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Foreword

In the general scientific culture, Mathematics can appear as quite disconnected.
One knows about calculus, complex numbers, Fermat’s last theorem, convex
optimization, fractals, vector fields and dynamical systems, the law of large
numbers, projective geometry, vector bundles, the Fourier transform and wavelets,
the stationary phase method, numerical solutions of PDEs, etc., but no connection
between them is readily apparent. For the mathematician, however, all these and
many others are lineaments of a single landscape. Although he or she may spend
most of his or her time studying one area of this landscape, the mathematician is
conscious of the possibility of traveling to other places, perhaps at the price of much
effort, and bringing back fertile ideas. Some of the results or proofs most appreciated
by mathematicians are the result of such fertilizations.

I claim that Singularity Theory sits inside Mathematics much as Mathematics
sits inside the general scientific culture. The general mathematical culture knows
about the existence of Morse theory, parametrizations of curves, Bézout’s theorem
for plane projective curves, zeroes of vector fields and the Poincaré–Hopf theorem,
catastrophe theory, sometimes a version of resolution of singularities, the existence
of an entire world of commutative algebra, etc. But again, for the singularist,
these and many others are lineaments of a single landscape and he or she is
aware of its connectedness. Moreover, just as Mathematics does with science in
general, singularity theory interacts energetically with the rest of Mathematics,
if only because the closures of non-singular varieties in some ambient space or
their projections to smaller dimensional spaces tend to present singularities, smooth
functions on a compact manifold must have critical points, etc. But singularity
theory is also, again in a role played by Mathematics in general science, a crucible
where different types of mathematical problems interact and surprising connections
are born.

• Who would have thought in the 1950s that there was a close connection between
the classification of differentiable structures on topological spheres and the
boundaries of certain isolated singularities of complex hypersurfaces?
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vi Foreword

• or that Thom’s study of singularities of differentiable mappings would give birth
to a geometric vision of bifurcation phenomena and of fundamental concepts
such as structural stability?

• Who would have thought in the 1970s that there was a relation between the
work of Lefschetz comparing the topological invariants of a complex projective
variety with those of a general hyperplane section and the characterization of the
sequences of integers counting the numbers of faces of all dimensions of simple
polytopes?

• Or that one could produce real projective plane curves with a prescribed topology
by deforming piecewise linear curves in the real plane?

• Or in the 2000s that properties of the intersections of two curves on a complex
surface would lead to the solution of a problem connected with the coloring of
graphs?

• Or that the algebraic study of the space of arcs on the simplest singularities (zn =
0 in C, n ≥ 2) would provide new proofs and generalizations of the Rogers–
Ramanujan and Gordon identities between the generating series of certain types
of partitions of integers?

These are only a few examples. But to come back to the theory of singularities,
I would like to emphasize that what I like so much about it is that not only are
surprising connections born there but also very simple questions lead to ideas which
resonate in other part of the field or in other fields. For example, if an analytic
function has a small modulus at a point, does it have a zero at a distance from that
point which is bounded in terms of that modulus? what is a general smooth function
on a smooth compact manifold? A Morse function, with very mild singularities!
And what happens if you replace the smooth manifold by a space with singularities?
And then, given a function, can we measure how far it is from behaving like a
general function? Suppose that a holomorphic function has a critical point at the
origin. How can we relate the nature of the fiber of the function through this critical
point with the geometry or topology of the nearby non-singular fibers? How can we
relate it with the geometry of the mappings resolving singularities of this singular
fiber? Then again, what is a general map between smooth manifolds? and how do
you deform a singular space into a non-singular one in general? Well, that is more
complicated. But I hope you get the idea.
The downside is that before he or she can successfully detect and try to answer such
apparently simple and natural questions, the student of singularities must become
familiar with different subjects and their techniques, and the learning process is
long.

And this is why a handbook which presents in-depth and reader-friendly surveys
of topics of singularity theory, with a carefully crafted preface explaining their place
within the theory, is so useful!

Paris, France Bernard Teissier
March 2020



Preface

Singularities are ubiquitous in mathematics, appearing naturally in a wide range
of different areas of knowledge. They are a meeting point where many areas of
mathematics and science in general come together. Their scope is vast, their purpose
is multifold.

Singularity theory dates back to I. Newton, É. Bézout, V. Puiseux, F. Klein,
M. Noether, F. Severi, and many others. Yet, it emerged as a field of mathematics in
itself in the early 1960s, thanks to pioneering work by R. Thom, O. Zariski, H. Whit-
ney, H. Hironaka, J. Milnor, E. Brieskorn, C. T. C. Wall, V. I. Arnold, J. Mather,
and many others. Its potential for applications in other areas of mathematics and of
knowledge in general is unlimited, and so are its possible sources of inspiration.

As the name suggests, one may naively say that singularity theory studies that
which is “singular,” that which is different from “most of the rest,” different from
its surroundings. As basic examples, we may look at the critical points of smooth
functions, or at the points where a space loses its manifold structure, at the stationary
points of flows and the special orbits of Lie group actions, at bifurcation theory and
properties of objects or situations depending on parameters that undergo sudden
change under a small variation of the parameters. These are some examples, out of
a myriad of possibilities, of how singularities arise. There is great richness in the
subject, and the literature is vast, with plenty of different viewpoints, perspectives,
and interactions with other areas. That makes this subject fascinating.

That same wideness and amplitude of its scope can make singularity theory hard
to grasp for graduate students and researchers in general: what are and what have
been the major lines of development in the last decades, what is known and where
to find it, what is the current state of the art in its many branches, the various
directions into which this theory is flourishing, its interaction with other areas of
current research in mathematics. Those are questions that gave birth to this project,
the “Handbook of Geometry and Topology of Singularities.”

This handbook has the intention of covering a wide scope of singularity theory,
presenting articles on various aspects of the theory and its interactions with other
areas of mathematics. The authors are world experts; the various articles deal with
both classical material and modern developments. They are addressed to graduate

vii



viii Preface

students and newcomers into the theory, as well as to specialists that can use these
as guidebooks.

Volume I consists of ten articles that cover some of the foundational aspects of
the theory. This includes:

• The combinatorics and topology of plane curves and surface singularities.
• An introduction to four classical methods for studying the topology and geometry

of singular spaces, namely: resolution of singularities, deformation theory,
stratifications, and slicing the spaces à la Lefschetz.

• Milnor fibrations and their monodromy.
• Morse theory for stratified spaces and constructible sheaves.
• Simple Lie algebras and simple singularities.

We say below a few words about the content of each chapter. Of course, due
to lack of space, many important topics from the geometric study of singularities
are missing from this volume. This will be compensated to some extent in the next
volumes. Also, the number of possible authors much exceeds the capacity of any
project of this kind. We thank our many colleagues that have much contributed to
build up singularity theory, and we apologize for our omissions in the selection of
subjects. Among the topics we plan to include in later volumes of this Handbook of
Geometry and Topology of Singularities are:

• Equisingularity.
• Lipschitz geometry in singularity theory.
• The topology of the complement of arrangements and hypersurface singularities.
• Mixed Hodge structures.
• Analytic classification of singularities of complex plane curves.
• Applications to Lagrangian and Legendrian geometry.
• Contact and symplectic geometry in singularity theory.
• Indices of vector fields and 1-forms on singular varieties.
• Chern classes of singular varieties.
• Tropical geometry and singularity theory.
• Milnor fibrations for real analytic maps.
• Mixed singularities.
• Singularities of map germs. Finite determinacy and unfoldings.
• Relations with moment angle manifolds.
• Invariant algebraic sets in holomorphic dynamics.
• Limits of tangent spaces.
• Invariants of 3-manifolds and surface singularities.
• Zeta functions and the monodromy.

Chapters 1 and 2 of this volume deal with dimensions 1 and 2, respectively.
Chapter 1, by Evelia García Barroso, Pedro González Pérez, and Patrick Popescu-
Pampu, is entitled “The Combinatorics of Plane Curve Singularities: How Newton
Polygons Blossom into Lotuses.” In this chapter, the authors discuss classical ways
to describe the combinatorics of singularities of complex algebraic curves contained
in a smooth complex algebraic surface. In fact, given a smooth complex surface S
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and a complex curve C in S with a singular point o, it is customary to study the local
structure of (S, C) near o in the following ways:

• By choosing a local parametrization of C. This method dates back to Newton and
later Puiseux. The combinatorics in it may be encoded in the Kuo-Lu tree and a
Galois quotient of it, the Eggers-Wall tree.

• By blowing up points to obtain an embedded resolution of C. This blow-up
process may be encoded in an Enriques diagram and a corresponding weighted
dual graph.

• By performing a sequence of toric modifications. The combinatorial data gener-
ated during this process can be encoded in a sequence of Newton polygons and
Newton fans.

• By looking at the intersection of S and C with a small sphere in some ambient
space Cn. One gets a knot (or link) in a 3-sphere. These are all iterated torus
knots known as algebraic knots. Their combinatorics is encoded in the Puiseux
pairs.

Chapter 1 studies the first three of these methods and explains how the notion of
lotus, which is a special type of simplicial complex of dimension 2, allows to think
simultaneously about the combinatorics of those three ways of analyzing the curve
singularity.

The fourth method mentioned above is actually much related to Chap. 2 in this
volume, by Françoise Michel, entitled “The Topology of Surface Singularities.” This
chapter surveys the subject of the topology of complex surface singularities. This
classical subject dates back to Felix Klein and his work on invariant polynomials
for the finite subgroups of the special unitary group SU(2). This gave rise to what
today are called Klein singularities, though they have many names, as, for instance,
Du Val singularities, rational double points, and simple singularities in Arnold’s
classification. If X is a complex surface singularity with base point p in some
ambient space C

n, then the intersection LX = X ∩ Se with a small sphere centered
at p is a 3-dimensional real analytic variety, whose topology is independent of
the choice of the embedding of X in C

n and also independent of the choice of
the (sufficiently small) sphere; LX is called the link of the singularity and it fully
describes the topology of X. If X has an isolated singularity at p, then LX is a
3-manifold. The manifolds one gets in this way are all Waldhausen (or graph)
manifolds that can be constructed by plumbing, a technique introduced by John
Milnor in all dimensions, in order to construct the first examples of homology
spheres. The author also gives an explicit construction of a good resolution of the
singularity, and the minimal good resolution by the Hirzebruch–Jung method is
described in detail.

Chapters 3 to 9 deal with the four classical ways of studying the geometry and
topology of singular spaces mentioned above, namely:

1. Via resolutions of the singularities;
2. Via stratifications;
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3. Via deformations, smoothings, and unfoldings; and
4. Taking slices with the fibers of a linear form.

Let us say a few words about each of them.
The problem of resolution of singularities and its solution in various contexts,

already discussed for plane curves in Chap. 1 and for surfaces in Chap. 2, can
be traced back to Newton and Riemann. Chapter 3, by Mark Spivakovsky, is an
introduction to the resolution of singularities. This surveys the subject, starting with
Newton till the modern times. It also discusses some of the main open problems
that remain to be solved. The main topics covered are the early days of the subject,
Zariski’s approach via valuations, Hironaka’s celebrated result in characteristic zero
and all dimensions and its subsequent strengthenings and simplifications, existing
results in positive characteristic (mostly up to dimension three), de Jong’s approach
via semi-stable reduction, Nash and higher Nash blowing up, as well as reduction
of singularities of vector field and foliations.

Chapter 4 is an introduction to the stratification theory, by David Trotman.
The idea behind the notion of stratification in differential topology and algebraic
geometry is to partition a (possibly singular) space into smooth manifolds with
some control on how these manifolds fit together. In 1957, Whitney showed that
every real algebraic variety V in Rn can be partitioned into finitely many connected
smooth submanifolds of Rn. This he called a manifold collection. In 1960, René
Thom replaced the term manifold collection by stratified set and initiated a theory
of stratified sets and stratified maps. In this chapter, the author presents in a
unifying manner both the abstract theory of stratified sets elaborated by Thom,
Whitney, and Mather and the stratification theory of semi-algebraic, subanalytic, or
complex analytic sets. In addition, it surveys the relations between several stratifying
conditions which are modifications of the Whitney conditions, with an emphasis on
the applications to the openness of transversality theorems which are so important
in stability problems. The text also explains what remains true of the stratification
theory of real algebraic and subanalytic sets in the o-minimal framework.

Chapter 5 by Mark Goresky, entitled “Morse Theory, Stratifications and
Sheaves,” begins with an introduction to Morse theory for stratified spaces and
then moves forward to discussing how stratified Morse theory and the theory of
constructible sheaves, introduced by M. Kashiwara and P. Shapira, are two sides
of the same coin. A complete and parallel development of the two theories was
presented by J. Schürmann. In this chapter, the author provides an intuitive view
of this parallel development. The setting presented by Schürmann replaces the
subanalytic and Whitney stratified setting with the more general conditions of o-
minimal structures and generalized Whitney conditions: w-regularity, d-regularity,
and C-regularity. In this chapter, for simplicity, the author remains within the
subanalytic and Whitney stratified setting.

Chapter 6, by J. J. Nuño Ballesteros, Lê D. T., and J. Seade, treats a now
classical and central subject in singularity theory: the Milnor fibration theorem,
which provides the simplest example of a deformation of a singular variety into
a smooth one. This fibration theorem, published by John Milnor in 1968, concerns
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the geometry and topology of analytic maps near their critical points, and it was
the culmination of a series of articles by Brieskorn, Hirzebruch, Pham, and others,
aimed toward finding complex isolated hypersurface singularities whose link, i.e., its
intersection with a small sphere centered at the singular point, is a homotopy sphere.

The theorem considers a nonconstant holomorphic map germ (Cn+1, 0)
f→ (C, 0)

with a critical point at 0, and it can roughly be stated as saying that the local
noncritical levels f−1(t) form a locally trivial C∞ fiber bundle over a sufficiently
small punctured disc in C. Notice that one has a flat family Ft of complex manifolds
degenerating to the special fiber f−1(0). This is the paradigm of a smoothing, i.e.,
a flat deformation where all fibers, other than the special one, are non-singular.
Milnor’s fibration theorem is a cornerstone in singularity theory. It has opened
several research fields and given rise to a vast literature. In this chapter, the authors
present some of the foundational results about this subject and give proofs of several
basic “folklore theorems” which either are not in the literature or are difficult to
find. They also glance at the use of polar varieties, developed by Lê and Teissier,
for studying the topology of singularities. This springs from ideas by René Thom
and relates to the subject mentioned above, of studying singular varieties by slicing
them by the fibers of a linear form. The chapter includes a proof of the “attaching-
handles” theorem, which is key for Lê–Perron and Massey’s theory describing the
topology of the Milnor fiber. It also discusses the so-called carousel that allows a
deeper understanding of the topology of plane curves (as in Chap. 1) and has several
applications in various settings. Finally, two classical open problems in complex
dimension two are discussed: Lê’s conjecture and the Lê–Ramanujam problem.

Deformation theory, together with the resolution of singularities and stratifi-
cations, is one of the fundamental methods for the investigation of singularities.
In Chap. 7, entitled, “Deformation and Smoothing of Singularities,” Gert-Martin
Greuel gives a comprehensive survey of the theory of deformations of isolated
singularities and the related question of smoothability. The basic general theory
is systematically and carefully presented and the state of the art corresponding to
the most important questions is exhaustively discussed. The article contains almost
no proofs, but references to the relevant literature, in particular to the textbook of
Greuel, Lossen, and Shustin “Introduction to Singularities and Deformations.” As in
this book, there are some examples treated with Singular, a computer algebra system
for polynomial computations. Relations are given between different invariants, such
as the Milnor number, the Tjurina number, and the dimension of a smoothing
component.

Chapter 8, by Wolfgang Ebeling, gives an introduction to “Distinguished Bases
and Monodromy of Complex Hypersurface Singularities,” a fundamental topic for
understanding the Milnor fibration. The Milnor fibration essentially is a fiber bundle
over the circle S1. Therefore, it is determined by the fiber and by the monodromy
map: if we think of S1 as being obtained from the interval [0, 1] by gluing its end
points, then the (geometric) monodromy is a diffeomorphism from the fiber over
{0} to that over {1}, telling us how to glue the fibers in order to recover the original
bundle. In the isolated singularity case, the fiber Ft (which is the local noncritical
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level) has the homotopy type of a bouquet of spheres of middle dimension n; the
number of such spheres is the aforementioned Milnor number μ. Hence all reduced
homology groups of Ft vanish, except Hn(F) which is free abelian of rank μ.
The elements in Hn(F) are called vanishing cycles. The geometric monodromy
induces an automorphism of Hn(F), known as the monodromy of the map germ
f . A natural way to study the monodromy operator is by finding “good” bases for
Hn(F ;Z) ∼= Zμ. Such a concept was made precise by Gabrielov in the 1970s,
introducing the notion of “distinguished bases.” These fundamental concepts and
their further developments are discussed in Chap. 8.

One of the basic problems of algebraic geometry is to extract topological
information from the equations which define an algebraic variety. The theorem of
Lefschetz for hyperplane sections shows that when the base field is the field of
complex numbers and the projective variety is non-singular, one can, to some extent,
compare the topology of a given projective variety with that of a hyperplane section.
In Chap. 9, “Lefschetz Theorem for Hyperplane Sections,” by Helmut Hamm and Lê
Dũng Tráng, the authors consider different theorems of Lefschetz type. The chapter
begins with the classical Lefschetz hyperplane sections theorem on a non-singular
projective variety. Then they show that this extends to the cases of a non-singular
quasi-projective variety and to singular varieties. They also consider local forms of
theorems of Lefschetz type.

As mentioned earlier in this introduction in relation with Chap. 2, Felix Klein
studied the action of the finite subgroups G of SU(2) on the complex space C2

that give rise to the surface singularities C2/G, which are known nowadays as
Klein singularities. Later, in the 1930s, P. Du Val investigated these singularities
and proved that the dual graph of their minimal resolution is exactly the Dynkin
diagrams of type An, Dn, E6, E7, and E8, corresponding to the cyclic groups,
the binary dihedral groups, and the binary groups of motions of the tetrahedron, the
octahedron, and the icosahedron. This was the first relation found between Kleinian
singularities and the simple Lie algebras of type ADE. A natural question was
whether this was a coincidence or there was a direct relation between them. Years
later, in the 1960s, Brieskorn proved the existence of simultaneous resolutions for
Kleinian singularities. After reading Brieskorn’s work, Grothendieck conjectured
that Kleinian singularities can be obtained from the corresponding simple Lie
algebra of type A, D, or E, intersecting its nilpotent variety with a slice transverse
to the orbit of a subregular element. The proof of Grothendieck’s conjecture was
announced by Brieskorn at the ICM in Nice 1970, with a sketch of the proof.
In 1976, H. Esnault gave in her PhD thesis a complete proof of this theorem,
following Grothendieck’s initial ideas. Chapter 10 by José Luis Cisneros Molina
and Meral Tosun discusses Brieskorn’s theorem and a generalization of this for
simple elliptic singularities which are non-hypersurface complete intersections. The
chapter gives all the ingredients one needs to understand this beautiful piece of
work. It discusses also several more recent developments and related topics, as the
McKay correspondence, which describes how to obtain the Dynkin diagrams of
type ADE from the irreducible representations of the corresponding finite subgroups
of SU(2), giving a one-to-one correspondence between the nontrivial irreducible
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representations of the group and the components of the exceptional set of the
minimal resolution of the associated Kleinian singularity.

So we see that the individual chapters cover a wide range of topics in singularity
theory, and at the same time, they are linked to each other in fundamental ways.

Cuernavaca, Mexico José Luis Cisneros Molina
Marseille, France Dũng Tráng Lê
Mexico City, Mexico José Seade
March 2020
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Chapter 1
The Combinatorics of Plane Curve
Singularities

How Newton Polygons Blossom into Lotuses

Evelia R. García Barroso, Pedro D. González Pérez,
and Patrick Popescu-Pampu
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Abstract This survey may be seen as an introduction to the use of toric and
tropical geometry in the analysis of plane curve singularities, which are germs
(C, o) of complex analytic curves contained in a smooth complex analytic surface
S. The embedded topological type of such a pair (S, C) is usually defined to
be that of the oriented link obtained by intersecting C with a sufficiently small
oriented Euclidean sphere centered at the point o, defined once a system of local
coordinates (x, y) was chosen on the germ (S, o). If one works more generally over
an arbitrary algebraically closed field of characteristic zero, one speaks instead of
the combinatorial type of (S, C). One may define it by looking either at the Newton-
Puiseux series associated to C relative to a generic local coordinate system (x, y),
or at the set of infinitely near points which have to be blown up in order to get
the minimal embedded resolution of the germ (C, o) or, thirdly, at the preimage of
this germ by the resolution. Each point of view leads to a different encoding of the
combinatorial type by a decorated tree: an Eggers-Wall tree, an Enriques diagram,
or a weighted dual graph. The three trees contain the same information, which in
the complex setting is equivalent to the knowledge of the embedded topological
type. There are known algorithms for transforming one tree into another. In this
paper we explain how a special type of two-dimensional simplicial complex called
a lotus allows to think geometrically about the relations between the three types
of trees. Namely, all of them embed in a natural lotus, their numerical decorations
appearing as invariants of it. This lotus is constructed from the finite set of Newton
polygons created during any process of resolution of (C, o) by successive toric
modifications.
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1.1 Introduction

The aim of this paper is to unify various combinatorial objects classically used
to encode the equisingularity/combinatorial/embedded topological type of a plane
curve singularity. Often, a plane curve singularity means a germ (C, o) of algebraic
or holomorphic curve defined by one equation in a smooth complex algebraic
surface. In this paper we will allow the ambient surface to be any germ (S, o)

of smooth complex algebraic or analytic surface, and C to be a formal germ of
curve. Using a local formal coordinate system (x, y) on the germ (S, o), the global
structure of S disappears completely and one may suppose that C is formally
embedded in the affine plane C

2. Usually one analyses in the following ways the
structure of this embedding:

• By considering the Newton-Puiseux series which express one of the variables
(x, y) in terms of the other, whenever the equation f (x, y) = 0 defining C is
satisfied. Their combinatorics may be encoded in two rooted trees, the Kuo-Lu
tree and a Galois quotient of it, the Eggers-Wall tree.

• By blowing up points starting from o ∈ S, until obtaining an embedded resolution
of C, that is, a total transform of C which is a divisor with normal crossings.
This blow up process may be encoded in an Enriques diagram, and the final total
transform of C in a weighted dual graph.

• When the singularity C is holomorphic, by intersecting a representative of C

with a small enough Euclidean sphere centered at the origin, defined using an
arbitrary holomorphic local coordinate system (x, y) on (S, o). This leads to an
oriented link in an oriented 3-dimensional sphere. This link is an iterated torus
link, whose structure may be encoded in terms of another tree, called a splice
diagram.

Unlike the first two procedures, the third one cannot be applied if the formal
germ C is not holomorphic or if one works over an arbitrary algebraically closed
field of characteristic zero. For this reason, we do not develop it in this paper. Let
us mention only that it was initiated in Brauner’s pioneering paper [13], whose
historical background was described by Epple in [36]. For its developments, one
may consult chronologically Reeve [107], Lê [80], A’Campo [5], Eisenbud &
Neumann [34, Appendix to Chap. I], Schrauwen [110], Lê [81], Wall [131, Chap. 9],
Weber [132] and the present authors [46, Chap. 5]. Similarly, we will not consider
the discrete invariants constructed usually using the topology of the Milnor fibration
of a holomorphic germ f , as Milnor numbers, Seifert forms, monodromy operators
and their Zeta functions. The readers interested in such invariants may consult the
textbooks [15] of Brieskorn and Knörrer and [131] of Wall.

There are algorithms allowing to pass between the Eggers-Wall tree, the dual
graph and the Enriques diagram of C. However, they do not allow geometric
representations of those passages. Our aim is to represent all these relationships
using a single geometric object, called a lotus, which is a special type of simplicial
complex of dimension at most two.
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Our approach for associating lotuses to plane curve singularities is done in the
spirit of the papers of Lê & Oka [83], A’Campo & Oka [8], Oka [93], González
Pérez [52, Section 3.4], and Cassou Noguès & Libgober [21]. Namely, we use the
fact that one may obtain an embedded resolution of C by composing a sequence of
toric modifications determined by the successive Newton polygons of C or of strict
transforms of it, relative to suitable local coordinate systems.

One may construct a lotus using the previous Newton polygons (see Def-
inition 1.5.26). Its one dimensional skeleton may be seen as a dual complex
representing the space-time of the evolution of the dual graph during the process of
blow ups of points which leads to the embedded resolution. Besides the irreducible
components of C and the components of the exceptional divisor, one takes also
into account the curves defined by the chosen local coordinate systems. If A and B

are two such exceptional or coordinate curves, and them or their strict transforms
intersect transversally at a point p which is blown up at some moment of the
process, then a two dimensional simplex with vertices labeled by A, B and the
exceptional divisor of the blow up of p belongs to the lotus. These simplices are
called the petals of the lotus (see an example of a lotus with 18 petals in Fig. 1.1).
The Eggers-Wall tree, the Enriques diagram and the weighted dual graph embed
simultaneously inside the lotus, and the geometry of the lotus also captures the
numerical decorations of the weighted dual graph and the Eggers-Wall tree (see
Theorem 1.5.29). For instance, the self-intersection number of a component of
the final exceptional divisor is the opposite of the number of petals containing
the associated vertex of the lotus. The previous lotuses associated to C have also
valuative interpretations: they embed canonically in the space of semivaluations of
the completed local ring of the germ (S, o) (see Remark 1.5.34).

