimal good
resolution of (X, 0) has a normal form in the sense of Neumann [20] and represents
its boundary in a unique way.

It implies that the link of a normal complex surface germ (X, 0) determines the
weighted dual graph of its good minimal resolution. In particular, if the link is S3,
then the good minimal resolution of (X, 0) is an isomorphism and (X, 0) is smooth
at the origin. This is the famous result obtained in 1961 by Mumford [19]. When
the singular locus of (X, 0) is an irreducible germ of curve, its link can be S3. Lê’s
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conjecture, which is still open (see [14] and [2] for partial results), states that it can
only happen for an equisingular family of irreducible curves.

In Sect. 2.3, we use a suitably general projection π : (X, 0) → (C2, 0) (as told
in Sect. 2.3.1) to describe the topology of the restriction νL : LX̄ → LX of the
normalization ν on the link LX̄. We will show that νL is a homeomorphism if and
only if a general hyperplane section of (X, 0) is locally irreducible at z for all points
z ∈ (� \ {0}). Otherwise, as stated without a proof in Luengo-Pichon [14], νL is the
composition of two kind of topological quotients: curlings and identifications. Here,
we give detailed proofs. Some years ago, John Milnor asked me for a description
of the link of a surface germ with non-isolated singular locus. I hope that Sect. 2.3
gives a satisfactory answer.

In Sect. 2.4 we suppose that (X, 0) is normal. We use a finite morphism
π : (X, 0) → (C2, 0) and its discriminant �, to obtain a good resolution
ρ : (Y,EY ) → (X, 0) of (X, 0). We follow Hirzebruch’s method (see [9], see
also Brieskorn [5] for a presentation of Hirzebruch’s work). The scheme to obtain
ρ is as in [15], but our redaction here is quite different. In [15], the purpose is
to study the behaviour of invariants associated to finite morphisms defined on
(X, 0). Here, we explain in detail the topology of each steps of the construction
to specify the behaviour of ρ. Hirzebruch’s method uses the properties of the
topology of the normalization, presented in Sect. 2.3, and the resolution of the
quasi-ordinary singularities of surfaces already studied by Jung. This is why one
says that this resolution ρ is the Hirzebruch-Jung resolution associated to π. Then
LX is homeomorphic to the boundary of a regular neighborhood of the exceptional
divisor EY of ρ : (Y,EY ) → (X, 0) which is a plumbing as defined in Sect. 2.2.

Section 2.5 is an appendix which can be read independently of the other sections.
We suppose again that (X, 0) is normal. We give topological proofs of basic results,
already used in Sect. 2.4 on finite morphism φ : (X, 0) → (C2, 0), in the following
two cases:

1. The discriminant of φ is a smooth germ of curve. Then, in Lemma 2.5.6, we
show that (X, 0) is analytically isomorphic to (C2, 0) and that φ is analytically
isomorphic to the map from (C2, 0) to (C2, 0) defined by (x, y) 	→ (x, yn).

2. The discriminant of φ is a normal crossing. By definition (X, 0) is then a quasi-
ordinary singularity and its link is a lens space. We prove that the minimal
resolution of (X, 0) is a bamboo of rational curves (Proposition 2.5.7).

Section 2.6 is an example of Hirzebruch-Jung’s resolution.

2.1.3 Conventions

The boundary of a topological manifold W will be denoted by b(W).

A disc (resp. an open disc) will always be an oriented topological manifold
orientation preserving homeomorphic to {z ∈ C, |z| ≤ 1} (resp. to {z ∈ C, |z| < 1}).
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A circle will always be an oriented topological manifold orientation preserving
homeomorphic to S = {z ∈ C, |z| = 1}. Moreover, for 0 < α, we use the following
notation: Dα = {z ∈ C, |z| ≤ α}, and Sα = b(Dα).

2.2 The Topology of Plumbings

In this Section (X, 0) is a normal complex surface germ.
The name “plumbing” was introduced by David Mumford in [19]. There, he

showed that the topology of a resolution of a normal singularity of a complex surface
can be described as a “plumbing”.

In [9], Hirzebruch constructed good resolutions of normal singularities. Let ρ :
(Y,EY ) → (X, 0) be a good resolution of the normal germ of surface (X, 0). Each
irreducible component Ei of the exceptional divisor is equipped with its normal
complex fiber bundle. With their complex structure the fibers have dimension 1. So,
a regular compact tubular neighbourhood N(Ei) of Ei in Y , is a disc bundle. As Ei

is a smooth compact complex curve, Ei is an oriented differential compact surface
with an empty boundary. Then, the isomorphism class, as differential bundle, of
the disc bundle N(Ei) is determined by the genus gi of Ei and its self-intersection
number ei in Y. The complex structure gives an orientation on Y and on Ei , these
orientations induce an orientation on N(Ei) and on the fibers of the disc bundle over
Ei .

Remark 2.2.1 By definition (X, 0) is a sufficiently small compact representative
of the given normal surface germ. Let k be the number of irreducible components
of EY , M(Y) = ∪1≤i≤kN(Ei) is a compact neighborhood of EY . There exists a
retraction by deformation R : Y → M(Y) which induces a homeomorphism from
the boundary of Y, b(Y ) = ρ−1(LX), to the boundary b(M(Y )). So, the boundary
of M(Y) is the link of (X, 0).

Definition 2.2.2 Let N(Ei), i = 1, 2, be two oriented disc bundles on oriented
smooth compact differentiable surfaces, with empty boundary, Ei, i = 1, 2, and let
pi ∈ Ei . The plumbing of N(E1) and N(E2) at p1 and p2 is equal to the quotient
of the disjoint union of N(E1) and N(E2) by the following equivalence relation.
Let Di be a small disc neighbourhood of pi in Ei , and Di ×�i be a trivialization of
N(Ei) over Di , i = 1, 2. Let f : D1 → �2 and g : �1 → D2 be two orientation
preserving diffeomorphisms such that f (p1) = 0 and g(0) = p2.

For all (v1, u1) ∈ D1×�1, the equivalence relation is (v1, u1) ∼ (g(u1), f (v1)).

Remark 2.2.3 The diffeomorphism class of the plumbing of N(E1) and N(E2) at
(p1, p2) does not depend upon the choices of the trivializations nor on the choices
of f and g. Moreover, in the plumbing of N(E1) and N(E2) at p1 and p2:

1. The image of E1 intersects the image of E2 at the point p12 which is the class, in
the quotient, of (p1 × 0) ∼ (p2 × 0).
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2. The plumbing is a gluing of N(E1) and N(E2) around the chosen neighbour-
hoods of (p1 × 0) and (p2 × 0).

3. In the plumbing, D1 × 0 ⊂ E1 is identified, via f , with the fiber 0 × �2 of
the disc bundle N(E2) and the fiber 0 × �1 of N(E1) is identified, via g, with
D2 × 0 ⊂ E2.

Definition 2.2.4 More generally we can perform the plumbing of a family
N(Ei), i = 1, . . . , n, of oriented disc bundles on oriented smooth compact
differentiable surfaces Ei with empty boundary, at a finite number of pairs of
points (pi, pj ) ∈ Ei × Ej . Let gi be the genus of Ei and ei be the self-intersection
number of Ei in N(Ei). The vertices of the weighted plumbing graph associated
to such a plumbing represent the basis Ei, i = 1, . . . , n, of the bundles. These
vertices are weighted by ei when gi = 0, and by (ei, gi) when 0 < gi . Each edge
which relates (i) to (j), represents an intersection point between the image of Ei

and Ej in the plumbing.
In the boundary of the plumbing of the family N(Ei), i = 1, . . . , n, the

intersections b(N(Ei)) ∩ b(N(Ej ) are a union of disjoint tori which is the family
of plumbing tori of the plumbing.

We can perform a plumbing between N(Ei) and N(Ej ) at several pairs of points
of Ei × Ej if and only if every two such pairs of points (pi, pj ) and (p′

i , p
′
j ) are

such that pi �= p′
i and pj �= p′

j . Let kij ≥ 0 be the number of these pairs of points.
Obviously, kij is the number of disjoint tori which form the intersection b(N(Ei))∩
b(N(Ej ) and also the number of edges which relate the vertices associated to Ei

and Ej in the plumbing graph associated to the plumbing.
An oriented disc bundle N(E) on a differential compact surface E of genus g

and empty boundary is determined as differentiable bundle by g and by the self-
intersection number of E in N(E). If two plumbings have the same weighted
plumbing graph, there exists a diffeomorphism between the two plumbings such that
its restriction on the corresponding disc bundles is an isomorphism of differentiable
disc bundles.

Proposition 2.2.5 Let ρ : (Y,EY ) → (X, 0) be a good resolution of the normal
germ of surface (X, 0). Then a regular neighbourhood, in Y, of the exceptional
divisor EY , is diffeomorphic to a plumbing of the disc bundles N(Ei). The
plumbings are performed around the double points pij = Ei ∩ Ej .The associated
weighted plumbing graph coincides with the weighted dual graph Gw(Y ) of ρ. To
each point pij ∈ (Ei ∩Ej) we associate a torus T (pij ) ⊂ (b(N(Ei))∩b(N(Ej ))).

