Chapter 2 The Topology of Surface Singularities

Françoise Michel

Contents

Abstract We consider a reduced complex surface germ *(X, p)*. We do not assume that *X* is normal at *p*, and so, the singular locus (Σ, p) of (X, p) could be one dimensional. This text is devoted to the description of the topology of *(X, p)*. By the conic structure theorem (see Milnor, *Singular Points of Complex Hypersurfaces*, Annals of Mathematical Studies 61 (1968), Princeton Univ. Press), *(X, p)* is homeomorphic to the cone on its link L_X . First of all, for any good resolution ρ : $(Y, E_Y) \rightarrow (X, 0)$ of (X, p) , there exists a factorization through the normalization $\nu : (\bar{X}, \bar{p}) \rightarrow (X, 0)$ (see H. Laufer, *Normal two dimensional singularities*, Ann.

F. Michel (\boxtimes)

Laboratoire de Mathématiques Emile Picard, Université Paul Sabatier, Toulouse, France e-mail: fmichel@picard.ups-tlse.fr

[©] Springer Nature Switzerland AG 2020

J. L. Cisneros Molina et al. (eds.), *Handbook of Geometry and Topology of Singularities I*, https://doi.org/10.1007/978-3-030-53061-7_2

of Math. Studies **71**, (1971), Princeton Univ. Press., Thm. 3.14). This is why we proceed in two steps.

- 1. When *(X, p)* a normal germ of surface, *p* is an isolated singular point and the link L_X of (X, p) is a well defined differentiable three-manifold. Using the good minimal resolution of (X, p) , L_X is given as the boundary of a well defined plumbing (see Sect. [2.2\)](#page-5-0) which has a negative definite intersection form (see Hirzebruch et al., *Differentiable manifolds and quadratic forms*, Math. Lecture Notes, vol 4 (1972), Dekker, New-York and Neumann, *A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves*, Trans. Amer. Math. Soc. **268** (1981), p. 299–344).
- 2. In Sect. [2.3,](#page-7-0) we use a suitably general morphism, π : $(X, p) \rightarrow (\mathbb{C}^2, 0)$, to describe the topology of a surface germ (X, p) which has a 1-dimensional singular locus (Σ, p) . We give a detailed description of the quotient morphism induced by the normalization *ν* on the link $L_{\bar{X}}$ of (X, \bar{p}) (see also Sect. [2.2](#page-5-0) in Luengo-Pichon, *Lê 's conjecture for cyclic covers*, Séminaires et congrès 10, (2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa).

In Sect. [2.4,](#page-16-0) we give a detailed proof of the existence of a good resolution of a normal surface germ by the Hirzebruch-Jung method (Theorem [2.4.6\)](#page-20-0). With this method a good resolution is obtained via an embedded resolution of the discriminant of *π* (see Friedrich Hirzebruch, *Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen*, Math. Ann. 126 (1953) p. 1–22). An example is given Sect. [2.6.](#page-29-0) An appendix (Sect. [2.5\)](#page-21-0) is devoted to the topological study of lens spaces and to the description of the minimal resolution of quasi-ordinary singularities of surfaces. Section [2.5](#page-21-0) provides the necessary background material to make the proof of Theorem [2.4.6](#page-20-0) self-contained.

2.1 Introduction

Let *I* be a reduced ideal in $\mathbb{C}\{z_1,\ldots,z_n\}$ such that the quotient algebra $A_X =$ $\mathbb{C}\{z_1,\ldots,z_n\}/I$ is two-dimensional. The zero locus, at the origin 0 of \mathbb{C}^n , of a set of generators of *I* is an analytic surface germ embedded in $(\mathbb{C}^n, 0)$. Let $(X, 0)$ be its intersection with the compact ball B_{ϵ}^{2n} of radius a sufficiently small ϵ , centered at the origin in \mathbb{C}^n , and L_X its intersection with the boundary S_{ϵ}^{2n-1} of B_{ϵ}^{2n} . Let Σ be the set of the singular points of $(X, 0)$.

As *I* is reduced Σ is empty when $(X, 0)$ is smooth, it is equal to the origin when 0 is an isolated singular point, it is a curve when the germ has a non-isolated singular locus (in particular we do not exclude the cases of reducible germs).

If Σ is a curve, $K_{\Sigma} = \Sigma \cap S_{\epsilon}^{2n-1}$ is the disjoint union of *r* one-dimensional circles (*r* being the number of irreducible components of Σ) embedded in L_X . We say that K_{Σ} is the link of Σ . By the conic structure theorem (see [\[18\]](#page-31-0)), for a sufficiently small ϵ , $(X, \Sigma, 0)$ is homeomorphic to the cone on the pair (L_X, K_Σ) and to the cone on L_X when $\Sigma = \{0\}.$

On the other hand, thanks to A. Durfee [\[7\]](#page-30-1), the homeomorphism class of $(X, \Sigma, 0)$ depends only on the isomorphism class of the algebra A_X (i.e. is independent of a sufficiently small ϵ and of the choice of the embedding in $(\mathbb{C}^n, 0)$). We say that the analytic type of $(X, 0)$ is given by the isomorphism class of A_X and, we say that its topological type is given by the homeomorphism class of the pair $(X, 0)$ if 0 is an isolated singular point, and by the homeomorphism class of the triple $(X, \Sigma, 0)$ if the singular locus Σ is a curve.

Definition 2.1.1 The link of $(X, 0)$ is the homeomorphism class of L_X if 0 is an isolated singular point (in particular if $(X, 0)$ is normal at 0), and is the homeomorphic class of the pair (L_X, K_Σ) if the singular locus Σ is a curve.

This paper is devoted to the description of the link of *(X,* 0*)*.

2.1.1 Good Resolutions

Definition 2.1.2 A morphism ρ : $(Y, E_Y) \rightarrow (X, 0)$ where $E_Y = \rho^{-1}(0)$ is the exceptional divisor of ρ , is a **good resolution** of $(X, 0)$ if :

- 1. *Y* is a smooth complex surface,
- 2. the total transform $\rho^{-1}(\Sigma) =: E_Y^+$ is a normal crossing divisor with smooth irreducible components.
- 3. the restriction of ρ to $Y \setminus E_Y^+$ is an isomorphism.

Definition 2.1.3 Let ρ : $(Y, E_Y) \longrightarrow (X, 0)$ be a good resolution of $(X, 0)$.

The **dual graph associated to** ρ , denoted $G(Y)$, is constructed as follows. The vertices of $G(Y)$ represent the irreducible components of E_Y . When two irreducible components of *EY* intersect, we join their associated vertices by edges whose number is equal to the number of intersection points. A dual graph is a **bamboo** if the graph is homeomorphic to a segment and each vertex represents a rational curve.

If E_i is an irreducible component of E_Y , let us denote by e_i the self-intersection number of E_i in *Y* and by g_i its genus. To obtain the **weighted dual graph associated to** ρ , denoted $G_w(Y)$, we weight $G(Y)$ as follows. A vertex associated to the irreducible E_i of E_Y is weighted by (e_i) when $g_i = 0$ and by (e_i, g_i) when $g_i > 0$.

For example if $X = \{(x, y, z) \in \mathbb{C}^3, z^m = x^k y^l\}$, where *m*, *k* and *l* are integers greater than two and pairwise relatively prime, Fig. [2.1](#page-3-1) describes the shape of the dual graph of the minimal good resolution of *(X,* 0*)*.

Remark 2.1.4 If $(X, 0)$ is reducible, let $(\bigcup_{1 \leq i \leq r} X_i, 0)$ be its decomposition as a union of irreducible surface germs. Let v_i : $(X_i, p_i) \rightarrow (X_i, 0)$ be the normalization of the irreducible components of $(X, 0)$. The morphisms v_i induce the normalization morphism on the disjoint union $\prod_{1 \leq i \leq r} (X_i, p_i)$.

Fig. 2.1 $G_w(Y)$ when $X = \{(x, y, z) \in \mathbb{C}^3, z^m = x^k y^l\}$. Here $G(Y)$ is a bamboo. The arrows represent the strict transform of $\{xy = 0\}$. In particular if $m = 12$, $k = 5$ and $l = 11$ the graph has three vertices with $e_1 = -3$, $e_2 = -2$, $e_3 = -3$ (see [\[16,](#page-31-1) p. 759])

Remark 2.1.5 First of all, for any good resolution ρ : $(Y, E_Y) \rightarrow (X, 0)$ there exists a factorization through the normalization $\nu : (\bar{X}, \bar{p}) \rightarrow (X, 0)$ (see [\[11,](#page-31-2) Thm. 3.14]). In Sect. [2.3,](#page-7-0) we describe the topology of normalization morphisms. After that it will be sufficient to describe the topology of the links of normal surface germs.

A good resolution is minimal if its exceptional divisor doesn't contain any irreducible component of genus zero, self-intersection −1 and which meets only one or two other irreducible components. Let $\rho : (Y, E_Y) \rightarrow (X, 0)$ be a good resolution and ρ' : $(Y', E_{Y'}) \rightarrow (X, 0)$ be a good minimal resolution of $(X, 0)$. Then there exists a morphism β : $(Y, E_Y) \rightarrow (Y', E_{Y'})$ which is a sequence of blowing-downs of irreducible components of genus zero and self-intersection −1 (see [\[11,](#page-31-2) Thm 5.9] or [\[1,](#page-30-2) p. 86]). It implies the unicity, up to isomorphism, of the minimal good resolution of *(X,* 0*).*

As there exists a factorization of ρ' through ν , $(Y', E_{Y'})$ is also the minimal good resolution of (X, \bar{p}) . Let $\bar{\rho}: (Y', E_{Y'}) \to (X, \bar{p})$ be the minimal good resolution of (X, \bar{p}) defined on $(Y', E_{Y'})$. What we said just above implies that $\rho = v \circ \bar{\rho} \circ \beta$, i.e. ρ is the composition of the following three morphisms:

$$
(Y, E_Y) \xrightarrow{\beta} (Y', E_{Y'}) \xrightarrow{\bar{\rho}} (\bar{X}, \bar{p}) \xrightarrow{\nu} (X, 0)
$$

2.1.2 Link of a Complex Surface Germ

In Sect. [2.2,](#page-5-0) we describe the topology of a plumbing and the topology of its boundary. We explain how the existence of a good resolution describes the link of a normal complex surface germ as the boundary of a plumbing of disc bundles on oriented smooth compact real surfaces with empty boundary. The boundary of a plumbing is, by definition, a plumbed 3-manifold [\[10,](#page-31-3) [20\]](#page-31-4) or equivalently a graph manifold in the sense of Waldhausen [\[23\]](#page-31-5). The plumbing given by the minimal good resolution of *(X,* 0*)* has a normal form in the sense of Neumann [\[20\]](#page-31-4) and represents its boundary in a unique way.

It implies that the link of a normal complex surface germ $(X, 0)$ determines the weighted dual graph of its good minimal resolution. In particular, if the link is *S*3, then the good minimal resolution of $(X, 0)$ is an isomorphism and $(X, 0)$ is smooth at the origin. This is the famous result obtained in 1961 by Mumford [\[19\]](#page-31-6). When the singular locus of $(X, 0)$ is an irreducible germ of curve, its link can be S^3 . Lê's conjecture, which is still open (see [\[14\]](#page-31-7) and [\[2\]](#page-30-3) for partial results), states that it can only happen for an equisingular family of irreducible curves.

In Sect. [2.3,](#page-7-0) we use a suitably general projection π : $(X, 0) \rightarrow (\mathbb{C}^2, 0)$ (as told in Sect. [2.3.1\)](#page-7-1) to describe the topology of the restriction $v_L : L_{\bar{Y}} \to L_X$ of the normalization *ν* on the link $L_{\bar{Y}}$. We will show that v_L is a homeomorphism if and only if a general hyperplane section of $(X, 0)$ is locally irreducible at *z* for all points $z \in (\Sigma \setminus \{0\})$. Otherwise, as stated without a proof in Luengo-Pichon [\[14\]](#page-31-7), *ν*_L is the composition of two kind of topological quotients: curlings and identifications. Here, we give detailed proofs. Some years ago, John Milnor asked me for a description of the link of a surface germ with non-isolated singular locus. I hope that Sect. [2.3](#page-7-0) gives a satisfactory answer.

In Sect. [2.4](#page-16-0) we suppose that $(X, 0)$ is **normal**. We use a finite morphism π : $(X, 0) \rightarrow (\mathbb{C}^2, 0)$ and its discriminant Δ , to obtain a good resolution ρ : $(Y, E_Y) \rightarrow (X, 0)$ of $(X, 0)$. We follow Hirzebruch's method (see [\[9\]](#page-31-8), see also Brieskorn [\[5\]](#page-30-4) for a presentation of Hirzebruch's work). The scheme to obtain ρ is as in [\[15\]](#page-31-9), but our redaction here is quite different. In [15], the purpose is to study the behaviour of invariants associated to finite morphisms defined on *(X,* 0*)*. Here, we explain in detail the topology of each steps of the construction to specify the behaviour of ρ . Hirzebruch's method uses the properties of the topology of the normalization, presented in Sect. [2.3,](#page-7-0) and the resolution of the quasi-ordinary singularities of surfaces already studied by Jung. This is why one says that this resolution ρ is the Hirzebruch-Jung resolution associated to π . Then L_X is homeomorphic to the boundary of a regular neighborhood of the exceptional divisor E_Y of ρ : $(Y, E_Y) \rightarrow (X, 0)$ which is a plumbing as defined in Sect. [2.2.](#page-5-0)

Section [2.5](#page-21-0) is an appendix which can be read independently of the other sections. We suppose again that $(X, 0)$ is **normal**. We give topological proofs of basic results, already used in Sect. [2.4](#page-16-0) on finite morphism ϕ : $(X, 0) \rightarrow (\mathbb{C}^2, 0)$, in the following two cases:

- 1. The discriminant of ϕ is a smooth germ of curve. Then, in Lemma [2.5.6,](#page-23-1) we show that $(X, 0)$ is analytically isomorphic to $(\mathbb{C}^2, 0)$ and that ϕ is analytically isomorphic to the map from $(\mathbb{C}^2, 0)$ to $(\mathbb{C}^2, 0)$ defined by $(x, y) \mapsto (x, y^n)$.
- 2. The discriminant of ϕ is a normal crossing. By definition $(X, 0)$ is then a quasiordinary singularity and its link is a lens space. We prove that the minimal resolution of $(X, 0)$ is a bamboo of rational curves (Proposition [2.5.7\)](#page-25-1).