Fig. 1.1 A lotus. It is part of Fig. 1.36, which corresponds to Example 1.5.28
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Let us describe the structure of the paper.
In Sect. 1.2 we introduce basic notions about complex analytic varieties, plane

curve singularities, their multiplicities and intersection numbers, normalizations,
Newton-Puiseux series, blow ups, embedded resolutions of plane curve singularities
and the associated weighted dual graphs. The notions of Newton polygon, dual
Newton fan and lotus are first presented here on a Newton non-degenerate example.

Section 1.3 begins with an explanation of basic notions of toric geometry: fans
and their subdivisions, the associated toric varieties and toric modifications (see
Sects. 1.3.1, 1.3.2 and 1.3.3). In particular, we describe the toric boundary of a
toric variety—the reduced divisor obtained as the complement of its dense torus—
in terms of the associated fan. Then we pass to toroidal geometry: we introduce
toroidal varieties, which are pairs (�, ∂�) consisting of a normal complex analytic
variety � and a reduced divisor ∂� on it, which are locally analytically isomorphic
to a germ of a pair formed by a toric variety and its boundary divisor. A basic
example of toroidal surface is that of a germ (S, o) of smooth surface, endowed
with the divisor L+L′, where (L, L′) is a cross, that is, a pair of smooth transversal
germs of curves. A morphism φ : (�2, ∂�2) → (�1, ∂�1) of toroidal varieties is a
complex analytic morphism such that φ−1(∂�1) ⊆ ∂�2 (see Sect. 1.3.4).

In Sect. 1.4 we explain in which way one may associate various morphisms of
toroidal surfaces to the plane curve singularity C ↪→ S. First, choose a cross (L, L′)
on (S, o), defined by a local coordinate system (x, y). The Newton polygon N(f ) of
a defining function f ∈ C[[x, y]] of the curve singularity C depends only on C and
on the cross (L, L′). Its associated Newton fan is obtained by subdividing the first
quadrant along the rays orthogonal to the compact edges of the Newton polygon.
This fan defines a toric modification of S, the Newton modification of S defined by
C relative to the cross (L, L′) (see Sect. 1.4.1). The Newton modification becomes
a toroidal morphism when we endow its target S with the boundary divisor ∂S :=
L+L′ and we define the boundary divisor of its source to be the preimage of L+L′.
We emphasize the fact that those notions depend only on the objects (S, C, (L, L′)),
in order to insist on the underlying geometric structures. The strict transform of C

by the previous Newton modification intersects the boundary divisor only at smooth
points of it, which belong to the exceptional divisor and are smooth points of the
ambient surface. If one completes the germ of exceptional divisor into a cross at
each such point oi , then one gets again a triple of the form (surface, curve, cross),
where this time the curve is the germ at oi of the strict transform of C. Therefore one
may perform again a Newton modification at each such point, and continue in this
way until the strict transform of C defines everywhere crosses with the exceptional
divisor. The total transform of C and of all coordinate curves introduced during
previous steps define the toroidal boundary ∂� on the final surface �. This non-
deterministic algorithm produces morphisms π : (�, ∂�) → (S, ∂S) of toroidal
surfaces, which are toroidal pseudo-resolutions of the plane curve singularity C

(see Sect. 1.4.2). The surface � has a finite number of singular points, at which it is
locally analytically isomorphic to normal toric surfaces. In Sect. 1.4.3 we show how
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to pass from the toroidal pseudo-resolution π to a toroidal embedded resolution by
composing π with the minimal resolution of these toric singularities. Finally, we
encode the process of successive Newton modifications in a fan tree, in terms of the
Newton fans produced by the pseudo-resolution process (see Sect. 1.4.4).

In Sect. 1.5 we explain the notion of lotus. A Newton lotus associated to a fan
encodes geometrically the continued fraction expansions of the slopes of the rays of
the fan, as well as their common parts (see Sect. 1.5.2). It is composed of petals, and
each petal corresponds to the blow up of the base point of a cross. One may clarify
the subtitle of the paper by saying that the collection of Newton polygons appearing
during the toroidal pseudo-resolution process blossomed into the associated lotus,
each petal corresponding to a blow up operation. We explain how to associate to the
fan tree of the toroidal pseudo-resolution a lotus, which is a 2-dimensional simplicial
complex obtained by gluing the Newton lotuses associated to the Newton fans of
the process (see Sects. 1.5.1 and 1.5.3). The lotus of a toroidal pseudo-resolution
depends on the choices of crosses made during the process of pseudo-resolution
(see Sect. 1.5.4). We explain then how to embed in the lotus the Enriques diagram
and the dual graph of the embedded resolution. We conclude the section by defining
a truncation operation on lotuses, and we explain how it may be used to understand
the part of the embedded resolution which does not depend on the supplementary
curves introduced during the pseudo-resolution process (see Sect. 1.5.5).

We begin Sect. 1.6 by introducing the notion of Eggers-Wall tree of the curve
C relative to the smooth germ L (see Sect. 1.6.1) and by expressing the Newton
polygon of C relative to a cross (L, L′) in terms of the Eggers-Wall tree of C + L′
relative to L (see Sect. 1.6.2). Then we explain that the fan tree of the previous
toroidal pseudo-resolution process is canonically isomorphic to the Eggers-Wall tree
relative to L of the curve obtained by adding to C the projections to S of all the
crosses built during the process and how to pass from the numerical decorations of
the fan tree to those of the Eggers-Wall tree (see Sect. 1.6.5). As preliminary results,
we prove renormalization formulae which describe the Eggers-Wall tree of the strict
transform of C by a Newton modification, relative to the exceptional divisor, in
terms of the Eggers-Wall tree of C relative to L (see Sects. 1.6.3 and 1.6.4).

The final Sect. 1.7 begins by an overview of the construction of a fan tree and of
the associated lotus from the Newton fans of a toroidal pseudo-resolution process
(see Sect. 1.7.1). Section 1.7.2 describes perspectives on possible applications of
lotuses to problems of singularity theory. The final Sect. 1.7.3 contains a list of the
main notations used in the article.

Starting from Sect. 1.3, each section ends with a subsection of historical
comments. We apologize for any omission, which may result from our limited
knowledge. One may also find historical information about various tools used to
study plane curve singularities in Enriques and Chisini’s book [35], in the first
chapter of Zariski’s book [134] and in the final sections of the chapters of Wall’s
book [131].
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We tried to make this paper understandable to PhD students who have only a
basic knowledge about singularities. Even if everything in this paper holds over
an arbitrary algebraically closed field of characteristic zero, we will stick to the
complex setting, in order to make things more concrete for the beginner. We accom-
pany the definitions with examples and many figures. Indeed, one of our objectives
is to show that lotuses may be a great visual tool for relating the combinatorial
objects used to study plane curve singularities. There is a main example, developed
throughout the paper starting from Sect. 1.4 (see Examples 1.4.28, 1.4.34, 1.4.36,
1.5.28, 1.5.31, 1.5.36, 1.6.29 and the overview Fig. 1.58). We recommend to study
it carefully in order to get a concrete feeling of the various objects manipulated in
this paper. We also recommend to those readers who are learning the subject to refer
to the Sect. 1.7.1 from time to time, in order to measure their understanding of the
geometrical objects presented here.

1.2 Basic Notions and Examples

In this section we recall basic notions about complex varieties and plane curve sin-
gularities (see Sect. 1.2.1), normalization morphisms (see Sect. 1.2.2), the relation
between Newton-Puiseux series and plane curve singularities (see Sect. 1.2.3) and
resolution of such singularities by iteration of blow ups of points (see Sect. 1.2.4).
We describe such a resolution for the semi-cubical parabola (see Sect. 1.2.5). We
give a flavor of the main construction of this paper in Sect. 1.2.6. We show there how
to transform the Newton polygon of a certain Newton non-degenerate plane curve
singularity with two branches into a lotus, and how this lotus contains the dual graph
of a resolution by blow ups of points.

From now on, N denotes the set of non-negative integers and N
∗ the set of

positive integers.

1.2.1 Basic Facts About Plane Curve Singularities

In this subsection we recall basic vocabulary about complex analytic spaces (see
Definition 1.2.1) and we explain the notions of plane curve singularity (see
Definition 1.2.5), of multiplicity and of intersection number (see Definition 1.2.7)
for such singularities. Finally, we recall an important way of computing such
intersection numbers (see Proposition 1.2.8).

Briefly speaking, a complex analytic space X is obtained by gluing model spaces,
which are zero-loci of systems of analytic equations in some complex affine space
C

n. One has to prescribe also the analytic “functions” living on the underlying
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topological space. Those “functions” are elements of a so-called “structure sheaf”
OX, which may contain nilpotent elements. For this reason, they are not classical
functions, as they are not determined by their values. For instance, one may endow
the origin of C with the structure sheaves whose rings of sections are the various
rings C[x]/(xm), with m ∈ N

∗. They are pairwise non-isomorphic and they contain
nilpotent elements whenever m ≥ 2. Let us state now the formal definitions of
complex analytic spaces and of some special types of complex analytic spaces.

Definition 1.2.1

• A model complex analytic space is a ringed space (X,OX), where X is the zero
locus of I and OX = OU/I. Here I is a finitely generated ideal of the ring of
holomorphic functions on an open set U of Cn, for some n ∈ N

∗, OU is the sheaf
of holomorphic functions on U and I is the sheaf of ideals of OU generated by
I .

• A complex analytic space is a ringed space locally isomorphic to a model
complex analytic space.

• A complex analytic space is reduced if its structure sheaf OX is reduced, that
is, without nilpotent elements. In this case, one speaks also about a complex
variety.

• A complex manifold is a complex variety X such that any point x ∈ X has
a neighborhood isomorphic to an open set of Cn, for some n ∈ N. If the non-
negative integer n is independent of x, then the complex manifold X is called
equidimensional and n is its complex dimension.

• The smooth locus of a complex variety X is its open subspace whose points have
neighborhoods which are complex manifolds. Its singular locus Sing(X) is the
complement of its smooth locus.

• A smooth complex curve is an equidimensional complex manifold of complex
dimension one and a smooth complex surface is an equidimensional complex
manifold of complex dimension two.

• A complex curve is a complex variety whose smooth locus is a smooth complex
curve and a complex surface is a complex variety whose smooth locus is a
smooth complex surface.

By construction, the singular locus Sing(X) of X is a closed subset of X. It is a
deep theorem that this subset is in fact a complex subvariety of X (see [66, Corollary
6.3.4]).

Let S be a smooth complex surface. If o is a point of S and φ : U → V is an
isomorphism from an open neighborhood U of o in S to an open neighborhood V

of the origin in C
2
x,y , then the coordinate holomorphic functions x, y : C2

x,y → C

may be lifted by φ to two holomorphic functions on U , vanishing at o. They form
a local coordinate system on the germ (S, o) of S at o. By abuse of notations,
we still denote this local coordinate system by (x, y), and we see it as a couple of
elements of OS,o , the local ring of S at o, equal by definition to the C-algebra
of germs of holomorphic functions defined on some neighborhood of o in S. The
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local coordinate system (x, y) establishes an isomorphism OS,o � C{x, y}, where
C{x, y} denotes the C-algebra of convergent power series in the variables x, y.

Denote by C[[x, y]] the C-algebra of formal power series in the same variables. It
is the completion of C{x, y} relative to its maximal ideal (x, y)C{x, y}. One has the
following fundamental theorem, valid in fact for any finite number of variables (see
[66, Corollary 3.3.17]):

Theorem 1.2.2 The local rings C{x, y} and C[[x, y]] are factorial.

In addition to Definition 1.2.1, we use also the following meaning of the term
curve:

Definition 1.2.3 A curve C on a smooth complex surface S is an effective Cartier
divisor of S, that is, a complex subspace of S locally definable by the vanishing of a
non-zero holomorphic function.

This means that for every point o ∈ C, there exists an open neighborhood U of
o in S and a holomorphic function f : U → C such that C ⊂ U is the vanishing
locus Z(f ) of f and such that the structure sheaf OC|U of C ⊂ U is the quotient

sheaf OU/(f )OU . In this case, once U is fixed, the defining function f is unique up
to multiplication by a holomorphic function on U which vanishes nowhere.

The curve C is called reduced if it is a reduced complex analytic space in the
sense of Definition 1.2.1. This means that any defining function f : U → C as
above is square-free in all local rings OS,o, where o ∈ U . For instance, the union
C of coordinate axes of C2 is a reduced curve, being definable by the function xy,
which is square-free in all the local rings O

C
2,o, where o ∈ C. By contrast, the curve

D defined by the function xy2 is not reduced.
As results from Definition 1.2.3, a complex subspace C of S is a curve on S if

and only if, for any o ∈ C, the ideal of OS,o consisting of the germs of holomorphic
functions vanishing on the germ (C, o) of C at o is principal. We would have
obtained a more general notion of curve if we would have asked C to be a 1-
dimensional complex subspace of S in the neighborhood of any of its points. For
instance, if S = C

2
x,y , and C is defined by the ideal (x2, xy) of C[x, y], then set-

theoretically C coincides with the y-axis Z(x). But the associated structure sheaf
OC2/(x2, xy)OC2 is not the structure sheaf of an effective Cartier divisor. In fact
the germ of C at the origin cannot be defined by only one holomorphic function
f (x, y) ∈ C{x, y}. Otherwise, we would get that both x2 and xy are divisible by
f (x, y) in the local ring C{x, y}. As this ring is factorial by Theorem 1.2.2, we
see that f divides x inside this ring, which implies that (f )C{x, y} = (x)C{x, y}.
Therefore, (x2, xy)C{x, y} = (x)C{x, y} which is a contradiction, as x is of order
1 and each element of the ideal (x2, xy)C{x, y} is of order at least 2. The notion of
order used in the previous sentence is defined by:

Definition 1.2.4 Let f ∈ C[[x, y]]. Its order is the smallest degree of its terms.
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For instance, the maximal ideal of C[[x, y]] consists precisely of the power series
of order at least 1. It is a basic exercise to show that the order is invariant by the
automorphisms of the C-algebra C[[x, y]] and by multiplication by the elements of
order 0, which are the units of this algebra. Therefore, one gets a well-defined notion
of multiplicity of a germ of formal curve on S:

Definition 1.2.5 A plane curve singularity is a germ C of formal curve on a germ

of smooth complex surface (S, o), that is, a principal ideal in the completion ÔS,o

of the local ring OS,o. It is called a branch if it is irreducible, that is, if its defining
functions are irreducible elements of the factorial local ring ÔS,o. The multiplicity
mo(C) of C at o is the order of a defining function f ∈ ÔS,o of C, seen as an

element of C[[x, y]] using any local coordinate system (x, y) of the germ (S, o).

Example 1.2.6 Let α, β ∈ N
∗ and f := xα − yβ ∈ C[x, y]. Denote by C the

curve on C
2 defined by f . Its multiplicity at the origin O of C2 is the minimum

of α and β. The curve singularity (C, O) is a branch if and only if α and β are
coprime. One implication is easy: if α and β have a common factor ρ > 1, then
xα − yβ =∏ω: ωρ=1

(
xα/ρ − ωyβ/ρ

)
, the product being taken over all the complex

ρ-th roots ω of 1, which shows that (C, O) is not a branch. The reverse implication
results from the fact that, whenever α and β are coprime, C is the image of the
parametrization N(t) := (tβ, tα). The inclusion N(C) ⊆ C being obvious, let us
prove the reverse inclusion. Let (x, y) ∈ C. As N(0) = O , it is enough to consider
the case where xy = 0. We want to show that there exists t ∈ C

∗ such that x =
tβ , y = tα . Assume the problem solved and consider also a pair (a, b) ∈ Z

2 such
that aα + bβ = 1, which exists by Bezout’s theorem. One gets t = taα+bβ = yaxb.
Define therefore t := yaxb. Then:

tβ = (yaxb)β = (yβ)axbβ = (xα)axbβ = xaα+bβ = x,

and similarly one shows that tα = y. This proves that C is indeed included in the
image of N .

Let C be a plane curve singularity on the germ of smooth surface (S, o). If f ∈
ÔS,o is a defining function of C, it may be decomposed as a product:

f =
∏

i∈I

f
pi

i , (1.1)

in which the functions fi are pairwise non-associated prime elements of the local
ring ÔS,o and pi ∈ N

∗ for every i ∈ I . Such a decomposition is unique up to
permutation of the factors f

pi

i and up to a replacement of each function fi by an
associated one (recall that two such functions are associated if one is the product
of another one by a unit of the local ring). If Ci ⊆ S is the plane curve singularity
defined by fi , then the decomposition (1.1) gives a decomposition of C seen as
a germ of effective divisor C = ∑i∈I piCi , where each curve singularity Ci is a
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branch. The plane curve singularity C is reduced if and only if pi = 1 for every
i ∈ I .

The intersection number is the simplest measure of complexity of the way two
plane curve singularities interact at a given point:

Definition 1.2.7 Let C and D be two curve singularities on the germ of smooth
surface (S, o) defined by functions f and g ∈ ÔS,o respectively. Their intersection
number (C ·D)o , also denoted C ·D if the base point o of the germ is clear
from the context, is defined by:

C ·D := dimC

ÔS,o

(f, g)
∈ N ∪ {∞},

where (f, g) denotes the ideal of ÔS,o generated by f and g.

If C and D are two curve singularities, then one has that (C · D)o ≥
mo(C)mo(D), with equality if and only if the curves C and D are transversal (see
[131, Lemma 4.4.1]), that is, the tangent plane of (S, o) does not contain lines which
are tangent to both C and D.

Seen as a function of two variables, the intersection number is symmetric. It is
moreover bilinear, in the sense that if C =∑i∈I piCi , then C·D =∑i∈I pi(Ci ·D).
Therefore, in order to compute C ·D, it is enough to find Ci ·D for all the branches
Ci of C.

One has the following useful property (see [66, Lemma 5.1.5]):

Proposition 1.2.8 Let C be a branch and D be an arbitrary curve singularity on
the smooth germ of smooth surface (S, o). Denote by N : (Ct , 0) → (S, o) a formal
parametrization of degree one of C and g ∈ ÔS,o be a defining function of D. Then

C ·D = νt (g(N(t))),

where νt (h) denotes the order of a power series h ∈ C[[t]].
Example 1.2.9 Let us consider two curves C, D ⊆ C

2
x,y , defined by polynomials

f := xα − yβ and g := xγ − yδ of the type already considered in Example 1.2.6.
Assume that α and β are coprime. This implies, as shown in Example 1.2.6, that
the plane curve singularity (C, O) is a branch and that N(t) := (tβ , tα) is a
parametrization of degree one of it. By Proposition 1.2.8, if C is not a branch of
D, we get:

C ·D = νt

(
(tβ )γ − (tα)δ

) = νt

(
tβγ − tαδ

) = min{βγ, αδ}.

For more details about intersection numbers of plane curve singularities, one may
consult [15, Sect. 6], [113, Vol. 1, Chap. IV.1] and [39, Chap. 8].



12 E. R. García Barroso et al.

The formal parametrizations N : (Ct , 0) → (S, o) of degree one of a branch
appearing in the statement of Proposition 1.2.8 are exactly the normalization
morphisms of C whose sources are identified with (C, 0). Next subsection is
dedicated to the general definition of normal complex variety and of normalization
morphism in arbitrary dimension, as we will need them later also for surfaces.

1.2.2 Basic Facts About Normalizations

In this subsection we explain basic facts about normal rings (see Definition 1.2.10),
normal complex varieties (see Definition 1.2.11) and normalization morphisms (see
Definition 1.2.16) of arbitrary complex varieties. For more details and proofs one
may consult [66, Sections 1.5, 4.4] and [58].

The following definition contains algebraic notions, concerning extensions of
rings:

Definition 1.2.10 Let R be a commutative ring and let R ⊆ T be an extension
of R.

1. An element of T is called integral over R if it satisfies a monic polynomial
relation with coefficients in R.

2. The extension R ⊆ T of R is called integral if each element of T is integral over
R.

3. The integral closure of R is the set of integral elements over R of the total ring
of fractions of R.

4. R is called normal if it is reduced (without nonzero nilpotent elements) and
integrally closed in its total ring of fractions, that is, if it coincides with its integral
closure.

The arithmetical notion of normal ring allows to define the geometrical notion of
normal variety:

Definition 1.2.11 Let X be a complex variety in the sense of Definition 1.2.1.

1. If x ∈ X, then the germ (X, x) of X at x is called normal if its local ring OX,x

is normal.
2. The complex variety X is normal if all its germs are normal.

Normal varieties may be characterized from a more function-theoretical view-
point as those complex varieties on which holds the following “Riemann extension
property”: every bounded holomorphic function defined on the smooth part of an
open set extends to a holomorphic function on the whole open set (see [66, Theorem
4.4.15]).

Recall now the following algebraic regularity condition (see [66, Sect. 4.3]):

Definition 1.2.12 Let O be a Noetherian local ring, with maximal ideal m.

1. The Krull dimension of O is the maximal length of its chains of prime ideals.
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2. The embedding dimension of O is the dimension of the O/m-vector space
m/m2.

3. The local ring O is called regular if its Krull dimension is equal to its embedding
dimension.

The Krull dimension of O is always less or equal to the embedding dimension.
The name embedding dimension may be understood by restricting to the case where
O is the local ring of a complex space (see [66, Lemma 4.3.5]):

Proposition 1.2.13 Let (X, x) be a germ of complex space. Then the embedding
dimension of its local ring OX,x is equal to the smallest n ∈ N such that there exists
an embedding of germs (X, x) ↪→ (Cn, 0). In particular, OX,x is regular if and only
if (X, x) is smooth, that is, a germ of complex manifold.

The normal varieties of dimension one are exactly the smooth complex curves
because, more generally (see [66, Thm. 4.4.9, Cor. 4.4.10]):

Theorem 1.2.14 A Noetherian local ring of Krull dimension one is normal if and
only if it is regular.

There is a canonical way to construct a normal variety X̃ starting from any
complex variety X (see [66, Sect. 4.4]):

Theorem 1.2.15 Let X be a complex variety. Then there exists a finite and
generically 1 to 1 morphism N : X̃ → X such that X̃ is normal. Moreover, such a
morphism is unique up to a unique isomorphism over X.

Recall that a morphism between complex varieties is finite if it is proper with
finite fibers and that it is generically 1 to 1 if it is an isomorphism above the com-
plement of a nowhere dense closed subvariety of its target space. The existence of a
morphism with the properties stated in Theorem 1.2.15 may be proven algebraically
by considering the integral closures of the rings of holomorphic functions on the
open sets of X, and showing that they are again rings of holomorphic functions on
complex varieties which admit finite and generically 1 to 1 morphisms to the starting
open sets. This algebraic proof extends to formal germs, by showing that the integral
closure in its total ring of fractions of a complete ring of the form C[[x1, . . . , xn]]/I ,
where n ∈ N

∗ and I is an ideal of C[[x1, . . . , xn]], is a direct sum of rings of the
same form.

The canonical morphisms characterized in Theorem 1.2.15 received a special
name:

Definition 1.2.16 Let X be a complex variety. Then a morphism N : X̃ → X is
called a normalization morphism of X if it is finite, generically 1 to 1 and X̃ is a
normal complex variety.

Let now (C, o) be a germ of complex variety of Krull dimension one, that
is, an abstract curve singularity. Its normalization morphisms are of the form:
N : ⊔i∈I (C̃i , oi) → (C, o), where (Ci, o)i∈I is the finite collection of irreducible
components of (C, o), and the restriction Ni : (C̃i , oi) → (C, o) of N to C̃i is a
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normalization of (Ci, o). By Theorem 1.2.14 and Proposition 1.2.13, we see that
each germ (C̃i , oi) is smooth, that is, isomorphic to (C, 0). After precomposing N

with such isomorphisms, we see that (C, o) admits a normalization morphism of the
form

⊔
i∈I (C, 0) → (C, o). In particular, if (C, o) is irreducible, its normalization

morphism is of the form N : (C, 0) → (C, o). The same construction yields a
formal parametrization when the starting germ (C, o) is formal. This is precisely a
formal parametrization of degree one as used in the statement of Proposition 1.2.8.

1.2.3 Newton-Puiseux Series and the Newton-Puiseux
Theorem

At the end of the previous subsection we explained that normalizations of irre-
ducible germs of complex analytic or formal curves C are holomorphic or formal
parametrizations (C, 0) → C of degree one. In this subsection we introduce
especially nice parametrizations in the case of plane branches, which lead to
the notion of Newton-Puiseux series (see Definition 1.2.18). The Newton-Puiseux
theorem (see Theorem 1.2.20) implies that the field of Newton-Puiseux series is
algebraically closed. Another consequence of it is stated in Theorem 1.6.1 below.

Let C be a branch on the smooth germ of surface (S, o). Choose an arbitrary
system of local coordinates on (S, o). If the branch C is smooth, assume moreover
that the germ at o of the y-axis Z(x) is different from C. This means that for any
normalization morphism N : (Ct , 0) → (C, o) of C, described in this coordinate
system as t → (ξ(t), η(t)), where ξ, η ∈ (t)C[[t]], the power series ξ(t) is not
identically zero. We have ξ(t) = tn · ε(t), where n ∈ N

∗ is the order of the power
series ξ(t) and ε(t) is a unit in the ring C[[t]]. The series ε(t) has exactly n different
n-th roots in C[[t]], whose constant terms are the n-th roots of ε(0). Pick one of
them, denote it by ε1/n(t), and set λ(t) := tε1/n(t). Therefore ξ(t) = λ(t)n and
νt (λ(t)) = 1.

Remark 1.2.17 More generally, if K is an algebraically closed field of characteristic
zero, then any unit of K[[t]] has all its n-th roots in K[[t]]. This fact is no longer
true if K has positive characteristic. For instance, as a direct consequence of the
binomial formula, there is no series ε(t) ∈ K[[t]] such that ε(t)p = 1 + t when K

is of characteristic p. For this reason, the Newton-Puiseux Theorem 1.2.20 below
does not always hold in positive characteristic. For more details about the situation
in positive characteristic, one may consult [97].