Proof We choose trivializations of the disc bundles N(Ei) and N(Ej ) in a small
closed neighborhood V of pij . First, we center the trivializations at (0, 0) = pij and
we parametrize V as disc a bundle

1. over Ei by Vi = {(vi, ui) ∈ Di × �i}, where Di × 0 is a disc neighborhood of
(0, 0) = pij in Ei and vi × �i is the normal disc fiber at vi ∈ Di .

2. over Ej by Vj = {(vj , uj ) ∈ Dj × �j }, where Dj × 0 is a disc neighborhood
of (0, 0) = pij in Ej and vj × �j is the normal disc fiber at vj ∈ Dj .
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As EY is a normal crossing divisor, we can parametrize V in such a way that EY ∩
V = {uv = 0} where v = vi = uj and u = vj = ui . These equalities provide
the plumbing of N(Ei) and N(Ej ) around pij . By construction , the associated
weighted plumbing graph is equal to Gw(Y ). ��
Definition 2.2.6 The union of disc bundles M(Y) = ∪1≤i≤kN(Ei) is the plumb-
ing associated to ρ : (Y,EY ) → (X, 0).

With the above notation, in a neighborhood of pij , there is a unique connected
component of the intersection (b(N(Ei))∩b(N(Ej ))) which is parametrized by the
torus b(Di) × b(�i) which is glued point by point with b(Dj ) × b(�j ).

Definition 2.2.7 The image of (b(Di)×b(�i)) ∼ (b(Dj )×b(�j )) in the boundary
of M(Y) is the plumbing torus T (pij ) associated to pij .

2.3 The Topology of the Normalization

In this Section (X, 0) is the intersection of a reduced complex surface germ, which
can have a 1-dimensional singular locus, with the compact ball B2n

ε of radius a small
ε (i.e. where ε is as in Milnor’s Theorem 2.10 of [18]), centered at the origin in C

n.
As in the Introduction (Sect. 2.1), LX is the intersection of X with the boundary
S2n−1

ε of B2n
ε .

2.3.1 LX as Singular Covering over S3

We choose a general projection π : (X, 0) → (C2, 0). We denote by � the singular
locus of π (in particular � ⊂ �) and by � its discriminant (� = π(�)). In fact it
is sufficient to choose new coordinates in C

n, (x, y,w1, . . . , wn−2) ∈ C
n, such that

the restriction on (X, 0) of the projection

(x, y,w1, . . . , wn−2) 	→ (x, y),

denoted by π , is finite and such that, for a sufficiently small α with α < ε, and all
a ∈ C with |a| ≤ α, the hyperplanes Ha = {x = a} meet transversally the singular
locus � of π. In particular, H0 ∩ � = {0}.
Convention and Notation

Let Dα × Dβ ∈ C
2 be a polydisc at the origin in C

2 where 0 < α < β < ε are
chosen sufficiently small such that the following two points are satisfied:

I) B = B2n
ε ∩ π−1(Dα × Dβ) is a good semi-analytic neighborhood of (X, 0) in

the sense of A. Durfee [7]. Then (X ∩ B, 0) is homeomorphic to (X, 0). In this
section (X, 0) is given by (X ∩B, 0). The link LX = X ∩ b(B) is the link of X.
The link of � is the link K� = � ∩ b(B) embedded in LX.
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II) We have the following inclusion:

K� = � ∩ ((Sα × Dβ) ∪ (Dα × Sβ)) ⊂ (Sα × Dβ).

In this section, we choose such a K� to represent the link of � embedded in the
3-sphere (with corners) ((Sα × Dβ) ∪ (Dα × Sβ)). Let δj , 1 ≤ j ≤ r, be the r

branches of the discriminant �. Let N(K�) be a tubular compact neighborhood of
K�. So, N(K�) is a disjoint union of r solid tori. For a sufficiently small N(K�),
the union N(K�) of the connected components of LX∩π−1(N(K�)) which contain
a connected component of K� , constitutes a tubular compact neighbourhood of K�

in LX.
Let us denote by N̊(K�) the interior of N(K�). The exterior M of the link K�

is defined by:

M = ((Sα × Dβ) ∪ (Dα × Sβ)) \ N̊(K�).

Moreover, let γ be a branch of the singular locus � of π . So, π(γ ) = δ is a
branch of �. Let N(Kδ) (resp. N(Kγ )) be the connected component of N(K�)

(resp. of N(K�)) which contains the link Kδ (resp. Kγ ).

Remark 2.3.1 The restriction πL : LX → ((Sα ×Dβ)∪ (Dα ×Sβ)) of π to LX is a
finite morphism, its restriction on M is a finite regular covering. If γ is not a branch
of the singular locus � of X, πL restricted to N(Kγ ) is a ramified covering with Kγ

as ramification locus. If γ is a branch of �, N(Kγ ) is a singular pinched solid torus
as defined in Definition 2.3.13 and πL restricted to N(Kγ ) is singular all along Kγ .

2.3.2 Waldhausen Graph Manifolds and Plumbing Graphs

Definition 2.3.2 A Seifert fibration on an oriented, compact 3-manifold is an
oriented foliation by circles such that every leaf has a tubular neighbourhood (which
is a solid torus) saturated by leaves. A Seifert 3-manifold is an oriented, compact
3-manifold equipped with a Seifert fibration.

Remark 2.3.3

1. A Seifert 3-manifold M can have a non-empty boundary. As this boundary is
equipped with a foliation by circles, if B(M) is non-empty it is a disjoint union
of tori.

2. Let D be a disc and r be a rotation of angle 2πq/p where (q, p) are two positive
integers prime to each other and 0 < q/p < 1. Let Tr be the solid torus equipped
with a Seifert foliation given by the trajectories of r in the following mapping
torus:

Tr = D × [0, 1]/(z, 1) ∼ (r(z), 0).
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In particular, l0 = (0 × [0, 1])/(0, 1) ∼ (0, 0) is a core of Tr . The other
leaves are (q, p)-torus knots in Tr . Let T0 be D × S equipped with the trivial
fibration by circles l(z) = {z} × S, z ∈ D. A solid torus T (l) which is a tubular
neighbourhood of a leave l of a Seifert 3-manifold M is either

1) orientation and foliation preserving homeomorphic to T0. In this case, l is a
regular Seifert leave.

2) or, is orientation and foliation preserving homeomorphic to Tr . In this case, l

is an exceptional leave of M .

3. The compactness of M implies that the set of exceptional leaves is finite.

Definition 2.3.4 Let M be an oriented and compact 3-manifold. The manifold M

is a Waldhausen graph manifold if there exists a finite family T, of disjoint tori
embedded in M , such that if Mi, i = 1, . . . , m, is the family of the closures of the
connected components of M \T, then Mi is a Seifert manifold for all i, 1 ≤ i ≤ m.
We assume that it gives us a finite decomposition M = ∪1≤i≤mMi into a union of
compact connected Seifert manifolds which satisfies the following properties:

1. For each Mi, i = 1, . . . , m, the boundary of Mi is in T i.e. b(Mi) ⊂ T.
2. If i �= j we have the inclusion (Mi ∩ Mj) ⊂ T.
3. The intersection (Mi ∩ Mj), between two Seifert manifolds of the given

decomposition, is either empty or equal to the union of the common boundary
components of Mi and Mj .

Such a decomposition M = ∪1≤i≤mMi , is the Waldhausen decomposition of
M , associated to the family of tori T.

Remark 2.3.5 One can easily deduce from Definition 2.2.4, that the family of the
plumbing tori gives a decomposition of the boundary of a plumbing as a union of
Seifert manifolds because the boundary of a disc bundle is a circle bundle. So, the
boundary of a plumbing is a Waldhausen graph manifold.

In [20], W. Neumann shows how to construct a plumbing from a given Wald-
hausen decomposition of a 3-dimensional oriented compact manifold.

As in Sect. 2.3.1, we consider the exterior M = ((Sα×Dβ)∪(Dα×Sβ))\N̊(K�)

of the link K�. The following proposition is well known (for example see [8, 17]).
Moreover, a detailed description of M , as included in the boundary of the plumbing
graph given by the minimal resolution of �, is given in [12, p. 147–150].

Proposition 2.3.6 The exterior M of the link of a plane curve germ � is a
Waldhausen graph manifold. The minimal Waldhausen decomposition of M can be
extended to a Waldhausen decomposition of the sphere ((Sα × Dβ) ∪ (Dα × Sβ))

in which the connected components of K� are Seifert leaves. Moreover, with such
a Waldhausen decomposition, the solid tori connected components of N(K�) are
saturated by Seifert leaves which are oriented circles transverse to (a×Dβ), a ∈ Sα .
The cores K� of N(K�) are a union of these Seifert leaves.
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2.3.3 The Topology of LX When LX Is a Topological Manifold

If (X, 0) is not normal, let νL : LX̄ → LX be the normalization of (X, 0) restricted
to the link of (X̄, p) (if (X, 0) is normal νL is the identity).

Remark 2.3.7 The link of a normal complex surface germ is a Waldhausen graph
manifold. Indeed, the composition morphism πL ◦ νL is a ramified covering with
the link K� as set of ramification values:

(πL ◦ νL) : LX̄ → ((Sα × Dβ) ∪ (Dα × Sβ)).