Section [2.6](#page-29-0) is an example of Hirzebruch-Jung's resolution.

2.1.3 Conventions

The boundary of a topological manifold *W* will be denoted by $b(W)$.

A **disc** (resp. an **open disc**) will always be an oriented topological manifold orientation preserving homeomorphic to $\{z \in \mathbb{C}, |z| \leq 1\}$ (resp. to $\{z \in \mathbb{C}, |z| < 1\}$).

A **circle** will always be an oriented topological manifold orientation preserving homeomorphic to $S = \{z \in \mathbb{C}, |z| = 1\}$. Moreover, for $0 < \alpha$, we use the following notation: $D_{\alpha} = \{z \in \mathbb{C}, |z| \leq \alpha\}$, and $S_{\alpha} = b(D_{\alpha})$.

2.2 The Topology of Plumbings

In this Section $(X, 0)$ is a **normal** complex surface germ.

The name "plumbing" was introduced by David Mumford in [\[19\]](#page-31-6). There, he showed that the topology of a resolution of a normal singularity of a complex surface can be described as a "plumbing".

In [\[9\]](#page-31-8), Hirzebruch constructed good resolutions of normal singularities. Let *ρ* : $(Y, E_Y) \rightarrow (X, 0)$ be a good resolution of the normal germ of surface $(X, 0)$. Each irreducible component E_i of the exceptional divisor is equipped with its normal complex fiber bundle. With their complex structure the fibers have dimension 1. So, a regular compact tubular neighbourhood $N(E_i)$ of E_i in Y , is a disc bundle. As E_i is a smooth compact complex curve, E_i is an oriented differential compact surface with an empty boundary. Then, the isomorphism class, as differential bundle, of the disc bundle $N(E_i)$ is determined by the genus g_i of E_i and its self-intersection number e_i in *Y*. The complex structure gives an orientation on *Y* and on E_i , these orientations induce an orientation on $N(E_i)$ and on the fibers of the disc bundle over *Ei*.

Remark 2.2.1 By definition *(X,* 0*)* is a sufficiently small compact representative of the given normal surface germ. Let *k* be the number of irreducible components of E_Y , $M(Y) = \bigcup_{1 \leq i \leq k} N(E_i)$ is a compact neighborhood of E_Y . There exists a retraction by deformation $R: Y \to M(Y)$ which induces a homeomorphism from the boundary of Y, $b(Y) = \rho^{-1}(L_X)$, to the boundary $b(M(Y))$. So, the boundary of $M(Y)$ is the link of $(X, 0)$.

Definition 2.2.2 Let $N(E_i)$, $i = 1, 2$, be two oriented disc bundles on oriented smooth compact differentiable surfaces, with empty boundary, E_i , $i = 1, 2$, and let $p_i \in E_i$. The plumbing of $N(E_1)$ and $N(E_2)$ at p_1 and p_2 is equal to the quotient of the disjoint union of $N(E_1)$ and $N(E_2)$ by the following equivalence relation. Let D_i be a small disc neighbourhood of p_i in E_i , and $D_i \times \Delta_i$ be a trivialization of $N(E_i)$ over D_i , $i = 1, 2$. Let $f : D_1 \rightarrow \Delta_2$ and $g : \Delta_1 \rightarrow D_2$ be two orientation preserving diffeomorphisms such that $f(p_1) = 0$ and $g(0) = p_2$.

For all $(v_1, u_1) \in D_1 \times \Delta_1$, the equivalence relation is $(v_1, u_1) \sim (g(u_1), f(v_1))$.

Remark 2.2.3 The diffeomorphism class of the plumbing of $N(E_1)$ and $N(E_2)$ at (p_1, p_2) does not depend upon the choices of the trivializations nor on the choices of *f* and *g*. Moreover, in the plumbing of $N(E_1)$ and $N(E_2)$ at p_1 and p_2 :

1. The image of E_1 intersects the image of E_2 at the point p_{12} which is the class, in the quotient, of $(p_1 \times 0) \sim (p_2 \times 0)$.

- 2. The plumbing is a gluing of $N(E_1)$ and $N(E_2)$ around the chosen neighbourhoods of $(p_1 \times 0)$ and $(p_2 \times 0)$.
- 3. In the plumbing, $D_1 \times 0 \subset E_1$ is identified, via f, with the fiber $0 \times \Delta_2$ of the disc bundle $N(E_2)$ and the fiber $0 \times \Delta_1$ of $N(E_1)$ is identified, via *g*, with $D_2 \times 0 \subset E_2$.

Definition 2.2.4 More generally we can perform the plumbing of a family $N(E_i)$, $i = 1, \ldots, n$, of oriented disc bundles on oriented smooth compact differentiable surfaces E_i with empty boundary, at a finite number of pairs of points $(p_i, p_j) \in E_i \times E_j$. Let g_i be the genus of E_i and e_i be the self-intersection number of E_i in $N(E_i)$. The vertices of the **weighted plumbing graph** associated to such a plumbing represent the basis E_i , $i = 1, \ldots, n$, of the bundles. These vertices are weighted by e_i when $g_i = 0$, and by (e_i, g_i) when $0 < g_i$. Each edge which relates (i) to (j) , represents an intersection point between the image of E_i and E_i in the plumbing.

In the boundary of the plumbing of the family $N(E_i)$, $i = 1, \ldots, n$, the intersections $b(N(E_i))$ ∩ $b(N(E_j))$ are a union of disjoint tori which is the **family of plumbing tori** of the plumbing.

We can perform a plumbing between $N(E_i)$ and $N(E_j)$ at several pairs of points of $E_i \times E_j$ if and only if every two such pairs of points (p_i, p_j) and (p'_i, p'_j) are such that $p_i \neq p'_i$ and $p_j \neq p'_j$. Let $k_{ij} \geq 0$ be the number of these pairs of points. Obviously, k_{ij} is the number of disjoint tori which form the intersection $b(N(E_i)) \cap$ $b(N(E_i))$ and also the number of edges which relate the vertices associated to E_i and E_i in the plumbing graph associated to the plumbing.

An oriented disc bundle $N(E)$ on a differential compact surface E of genus g and empty boundary is determined as differentiable bundle by *g* and by the selfintersection number of E in $N(E)$. If two plumbings have the same weighted plumbing graph, there exists a diffeomorphism between the two plumbings such that its restriction on the corresponding disc bundles is an isomorphism of differentiable disc bundles.

Proposition 2.2.5 *Let* $\rho : (Y, E_Y) \to (X, 0)$ *be a good resolution of the normal germ of surface (X,* 0*). Then a regular neighbourhood, in Y, of the exceptional divisor* E_Y *, is diffeomorphic to a plumbing of the disc bundles* $N(E_i)$ *. The plumbings are performed around the double points* $p_{ij} = E_i \cap E_j$. The associated *weighted plumbing graph coincides with the weighted dual graph* $G_w(Y)$ *of* ρ *. To each point* $p_{ij} \in (E_i \cap E_j)$ *we associate a torus* $T(p_{ij}) \subset (b(N(E_i)) \cap b(N(E_j))).$

Proof We choose trivializations of the disc bundles $N(E_i)$ and $N(E_i)$ in a small closed neighborhood *V* of p_{ij} . First, we center the trivializations at $(0, 0) = p_{ij}$ and we parametrize *V* as disc a bundle

- 1. over E_i by $V_i = \{(v_i, u_i) \in D_i \times \Delta_i\}$, where $D_i \times 0$ is a disc neighborhood of $(0, 0) = p_{ij}$ in E_i and $v_i \times \Delta_i$ is the normal disc fiber at $v_i \in D_i$.
- 2. over E_j by $V_j = \{(v_j, u_j) \in D_j \times \Delta_j\}$, where $D_j \times 0$ is a disc neighborhood of $(0, 0) = p_{ij}$ in E_j and $v_j \times \Delta_j$ is the normal disc fiber at $v_j \in D_j$.

As E_Y is a normal crossing divisor, we can parametrize *V* in such a way that $E_Y \cap$ $V = \{uv = 0\}$ where $v = v_i = u_j$ and $u = v_j = u_i$. These equalities provide the plumbing of $N(E_i)$ and $N(E_j)$ around p_{ij} . By construction, the associated weighted plumbing graph is equal to $G_w(Y)$.

Definition 2.2.6 The union of disc bundles $M(Y) = \bigcup_{1 \le i \le k} N(E_i)$ is the plumb**ing** associated to ρ : $(Y, E_Y) \rightarrow (X, 0)$.

With the above notation, in a neighborhood of p_{ij} , there is a unique connected component of the intersection $(b(N(E_i)) \cap b(N(E_i)))$ which is parametrized by the torus $b(D_i) \times b(\Delta_i)$ which is glued point by point with $b(D_i) \times b(\Delta_i)$.

Definition 2.2.7 The image of $(b(D_i) \times b(\Delta_i)) \sim (b(D_i) \times b(\Delta_i))$ in the boundary of $M(Y)$ is the **plumbing torus** $T(p_{ij})$ **associated to** p_{ij} .

2.3 The Topology of the Normalization

In this Section $(X, 0)$ is the intersection of a reduced complex surface germ, which can have a 1-dimensional singular locus, with the compact ball B_{ϵ}^{2n} of radius a small ϵ (i.e. where ϵ is as in Milnor's Theorem 2.10 of [\[18\]](#page-31-0)), centered at the origin in \mathbb{C}^n . As in the Introduction (Sect. [2.1\)](#page-1-0), L_X is the intersection of X with the boundary S_{ϵ}^{2n-1} of B_{ϵ}^{2n} .

2.3.1 *L_X* as Singular Covering over S^3

We choose a general projection π : $(X, 0) \rightarrow (\mathbb{C}^2, 0)$. We denote by Γ the singular locus of *π* (in particular $\Sigma \subset \Gamma$) and by Δ its discriminant ($\Delta = \pi(\Gamma)$). In fact it is sufficient to choose new coordinates in \mathbb{C}^n , $(x, y, w_1, \ldots, w_{n-2}) \in \mathbb{C}^n$, such that the restriction on $(X, 0)$ of the projection

$$
(x, y, w_1, \ldots, w_{n-2}) \mapsto (x, y),
$$

denoted by π , is finite and such that, for a sufficiently small α with $\alpha < \epsilon$, and all $a \in \mathbb{C}$ with $|a| \leq \alpha$, the hyperplanes $H_a = \{x = a\}$ meet transversally the singular locus Γ of π . In particular, $H_0 \cap \Gamma = \{0\}$.

Convention and Notation

Let $D_{\alpha} \times D_{\beta} \in \mathbb{C}^2$ be a polydisc at the origin in \mathbb{C}^2 where $0 < \alpha < \beta < \epsilon$ are chosen sufficiently small such that the following two points are satisfied:

I) $\mathcal{B} = B_{\epsilon}^{2n} \cap \pi^{-1}(D_{\alpha} \times D_{\beta})$ is a good semi-analytic neighborhood of *(X, 0)* in the sense of A. Durfee [\[7\]](#page-30-1). Then $(X \cap B, 0)$ is homeomorphic to $(X, 0)$. In this section *(X, 0)* is given by $(X \cap B, 0)$. The link $L_X = X \cap b(B)$ is the link of *X*. The link of Γ is the link $K_{\Gamma} = \Gamma \cap b(\mathcal{B})$ embedded in L_X .

2 The Topology of Surface Singularities 159

II) We have the following inclusion:

$$
K_{\Delta} = \Delta \cap ((S_{\alpha} \times D_{\beta}) \cup (D_{\alpha} \times S_{\beta})) \subset (S_{\alpha} \times D_{\beta}).
$$

In this section, we choose such a K_A to represent the link of Δ embedded in the 3-sphere (with corners) $((S_{\alpha} \times D_{\beta}) \cup (D_{\alpha} \times S_{\beta}))$. Let δ_i , $1 \leq i \leq r$, be the *r* branches of the discriminant Δ . Let $N(K_{\Delta})$ be a tubular compact neighborhood of K_{Δ} , So, $N(K_{\Delta})$ is a disjoint union of *r* solid tori. For a sufficiently small $N(K_{\Delta})$, the union $N(K_{\Gamma})$ of the connected components of $L_X \cap \pi^{-1}(N(K_{\Lambda}))$ which contain a connected component of K_{Γ} , constitutes a tubular compact neighbourhood of K_{Γ} in L_x .