As νt (λ(t)) = 1, we see that the morphism (Ct , 0) → (Cu, 0), which maps t →
λ(t) is an isomorphism of germs of smooth curves. By composing the morphism
N : (Ct , 0) → (C, o) with its inverse, one gets a new normalization morphism of
the form:

(Cu, 0) → (C, o)

u → (un, ζ(u))
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where ζ(u) ∈ C[[u]]. Therefore, if f (x, y) ∈ C[[x, y]] is a defining function of C

in the local coordinate system (x, y), we have:

f (un, ζ(u)) = 0. (1.2)

From the equations x = un, y = ζ(u), one may deduce formally that u =
x1/n, y = ζ(x1/n). Equation (1.2) becomes:

f (x, ζ(x1/n)) = 0. (1.3)

The composition ζ(x1/n) is a Newton-Puiseux series in the following sense:

Definition 1.2.18 The C-algebra C[[x1/N]] of Newton-Puiseux series consists of

all the formal power series of the form η(x1/n), where η ∈ C[[t]] and n ∈ N
∗, that

is, C[[x1/N]] = ⋃n∈N∗ C[[x1/n]]. Denote by νx : C[[x1/N]] → [0,∞] the order
function, which associates to every Newton-Puiseux series the smallest exponent of
its terms, where νx(0) := ∞.

The function νx is a valuation of the C-algebra of Newton-Puiseux series, in the
following sense:

Definition 1.2.19 A valuation on an integral C-algebra A is a function ν : A →
R+ ∪ {∞} which satisfies the following conditions:

1. ν(fg) = ν(f )+ ν(g), for all f, g ∈ A.
2. ν(f + g) ≥ min{ν(f ), ν(g)}, for all f, g ∈ A.
3. ν(λ) = 0, for all λ ∈ C

∗.
4. ν(f ) = ∞ if and only if f = 0.

The basic importance of the ring of Newton-Puiseux series comes from the
following Newton-Puiseux theorem (see Fischer [39, Chapter 7], Teissier [121,
Section 1], [123, Sections 3–4], de Jong & Pfister [66, Section 5.1], Cutkosky [28,
Section 2.1] or Greuel, Lossen and Shustin [59, Thm. I.3.3]):

Theorem 1.2.20 (Newton-Puiseux Theorem) Any non-zero monic polynomial
f ∈ C[[x]][y] such that f (0, y) = yd has d roots in the ring C[[x1/N]]. As a
consequence, the quotient field of the ring C[[x1/N]] is the algebraic closure of the
quotient field of the ring C[[x]].
Proof It is immediate to reduce the proof of the first sentence of the theorem to the
case where f is irreducible. Assume that this is the case. By Eq. (1.3), there exists
a Newton-Puiseux series ζ(x1/n) which is a root of f . One has necessarily n = d .
Indeed, by the proof of Eq. (1.3), u → (un, ζ(u)) is a normalization of the formal
branch Z(f ). Therefore, Proposition 1.2.8 shows that:

n = νu(un) = Z(f ) · Z(x) = Z(x) · Z(f ) = νy (f (0, y)) = d.
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Consider now the product:

F(x, y) :=
∏

ω:ωn=1

(
y − ζ(ωx1/n)

)
∈ C[[x1/n]][y].

It is invariant by the changes of variables (x1/n, y) → (ωx1/n, y), where ω varies
among the complex n-th roots of 1, which shows that F(x, y) ∈ C[[x]][y]. As
ζ(x1/n) is a root of both f (x, y) and F(x, y) and that f (x, y) is irreducible, we see
that f divides F in the ring C[[x]][y]. Both being monic and of the same degree,
we get the equality f = F . Therefore, all the roots of f belong to C[[x1/n]].

The second statement of the theorem results from the first statement and from
Hensel’s lemma (see [66, Corollary 3.3.21]), which ensures that a factorisation of
f (0, y) ∈ C[y] in pairwise coprime factors lifts to an analogous decomposition of
f (x, y) ∈ C[[x]][y]. ��

The proof of Theorem 1.2.20 which we have sketched here also shows that
the Galois group of the field extension associated to the ring extension C[[x]] ⊂
C[[x1/n]] is isomorphic to the cyclic group of n-th roots of 1, an element ω of this
group acting on ζ(x1/n) ∈ C[[x1/n]] replacing it by ζ(ωx1/n).

Remark 1.2.21 The proof of Theorem 1.2.20 which we have sketched here also
shows that the Galois group of the field extension associated to the ring extension
C[[x]] ⊂ C[[x1/n]] is isomorphic to the cyclic group of n-th roots of 1, an element
ω of this group acting on ζ(x1/n) ∈ C[[x1/n]] replacing it by ζ(ωx1/n).

Remark 1.2.22 Most proofs of Theorem 1.2.20 use the Newton polygon N(f ) of
f (see Definition 1.4.2 below). As explained in Sect. 1.2.5, the restrictions of f to
the compact edges of N(f ) allow to find the possible initial terms of the candidate
roots η(x) of the equation f (x, y) = 0 seen as an equation in the single unknown y.
Such proofs proceed then by showing that all those terms may be extended to true
roots inside C[[x1/N]].
Example 1.2.23 Consider coprime integers α, β ∈ N

∗ and f (x, y) := xα − yβ ∈
C[[x]][y], as in Example 1.2.6. Then the Newton-Puiseux roots of f are the β series
ωxα/β , where ω varies among the complex β-th roots of 1. If ω′ is another such root
of 1, it acts on ω xα/β by sending it to (ω′)α ω xα/β .

1.2.4 Blow Ups and Embedded Resolutions of Singularities

In this subsection we explain the notion of blow up of C
2 at the origin (see

Definition 1.2.24) and more generally of a smooth complex surface at an arbitrary
point of it (see Definition 1.2.29), the notion of embedded resolution of a curve in a
smooth surface (see Definition 1.2.33) and the fact that an embedded resolution may
be achieved after a finite number of blow ups of points (see Theorem 1.2.35). We
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conclude by recalling the notion of weighted dual graph of an embedded resolution
(see Definition 1.2.36) and the way to compute its weights when this resolution is
constructed iteratively by blowing up points.

Look at the complex affine plane C
2
x,y as a complex vector space. Denote by

P(C2)[u:v] its projectivisation, consisting of its vector subspaces of dimension

one, endowed with the projective coordinates [u : v] associated to the cartesian
coordinates (x, y) on C

2.

Definition 1.2.24 Consider the projectivisation map

λ : C
2 ��� P(C2)

(x, y) ��� [x : y].

associating to each point of C2 \ {O} the line joining it to the origin O of C2. Let
� be the closure of its graph in the product algebraic variety C

2 × P(C2). Then
the restriction π : � → C

2 of the first projection C
2 × P(C2) → C

2 is called
the blow up of C2 at the origin. By abuse of language, the surface � is also called
in this way. The preimage π−1(O) of O in � is called the exceptional divisor

of the blow up. The restriction λ̃ : � → P(C2) to � of the second projection
C

2 × P(C2) → P(C2) is called the Hopf morphism.

The name “Hopf morphism” is motivated by the fact that in restriction to the
preimage π−1(S3) of the unit 3-dimensional sphere S

3 ⊂ C
2, the morphism λ̃

becomes the “Hopf fibration” S
3 → S

2, introduced by Hopf in [64, Section 5]
(see also [109] for historical details).

The projectivisation map restricts to a morphism λ : C2 \ {O} → P(C2). This
morphism cannot be extended even by continuity to the origin O , because O belongs
to the closures of all its level sets, which are the complex lines of C2 passing through
O . Taking the closure of the graph of λ replaces O by the space P(C2) of lines
passing through O . This allows the lift of λ to � to extend by continuity, and
even algebraically, to the whole surface �, becoming the Hopf morphism λ̃. This
morphism is in fact the projection morphism of the total space of a line bundle, as
will be shown in Proposition 1.2.25 below. Before proving it, let us explain how to
describe using a simple atlas of two charts the blow up surface �.

The projective line P(C2)[u:v] is covered by the two affine lines Cu1 and Cv2 ,
where:

u1 := u

v
, v2 := v

u
.

Therefore, the product C2 × P(C2) is covered by the two affine 3-folds C3
x,y,u1

and

C
3
x,y,v2

.

The surface � contained in C
2 × P(C2) is the zero locus Z(xv − yu) of a

homogeneous polynomial of degree one in the variables u, v. Its intersections with
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the two previous 3-folds are therefore:

� ∩ C
3
x,y,u1

= Z(x − yu1), and � ∩ C
3
x,y,v2

= Z(xv2 − y).

One recognizes in each case the equation of the graph of a function of two
variables, those pairs of variables being (u1, y) and (x, v2) respectively. Therefore,
by projecting on the planes of those two pairs of variables, one gets isomorphisms:

� ∩ C
3
x,y,u1

� C
2
u1,y , and � ∩ C

3
x,y,v2

� C
2
x,v2

,

which may be thought as the charts of an algebraic atlas of �. Let us replace y by
u2 in the first chart C2

u1,y and x by v1 in the second chart C2
x,v2

. The blow up

morphism π : � → C
2 gets expressed in the following way in the two charts:

{
x = u1u2

y = u2,
and

{
x = v1

y = v1v2.
(1.4)

The previous formulae show that the exceptional divisor π−1(O) becomes the u1-
axis in the chart C2

u1,u2
and the v2-axis in the chart C2

v1,v2
.

By composing one such morphism with the inverse of the second one, we see that
� may be obtained from the two copies C2

u1,u2
and C

2
v1,v2

of C2 by gluing their open
subsets C∗u1

× Cu2 and Cv1 × C
∗
v2

respectively using the following inverse changes
of variables:

{
v1 = u1u2

v2 = u−1
1

and

{
u1 = v−1

2
u2 = v1v2.

(1.5)

The Hopf morphism λ̃ : � → P(C2) becomes the morphisms C2
u1,u2

→ C
1
u1

and

C
2
v1,v2

→ C
1
v2

if one uses the charts C
2
u1,u2

,C2
v1,v2

for � and C
1
u1

,C1
v2

for P(C2).
The fibers of these two morphisms have natural structures of complex lines if one
identifies them with the standard complex line C using the parameters u2 and v1
respectively. As the gluing maps (1.5) respect those structures, we get:

Proposition 1.2.25 The Hopf morphism λ̃ : � → P(C2) is the projection
morphism from the total space of a line bundle to its base P(C2). Its zero-section
is the exceptional divisor π−1(O) of the blow up morphism π : � → C

2.

The fundamental numerical invariant of a complex line bundle over a projective
curve, which characterises it up to topological isomorphims in general and up to
algebraic isomorphisms if the curve is rational, is its degree, defined by:

Definition 1.2.26 The degree of a line bundle over a smooth connected projective
curve C is the degree of the divisor on C defined by any meromorphic section of the
line bundle which is neither constantly 0 nor constantly∞.
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In our case, we have:

Proposition 1.2.27 The degree of the Hopf line bundle λ̃ : � → P(C2) is equal to
−1.

Proof Let us consider the meromorphic section s of λ̃ which appears as the constant
function 1 in the charts C

2
u1,u2

→ C
1
u1

. The equation of its graph is u2 = 1. The
change of variables (1.5) transform it into v1v2 = 1. Therefore, s appears as the
rational function v−1

2 in the charts C2
v1,v2

→ C
1
v2

. This shows that the section s has
no zeros and a unique pole of multiplicity one. As a consequence, the degree of the
divisor defined by s is equal to −1. ��

On any smooth complex algebraic or analytic surface S, one may define a notion
of intersection number of two divisors whenever at least one of them has compact
support. This may be done algebraically, by considering first the case when one
divisor is a reduced compact curve C on S, the intersection number being then
the degree of the pullback of the line bundle defined by the second divisor to the
normalization of C. Then, one extends this definition by linearity to arbitrary not
necessarily reduced or effective divisors. There is also a topological definition,
obtained by associating a homology class to one divisor, a cohomology class to
the second one and then evaluating the cohomology class on the homology class.
One may consult [61, Sect. V.1] for the case of algebraic surfaces and [76, Pages
15–20] for the case of analytic surfaces. It turns out that, either by definition or as
a theorem, the self-intersection number of the zero-section of a line bundle over a
smooth compact complex curve is equal to the degree of the line bundle. Therefore,
Proposition 1.2.27 may be also stated as:

Corollary 1.2.28 The self-intersection number of the zero-section of the Hopf line
bundle λ̃ : � → P(C2) is equal to −1.

Till now, we have discussed in this subsection only the blow up of the origin O

of C2. This operation may be extended to any point o of a smooth complex surface
S, by choosing first local coordinates (x, y) in a neighborhood U of that point. This
allows to identify U with an open neighborhood of O in C

2. Denote by πU : �U →
U the restriction to U of the blow up morphism of O in C

2. This complex analytic
morphism is an isomorphism over U \ {O}. Therefore, it allows to glue �U and S

along U \ {O}, getting a surface S̃ endowed with a morphism π̃ : S̃ → S.

Definition 1.2.29 The morphism π̃ : S̃ → S constructed above is called a blow up
morphism of S at the point o.

It may be shown by a direct computation that the blow up morphism of S at o

is independent of the choices of local coordinates and open set U . More precisely,
given any two morphisms constructed in this way, there exists a unique isomorphism
between their sources above S (see [131, Lemma 3.2.1]). Another way to prove this
uniqueness is to characterize such morphisms by a universal property (see [61, Chap.
II, Prop. 7.14]):
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Proposition 1.2.30 Let S be a smooth complex surface and π̃ : S̃ → S a blow
up morphism of S at its point o. Then for any morphism f : Y → S such that the
ideal sheaf defining o on S lifts to a principal ideal sheaf on Y , there exists a unique
morphism g : Y → S̃ such that f = π̃ ◦ g.

One may define more generally the blow up of any complex space along a
closed subspace, and again this morphism may be characterized using an analogous
universal property (see [61, Pages 163–169] for a similar study in the case of
schemes).

Returning to the model case of the blow up of C2 at the origin O , relations (1.4)
show that the lift by π to � of the maximal ideal (x, y) of C[x, y] defining O

is the principal ideal sheaf defining the exceptional divisor of π . This fact is an
algebraic manifestation of the fact that on � all the lines of C2 passing through O

get separated: they are simply the fibers of the Hopf morphism λ̃. Note that in order
to separate them indeed, one does not have to lift them by taking their full preimages
by π (called their total transforms by π), but only by taking their strict transforms.
Let us define these notions in greater generality:

Definition 1.2.31 Let π : Y → X be a morphism of complex varieties and Z ⊆ X

a closed complex subvariety of X.

1. The morphism π is a modification of X if it is proper and bimeromorphic, that
is, if it is proper and if there exists a closed nowhere dense subvariety X′ of X

such that π−1(X′) is a nowhere dense subvariety of Y and the restriction π :
Y \ π−1(X′) → X \X′ is an isomorphism.

2. If X′ is minimal with the previous properties, then X′ is called the indeterminacy
locus of π−1 and π−1(X′) is called the exceptional locus of π .

3. The total transform π∗(Z) of Z by π is the complex subspace of Y defined
by the preimage by π of the ideal sheaf defining Z in X.

4. Assume that no irreducible component of Z is included in the indeterminacy
locus X′ of π−1. Then the strict transform of Z by π is the closure inside Y of
π−1(Z \X′).

The blow up morphisms of surfaces at smooth points are examples of modifica-
tions. In the case of the blow up π : � → C

2
x,y at the origin, the Eqs. (1.4) show

that the total transform of a line Z(y−ax) ⊆ C
2
x,y , for a ∈ C

∗, may be described as

Z(u2(1−au1)) ⊆ C
2
u1,u2

and Z(v1(v2−a)) ⊆ C
2
u1,u2

in the two charts covering �.
As Z(u2) and Z(v1) describe the exceptional divisor π−1(O) in those two charts,
we see that the strict transform of Z(y − ax) is the fiber of λ̃ whose equations are
u1 = a−1 and v2 = a in those two charts.

Assume now that C is a finite sum
∑

i∈I Li of such lines Li passing through
the origin in C

2. The strict transform of C by π is the sum of the strict transforms
L̃i of those lines and the total transform π∗(C) is the sum π−1(O) +∑i∈I L̃i of
the exceptional divisor of π and of the strict transform of C. Therefore, π∗(C) is a
normal crossings divisor in the following sense:
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Definition 1.2.32 Let S be a smooth complex surface and D a divisor on it. This
divisor is said to have normal crossings or to be a normal crossings divisor if
its support is locally either a smooth curve or the union of two transversal smooth
curves.

Coming back to the curve C = ∑i∈I Li in C
2, the fact that its total transform

π∗(C) is a normal crossings divisor shows that the blow up morphism π : � → C
2

is an embedded resolution of C, in the following sense:

Definition 1.2.33 Let C be a curve on the smooth complex surface S, in the sense
of Definition 1.2.3. An embedded resolution of C is a modification π̃ : S̃ → S

such that:

1. S̃ is smooth;
2. the total transform π̃∗(C) is a normal crossings divisor;
3. the strict transform C̃ of C by π̃ is smooth.

The restriction π̃C : C̃ → C of an embedded resolution π̃ of C to the strict
transform C̃ of C is a resolution of C in the following sense:

Definition 1.2.34 Let X be a complex variety. A resolution of X is a modification
π : X̃ → X such that X̃ is smooth and the indeterminacy locus of π−1 is equal to
the singular locus of X.

If X is a complex curve, then a resolution of it is the same as a normalization
morphism. This is no longer true in higher dimensions, as in each dimension at least
2, there are normal non-smooth complex varieties. For instance, a hypersurface X

of Cn whose singular locus has codimension at least 2 in X is normal (see [1, 92]).
Note that the second condition in Definition 1.2.33 does not imply the third one.

For instance, if one takes the folium of Descartes C ⊂ C
2
x,y defined by the equation

x3 + y3 = 3xy, then C is a normal crossings divisor in C
2 (with a single singular

point at the origin), therefore the identity morphism from C
2 to itself satisfies the

first two conditions of Definition 1.2.33 but not the last one, because the strict
transform of C by it is not smooth, being the curve C itself.

In order to get an embedded resolution of the folium of Descartes, it is enough
to blow up C

2 at the origin O . More generally, if C is a curve in a smooth
complex surface S such that at each point o of C, the branches of C at o are
smooth and pairwise transversal, then the morphism obtained by blowing up S at
all the singular points of C is an embedded resolution of C. Conversely, as may
be seen by working with the description (1.4) of the blow up morphism at a point
in terms of local coordinates, this property of achieving an embedded resolution
by blowing up distinct points of S characterizes the previous kind of curves. What
about curves with more complicated singularities? It turns out that they also have
embedded resolutions, which may be obtained by blowing up points iteratively (see
[61, Thm. 3.9], [15, Pages 496–497], [66, Thm. 5.4.2], [19, Section 3.7] and [131,
Thm. 3.4.4]):
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Theorem 1.2.35 Let C be a curve on the smooth complex surface S. Define S0 := S

and π0 : S0 → S to be the identity. Assume that for some k ≥ 0 one has defined
a modification πk : Sk → S which is not an embedded resolution of C. Denote by
Bk ⊂ Sk the set of points at which either the strict transform of C is not smooth or
π∗k (C) is not a normal crossings divisor. Define ψk : Sk+1 → Sk to be the blow up
of Sk at the points of Bk and πk+1 := πk ◦ ψk : Sk+1 → S. Then there exists k ∈ N

such that πk is an embedded resolution of C.

If k is chosen minimal such that πk is an embedded resolution of C, then πk

is called the minimal embedded resolution of C. It may be shown that any other
embedded resolution of C factors through it.

The combinatorial structure of the total transform of C on a given embedded
resolution π̃ : S̃ → S of C is encoded usually by drawing its weighted dual graph:

Definition 1.2.36 Let C be a curve on the smooth complex surface S and π̃ :
S̃ → S be an embedded resolution of C. Its weighted dual graph is a finite
connected graph whose vertices are labeled by the irreducible components of the
total transform π̃∗(C), two vertices being connected by an edge whenever their
associated curves intersect on �. The vertices corresponding to the components
of the strict transform of C are drawn arrowheaded. The remaining vertices are
weighted by the self-intersection numbers on � of the associated irreducible
components of the exceptional locus of π .

How to compute the weights of the dual graph of the embedded resolution
π̃ : S̃ → S? If this resolution is obtained iteratively by the process described in The-
orem 1.2.35, then one may compute recursively the self-intersection numbers of the
components of the exceptional loci of the modifications πk using Corollary 1.2.28
and (see [131, Lemma 8.1.6]):

Proposition 1.2.37 Let C be a compact curve in the smooth complex surface S. Let
o be a point of C of multiplicity m ∈ N. If π : � → S is the blow up of S at o, then
the self-intersection C̃2 in � of the strict transform C̃ of C by π is related to the
self-intersection C2 of C in S by the formula C̃2 = C2 −m.

1.2.5 The Minimal Embedded Resolution of the Semicubical
Parabola

In this subsection we show how to achieve the minimal embedded resolution of the
semicubical parabola using the algorithm described in Theorem 1.2.35 and how to
compute its weighted dual graph using Proposition 1.2.37. It is an expansion of [61,
Example V.3.9.1].

The semicubical parabola is the curve P ↪→ C
2
x,y defined as the vanishing locus

of the polynomial p(x, y) := y2 − x3. The germ of P at the origin O is a branch
called sometimes the standard cusp. Due to the following Jacobian criterion (see
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[66, Theorem 4.3.6] for a generalization in arbitrary dimension and codimension),
the origin is the only singular point of P .

Theorem 1.2.38 (Jacobian criterion) Let C be a reduced curve in an open set
of C2

x,y , defined by a holomorphic function f : U → C. Then the singular locus
Sing(C) is the zero locus Z(f, ∂xf, ∂yf ).

We want to construct a sequence of blow ups which leads to an embedded
resolution of P by following the algorithm described in Theorem 1.2.35, whose
notations we use. Therefore, denote by π1 : S1 → C

2 the blow up of the origin

O0 := O of C2
x,y , instead of π : � → C

2 as in Definition 1.2.24. We use the

standard charts C2
u1,u2

and C
2
v1,v2

for computations on S1, the blow up morphism π1
being then described by the changes of variables (1.4). The total transform π∗1 (P )

of P by π1 is defined by the composition p ◦ π1, which is expressed as follows in
the two charts:

p(u1u2, u2) = u2
2(1− u3

1u2), p(v1, v1v2) = v2
1(v2

2 − v1). (1.6)

As the curve P is smooth outside the origin, its strict transform P1 by π1 is
also smooth outside the exceptional divisor. This strict transform intersects the
exceptional divisor π−1

1 (O) only in the chart C2
v1,v2

, because its equations in the
two charts are 1 − u3

1u2 = 0 and v2
2 − v1 = 0. The second equation is that of a

parabola, therefore it defines a smooth curve. This shows that the strict transform
P1 is everywhere smooth. Therefore, the restriction of the morphism π1 to the
curve P1 is a resolution of P , in the sense of Definition 1.2.34. But it is not an
embedded resolution in the sense of Definition 1.2.33, because the total transform
π∗1 (P ) is not a normal crossings divisor at the origin O1 of the chart C2

v1,v2
.

Indeed, the strict transform P1 ∩ C
2
v1,v2

= Z(v2
2 − v1) and the exceptional divisor

π−1
1 (O) ∩ C

2
v1,v2

= Z(v1) are tangent at O1.

Blow up now the point O1, getting a new surface S2 . Let ψ1 : S2 → S1 be

this blow up morphism. The preimage ψ−1
1 (C2

v1,v2
) of the chart C2

v1,v2
of S1 may be

covered by two charts C2
w1,w2

and C
2
z1,z2

, in which the morphism ψ1 is described by
the following analogs of Eqs. (1.4):

{
v1 = w1w2

v2 = w2,
and

{
v1 = z1

v2 = z1z2.
(1.7)

In order to cover completely the surface S2, one needs also the chart C2
u1,u2

of S1,
which is left unchanged by the blow up morphism ψ1 because O1 does not appear
in it.

Denote π2 := π1 ◦ ψ1 : S2 → C
2. Using Eqs. (1.6) we see that:

p◦π2(w1, w2) = w2
1w3

2(w2−w1), and p◦π2(z1, z2) = z3
1(z1z

2
2−1). (1.8)
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Therefore, the strict transform P2 of P1 by π2 intersects again the exceptional

divisor only in one of those charts, namely C
2
w1,w2

. The total transform π∗2 (P ) ↪→
S2 is still not a normal crossings divisor, because its germ at the origin O2 of

C
2
w1,w2

has three branches: Z(w1), Z(w2), Z(w2−w1), as shown by Eq. (1.8). One

needs to blow up also this point, getting the morphisms ψ2 : S3 → S2 and

π3 := π2 ◦ ψ2 : S3 → C
2. The blow up ψ2 may be described using the following

analogs of Eqs. (1.4) above the chart C2
w1,w2

:

{
w1 = s1s2

w2 = s2,
and

{
w1 = t1

w2 = t1t2.
(1.9)

Composing these changes of variables with the second Eq. (1.8), we get:

p ◦ π3(s1, s2) = s2
1s6

2 (1− s1), p ◦ π3(t1, t2) = t6
1 t3

2 (t2 − 1).

In both charts of S3 the total transform π∗3 (P ) is a normal crossings divisor.
This being the case also in the remaining charts C

2
u1,u2

and C
2
z1,z2

, we see that
π3 is an embedded resolution of singularities of the semicubical parabola P . By
Theorem 1.2.35, it is the minimal such resolution.