We can take the inverse image under πL ◦ νL of the tori and of the Seifert leaves of
a Waldhausen decomposition of ((Sα × Dβ) ∪ (Dα × Sβ)) in which K� is a union
of Seifert leaves, to obtain a Waldhausen decomposition of LX̄. Then, the plumbing
calculus [20] describes LX̄ as the boundary of a plumbing without the help of a
good resolution of (X̄, p).

If the singular locus (�, 0) of (X, 0) is one-dimensional, let (σ, 0) be a branch
of (�, 0) and s be a point of the intersection σ ∩ {x = a}. Let δ = π(σ) be the
branch of the discriminant � which is the image of σ by the morphism π . Then,
πL(s) = (a, y) ∈ (Sα × Dβ). Let N(Kδ) be a solid torus regular neighbourhood of
Kδ in (Sα × Dβ) and let N(Kσ ) be the connected component of (πL)−1(N(Kδ))

which contains s (and Kσ ).
Let (C, s) be the germ of curve which is the connected component of N(Kσ ) ∩

{x = a} which contains s. For a sufficiently small α = |a|, (C, s) is reduced and its
topological type does not depend upon the choice of s. In particular, the number of
the irreducible components of (C, s) is well defined, let us denote this number by
k(σ ).

Definition 2.3.8

1. By definition (C, s) is the hyperplane section germ of σ at s.
If k(σ ) = 1, σ is a branch of � with irreducible hyperplane sections. Let
� = �1 ∪ �+ where �1 is the union of the branches of � with irreducible
hyperplane sections and �+ is the union of the branches of � with reducible
hyperplane sections.

2. Let Di, 1 ≤ i ≤ k be k oriented discs centered at 0i ∈ Di . A k-pinched disc
k(D) is a topological space orientation preserving homeomorphic to the quotient
of the disjoint union of the k discs by the identification of their centers in a unique
point 0̃ i.e. 0i ∼ 0j for all i and j where 1 ≤ i ≤ k, 1 ≤ j ≤ k. The center of
k(D) is the equivalence class 0̃ of the centers 0i , 1 ≤ i ≤ k.

3. If h : k(D) → k(D)′ is a homeomorphism between two k-pinched discs with
k > 1, h(0̃) is obviously the center of k(D)′. We say that h is orientation
preserving if h preserves the orientation of the punctured k-pinched discs
(k(D) \ {0̃}) and (k(D)′ \ {0̃}).
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Lemma 2.3.9 Let (C, s) be the germ of curve which is the connected component of
N(Kσ ) ∩ {x = a} which contains s. Then, C is a k(σ )-pinched disc centered at s

and N(Kσ ) is the mapping torus of C by an orientation preserving homeomorphism
h which fixes the point s.

Proof As (C, s) is a germ of curve with k(σ ) branches, up to homeomorphism
(C, s) is a k(σ )-pinched disc with s = 0̃.

We can saturate the solid torus N(Kδ) = π(N(Kσ )) with oriented circles
such that Kδ is one of these circles and such that the first return homeomorphism
defined by these circles on the disc π(C) is the identity. Let γ be one circle of
the chosen saturation of N(Kδ). Then π−1(γ ) ∩ N(Kσ ) is a disjoint union of
oriented circles because π restricted to N(Kσ ) \ Kσ is a regular covering and
(π−1(Kδ) ∩ N(Kσ )) = Kσ . So, N(Kσ ) is equipped with a saturation by oriented
circles. The first return map on C along the so constructed circles is an orientation
preserving homeomorphism h such that h(s) = s because Kσ is one of the given
circles. ��
Lemma 2.3.10 As above, let (C, s) be the hyperplane section germ at s ∈ σ ∩{x =
a}. Let σ̄j , 1 ≤ j ≤ n, be the n irreducible components of ν−1

L (σ ) and let dj be the
degree of νL restricted to σ̄j . Then, we have

k(σ ) = d1 + · · · + dj + · · · + dn.

Proof The normalization ν restricted to X̄ \ �̄, where �̄ = π−1(�), is an
isomorphism. The number n of the irreducible components of ν−1

L (σ ) is equal to
the number of the connected components of ν−1

L (N(Kσ )). So, n is the number of
the connected components of the boundaries b(ν−1

L (N(Kσ ))) which is equal to the
number of the connected components of b(N(Kσ )). Let τj , 1 ≤ j ≤ n, be the n

disjoint tori which are the boundary of N(Kσ ). The degree dj of ν restricted to σ̄j

is equal to the number of points of ν−1
L (s) ∩ (σ̄j ).

Let (γj , s) be an irreducible component of (C, s) such that mj = b(γj ) ⊂ τj .
The normalization ν restricted to (ν−1

L (γj \ {s})) is an isomorphism over the
punctured disc (γj \ {s}). So, the intersection ν−1

L (γj ) ∩ σ̄j is a unique point pj .
As (X̄, p) is normal, pj is a smooth point of (X̄, p) and then, ν−1

L (γj ) is irreducible
and it is the only irreducible component of ν−1

L (C) at pj . By symmetry there is
exactly one irreducible component of ν−1

L (C) at every point of ν−1
L (s) ∩ (σ̄j ).

So, dj is the number of the meridian circles of the solid torus N(Kσ̄j
) obtained

by the following intersection (ν−1
L (C)) ∩ (ν−1

L (τj )). But ν restricted to (ν−1
L (τj ))

is an isomorphism and dj is also the number of connected components of C ∩ τj .
So, d1 + · · · + dj + · · · + dn, is equal to the number of connected components of
b(C) = C ∩ b(N(Kσ )) which is the number of irreducible components of (C, s).

��
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Remark 2.3.11 A well-known result of analytic geometry could be roughly stated
as follows: “The normalization separates the irreducible components”. Here, (X, 0)

has k(σ ) irreducible components around s ∈ σ . Using only basic topology,
Lemma 3.3.4 proves that (ν−1

L (s)) has k(σ ) = d1 + · · · + dj + · · · + dn distinct
points and that there is exactly one irreducible component of ν−1

L (C) at every point
of ν−1

L (s). This gives a topological proof that the normalization ν separates the k(σ )

irreducible components of (C, s) around s ∈ σ .

Proposition 2.3.12 The following three statements are equivalent:

1. LX is a topological manifold equipped with a Waldhausen graph manifold
structure.

2. The normalization ν : (X̄, p) → (X, 0) is a homeomorphism.
3. All the branches of � have irreducible hyperplane sections.

Proof The normalization ν restricted to X̄ \ �̄, where �̄ = π−1(�), is an
isomorphism. The normalization is a homeomorphism if and only if ν restricted
to �̄ = π−1(�) is a bijection. This is the case if and only if we have 1 =
d1 + · · · + dj + · · · + dn for all the branches σ of �. But, by Lemma 2.3.10,
k(σ ) = d1 + · · · + dj + · · · + dn. This proves the equivalence of the statements 2
and 3.

Let (C, s) be the hyperplane section germ at s ∈ σ ∩ {x = a}. If LX is
a topological manifold, it is a topological manifold at s and k(σ ) = 1 for all
branches σ of �. If all the branches of � have irreducible hyperplane sections,
we already know that the normalization ν : (X̄, p) → (X, 0) is a homeomorphism.
Then, the restriction νL of ν to LX̄ is also a homeomorphism. By Remark 2.3.7,
LX̄ is a Waldhausen graph manifold. In particular, we can equip LX with the
Waldhausen graph manifold structure carried by νL. This proves the equivalence
of the statements 1 and 3. ��

2.3.4 Singular LX, Curlings and Identifications

In Sect. 2.3.3 (Definition 2.3.8), we have considered the union �+ of the branches
of the singular locus � of (X, 0) which have reducible hyperplane sections. We
consider a tubular neighbourhood N+ = ∪σ⊂�+N(Kσ ) of the link K�+ of �+ in
LX. As in the proof of Proposition 2.3.12, the exterior M1 = LX \ N̊+, of K�+ in
LX, is a topological manifold because ν restricted to ν−1(M1) is a homeomorphism.
From now on σ is a branch of �+. The definition of �+ implies that LX is
topologically singular at every point of Kσ . In this section, we show that N(Kσ ) is a
singular pinched solid torus. In Lemma 2.3.9, it is shown that N(Kσ ) is the mapping
torus of a k(σ )-pinched disc by an orientation preserving homeomorphism. But, the
homeomorphism class of the mapping torus of a homeomorphism h depends only
on the isotopy class of h. Moreover the isotopy class of an orientation preserving
homeomorphism h of a k-pinched disc depends only on the permutation induced
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by h on the k discs. In particular, if h : D → D is an orientation preserving
homeomorphism of a disc D the associated mapping torus

T (D, h) = [0, 1] × D/(1, x) ∼ (0, h(x))

is homeomorphic to the standard torus S × D.

Definition 2.3.13

1. Let k(D) be the k-pinched disc quotient by identification of their centrum of
k oriented and ordered discs Di, 1 ≤ i ≤ k. Let c = c1 ◦ c2 ◦ · · · ◦ cn be
a permutation of the indices {1, . . . , k} given as the composition of n disjoint
cycles cj , 1 ≤ j ≤ n, where cj is a cycle of order dj . Let h̃c be an orientation
preserving homeomorphism of the disjoint union of Di, 1 ≤ i ≤ k such that
h̃c(Di) = Dc(i) and h̃c(0i ) = 0c(i). Then, h̃c induces an orientation preserving
homeomorphism hc on k(D). By construction we have hc(0̃) = 0̃. A singular
pinched solid torus associated to the permutation c is a topological space
orientation preserving homeomorphic to the mapping torus T (k(D), c) of hc:

T (k(D), c) = [0, 1] × k(D)/(1, x) ∼ (0, hc(x))

The core of T (k(D), c) is the oriented circle l0 = [0, 1] × 0̃/(1, 0̃) ∼
(0, 0̃). A homeomorphism between two singular pinched solid tori is orientation
preserving if it preserves the orientation of k(D) \ {0̃} and the orientation of the
trajectories of hc in its mapping torus T (k(D), c).