Let us denote by $\ddot{N}(K_{\Lambda})$ the interior of $N(K_{\Lambda})$. The exterior M of the link K_{Λ} is defined by:

$$
M = ((S_{\alpha} \times D_{\beta}) \cup (D_{\alpha} \times S_{\beta})) \setminus N(K_{\Delta}).
$$

Moreover, let γ be a branch of the singular locus Γ of π . So, $\pi(\gamma) = \delta$ is a branch of Δ . Let $N(K_{\delta})$ (resp. $N(K_{\nu})$) be the connected component of $N(K_{\Lambda})$ (resp. of $N(K_{\Gamma})$) which contains the link K_{δ} (resp. K_{γ}).

Remark 2.3.1 The restriction $\pi_L : L_X \to ((S_\alpha \times D_\beta) \cup (D_\alpha \times S_\beta))$ of π to L_X is a finite morphism, its restriction on *M* is a finite regular covering. If γ is not a branch of the singular locus Σ of *X*, π_L restricted to $N(K_\gamma)$ is a ramified covering with K_γ as ramification locus. If γ is a branch of Σ , $N(K_{\gamma})$ is a singular pinched solid torus as defined in Definition [2.3.13](#page-13-0) and π_L restricted to $N(K_\gamma)$ is singular all along K_γ .

2.3.2 Waldhausen Graph Manifolds and Plumbing Graphs

Definition 2.3.2 A Seifert fibration on an oriented, compact 3-manifold is an oriented foliation by circles such that every leaf has a tubular neighbourhood (which is a solid torus) saturated by leaves. A Seifert 3-manifold is an oriented, compact 3-manifold equipped with a Seifert fibration.

Remark 2.3.3

- 1. A Seifert 3-manifold *M* can have a non-empty boundary. As this boundary is equipped with a foliation by circles, if $B(M)$ is non-empty it is a disjoint union of tori.
- 2. Let *D* be a disc and *r* be a rotation of angle $2\pi q/p$ where (q, p) are two positive integers prime to each other and $0 < q/p < 1$. Let T_r be the solid torus equipped with a Seifert foliation given by the trajectories of *r* in the following mapping torus:

$$
T_r = D \times [0, 1]/(z, 1) \sim (r(z), 0).
$$

In particular, $l_0 = (0 \times [0, 1])/(0, 1) \sim (0, 0)$ is a core of T_r . The other leaves are (q, p) -torus knots in T_r . Let T_0 be $D \times S$ equipped with the trivial fibration by circles $l(z) = \{z\} \times S$, $z \in D$. A solid torus $T(l)$ which is a tubular neighbourhood of a leave *l* of a Seifert 3-manifold *M* is either

- 1) orientation and foliation preserving homeomorphic to T_0 . In this case, *l* is a regular Seifert leave.
- 2) or, is orientation and foliation preserving homeomorphic to *Tr*. In this case, *l* is an exceptional leave of *M*.
- 3. The compactness of *M* implies that the set of exceptional leaves is finite.

Definition 2.3.4 Let *M* be an oriented and compact 3-manifold. The manifold *M* is a **Waldhausen graph manifold** if there exists a finite family T , of disjoint tori embedded in *M*, such that if M_i , $i = 1, \ldots, m$, is the family of the closures of the connected components of $M \setminus T$, then M_i is a Seifert manifold for all $i, 1 \le i \le m$. We assume that it gives us a finite decomposition $M = \bigcup_{1 \le i \le m} M_i$ into a union of compact connected Seifert manifolds which satisfies the following properties:

- 1. For each M_i , $i = 1, \ldots, m$, the boundary of M_i is in \mathcal{T} i.e. $b(M_i) \subset \mathcal{T}$.
- 2. If $i \neq j$ we have the inclusion $(M_i \cap M_j) \subset \mathcal{T}$.
- 3. The intersection $(M_i \cap M_j)$, between two Seifert manifolds of the given decomposition, is either empty or equal to the union of the common boundary components of M_i and M_j .

Such a decomposition $M = \bigcup_{1 \leq i \leq m} M_i$, is the Waldhausen decomposition of *M***, associated to the family of tori** \mathcal{T} .

Remark 2.3.5 One can easily deduce from Definition [2.2.4,](#page-6-0) that the family of the plumbing tori gives a decomposition of the boundary of a plumbing as a union of Seifert manifolds because the boundary of a disc bundle is a circle bundle. So, the boundary of a plumbing is a Waldhausen graph manifold.

In [\[20\]](#page-31-4), W. Neumann shows how to construct a plumbing from a given Waldhausen decomposition of a 3-dimensional oriented compact manifold.

As in Sect. [2.3.1,](#page-7-1) we consider the exterior $M = ((S_\alpha \times D_\beta) \cup (D_\alpha \times S_\beta)) \setminus N(K_\Delta)$ of the link K_{Δ} . The following proposition is well known (for example see [\[8,](#page-30-5) [17\]](#page-31-10)). Moreover, a detailed description of *M*, as included in the boundary of the plumbing graph given by the minimal resolution of Δ , is given in [\[12,](#page-31-11) p. 147–150].

Proposition 2.3.6 *The exterior M of the link of a plane curve germ* Δ *is a Waldhausen graph manifold. The minimal Waldhausen decomposition of M can be extended to a Waldhausen decomposition of the sphere* $((S_{\alpha} \times D_{\beta}) \cup (D_{\alpha} \times S_{\beta}))$ *in which the connected components of* K_{Δ} *are Seifert leaves. Moreover, with such a* Waldhausen decomposition, the solid tori connected components of $N(K_\Delta)$ are *saturated by Seifert leaves which are oriented circles transverse to* $(a \times D_\beta)$, $a \in S_\alpha$. *The cores* K_{Δ} *of* $N(K_{\Delta})$ *are a union of these Seifert leaves.*

2.3.3 The Topology of L_X When L_X *Is a Topological Manifold*

If $(X, 0)$ is not normal, let $v_L : L_{\overline{X}} \to L_X$ be the normalization of $(X, 0)$ restricted to the link of (\bar{X}, p) (if $(X, 0)$ is normal ν_L is the identity).

Remark 2.3.7 The link of a normal complex surface germ is a Waldhausen graph manifold. Indeed, the composition morphism $\pi_L \circ \nu_L$ is a ramified covering with the link K_{Λ} as set of ramification values:

$$
(\pi_L \circ \nu_L): L_{\bar{X}} \to ((S_{\alpha} \times D_{\beta}) \cup (D_{\alpha} \times S_{\beta})).
$$

We can take the inverse image under $\pi_L \circ \nu_L$ of the tori and of the Seifert leaves of a Waldhausen decomposition of $((S_\alpha \times D_\beta) \cup (D_\alpha \times S_\beta))$ in which K_α is a union of Seifert leaves, to obtain a Waldhausen decomposition of $L_{\bar{Y}}$. Then, the plumbing calculus $[20]$ describes $L_{\bar{Y}}$ as the boundary of a plumbing without the help of a good resolution of (X, p) .

If the singular locus $(\Sigma, 0)$ of $(X, 0)$ is one-dimensional, let $(\sigma, 0)$ be a branch of $(\Sigma, 0)$ and *s* be a point of the intersection $\sigma \cap \{x = a\}$. Let $\delta = \pi(\sigma)$ be the branch of the discriminant Δ which is the image of *σ* by the morphism *π*. Then, $\pi_L(s) = (a, y) \in (S_\alpha \times D_\beta)$. Let $N(K_\delta)$ be a solid torus regular neighbourhood of *K_δ* in $(S_\alpha \times D_\beta)$ and let $N(K_\sigma)$ be the connected component of $(\pi_L)^{-1}(N(K_\delta))$ which contains *s* (and K_{σ}).

Let *(C, s)* be the germ of curve which is the connected component of $N(K_{\sigma}) \cap$ ${x = a}$ which contains *s*. For a sufficiently small $\alpha = |a|$, (C, s) is reduced and its topological type does not depend upon the choice of *s*. In particular, **the number of the irreducible components of** (C, s) is well defined, let us denote this number **by** $k(\sigma)$.

Definition 2.3.8

1. By definition (C, s) is the **hyperplane section germ** of σ at *s*.

If $k(\sigma) = 1$, σ is a **branch** of Σ with irreducible hyperplane sections. Let $\Sigma = \Sigma_1 \cup \Sigma_+$ where Σ_1 is the union of the branches of Σ with irreducible hyperplane sections and Σ_+ is the union of the branches of Σ with reducible hyperplane sections.

- 2. Let D_i , $1 \le i \le k$ be *k* oriented discs centered at $0_i \in D_i$. A *k***-pinched disc** $k(D)$ is a topological space orientation preserving homeomorphic to the quotient of the disjoint union of the *k* discs by the identification of their centers in a unique point 0 i.e. $0_i \sim 0_j$ for all *i* and *j* where $1 \le i \le k, 1 \le j \le k$. The center of $k(D)$ is the equivalence class 0 of the centers 0_i , $1 \le i \le k$.
- 3. If $h : k(D) \rightarrow k(D)'$ is a homeomorphism between two *k*-pinched discs with $k > 1$, $h(0)$ is obviously the center of $k(D)'$. We say that *h* is orientation **preserving** if *h* preserves the orientation of the punctured *k*-pinched discs $(k(D) \setminus \{0\})$ and $(k(D)' \setminus \{0\})$.

Lemma 2.3.9 *Let (C, s) be the germ of curve which is the connected component of* $N(K_{\sigma}) \cap \{x = a\}$ *which contains s. Then, C is a* $k(\sigma)$ *-pinched disc centered at s and N (Kσ) is the mapping torus of C by an orientation preserving homeomorphism h which fixes the point s.*

Proof As (C, s) is a germ of curve with $k(\sigma)$ branches, up to homeomorphism (C, s) is a $k(\sigma)$ -pinched disc with $s = 0$.

We can saturate the solid torus $N(K_{\delta}) = \pi(N(K_{\sigma}))$ with oriented circles such that K_{δ} is one of these circles and such that the first return homeomorphism defined by these circles on the disc $\pi(C)$ is the identity. Let γ be one circle of the chosen saturation of $N(K_\delta)$. Then $\pi^{-1}(\gamma) \cap N(K_\sigma)$ is a disjoint union of oriented circles because π restricted to $N(K_{\sigma}) \setminus K_{\sigma}$ is a regular covering and $(\pi^{-1}(K_{\delta}) \cap N(K_{\sigma})) = K_{\sigma}$. So, $N(K_{\sigma})$ is equipped with a saturation by oriented circles. The first return map on *C* along the so constructed circles is an orientation preserving homeomorphism *h* such that $h(s) = s$ because K_{σ} is one of the given circles. circles.

Lemma 2.3.10 *As above, let* (C, s) *be the hyperplane section germ at* $s \in \sigma \cap \{x =$ *a*}*. Let* $\bar{\sigma}_j$ *,* $1 \leq j \leq n$ *, be the n irreducible components of* $v_L^{-1}(\sigma)$ *and let* d_j *be the degree of* v_L *restricted to* $\bar{\sigma}_i$ *. Then, we have*

$$
k(\sigma) = d_1 + \cdots + d_j + \cdots + d_n.
$$

Proof The normalization *ν* restricted to $\bar{X} \setminus \bar{\Sigma}$, where $\bar{\Sigma} = \pi^{-1}(\Sigma)$, is an isomorphism. The number *n* of the irreducible components of $v_L^{-1}(\sigma)$ is equal to the number of the connected components of $v_L^{-1}(N(K_{\sigma}))$. So, *n* is the number of the connected components of the boundaries $b(\nu_L^{-1}(N(K_{\sigma})))$ which is equal to the number of the connected components of $b(N(K_{\sigma}))$. Let τ_j , $1 \leq j \leq n$, be the *n* disjoint tori which are the boundary of $N(K_{\sigma})$. The degree d_i of ν restricted to $\bar{\sigma}_i$ is equal to the number of points of $v_L^{-1}(s) \cap (\bar{\sigma}_j)$.

Let (γ_j, s) be an irreducible component of (C, s) such that $m_j = b(\gamma_j) \subset \tau_j$. The normalization *ν* restricted to $(\nu_L^{-1}(\gamma_j \setminus \{s\}))$ is an isomorphism over the punctured disc $(\gamma_j \setminus \{s\})$. So, the intersection $v_L^{-1}(\gamma_j) \cap \bar{\sigma}_j$ is a unique point p_j . As *(X, p)* is normal, p_j is a smooth point of *(X, p)* and then, $v_L^{-1}(\gamma_j)$ is irreducible and it is the only irreducible component of $v_L^{-1}(C)$ at p_j . By symmetry there is exactly one irreducible component of $v_L^{-1}(C)$ at every point of $v_L^{-1}(s) \cap (\bar{\sigma}_j)$.

So, d_j is the number of the meridian circles of the solid torus $N(K_{\bar{\sigma}_j})$ obtained by the following intersection $(v_L^{-1}(C)) \cap (v_L^{-1}(\tau_j))$. But *ν* restricted to $(v_L^{-1}(\tau_j))$ is an isomorphism and d_j is also the number of connected components of $C \cap \tau_j$. So, $d_1 + \cdots + d_i + \cdots + d_n$, is equal to the number of connected components of $b(C) = C \cap b(N(K_{\sigma}))$ which is the number of irreducible components of (C, s) .

 \Box

Remark 2.3.11 A well-known result of analytic geometry could be roughly stated as follows: "The normalization separates the irreducible components". Here, *(X,* 0*)* has $k(\sigma)$ irreducible components around $s \in \sigma$. Using only basic topology, Lemma 3.3.4 proves that $(v_L^{-1}(s))$ has $k(\sigma) = d_1 + \cdots + d_j + \cdots + d_n$ distinct points and that there is exactly one irreducible component of $v_L^{-1}(C)$ at every point of $v_L^{-1}(s)$. This gives a topological proof that the normalization *ν* separates the $k(\sigma)$ irreducible components of (C, s) around $s \in \sigma$.