We illustrated the previous sequence of blow ups in Fig. 1.2. We drew whenever
possible the support of the total transform of P in the chart whose origin is contained
in the strict transform of P . In the four charts the strict transforms of P are drawn in
orange and the defining polynomial is written near it. We have used systematically
the same color for a point Oi which is blown up by a morphism ψi , for the
exceptional divisor Ei created by this blow up and for its strict transforms Ei,j

by the next blow ups. Notice that the component E0,2 appears on the chart C2
t1,t2

,

but it does not appear on the chart C2
s1,s2

, represented on the right of Fig. 1.2.
Let us compute now the weighted dual graph of π3. For every i ∈ {0, 1, 2},

denote by Ei ↪→ Si+1 the exceptional divisor of the blow up of the point Oi ∈ Si .

If 0 ≤ i < j ≤ 2, denote by Ei,j the strict transform of Ei on the surface Sj+1

by the modification ψj ◦ · · · ◦ ψi : Sj+1 → Si . By Corollary 1.2.28, one has E2
0 =

x

y Z (y2 − x 3)

O0 v1

v2
Z (v2

2 − v1)

O1

E0 E0,1

E1

w1

w2 Z (w2 − w1)

O2

E2

E1,2

s1

s2 Z (1 − s1)

π1 1 2

Fig. 1.2 Building iteratively the minimal embedded resolution of the semicubical parabola
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Fig. 1.3 The weighted dual
graph of the minimal
embedded resolution of the
semicubical parabola

−3 −1 −2
E0, 2 E2 E1, 2

Z (y2 − x 3)

E2
1 = E2

2 = −1. Equations (1.6) and (1.8) imply that O1 ∈ E0 and O2 ∈ E1∩E0,1,
because in the chart C2

v1,v2
one has E0,1 = Z(v1), O1 = (0, 0) and in the chart

C
2
w1,w2

one has E1 = Z(w2), E0,1 = Z(w1), O2 = (0, 0). Using Theorem 1.2.37,
we get E2

0,2 = E2
0 − 2 = −3 and E2

1,2 = E2
1 − 1 = −2. Therefore, the weighted

dual graph of the minimal embedded resolution π3 : S3 → C
2 of the semicubical

parabola P is as shown in Fig. 1.3. Near the arrowhead vertex corresponding to
the strict transform of P , we have written the defining function of the semicubical
parabola.

The previous computations involve many charts, therefore many variables and
changes of variables. It is easy to get lost in them. One feels the need of being able
to arrive at the final result, the weighted dual graph, without such manipulations.
In the next subsection we show how to achieve this goal by a simpler method,
without working with charts. We will explain the method using an apparently more
complicated example, with two branches. After reading it, we suggest the reader to
verify that in the case of the semicubical parabola, the method leads again to the
weighted tree of Fig. 1.3.

1.2.6 A Newton Non-degenerate Reducible Example

In this subsection we present on a simple example of Newton non-degenerate
plane curve singularity the notions of Newton polygon and Newton fan of a non-
zero function f (x, y) ∈ C[[x, y]]. Then we introduce the associated lotus and we
show how to construct from it the weighted dual graph of the minimal embedded
resolution of the given singularity. These notions are briefly introduced in this
section to illustrate our second elementary example and will be revisited formally
in Sects. 1.4 and 1.5.

Let (C, O) ↪→ (C2
x,y, O) be the plane curve singularity defined by the function:

f (x, y) := (y2 − 4x3)(y3 − x7). (1.10)

It is the sum of two branches, defined by the equations y2 − 4x3 = 0 and
y3−x7 = 0 respectively. Thinking of them as polynomial equations in the unknown
y, as explained in Sect. 1.2.3, they have degrees 2 and 3. Their respective sets of
roots are {±2x3/2} and {ωx7/3}, where ω varies among the complex cubic roots of
1. We could express readily in terms of x the roots of the equation f (x, y) = 0 seen
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as a quintic polynomial equation in the variable y, because we knew a factorization
of f (x, y) into binomial factors. Is it possible to reach the same objective if one
starts instead from the following expanded expression of f ?

f (x, y) = y5 − 4x3y3 − x7y2 + 4x10. (1.11)

By the Newton-Puiseux Theorem 1.2.20, we know a priori that the roots of
f (x, y) may be expressed as Newton-Puiseux series. Newton’s fundamental insight
was that one may always compute the leading terms of such series only by looking
at special terms of f (see the beginning of Sect. 1.4.5). Let us explain this insight in
the case of the polynomial (1.11), forgetting its factorization (1.10). Denote by cxν

the leading term (that is, the term of least degree) of such a series, where c ∈ C
∗

and ν > 0. We have the equality:

f (x, cxν + o(xν)) = 0. (1.12)

Using formula (1.11), this equality may be rewritten as:

(cxν + o(xν))5 − 4x3(cxν + o(xν))3 − x7(cxν + o(xν))2 + 4x10 = 0,

that is, as:
(
c5x5ν + o(x5ν)

)
+
(
−4c3x3+3ν + o(x3+3ν)

)
+
(
−c2x7+2ν + o(x7+2ν )

)
+ 4x10 = 0.

(1.13)

The left-hand side of this equation is a sum of four series, whose leading exponents
are 5ν, 3 + 3ν, 7 + 2ν, 10, since c = 0. The fundamental observation of Newton
was that if the sum (1.13) vanishes, then the minimal value of those four exponents
is reached at least twice.

Now, these four exponents may be expressed as the products (1, ν) · (a, b) :=
a + bν, where (a, b) varies among the exponents (a, b) ∈ N

2 of the monomials
xayb appearing in the expanded form (1.11) of f (x, y), that is, as the evaluations
of the linear form lν(a, b) := a + bν on the support S(f ) of the series f (x, y).
In our example the support is finite, but it may be infinite if one allows f to be a
power series in the variables x, y. It is at this point that convex geometry enters into
the game, through the following property (which is a consequence of [94, Assertion
III.1.5.2]):

Proposition 1.2.39 Let S be a subset of N2. If l is a linear form with non-negative
coefficients on R

2, then its restriction to S achieves its minimum precisely on the
subset of S lying on a face of the convex hull Conv(S+ R

2+).

Coming back to Eq. (1.13), we see that the linear form lν(a, b) =
a + bν, which computes the leading exponents of the terms appearing in
the left-hand side of (1.13), indeed has non-negative coefficients. Therefore,
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Fig. 1.4 The Newton
polygon of the series
f (x, y) = (y2−2x3)(y3−x7)

x

y

(10,0)

(0,5)

(3,3)

(7,2)

x 10

y5

x 3y3

x 7y2

K1

K2

the hypotheses of Proposition 1.2.39 are satisfied. This shows that the
minimal value min {5ν, 3+ 3ν, 7+ 2ν, 10} is achieved on a face of the convex
hull Conv(S(f ) + R

2+). This convex hull, called the Newton polygon N(f ) of
f ∈ C[[x, y]] (see Definition 1.4.2 below), is represented in Fig. 1.4. It has three
vertices, which are (0, 5), (3, 3), (10, 0), corresponding to the terms y5,−4x3y3

and 4x10 of the expansion (1.11). It has two compact edges K1 := [(0, 5), (3, 3)]
and K2 := [(3, 3), (10, 0)]. If the minimum is to be achieved at least twice on S(f ),
then it must be achieved on one of those two compact edges, because ν > 0. This
means that the linear form lν must be orthogonal to one of those compact edges.
There are therefore two possibilities:

• Either lν achieves its minimum on K1, which means that (1, ν) is orthogonal to
it. In other words (1, ν) ·(3−0, 3−5)= 0, that is, ν = 3/2. Writing that the sum
of the terms of the left-hand side of Eq. (1.13) whose leading exponents achieve
the minimum vanishes, one gets the equation c5 − 4c3 = 0. As c = 0, this is
equivalent to the equation c2 = 4, hence c = ±2.

• Or lν achieves its minimum on K2. In other words (1, ν) · (10 − 3, 0 − 3) = 0,
that is, ν = 7/3. One gets then the equation−4c3 + 4 = 0. That is, c varies now
among the cubic roots of 1.

It follows that the possible leading terms of a Newton-Puiseux series η in the
variable x such that f (x, η) = 0 belong to the union {±2x3/2} ∪ {ωx7/3 : ω3 = 1}.
One recognizes the roots from the factorization (1.10). Newton’s method shows that
those are the leading terms of the roots y(x) of the equation g(x, y) = 0, for any
g ∈ C[[x, y]]whose Newton polygon is the same as N(f ), and whose restrictions to
the compact sides of the polygon coincide with the analogous restrictions for f . Any
such function g defines a Newton non-degenerate singularity (see Definition 1.4.21
below), because both equations c2 = 4 and −4c3 + 4 = 0 obtained by restricting g

to the compact edges of its Newton polygon have simple roots. Variants of Newton’s
previous line of thought will be followed again in the proofs of Propositions 1.4.11
and 1.4.18 below.

In general, for any series f (x, y), once a first term cxν of a potential root of
f (x, y) = 0 is computed, one may perform a formal change of variables and
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compute a second term. Newton explained that one could compute as many terms
as needed, but it was Puiseux who proved carefully that by pushing this iterative
process to its limit, one gets true roots of the equation, which are Newton-Puiseux
series. Moreover, he proved that whenever one starts from a convergent function
f , one gets only roots of the form ξ(x1/p), where ξ(t) ∈ C[[t]] is convergent and
p ∈ N

∗. This approach leads to a proof of the Newton-Puiseux Theorem 1.2.20,
different from the one given above (see Remark 1.2.22).

Let us come back to our example. It turns out that in this Newton non-degenerate
case, the weighted dual graph of the minimal embedded resolution is determined by
the Newton polygon N(f ). In fact, one needs only the inclinations of its compact
edges. This information is encoded in the associated Newton fan, obtained by
subdividing the first quadrant along the rays orthogonal to the compact edges of
N(f ) (see the left side of Fig. 1.5 and Definition 1.4.9 below). Consider now inside
the first quadrant all the triangles with vertices f1, f2, f1 + f2, where (f1, f2)

is a basis of the ambient lattice Z
2. The edges of those triangles may be drawn

recursively by starting from the segment [e1, e2] which joins the elements of the
canonical basis (e1, e2) and, each time a new segment [f1, f2] is drawn, by drawing
also the segments [f1, f1 + f2] and [f2, f1 + f2]. If one performs this construction
only whenever the interior of the segment [f1, f2] intersects one of the rays of the
Newton fan, one gets its associated lotus, represented on the right side of Fig. 1.5.

In fact, one needs to attach to it new arrowhead vertices corresponding to the
branches of C, as shown in Fig. 1.6. In this figure the lotus was redrawn as an
abstract simplicial complex, without representing its precise embedding in the plane
R

2. This abstract simplicial structure is sufficient for seeing how it contains the
weighted dual graph of the minimal embedded resolution of the curve singularity
Z(xy(y2 − 4x3)(y3 − x7)) as part of its boundary. The self-intersection number of
an exceptional divisor is simply the opposite of the number of triangles containing
the vertex representing this divisor (compare Figs. 1.6 and 1.7).

p ( 7
3 )

p ( 3
2 )

e1

e2

Fig. 1.5 The Newton fan of f (x, y) = (y2 − 4x3)(y3 − x7) and its associated lotus
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Fig. 1.6 The lotus of
f (x, y) = (y2−4x3)(y3−x7)

Z (y ) Z (x )

Z (y3 − x 7)

Z (y2 − 4x 3)
−1

−2

−2

−5
−1

−3

Fig. 1.7 The weighted dual
graph of the minimal
embedded resolution of
Z(xyf (x, y))

−2 −2 −1 −5 −1 −3

Z (y3 − x 7) Z (y2 − 4x 3)Z (y ) Z (x )

In the sequel we will associate lotuses to any plane curve singularity C (see
Definition 1.5.26). The data needed to construct them will be a finite sequence
of Newton polygons generated by a toroidal pseudo-resolution algorithm (see
Algorithm 1.4.22). We will embed analogously inside them the weighted dual
graphs of associated embedded resolutions of completions of the curve (see
Definition 1.4.15 and Theorem 1.5.29). We will also explain the notions of fan
tree (see Definition 1.4.33), Enriques diagram (see Definition 1.4.31) and Eggers-
Wall tree (see Definition 1.6.3) of C or of an associated toroidal pseudo-resolution
process and we will show that they embed similarly in the corresponding lotus (see
Theorem 1.5.29).

1.3 Toric and Toroidal Surfaces and Their Morphisms

In this section we explain basic definitions and intuitions about toric and toroidal
varieties and their modifications, which will be used in the subsequent sections in the
study of plane curve singularities. Namely, fans are introduced in Definition 1.3.3,
affine toric varieties in Definition 1.3.14, their boundaries in Definition 1.3.18,
toric morphisms in Sect. 1.3.3, in particular the toric description of 2-dimensional
blow ups in Example 1.3.27 and the category of toroidal varieties in Sect. 1.3.4.
Section 1.3.5 contains historical information about the development of toric and
toroidal geometry and about its applications to the study of singularities.
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1.3.1 Two-Dimensional Fans and Their Regularizations

In this subsection we explain the basic notions of two-dimensional convex geometry
needed to define toric varieties in Sect. 1.3.2 and toric morphisms in Sect. 1.3.3:
lattices, rational cones and fans. For more details about toric geometry one may
consult the standard textbooks [37, 41, 91] and [26].

A lattice is a free Z-module of finite rank. A pair (a, b) ∈ Z
2 may be seen as

an instruction to build two kinds of objects: the Laurent monomial xayb and the
parametrized monomial curve t → (ta, tb). The fact that monomials and curves
are distinct geometrical objects indicates that it would be good to think also in two
ways about the pairs (a, b), that is, as coordinates of vectors relative to bases in
two different lattices. Those two lattices are not to be chosen independently of
each other. Indeed, given a monomial xayb and a parametrized monomial curve
t → (tc, td ), one may substitute the parametrization in the monomial, getting a new
monomial, this time in the variable t alone:

(xayb) ◦ (tc, td ) = tac+bd . (1.14)

This indicates that those two lattices should be seen as factors of the domain of
definition of the unimodular Z-valued bilinear form (a, b) · (c, d) := ac + bd , that
is, that they should be dual lattices.

In order to distinguish clearly the roles of these two lattices, one denotes them
usually by distinct letters, instead of simply writing for instance Z

2 and (Z2)∨. It
became traditional after the appearance of Fulton’s book [41] to denote by M the

lattice whose elements are exponents of monomials in several variables, and by N

the dual lattice, whose elements are thought as exponents of parametrized monomial
curves in the space of the same variables. It is important to allow for changes of
bases of those Z-modules, corresponding to monomial changes of variables of the
form x = uαvγ , y = uβvδ , for which the matrix of exponents is unimodular:

∣
∣
∣
∣
α γ

β δ

∣
∣
∣
∣ = ±1. (1.15)

This means that one does not have to fix identifications M = Z
2, N = Z

2, but
instead to allow those identifications to depend on the context. Note also that the
elements of N may be seen as weights for the variables x, y. That is, if (c, d) ∈ N ,
one gives the weight c to x and the weight d to y, which endows the monomial xayb

with the weight ac+bd appearing in the equality (1.14). For this reason, N is called
sometimes the weight lattice associated to the monomial lattice M .

We will call vectors the elements of a lattice. Those non-zero vectors which
cannot be written as non-trivial integral multiples of other lattice vectors are called
primitive. Any non-zero lattice vector w may be written uniquely in the form
lZ(w) w′, with lZ(w) ∈ N

∗ and w′ a primitive lattice vector.
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Definition 1.3.1 Let N be a lattice and w ∈ N \ {0}. The positive integer lZ(w) is
the integral length of w. We extend this definition to the whole lattice N by setting
lZ(0) := 0. For w1, w2 ∈ N , the integral length lZ[w1, w2] ∈ N of the segment
[w1, w2] is equal to lZ(w2 −w1) = lZ(w1 − w2).

If N is a lattice, denote by NR := N ⊗Z R the real vector space generated by
N . We will say that the elements of N are the integral points of the real vector
space NR. By a cone of N we will mean a convex rational polyhedral cone, that is,
a subset of NR of the form:

R+〈w1, . . . , wk〉 := R+w1 + · · · + R+wk,

where w1, . . . , wk ∈ N . If the cone does not contain a positive dimensional vector
subspace of NR, it is called strictly convex.

If the lattice N is of rank two, then the strictly convex cones are of three sorts,
according to their dimensions:

• The 2-dimensional cones are of the form R+〈w1, w2〉, where w1, w2 ∈ N are
non-proportional. In classical geometric terminology, they are strictly convex
angles with apex at the origin of NR.

• The 1-dimensional cones are the closed half-lines emanating from the origin; we
will call them rays.

• There is only one 0-dimensional cone: the origin of N .

As a particular case of a terminology used in any dimension, one speaks about
the faces of a given cone σ ⊆ NR: those are the subsets of σ on which the restriction
to σ of a linear form l ∈ N∨

R
= MR reaches its minimum. The faces of a strictly

convex 2-dimensional cone R+〈w1, w2〉 are the cone itself, its edges R+w1, R+w2
and the origin. The faces of a ray are the ray itself and the origin. Finally, the origin
has only one face, which is the origin itself.

Endowing the 2-dimensional lattice N with a basis (e1, e2) allows to speak of the
slope d/c ∈ R ∪ {∞} relative to (e1, e2) of any vector w = c e1 + d e2 ∈ NR \ {0}
or of the associated ray R+w. In terms of the coordinates (c, d), the integral length
lZ(w) of w is equal to the greatest common divisor gcd(c, d).

Notations 1.3.2 If the basis (e1, e2) of N is fixed and clear from the context, we
denote by:

σ0 := R+〈e1, e2〉 ⊆ NR

the cone generated by it. If λ ∈ Q+∪{∞}, we denote by p(λ) the unique primitive
element of the lattice N contained in the cone σ0, and which has slope λ.
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In the sequel it will be important to work with the following special sets of cones,
which are fundamental in toric geometry:

Definition 1.3.3 A fan of the lattice N is a finite set of strictly convex cones of N

which is closed under the operation of taking faces of its cones and such that the
intersection of any two of its cones is a face of each of them. The support |F| of

a fan F is the union of its cones. A fan F refines (or subdivides) another fan F ′ if
they have the same support and if each cone of F is contained in some cone of F ′. A
fan subdivides a cone σ if it subdivides the fan formed by its faces. We often denote
again by σ the fan formed by the faces of a cone σ , by a slight abuse of notation.

Let us complete the previous definition, valid in arbitrary rank, with terminology
and notations specific to rank two:

Definition 1.3.4 Let (e1, e2) be a basis of the lattice N of rank two and σ0 be the
associated cone R+〈e1, e2〉. Any fan F subdividing σ0 is determined by the finite set
of slopes E ⊂ Q

∗+ of its rays contained in the interior of σ0. In this case we denote

the fan by F(E) and we call it the fan of the set E. We extend the definition ofF(E)

to the case where E contains 0 or∞, by setting in this case F(E) := F(E \ {0,∞}).
If E = {λ1, . . . , λp}, we write also F(λ1, . . . , λp) instead of F(E).

Note that F(∅) is simply the fan consisting of the cone σ0 and its faces.

Definition 1.3.5 A cone of a lattice N is called regular if it can be generated by
elements which form a subset of a basis of N . A fan all of whose cones are regular
is called regular.

It is convenient to set R+〈∅〉 := {0}. This implies that {0} is also a regular cone.
Assume that a basis (e1, e2) of the lattice N is fixed. If f1 = αe1 + βe2 and

f2 = γ e1+ δe2 are two primitive vectors of N , then the cone R+〈f1, f2〉 generated
by them is regular if and only if the matrix of the pair (f1, f2) in the basis (e1, e2)

is unimodular, that is, the equality (1.15) holds.

Example 1.3.6 If E = {3/5, 2/1, 5/2}, then the rays of the fan F(E) are represented
in Fig. 1.8. On each ray of the fan which is distinct from the edges of the cone σ0, we
indicated by a small red disc the unique primitive element of the lattice N lying on it.
That is, on the ray of slope λ ∈ E is indicated the point p(λ). The fan F(E) contains
also 4 cones of dimension 2, which are R+〈e1, p (3/5)〉, R+〈p (3/5) , p (2/1)〉,
R+〈p (2/1) , p (5/2)〉, R+〈p (5/2) , e2〉. Using the unimodularity criterion above,
we see that R+〈p (2/1) , p (5/2)〉 is the only 2-dimensional cone of the fan F(E)

which is regular.

The following result is specific for lattices of rank two (see [91, Prop. 1.19]):

Proposition 1.3.7 If the lattice N is of rank two, any fan relative to N has a
minimal regular subdivision, in the sense that any other regular subdivision refines
it.
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Fig. 1.8 The fan
F (3/5, 2/1, 5/2) and the
points
p (3/5) , p (2/1) , p (5/2)

p ( 5
2 )

p ( 2
1 )

p ( 3
5 )

e1

e2

Proposition 1.3.7 motivates the following definition:

Definition 1.3.8 If F is a 2-dimensional fan, we denote by F reg its minimal
regular subdivision, and we call it the regularization of F.

The importance of the regularization operation in our context stems from the fact
that it allows to describe combinatorially the minimal resolution of a toric surface
(see Proposition 1.3.28 below). The regularization of a 2-dimensional cone may be
described in the following way (see [91, Proposition 1.19]):

Proposition 1.3.9 Let N be a lattice of rank two and let σ be a 2-dimensional
strictly convex cone of N . Then the regularization σ reg of the fan of its faces is
obtained by subdividing σ using the rays directed by the integral points lying on the
boundary of the convex hull of the set of non-zero integral points of σ . If F is a fan
of a lattice of rank two, then its regularization is the union of the regularizations of
its cones.

An alternative recursive description of σ reg was given by Mutsuo Oka in [94,
Chap. II.2].

Example 1.3.10 Let us consider again the fan F (3/5, 2/1, 5/2) of Example 1.3.6.
The rays of F reg (3/5, 2/1, 5/2)=F (1/2, 3/5, 2/3, 1/1, 2/1, 5/2, 3/1) are drawn
in green in Fig. 1.9. The thick orange polygonal line, on the right side of this figure,
is the union of compact edges of the boundaries of the convex hulls of the sets of
non-zero integral points of its 2-dimensional cones.
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e1

e2

e1

e2

Fig. 1.9 The regularization F reg (3/5, 2/1, 5/2) of the fan of Fig. 1.8

1.3.2 Toric Varieties and Their Orbits

In this subsection we explain in which way fans determine special kinds of complex
algebraic varieties, called toric varieties. Namely, every rational polyhedral cone
relative to a lattice determines a monoid algebra (see Definition 1.3.11), whose
maximal spectrum is an affine toric variety (see Definition 1.3.14). More generally,
every fan determines a toric variety by gluing the affine toric varieties associated to
its cones (see Definition 1.3.15).

One associates with a lattice N of rank n the following complex algebraic torus
of dimension n (that is, an algebraic group isomorphic to

(
(C∗)n, ·)):

TN := N ⊗Z C
∗. (1.16)

Here the factors are considered as abelian groups (N,+) and (C∗, ·), therefore they
are endowed with canonical structures of Z-modules, relative to which is taken the
previous tensor product. This algebraic torus may be also described in terms of the
dual lattice M of N , defined by:

M := Hom (N,Z).

Namely, one has:

TN = Hom(M,C∗). (1.17)
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Equations (1.16) and (1.17) allow in turn to give the following interpretations of the
lattices N and M in terms of morphisms of algebraic groups:

N = Hom(C∗,TN) =
= the group of one parameter subgroups of TN ;

M = Hom(TN,C∗) =
= the group of characters of TN .

(1.18)

If w ∈ N is seen as an element of the lattice N , we denote by tw the same element
seen as a morphism of abelian groups from C

∗ to TN .
Let us explain this notation in the case when N has rank 2. If t is viewed as the

parameter on the source C∗ and one identifies TN with (C∗)2 using the basis (e1, e2)

of N , then the morphism becomes the following map from C
∗ to (C∗)2:

t → (tc, td ).

Here (c, d) denote as before the coordinates of w in the chosen basis (e1, e2)

of N . One gets therefore a parametrized monomial curve as at the beginning of
Sect. 1.3.1. The advantage of seeing it as an element of Hom(C∗,TN) is that one
gets a viewpoint independent of the choice of coordinates for TN , that is, of bases
for M or for N .

It is customary to say that a morphism tw ∈ Hom (C∗,TN) is a one parameter
subgroup of TN , even when this morphism is not injective. Note that tw is injective
if and only if w is a primitive element of N . In general, when w ∈ N \ {0}, the map
tw is a cyclic covering of its image, of degree lZ(w) (see Definition 1.3.1). Note also
that t0 is the constant map with image the unit element 1 of the group TN .

We introduced the notation tw in order to be able to distinguish between N seen
as an abstract group, and seen as the lattice of one parameter subgroups of TN . In an

analogous way, if m ∈ M , one uses the notation χm : TN → C
∗ for its associated

character, in order to distinguish between M seen as an abstract group and seen as
the lattice of characters of TN . If one denotes by w ·m ∈ Z the result of applying
the canonical duality pairing N ×M → Z to (w, m) ∈ N ×M , then the composite
morphism χm ◦ tw : C∗ → C

∗ is simply given by t → tw·m. This is the intrinsic
description of the composition performed in formula (1.14).