2. A d-curling Cd is a topological space homeomorphic to the following quotient
of a solid torus S × D :

Cd = S × D/(u, 0) ∼ (u′, 0) ⇔ ud = u′d .

Let q : (S × D) → Cd be the associated quotient morphism. By definition,
l0 = q(S × {0}) is the core of Cd .

Example 2.3.14 Let X = {(x, y, z) ∈ C
3 where zd −xyd = 0}. The normalization

of (X, 0) is smooth i.e. ν : (C2, 0) → (X, 0) is given by (u, v) 	→ (ud, v, uv). Let
T = {(u, v) ∈ (S × D) ⊂ C

2}. Let πx : ν(T ) → S be the projection (x, y, z) 	→ x

restricted to ν(T ). Here the singular locus of (X, 0) is the line σ = (x, 0, 0), x ∈ C.
We have N(Kσ ) = LX ∩ (π−1

x (S)) = ν(T ) as a tubular neighbourhood of Kσ . Let
q : T → Cd be the quotient morphism defined above. There exists a well defined
homeomorphism f : Cd → N(Kσ ) which satisfies f (q(u, v)) = (ud, v, uv). So,
N(Kσ ) is a d-curling and Kσ is its core. Moreover, f restricted to the core l0 of Cd

is a homeomorphism onto Kσ .

Figure 2.2 shows schematically �̄ = ν−1(�) ⊂ X̄ and � when � is irreducible
and � \ � has two irreducible components.
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Fig. 2.2 Schematic picture of π and ν when there is a 2-curling on � = γ2

Lemma 2.3.15 A d-curling is a singular pinched solid torus associated to a d-
cycle, i.e. if c is a d-cycle, then Cd is homeomorphic to T (d(D), c).

Proof We use the notation of Example 2.3.14. The model of d-curling obtained in
this example is the tubular neighbourhood N(Kσ ) of the singular knot of the link LX
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of X = {(x, y, z) ∈ C
3 where zd − xyd = 0}. As we work up to homeomorphism,

it is sufficient to prove that N(Kσ ) is a singular pinched solid torus associated to a
d-cycle. We can saturate the solid torus T by the oriented circles lb = S × {b}, b ∈
D. The circles ν(lb), b ∈ D also saturate N(Kσ ) with oriented circles. The fiber
π−1

x (a) = (C, (a, 0, 0)) is a singular fiber of the fibration πx : ν(T ) → Sα . The
equation of the curve germ C at (a, 0, 0) is {zd−ayd = 0}, this is a plane curve germ
with d branches. So, C is homeomorphic to a d-pinched disc. Moreover, the first
return along the circles ν(lb) is a monodromy h of πx which satisfies the conditions
given in Definition 3.4.1 to obtain a singular pinched solid torus associated to a
d-cycle.

Indeed, (πx ◦ ν) : T → Sα is a trivial fibration with fiber ν−1(C) = {({ui} ×
Dβ), ud

i = a} which is the disjoint union of d ordered meridian discs of T . The
first return hT along the oriented circles lb is a cyclic permutation of the ordered d

meridian discs and (hT )d is the identity morphism. Moreover ν restricted to T \(S×
{0}) is a homeomorphism. As hT is a lifting of h by ν, the monodromy h determines
N(Kσ ) as a singular pinched solid torus associated to a d-cycle. ��
Proposition 2.3.16 Let σ be a branch of the singular locus of (X, 0) which has
a reducible hyperplane section. Let (C, s) be the hyperplane section germ at s ∈
σ ∩ {x = a}. Let σ̄j , 1 ≤ j ≤ n, be the n irreducible components of ν−1

L (σ ) and let
dj be the degree of νL restricted to σ̄j . Let cj be a dj -cycle and let c = c1◦c2◦· · ·◦cn

be the permutation of k(σ ) = d1 + · · · + dj + · · · + dn elements which is the
composition of the n disjoint cycles cj . A tubular neighbourhood N(Kσ ) of Kσ

is a singular pinched solid torus associated to the permutation c. Moreover, the
restriction of ν to

∐
1≤j≤n N(Kσ̄j

) is the composition of two quotients: the quotients
which define the dj -curlings followed by the quotient fσ which identifies their cores.

Proof Let N(Kσ̄j
), 1 ≤ j ≤ n be the n connected components of ν−1(N(Kσ )). So,

N(Kσ ) \ Kσ has also n connected components and (N(Kσ ))j = ν(N(Kσ̄j
)) is the

closure of one of them. Every N(Kσ̄j
) is a solid torus and the restriction of ν to its

core Kσ̄j
has degree dj . The intersection (ν−1(C))∩N(Kσ̄j

) is a disjoint union of dj

ordered and oriented meridian discs of N(Kσ̄j
). We can choose a homeomorphism

gj : (S × D) → N(Kσ̄j
) such that (ν ◦ gj )

−1(C) = {u} × D, udj = 1.

The model of a dj -curling gives the quotient qj : (S × D) → Cdj
. As in

Example 2.3.14, there exists a unique homeomorphism fj : Cdj
→ (N(Kσ ))j

such that fj ◦ qj = ν ◦ gj . So, (N(Kσ ))j is a dj -curling. In particular, if νj is the
restriction of ν to N(Kσ̄j

), then νj = fj ◦ qj ◦ (gj )
−1. Up to homeomorphism νj is

equivalent to the quotient which defines the dj -curling.
But for all j, 1 ≤ j ≤ n, we have ν(Kσ̄j

) = (Kσ ). Up to homeomorphism,
N(Kσ ) is obtained as the quotient of the disjoint union of the dj -curlings by the
identification of their cores. The disjoint union of the fj induces a homeomorphism
fσ from

N = (
∐

1≤j≤n

Cdj
)/qj (u, 0) ∼ qi(u, 0) ⇔ ν(gj (u, 0)) = ν(gi(u, 0))
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onto N(Kσ ). Up to homeomorphism, the restriction of ν to
∐

1≤j≤n N(Kσ̄j
) is the

composition of two quotients: the quotients which define the dj -curlings followed
by the quotient fσ which identifies their cores. It is sufficient to prove that N =
T (k(σ )(D), c) where c is the composition of n disjoint cycles cj of order dj .
By Lemma 2.3.15, Cdj

= T (dj (D), cj ) and it is obvious that the identifications
correspond to the disjoint union of the cycles. ��

2.4 Hirzebruch-Jung’s Resolution of (X, 0)

In this section (X, 0) is a normal surface germ.
Let π : (X, 0) −→ (C2, 0) be a finite analytic morphism which is defined on

(X, 0). For example π can be the restriction to (X, 0) of a linear projection, as
chosen in the beginning of Sect. 2.3.1. But the construction can be performed with
any finite morphism π . We denote by � the singular locus of π and by � = π(�)

its discriminant.
Let r : (Z,EZ) → (C2, 0) be the minimal embedded resolution of �, let EZ =

r−1(0) be the exceptional divisor of r , and let E+
Z = r−1(�) be the total transform

of �. The irreducible components of EZ are smooth complex curves because the
resolution r is obtained by a sequence of blowing up of points in a smooth complex
surface. Let us denote by E0

Z the set of the smooth points of E+
Z . So, E+

Z \E0
Z is the

set of the double points of E+
Z .

Here, we give a detailed construction of the Hirzebruch-Jung resolution ρ :
(Y,EY ) → (X, 0) associated to π. This will prove the existence of a good resolution
of (X, 0). As the link LX is diffeomorphic to the boundary of Y , this will describe
LX as the boundary of a plumbing. In particular, we will explain how to obtain
the dual graph G(Y) of EY when we have the dual graph G(Z) associated to EZ .
Knowing the Puiseux expansions of all the branches of �, there exists an algorithm
to compute the dual graph Gw(Z) weighted by the self-intersection numbers of the
irreducible components of E(Z) (For example see [6] and Chap. 6 and 7 in [17]).
Except in special cases, the determination of the self-intersection numbers of the
irreducible components of EY is rather delicate.

2.4.1 First Step: Normalization

We begin with the minimal resolution r of �. The pull-back of π by r is a finite
morphism πr : (Z′, EZ′) → (Z,EZ) which induces an isomorphism from EZ′
to EZ . We denote rπ : (Z′, EZ′) → (X, 0), the pull-back of r by π. Figure 2.3
represents the resulting commutative diagram.

In general Z′ is not normal. Let n : (Z̄, EZ̄) → (Z′, EZ′) be the normalization
of Z′.
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Fig. 2.3 The diagram of the
pull-back of the resolution r

by π

(Z, E Z () 2, 0)

(X, 0( )Z 0, E Z 0)

π πr

r

rπ

Remark 2.4.1

1. By construction, the discriminant locus of πr ◦ n is included in E+
Z = r−1(�)

which is the total transform of � in Z. As, X is normal at 0, (X \ {0}) has no
singular points.