Proposition 2.3.12 *The following three statements are equivalent:*

- *1. LX is a topological manifold equipped with a Waldhausen graph manifold structure.*
- *2. The normalization* $v : (\bar{X}, p) \rightarrow (X, 0)$ *is a homeomorphism.*
- 3. All the branches of Σ have irreducible hyperplane sections.

Proof The normalization *ν* restricted to $\bar{X} \setminus \bar{\Sigma}$, where $\bar{\Sigma} = \pi^{-1}(\Sigma)$, is an isomorphism. The normalization is a homeomorphism if and only if *ν* restricted to $\bar{\Sigma} = \pi^{-1}(\Sigma)$ is a bijection. This is the case if and only if we have $1 =$ $d_1 + \cdots + d_j + \cdots + d_n$ for all the branches σ of Σ . But, by Lemma [2.3.10,](#page-11-0) $k(\sigma) = d_1 + \cdots + d_j + \cdots + d_n$. This proves the equivalence of the statements 2 and 3.

Let (C, s) be the hyperplane section germ at $s \in \sigma \cap \{x = a\}$. If L_X is a topological manifold, it is a topological manifold at *s* and $k(\sigma) = 1$ for all branches *σ* of Σ. If all the branches of Σ have irreducible hyperplane sections, we already know that the normalization $v : (\bar{X}, p) \to (X, 0)$ is a homeomorphism. Then, the restriction v_l of *v* to $L_{\bar{Y}}$ is also a homeomorphism. By Remark [2.3.7,](#page-10-1) $L_{\bar{Y}}$ is a Waldhausen graph manifold. In particular, we can equip L_X with the Waldhausen graph manifold structure carried by *ν_L*. This proves the equivalence of the statements 1 and 3.

2.3.4 Singular LX, Curlings and Identifications

In Sect. [2.3.3](#page-10-0) (Definition [2.3.8\)](#page-10-2), we have considered the union Σ_{+} of the branches of the singular locus Σ of $(X, 0)$ which have reducible hyperplane sections. We consider a tubular neighbourhood $N_+ = \bigcup_{\sigma \subset \Sigma_+} N(K_{\sigma})$ of the link K_{Σ_+} of Σ_+ in *L_X*. As in the proof of Proposition [2.3.12,](#page-12-1) the exterior $M_1 = L_X \setminus N_+$, of K_{Σ_+} in L_X , is a topological manifold because *ν* restricted to $v^{-1}(M_1)$ is a homeomorphism. From now on σ is a branch of Σ_{+} . The definition of Σ_{+} implies that L_X is topologically singular at every point of K_{σ} . In this section, we show that $N(K_{\sigma})$ is a singular pinched solid torus. In Lemma [2.3.9,](#page-11-1) it is shown that $N(K_{\sigma})$ is the mapping torus of a $k(\sigma)$ -pinched disc by an orientation preserving homeomorphism. But, the homeomorphism class of the mapping torus of a homeomorphism *h* depends only on the isotopy class of *h*. Moreover the isotopy class of an orientation preserving homeomorphism *h* of a *k*-pinched disc depends only on the permutation induced

by *h* on the *k* discs. In particular, if $h : D \rightarrow D$ is an orientation preserving homeomorphism of a disc *D* the associated mapping torus

$$
T(D, h) = [0, 1] \times D/(1, x) \sim (0, h(x))
$$

is homeomorphic to the standard torus $S \times D$.

Definition 2.3.13

1. Let *k(D)* be the *k*-pinched disc quotient by identification of their centrum of *k* oriented and ordered discs D_i , $1 \le i \le k$. Let $c = c_1 \circ c_2 \circ \cdots \circ c_n$ be a permutation of the indices $\{1, \ldots, k\}$ given as the composition of *n* disjoint cycles c_j , $1 \leq j \leq n$, where c_j is a cycle of order d_j . Let \tilde{h}_c be an orientation preserving homeomorphism of the disjoint union of D_i , $1 \le i \le k$ such that $h_c(D_i) = D_{c(i)}$ and $h_c(0_i) = 0_{c(i)}$. Then, h_c induces an orientation preserving homeomorphism h_c on $k(D)$. By construction we have $h_c(\tilde{0}) = \tilde{0}$. A **singular pinched solid torus associated to the permutation** c is a topological space orientation preserving homeomorphic to the mapping torus $T(k(D), c)$ of h_c .

$$
T(k(D), c) = [0, 1] \times k(D)/(1, x) \sim (0, h_c(x))
$$

The **core** of $T(k(D), c)$ is the oriented circle $l_0 = [0, 1] \times \tilde{0}/(1, \tilde{0}) \sim$ $(0, 0)$. A homeomorphism between two singular pinched solid tori is orientation preserving if it preserves the orientation of $k(D) \setminus \{0\}$ and the orientation of the trajectories of h_c in its mapping torus $T(k(D), c)$.

2. A d **-curling** C_d is a topological space homeomorphic to the following quotient of a solid torus $S \times D$:

$$
C_d = S \times D/(u, 0) \sim (u', 0) \Leftrightarrow u^d = u'^d.
$$

Let $q : (S \times D) \rightarrow C_d$ be the associated quotient morphism. By definition, $l_0 = q(S \times \{0\})$ is the **core of** C_d .

Example 2.3.14 Let $X = \{(x, y, z) \in \mathbb{C}^3 \text{ where } z^d - xy^d = 0\}$. The normalization of $(X, 0)$ is smooth i.e. $v : (\mathbb{C}^2, 0) \to (X, 0)$ is given by $(u, v) \mapsto (u^d, v, uv)$. Let $T = \{(u, v) \in (S \times D) \subset \mathbb{C}^2\}$. Let $\pi_x : v(T) \to S$ be the projection $(x, y, z) \mapsto x$ restricted to $\nu(T)$. Here the singular locus of $(X, 0)$ is the line $\sigma = (x, 0, 0), x \in \mathbb{C}$. We have $N(K_{\sigma}) = L_X \cap (\pi_X^{-1}(S)) = \nu(T)$ as a tubular neighbourhood of K_{σ} . Let $q: T \to C_d$ be the quotient morphism defined above. There exists a well defined homeomorphism $f: C_d \to N(K_\sigma)$ which satisfies $f(q(u, v)) = (u^d, v, uv)$. So, $N(K_{\sigma})$ is a d-curling and K_{σ} is its core. Moreover, *f* restricted to the core *l*₀ of C_d is a homeomorphism onto K_{σ} .

Figure [2.2](#page-14-0) shows schematically $\overline{\Gamma} = \nu^{-1}(\Gamma) \subset \overline{X}$ and Δ when Σ is irreducible and $\Gamma \setminus \Sigma$ has two irreducible components.

Fig. 2.2 Schematic picture of π and ν when there is a 2-curling on $\Sigma = \gamma_2$

Lemma 2.3.15 *A d-curling is a singular pinched solid torus associated to a dcycle, i.e. if c is a d-cycle, then* C_d *is homeomorphic to* $T(d(D), c)$ *.*

Proof We use the notation of Example [2.3.14.](#page-13-1) The model of d-curling obtained in this example is the tubular neighbourhood $N(K_{\sigma})$ of the singular knot of the link L_X

of *X* = {(*x, y, z*) ∈ \mathbb{C}^3 *where* $z^d - xy^d = 0$ }. As we work up to homeomorphism, it is sufficient to prove that $N(K_{\sigma})$ is a singular pinched solid torus associated to a d-cycle. We can saturate the solid torus *T* by the oriented circles $l_b = S \times \{b\}$, $b \in$ *D*. The circles $v(l_b)$, $b \in D$ also saturate $N(K_{\sigma})$ with oriented circles. The fiber $\pi_{r}^{-1}(a) = (C, (a, 0, 0))$ is a singular fiber of the fibration $\pi_{x} : v(T) \to S_{\alpha}$. The equation of the curve germ *C* at $(a, 0, 0)$ is $\{z^d - ay^d = 0\}$, this is a plane curve germ with *d* branches. So, *C* is homeomorphic to a *d*-pinched disc. Moreover, the first return along the circles $v(l_b)$ is a monodromy *h* of π_x which satisfies the conditions given in Definition 3.4.1 to obtain a singular pinched solid torus associated to a d-cycle.

Indeed, $(\pi_x \circ \nu)$: *T* \rightarrow *S_α* is a trivial fibration with fiber $\nu^{-1}(C) = \{(\{u_i\} \times$ D_{β}), $u_i^d = a$ } which is the disjoint union of *d* ordered meridian discs of *T*. The first return h_T along the oriented circles l_b is a cyclic permutation of the ordered *d* meridian discs and $(h_T)^d$ is the identity morphism. Moreover *ν* restricted to $T \setminus (S \times$ {0}} is a homeomorphism. As h_T is a lifting of *h* by *v*, the monodromy *h* determines $N(K_{\sigma})$ as a singular pinched solid torus associated to a d-cycle. $N(K_{\sigma})$ as a singular pinched solid torus associated to a d-cycle.

Proposition 2.3.16 Let σ be a branch of the singular locus of $(X, 0)$ which has *a reducible hyperplane section. Let* (C, s) *be the hyperplane section germ at* $s \in$ $\sigma \cap \{x = a\}$ *. Let* $\bar{\sigma}_j$, $1 \leq j \leq n$ *, be the n irreducible components of* $v_L^{-1}(\sigma)$ *and let* d_i *be the degree of* v_l *restricted to* $\bar{\sigma}_i$ *. Let* c_j *be a* d_i *-cycle and let* $c = c_1 \circ c_2 \circ \cdots \circ c_n$ *be the permutation of* $k(\sigma) = d_1 + \cdots + d_i + \cdots + d_n$ *elements which is the composition of the n disjoint cycles c_j. A tubular neighbourhood* $N(K_{\sigma})$ *of* K_{σ} *is a singular pinched solid torus associated to the permutation c. Moreover, the restriction of v to* $\prod_{1 \leq j \leq n} N(K_{\bar{\sigma}_j})$ *is the composition of two quotients: the quotients which define the* d_i -*curlings followed by the quotient* f_{σ} *which identifies their cores.*

Proof Let $N(K_{\bar{\sigma}_j})$, $1 \leq j \leq n$ be the *n* connected components of $v^{-1}(N(K_{\sigma}))$. So, $N(K_{\sigma}) \setminus K_{\sigma}$ has also *n* connected components and $(N(K_{\sigma}))_j = \nu(N(K_{\bar{\sigma}_j}))$ is the closure of one of them. Every $N(K_{\bar{\sigma}_i})$ is a solid torus and the restriction of *ν* to its core $K_{\bar{\sigma}_i}$ has degree d_j . The intersection $(v^{-1}(C)) \cap N(K_{\bar{\sigma}_i})$ is a disjoint union of d_j ordered and oriented meridian discs of $N(K_{\bar{\sigma}_j})$. We can choose a homeomorphism $g_j : (S \times D) \to N(K_{\bar{\sigma}_j})$ such that $(\nu \circ g_j)^{-1}(C) = \{u\} \times D, u^{d_j} = 1$.

The model of a d_j -curling gives the quotient $q_j : (S \times D) \rightarrow C_{d_j}$. As in Example [2.3.14,](#page-13-1) there exists a unique homeomorphism $f_j : C_{d_j} \rightarrow (N(K_{\sigma}))_j$ such that $f_j \circ q_j = v \circ g_j$. So, $(N(K_\sigma))_j$ is a d_j -curling. In particular, if v_j is the restriction of *ν* to $N(K_{\bar{\sigma}_i})$, then $v_j = f_j \circ q_j \circ (g_j)^{-1}$. Up to homeomorphism v_j is equivalent to the quotient which defines the d_j -curling.

But for all $j, 1 \leq j \leq n$, we have $\nu(K_{\bar{\sigma}_j}) = (K_{\sigma})$. Up to homeomorphism, $N(K_{\sigma})$ is obtained as the quotient of the disjoint union of the d_j -curlings by the identification of their cores. The disjoint union of the f_i induces a homeomorphism f_{σ} from

$$
N = \left(\coprod_{1 \le j \le n} C_{d_j} \right) / q_j(u, 0) \sim q_i(u, 0) \Leftrightarrow \nu(g_j(u, 0)) = \nu(g_i(u, 0))
$$

onto $N(K_{\sigma})$. Up to homeomorphism, the restriction of *ν* to $\prod_{1 \leq j \leq n} N(K_{\sigma_j})$ is the composition of two quotients: the quotients which define the d_j -curlings followed by the quotient f_{σ} which identifies their cores. It is sufficient to prove that $N =$ $T(k(\sigma)(D), c)$ where *c* is the composition of *n* disjoint cycles c_j of order d_j . By Lemma [2.3.15,](#page-14-1) $C_{d_j} = T(d_j(D), c_j)$ and it is obvious that the identifications correspond to the disjoint union of the cycles correspond to the disjoint union of the cycles.

2.4 Hirzebruch-Jung's Resolution of *(X,* **0***)*

In this section $(X, 0)$ is a normal surface germ.

Let π : $(X, 0) \longrightarrow (\mathbb{C}^2, 0)$ be a finite analytic morphism which is defined on $(X, 0)$. For example π can be the restriction to $(X, 0)$ of a linear projection, as chosen in the beginning of Sect. [2.3.1.](#page-7-1) But the construction can be performed with any finite morphism π . We denote by Γ the singular locus of π and by $\Delta = \pi(\Gamma)$ its discriminant.