Let us see more precisely how the choice of basis (e1, e2) of N determines an
isomorphism TN � (C∗)2. To have such an isomorphism amounts to choosing
a special pair (x, y) of regular functions on TN , which are the pull-backs of
the coordinate functions on (C∗)2. This isomorphism should be not only an
isomorphism of algebraic surfaces, but also of groups. As the coordinate functions
on (C∗)2 are characters of

(
(C∗)2, ·), that is, elements of Hom((C∗)2,C∗), we

deduce that x, y are also characters, this time of (TN, ·). It means that they are
elements of the lattice M (see the equalities (1.18)). In which way does the basis
(e1, e2) of N determine a pair of elements of M? Well, this pair is simply the dual
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basis (ε1, ε2) of (e1, e2)! Therefore, one has (x, y) = (χε1, χε2) in terms of the

dual basis (ε1, ε2) ∈ M2 of (e1, e2) ∈ N2.
The choice of coordinates (x, y) allows to embed the torus TN into the affine

plane C
2 with the same coordinates. The coordinate ring of this affine plane is of

course C[x, y]. In our context it is important to interpret this ring as the C-algebra of
the commutative monoid of monomials with non-negative exponents in the variables
x and y. This monoid is isomorphic (using the map m → χm) to the monoid
R+〈ε1, ε2〉 ∩ M . In turn, the cone R+〈ε1, ε2〉 is in the following sense the dual
cone of σ0 := R+〈e1, e2〉:
Definition 1.3.11 Let σ be a cone of N . Its dual is the cone σ∨ of M defined by:

σ∨ := {m ∈ MR, w ·m ≥ 0 for all w ∈ σ },

and its associated monoid algebra is the C-algebra of the abelian monoid (σ∨ ∩
M,+):

C[σ∨ ∩M] :=
{
∑

finite

cmχm , m ∈ σ∨ ∩M and cm ∈ C

}

.

Note that σ is strictly convex if and only if the dimension of σ∨ is equal to the
rank of the lattice M . The C-algebra C[σ∨ ∩ M] is finitely generated, since the
monoid (σ∨ ∩ M,+) is finitely generated by Gordan’s Lemma (see [41, Section
1.1, Proposition 1]).

The set C2 with coordinates (x, y) may now be interpreted in the two following
ways:

C
2
x,y = the maximal spectrum of the ring C[σ∨0 ∩M] =

= Hom(σ∨0 ∩M,C).

(1.19)

The last set of homomorphisms is taken in the category of abelian monoids, where
C is considered as a monoid with respect to multiplication. This interpretation is
obtained by looking at the evaluation of the monomials χm, with m ∈ σ∨0 ∩M , at
the points of C2.

The equalities (1.19) may be turned into a general way to associate a complex
affine variety to a cone σ of N , in arbitrary dimension:

Xσ := the maximal spectrum of C[σ∨ ∩M] =
= Hom(σ∨ ∩M,C).

(1.20)
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The equalities (1.19) show that Xσ0 = C
2
x,y , if x = χε1 and y = χε2 . Therefore,

the affine variety Xσ0 is smooth. The following proposition characterizes the cones
for which the associated variety is smooth (see [41, Section 2.1, Proposition 1]):

Proposition 1.3.12 Let σ be a strictly convex cone of the lattice N . Then the affine
variety Xσ is smooth if and only if σ is regular in the sense of Definition 1.3.5.

In the sequel, by a stratification of an algebraic variety we mean a finite partition
of it into locally closed connected smooth subvarieties, called the strata of the
stratification, such that the closure of each stratum is a union of strata.

Consider the following stratification of Xσ0 = C
2
x,y:

C
2
x,y = {0} � (C∗x × {0}

) �
(
{0} × C

∗
y

)
� (C∗)2

x,y. (1.21)

One may interpret in the following way its strata in terms of vanishing of monomials
whose exponents belong to σ∨0 ∩M = N〈ε1, ε2〉:
• 0 is the only point of C2

x,y at which vanish exactly the monomials with exponents
in
(
σ∨0 \ {0}) ∩M .

• C
∗
x × {0} is the set of points of C2

x,y at which vanish exactly the monomials with
exponents in

(
σ∨0 \ R+ε1

) ∩M .
• {0} × C

∗
y is the set of points of C2

x,y at which vanish exactly the monomials with
exponents in

(
σ∨0 \ R+ε2

) ∩M .
• (C∗)2

x,y = TN is the set of points of C2
x,y at which vanish no monomials, that is,

at which vanish exactly the monomials with exponents in
(
σ∨0 \ σ∨0

) ∩M .

Note that the sets of exponents of monomials appearing in the previous list are
precisely those of the form

(
σ∨0 \ τ

) ∩M , where τ varies among the faces of the
cone σ∨0 . It is customary in toric geometry to express them in a dual way, using the
following bijection between the faces of σ and of σ∨, valid in all dimensions for
(not necessarily rational) convex polyhedral cones σ (see [26, Proposition 1.2.10]):

Proposition 1.3.13 Let σ be a cone of NR. Then the map ρ → ρ⊥ ∩ σ∨ is an
order-reversing bijection from the set of faces of σ to the set of faces of σ∨ (see
Fig. 1.10).

Here ρ⊥ := {m ∈ MR, w ·m = 0 for all w ∈ ρ} denotes the orthogonal of the
cone ρ of N . It is a real vector subspace of MR, which may be characterized as the
maximal vector subspace of the convex cone ρ∨.

The stratification (1.21) of C2 is a particular case of a stratification of any affine
variety of the form Xσ . In order to define it, one associates with each point p of Xσ

the subset of σ∨∩M formed by the exponents of the monomials vanishing at p. This
defines a function from Xσ to the power set of σ∨ ∩M , whose levels are precisely
the strata of the stratification of Xσ . The set of strata is in bijective correspondence
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Fig. 1.10 The bijection between the faces of σ and σ∨

with the set of faces of σ , the stratum Oρ corresponding to the face ρ of σ being:

Oρ :=
{
p ∈ Hom(σ∨ ∩M,C), p−1(0) = (σ∨ \ ρ⊥) ∩M

}
. (1.22)

In particular, O{0} = TN is the only stratum whose dimension is the same as the
dimension of Xσ . This shows that the torus TN embeds naturally as an affine
open set in the affine surface Xσ . For this reason, the following vocabulary was
introduced:

Definition 1.3.14 If N is a lattice and σ is a strictly convex cone of N , then the
variety Xσ defined by the equalities (1.20) is called an affine toric variety.

Note that for Xσ0 = C
2
x,y , the strata are:

• Oσ0 = {0};
• OR+e2 = C

∗
x × {0};

• OR+e1 = {0} × C
∗
y ;

• O{0} = (C∗)2
x,y = TN .

One may feel difficult to remember the second and third equalities, a common error
at the time of doing computations being to permute them. A way to remember them
is the following: the orbit corresponding to an edge of a 2-dimensional regular
cone is the complement of the origin in the axis of coordinates of C2 defined by the
vanishing of the dual variable. In our case, the dual variable of the edge R+e1 is
x = χε1 , whose 0-locus is the axis of the variable y, and conversely.

The notation Oρ is motivated by the fact that this subset of Xσ is an orbit of a
natural action of the algebraic torus TN on Xσ . For Xσ0 = C

2
x,y , case in which one

may also identify TN with (C∗)2
u,v , this action is given by (u, v) ·(x, y) := (ux, vy).

In general, the action of TN on Xσ may be described in intrinsic terms by:

(M
τ→ C

∗) · (σ∨ ∩M
p→ C) := (σ∨ ∩M

τ ·p−→ C).
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In the previous equation we used again the interpretations of the points of TN and
Xσ as morphisms of monoids (see Eqs. (1.17) and (1.20)).

Assume now that F is a fan of N , in the sense of Definition 1.3.3. Each affine
toric variety Xσ , where σ ∈ F, contains the torus TN as an affine open set. If σ and
τ are two cones of F, then one has a natural identification of their respective tori,
and also of their larger Zariski open subsets Xσ∩τ ⊂ Xσ and Xσ∩τ ⊂ Xτ . If one
glues the various affine toric varieties (Xσ )σ∈F using the previous identifications,
one gets an abstract separated complex algebraic variety XF which still contains the
torus TN as an affine open subset (see [91, Theorem 1.4 and 1.5]).

Definition 1.3.15 The toric variety associated with a fan F of a lattice N is the
variety XF constructed above.

Remark 1.3.16 All toric varieties constructed from fans are normal in the sense of
Definition 1.2.11 (see [26, Theorem 1.3.5]). One has a more general notion of toric
variety, which includes some non-normal varieties as well (see the paper [56] of
Teissier and the second author). Those varieties can be described as before by gluing
maximal spectra of algebras of not necessarily saturated finite type submonoids of
lattices, the normal ones being precisely the toric varieties associated with a fan of
Definition 1.3.15.

As a consequence of Proposition 1.3.12, one has a smoothness criterion for toric
varieties:

Proposition 1.3.17 Let F be a fan of the lattice N . Then the toric variety XF is
smooth if and only if F is regular in the sense of Definition 1.3.5.

Let us come back to a fan F of a weight lattice N . When ρ varies among the
cones of F, the actions of the torus TN on the affine toric varieties Xρ glue into
an action on XF, whose orbits are still denoted by Oρ . The conservation of the
notation (1.22) is motivated by the fact that in the gluing of Xσ and Xτ , the orbits
denoted Oρ on both sides get identified, for every face ρ of σ ∩ τ . If ρ is a cone of

the fan F, we denote by Oρ the closure in XF of the orbit Oρ . The orbit closure

Oρ has also a natural structure of normal toric variety (see [41, Chapter 3]).
The torus TN is identified canonically with the orbit O0 corresponding to the

origin of NR, seen as a cone of dimension 0. Its complement is the union of all the
orbits of codimension at least 1. Let us introduce a special name and notation for
this complement:

Definition 1.3.18 Let XF be a toric variety defined by a fan F. Its boundary ∂XF
is the complement of the algebraic torus TN inside XF.

The boundary ∂XF is a reduced Weil divisor inside XF, whose irreducible

components are the orbit closures Oρ corresponding to the cones ρ of F which
have dimension 1, that is, to the rays of the fan F.
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1.3.3 Toric Morphisms and Toric Modifications

In this subsection we define the notion of toric morphism between toric varieties
(see Definition 1.3.19) and we explain in which way refining a fan defines a special
kind of toric morphism, called a toric modification (see Proposition 1.3.21). In
Examples 1.3.26 and 1.3.27 we explain how to do concrete computations of toric
modifications in dimension two, the second one giving a toric presentation of the
blow ups of the origin. Finally, Proposition 1.3.28 explains the combinatorics of the
minimal resolution of a normal affine toric surface.

Assume that N1 and N2 are two weight lattices, endowed with cones σ1 and σ2.
Let φ : N1 → N2 be a morphism of lattices which sends the cone σ1 into the cone
σ2. Using the second interpretation in the equalities (1.20) of the points of affine
toric varieties, we see that φ induces an algebraic morphism between the associated
toric varieties:

ψ
σ1
σ2,φ : Xσ1 → Xσ2

p1 → p1 ◦ φ∨
. (1.23)

One sees immediately from the definitions that the adjoint φ∨ : M2 → M1 of
φ maps σ∨2 into σ∨1 , which shows that the composition p1 ◦ φ∨ belongs indeed to
Xσ2 = Hom(σ∨2 ∩M2,C) whenever p1 ∈ Xσ1 = Hom(σ∨1 ∩M1,C). The morphism
ψ

σ1
σ2,φ may be also described using the first interpretation in the equalities (1.20), as

the morphism of affine schemes induced by the morphism of C-algebras C[σ∨2 ∩
M2] → C[σ∨1 ∩M1] which sends each monomial χm2 ∈ σ∨2 ∩M2 to the monomial
χφ∨(m2) ∈ σ∨1 ∩M1.

Assume now that N1 and N2 are endowed with fans F1 and F2 respectively, such
that φ sends each cone of F1 into some cone of F2. We say that φ is compatible
with the two fans. It may be checked formally that the previous morphisms
ψ

σ1
σ2,φ : Xσ1 → Xσ2 , for all the pairs (σ1, σ2) ∈ F1 × F2 which verify that

φ(σ1) ⊆ σ2, glue into an algebraic morphism: ψ
F1

F2,φ
: XF1

→ XF2
. This

morphism is moreover equivariant with respect to the actions of TN1 and TN2 on
XF1

and XF2
respectively. For this reason, one uses the following terminology:

Definition 1.3.19 If the morphism of lattices φ : N1 → N2 sends every cone of

F1 into some cone of F2, then the morphism of algebraic varieties ψ
F1

F2,φ
: XF1

→
XF2

described above is called the toric morphism associated with φ and the fans
F1, F2 .

The toric morphism ψ
F1

F2,φ
sends the torus TN1 = XF1

\ ∂ XF1
into TN2 =

XF2
\ ∂ XF2

. This fact implies the following property of toric morphisms relative
to the boundaries of their sources and targets, in the sense of Definition 1.3.18:
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Proposition 1.3.20 Let ψ : XF1
→ XF2

be the toric morphism associated with φ

and the fans F1 and F2. Then ψ−1(∂ XF2
) ⊆ ∂ XF1

.

Toric morphisms have the following properties (see [91, Theorems 1.13, 1.15]):

Proposition 1.3.21 Let N1, N2 be two lattices and F1,F2 be fans of N1 and N2
respectively. Let φ : N1 → N2 be a lattice morphism compatible with the two fans.
Then:

1. The morphism ψ
F1

F2,φ
is birational if and only if φ is an isomorphism of lattices.

2. The morphism ψ
F1

F2,φ
is proper if and only if the R-linear map φR : (N1)R →

(N2)R sends the support of F1 onto the support of F2.

In particular, ψ
F1

F2,φ
is a modification in the sense of Definition 1.2.31 if and only if

φ is an isomorphism and, after identifying N1 and N2 using it, the fan F1 refines the
fan F2 in the sense of Definition 1.3.3.

We will consider most of the time the particular case in which N1 = N2 = N

is a lattice of rank 2 and φ is the identity. Then, if σ ⊂ σ0 is a subcone of σ0, we
denote by ψσ

σ0
the birational toric morphism induced by the identity:

ψσ
σ0

: Xσ → Xσ0 = C
2
x,y. (1.24)

When σ varies among all the cones of a fan F which subdivides the cone σ0, the
morphisms ψσ

σ0
glue into a single equivariant birational morphism:

ψF
σ0

: XF → Xσ0 = C
2
x,y. (1.25)

By Proposition 1.3.21, this morphism is also proper, because F and σ0 have the

same support. Therefore, ψF
σ0

is a modification of C2
x,y .

The strict transform of L := Z(x) (resp. of L′ := Z(y)) by the modification

ψF
σ0

is the orbit closure OR+e1 (resp. OR+e2 ) in XF. The preimage of 0 ∈ C
2
x,y ,

called the exceptional divisor of ψF
σ0

, and the preimage of the sum L + L′ of the
coordinate axes, which is the total transform of L+ L′ are:

(ψF
σ0

)−1(0) = Oρ1 + · · · +Oρk ,

(ψF
σ0

)−1(L+ L′) = OR+e1 +Oρ1 + · · · +Oρk +OR+e2,
(1.26)

where ρ1, . . . , ρk denote the rays of F contained in the interior of σ0, labeled as
in Fig. 1.11. Note that L + L′ = ∂Xσ0 and (ψF

σ0
)−1(L + L′) = ∂XF, which is a

particular case of Proposition 1.3.21.
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Recall now the following classical notion of (unweighted) dual graph, which
extends that of Definition 1.2.36 and whose historical evolution was sketched by the
third author in [104]:

Definition 1.3.22 A simple normal crossings curve is a reduced abstract complex
curve whose irreducible components are smooth and whose singularities are normal
crossings, that is, analytically isomorphic to the germ at the origin of the union
of coordinate axes of C2. The dual graph of a simple normal crossings curve D

is the abstract graph whose set of vertices is associated bijectively with the set
of irreducible components of D, the edges between two vertices corresponding
bijectively with the intersection points of the associated components of D. Each
vertex or edge is labeled by the corresponding irreducible component or point of D.

Remark 1.3.23 Let σ = R+〈f1, f2〉 ⊂ NR be a strictly convex cone of dimension
two, not necessarily regular. One may check that the boundary ∂Xσ = OR+f1 +
OR+f2 of the affine toric surface Xσ is an abstract simple normal crossings curve,
according to Definition 1.3.22.

The dual graph of the total transform (ψF
σ0

)−1(L+ L′) may be embedded in the
cone σ0 ⊆ NR:

Proposition 1.3.24 Let F be a fan which subdivides the regular cone σ0. Then the
dual graph of the divisor (ψF

σ0
)−1(L + L′) is a segment with extremities L and L′

and with k intermediate points labeled in order by Oρ1, . . . , Oρk from L to L′. That
is, it is isomorphic to the segment [e1, e2] ⊂ NR, marked with its intersection points
with the rays of F, the point [e1, e2] ∩ ρi being labeled by the orbit closure Oρi .

Therefore, the rays of the fan F correspond bijectively to the irreducible
components of the total transform (ψF

σ0
)−1(L + L′) of L + L′. The 2-dimensional

cones of F correspond to the fixed points of the torus action, which are the only
possible singular points of the surface XF. The orbit closures Oρ and Oρ′ intersect
at a point q ∈ XF if and only if the cone ρ+ρ′ is a 2-dimensional cone ofF and then
q is the unique orbit Oρ+ρ′ of dimension 0 of the affine toric surface Xρ+ρ′ ⊂ XF.
The point q is singular on the surface XF if and only if the cone ρ+ρ′ is not regular.

Example 1.3.25 For the fan F (3/5, 2/1, 5/2) of Fig. 1.8 discussed in Exam-
ple 1.3.6, the total transform (ψF

σ0
)−1(L + L′) and its dual graph are represented

in Fig. 1.11. The 4 singular points of the total transform are also singular on the
surface XF, with the exception of Oρ2 ∩Oρ3 . Indeed, the cone ρ2 + ρ3 is the only
regular 2-dimensional cone of the fan F, as may be seen in Fig. 1.9.

Example 1.3.26 Let us explain how to describe in coordinates the morphism ψσ
σ0

of (1.24), when σ is a regular subcone of σ0. Denote by f1, f2 the primitive
generators of the edges of σ , ordered in such a way that the bases (e1, e2) and
(f1, f2) define the same orientation of NR (see Fig. 1.12). Decompose (f1, f2) in
the basis (e1, e2), writing f1 = αe1 + βe2 and f2 = γ e1 + δe2. This means that the
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Fig. 1.11 The dual graph of the total transform (ψF
σ0

)−1(L+ L′)

Fig. 1.12 The toric morphism defined by the two regular cones of Example 1.3.26

unimodular matrix of change of bases from (f1, f2) to (e1, e2) is:
(

α γ

β δ

)

. (1.27)

Denote by (ϕ1, ϕ2) ∈ M2 the dual basis of (f1, f2) and by
{

u := χϕ1 = xδy−γ

v := χϕ2 = x−βyα,
(1.28)
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the associated coordinates. Then, in terms of the identifications Xσ = C
2
u,v and

Xσ0 = C
2
x,y , the morphism ψσ

σ0
is given by the following monomial change of

coordinates (compare the disposal of exponents with the matrix (1.27)):

{
x = uαvγ

y = uβvδ.
(1.29)

Note that the system (1.28) implies that the expression of v = χϕ2 as a monomial
in x and y is determined only by f1, being independent of the choice of f2. This
may be explained geometrically. Indeed, as f1 ·ϕ2 = 0, we see that ϕ2 belongs to the
line f⊥1 orthogonal to f1. As ϕ2 may be completed into a basis of M , it is primitive,
which determines it up to sign. This sign ambiguity is lifted by the constraint that
the basis (f1, f2) determines the open half-plane bounded by the line Rf1 on which
ϕ2 has to be positive. Note also that v is a coordinate on the orbit OR+f1 determined
by the edge R+f1 of σ . This coordinate determines an isomorphism OR+f1 � C

∗
v

of complex tori, and depends only on R+f1, since the orbit OR+f1 can be realized
as a subspace of the surface XR+f1 by formula (1.22) above.

Example 1.3.27 In this example we use the explanations given in Example 1.3.26.
Let F be the fan obtained by subdividing σ0 = R+〈e1, e2〉 using the half-line ρ gen-
erated by e1 + e2. It has two cones of dimension 2, denoted σ1 := R+〈e1, e1 + e2〉
and σ2 := R+〈e1 + e2, e2〉 (see Fig. 1.13). Then the toric morphism ψF

σ0
may be

described by its two restrictions ψ
σ1
σ0 and ψ

σ2
σ0 . The matrices of change of bases

from (e1, e1+ e2) and (e1+ e2, e2) to (e1, e2) respectively are

(
1 1
0 1

)

and

(
1 0
1 1

)

.

Denoting by (u1, u2) and (v1, v2) the coordinates corresponding to the dual bases
of (e1, e1 + e2) and (e1 + e2, e2), the general formulas (1.27) and (1.29) show that

Fig. 1.13 The subdivision of
Example 1.3.27, defining the
toric blow up of the origin of
C

2
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the morphisms ψ
σ1
σ0 and ψ

σ2
σ0 are given by the following changes of variables:

{
x = u1u2

y = u2,
and

{
x = v1

y = v1v2.
(1.30)

We get the same expressions as in Eqs. (1.4). This shows that ψF
σ0

is a toric

representative of the blow up morphism of C2
x,y at the origin!

Let σ be a non-regular cone of the weight lattice N of rank two. By Proposi-
tion 1.3.12, the affine toric surface Xσ is not smooth. In fact, it has only one singular
point, the orbit Oσ of dimension 0. Being of dimension 2, Xσ admits a minimal
resolution, that is, a resolution through which factors any other resolution (recall
that this notion was explained in Definition 1.2.34). It turns out that this minimal
resolution may be given by a toric morphism, defined by the regularization of σ in
the sense of Definition 1.3.8 (see [91, Proposition 1.19]):

Proposition 1.3.28 Let σ be a non-regular cone of the weight lattice N of rank
two. Denote by σ reg the regularization of the fan formed by the faces of σ . Then
the toric modification ψσreg

σ : Xσreg → Xσ is the minimal resolution of Xσ . As a

consequence, for any fan F of N , the toric modification ψF reg

F : XF reg → XF is
the minimal resolution of XF.

1.3.4 Toroidal Varieties and Modifications in the Toroidal
Category

In this subsection we explain analytic generalizations of toric varieties and toric
morphisms: the notions of toroidal variety and morphism of toroidal varieties (see
Definition 1.3.29). Then we introduce the notion of cross on a smooth germ of
surface (see Definition 1.3.31), and we explain how to attach to a cross a canonical
oriented regular cone in a two-dimensional lattice (see Definition 1.3.32) and how
each subdivision of this cone determines a canonical modification in the toroidal
category (see Definition 1.3.33). The toroidal pseudo-resolutions of plane curve
singularities introduced in Sect. 1.4.2 below will be constructed as compositions
of such toroidal modifications.

Toric surfaces and morphisms are not sufficient for the study of plane curve
singularities for the following reasons. One starts often from a germ of curve on
a smooth complex surface which does not have a preferred coordinate system. It
may be impossible to choose a coordinate system such that the germ of curve gets
resolved by only one toric modification relative to the chosen coordinates (if the
curve singularity is reduced and such a resolution is possible, then one says that the
singularity is Newton non-degenerate, see Definition 1.4.21 below). Instead, what
may be always achieved is a morphism of toroidal surfaces, in the following sense:
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Definition 1.3.29 A toroidal variety is a pair (�, ∂�) consisting of a normal
complex variety � and a reduced divisor ∂� on � such that the germ of (�, ∂�)

at any point p ∈ � is analytically isomorphic to the germ of a pair (Xσ , ∂Xσ ) at a
point of Xσ , where ∂Xσ denotes the boundary of the affine toric variety Xσ in the
sense of Definition 1.3.18. Such an isomorphism is called a toric chart centered at
p of the toroidal variety (�, ∂�). The divisor ∂� is the boundary of the toroidal
variety.

A morphism ψ : (�2, ∂�2) → (�1, ∂�1) between toroidal varieties is a
complex analytic morphism ψ : �2 → �1 such that ψ−1(∂�1) ⊆ ∂�2. The
morphism ψ is a modification if the underlying morphism of complex varieties
is a modification in the sense of Definition 1.2.31.

Toroidal varieties with their morphisms define a category, called the toroidal
category.

The previous definition implies that if (�, ∂�) is toroidal, then the complement
� \ ∂� is smooth. Indeed, the point p is allowed to be taken outside the boundary
∂�, and the definition shows then that the germ of � at p is analytically isomorphic
to the germ of a toric variety at a point of the associated torus, which is smooth.

If � is of dimension two and if p is a smooth point of ∂�, then p is a smooth
point of �, since the germ of � at p is analytically isomorphic to the germ of
a normal toric surface at a point belonging to a 1-dimensional orbit, which is
necessarily smooth.

Proposition 1.3.20 implies that a toric morphism ψ
F1

F2,φ
: XF1

→ XF2
becomes

an element of the toroidal category if one looks at it as a complex analytic morphism
from the pair (XF1

, ∂XF1
) to the pair (XF2

, ∂XF2
), the boundaries being taken in

the sense of Definition 1.3.18.

Remark 1.3.30 There exists also a more restrictive notion of toroidal morphism
ψ : (�2, ∂�2) → (�1, ∂�1) between toroidal varieties. By definition, such a
morphism becomes monomial in the neighborhood of any point p of �2, after
some choice of toric charts at the source and the target, centered at p and ψ(p)

respectively. Toroidal morphisms belong to the toroidal category, but the converse
is not true. For instance, take two copies C2

u,v and C
2
x,y of the complex affine plane

and the affine morphism ψ : C
2
u,v → C

2
x,y defined by x = u, y = u(1 + v).

Consider the plane C2
u,v as a toroidal surface with boundary equal to the union of its

coordinate axes, and C
2
x,y as a toroidal surface with boundary equal to the y-axis. As

ψ−1(∂C2
x,y) ⊆ ∂C2

u,v , ψ is a morphism of toroidal varieties. But it is not a toroidal
morphism. Otherwise, it would become the morphism (u, v) → (u, u) after analytic
changes of coordinates in the neighborhoods of the origins of the two planes, which
is impossible, because ψ is birational, therefore dominant.