2. As the restriction of r to Z\EZ is an isomorphism, the restriction of rπ to Z′\EZ′
is also an isomorphism. We denote by �′ (resp. �̄) the closure of (rπ )−1(� \ {0})
in EZ′ (resp. the closure of (rπ ◦ n)−1(� \ {0}) in EZ̄). The restriction of rπ to
�′ (resp. (rπ ◦ n) on �̄) is an isomorphism onto �.

3. The singular locus of Z′ is included in EZ′ . The normalization n restricted to
Z̄ \ EZ̄ is an isomorphism.

Notation We use the following notations:
E+

Z′ = EZ′ ∪�′, and E0
Z′ is the set of the points of EZ′ which belong to a unique

irreducible component of E+
Z′ . Similarly: E+

Z̄
= EZ̄ ∪ �̄, and E0

Z̄
is the set of the

points of EZ̄ which belong to a unique irreducible component of E+
Z̄

.

Proposition 2.4.2 Every singular point of Z̄ belongs to at least two irreducible
components of E+

Z̄
. The restriction of the map (πr ◦ n) to EZ̄ induces a finite

morphism from EZ̄ to EZ which is a regular covering from (πr ◦n)−1(E0
Z) to (E0

Z).

Proof As X is normal at 0, (X \ {0}) has no singular points. The pull-back
construction implies that:

1. The morphism πr is finite and its generic degree is equal to the generic degree
of π. Indeed, πr restricted to EZ′ is an isomorphism. Moreover, the restriction of
πr to (Z′ \ EZ′) is isomorphic, as a ramified covering, to the restriction of π to
(X \ {0}). So, the restriction morphism (πr)| : (Z′ \ EZ′) → (Z \ EZ) is a finite
ramified covering with ramification locus �′.
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2. As the restriction of r to (Z \ EZ) is an isomorphism, then the restriction of rπ
to (Z′ \EZ′) is also an isomorphism. So, the restriction of (rπ ◦n) to (Z̄ \EZ̄) is
an analytic isomorphism onto the non-singular analytic set (X \ {0}). It implies
that (Z̄ \ EZ̄) is smooth.

If P̄ ∈ E0
Z̄
, then P = (πr ◦ n)(P̄ ) is a smooth point of an irreducible component

Ei of EZ . The normal fiber bundle to Ei in Z can be locally trivialized at P . We can
choose a small closed neighborhood N of P in Z such that N = D×� where D and
� are two discs , N ∩EZ = (D×0) and for all z ∈ D, z×� are fibers of the bundle
in discs associated to the normal bundle of Ei . We choose N̄ = (πr ◦ n)−1(N) as
closed neighborhood of P̄ in Z̄. But Z̄ is normal and the local discriminant of the
restriction (πr ◦ n)| : (N̄, P̄ ) → (N, P ) is included in D × 0 which is a smooth
germ of curve. In that case, the link of (N̄, P̄ ) is S3 (in Lemma 2.5.6, we give a
topological proof of this classical result). As Z̄ is normal, by Mumford’s Theorem
[19], P̄ is a smooth point of Z̄. This ends the proof of the first statement of the
proposition.

Now, we know that the morphism (πr ◦ n)|N̄ : (N̄, P̄ ) → (N, P ) is a finite
morphism between two smooth germs of surfaces with non-singular discriminant
locus. Let d be its generic order. By Lemma 2.5.6, such a morphism is locally
isomorphic (as an analytic morphism) to the morphism defined on (C2, 0) by
(x, y) 	→ (x, yd). So, D̄ = (πr ◦ n)−1(D × 0) is a smooth disc in E0

Z̄
and the

restriction of such a morphism to {(x, 0), x ∈ D̄} is a local isomorphism.
By definition of E0

Z , P ∈ (Ei ∩ E0
Z) is a smooth point in the total transform

of �. If we take a smooth germ (γ, P ) transverse to Ei at P , then (r(γ ), 0) is
not a branch of �. The restriction of π to π−1(r(γ ) \ 0) is a regular covering.
Let k be the number of irreducible components of π−1(r(γ )). The number k is
constant for all P ∈ Ei ∩E0

Z. Let P ′ be the only point of (πr)
−1(P ). Remark 2.3.11,

which uses Lemma 2.3.10, shows that the k irreducible components of the germ of
curve ((πr)

−1(γ ), P ′) are separated by n. So, the restriction of the map (πr ◦ n) to
((πr ◦ n)−1(Ei ∩ E0

Z)) is a regular covering of degree k. ��
Definition 2.4.3 A germ (W, 0) of complex surface is quasi-ordinary if there
exists a finite morphism φ : (W, p) → (C2, 0) which has a normal-crossing
discriminant. A Hirzebruch-Jung singularity is a quasi-ordinary singularity of
normal surface germ.

Lemma 2.4.4 Let P̄ be a point of EZ̄ which belongs to several irreducible
components of E+

Z̄
. Then P̄ belongs to two irreducible components of E+

Z̄
. Moreover,

either P̄ is a smooth point of Z̄ and E+
Z̄

is a normal crossing divisor around P̄ , or

P̄ is a Hirzebruch-Jung singularity of Z̄.

Proof If P̄ be a point of EZ̄ which belongs to several irreducible components of
E+

Z̄
then P = (πr ◦ n)(P̄ ) is a double point of E+

Z . Moreover Z is smooth and

E+
Z is a normal crossing divisor. We can choose a closed neighbourhood N of P

isomorphic to a product of discs (D1 × D2), and we take N̄ = (πr ◦ n)−1(N).
For a sufficiently small N, the restriction of (πr ◦ n) to the pair (N̄, N̄ ∩ E+

Z̄
) is a
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finite ramified morphism over the pair (N̄, N̄ ∩ E+
Z̄

) and the ramification locus is

included in the normal crossing divisor (N ∩ E+
Z ). The pair (N̄, P̄ ) is normal and

the link of the pair (N,N ∩ E+
Z ) is the Hopf link in S3. Then the link of N̄ is a lens

space, and the link of (πr ◦n)−1(N ∩E+
Z ) has two components (Lemma 2.5.4 gives

a topological proof of this classical result). So, E+
Z̄

has two irreducible components

at P̄ . We have two possibilities:

1. P̄ is a smooth point in Z̄. Then the link of the pair (N̄, N̄ ∩ E+
Z̄

) is the Hopf link

in S3 and E+
Z̄

is a normal crossing divisor at P̄ .

2. P̄ is an isolated singular point of Z̄. Then, the link of N̄ is a lens space which
is not S3. The point P̄ is a Hirzebruch-Jung singularity of Z̄ equipped with the
finite morphism

(πr ◦ n)|N̄ : (N̄, N̄ ∩ E+
Z̄

) → (N,N ∩ E+
Z )

which has the normal crossing divisor N ∩ E+
Z as discriminant. ��

The example given in Sect. 2.6 illustrates the following Corollary.

Corollary 2.4.5 Let G(Z̄) be the dual graph of EZ̄ . Proposition 2.4.2 and
Lemma 2.4.4 imply that (πr ◦ n) induces a finite ramified covering of graphs
from G(Z̄) onto G(Z).

2.4.2 Second Step: Resolution of the Hirzebruch-Jung
Singularities

If P̄ is a singular point of Z̄, then P = (πr ◦ n)(P̄ ) is a double point of E+
Z . In

particular, there are finitely many isolated singular points in Z̄. The singularities of
Z̄ are Hirzebruch-Jung singularities. More precisely, let P̄i , 1 ≤ i ≤ n, be the finite
set of the singular points of Z̄ and let Ūi be a sufficiently small neighborhood of P̄i

in Z̄. We have the following result (see [9] for a proof, see also [11, 22] and [13])
and, to be self-contained, we give a proof in Sect. 2.5.3 (Proposition 2.5.7):

Theorem The exceptional divisor of the minimal resolution of (Ūi , P̄i) is a normal
crossings divisor with smooth rational irreducible components and its dual graph is
a bamboo (it means is homeomorphic to a segment).

Let ρ̄i : (U ′
i , EU ′

i
) → (Ūi , P̄i) be the minimal resolution of the singularity

(Ūi , P̄i). From [13] (corollary 1.4.3), see also [22] (paragraph 4), the spaces U ′
i and

the maps ρ̄i can be glued, for 1 ≤ i ≤ n, in a suitable way to give a smooth space Y

and a map ρ̄ : (Y,EY ) → (Z̄, EZ̄) satisfying the following property (Fig. 2.4).
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Fig. 2.4 The commutative
diagram of the morphisms
involved in the
Hizebruch-Jung resolution ρ

of π . By construction
ρ = rπ ◦ n ◦ ρ̄

Theorem 2.4.6 Let us denote ρ = rπ ◦n◦ ρ̄. Then, ρ : (Y,EY ) → (X, p) is a good
resolution of the singularity (X, p) in which the total transform ρ−1(�) = E+

Y of
the singular locus � of π is a normal crossings divisor.

Proof The surface Y is smooth because ρ̄ is a resolution of all the singular points
of Z̄. As proved in Proposition 2.4.2 and Lemma 2.4.4, the only possible singular
points of the irreducible components of EZ̄ are the double points P̄i of E+

Z̄
. These

points are resolved by the resolutions ρ̄i . So, the strict transform, by ρ̄, of the
irreducible components of EZ̄ are smooth.