Let $r : (Z, E_Z) \to (\mathbb{C}^2, 0)$ be the minimal embedded resolution of Δ , let $E_Z =$ *r*^{−1}(0) be the exceptional divisor of *r*, and let $E_Z^+ = r^{-1}(\Delta)$ be the total transform of Δ . The irreducible components of E_Z are smooth complex curves because the resolution *r* is obtained by a sequence of blowing up of points in a smooth complex surface. Let us denote by E_Z^0 the set of the smooth points of E_Z^+ . So, $E_Z^+ \setminus E_Z^0$ is the set of the double points of E_Z^+ .

Here, we give a detailed construction of the Hirzebruch-Jung resolution *ρ* : $(Y, E_Y) \rightarrow (X, 0)$ associated to π . This will prove the existence of a good resolution of $(X, 0)$. As the link L_X is diffeomorphic to the boundary of Y, this will describe L_X as the boundary of a plumbing. In particular, we will explain how to obtain the dual graph $G(Y)$ of E_Y when we have the dual graph $G(Z)$ associated to E_Z . Knowing the Puiseux expansions of all the branches of Δ , there exists an algorithm to compute the dual graph $G_w(Z)$ weighted by the self-intersection numbers of the irreducible components of $E(Z)$ (For example see [\[6\]](#page-30-6) and Chap. 6 and 7 in [\[17\]](#page-31-10)). Except in special cases, the determination of the self-intersection numbers of the irreducible components of E_Y is rather delicate.

2.4.1 First Step: Normalization

We begin with the minimal resolution *r* of Δ . The pull-back of π by *r* is a finite morphism π_r : $(Z', E_{Z'}) \rightarrow (Z, E_Z)$ which induces an isomorphism from $E_{Z'}$ to E_Z . We denote r_π : $(Z', E_{Z'}) \rightarrow (X, 0)$, the pull-back of *r* by π . Figure [2.3](#page-17-0) represents the resulting commutative diagram.

In general *Z'* is not normal. Let $n : (Z, E_{\bar{Z}}) \rightarrow (Z', E_{Z'})$ be the normalization of *Z* .

Remark 2.4.1

- 1. By construction, the discriminant locus of $\pi_r \circ n$ is included in $E_Z^+ = r^{-1}(\Delta)$ which is the total transform of Δ in *Z*. As, *X* is normal at 0, $(X \setminus \{0\})$ has no singular points.
- 2. As the restriction of *r* to $Z \setminus E_Z$ is an isomorphism, the restriction of r_π to $Z' \setminus E_Z$ is also an isomorphism. We denote by Γ' (resp. $\bar{\Gamma}$) the closure of $(r_\pi)^{-1}(\Gamma \setminus \{0\})$ in $E_{Z'}$ (resp. the closure of $(r_\pi \circ n)^{-1}(\Gamma \setminus \{0\})$ in $E_{\bar{Z}}$). The restriction of r_π to Γ' (resp. $(r_{\pi} \circ n)$ on $\overline{\Gamma}$) is an isomorphism onto Γ .
- 3. The singular locus of Z' is included in $E_{Z'}$. The normalization *n* restricted to $Z \setminus E_{\bar{z}}$ is an isomorphism.

Notation We use the following notations:

 $E_{Z'}^+ = E_{Z'} \cup \Gamma'$, and $E_{Z'}^0$ is the set of the points of $E_{Z'}$ which belong to a unique irreducible component of $E_{Z'}^+$. Similarly: $E_{\bar{Z}}^+ = E_{\bar{Z}} \cup \bar{\Gamma}$, and $E_{\bar{Z}}^0$ is the set of the points of $E_{\bar{Z}}$ which belong to a unique irreducible component of $E_{\bar{Z}}^{+}$.

Proposition 2.4.2 *Every singular point of* \overline{Z} *belongs to at least two irreducible components of* $E^{\pm}_{\bar{Z}}$ *. The restriction of the map* $(\pi_r \circ n)$ *to* $E_{\bar{Z}}$ *induces a finite morphism from* $E_{\bar{Z}}$ *to* E_Z *which is a regular covering from* $(\pi_r \circ n)^{-1}(E_Z^0)$ *to* (E_Z^0) *.*

Proof As *X* is normal at 0, $(X \setminus \{0\})$ has no singular points. The pull-back construction implies that:

1. The morphism π_r is finite and its generic degree is equal to the generic degree of π . Indeed, π_r restricted to $E_{Z'}$ is an isomorphism. Moreover, the restriction of π_r to $(Z' \setminus E_{Z'})$ is isomorphic, as a ramified covering, to the restriction of π to $(X \setminus \{0\})$. So, the restriction morphism (π_r) : $(Z' \setminus E_{Z'}) \rightarrow (Z \setminus E_Z)$ is a finite ramified covering with ramification locus Γ' .

2. As the restriction of *r* to $(Z \setminus E_Z)$ is an isomorphism, then the restriction of r_π to $(Z' \setminus E_{Z'})$ is also an isomorphism. So, the restriction of $(r_\pi \circ n)$ to $(\bar{Z} \setminus E_{\bar{Z}})$ is an analytic isomorphism onto the non-singular analytic set $(X \setminus \{0\})$. It implies that $(Z \setminus E_{\bar{z}})$ is smooth.

If $\overline{P} \in E^0$, then $P = (\pi_r \circ n)(\overline{P})$ is a smooth point of an irreducible component of \overline{P} , \overline{Z} is a smooth point of an irreducible component *E_i* of *E_Z*. The normal fiber bundle to *E_i* in *Z* can be locally trivialized at *P*. We can choose a small closed neighborhood *N* of *P* in *Z* such that $N = D \times \Delta$ where *D* and Δ are two discs, $N \cap E_Z = (D \times 0)$ and for all $z \in D$, $z \times \Delta$ are fibers of the bundle in discs associated to the normal bundle of E_i . We choose $\overline{N} = (\pi_r \circ n)^{-1}(N)$ as closed neighborhood of \overline{P} in \overline{Z} . But \overline{Z} is normal and the local discriminant of the restriction $(\pi_r \circ n)$: $(\overline{N}, \overline{P}) \rightarrow (N, P)$ is included in $D \times 0$ which is a smooth germ of curve. In that case, the link of $(\overline{N}, \overline{P})$ is S^3 (in Lemma [2.5.6,](#page-23-1) we give a topological proof of this classical result). As \overline{Z} is normal, by Mumford's Theorem [\[19\]](#page-31-6), *P* is a smooth point of *Z*. This ends the proof of the first statement of the proposition.

Now, we know that the morphism $(\pi_r \circ n)_{|\bar{N}} : (\bar{N}, \bar{P}) \to (N, P)$ is a finite morphism between two smooth germs of surfaces with non-singular discriminant locus. Let *d* be its generic order. By Lemma [2.5.6,](#page-23-1) such a morphism is locally isomorphic (as an analytic morphism) to the morphism defined on $(\mathbb{C}^2, 0)$ by $(x, y) \mapsto (x, y^d)$. So, $\overline{D} = (\pi_r \circ n)^{-1} (D \times 0)$ is a smooth disc in $E_{\overline{Z}}^0$ and the restriction of such a morphism to $\{(x, 0), x \in \overline{D}\}\)$ is a local isomorphism.

By definition of E_Z^0 , $P \in (E_i \cap E_Z^0)$ is a smooth point in the total transform of Δ . If we take a smooth germ (γ, \overline{P}) transverse to E_i at P, then $(r(\gamma), 0)$ is not a branch of Δ . The restriction of π to $\pi^{-1}(r(\gamma) \setminus 0)$ is a regular covering. Let *k* be the number of irreducible components of $\pi^{-1}(r(\gamma))$. The number *k* is constant for all $P \in E_i \cap E_Z^0$. Let P' be the only point of $(\pi_r)^{-1}(P)$. Remark [2.3.11,](#page-12-2) which uses Lemma [2.3.10,](#page-11-0) shows that the *k* irreducible components of the germ of curve $((\pi_r)^{-1}(\gamma), P')$ are separated by *n*. So, the restriction of the map $(\pi_r \circ n)$ to $((\pi_r \circ n)^{-1}(E_i \cap E_Z^0))$ is a regular covering of degree *k*. □

Definition 2.4.3 A germ *(W, 0)* of complex surface is **quasi-ordinary** if there exists a finite morphism ϕ : $(W, p) \rightarrow (\mathbb{C}^2, 0)$ which has a normal-crossing discriminant. A **Hirzebruch-Jung singularity** is a quasi-ordinary singularity of normal surface germ.

Lemma 2.4.4 *Let P be a point of* $E_{\bar{Z}}$ *which belongs to several irreducible components of* $E^{\pm}_{\bar{Z}}$ *. Then P belongs to two irreducible components of* $E^{\pm}_{\bar{Z}}$ *. Moreover, either P* is a smooth point of *Z* and $E^{\pm}_{\bar{Z}}$ is a normal crossing divisor around *P*, or \overline{P} *is a Hirzebruch-Jung singularity of* \overline{Z} *.*

Proof If \overline{P} be a point of $E_{\overline{Z}}$ which belongs to several irreducible components of *E*^{$+$}_{\bar{Z}} then *P* = $(\pi_r \circ n)(P)$ is a double point of E_Z^+ . Moreover *Z* is smooth and E_Z^+ is a normal crossing divisor. We can choose a closed neighbourhood *N* of *P* isomorphic to a product of discs $(D_1 \times D_2)$, and we take $\overline{N} = (\pi_r \circ n)^{-1}(N)$. For a sufficiently small *N*, the restriction of $(\pi_r \circ n)$ to the pair $(N, N \cap E^+_{\bar{Z}})$ is a

finite ramified morphism over the pair $(N, N \cap E_{\bar{Z}}^{+})$ and the ramification locus is included in the normal crossing divisor $(N \cap E_Z^+)$. The pair (N, P) is normal and the link of the pair $(N, N \cap E_Z^+)$ is the Hopf link in S^3 . Then the link of \overline{N} is a lens space, and the link of $(\pi_r \circ n)^{-1}(N \cap E_Z^+)$ has two components (Lemma [2.5.4](#page-22-0) gives a topological proof of this classical result). So, $E^{\pm}_{\bar{Z}}$ has two irreducible components at \overline{P} . We have two possibilities:

- 1. *P* is a smooth point in *Z*. Then the link of the pair $(N, N \cap E_{\bar{Z}}^{+})$ is the Hopf link in S^3 and $E^{\pm}_{\bar{Z}}$ is a normal crossing divisor at \bar{P} .
- 2. \overline{P} is an isolated singular point of \overline{Z} . Then, the link of \overline{N} is a lens space which is not S^3 . The point \overline{P} is a Hirzebruch-Jung singularity of \overline{Z} equipped with the finite morphism

$$
(\pi_r \circ n)_{|\bar{N}} : (\bar{N}, \bar{N} \cap E_{\bar{Z}}^+) \to (N, N \cap E_Z^+)
$$

which has the normal crossing divisor $N \cap E_Z^+$ as discriminant.

The example given in Sect. [2.6](#page-29-0) illustrates the following Corollary.

Corollary 2.4.5 *Let* $G(Z)$ *be the dual graph of* $E_{\overline{Z}}$ *. Proposition* [2.4.2](#page-17-1) *and Lemma* [2.4.4](#page-18-0) *imply that* $(\pi_r \circ n)$ *induces a finite ramified covering of graphs from* $G(\bar{Z})$ *onto* $G(Z)$ *.*

2.4.2 Second Step: Resolution of the Hirzebruch-Jung Singularities

If *P* is a singular point of *Z*, then $P = (\pi_r \circ n)(P)$ is a double point of E_Z^+ . In particular, there are finitely many isolated singular points in \overline{Z} . The singularities of *Z* are Hirzebruch-Jung singularities. More precisely, let P_i , $1 \le i \le n$, be the finite set of the singular points of *Z* and let U_i be a sufficiently small neighborhood of P_i in \bar{Z} . We have the following result (see [\[9\]](#page-31-8) for a proof, see also [\[11,](#page-31-2) [22\]](#page-31-12) and [\[13\]](#page-31-13)) and, to be self-contained, we give a proof in Sect. [2.5.3](#page-25-0) (Proposition [2.5.7\)](#page-25-1):

Theorem The exceptional divisor of the minimal resolution of (U_i, P_i) is a normal *crossings divisor with smooth rational irreducible components and its dual graph is a bamboo (it means is homeomorphic to a segment).*

Let $\bar{\rho}_i$: $(U'_i, E_{U'_i}) \rightarrow (U_i, P_i)$ be the minimal resolution of the singularity (U_i, P_i) . From [\[13\]](#page-31-13) (corollary 1.4.3), see also [\[22\]](#page-31-12) (paragraph 4), the spaces U_i' and the maps $\bar{\rho}_i$ can be glued, for $1 \leq i \leq n$, in a suitable way to give a smooth space *Y* and a map $\bar{\rho}: (Y, E_Y) \to (\bar{Z}, E_{\bar{Z}})$ satisfying the following property (Fig. [2.4\)](#page-20-1).

Theorem 2.4.6 *Let us denote* $\rho = r_{\pi} \circ n \circ \bar{\rho}$ *. Then,* $\rho : (Y, E_Y) \rightarrow (X, p)$ *is a good resolution of the singularity* (X, p) *in which the total transform* $\rho^{-1}(\Gamma) = E_Y^+$ *of the singular locus* Γ *of* π *is a normal crossings divisor.*

Proof The surface *Y* is smooth because $\overline{\rho}$ is a resolution of all the singular points of \overline{Z} . As proved in Proposition [2.4.2](#page-17-1) and Lemma [2.4.4,](#page-18-0) the only possible singular points of the irreducible components of $E_{\bar{Z}}$ are the double points P_i of $E_{\bar{Z}}^+$. These points are resolved by the resolutions $\overline{\rho_i}$. So, the strict transform, by $\overline{\rho}$, of the irreducible components of $E_{\bar{z}}$ are smooth.