Let us come back to the case of a smooth germ of surface (S, o).
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Definition 1.3.31 A cross on the smooth germ of surface (S, o) is a pair (L, L′) of
transversal smooth branches on (S, o). A local coordinate system (x, y) on (S, o) is
said to define the cross (L, L′) if L = Z(x) and L′ = Z(y).

We chose the name cross by analogy with the denomination normal crossings
divisor (see Definition 1.2.32). Note the subtle difference between the two notions:
the pair (L, L′) is a cross if and only if L+L′ is a normal crossings divisor, but the
knowledge of the divisor does not allow to remember the order of its branches.

Definition 1.3.32 Let (L, L′) be a cross on (S, o). We associate with it the two-
dimensional lattice ML,L′ of integral divisors supported by L ∪ L′, called the

monomial lattice of the cross (L, L′). The weight lattice of the cross (L, L′) is
the dual lattice NL,L′ of ML,L′ . Denote by (εL, εL′) the basis εL := L, εL′ :=
L′ of ML,L′ , by (eL, eL′) the dual basis of NL,L′ , and by σ

L,L′
0 the cone

R+〈eL, eL′ 〉. When the cross (L, L′) is clear from the context, we often write simply
(ε1, ε2) , (e1, e2) and σ0 instead of (εL, εL′), (eL, eL′) and σ

L,L′
0 respectively.

Each time we choose local coordinates (x, y) defining the cross (L, L′), we
identify ML,L′ with the lattice of exponents of monomials in those coordinates.
That is, aε1 + bε2 corresponds to xayb. Such a choice of coordinates also identifies
holomorphically a neighborhood of o in S with a neighborhood of the origin in
C

2 and the cross (L, L′) with the coordinate cross in C
2 at the origin. Therefore,

any subdivision F of σ0 defines an analytic modification ψF
L,L′ : SF → S of

S. As these modifications are isomorphisms over S \ {o}, it is easy to see that
they are independent of the chosen coordinate system (x, y) defining (L, L′), up to
canonical analytical isomorphisms above S. Moreover, if we define ∂S := L + L′

and ∂SF := (ψF
L,L′)

−1(L+L′), the morphism ψF
L,L′ becomes a morphism from the

toroidal surface (SF, ∂SF) to the toroidal surface (S, ∂S).

Definition 1.3.33 If F is a fan subdividing the cone σ0 ⊂ NL,L′ , then the morphism
of the toroidal category

ψF
L,L′ : (SF, ∂SF) → (S, L+ L′)

associated with F is the modification of S associated with F relative to the cross
(L, L′).

When the fan F is regular, the morphism ψF
L,L′ between the underlying complex

surfaces (forgetting the toroidal structures) is a composition of blow ups of points

(see Definition 1.2.29). We will explain the structure of this decomposition of ψF
L,L′

in Sect. 1.5 (see Propositions 1.5.10, 1.5.11).
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1.3.5 Historical Comments

Toric varieties were called torus embeddings at the beginning of the development
of toric geometry in the 1970s, following the terminology of Kempf, Knudsen,
Mumford and Saint-Donat’s 1973 book [71], as these are varieties into which an
algebraic torus embeds as an affine Zariski open subset. The introduction of the book
[71] contains information about sources of toric geometry in papers by Demazure,
Hochster, Bergman, Sumihiro and Miyake & Oda. Details about the development of
toric geometry may be found in Cox, Little and Schenck’s 2011 book [26, Appendix
A].

The first applications of toric geometry to the study of singularities were done
by Kouchnirenko, Varchenko and Khovanskii in their 1976–77 papers [74, 128]
and [73] respectively. But one may see in retrospect toric techniques in Puiseux’s
1850 paper [106, Sections 20, 23], in Jung’s 1908 paper [68], in Dumas’ 1911–
12 papers [31, 32], in Hodge’s 1930 paper [63], in Hirzebruch’s 1953 paper [62]
and in Teissier’s 1973 paper [119]. Indeed, in all those papers, monomial changes
of variables more general than those describing blow ups are used in an essential
way. For instance, in his paper [62], Hirzebruch described the minimal resolution
of an affine toric surface by gluing the toric charts of the resolved surface by
explicit monomial birational maps. Toric surfaces appeared in Hirzebruch’s paper
as normalizations of the affine surfaces in C

3 defined by equations of the form
zm = xpyq , with (m, p, q) ∈ (N∗)3 globally coprime. Interesting details about
Hirzebruch’s work [62] are contained in Brieskorn’s paper [14].

The notion of toroidal variety of arbitrary dimension was introduced in a slightly
different form in the same book [71] of Kempf, Knudson, Mumford and Saint-
Donat. The emphasis was put there on a given complex manifold V , and one looked
for partial compactifications of it which were locally analytically isomorphic to
embeddings of an algebraic torus into a toric variety. Such partial compactifications
V were called toroidal embeddings of V . Therefore, a toroidal embedding was a pair
(V , V ) such that (V , V \ V ) is a toroidal variety in our sense. For more remarks
about the toroidal category see [4, Section 1.5].

1.4 Toroidal Pseudo-Resolutions of Plane Curve Singularities

In Sect. 1.4.1 we introduce the notions of Newton polygon NL,L′(C), tropical
function tropC

L,L′ , Newton fan FC
L,L′ and Newton modification ψC

L,L′ (see Defini-
tion 1.4.14) determined by a curve singularity C on the smooth germ of surface
(S, o), relative to a cross (L, L′). The strict transform of C by its Newton modifica-
tion is a finite set of germs. If one completes for each one of them the corresponding
germ of exceptional divisor into a cross, one gets again a Newton polygon, a fan
and a modification. This produces an algorithm of toroidal pseudo-resolution of
C (see Algorithm 1.4.22). It leads only to a pseudo-resolution morphism, because
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its source is a possibly singular surface (with toric singularities). In Sect. 1.4.3 we
explain how to modify Algorithm 1.4.22 in order to get an algorithm of embedded
resolution of C. In Sect. 1.4.4 we encode the combinatorics of this algorithm into
a fan tree (see Definition 1.4.33), which is a rooted tree endowed with a slope
function, constructed by gluing trunks associated with the Newton fans generated
by the process. The final Sect. 1.4.5 contains historical information about Newton’s
and Puiseux’s work on plane curve singularities, the resolution of such singularities
by iteration of morphisms which are toric in suitable coordinates, and the relations
with tropical geometry.

1.4.1 Newton Polygons, Their Tropicalizations, Fans and
Modifications

This subsection begins with the definitions of the Newton polygon N(f ) (see
Definition 1.4.2), the tropicalization (see Definition 1.4.4) and the Newton fan F(f )

(see Definition 1.4.9) associated with a non-zero germ f ∈ C[[x, y]]. It turns out
that they only depend on the germs L, L′, C defined by x, y and f respectively (see
Proposition 1.4.13). Therefore, given a cross (L, L′) and a plane curve singularity
C on the smooth germ (S, o), one has associated Newton polygon, tropicalization
and fan. This fan allows to introduce the Newton modification of the toroidal germ
(S, L+ L′) determined by C (see Definition 1.4.14).

Assume that a cross (L, L′) is fixed on (S, o) (see Definition 1.3.31) and that
(x, y) is a local coordinate system defining it. This system allows to see any f ∈
ÔS,o as a series in the variables (x, y), that is, in toric terms, as a possibly infinite

sum of terms of the form cm(f ) χm , for cm(f ) ∈ C and m ∈ σ∨0 ∩ M , where

M := ML,L′ and σ0 := σ
L,L′
0 (see Definition 1.3.32). Denote also N :=

NL,L′ . One has canonical identifications M � Z
2, N � Z

2, σ0 � (R+)2, and
σ∨0 � (R+)2.

Definition 1.4.1 Let f ∈ C[[x, y]] be a nonzero series. The support S(f ) ⊆ σ∨0 ∩
M � N

2 of f is the set of exponents of monomials with non-zero coefficients in f .
That is, if

f =
∑

m∈σ∨0 ∩M

cm(f )χm, (1.31)

then S(f ) := {m ∈ σ∨0 ∩M, cm(f ) = 0}.
If Y is a subset of a real affine space, then Conv(Y ) denotes its convex hull.
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Definition 1.4.2 Let f ∈ C[[x, y]]. Its Newton polygon N(f ) is the following
convex subset of σ∨0 � (R+)2:

N(f ) := Conv(S(f )+ (σ∨0 ∩M)).

Its faces are its vertices, its edges and the whole polygon itself. If K is a compact
edge of the boundary ∂N(f ) of N(f ), then the restriction fK of f to K is the
sum of the terms of f whose exponents belong to K .

Remark 1.4.3 In general, the Newton polygon of an element of ÔS,o depends on the
choice of local coordinates. For instance, let us consider the change of coordinates
(x, y) = (u, u+ v). The function f (x, y) := y2−x3 becomes g(u, v) := f (u, u+
v) = (u+v)2−u3. The corresponding Newton polygons are represented in Fig. 1.14.
In contrast, if the local coordinate change preserves the coordinate curves, then the
Newton polygon remains unchanged (see Proposition 1.4.13 below).

Suppose now that the variables x and y are weighted by non-negative real
numbers. Denote by c ∈ R+ the weight of x and by d ∈ R+ the weight of y.
Therefore the pair w := (c, d) may be seen as an element of the weight vector
space NR = (NL,L′)R. More precisely, one has w ∈ (R+)2 � σ0. Assuming that the
non-zero complex constants have weight 0, we see that the weight w(cm(f )χm) of
a non-zero term of f is simply w ·m ∈ R+. Define then the w-weight of the series
f ∈ C[[x, y]] as the minimal weight of its terms. One gets the function:

νw : C[[x, y]] → R+ ∪ {∞}
f → min{w ·m, m ∈ S(f )} . (1.32)

It is an exercise to show that νw is a valuation on the C-algebra C[[x, y]], in the
sense of Definition 1.2.19.

Instead of fixing w and letting f vary, let us fix now a non-zero series f ∈
C[[x, y]]. Considering the w-weight of f for every w ∈ σ0 leads to the following
function:

Fig. 1.14 Illustration of
Remark 1.4.3

(3, 0)

(0, 2)

(2, 0)

(0, 2)

(3, 0)

(1, 1)

�(y2 − x 3) �((u + v )2 − u 3)
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Definition 1.4.4 The tropicalization tropf of f ∈ C[[x, y]] \ {0} is the function:

tropf : σ0 → R+
w → min{w ·m, m ∈ S(f )}

. (1.33)

Remark 1.4.5 Let us explain the name of tropicalization used in the previous
definition (see also Sect. 1.4.5). Consider the set R := R ∪ {+∞}, endowed with
the operations ⊕ := min and � := +. Under both operations, R is a commutative
monoid, the product � is distributive with respect to addition and the addition ⊕
is idempotent, that is, a ⊕ a = a, for all a ∈ R. One says then that (R, ⊕, �)

is a tropical semiring. Consider now the expression defining tropf , and compare it
with the expansion (1.31) of f as a power series. One sees that one gets formally
tropf from (1.31) by replacing each constant or variable x, y by its weight, and
by replacing the usual operations of sum and product by their tropical analogs. For
further references see the textbook [84] on tropical geometry. Foundations for the
tropical study of singularities were written by Stepanov and the third author in the
paper [105].

Remark 1.4.6 If A is a subset of a real vector space V , then its support function is
the function defined on the dual vector space V ∨ and taking values in R ∪ {−∞},
which associates to every element of V ∨ seen as a linear form on V , the infimum of
its restriction to A. The tropicalization tropf is the restriction of the support function
of the subset S(f ) of the real vector space MR to the subset of M∨

R
� NR on which

it does not take the value−∞. The notion of support function is an essential tool in
the study of convex polyhedra (see for instance Ewald’s book [37]).

For every ray ρ = R+w included in the cone σ0, consider the following closed
half-plane of MR:

Hf,ρ := {m ∈ MR, w ·m ≥ tropf (w)}. (1.34)

This definition is independent of the choice a generator w of the ray ρ.
The basic reason of the importance of the Newton polygon N(f ) of f in our

context is the following strengthening of Proposition 1.2.39:

Proposition 1.4.7 Let the ray ρ ⊂ σ0 be fixed. Then the closed half-plane Hf,ρ

of MR is a supporting half-plane of N(f ), in the sense that it contains N(f ) and
its boundary {m ∈ MR, w · m = tropf (w)} has a non-empty intersection with the
boundary ∂N(f ) of N(f ).

Proof Let w be a generating vector of the ray ρ. The inclusion N(f ) ⊆ Hf,ρ

is equivalent to the property w · n ≥ tropf (w), for all n ∈ N(f ). These
inequalities result from Definition 1.4.4 of the tropicalization function tropf (w)

and from the following basic equality, implied by the hypothesis that w ∈ σ0 (see
Proposition 1.2.39):

min{w ·m, m ∈ S(f )} = min{w ·m, m ∈ N(f )}.
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The boundary of the half-plane Hf,ρ intersects N(f ) at its points at which the
restriction of the linear form w : MR → R to N(f ) achieves its minimum, that
is, along its face N(f ) ∩ {m ∈ MR, w ·m = tropf (w)}. ��

As every closed convex subset of a real plane is the intersection of its supporting
half-planes, one deduces that the tropicalization tropf determines the Newton
polygon N(f ) in the following way:

N(f ) = {m ∈ MR, w ·m ≥ tropf (w), for all w ∈ σ0}. (1.35)

Formula (1.35) presents N(f ) as the intersection of an infinite set of closed half-
planes. In fact, as a consequence of the previous discussion, a finite number of them
suffices:

Proposition 1.4.8 Let F(f ) be the fan of N obtained by subdividing the cone σ0
using the rays orthogonal to the compact edges of N(f ). Then:

1. The tropicalization tropf is continuous and its restriction to any cone in F(f ) is
linear.

2. The relative interiors of the cones of F(f ) may be characterized as the levels
of the following map from σ0 to the set of faces of N(f ), in the sense of
Definition 1.4.2:

w → N(f ) ∩ {m ∈ MR, w ·m = tropf (w)}.

3. This map realizes an inclusion-reversing bijection between F(f ) and the set of
faces of N(f ). If Kσ is the face of N(f ) corresponding to the cone σ of F(f ),
then:

tropf (w) = w ·m, for all w ∈ σ, and for all m ∈ Kσ .

4. The Newton polygon N(f ) is the intersection of the closed half-planes Hf,ρ

defined by relation (1.34), where ρ varies among the rays of the fan F(f ).

The fans F(f ) appearing in the previous proposition are particularly important
for the sequel, that is why they deserve a name:

Definition 1.4.9 The Newton fan F(f ) of f ∈ C[[x, y]] \ {0} is the fan of N

obtained by subdividing the cone σ0 using the rays orthogonal to the compact edges
of the Newton polygon N(f ) ⊆ σ∨0 of f , that is, by the interior normals of the
compact edges of N(f ). A Newton fan in a weight lattice N and relative to a basis
(e1, e2) is any fan subdividing the regular cone σ0 = R+〈e1, e2〉.
Example 1.4.10 Consider the series f ∈ C[[x, y]] defined by:

f (x, y) := −x12 + x14 + x7y2 + 2x5y3 − x10y3 + x3y4 + 3x7y4 + y9.
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trop f and �( f )
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Fig. 1.15 The Newton polygon, the tropicalization and the Newton fan of Example 1.4.10

On the left side of Fig. 1.15 is represented its Newton polygon N(f ), and on
the right side are represented its tropicalization tropf and its Newton fan F(f ). The
support of the series f is:

S(f ) = {(12, 0), (14, 0), (7, 2), (5, 3), (10, 3), (3, 4), (7, 4), (0, 9)}.

Among its elements, the vertices of N(f ) are (12, 0), (7, 2), (3, 4), (0, 9). The
corresponding monomials are marked on the left of the figure, near the associated
vertices. The other elements of S(f ) are marked as green dots. Now, each vertex
(a, b) of N(f ) may be seen as the linear function w = (c, d) → ac + bd

on NR. The tropicalization tropf computes the minimal value of those 4 linear
functions at the points of σ0. The regular cone σ0 gets decomposed into 4 smaller
2-dimensional subcones, according to the vertex which gives this minimum. On
the right side of Fig. 1.15 those subcones are represented in different colors. Each
such subcone has the same color as the expression of the associated linear function
and the vertex of N(f ) defining it. Each ray separating two successive subcones is
orthogonal to a compact edge of N(f ) and both are drawn with the same color.
Denoting the compact edges by K1 := [(0, 9), (3, 4)], K2 := [(3, 4), (7, 2)],
K3 := [(7, 2), (12, 0)], the associated restrictions of f (see Definition 1.4.2) are:

fK1 = x3y4 + y9, fK2 = x7y2 + 2x5y3 + x3y4, and fK3 = −x12 + x7y2.

The Newton fan of f is F(f ) = F (3/5, 2/1, 5/2) (see Definition 1.3.4 for this last
notation).

If α ∈ C[[t]] \ {0}, we denote by cνt (α)(α) the coefficient of tνt (α) in the series α,
and we call it the leading coefficient of α.

The following proposition shows why it is important to introduce tropf when
studying the germ C defined by f :
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Proposition 1.4.11 Let f ∈ C[[x, y]] be a non-zero series. Let t → (α(t), β(t))

be a germ of formal morphism from (C, 0) to (C2, 0), whose image is not contained
in the union L ∪ L′ of the coordinate axes. Then one has the inequality:

νt (f (α(t), β(t))) ≥ tropf (νt (α), νt (β)),

with equality if and only if fK(cνt (α)(α), cνt (β)(β)) = 0, where K is the compact
face of N(f ) orthogonal to (νt (α), νt (β)) ∈ N , in the sense that its restriction to
N(f ) achieves its minimum on this face.

Proof The basic idea of the proof goes back to Newton’s method of computing the
leading term of a Newton-Puiseux series η(x) such that f (x, η(x)) = 0, which we
explained on the example of Sect. 1.2.5, starting from Eq. (1.12).

The hypothesis that the image of t → (α(t), β(t)) is not contained in the union of
coordinate axes means that both α and β are non-zero series. Therefore, they admit
non-vanishing leading coefficients cνt (α)(α) and cνt (β)(β) (see Definition 1.2.18).

Using the expansion (1.31), we get that f (α(t), β(t)) is equal to:

∑

(a,b)∈S(f )

c(a,b)(f )
(
cνt (α)(α)tνt (α) + o(tνt (α))

)a (
cνt (β)(β)tνt (β) + o(tνt (β))

)b =

=
∑

(a,b)∈S(f )

c(a,b)(f )
(
cνt (α)(α)

)a (
cνt (β)(β)

)b
(
taνt (α)+bνt (β) + o(taνt (α)+bνt (β))

)
.

(1.36)
As a consequence:

νt (f (α(t), β(t))) ≥ min
(a,b)∈S(f )

{aνt(α)+ bνt (β)} = tropf (νt (α), νt (β)),

where the last equality follows from Definition 1.4.4. This proves the inequality
stated in the proposition.

The case of equality follows from the fact, implied by the computation (1.36),
that the coefficient of the term with exponent tropf (νt (α), νt (β)) of the series
f (α(t), β(t)) is fK(cνt (α)(α), cνt (β)(β)). ��

In Proposition 1.4.11, K may be either an edge or a vertex of N(f ). Note that this
statement plays with the two dual ways of defining a curve singularity on (C2, 0),
either as the vanishing locus of a function or by a parametrization.

Consider now the reduced image of the morphism t → (α(t), β(t)). The
hypothesis that it is not contained in L ∪ L′ shows that it is a branch on (S, o),
different from L and L′. Endow it with a multiplicity equal to the degree of
the morphism onto its image, seeing it therefore as a divisor A on (S, o). By
Proposition 1.2.8, the orders νt (α(t)), νt (β(t)) which appear in Proposition 1.4.11
may be interpreted as νt (α(t)) = L ·A, and νt (β(t)) = L′ ·A. We get the following
corollary of Proposition 1.4.11:
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Proposition 1.4.12 Let (L, L′) be a cross on (S, o) and C be a curve singularity
on (S, o). Assume that the local coordinate system (x, y) defines the cross (L, L′)
and that f ∈ ÔS,o defines C. Then, for every effective divisor A on (S, o) supported
on a branch distinct from L and L′, one has the inequality:

C · A ≥ tropf ((L · A)e1 + (L′ ·A)e2).

Moreover, one has equality when A is generic for fixed values of L · A and L′ · A.

One may describe the genericity condition involved in the last sentence of
Proposition 1.4.12 as follows. As a consequence of the proof of Proposition 1.4.18
below, one has fK(cνt (α)(α), cνt (β)(β)) = 0 (which is equivalent to the equality
C ·A = tropf ((L ·A)e1+ (L′ ·A)e2)) if and only if the strict transforms of A and C

by the Newton modification ψC
L,L′ of S defined by C (see Definition 1.4.14 below)

are disjoint.
As a consequence of Propositions 1.4.8 (3) and 1.4.12 we have:

Proposition 1.4.13 Let (L, L′) be a cross on (S, o) and C be a curve singularity
on (S, o). Assume that the local coordinate system (x, y) defines the cross (L, L′)
and that f ∈ ÔS,o defines C. Then the Newton polygon N(f ), the tropicalization
tropf and the Newton fan F(f ) do not depend on the choice of the defining functions
x, y, f of the curve germs L, L′, C.

By contrast, the support of f depends on the choice of the local coordinate
system (x, y) defining a fixed cross, even if f ∈ ÔS,o is fixed. For instance, the
monomial xy becomes a series with infinite support if one replaces simply x by
x(1+ x + x2 + · · · ).

Proposition 1.4.13 implies that the following notions are well-defined:

Definition 1.4.14 Let (L, L′) be a cross on (S, o), and let (x, y) be a local
coordinate system defining it. Let C be a curve singularity on (S, o), defined by a
function f ∈ ÔS,o, seen as a series in C[[x, y]] using the coordinate system (x, y).
Then:

• The Newton polygon NL,L′(C) ⊆ ML,L′ of C relative to the cross (L, L′) is

the Newton polygon N(f ).

• The tropical function tropC
L,L′ : σ0 → R+ of C relative to the cross (L, L′)

is the tropicalization tropf of the series f .
• The Newton fan FL,L′(C) of C relative to the cross (L, L′) is the fan F(f ).

• The Newton modification ψC
L,L′ : (SFL,L′ (C), ∂SFL,L′ (C)) → (S, L + L′) of

S defined by C relative to the cross (L, L′) is the modification of S associated

with FL,L′(C) relative to the cross (L, L′), that is, ψC
L,L′ := ψ

FL,L′ (C)

L,L′ (see

Definition 1.3.33). The strict transform of C by ψC
L,L′ is denoted CL,L′ .
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Note that we consider the Newton modification ψC
L,L′ as a morphism in the

toroidal category, by endowing S with the boundary L+L′ and the modified surface
SFL,L′ (C) with a boundary equal to the reduced total transform of L+ L′.

1.4.2 An Algorithm of Toroidal Pseudo-Resolution

In this subsection we assume for simplicity that the plane curve singularity C is
reduced (see Remark 1.4.27). We explain that, once a smooth branch L is fixed
on the germ of smooth surface (S, o), one may obtain a so-called toroidal pseudo-
resolution of C on (S, o) (see Definition 1.4.15) by completing the smooth branch
into a cross (L, L′), by performing the associated Newton modification, and by
iterating these steps at every point at which the strict transform of C intersects the
exceptional divisor of the Newton modification (see Theorem 1.4.23). The algorithm
stops after the first step if and only if C is Newton non-degenerate relative to the
cross (L, L′) (see Definition 1.4.21).

The following definition formulates two notions of possibly partial resolution of
C in the toroidal category, relative to the ambient smooth germ of surface S:

Definition 1.4.15 Let (L, L′) be a cross in the sense of Definition 1.3.31 on the
smooth germ of surface (S, o) and let C be a curve singularity on S. Consider a
modification π : (�, ∂�) → (S, L+ L′) of (S, L+ L′) in the toroidal category, in
the sense of Definition 1.3.29. It is called, in decreasing generality:

• A toroidal pseudo-resolution of C if the following conditions are satisfied:

1. the boundary ∂� of � contains the reduction of the total transform π∗(C) of
C by π ;

2. the strict transform of C by π (see Definition 1.2.31) does not contain singular
points of �.

• A toroidal embedded resolution of C if, moreover, the surface � is smooth.
If π : (�, ∂�) → (S, L + L′) is a toroidal pseudo-resolution of C, then the

reduction of the image π(∂�) of ∂� in S is called the completion Ĉπ of C

relative to π .

Remark 1.4.16 Note that if π : (�, ∂�) → (S, L + L′) is a toroidal pseudo-
resolution of C, then the strict transform of C by π is smooth and Ĉπ ⊇ C+L+L′.
If moreover π is an embedded resolution, then the total transform π∗(C) is a normal
crossings divisor in � (see Definition 1.2.32). Note also that if π : (�, ∂�) →
(S, L+L′) is a toroidal embedded resolution of C, then π : � → S is an embedded
resolution of C according to Definition 1.2.33. From now on, we will keep track
carefully of the toroidal structures, considering only toroidal embedded resolutions
in the sense of Definition 1.4.15.
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Remark 1.4.17 If π : (�, ∂�) → (S, L + L′) is a toroidal pseudo-resolution of
C, then the strict transform of C is transversal to the critical locus of π . Our choice
of terminology in Definition 1.4.15 is inspired by Goldin and Teissier’s paper [51],
where an analogous notion of (embedded) toric pseudo-resolution of a subvariety
of the affine space is considered.