The irreducible components of EY created during the resolution ρ̄ are smooth
rational curves. So, all the irreducible components of EY are smooth complex
curves.

By Lemma 2.4.4, the only possible points of E+
Z̄

around which E+
Z̄

is not smooth

or a normal crossing divisor are the Hirzebruch-Jung singularities P̄i , 1 ≤ i ≤ n.
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But as the ρ̄i , 1 ≤ i ≤ n, are good resolutions of these singularities, ((ρ̄i)
−1(Ūi))∩

(E+
Y ), 1 ≤ i ≤ n, are normal crossing divisors. ��
As ρ is the composition of three well defined morphisms which depend only on

the choice of the morphism π and as we follow the Hirzebruch-Jung method, we
have the following definition.

Definition 2.4.7 The morphism ρ : (Y,EY ) → (X, 0) is the Hirzebruch-Jung
resolution associated to π .

Corollary 2.4.8 The dual graph G(Y) of EY is obtained from the dual graph G(Z̄)

of EZ̄ by replacing the edges, which represent the Hirzebruch-Jung singular points
of Z̄, by a bamboo.

Let ρ′′ : (Y ′′, EY ′′) → (X, 0) be a good resolution of (X, 0). Let E be an
irreducible component of the exceptional divisor EY ′′ and let E0 be the set of the
smooth points of E in EY ′′ . Let us recall that E is a rupture component of EY ′′
if the Euler characteristic of E0 is strictly negative. Now we can use the following
result (for a proof see [11, Theorem 5.9, p.87]):

Theorem Let ρ′ : (Y ′, EY ′) → (X, 0) be the minimal resolution of (X, 0). There
exists β : (Y,EY ) → (Ỹ ′, EY ′) such that ρ′ ◦ β = ρ and the map β consists
in a composition of blowing-downs of irreducible components, of the successively
obtained exceptional divisors, of self-intersection −1 and genus 0, which are not
rupture components.

2.5 Appendix: The Topology of a Quasi-ordinary Singularity
of Surface

2.5.1 Lens Spaces

One can find details on lens spaces and surface singularities in [24]. See also [21].

Definition 2.5.1 A lens space L is an oriented compact three-dimensional topo-
logical manifold which can be obtained as the union of two solid tori T1 ∪ T2 glued
along their boundaries. The torus τ = T1 ∩ T2 is the Heegaard torus of the given
decomposition L = T1 ∪ T2.

Remark 2.5.2 If L is a lens space, there exists an embedded torus τ in L such that
L \ τ has two connected components which are open solid tori T̊i , i = 1, 2. Let
Ti, i = 1, 2, be the two compact solid tori closure of T̊i in L. Of course τ = T1 ∩T2.

In [3], F. Bonahon shows that a lens space has a unique, up to isotopy, Heegaard
torus. This implies that the decomposition L = T1 ∪ T2 is unique up to isotopy, it is
“the” Heegaard decomposition of L.

A lens space L with a decomposition of Heegaard torus τ can be described as
follows. The solid tori Ti, i = 1, 2, are oriented by the orientation induced by L.
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Let τi be the torus τ with the orientation induced by Ti . By definition a meridian mi

of Ti is a closed oriented circle on τi which is the boundary of a disc Di embedded
in Ti . A meridian of a solid torus is well defined up to isotopy. A parallel li of Ti is
a closed oriented curve on τi such that the intersection mi ∩ li = +1 (we also write
mi (resp. li) for the homology class of mi (resp. li) in the first homology group of
τi). The homology classes of two parallels differ by a multiple of the meridian.

We choose on τ2, an oriented meridian m2 and a parallel l2 of the solid torus T2.

As in [24, p. 23], we write a meridian m1 of T1 as m1 = nl2 − qm2 with n ∈ N and
q ∈ Z where q is well defined modulo n. As m1 is a closed curve on τ , q is prime to
n. Moreover, the class of q modulo n depends on the choice of l2. So, we can chose
l2 such that 0 ≤ q < n.

Let τ be a boundary component of an oriented compact three-dimensional
manifold M. Let T be a solid torus given with a meridian m on its boundary. If
γ is a circle embedded in τ there is a unique way to glue T to M by an orientation
reversing homeomorphism between the boundary of T and τ which send m to γ .
The result of such a gluing is unique up to orientation preserving homeomorphism
and it is called the Dehn filling of M associated to γ .

Definition 2.5.3 By a Dehn filling argument, it is sufficient to know the homology
class m1 = nl2 − qm2 to reconstruct L. By definition the lens space L(n, q) is the
lens space constructed with m1 = nl2 − qm2. We have two special cases:

1. m1 = m2, if and only if L is homeomorphic to S1 × S2,
2. m1 = l2 if and only if L is homeomorphic to S3.

Lemma 2.5.4 Let φ : (W, p) → (C2, 0) be a finite morphism defined on an
irreducible surface germ (W, p). If the discriminant � of φ is included in a normal
crossing germ of curve, then the link LW of (W, p) is a lens space. The link K� of
the singular locus � of φ, has at most two connected components. Moreover, K� is
a sub-link of the two cores of the two solid tori of a Heegaard decomposition of LW

as a union of two solid tori.

Proof After performing a possible analytic isomorphism of (C2, 0), � is, by
hypothesis, included in the two axes i.e. � ⊂ {xy = 0}.

Let Dα × Dβ ∈ C
2 be a polydisc at the origin in C

2 where 0 < α < β < ε are
chosen sufficiently small as in Sect. 2.3.1. Then, the restriction φL of φ on the link
LW is a ramified covering of the sphere (with corners)

S = (Sα × Dβ) ∪ (Dα × Sβ)

with a set of ramification values included in the Hopf link Kxy = (Sα ×{0})∪({0}×
Sβ).

Let N(Kxy) be a small compact tubular neighborhood of Kxy in S. Then,
N(Kxy) is the union of two disjoint solid tori Ty = (Sα × Dβ ′), 0 < β ′ < β,
and Tx = (Dα′ × Sβ), 0 < α′ < α. Then, φ−1

L (Tx) (resp. φ−1
L (Ty)) is a union of
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rx > 0 (resp. ry > 0 ) disjoint solid tori because the set of the ramification values
of φL is included in the core of Tx (resp. Ty).

Let V be the closure, in S, of S\N(Kxy). But, V is a thickened torus which does
not meet the ramification values of φL. Then, φ−1

L (V ) is a union of r > 0 disjoint
thickened tori. But, LW is connected because (W, p) is irreducible by hypothesis.
The only possibility to obtain a connected space by gluing φ−1

L (Tx), φ−1
L (Ty) and

φ−1
L (V ) along their boundaries is 1 = r = rx = ry .

So, φ−1
L (Tx) (resp. φ−1

L (Ty)) which is in LW a deformation retract of T2 =
φ−1

L (Sα × Dβ) (resp. T1 = φ−1
L (Dα × Sβ) ) is a single solid torus. Then

τ = φ−1
L (Sα × Sβ) is a single torus. We have proved that LW is the lens space

obtained as the union of the two solid tori T1 and T2 along their common boundary
τ = φ−1

L (Sα × Sβ). So, T1 ∪ T2 is a Heegaard decomposition of LW as a union of
two solid tori.

By hypothesis K� ⊂ (Sα ×{0})∪({0}×Sβ). Then, K� is included in the disjoint
union of φ−1

L (Sα × {0}) and φ−1
L ({0} × Sβ) which are the cores of T1 and T2. So,

K� has at most two connected components. ��
Example 2.5.5 Let n and q be two relatively prime strictly positive integers. We
suppose that q < n. Let X = {(x, y, z) ∈ C

3 s.t. zn − xyq = 0}. The link LX of
(X, 0) is the lens space L(n, n − q).

Indeed, let φ : (X, 0) → (C2, 0) be the projection (x, y, z) 	→ (x, y) restricted
to X. The discriminant � of φ is equal to {xy = 0}. By Lemma 2.5.4, LX is a lens
space. As in the proof of Lemma 2.5.4, LX = φ−1(S) where

S = (Sα × Dβ) ∪ (Dα × Sβ).

In the proof of Lemma 2.5.4, it is shown that T2 = φ−1(Sα × Dβ) and T1 =
φ−1(Dα × Sβ) ) are two solid tori. Let (a, b) ∈ (Sα × Sβ). As n and q are relatively
prime m1 = φ−1({a} × Sβ) and m2 = φ−1(Sα × {b}) are connected. So, mi, i =
1, 2, is a meridian of Ti .

We choose c ∈ C such that cn = abq . Let l2 = {z = c} ∩ φ−1(Sα × Sβ). On the
torus τ = φ−1(Sα ×Sβ), oriented as the boundary of T2, we have m2 ∩ l2 = +1 and
m1 = nl2 − (−q)m2. As defined in Definition 2.5.3, we have LX = L(n,−q) =
L(n, n − q).