The irreducible components of E_Y created during the resolution $\bar{\rho}$ are smooth rational curves. So, all the irreducible components of E_Y are smooth complex curves.

By Lemma [2.4.4,](#page-18-0) the only possible points of $E^+_{\bar{Z}}$ around which $E^+_{\bar{Z}}$ is not smooth or a normal crossing divisor are the Hirzebruch-Jung singularities P_i , $1 \le i \le n$. But as the $\bar{\rho}_i$, $1 \le i \le n$, are good resolutions of these singularities, $((\bar{\rho}_i)^{-1}(\bar{U}_i)) \cap$
(*E*⁺_i), $1 \le i \le n$, are normal crossing divisors. $(E_Y^+), 1 \le i \le n$, are normal crossing divisors.

As ρ is the composition of three well defined morphisms which depend only on the choice of the morphism π and as we follow the Hirzebruch-Jung method, we have the following definition.

Definition 2.4.7 The morphism ρ : $(Y, E_Y) \rightarrow (X, 0)$ is the **Hirzebruch-Jung resolution** associated to *π*.

Corollary 2.4.8 *The dual graph* $G(Y)$ *of* E_Y *is obtained from the dual graph* $G(\bar{Z})$ *of* E_7 *by replacing the edges, which represent the Hirzebruch-Jung singular points of Z, by a bamboo.*

Let ρ'' : $(Y'', E_{Y''}) \rightarrow (X, 0)$ be a good resolution of $(X, 0)$. Let *E* be an irreducible component of the exceptional divisor $E_{Y''}$ and let E^0 be the set of the smooth points of *E* in $E_{Y''}$. Let us recall that *E* is a **rupture component** of $E_{Y''}$ if the Euler characteristic of E^0 is strictly negative. Now we can use the following result (for a proof see [\[11,](#page-31-2) Theorem 5.9, p.87]):

Theorem Let ρ' : $(Y', E_{Y'}) \rightarrow (X, 0)$ be the minimal resolution of $(X, 0)$ *. There exists* β : $(Y, E_Y) \rightarrow (Y', E_{Y'})$ *such that* $\rho' \circ \beta = \rho$ *and the map* β *consists in a composition of blowing-downs of irreducible components, of the successively obtained exceptional divisors, of self-intersection* −1 *and genus* 0*, which are not rupture components.*

2.5 Appendix: The Topology of a Quasi-ordinary Singularity of Surface

2.5.1 Lens Spaces

One can find details on lens spaces and surface singularities in [\[24\]](#page-31-14). See also [\[21\]](#page-31-15).

Definition 2.5.1 A **lens space** *L* is an oriented compact three-dimensional topological manifold which can be obtained as the union of two solid tori $T_1 \cup T_2$ glued along their boundaries. The torus $\tau = T_1 \cap T_2$ is the Heegaard torus of the given decomposition $L = T_1 \cup T_2$.

Remark 2.5.2 If *L* is a lens space, there exists an embedded torus τ in *L* such that $L \setminus \tau$ has two connected components which are open solid tori \hat{T}_i , $i = 1, 2$. Let *T_i*, $i = 1, 2$, be the two compact solid tori closure of \mathring{T}_i in *L*. Of course $\tau = T_1 \cap T_2$. In [\[3\]](#page-30-7), F. Bonahon shows that a lens space has a unique, up to isotopy, Heegaard torus. This implies that the decomposition $L = T_1 \cup T_2$ is unique up to isotopy, it is "the" Heegaard decomposition of *L*.

A lens space *L* with a decomposition of Heegaard torus *τ* can be described as follows. The solid tori T_i , $i = 1, 2$, are oriented by the orientation induced by L.

Let τ_i be the torus τ with the orientation induced by T_i . By definition a meridian m_i of T_i is a closed oriented circle on τ_i which is the boundary of a disc D_i embedded in T_i . A meridian of a solid torus is well defined up to isotopy. A parallel l_i of T_i is a closed oriented curve on τ_i such that the intersection $m_i \cap l_i = +1$ (we also write m_i (resp. l_i) for the homology class of m_i (resp. l_i) in the first homology group of τ_i). The homology classes of two parallels differ by a multiple of the meridian.

We choose on τ_2 , an oriented meridian m_2 and a parallel l_2 of the solid torus T_2 . As in [\[24,](#page-31-14) p. 23], we write a meridian m_1 of T_1 as $m_1 = nl_2 - qm_2$ with $n \in \mathbb{N}$ and $q \in \mathbb{Z}$ where *q* is well defined modulo *n*. As m_1 is a closed curve on τ , *q* is prime to *n*. Moreover, the class of *q* modulo n depends on the choice of l_2 . So, we can chose *l*₂ such that $0 \leq q \leq n$.

Let τ be a boundary component of an oriented compact three-dimensional manifold *M.* Let *T* be a solid torus given with a meridian *m* on its boundary. If *γ* is a circle embedded in τ there is a unique way to glue *T* to *M* by an orientation reversing homeomorphism between the boundary of *T* and *τ* which send *m* to *γ* . The result of such a gluing is unique up to orientation preserving homeomorphism and it is called the **Dehn filling** of *M* associated to γ .

Definition 2.5.3 By a Dehn filling argument, it is sufficient to know the homology class $m_1 = nl_2 - qm_2$ to reconstruct *L*. By definition **the lens space** $L(n, q)$ is the lens space constructed with $m_1 = nl_2 - qm_2$. We have two special cases:

1. $m_1 = m_2$, if and only if *L* is homeomorphic to $S^1 \times S^2$,

2. $m_1 = l_2$ if and only if *L* is homeomorphic to S^3 .

Lemma 2.5.4 *Let* ϕ : $(W, p) \rightarrow (\mathbb{C}^2, 0)$ *be a finite morphism defined on an irreducible surface germ* (W, p) *. If the discriminant* Δ *of* ϕ *is included in a normal crossing germ of curve, then the link* L_W *of* (W, p) *is a lens space. The link* K_Γ *of the singular locus* Γ *of* ϕ *, has at most two connected components. Moreover,* K_{Γ} *is a sub-link of the two cores of the two solid tori of a Heegaard decomposition of LW as a union of two solid tori.*

Proof After performing a possible analytic isomorphism of $(\mathbb{C}^2, 0)$, Δ is, by hypothesis, included in the two axes i.e. $\Delta \subset \{xy = 0\}$.

Let $D_{\alpha} \times D_{\beta} \in \mathbb{C}^2$ be a polydisc at the origin in \mathbb{C}^2 where $0 < \alpha < \beta < \epsilon$ are chosen sufficiently small as in Sect. [2.3.1.](#page-7-1) Then, the restriction ϕ_L of ϕ on the link L_W is a ramified covering of the sphere (with corners)

$$
S = (S_{\alpha} \times D_{\beta}) \cup (D_{\alpha} \times S_{\beta})
$$

with a set of ramification values included in the Hopf link $K_{xy} = (S_{\alpha} \times \{0\}) \cup (\{0\} \times$ *Sβ)*.

Let $N(K_{xy})$ be a small compact tubular neighborhood of K_{xy} in S. Then, *N*(K_{xy}) is the union of two disjoint solid tori $T_y = (S_\alpha \times D_{\beta'})$, $0 < \beta' < \beta$, and $T_x = (D_{\alpha'} \times S_{\beta}), 0 < \alpha' < \alpha$. Then, $\phi_L^{-1}(T_x)$ (resp. $\phi_L^{-1}(T_y)$) is a union of

 $r_x > 0$ (resp. $r_y > 0$) disjoint solid tori because the set of the ramification values of ϕ_L is included in the core of T_x (resp. T_y).

Let *V* be the closure, in S, of $S\backslash N(K_{xy})$. But, *V* is a thickened torus which does not meet the ramification values of ϕ_L . Then, $\phi_L^{-1}(V)$ is a union of $r > 0$ disjoint thickened tori. But, L_W is connected because (W, p) is irreducible by hypothesis. The only possibility to obtain a connected space by gluing $\phi_L^{-1}(T_x)$, $\phi_L^{-1}(T_y)$ and $\phi_L^{-1}(V)$ along their boundaries is $1 = r = r_x = r_y$.

So, $\phi_L^{-1}(T_x)$ (resp. $\phi_L^{-1}(T_y)$) which is in L_W a deformation retract of $T_2 =$ $\phi_L^{-1}(S_\alpha \times D_\beta)$ (resp. $T_1 = \phi_L^{-1}(D_\alpha \times S_\beta)$) is a single solid torus. Then $\tau = \phi_L^{-1}(S_\alpha \times S_\beta)$ is a single torus. We have proved that L_W is the lens space obtained as the union of the two solid tori T_1 and T_2 along their common boundary $\tau = \phi_L^{-1}(S_\alpha \times S_\beta)$. So, $T_1 \cup T_2$ is a Heegaard decomposition of L_W as a union of two solid tori.

By hypothesis $K_{\Delta} \subset (S_{\alpha} \times \{0\}) \cup (\{0\} \times S_{\beta})$. Then, K_{Γ} is included in the disjoint union of $\phi_L^{-1}(S_\alpha \times \{0\})$ and $\phi_L^{-1}(\{0\} \times S_\beta)$ which are the cores of T_1 and T_2 . So, K_{Γ} has at most two connected components.

Example 2.5.5 Let *n* and *q* be two relatively prime strictly positive integers. We suppose that $q < n$. Let $X = \{(x, y, z) \in \mathbb{C}^3 \text{ s.t. } z^n - xy^q = 0\}$. The link L_X of $(X, 0)$ is the lens space $L(n, n - q)$.

Indeed, let $\phi: (X, 0) \to (\mathbb{C}^2, 0)$ be the projection $(x, y, z) \mapsto (x, y)$ restricted to *X*. The discriminant Δ of ϕ is equal to {*xy* = 0}. By Lemma [2.5.4,](#page-22-0) L_X is a lens space. As in the proof of Lemma [2.5.4,](#page-22-0) $L_X = \phi^{-1}(S)$ where

$$
S=(S_{\alpha}\times D_{\beta})\cup (D_{\alpha}\times S_{\beta}).
$$

In the proof of Lemma [2.5.4,](#page-22-0) it is shown that $T_2 = \phi^{-1}(S_\alpha \times D_\beta)$ and $T_1 =$ $\phi^{-1}(D_{\alpha} \times S_{\beta})$) are two solid tori. Let $(a, b) \in (S_{\alpha} \times S_{\beta})$. As *n* and *q* are relatively prime $m_1 = \phi^{-1}(\lbrace a \rbrace \times S_\beta)$ and $m_2 = \phi^{-1}(S_\alpha \times \lbrace b \rbrace)$ are connected. So, m_i , $i =$ 1, 2, is a meridian of T_i .

We choose $c \in \mathbb{C}$ such that $c^n = ab^q$. Let $l_2 = \{z = c\} \cap \phi^{-1}(S_\alpha \times S_\beta)$. On the torus $\tau = \phi^{-1}(S_\alpha \times S_\beta)$, oriented as the boundary of T_2 , we have $m_2 \cap l_2 = +1$ and $m_1 = nl_2 - (-q)m_2$. As defined in Definition [2.5.3,](#page-22-1) we have $L_X = L(n, -q)$ $L(n, n - q)$.

2.5.2 Finite Morphisms with Smooth Discriminant

Lemma 2.5.6 *Let* ϕ : $(W, p) \rightarrow (\mathbb{C}^2, 0)$ *be a finite morphism, of generic degree n, defined on a normal surface germ (W, p). If the discriminant of φ is a smooth germ of curve, then* $(X, 0)$ *is analytically isomorphic to* $(\mathbb{C}^2, 0)$ *and* ϕ *is analytically isomorphic to the map from* $(\mathbb{C}^2, 0)$ *to* $(\mathbb{C}^2, 0)$ *defined by* $(x, y) \mapsto (x, y^n)$.

Proof After performing an analytic automorphism of $(\mathbb{C}^2, 0)$, we can choose coordinates such that $\Delta = \{y = 0\}$.

Let $D_{\alpha} \times D_{\beta} \in \mathbb{C}^2$ be a polydisc at the origin in \mathbb{C}^2 where $0 < \alpha < \beta < \epsilon$ are chosen sufficiently small as in Sect. [2.3.1.](#page-7-1) Then, the restriction ϕ_L of ϕ on the link L_W is a ramified covering of the sphere (with corners)

$$
\mathcal{S} = (S_{\alpha} \times D_{\beta}) \cup (D_{\alpha} \times S_{\beta})
$$

with a set of ramification values included in the trivial link $K_y = (S_\alpha \times \{0\})$.

Here, we satisfy the hypotheses of Lemma [2.5.4.](#page-22-0) So, $T_2 = \phi_L^{-1}(S_\alpha \times D_\beta)$ and $T_1 = \phi_L^{-1}(D_\alpha \times S_\beta)$ are two solid tori with common boundary $\tau = \phi_L^{-1}(S_\alpha \times S_\beta)$. We take $a \in S_\alpha$ and $b \in S_\beta$.

Let us consider $\mathcal{D}_a = \phi_L^{-1}(\{a\} \times D_\beta) \subset T_2$ and $\mathcal{D}_b = \phi_L^{-1}(D_\alpha \times \{b\}) \subset T_1$. Here the singular locus of ϕ_L is the core of T_2 and does not meet T_1 .