Let us look now at the strict transform CL,L′ of C by the Newton modification
ψC

L,L′ defined by C relative to the cross (L, L′) (see Definition 1.4.14). The
following proposition describes its intersection with the boundary ∂SFL,L′ (C):

Proposition 1.4.18 Assume that neither L nor L′ is a branch of C. Then the strict
transform CL,L′ of C by the Newton modification ψC

L,L′ intersects the boundary
∂SFL,L′ (C) of the toroidal surface (SFL,L′ (C), ∂SFL,L′ (C)) only at smooth points of

it. Moreover, if ρ is a ray of the Newton fan FL,L′(C) different from the edges
of σ0, then CL,L′ intersects the corresponding component Oρ of the exceptional
divisor of ψC

L,L′ only inside the orbit Oρ . The number of intersection points counted
with multiplicities is equal to the integral length of the edge of the Newton polygon
NL,L′(C) which is orthogonal to the ray ρ.

Proof We give a detailed proof of this proposition in geometric language, in
order to emphasize the roles played by the fundamental combinatorial objects
NL,L′(C), tropC

L,L′ and FL,L′(C) associated with C relative to the cross (L, L′)
(see Definition 1.4.14).

The orbit Oρ is independent of the toric surface containing it, because any
two such surfaces contain the affine toric surface Xρ ⊃ Oρ as Zariski open sets.
Therefore, in order to compute the intersection of the strict transform of C with Oρ ,
we may choose another surface than XFL,L′ (C).

Choose local coordinates (x, y) defining the cross (L, L′). In this way ML,L′ gets
identified with the lattice of exponents of Laurent monomials in (x, y). Assume that
f1 := αe1+βe2 is the unique primitive generator of the ray ρ. Let us complete it in
a basis (f1, f2) of the lattice NL,L′ , such that the cone σ := R+〈f1, f2〉 is contained
in one of the two cones of dimension 2 of FL,L′(C) adjacent to ρ. We are now in
the setting of Example 1.3.26. As explained there, if (ϕ1, ϕ2) is the basis of ML,L′
dual to the basis (f1, f2) of NL,L′ and u := χϕ1 , v := χϕ2 , then v = x−βyα is a
coordinate of the orbit Oρ . Moreover, it realises an isomorphism of its closure in the
affine toric surface Xσ = C

2
u,v with the affine line Cv .

Let Kρ be the edge of the Newton polygon NL,L′(C) which is orthogonal to the
ray ρ. It is parallel to the line Rϕ2, because by definition f1 · ϕ2 = 0. Orient Kρ by
the vector ϕ2 and denote then its vertices by m0 and m1, such that Kρ is oriented
from m0 to m1. This means that m1 −m0 = Lρ ϕ2, where Lρ denotes the integral
length of the segment Kρ , in the sense of Definition 1.3.1. Moreover, the points of
Kρ ∩M are precisely those of the form:

m := m0 + k ϕ2, for k ∈ {0, 1, . . . , Lρ}. (1.37)
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Consider the smooth toric surface Xσ = C
2
u,v . The orbit Oρ is its pointed v-

axis C
∗
v . Therefore, one may compute the intersection of the strict transform of C

with this orbit by taking the lift (ψσ
σ0

)∗f of a defining function f of C to C
2
u,v ,

by simplifying by the greatest monomial in σ∨ ∩ M which divides it, and then by
setting u = 0. Let therefore

f :=
∑

m∈S(f )

cm(f )χm ∈ C[[x, y]]

be a defining function of C. As the bases (f1, f2) and (ϕ1, ϕ2) are dual of each
other, we have the relation m = (f1 · m)ϕ1 + (f2 · m)ϕ2. This implies that χm =
uf1·m vf2·m. As the ray ρ = R+ f1 is orthogonal to the edge Kρ of the Newton
polygon NL,L′(C) = N(f ), we know that:

f1 ·m ≥ hρ for all m ∈ S(f ),

where hρ := tropf (f1), with equality if and only if m ∈ Kρ . Therefore, the highest
power of u which divides

(ψσ
σ0

)∗f =
∑

m∈S(f )

cm(f ) uf1·m vf2·m

is uhρ , and it is achieved only on the edge Kρ of N(f ). Moreover, the linear form
m → f2 · m achieves its minimum (at least) at the vertex m0 of N(f ), by the
hypothesis that σ is contained in one of the two 2-dimensional cones of F(f ) =
FL,L′(C) which are adjacent to ρ. This shows that the maximal monomial in (u, v)

which divides (ψσ
σ0

)∗f is uhρ vf2·m0 . After simplifying by it and setting u = 0, one
gets the following polynomial equation in the variable v, describing the intersection
of the strict transform of C with the v-axis:

∑

m∈Kρ∩M

cm(f ) vf2·(m−m0) = 0. (1.38)

We recognize here the equation obtained from fKρ = 0 after the change of variables
from (x, y) to (u, v) and the simplification of the highest dividing monomial.
This illustrates the importance in our context of the operation of restriction of f

to a compact edge of its Newton polygon, introduced in Definition 1.4.2. Using
Eq. (1.37), we see that Eq. (1.38) becomes:

Lρ∑

k=0

cm0+k ϕ2(f ) vk = 0. (1.39)
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The two extreme coefficients cm0(f ) and cm1(f ) of the previous polynomial
equation being non-zero, we see that the strict transform of C does not pass
through the origin of C2

u,v and that it intersects the orbit Oρ in Lρ = lZKρ points,
counted with multiplicities. The solutions of Eq. (1.39) are the v-coordinates of the
intersection points of the strict transform of C with the orbit Oρ .

By using the same kind of argument for all the cones of the regularization of
FL,L′(C), we may show also that the strict transform of C misses all the singular
points of the boundary divisor of XFL,L′ (C). ��
Example 1.4.19 Let us give an example of the objects manipulated in the proof of
Proposition 1.4.18. Consider the function f ∈ C[[x, y]] of Example 1.4.10. Let
ρ be the ray of slope 2/1 of F(f ). Then Kρ is the side K2 := [(3, 4), (7, 2)] of
∂N(f ) (see Fig. 1.15). One has f1 = e1 + 2e2. A possible choice of the vector
ϕ2 is ϕ2 = −2ε1 + ε2. Therefore v = x−2y. Orienting Kρ by this vector ϕ2 one
gets m0 = (7, 2) and m1 = (3, 4). We saw in Example 1.4.10 that fKρ = x7y2 +
2x5y3 + x3y4 = x3y2(x4 + 2x2y + y2). As v = x−2y, Eq. (1.39) is in this case
1 + 2v + v2 = 0. We see that its degree is indeed the integral length Lρ of the
side Kρ . As it has a double root, the series f is not Newton non-degenerate (see
Definition 1.4.21 below). The strict transform of C intersects Oρ at the single point
v = −1.

The proof of Proposition 1.4.18 yields easily also a proof of the following
proposition :

Proposition 1.4.20 Let (L, L′) be a cross and C a curve singularity on S. Let
f ∈ C[[x, y]] be a defining function of C relative to any coordinate system (x, y)

defining the chosen cross. Then the following conditions are equivalent:

1. the curve C is reduced and the Newton modification ψC
L,L′ becomes a toroidal

pseudo-resolution of C if one replaces the boundary ∂SFL,L′ (C) by the total

transform of the divisor (ψC
L,L′)

∗(C + L+ L′);
2. for any ray ρ of the Newton fan FL,L′(C) which is orthogonal to a compact edge

of NL,L′(C), the polynomial equation (1.39) has only simple roots;
3. the defining function f of C has the property that all the restrictions fK of f to

the compact edges K of the Newton polygon N(f ) = NL,L′(C) define smooth
curves in the torus (C∗)2

x,y .

The plane curve singularities which satisfy the equivalent conditions of Proposi-
tion 1.4.20 received a special name:

Definition 1.4.21 Let (L, L′) be a cross and C a curve singularity on S. Let f ∈
C[[x, y]] be a defining function of C relative to any coordinate system associated to
the chosen cross. The function f is called Newton non-degenerate and the curve
C is called Newton non-degenerate relative to the cross (L, L′) if the equivalent
conditions listed in Proposition 1.4.20 are satisfied.
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Usually one speaks about Newton non-degenerate germs of holomorphic func-
tions of several variables. We introduce here the notion of Newton non-degenerate
plane curve singularity relative to a cross in order to emphasize the underlying
geometric phenomena.

Let us come back to Proposition 1.4.18. At each point of intersection oi of the
strict transform CL,L′ with the exceptional divisor of ψC

L,L′ , one has the following
dichotomy:

• Either only one branch of CL,L′ passes through oi , where it is moreover smooth
and transversal to the exceptional divisor. The germ Ai at oi of the exceptional
divisor and this branch form a canonical cross on SFL,L′ (C). Then, one reaches

locally a toroidal pseudo-resolution of C in the neighborhood of that point.
• Or one does not have a canonical cross, but only a canonical smooth branch: the

germ Ai at oi of the exceptional divisor (ψC
L,L′)

−1(o) itself.

In the second case, one may complete Ai into a cross (Ai, Li) by the choice of
a germ Li of smooth branch transversal to it. Then one is again in the presence of a
germ of effective divisor (the germ of the strict transform CL,L′ of C by ψC

L,L′) on a
germ of smooth surface endowed with a cross (the surface SFL,L′ (C) endowed with

the cross (Ai, Li)). One gets again a Newton polygon, a tropical function, a Newton
fan and a Newton modification, and the previous construction may be iterated. This
iterative process may be formulated as the following algorithm of toroidal pseudo-
resolution of the germ C:

Algorithm 1.4.22 Let (S, o) be a smooth germ of surface, L a smooth branch on
(S, o) and C a reduced germ of curve on (S, o), which does not contain the branch
L in its support.

STEP 1. If (L, C) is a cross, then STOP.
STEP 2. Choose a smooth branch L′ on (S, o), possibly included in C, such that
(L, L′) is a cross.
STEP 3. Let FL,L′(C) be the Newton fan of C relative to the cross (L, L′). Consider
the associated Newton modification ψC

L,L′ : (SFL,L′ (C), ∂SFL,L′ (C)) → (S, L + L′)
and the strict transform CL,L′ of C by ψC

L,L′ (see Definition 1.4.14).
STEP 4. For each point õ belonging to CL,L′ ∩ ∂SFL,L′ (C), denote:

• L := the germ of ∂SFL,L′ (C) at õ;

• C := the germ of CL,L′ at õ;
• o := õ;
• S := SFL,L′ (C).

STEP 5. GO TO STEP 1.

Note that one considers that only the smooth branch L is given at the beginning,
and that the second branch L′ of the cross (L, L′) is chosen when one executes
STEP 2 for the first time. Note also that the algorithm is non-deterministic, as it
involves choices of supplementary branches.
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A variant of this algorithm, obtained by replacing Step 3 by a Step 3reg, will be
studied in Sect. 1.4.3. It produces a toroidal embedded resolution of C instead of a
pseudo-resolution (see Definition 1.4.15).

Proposition 1.4.20 means that if C is Newton non-degenerate relative to the
cross (L, L′) chosen at Step 2 of Algorithm 1.4.22, then this algorithm stops after
performing only one Newton modification. More generally, a fundamental property
of Algorithm 1.4.22 is:

Theorem 1.4.23 Algorithm 1.4.22 stops after a finite number of iterations.

Proof Assume that A is a curve singularity on the smooth germ of surface (S, o),
obtained after a finite number of steps of the algorithm, and that (L · A)o = 1.
Then (L, A) is a cross and the algorithm stops. Therefore, in order to show that the
algorithm stops, it is enough to show that after a finite number of steps all the local
intersection numbers of the strict transform CL,L′ of C with the exceptional divisor
are equal to 1.

By the end statement of Proposition 1.4.18, a sequence of such intersection
numbers at infinitely near points of o (see Definition 1.4.31) which dominate each
other is necessarily decreasing:

(C · L)o ≥ (C1 ·E1)o1 ≥ · · · ≥ (Ck ·Ek)ok ≥ · · · . (1.40)

At the k-th iteration of the algorithm we are considering the strict transform Ck of
C at a point ok, which belongs to the component Ek of the exceptional divisor.

The sequence (1.40) being composed of positive integers, it necessarily stabi-
lizes. If the stable value is 1 for all choices of sequence o, o1, o2, . . . , then the
algorithm stops after a finite number of steps.

Let us reason by contradiction, assuming the contrary. Therefore, one may find a
sequence as before for which the stable intersection number is n > 1. Let us assume
without loss of generality, by starting our analysis after the stabilization took place,
that:

(C · L)o = (C1 · E1)o1 = · · · = (Ck · Ek)ok = · · · = n > 1. (1.41)

Therefore, for every k ≥ 1, (Ek, Ck) is not a cross at ok. By STEP 2 of the
algorithm, a smooth germ Lk was chosen at ok such that (Ek, Lk) is a cross at ok.

Let us reformulate the first equality

(C1 · E1)o1 = (C · L)o (1.42)

of the sequence (1.41) in terms of Newton polygons. By applying again the end
statement of Proposition 1.4.18, we see that (C1 ·E1)o1 is less or equal to the integral
length lZK of the compact edge K of NL,L′(C) whose orthogonal ray corresponds
to the prime exceptional curve E1. One has equality if and only if the strict transform
of C intersects E1 at a single point. In turn, the integral length lZK is less or equal
to the height (C · L)o = n of NL,L′(C) (the ordinate of its lowest point on the
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vertical axis), with equality if and only if K is the only compact edge of NL,L′(C)

and K = [(0, n), (m1n, 0)], with m1 ∈ N
∗.

As a consequence, one has the equality (1.42) if and only if NL,L′(C) has
a single compact edge, of the form [(0, n), (m1n, 0)], with m1 ∈ N

∗, and
the associated polynomial in one variable has only one root in C

∗. In terms
of local coordinates (x, y) on (S, o) defining the cross (L, L′) and a defining
unitary polynomial f ∈ C[[x]][y] of the plane curve singularity C (see The-
orem 1.6.1 below), equality holds in (1.42) if and only if f is of the form
f = (y − c1xm1)n + · · · , with c1 ∈ C

∗, m1 ∈ N
∗ and where we wrote only

the restriction fK of f to the compact edge K of the Newton polygon NL,L′(C), in
the sense of Definition 1.4.2. Then, STEP 3 is performed simply by considering the
morphism:

{
x = x1,

y = x
m1
1 (w1 + c1),

(1.43)

where (x1, w1) are local coordinates at o1 and Z(x1) = (E1, o1). The hypothe-
sis (1.41) implies that (E1, C1) is not a cross. Denote by L′1 the smooth branch at
o1 obtained by applying again STEP 2. Therefore, (E1, L′1) is a cross at o1. By the
formal version of the implicit function theorem, we can choose local coordinates
(x1, u1) defining the cross (E1, L′1) in such a way that u1 = w1 − φ1(x1), for some
φ1 ∈ C[[t]] with φ1(0) = 0.

Let us define y1 := y − xm1(c1 + φ1(x)) and denote L1 := Z(y1). Notice that
the strict transform of L1 by the modification (1.43) is equal to L′1 and that (1.43)
can be rewritten

{
x = x1,

y1 = x
m1
1 u1

(1.44)

with respect to the local coordinates (x, y1) and (x1, u1). Let us denote by f1 ∈
C[[x1]][u1] the monic polynomial defining C1 relative to the coordinates (x1, u1)

(see again Theorem 1.6.1). Reasoning as before, the hypothesis (1.41) implies that
the polynomial f1 is of the form f1 = (u1 − c2x

m2
1 )n + · · · , where c2 ∈ C

∗,

m2 ∈ N
∗ and the exponents of the monomials xi

1u
j

1 which were omitted verify that
i + m2j > m2n and 0 ≤ j < n. Notice that the order of vanishing of f along E1
is equal to nm1. We recover a defining function of C with respect to the coordinates
(x, y1) by expressing, using the relation (1.44), the monomials appearing in the
product x

m1n
1 · f1(x1, u1) as monomials in (x, y1). We get a defining function of C

of the form (y1 − c2x
m1+m2
1 )n + · · · , where the exponents of the monomials xi

1y
j

1
which are not written above verify that i+(m1+m2)j > (m1+m2)n and 0 ≤ j < n.

By induction on k ≥ 1, one may show similarly that:

• The branch L′k = Z(uk) is the strict transform of a smooth branch Lk = Z(yk)

at S, where (x, yk) is a local coordinate system defining a cross at o and

yk = yk−1 − xm1+···+mk (ck + φk(x)), (1.45)

where φk ∈ C[[t]] satisfies φk(0) = 0.
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• The composition of the maps in the algorithm expresses as

{
x = x1,

yk = x
m1+···+mk

1 uk,
(1.46)

with respect to the local coordinates (xk, uk) at ok and the coordinates (x, yk) at
o.

• There exists a defining function of C of the form:

(yk − ckxm1+···+mk )n + · · ·

where the exponents of monomials xiy
j
k which are not written above verify that

i + (m1 + · · · +mk)j > (m1 + · · · +mk)n and 0 ≤ j < n.

In particular, we have shown that the Newton polygon NL,Lk(C) has only
one compact edge with vertices (0, n) and (m1 + · · · + mk, 0), where Lk · C

= m1+· · ·+mk. When we look at the polygons NL,Lk(C) as subsets of R2, we get
a nested sequence:

NL,L′(C) ⊃ NL,L1(C) ⊃ · · · ⊃ NL,Lk−1(C) ⊃ NL,Lk (C). (1.47)

By (1.45), one has that yk = y − ξk(x) with ξk(x) ∈ C[[x]]. One may check,
using the shape of relation (1.45), that the sequence (ξk(x))k≥1 converges to a series
ξ∞(x) in the complete ring C[[x]]. Set y∞ := y − ξ∞(x) and L∞ := Z(y∞). Then
(L, L∞) is a cross at o. We deduce that L∞ · C = νxf (x, ξ∞(x)) = +∞ and
by (1.47) one gets the inclusion NL,L∞(C) ⊂ NL,Lk(C), for every k ≥ 1. These
two facts together imply that the Newton polygon NL,L∞(C) has only one vertex
(0, n). Therefore, a local defining series for C is of the form (y∞)n. Since n > 1, C

would not be a reduced germ, contrary to the hypothesis. ��
Remark 1.4.24 The argument used in the proof of Theorem 1.4.23 coincides
basically with one step of the proof of the Newton-Puiseux theorem (see Theo-
rems 1.2.20 and 1.6.1), as presented in Teissier’s survey [123]. Unlike the rest of the
proof of this theorem, this particular step holds without making any assumption on
the characteristic of the base field.

Algorithm 1.4.22 involves a finite number of choices, those of the smooth
branches introduced in order to get crosses each time one executes STEP 2. Let
us introduce the following notations:

Notations 1.4.25 Assume that one executes Algorithm 1.4.22 on (S, o), starting
from the curve singularity C and the smooth branch L. Then:

1. { oi , i ∈ I } is the set of points at which one applies STEP 1 or STEP 2. One
assumes that {1} ⊆ I and that o1 := o.

2. { (Ai, Bi) , i ∈ I } is the set of crosses considered each time one applies STEP
1 or STEP 2. Therefore A1 = L and for i ∈ I \ {1}, the branch Ai is included
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in the exceptional divisor of the Newton modification performed at the previous
iteration.

3. J ⊆ I consists of those j ∈ I for which one performs STEP 2 at oj . Denote

by Lj the projection on S of the branch Bj , for every j ∈ J . Therefore, Bi

is a strict transform of a branch of C whenever i ∈ I \ J and Bj is the strict
transform of Lj whenever j ∈ J .

4. S(1) := S. For k ≥ 1, the surface S(k+1) is obtained from S(k) by performing
simultaneously the Newton modification of STEP 3 at all the points oj of S(k)

at which one executes STEP 2. At such a point, denote by FAj ,Bj (C) the

corresponding fan. It is the Newton fan of the germ of strict transform of C

at oj , relative to the cross (Aj , Bj ).

5. The previous simultaneous Newton modification is denoted π(k) : S(k+1) →
S(k). We call it the k-th level of Newton modifications.

6. The toroidal boundary ∂S(k) is by definition the total transform on S(k) of all the
crosses which appeared in the algorithm until performing STEP 2 at all the points
of S(k). In particular, ∂S = L+ L1. Each morphism π(k) : (S(k+1), ∂S(k+1)) →
(S(k), ∂S(k)) belongs to the toroidal category, as (π(k))−1(∂S(k)) ⊆ ∂S(k+1).

7. π := π(1) ◦ · · · ◦ π(h), where h is the number of modifications π(k) produced

by the algorithm. We denote by � the source of π . Therefore, π : � → S is a
modification of the initial germ S.

8. ∂� denotes ∂S(h). It is the underlying reduced divisor of the total transform

π∗(Ĉπ ) of the completion Ĉπ = C+∑j∈J Lj , in the sense of Definition 1.4.15.

There are a lot of notations here! The only way to get used to them, to understand
how those objects are related, and why they are important, is to look at examples.
That is why we made a detailed one below (see Example 1.4.28). In fact, all the
works which deal in a detailed way with processes of resolution of singularities
introduce analogously plenty of notations (see for instance Zariski [136], Zariski
[137], Lejeune-Jalabert [78], A’Campo and Oka [8], Casas [19], Wall [131] or
Greuel, Lossen and Shustin [59]). This is one of the main advantages we see for the
notion of lotus attached below to such a resolution process (see Definition 1.5.26):
it allows to get a simultaneous global view of the previous objects.

We can state in the following way the output of Algorithm 1.4.22 in terms of
Definition 1.4.15:

Proposition 1.4.26 The morphism π : (�, ∂�) → (S, L+L′) is a toroidal pseudo-
resolution of C.

Remark 1.4.27 We formulated Algorithm 1.4.22 only for reduced curve singulari-
ties C. It extends readily to an algorithm applicable to any C, by agreeing that one
runs it on the reduction of C. One may agree also to define the fan tree of an arbitrary
curve singularity C as the fan tree of its reduction (see Definition 1.4.33), each leaf
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being decorated with the multiplicity of the corresponding branch inside the divisor
C. Similar conventions may be chosen in order to associate a lotus to an arbitrary
curve singularity C. As we do not use those more general notions in this text, we
will not introduce them formally.

Let us give now an example of application of Algorithm 1.4.22. Instead of
starting from a particular equation, we will assume that the algorithm involves three
levels of toroidal modifications with prescribed Newton fans and we will describe
from them the toroidal boundary of the final surface. We will see in Example 1.6.29
below how to write concrete equations for branches Ci and Lj appearing in a
toroidal resolution process structured as in Example 1.4.28. The idea is to associate
to the Newton polygons of the process a fan tree (see Definition 1.4.33), which may
be transformed into an Eggers-Wall tree (see Definition 1.6.28), which in turn allows
to write Newton-Puiseux series defining the branches Ci and Lj . One may take
as their defining functions in C[[x, y]] the minimal polynomials of those Newton-
Puiseux series.

Example 1.4.28 We will use Notations 1.4.25, but we will denote in the same way
a branch and its various strict transforms by the modifications produced by the
algorithm. In particular, we will write Lj instead of Bj , for any j ∈ J .

Assume that, relative to the first cross (L, L1), which lives on S(1) = S, the
Newton fan FL,L1(C) of the curve singularity C is as represented on the top
of Fig. 1.16. Therefore it is the same fan F (3/5, 2/1, 5/2) as in Fig. 1.8. The
associated Newton modification π(1) is represented on the bottom of Fig. 1.16.
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C1L1
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L

Fig. 1.16 First level of Newton modifications in Example 1.4.28
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We have drawn schematically the two boundaries ∂S(1) = L + L1 and ∂S(2) =
L + E1 + E2 + E3 + L1 + C1 + C2 + C3. The components Ei of the exceptional
divisor of π(1) correspond to the rays R+ eEi of the Newton fan FL,L1(C). We
assume that there are three intersection points of the strict transform CL,L1 of C by
π(1) at which the algorithm stops at STEP 1. The corresponding components of C

are denoted C1, C2, C3. By contrast, at the points o2 and o3, one has to apply STEP
2 of Algorithm 1.4.22 (which implies that {2, 3} ⊆ J ).

One introduces two new smooth branches L2 and L3 passing through o2 and o3
respectively, transversally to the exceptional divisor E1 + E2 + E3 of π(1). Both
points o2 and o3 belong to the component E1. Now one may get the second level
of Newton modifications, by looking at the Newton fans FE1,L2(C) and FE1,L3(C)

(note that we have written (E1, Lj ) instead of (Aj , Lj ), because for j ∈ {2, 3}, Aj

is the germ of E1 at oj ). We assume that those Newton fans are as represented on
the top of Fig. 1.17. The corresponding composition π(2) of Newton modifications
at o2 and o3 is represented on the bottom of the figure, through a schematic drawing
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Fig. 1.17 Second level of Newton modifications in Example 1.4.28
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of ∂S(2) + L2 + L3 and of ∂S(3) = ∂�. We assume that the process stops at STEP
1 at three more points, through which pass the strict transforms of the branches
C4, C5, C6 of C (see the right bottom part of Fig. 1.17). There remains one point o4,
lying on the component E6 of the exceptional divisor E4 + E5 + E6 + E7 of π(2),
at which one has to perform STEP 2.