2.5.2 Finite Morphisms with Smooth Discriminant

Lemma 2.5.6 Let φ : (W, p) → (C2, 0) be a finite morphism, of generic degree
n, defined on a normal surface germ (W, p). If the discriminant of φ is a smooth
germ of curve, then (X, 0) is analytically isomorphic to (C2, 0) and φ is analytically
isomorphic to the map from (C2, 0) to (C2, 0) defined by (x, y) 	→ (x, yn).
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Proof After performing an analytic automorphism of (C2, 0), we can choose
coordinates such that � = {y = 0}.

Let Dα × Dβ ∈ C
2 be a polydisc at the origin in C

2 where 0 < α < β < ε are
chosen sufficiently small as in Sect. 2.3.1. Then, the restriction φL of φ on the link
LW is a ramified covering of the sphere (with corners)

S = (Sα × Dβ) ∪ (Dα × Sβ)

with a set of ramification values included in the trivial link Ky = (Sα × {0}).
Here, we satisfy the hypotheses of Lemma 2.5.4. So, T2 = φ−1

L (Sα × Dβ) and
T1 = φ−1

L (Dα × Sβ) are two solid tori with common boundary τ = φ−1
L (Sα × Sβ).

We take a ∈ Sα and b ∈ Sβ.

Let us consider Da = φ−1
L ({a} × Dβ) ⊂ T2 and Db = φ−1

L (Dα × {b}) ⊂ T1.

Here the singular locus of φL is the core of T2 and does not meet T1.
The restriction of φL to φ−1

L (Dα × {b}) is a regular covering of a disc. Then Db

is a disjoint union of n discs where n is the general degree of φL. Let m1 be the
oriented boundary of one of the n discs which are the connected components of Db.
By definition m1 is a meridian of T1.

The restriction of φL to Da is a covering of a disc and (a × 0) is the only
ramification value . Then Da is a disjoint union of d discs where d < n. On τ ,
the intersection between the circles boundaries of Da and Db is equal to n because
it is given by the (positively counted) n points of φ−1

L (a × b). The restriction of
φL to T1 is a Galois covering of degree n which permutes cyclically the connected
components of Da . So, on the torus τ = b(T1), any of the d circles boundaries of
the connected components of Da intersects any of the n circles boundaries of the
connected components of Db. So computed, the intersection b(Da)∩b(Db) is equal
to nd. But, nd = n because this intersection is given by the n points of φ−1

L (a × b).
So, d = 1 and Da has a unique connected component. The boundary of Da is

a meridian m2 of T2. As m1 is the boundary of one of the n connected components
of Db, m1 ∩ m2 = +1 and m1 can be a parallel l2 of T2. This is the case 2)
in Definition 2.5.3, so the link LW of (W, p) is the 3-sphere S3. As (W, p) is
normal, by Mumford [19], (W, p) is a smooth surface germ i.e (W, p) is analytically
isomorphic to (C2, 0). The first part of Lemma 2.5.6 has been proved.

(*) Moreover φ−1
L (Sα × {0}) ∪ ({0} × Sβ) is the union of the cores of T1 and T2.

Then, (Sα × {0}) ∪ ({0} × Sβ) is a Hopf link in the 3-sphere LW .
From now on, φ : (C2, 0) → (C2, 0) is a finite morphism and its discriminant

locus is {y = 0}. Let us write φ = (φ1, φ2). The link of the zero locus of the function
germ

(φ1.φ2) : (C2, 0) → (C,0)

is the link describe above (see (*)), i.e. it is a Hopf link. The function (φ1.φ2)

reduced is analytically isomorphic to (x, y) 	→ (xy). But φ1 is reduced because
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its Milnor fiber is diffeomorphic to Da = φ−1
L ({a} × Dβ) ⊂ T2 which is a disc. So,

φ1 is isomorphic to x.
The Milnor fiber of φ2 is diffeomorphic to the disjoint union of the n discs

Db = φ−1
L (Dα × {b}) ⊂ T1. When the Milnor fiber of a function germ f :

(C2, 0) → (C, 0) has n connected components, n is the g.c.d. of the multiplicities
of the irreducible factors of f . Here φ2 = gn where g is an irreducible function
germ. We already have seen that φ2 reduced is isomorphic to y. This completes the
proof that φ2 is isomorphic to yn and φ = (φ1, φ2) is isomorphic to (x, yn). ��

2.5.3 The Hirzebruch-Jung Singularities

Proposition 2.5.7 Let (W, p) be a normal surface germ such that there exists a
finite morphism φ : (W, p) → (C2, 0) which has a normal-crossing discriminant
(�, 0). Then, (W, p) has a minimal good resolution ρ : (W̃ , E

W̃
) → (W, p) such

that:

I) the exceptional divisor E
W̃

of ρ has smooth rational irreducible components
and its dual graph is a bamboo. We orient the bamboo from the vertex (1) to the
vertex (k). The vertices are indexed by this orientation,

II) the strict transform of φ−1(�) has two smooth irreducible components which
meet E

W̃
transversally, one of them at a smooth point of E1 and the other

component at a smooth point of Ek .

Proof After performing an analytic isomorphism of (C2, 0), we can choose coor-
dinates such that � = {xy = 0}. We have to prove that there exists a minimal
resolution ρ of (W, p) such that the shape of the dual graph of the total transform of
� in W̃ looks like the graph drawn in Fig. 2.5 where all vertices represent smooth
rational curves.

By Lemma 2.5.4, the link LW of (W, p) is a lens space. If LW is homeomorphic
to S3, (W, p) is smooth by Mumford [19], and there is nothing to prove. Otherwise,
let n and q be the two positive integers, prime to each other, with 0 < q < n,
such that LW is the lens space L(n, n − q). By Brieskorn [4] (see also Sect. 2.5 in
[24]), the normal quasi-ordinary complex surface germs are taut. It means that any
normal quasi-ordinary complex surface germ (W ′, p′) which has a link orientation
preserving homeomorphic to L(n, n − q) is analytically isomorphic to (W, p). In

(lȳ ) (l x̄ )(1) (k )
< >. . . . . .

Fig. 2.5 The shape of the dual graph of G(W̃) to which we add an arrow to the vertex (1) to
represent the strict transform of {x = 0} and another arrow to the vertex (k) to represent the strict
transform of {y = 0}
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particular, (W, p) and (W ′, p′) have isomorphic minimal good resolutions. Now,
it is sufficient to describe the good minimal resolution of a given normal quasi-
ordinary surface germ which has a link homeomorphic to L(n, n−q). As explained
below, we can use (X̄, p̄) where ν : (X̄, p̄) → (X, 0) is the normalization of X =
{(x, y, z) ∈ C

3 s.t. zn − xyq = 0}. ��
Lemma 2.5.8 Let n and q be two relatively prime positive integers. We suppose
that 0 < q < n. Let X = {(x, y, z) ∈ C

3 s.t. zn − xyq = 0}. There exists a good
resolution ρY : (Y,EY ) → (X, 0) of (X, 0) such that the dual graph G(Y) of EY

is a bamboo and the dual graph of the total transform of {xy = 0} has the shape of
the graph given in Fig. 2.5.

Lemma 2.5.8 implies Proposition 2.5.7. Indeed:

1) In Example 2.5.5, we show that the link LX of (X, 0) is the lens space L(n, n −
q). Let ν : (X̄, p̄) → (X, 0) be the normalization of (X, 0). The singular locus
of (X, 0) is the line � = {(x, 0, 0), x ∈ C}. For a ∈ C, the hyperplane section
of X at (a, 0, 0) is the plane curve germ {zn − ayq = 0}. As n and q are prime
to each other {zn − ayq = 0} is irreducible. Then, by Proposition 2.3.12, ν is a
homeomorphism. So, the link LX̄ of (X̄, 0) is the lens space L(n, n − q).

2) Let ρY : (Y,EY ) → (X, p) be a good resolution of (X, 0) given as in
Lemma 2.5.8, in particular the dual graph G(Y) of EY is a bamboo. As any
good resolution factorizes through the normalization ν : (X̄, p̄) → (X, 0) (see
[11, Thm. 3.14]), there exists a unique morphism ρ̄Y : (Y,EY ) → (X̄, p̄) which
is a good resolution of (X̄, p̄) . Let ρ′ : (Y ′, EY ′) → (X̄, p̄) be the minimal good
resolution of (X̄, p̄). Then, (for example see [11, Thm 5.9] or [1, p. 86]), there
exists a morphism β : (Y,EY ) → (Y ′, EY ′) which is a sequence of blowing-
downs of irreducible components of genus zero and self-intersection −1. By
Lemma 2.5.8, the dual graph G(Y) is a bamboo and the dual graph of the total
transform of {xy = 0} has the shape of the graph given in Fig. 2.5. So, the
morphism of graph β∗ : G(Y) → G(Y ′) induced by β, is only a contraction of
G(Y) in a shorter bamboo.

Proof (of Lemma 2.5.8) In X, we consider the lines lx = {(x, 0, 0), x ∈ C} and
ly = {(0, y, 0), y ∈ C} and the singular locus of (X, 0) is equal to lx . We prove
Lemma 2.5.8 by a finite induction on q ≥ 1.