The restriction of ϕ_L to $\phi_L^{-1}(D_\alpha \times \{b\})$ is a regular covering of a disc. Then \mathcal{D}_b is a disjoint union of *n* discs where *n* is the general degree of ϕ_L . Let m_1 be the oriented boundary of one of the *n* discs which are the connected components of \mathcal{D}_b . By definition m_1 is a meridian of T_1 .

The restriction of ϕ_L to \mathcal{D}_a is a covering of a disc and $(a \times 0)$ is the only ramification value . Then D_a is a disjoint union of *d* discs where $d < n$. On τ, the intersection between the circles boundaries of \mathcal{D}_a and \mathcal{D}_b is equal to *n* because it is given by the (positively counted) *n* points of $\phi_L^{-1}(a \times b)$. The restriction of ϕ_L to T_1 is a Galois covering of degree *n* which permutes cyclically the connected components of \mathcal{D}_a . So, on the torus $\tau = b(T_1)$, any of the *d* circles boundaries of the connected components of \mathcal{D}_a intersects any of the *n* circles boundaries of the connected components of \mathcal{D}_b . So computed, the intersection $b(\mathcal{D}_a) \cap b(\mathcal{D}_b)$ is equal to *nd*. But, *nd* = *n* because this intersection is given by the *n* points of $\phi_L^{-1}(a \times b)$.

So, $d = 1$ and \mathcal{D}_a has a unique connected component. The boundary of \mathcal{D}_a is a meridian m_2 of T_2 . As m_1 is the boundary of one of the *n* connected components of \mathcal{D}_b , $m_1 \cap m_2 = +1$ and m_1 can be a parallel l_2 of T_2 . This is the case 2) in Definition [2.5.3,](#page-22-1) so the link L_W of (W, p) is the 3-sphere S^3 . As (W, p) is normal, by Mumford [\[19\]](#page-31-6), *(W, p)* is a smooth surface germ i.e *(W, p)* is analytically isomorphic to $(\mathbb{C}^2, 0)$. The first part of Lemma [2.5.6](#page-23-1) has been proved.

(*) Moreover $\phi_L^{-1}(S_\alpha \times \{0\}) \cup (\{0\} \times S_\beta)$ is the union of the cores of T_1 and T_2 . Then, $(S_{\alpha} \times \{0\}) \cup (0 \times S_{\beta})$ is a Hopf link in the 3-sphere L_W .

From now on, $\phi : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ is a finite morphism and its discriminant locus is $\{y = 0\}$. Let us write $\phi = (\phi_1, \phi_2)$. The link of the zero locus of the function germ

$$
(\phi_1.\phi_2):(\mathbb{C}^2,0)\to(\mathbb{C}^0,0)
$$

is the link describe above (see (*)), i.e. it is a Hopf link. The function (ϕ_1, ϕ_2) reduced is analytically isomorphic to $(x, y) \mapsto (xy)$. But ϕ_1 is reduced because

its Milnor fiber is diffeomorphic to $\mathcal{D}_a = \phi_L^{-1}(\{a\} \times D_\beta) \subset T_2$ which is a disc. So, ϕ_1 is isomorphic to *x*.

The Milnor fiber of ϕ_2 is diffeomorphic to the disjoint union of the *n* discs $\mathcal{D}_b = \phi_L^{-1}(D_\alpha \times \{b\}) \subset T_1$. When the Milnor fiber of a function germ f : $(\mathbb{C}^2, 0) \rightarrow (\mathbb{C}, 0)$ has *n* connected components, *n* is the *g.c.d.* of the multiplicities of the irreducible factors of *f*. Here $\phi_2 = g^n$ where *g* is an irreducible function germ. We already have seen that ϕ_2 reduced is isomorphic to *y*. This completes the proof that ϕ_2 is isomorphic to y^n and $\phi = (\phi_1, \phi_2)$ is isomorphic to (x, y^n) .

2.5.3 The Hirzebruch-Jung Singularities

Proposition 2.5.7 *Let (W, p) be a normal surface germ such that there exists a finite morphism* $\phi : (W, p) \rightarrow (\mathbb{C}^2, 0)$ *which has a normal-crossing discriminant* $(A, 0)$ *. Then,* (W, p) *has a minimal good resolution* $\rho : (\tilde{W}, E_{\tilde{W}}) \rightarrow (W, p)$ *such that:*

- *I)* the exceptional divisor $E_{\tilde{W}}$ of ρ has smooth rational irreducible components *and its dual graph is a bamboo. We orient the bamboo from the vertex (1) to the vertex (k). The vertices are indexed by this orientation,*
- *II) the strict transform of* $\phi^{-1}(\Delta)$ *has two smooth irreducible components which meet* $E_{\tilde{w}}$ *transversally, one of them at a smooth point of* E_1 *and the other component at a smooth point of Ek.*

Proof After performing an analytic isomorphism of $(\mathbb{C}^2, 0)$, we can choose coordinates such that $\Delta = \{xy = 0\}$. We have to prove that there exists a minimal resolution ρ of *(W, p)* such that the shape of the dual graph of the total transform of Δ in *W* looks like the graph drawn in Fig. [2.5](#page-25-2) where all vertices represent smooth rational curves.

By Lemma [2.5.4,](#page-22-0) the link L_W of (W, p) is a lens space. If L_W is homeomorphic to *S*3, *(W, p)* is smooth by Mumford [\[19\]](#page-31-6), and there is nothing to prove. Otherwise, let *n* and *q* be the two positive integers, prime to each other, with $0 < q < n$, such that L_W is the lens space $L(n, n - q)$. By Brieskorn [\[4\]](#page-30-8) (see also Sect. [2.5](#page-21-0) in [\[24\]](#page-31-14)), the normal quasi-ordinary complex surface germs are taut. It means that any normal quasi-ordinary complex surface germ *(W , p)* which has a link orientation preserving homeomorphic to $L(n, n - q)$ is analytically isomorphic to (W, p) . In

Fig. 2.5 The shape of the dual graph of $G(\tilde{W})$ to which we add an arrow to the vertex (1) to represent the strict transform of $\{x = 0\}$ and another arrow to the vertex (k) to represent the strict transform of $\{y = 0\}$

particular, (W, p) and (W', p') have isomorphic minimal good resolutions. Now, it is sufficient to describe the good minimal resolution of a given normal quasiordinary surface germ which has a link homeomorphic to $L(n, n - q)$. As explained below, we can use (\bar{X}, \bar{p}) where $v : (\bar{X}, \bar{p}) \to (X, 0)$ is the normalization of $X = \{(x, y, z) \in \mathbb{C}^3 \text{ s.t. } z^n = xy^q = 0\}$ ${(x, y, z) \in \mathbb{C}^3 \text{ s.t. } z^n - xy^q = 0}.$

Lemma 2.5.8 *Let n and q be two relatively prime positive integers. We suppose that* $0 < a < n$ *. Let* $X = \{(x, y, z) \in \mathbb{C}^3 \text{ s.t. } z^n - xy^q = 0\}$ *. There exists a good resolution* ρ_Y : $(Y, E_Y) \to (X, 0)$ *of* $(X, 0)$ *such that the dual graph* $G(Y)$ *of* E_Y *is a bamboo and the dual graph of the total transform of* $\{xy = 0\}$ *has the shape of the graph given in Fig. [2.5.](#page-25-2)*

Lemma [2.5.8](#page-26-0) implies Proposition [2.5.7.](#page-25-1) Indeed:

- 1) In Example [2.5.5,](#page-23-2) we show that the link L_X of $(X, 0)$ is the lens space $L(n, n 1)$ *q*). Let $v : (\bar{X}, \bar{p}) \rightarrow (X, 0)$ be the normalization of $(X, 0)$. The singular locus of $(X, 0)$ is the line $\Sigma = \{(x, 0, 0), x \in \mathbb{C}\}$. For $a \in \mathbb{C}$, the hyperplane section of *X* at $(a, 0, 0)$ is the plane curve germ $\{z^n - ay^q = 0\}$. As *n* and *q* are prime to each other $\{z^n - ay^q = 0\}$ is irreducible. Then, by Proposition [2.3.12,](#page-12-1) *ν* is a homeomorphism. So, the link $L_{\bar{Y}}$ of $(\bar{X}, 0)$ is the lens space $L(n, n - q)$.
- 2) Let ρ_Y : $(Y, E_Y) \rightarrow (X, p)$ be a good resolution of $(X, 0)$ given as in Lemma [2.5.8,](#page-26-0) in particular the dual graph $G(Y)$ of E_Y is a bamboo. As any good resolution factorizes through the normalization $v : (\bar{X}, \bar{p}) \rightarrow (X, 0)$ (see [\[11,](#page-31-2) Thm. 3.14]), there exists a unique morphism $\rho_Y : (Y, E_Y) \to (X, \bar{p})$ which is a good resolution of (X, \bar{p}) . Let $\rho' : (Y', E_{Y'}) \to (X, \bar{p})$ be the minimal good resolution of (X, \bar{p}) . Then, (for example see [\[11,](#page-31-2) Thm 5.9] or [\[1,](#page-30-2) p. 86]), there exists a morphism $\beta : (Y, E_Y) \to (Y', E_{Y'})$ which is a sequence of blowingdowns of irreducible components of genus zero and self-intersection −1. By Lemma $2.5.8$, the dual graph $G(Y)$ is a bamboo and the dual graph of the total transform of $\{xy = 0\}$ has the shape of the graph given in Fig. [2.5.](#page-25-2) So, the morphism of graph β ^{*} : $G(Y) \to G(Y')$ induced by β , is only a contraction of $G(Y)$ in a shorter bamboo.

Proof (of Lemma [2.5.8\)](#page-26-0) In *X*, we consider the lines $l_x = \{(x, 0, 0), x \in \mathbb{C}\}\$ and $l_y = \{(0, y, 0), y \in \mathbb{C}\}\$ and the singular locus of $(X, 0)$ is equal to l_x . We prove Lemma [2.5.8](#page-26-0) by a finite induction on $q > 1$.

1) If $q = 1, X = \{(x, y, z) \in \mathbb{C}^3 \text{ s.t. } z^n - xy = 0\}$ is the well-known normal singularity A_{n-1} . The minimal resolution is a bamboo of $(n - 1)$ irreducible components of genus zero. Indeed, to construct ρ_Y : $(Y, E_Y) \rightarrow (X, 0)$, it is sufficient to perform a sequence of blowing-ups of points (we blow up *n/*2 points when *n* is even and $(n - 1)/2$ points when *n* is odd). We begin to blow up the origin, this separates the strict transform of the lines l_x and l_y . The exceptional divisor, in the strict transform of $(X, 0)$ by the blowing-up of the origin in \mathbb{C}^3 , has two irreducible rational components when $n > 2$ and only one irreducible rational component when $n = 2$. If $n > 2$, we continue by the

blowing-up of the intersection point of the two irreducible components of the exceptional divisor.

- 2) If $1 \leq a \leq n$, we state the following points I and II which describe how we proceed, we justify them just below.
	- I) As *n* and *q* are relatively prime, the remainder *r* of the division $n = ma + r$ is prime to *q* and $1 < r < q$. Let $R : Z \to \mathbb{C}^3$ be a sequence of *m* blowingups of the line l_x in \mathbb{C}^3 and of its strict transforms in a smooth 3-dimensional complex space. Let *Y*₁ be the strict transform of *X* by *R*. Let ρ : $(Y_1, E) \rightarrow$ *(X, 0)* be *R* restricted to *Y*₁ and let *E* = ρ −1*(0)* ⊂ *Y*₁. The total transform of $l_x \cup l_y$ by ρ , which is equal to $E^+ = \rho^{-1}(l_x \cup l_y)$, has a dual graph which is a bamboo as in Fig. [2.5](#page-25-2) with $k = m$ vertices. Let l_x^1 be the strict transform of l_x by ρ . Then, l_x^1 only meets the irreducible component of *E* obtained by the last blowing-up of a line. The equation of *Y*₁ along l_x^1 is $\{z^r - xy^q = 0\}$.
	- II) If $r = 1$, Y_1 is smooth and Lemma [2.5.8](#page-26-0) is proved i.e. $\rho_Y = \rho$. If $r > 2$, after the division $q = m'r + r'$ with remainder *r'*, we have $r' < r$. As *r* is prime to q, r' is prime to r and $0 < r'$. Moreover, we have $r' < q$ because $r < q$. Let $R' : Z' \rightarrow Z$ be a sequence of *m'* blowing-ups of the line l_x^1 and of its strict transforms. Let Y_2 be the strict transform of Y_1 by R' and let ρ' : $(Y_2, E') \rightarrow (Y_1, E)$ be *R'* restricted to Y_2 . As $r < q$, ρ' is bijective, the dual graph of $\rho'^{-1}(E^+)$ is equal to the dual graph of E^+ , which is a bamboo as in Fig. [2.5](#page-25-2) with $k = m$ vertices. Moreover, the equation of Y_2 , along the strict transform of l_x^1 by ρ' , is $\{z^r - xy^{r'} = 0\}$. As $1 \le r' < r$ with relatively prime *r* and *r* , Lemma [2.5.8](#page-26-0) is proved by induction.

Let us justify the above statements I) and II) by an explicit computation of the blowing-up of l_x . We consider $Z_1 = \{((x, y, z), (v : w)) \in \mathbb{C}^3 \times \mathbb{C}P^1, s, t, wy$ $vz = 0$. By definition, the blowing-up of l_x in \mathbb{C}^3 , $R_1 : Z_1 \to \mathbb{C}^3$, is the projection on \mathbb{C}^3 restricted to Z_1 .