1) If q = 1, X = {(x, y, z) ∈ C
3 s.t. zn − xy = 0} is the well-known normal

singularity An−1. The minimal resolution is a bamboo of (n − 1) irreducible
components of genus zero. Indeed, to construct ρY : (Y,EY ) → (X, 0), it is
sufficient to perform a sequence of blowing-ups of points ( we blow up n/2
points when n is even and (n − 1)/2 points when n is odd). We begin to blow
up the origin, this separates the strict transform of the lines lx and ly . The
exceptional divisor, in the strict transform of (X, 0) by the blowing-up of the
origin in C

3, has two irreducible rational components when n > 2 and only
one irreducible rational component when n = 2. If n > 2, we continue by the
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blowing-up of the intersection point of the two irreducible components of the
exceptional divisor.

2) If 1 < q < n, we state the following points I and II which describe how we
proceed, we justify them just below.

I) As n and q are relatively prime , the remainder r of the division n = mq + r

is prime to q and 1 < r < q. Let R : Z → C
3 be a sequence of m blowing-

ups of the line lx in C
3 and of its strict transforms in a smooth 3-dimensional

complex space. Let Y1 be the strict transform of X by R. Let ρ : (Y1, E) →
(X, 0) be R restricted to Y1 and let E = ρ−1(0) ⊂ Y1. The total transform
of lx ∪ ly by ρ, which is equal to E+ = ρ−1(lx ∪ ly), has a dual graph which
is a bamboo as in Fig. 2.5 with k = m vertices. Let l1

x be the strict transform
of lx by ρ. Then, l1

x only meets the irreducible component of E obtained by
the last blowing-up of a line. The equation of Y1 along l1

x is {zr − xyq = 0}.
II) If r = 1, Y1 is smooth and Lemma 2.5.8 is proved i.e. ρY = ρ. If r > 2,

after the division q = m′r + r ′ with remainder r ′, we have r ′ < r . As r is
prime to q, r ′ is prime to r and 0 < r ′. Moreover, we have r ′ < q because
r < q. Let R′ : Z′ → Z be a sequence of m′ blowing-ups of the line l1

x

and of its strict transforms. Let Y2 be the strict transform of Y1 by R′ and let
ρ′ : (Y2, E

′) → (Y1, E) be R′ restricted to Y2. As r < q, ρ′ is bijective, the
dual graph of ρ′−1(E+) is equal to the dual graph of E+, which is a bamboo
as in Fig. 2.5 with k = m vertices. Moreover, the equation of Y2, along the
strict transform of l1

x by ρ′, is {zr − xyr ′ = 0}. As 1 ≤ r ′ < r with relatively
prime r and r ′, Lemma 2.5.8 is proved by induction.

Let us justify the above statements I) and II) by an explicit computation of the
blowing-up of lx . We consider Z1 = {((x, y, z), (v : w)) ∈ C

3 × CP 1, s. t. wy −
vz = 0}. By definition, the blowing-up of lx in C

3, R1 : Z1 → C
3, is the projection

on C
3 restricted to Z1.

As in statement I), we consider X = {(x, y, z) ∈ C
3 s.t. zn − xyq = 0} with

q < n. We have to describe the strict transform Y11 of (X, 0) by R1, the restriction
ρ1 : (Y11, E) → (X, 0) of R1 to Y11, E1 = ρ−1

1 (0) and E+
1 = ρ−1

1 (lx ∪ Ly).

I) In the chart v = 1, we have (Z1 ∩ {v = 1}) = {((x, y,wy), (1 : w)) ∈ C
3 ×

CP 1}. The equation of R−1
1 (0) ∩ {v = 1} and of E1 ∩ {v = 1} is y = 0.

The equation of (R−1
1 (X)∩{v = 1}) = (Y11∩{v = 1}) is {wnyn−q−x = 0}. So,

all the points of ({v = 1} ∩ Y11) are non singular and ({v = 1} ∩ {x �= 0} ∩ Y11)

doesn’t meet E1.
The strict transform of lx is not in Y11 ∩ {v = 1}. If x = 0, we have:

E1 ∩ {v = 1} = {((0, 0, 0), (1 : w)),w ∈ C} ⊂ Y11.

In Y11, the strict transform l̃y = {((0, y, 0), (1 : 0)), y ∈ C} of ly meets E1 at
((0, 0, 0), (1 : 0)).
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II) In the chart w = 1, we have (Z1 ∩ {w = 1}) = {((x, vz, z), (v : 1)) ∈ C
3 ×

CP 1}. The equation of R−1
1 (0) ∩ {w = 1} and of E1 ∩ {w = 1} is z = 0.

The equation of (Y11 ∩ {w = 1}) is {zn−q − xvq = 0}. So, the strict transform
of lx is equal to

l̃x = ({w = 1} ∩ Y11 ∩ R−1
1 (lx)) = {((x, 0, 0), (0 : 1)) ∈ C

3 × CP 1}.

The strict transform l̃x meets E1 at the point p1 = E1 ∩ l̃x = ((0, 0, 0), (0 : 1).
Then, E1 = ((0, 0, 0) × CP 1) is included in Y11, moreover, l̃x and l̃y meet
E1 at two distinct points. The total transform E+

1 = ρ−1
1 (lx ∪ Ly) consists

of one irreducible component E1 and two germs of curves which meet E1 in
two distinct points. Moreover the equation of Y11 along its singular locus l̃x is
{zn−q − xyq = 0}. By induction we obtain, as stated in I), the germ (Y1, 0)

defined by {zr − xyq = 0} with 1 ≤ r = n − mq < q.

To justify statement II), we again consider the blowing-up of lx , R1 : Z1 → C
3.

Let Y12 be the strict transform of Y1 by R1 and let ρ′
1 : Y12 → Y1 be R1 restricted to

Y12. Then, Y12 has the equation {wr − xyq−r = 0} in the chart v = 1. For all x ∈ C,
the intersection of Y12 with y = 0 is the only point ((x, 0, 0)), (1 : 0)). In the chart
w = 1, Y12 has the equation {1 − xvqzq−r = 0} and has empty intersection with
z = 0. This proves that ρ′

1 is bijective and by induction the map ρ′ : (Y2, E
′) →

(Y1, E) describe above in II) is also bijective. ��
Examples

1) Let us consider X = {(x, y, z) ∈ C
3 s.t. zn − xyn−1 = 0}. The link of (X, 0)

is the lens space L(n, 1). Let R1 : Z1 → C
3 be the blowing-up of the line lx in

C
3. Let Y be the strict transform of X by R1. The equation of Y along the strict

transform of lx is {z − xyn−1 = 0}. So, Y is non singular and we have obtained
a resolution of X. Here the dual graph of the total transform of lx ∪ ly is as in
Fig. 2.5 with only one vertex.

2) Let us consider X = {(x, y, z) ∈ C
3 s.t. zn −xyn−2 = 0} with n odd and 3 < n.

The link of (X, 0) is the lens space L(n, 2). Let R1 : Z1 → C
3 be the blowing-

up of the line lx in C
3. The equation of the strict transform Y1, of X by R1, along

the strict transform of lx is {z2 − xyn−2 = 0}. Let ρ : (Y1, E) → (X, 0) be R1
restricted to Y1. We write n = 2m + 3. As proved above, after m blowing-ups of
lines, we obtain a surface Y2 and a bijective morphism ρ′ : (Y2, E

′) → (Y1, E)

such that the equation of Y2 along the strict transform of lx is {z2 − xy = 0}.
The exceptional divisor E of ρ (resp. E′of (ρ ◦ ρ′)) is an irreducible smooth
rational curve. The blowing-up ρ′′, of the intersection point between E′ and the
strict transform of lx , is a resolution of Y2 and the exceptional divisor of ρ′′ is
a smooth rational curve. Then, ρ ◦ ρ′ ◦ ρ′′ is a resolution of X = {(x, y, z) ∈
C

3 s.t. zn − xyn−2 = 0}, the dual graph of its exceptional divisor is a bamboo
with two vertices.
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2.6 An Example of Hirzebruch-Jung’s Resolution

We give the Hirzebruch-Jung resolution of the germ of surface in C
3 which satisfies

the following equation:

z2 = (x − y + y3)(x − y + y2)(y34 − (x − y)13).

where π : (X, 0) → (C2, 0) is the projection on the (x, y)-plane. It is a generic
projection. In [15] this example is also explored when π is replaced by a non generic
projection.

The discriminant locus of π = (f, g) is the curve � which has three components
with Puiseux expansions given by :

x = y − y2

x = y − y3

x = y + y34/13

Notice that the three components of � have 1 as first Puiseux exponent and
respectively 2, 3, 34/13 as second Puiseux exponent.

The coordinate axes are transverse to the discriminant locus of π . The dual graph
G(Z) is in Fig. 2.6.

The dual graph G(Z̄) of EZ̄ admits a cycle created by the normalization. The
irreducible component E′

9 of EY is obtained by the resolution ρ̄. The irreducible
components of the exceptional divisor associated to the vertices of G(Z̄) and G(Y)

have genus equal to zero (Fig. 2.7).
The minimal good resolution ρ is obtained by blowing down E′

6. Its dual graph
is in Fig. 2.8.

Fig. 2.6 The dual graph of the minimal resolution of �. An irreducible component of the strict
transform of � is represented by an edge with a star. An edge ended by an arrow represents the
strict transform of {x = 0}
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Fig. 2.7 The dual graph G(Y) of the Hirzebruch-Jung resolution associated to π

Fig. 2.8 The dual graph G(Y ′) of the minimal resolution of (X, 0)

Acknowledgments I thank Claude Weber for useful discussions.
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