As in statement I), we consider $X = \{(x, y, z) \in \mathbb{C}^3 \text{ s.t. } z^n - xy^q = 0\}$ with $q < n$. We have to describe the strict transform Y_{11} of $(X, 0)$ by R_1 , the restriction ρ_1 : $(Y_{11}, E) \rightarrow (X, 0)$ of R_1 to $Y_{11}, E_1 = \rho_1^{-1}(0)$ and $E_1^+ = \rho_1^{-1}(l_x \cup L_y)$.

I) In the chart *v* = 1, we have $(Z_1 \cap \{v = 1\}) = \{(x, y, wy), (1 : w)\}\in \mathbb{C}^3$ × $\mathbb{C}P^{1}$. The equation of $R_{1}^{-1}(0) \cap \{v = 1\}$ and of $E_{1} \cap \{v = 1\}$ is $y = 0$. The equation of $(R_1^{-1}(X) \cap \{v = 1\}) = (Y_{11} \cap \{v = 1\})$ is $\{w^n y^{n-q} - x = 0\}$. So, all the points of $({v = 1} \cap Y_{11})$ are non singular and $({v = 1} \cap {x \neq 0} \cap Y_{11})$ doesn't meet *E*1.

The strict transform of l_x is not in $Y_{11} \cap \{v = 1\}$. If $x = 0$, we have:

$$
E_1 \cap \{v = 1\} = \{((0, 0, 0), (1 : w)), w \in \mathbb{C}\} \subset Y_{11}.
$$

In Y_{11} , the strict transform $\tilde{I}_y = \{((0, y, 0), (1 : 0)), y \in \mathbb{C}\}\$ of I_y meets E_1 at *((*0*,* 0*,* 0*), (*1 : 0*))*.

II) In the chart *w* = 1, we have $(Z_1 ∩ {w = 1}) = {((x, vz, z), (v : 1)) ∈ ℂ³ ×$ $\mathbb{C}P^{1}$. The equation of $R_{1}^{-1}(0) \cap \{w = 1\}$ and of $E_{1} \cap \{w = 1\}$ is $z = 0$. The equation of $(Y_{11} \cap \{w = 1\})$ is $\{z^{n-q} - xv^q = 0\}$. So, the strict transform of l_x is equal to

$$
\tilde{l}_x = (\{w = 1\} \cap Y_{11} \cap R_1^{-1}(l_x)) = \{((x, 0, 0), (0 : 1)) \in \mathbb{C}^3 \times \mathbb{C}P^1\}.
$$

The strict transform \tilde{I}_x meets E_1 at the point $p_1 = E_1 \cap \tilde{I}_x = ((0, 0, 0), (0 : 1))$. Then, $E_1 = ((0, 0, 0) \times \mathbb{C}P^1)$ is included in Y_{11} , moreover, \tilde{l}_x and \tilde{l}_y meet *E*₁ at two distinct points. The total transform $E_1^+ = \rho_1^{-1}(l_x \cup L_y)$ consists of one irreducible component E_1 and two germs of curves which meet E_1 in two distinct points. Moreover the equation of Y_{11} along its singular locus \tilde{I}_x is ${z^{n-q} - xy^q = 0}$. By induction we obtain, as stated in I), the germ $(Y_1, 0)$ defined by $\{z^r - xy^q = 0\}$ with $1 \le r = n - mq \le q$.

To justify statement II), we again consider the blowing-up of l_x , $R_1 : Z_1 \to \mathbb{C}^3$. Let *Y*₁₂ be the strict transform of *Y*₁ by *R*₁ and let ρ'_1 : *Y*₁₂ \rightarrow *Y*₁ be *R*₁ restricted to *Y*₁₂. Then, *Y*₁₂ has the equation { $w^r - xy^{q-r} = 0$ } in the chart $v = 1$. For all $x \in \mathbb{C}$, the intersection of Y_{12} with $y = 0$ is the only point $((x, 0, 0))$, $(1 : 0)$). In the chart $w = 1$, Y_{12} has the equation $\{1 - xv^q z^{q-r} = 0\}$ and has empty intersection with $z = 0$. This proves that ρ'_1 is bijective and by induction the map $\rho' : (Y_2, E') \to$ (Y_1, E) describe above in II) is also bijective.

Examples

- 1) Let us consider $X = \{(x, y, z) \in \mathbb{C}^3 \text{ s.t. } z^n xy^{n-1} = 0\}$. The link of $(X, 0)$ is the lens space $L(n, 1)$. Let $R_1 : Z_1 \to \mathbb{C}^3$ be the blowing-up of the line l_x in \mathbb{C}^3 . Let *Y* be the strict transform of *X* by R_1 . The equation of *Y* along the strict transform of l_x is $\{z - xy^{n-1} = 0\}$. So, *Y* is non singular and we have obtained a resolution of *X*. Here the dual graph of the total transform of $l_x \cup l_y$ is as in Fig. [2.5](#page-25-2) with only one vertex.
- 2) Let us consider $X = \{(x, y, z) \in \mathbb{C}^3 \text{ s.t. } z^n xy^{n-2} = 0\}$ with *n* odd and $3 < n$. The link of $(X, 0)$ is the lens space $L(n, 2)$. Let $R_1 : Z_1 \to \mathbb{C}^3$ be the blowingup of the line l_x in \mathbb{C}^3 . The equation of the strict transform Y_1 , of X by R_1 , along the strict transform of l_x is $\{z^2 - xy^{n-2} = 0\}$. Let $\rho : (Y_1, E) \to (X, 0)$ be R_1 restricted to Y_1 . We write $n = 2m + 3$. As proved above, after *m* blowing-ups of lines, we obtain a surface Y_2 and a bijective morphism $\rho' : (Y_2, E') \to (Y_1, E)$ such that the equation of *Y*₂ along the strict transform of l_x is $\{z^2 - xy = 0\}$. The exceptional divisor *E* of ρ (resp. *E*' of $(\rho \circ \rho')$) is an irreducible smooth rational curve. The blowing-up ρ'' , of the intersection point between E' and the strict transform of l_x , is a resolution of Y_2 and the exceptional divisor of ρ'' is a smooth rational curve. Then, $\rho \circ \rho' \circ \rho''$ is a resolution of $X = \{(x, y, z) \in$ \mathbb{C}^{3} *s.t.* $z^{n} - xy^{n-2} = 0$, the dual graph of its exceptional divisor is a bamboo with two vertices.

2.6 An Example of Hirzebruch-Jung's Resolution

We give the Hirzebruch-Jung resolution of the germ of surface in \mathbb{C}^3 which satisfies the following equation:

$$
z2 = (x - y + y3)(x - y + y2)(y34 - (x - y)13).
$$

where π : $(X, 0) \rightarrow (\mathbb{C}^2, 0)$ is the projection on the (x, y) -plane. It is a generic projection. In [\[15\]](#page-31-9) this example is also explored when π is replaced by a non generic projection.

The discriminant locus of $\pi = (f, g)$ is the curve Δ which has three components with Puiseux expansions given by :

$$
x = y - y2
$$

$$
x = y - y3
$$

$$
x = y + y34/13
$$

Notice that the three components of Δ have 1 as first Puiseux exponent and respectively 2*,* 3*,* 34*/*13 as second Puiseux exponent.

The coordinate axes are transverse to the discriminant locus of π . The dual graph *G(Z)* is in Fig. [2.6.](#page-29-1)

The dual graph $G(\bar{Z})$ of $E_{\bar{Z}}$ admits a cycle created by the normalization. The irreducible component E'_9 of E_Y is obtained by the resolution $\bar{\rho}$. The irreducible components of the exceptional divisor associated to the vertices of $G(\bar{Z})$ and $G(Y)$ have genus equal to zero (Fig. [2.7\)](#page-30-9).

The minimal good resolution ρ is obtained by blowing down E'_6 . Its dual graph is in Fig. [2.8.](#page-30-10)

Fig. 2.6 The dual graph of the minimal resolution of Δ . An irreducible component of the strict transform of Δ is represented by an edge with a star. An edge ended by an arrow represents the strict transform of $\{x = 0\}$

Fig. 2.7 The dual graph $G(Y)$ of the Hirzebruch-Jung resolution associated to π

Fig. 2.8 The dual graph $G(Y')$ of the minimal resolution of $(X, 0)$

Acknowledgments I thank Claude Weber for useful discussions.

References

- 1. W. Barth, C. Peters, A. Van de Ven: *Compact Complex Surfaces,* Ergebnisse der Mathematik, Springer (1984). [154](#page-3-2) and [177](#page-26-1)
- 2. J. Fernández de Bobadilla: *A reformulation of Lê's conjecture*, Indag. Math.,N.S.,17 (2006), p. 345–352. [155](#page-4-1)
- 3. F. Bonahon: *Difféctopies des espaces lenticulaires*, Topology 22 (1983), p. 305–314. [172](#page-21-2)
- 4. E. Brieskorn: *Rationale Singularitaten komplexer Flachen,* Invent. Math. 4 (1968), p. 336–358. [176](#page-25-3)
- 5. E. Brieskorn: *Singularities in the work of Friedrich Hirzebruch,* Surveys in Differential Geometry 2000, Vol VII (2000), International Press p. 17–60. [155](#page-4-1)
- 6. E. Brieskorn and H. Knörrer: *Ebene algebraische Kurven,* Birkhäuser Verlag (1981) 964 p. or *Plane Algebraic Curves,* Birkhäuser Verlag, (1986). [167](#page-16-2)
- 7. A. Durfee: *Neighborhoods of algebraic sets,* Trans. Amer. Math. Soc. **276** (1983), 517–530. [153](#page-2-1) and [158](#page-7-2)
- 8. D. Eisenbud, W: Neumann: *Three-Dimensional Link Theory and Invariants of Plane Curve Singularities,* Annals of Math. Studies 110, Princeton University Press (1985). [160](#page-9-0)
- 9. Friedrich Hirzebruch: *Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen*, Math. Ann. 126 (1953) p. 1–22. [155,](#page-4-1) [156,](#page-5-1) and [170](#page-19-1)
- 10. F. Hirzebruch, W. Neumann and S. Koh: *Differentiable manifolds and quadratic forms*, Math. Lecture Notes, vol 4 (1972), Dekker, New-York. [154](#page-3-2)
- 11. H. Laufer: *Normal two dimensional singularities*, Ann. of Math. Studies **71**, (1971), Princeton Univ. Press. [154,](#page-3-2) [170,](#page-19-1) [172,](#page-21-2) and [177](#page-26-1)
- 12. D. T. Lê, F. Michel and C. Weber: *Courbes polaires et topologie des courbes planes,* Ann. Scient. Ec. Norm. Sup., série 4, **24** (1991), 141–169. [160](#page-9-0)
- 13. D.T. Lê, C. Weber: *Résoudre est un jeu d'enfants*, Sem. Inst. de Estud. con Ibero-america y Portugal, Tordesillas (1998). [170](#page-19-1)
- 14. I. Luengo and A. Pichon: *Lê 's conjecture for cyclic covers*, Séminaires et congrès 10, (2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa. [155](#page-4-1)
- 15. H.Maugendre, F.Michel: *On the growth behaviour of Hironaka quotients*, ArXiv Mathematics 2017. Revised version in Journal of Singularities, Vol. 20 (2020), p. 31–53. [155](#page-4-1) and [180](#page-29-2)
- 16. F. Michel, A. Pichon and C. Weber: *The boundary of the Milnor fiber of Hirzebruch surface singularities*, 745–760 in *Singularity theory*, World Sci. Publ. (2007), Hackensack, NJ. [154](#page-3-2)
- 17. F. Michel, C. Weber: *Topologie des germes de courbes planes*, prépublication de l'université de Genève, (1985). [160](#page-9-0) and [167](#page-16-2)
- 18. J. Milnor: *Singular Points of Complex Hypersurfaces*, Annals of Mathematical Studies 61 (1968), Princeton Univ. Press. [152](#page-1-1) and [158](#page-7-2)
- 19. D. Mumford: *The topology of normal singularities of an algebraic surface and a criterion for simplicity*, Inst. Hautes Etudes Sci. Publ. Math. *9* (1961), p. 5–22. [154,](#page-3-2) [156,](#page-5-1) [169,](#page-18-1) [175,](#page-24-0) and [176](#page-25-3)
- 20. W. Neumann: *A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves*, Trans. Amer. Math. Soc. **268** (1981), p. 299–344. [154,](#page-3-2) [160,](#page-9-0) and [161](#page-10-3)
- 21. P. Popescu-Pampu: *Two-dimensional iterated torus knots and quasi-ordinary surface singularities*, C.R.A.S. de Paris 336 (2003), p. 651–656. [172](#page-21-2)
- 22. P. Popescu-Pampu: *Introduction to Jung's method of resolution of singularities*, in Topology of Algebraic Varieties and Singularities. Proceedings of the conference in honor of the 60th birthday of Anatoly Libgober, J. I. Cogolludo-Agustin et E. Hironaka eds. Contemporary Mathematics 538, AMS, (2011), p. 401–432. [170](#page-19-1)
- 23. F. Waldhausen: *Über eine Klasse von 3-dimensionalen Mannigfaltigkeiten*, Invent. Math. **3** (1967), p. 308–333 and **4** (1967), p. 87–117. [154](#page-3-2)
- 24. C. Weber: *Lens spaces among 3-manifolds and quotient surface singularities*, Rev. R. Acad. Cienc. Exactas Fis. Nat. Sci. A Mat. RACSAM 112 (2018), p. 893–914. [172,](#page-21-2) [173,](#page-22-2) and [176](#page-25-3)