One completes then the germ A4 of E6 at o4 into a cross (E6, L4), represented
on the left bottom part of Fig. 1.18. We assume now that the Newton fan FE6,L4(C)

is as drawn on the top of the figure. It has only one ray distinct from the edges of
the cone R+〈eE6 , eL4〉. Therefore, the corresponding Newton modification, which
alone gives the third level of Newton modifications π(3), introduces only one
more irreducible component of exceptional divisor, denoted E8. It is cut by the
strict transform of one more branch of C, denoted C7 and represented on the
bottom right part of Fig. 1.18. The whole curve schematically represented here
is the boundary ∂�. On the bottom left is represented the divisor ∂S(3) + L4.
The toroidal pseudo-resolution of C produced by the algorithm is the composition
π(1) ◦ π(2) ◦ π(3) : (�, ∂�) → (S, L + L1). The singular points of the total
surface � := S(3) correspond bijectively to the non-regular 2-dimensional cones of
the Newton fans FL,L1(C), FE1,L2(C), FE1,L3(C) and FE6,L4(C) produced by the
algorithm. We represented them as small blue discs on the bottom right of Fig. 1.18.
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Fig. 1.18 Third level of Newton modifications in Example 1.4.28
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1.4.3 From Toroidal Pseudo-Resolutions to Embedded
Resolutions

In this subsection, we explain how to get an embedded resolution of C ↪→ S

from one of the toroidal pseudo-resolutions produced by Algorithm 1.4.22. Recall
first from Definition 1.4.15 the difference between toroidal pseudo-resolutions and
embedded ones: in the first ones the source of the modification may have toric
singularities, while in the second ones the source is required to be smooth.

Consider a toroidal pseudo-resolution morphism π : (�, ∂�) → (S, L + L′)
of C produced by Algorithm 1.4.22 (we speak about “a morphism” instead of
“the morphism”, because of the choices of smooth branches (Lj )j∈J involved
in its construction, see Definition 1.4.25). The surface � has a finite number
of singular points. As explained in Example 1.4.36, they correspond to the 2-
dimensional non-regular cones of the Newton fans which appeared during the
process. Proposition 1.3.28 shows that one may resolve minimally those singular
points by taking the regularization of each such cone. In fact, those regularizations
glue into the regularizations of the Newton fans.

A way to regularize all the Newton fans produced by Algorithm 1.4.22 is to run a
variant of it, obtained by always replacing STEP 3 with the following “regularized”
version of it:

STEP 3reg. Let Freg

L,L′(C) be the regularized Newton fan of C relative to the cross

(L, L′) and let ψ
C,reg

L,L′ : (SFreg

L,L′ (C)
, ∂SFreg

L,L′ (C)
) → (S, L + L′) be the associated

Newton modification. Consider the strict transform CL,L′ of C by ψ
C,reg

L,L′ .

We did not change the notations for the successive strict transforms of C from
STEP 3 to STEP 3reg, because this variant of the algorithm does never modify
the surfaces produced by the first algorithm in the neighborhood of those strict
transforms. Indeed, the strict transforms never pass through the singular points of
the modified surfaces S(k) (see Proposition 1.4.18 and Notations 1.4.25).

One has the following description of the result of running the “regularized”
algorithm:

Proposition 1.4.29 Let π : (�, ∂�) → (S, L+L′) be a toroidal pseudo-resolution
obtained by running Algorithm 1.4.22. Assume that one replaces always STEP
3 with STEP 3reg above, choosing the same smooth germs (Lj )j∈J as in the

construction of π . Then one gets a morphism in the toroidal category πreg :
(�reg, ∂�reg) → (S, L + L′), which is moreover an embedded resolution of C

and which factors as πreg = π ◦ η, where η : (�reg, ∂�reg) → (�, ∂�) is
a modification in the toroidal category whose underlying modification of complex
surfaces is the minimal resolution of the complex surface �.

Let us look at the underlying morphism of complex surfaces πreg : �reg → S.
Both surfaces are smooth, therefore this morphism is a composition of blow ups of
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points, by the following theorem of Zariski (see [61, Corollary 5.4] or [113, Vol.1,
Ch. IV.3.4, Thm.5]):

Theorem 1.4.30 Let ψ : S2 → S1 be a modification of a smooth complex surface
S1, with S2 also smooth. Then ψ may be written as a composition of blow ups of
points.

In Sect. 1.5 we will describe explicitly the combinatorics of the decomposition
of πreg : �reg → S into blow ups of points.

Let us recall the following classical terminology about objects associated to a
process of blow ups of points, starting from o ∈ S (see [78], [19, Chap. 3], [102]
and [96]):

Definition 1.4.31 Let (S, o) be a smooth germ of surface.

• An infinitely near point of o is either o or a point of the exceptional divisor
of a smooth modification of (S, o). Two such points, on two modifications, are
considered to be the same, if the associated bimeromorphic map between the two
modifications is an isomorphism in their neighborhoods.

• If o1 and o2 are two infinitely near points of o, then one says that o2 is proximate
to o1, written o2 → o1 , if o2 belongs to the strict transform of the irreducible
rational curve created by blowing up o1. If moreover there is no point o3 such
that o2 → o3 → o1, one says that o1 is the parent of o2.

• A finite constellation (above o) is a finite set C of infinitely near points of o,
closed under the operation of taking the parent.

• The Enriques diagram �(C) of the finite constellation C is the rooted tree
with vertex set C, rooted at o, and such that there is an edge joining each point of
C with its parent.

Note that the proximity binary relation on the set of all the infinitely near points
of o is not a partial order, as it is neither reflexive, nor transitive. For instance, if
o1 belongs to the exceptional divisor E0 of the blow up of o and o2 belongs to the
exceptional divisor of the blow up of o1 but not to the strict transform of E0 by
this blow up, then o2 → o1 → o, but o2 � o. Therefore, the Enriques diagram
of a finite constellation encodes only part of the proximity binary relation on it. For
this reason, Enriques introduced in [35] supplementary rules for the drawing of his
diagrams, allowing to reconstruct completely the proximity relation. Namely, the
edges of the Enriques diagram are moreover either straight or curved and there are
breaking points between some pairs of successive straight edges. As we do not insist
on those aspects, we do not give the precise definitions, sending the interested reader
to the literature cited above.
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1.4.4 The Fan Tree of a Toroidal Pseudo-Resolution Process

In this subsection we explain how to associate a fan tree to each process of toroidal
pseudo-resolution of a curve singularity C on the smooth germ of surface (S, o)

(see Definition 1.4.33). It is a couple formed by a rooted tree and a [0,∞]-valued
function constructed from the Newton fans created by the process. It turns out
that it is isomorphic to the dual graph of the boundary ∂� of the source surface
� of the toroidal pseudo-resolution morphism π : (�, ∂�) → (S, ∂S) (see
Proposition 1.4.35).

Fan trees are constructed from trunks associated with Newton fans. Let us define
first those trunks:

Definition 1.4.32 Let N be a 2-dimensional lattice endowed with a basis (e1, e2)

and let F be a Newton fan of N relative to this basis, in the sense of Definition 1.4.9.
Its trunk θ(F ) is the segment [e1, e2] ⊆ σ0 endowed with the slope function

SF : [e1, e2] → [0,∞] which associates with each point w ∈ [e1, e2] the slope in

the basis (e1, e2) of the ray R+w generated by it. Its marked points are the points
of intersection of [e1, e2] with the rays of F. If E ⊆ Q+ ∪{∞}, we denote by θ(E)

the trunk of the fan F(E) introduced in Definition 1.3.4.

Note that the slope function of a trunk is a homeomorphism. Several examples
of trunks are represented in Fig. 1.19.

Assume now that we apply Algorithm 1.4.22 to the curve singularity C living
on the smooth germ of surface (S, o). Consider the set {(Ai, Bi), i ∈ I } of crosses
produced by the algorithm, as explained in Notations 1.4.25. Note that we consider
also the crosses at which the algorithm stops at an iteration of STEP 1. Denote by
(eAi , eBi ) the basis (e1, e2) of the weight lattice NAi,Bi . The segment [eAi , eBi ] is

the trunk θ(FAi,Bi (C)). The following definition uses Notations 1.4.25:

Definition 1.4.33 The fan tree (θπ (C),Sπ ) of the toroidal pseudo-resolution
π : (�, ∂�) → (S, L + L′) of C is a pair formed by a rooted tree θπ(C) and a
slope function Sπ : θπ(C) → [0,∞] obtained by gluing the disjoint union of the
trunks (θ(FAi,Bi (C)),SFAi ,Bi

(C))i∈I in the following way:

1. Label each marked point with the corresponding irreducible component Ek, Lj

or Cl of the boundary ∂� of the toroidal surface (�, ∂�).
2. Identify all the points of

⊔
i∈I θ(FAi,Bi (C)) which have the same label. The

result of this identification is the fan tree θπ(C) and the images inside it of the
marked points of

⊔
i∈I θ(FAi,Bi (C)) are its marked points. We keep for each

one of them the same label as in the initial trunks.
3. The root of θπ(C) is the point labeled by the initial smooth branch L.
4. For every i ∈ I , the restriction of the function Sπ to every half-open trunk

θ(FAi,Bi (C)) \ {eAi } = (eAi , eBi ] ↪→ θπ(C) is equal to SFAi ,Bi
(C).

5. At the root, Sπ(L) = SFL,L1 (C)(L) = 0.
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As in any rooted tree, the root L defines a partial order �L on the set of vertices
of the fan tree θπ(C) (that is, on its set of marked points), by declaring that P �L Q

if and only if the unique segment [L, P ] joining L and P inside the tree is included
in the analogous segment [L, Q].

Note that the slope function Sπ is discontinuous at all the marked points of θπ(C)

resulting from the identification of points of two different trunks, its directional
limits jumping from a positive value to 0 when one passes from one trunk to another
one in increasing way relative to the partial order �L. It follows that the fan tree of
a toroidal pseudo-resolution determines the trunks (θ(FAi,Bi (C)),SFAi ,Bi

(C))i∈I .

Example 1.4.34 Consider again the toroidal pseudo-resolution process of Exam-
ple 1.4.28. The construction of the trunks associated to its Newton fans is repre-
sented in Fig. 1.19 for all the crosses at which one applies STEP 2 of the algorithm,
that is, for the crosses (Ai, Bi) with i ∈ J . The remaining crosses are those at
which the algorithm stops while executing STEP 1. The corresponding trunks are
represented on the bottom line of Fig. 1.19. Figure 1.20 shows the construction of
the fan tree from the previous collection of trunks. In order to make clear the process
of gluing of points with the same label, the upper part of the figure shows again the
whole collection of trunks, as well as the labels of its marked points.

The following proposition is an easy consequence of Definition 1.4.33 and of
Proposition 1.3.24 (recall that the notion of dual graph of an abstract simple normal
crossings curve was explained in Definition 1.3.22):

Proposition 1.4.35 The fan tree θπ(C) is isomorphic to the dual graph of the
boundary ∂� of the source of the toroidal pseudo-resolution π : (�, ∂�) →
(S, L+L′) of the curve singularity C, by an isomorphism which respects the labels.

Example 1.4.36 Proposition 1.4.35 is illustrated in Fig. 1.21 with the fan tree of the
bottom of Fig. 1.20 and the boundary ∂� of the bottom right of Fig. 1.18. Both of
them correspond to the toroidal pseudo-resolution process of Example 1.4.28. The
singular points of � may be found out from the knowledge of the slope function on
the trunks composing the fan tree. Indeed, consider the slopes β/α and δ/γ of two
consecutive vertices of the trunk of one of the Newton fans of the pseudo-resolution

process. Then the matrix

(
α γ

β δ

)

is of determinant±1 if and only if the intersection

point oi of the irreducible components of ∂� which corresponds to this edge is non-
singular on �. Moreover, the surface singularity (�, oi) is analytically isomorphic
to the germ at its orbit of dimension 0 of the affine toric surface generated by the
cone R+〈α e1+β e2, γ e1+ δ e2〉 and the lattice N = Z〈e1, e2〉. As in Fig. 1.18, the
singular points on ∂� are indicated by small blue discs. The corresponding edges
of the fan trees are represented also in blue. Note that in the previous explanation it
was important to say that one has to work with the slope function on the individual
trunks, instead of the slope function of the fan tree. For instance, if one looks at the
intersection point of the components E1 and E4, the corresponding slopes are to be
read on the trunk θ(FE1,L2(C)) (they are therefore 0/1 and 2/3, and the associated
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Fig. 1.19 The trunks associated to the toroidal pseudo-resolution of Example 1.4.28
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Fig. 1.20 Construction of the fan tree of the toroidal pseudo-resolution of Example 1.4.28
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Fig. 1.21 The fan tree θπ (C) is isomorphic to the dual graph of the toroidal boundary ∂�

matrix

(
1 3
0 2

)

is not unimodular), not on the fan tree θπ(C) (which would give the

slopes 3/5 and 2/3, whose associated matrix

(
5 3
3 2

)

is unimodular).

1.4.5 Historical Comments

The oldest method to study a plane curve singularity C, imagined by Newton around
1665, but published only in 1736 as [88], is to express it first in local coordinates
(x, y) as the vanishing locus of a power series f (x, y) satisfying f (0, 0) = 0 and
f (0, y) = 0, then to compute iteratively a formal power series η(x) with rational

positive exponents such that f (x, η(x)) = 0. Whenever
∂f

∂y
(0, 0) = 0, there is

only one such series η(x) which has moreover only integral exponents. This series
is simply the Taylor expansion at the origin of the explicit function y(x) whose
existence is ensured by the implicit function theorem applied to the function f (x, y)

in the neighborhood of (0, 0). But, if
∂f

∂y
(0, 0) = 0, then there are at least two such

series, their number being equal to the order in y of the series f (0, y).
As explained on the example studied in Sect. 1.2.6, the first step of Newton’s

iterative method consists in finding the possible leading terms c xα of the series
η(x). His main insight was that if one substitutes y := c xα in the series f (x, y),
getting a formal power series with rational exponents in the variable x, then there are
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at least two terms of this series with minimal exponent, and the sum of all such terms
vanishes. This fact has two consequences. First, there is a finite number of possible
exponents α, which are the slopes of the rays orthogonal to the compact edges of
the Newton polygon of f (x, y). Secondly, for a fixed exponent αK corresponding
to the compact edge K , there is a finite number of values of the leading coefficient
c, given by the roots of the algebraic equation fK(x, c xαK ) = 0, where fK is the
restriction of f to K in the sense of Definition 1.4.2.

Newton’s explanations were much developed in Cramer’s 1750 book [27,
Chapter VII], which seems also interesting to us in this context for its interpretation
of the weights of the variables x and y as orders of magnitude for infinitely small
quantities.

Figures 1.22 and 1.23 are extracted from [88, I, Section XXX] and [27, Section
103] respectively. The first one represents the only drawing of Newton polygon in

Fig. 1.22 The first Newton polygon

Fig. 1.23 The compact sides of a Newton polygon, as represented by Cramer
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Fig. 1.24 Newton’s ruler

Newton’s book. Strictly speaking, what we call the Newton polygon of a series in
two variables was not formally introduced in the book. Newton explained only how
to move a ruler in order to get a first bounded edge of the polygon (see Fig. 1.24).
More details about Newton’s and Cramer’s ideas on this subject may be found in
Ghys’ 2017 book [50, Pages 43–68].

Newton wrote that his procedure may be performed iteratively in order to
compute as many terms of the series η(x) as desired. He also sketched in [88,
Ch. I.LII] an explanation of the fact that, whenever f (x, y) converges, the formal
series with rational exponents η(x) obtained by continuing forever the procedure
also converge and satisfy indeed, all of them, the relation f (x, η(x)) = 0. But it
was Puiseux, in his 1850 paper [106], who proved rigorously that one gets indeed as
many series as the order in y of f (0, y), that all of them are obtained by substituting
some root x1/n of the variable x into formal power series with integral exponents,
and that those formal power series are in fact convergent in a neighborhood of the
origin. In order to honor his work, the formal or convergent power series in a variable
x of the form ξ(x1/n), where ξ(x) is a usual power series and n ∈ N

∗ are called
nowadays Puiseux series or Newton-Puiseux series.

Puiseux’s approach to the proofs of the existence and the convergence of these
series avoided the use of roots x1/n, by performing changes of variables of the form
x = x

q

1 , y = c1x
p

1 + y1 or of the form x = x
q

1 , y = x
p

1 (c1 + y1), where c1 is
a non-zero constant and p/q is the irreducible expression of one of the exponents
αK given by the Newton polygon of f . Both changes of variables are compositions
of a birational change of variables and of the monomial change of variables x =
uq, y = up v. This monomial change of variables is birational only when q = 1,
that is, when αK ∈ N

∗. Therefore Puiseux’s changes of variables are in general not
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birational. Nevertheless, by Lemma 1.6.24 below, such a map can be seen as the
local analytical expression of a birational map, with respect to a particular choice of
local coordinates.

Zariski saw this non-birationality as a drawback, and in his 1939 paper [136] he
introduced alternative changes of variables of the form x = x

q
1 (c1 + y1)

q1, y =
x

p
1 (c1 + y1)

p1 , where (p1, q1) ∈ N
∗ × N

∗ and p1q − q1p = 1. This last condition
means that Zariski’s changes of variables are birational.

Let us discuss now the toric approach to the study of plane curve singularities.
Note that the changes of variables used by Puiseux and by Zariski are compositions
of affine morphisms and of toric ones. This fact became clear after the development
of toric geometry (see Sect. 1.3.5).

The systematic study of plane curve singularities using sequences of toric
modifications began with Mutsuo Oka’s 1995–96 papers [8, 83, 93], the first one
written in collaboration with Lê and the second one with A’Campo (see also
Oka’s 1997 book [94, Ch. III, Sect. 4]). Oka gave an introduction to this approach
in his 2010 paper [95], through the detailed examination of the case of one
branch. The second author generalized this approach to quasi-ordinary hypersurface
singularities of arbitrary dimension in his 2003 paper [52] and applied it to the study
of deformations of real plane curve singularities in the 2010 papers [53] and [54],
the second one written in collaboration with Risler.

Also during the 1990s, Pierrette Cassou-Noguès started studying plane curve
singularities using Puiseux’s non-birational toric morphisms, called Newton maps.
References to her early works on the subject, done partly in collaboration, may be
found in her 2011 paper [20] with Płoski, her 2014–15 papers [22, 23] with Veys,
her 2014 paper with Libgober [21] and her 2018 paper with Raibaut [24].

In his 1997 paper [129], Veys considered the log-canonical model of a plane
curve singularity, obtained by contracting certain exceptional divisors on its minimal
embedded resolution, in order to study associated zeta functions. The modification
from the log-canonical model to the ambient germ of the plane curve singularity
may be seen as a morphism associated with a toroidal pseudo-resolution of this
singularity. A toroidal pseudo-resolution algorithm for plane curve singularities was
described by the second author in [52, Section 3.4]. A more general algorithm was
given by Cassou-Noguès and Libgober in [21, Section 3]. Our Algorithm 1.4.22 of
toroidal pseudo-resolution generalizes them, since it does not depend on the choice
of special kinds of coordinates.

There are several approaches for the search of optimal choices of smooth
branches in STEP 2 of Algorithm 1.4.22. Assume first that C is a branch, that
f ∈ C[[x]][y] is the monic polynomial of degree n defining C in the local
coordinate system (x, y) and that the line L = Z(x) is transversal to C. Let a

be a divisor of n. The a-th approximate root h ∈ C[[x]][y] of f is the unique monic
polynomial of degree a such that the degree in y of f−hn/a is smaller than n−a. The
importance of approximate roots for the study of plane curve singularities and of the
algebraic embeddings of C in C

2 was emphasized by Abhyankar and Moh in their
1973–75 papers [2] and [3]. Certain approximate roots of f , called characteristic
approximate roots, have the property that their strict transforms can be chosen at
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STEP 2 of Algorithm 1.4.22, providing in this way a toroidal pseudo-resolution
of C with the minimal number of Newton modifications. This number is precisely
the number of characteristic exponents of C with respect to x (see Sect. 1.6). This
approach was explained by A’Campo and Oka in their 1996 paper [8].

Some properties of the approximate roots may fail when working with a base
field of positive characteristic. By contrast, the more general combinatorial notion of
semiroot/maximal contact curve can be defined over fields of arbitrary characteristic
and plays a similar role (see the papers [77] of Lejeune-Jalabert and [49] of the first
author and Płoski). For details on applications of approximate roots and semiroots
to the study of plane curve singularities, see the paper [60] of Gwoździewicz
and Płoski and [99] of the third author. Proposition 1.4.35 above implies that if
π : (�, ∂�) → (S, L + L′) is a toroidal embedded resolution of C which defines
its minimal resolution, then the irreducible components of the associated completion
Ĉπ = π(∂�) may be thought as generalizations of the notion of semiroot to
plane curve singularities with an arbitrary number of branches (see also the final
comments in Example 1.6.33 below).

Assume now that C is an arbitrary plane curve singularity. The minimal number
of Newton modifications involved in the construction of a toroidal pseudo-resolution
C was characterized by Lê and Oka in [83] in terms of properties of the dual graph
of its minimal embedded resolution.

Another toric approach to the study of plane curve singularities was initiated
in Goldin and Teissier’s 2000 paper [51], in the case of branches. They first
reembedded in a special way the initial germ of surface in a higher dimensional
space, then they resolved the branch by just one toric modification of that space.
Their approach was done in the spirit of the philosophy of Teissier’s 1973 paper
[119], in which he saw all equisingular plane branches as deformations of a single
branch of higher embedding dimension, the germ at the origin of their common
monomial curve. A generalization of some of the results in [51] to the case of quasi-
ordinary hypersurface singularities was obtained by the second author in [52]. The
theoretical possibility of studying analogously singularities of any dimension was
established by Tevelev in his 2014 paper [125]. See Teissier’s comments in [124,
Section 11] for more details about his toric approach to the study of singularities.

The notions of Newton non-degenerate polynomials and series were introduced
by Kouchnirenko in his 1976 paper [74], using the last characterization of Propo-
sition 1.4.20. A version of the first characterization was essential in Varchenko’s
theorem in [128] about the monodromy of Newton non-degenerate holomorphic
series. Then Khovanskii introduced in [73] Newton non-degenerate complete inter-
section singularities, a notion which was much studied by Mutsuo Oka in a series
of papers, which were the basis of his 1997 monograph [94]. Characterizations of
Newton non-degenerate singularities, analogous to those of Proposition 1.4.20, are
in fact true for complete intersection singularities (see Oka’s book [94] or Teissier’s
paper [122, Section 5]). This last paper contains interesting comments about the
evolution of the notion of Newton non-degeneracy, and an extension of it to arbitrary
singularities, which are not necessarily complete intersections. This extension was
further studied in Fuensanta Aroca, Gómez-Morales and Shabbir’s paper [9].
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Let us discuss now the notion of tropicalization tropf introduced in Defini-
tion 1.4.4. The union of the rays of the Newton fan F(f ) which intersect the interior
of the regular cone σ0 is the tropical zero-locus of the function tropf , as defined
in tropical geometry, that is, the locus of non-differentiability of the continuous
piecewise linear function tropf . It is also part of the local tropicalization of the
zero locus Z(f ) ↪→ (C2, 0) of f , as defined by Stepanov and the third author in
[105] for complex analytic singularities of arbitrary dimension embedded in germs
of affine toric varieties. The local tropicalization contains also portions at infinity, in
a partial compactification of the cone defining the ambient toric variety, in order to
keep track of the intersections of the singularity with all the toric orbits.

A precursor of the notion of local tropicalisation was introduced under the name
of “tropism of an ideal” by Maurer in his 1980 article [85], which was unknown
to the authors of [105] when they wrote that paper. In our case, the tropism of the
ideal (f ) ⊆ C[[x, y]] is the set of lattice points lying on the rays of F(f ) which are
different from the edges of the cone σ0. The term “tropism” had been used before by
Lejeune-Jalabert and Teissier in their 1973 paper [79], in the expression “tropisme
critique”. They saw this notion as a measure of anisotropy, as explained by Teissier
in [65, Footnote to Sect. 1]:

As far as I know the term did not exist before. We tried to convey the idea that giving
different weights to some variables made the space “anisotropic”, and we were intrigued
by the structure, for example, of anisotropic projective spaces (which are nowadays called
weighted projective spaces). From there to “tropismes critiques” was a quite natural
linguistic movement. Of course there was no “tropical” idea around, but as you say, it is
an amusing coincidence. The Greek “Tropos” usually designates change, so that “tropisme
critique” is well adapted to denote the values where the change of weights becomes
critical for the computation of the initial ideal. The term “Isotropic”, apparently due to
Cauchy, refers to the property of presenting the same (physical) characters in all directions.
Anisotropic is, of course, its negation. The name of Tropical geometry originates, as you
probably know, from tropical algebra which honours the Brazilian computer scientist Imre
Simon living close to the tropics, where the course of the sun changes back to the equator.
In a way the tropics of Capricorn and Cancer represent, for the sun, critical tropisms.

1.5 Lotuses

Throughout this section, we will assume that C is reduced. We explain the notion
of Newton lotus (see Definition 1.5.4), its relation with continued fractions (see
Sect. 1.5.2) and how to construct a more general lotus from the fan tree of a toroidal
pseudo-resolution process (see Definition 1.5.26). It is a special type of simplicial
complex of dimension 2, built from the Newton lotuses associated with the Newton
fans generated by the process, by gluing them in the same way one glued the
corresponding trunks into the fan tree. It allows to visualize the combinatorics of the
decomposition of the embedded resolution morphism into point blow ups, as well as
the associated Enriques diagram and the final dual graphs (see Theorem 1.5.29). We
show by two examples that its structure depends on the choice of auxiliary curves
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introduced each time one executes STEP 2 of Algorithm 1.4.22, that is, on the choice
of completion Ĉπ of C (see Sect. 1.5.4). In Sect. 1.5.5 we define an operation of
truncation of the lotus of a toroidal pseudo-resolution and we explain some of its
uses. In the final Sect. 1.5.6 we give historical information about other works in
which appeared objects similar to the notion of lotus.

1.5.1 The Lotus of a Newton Fan

In this subsection, whose content is very similar to that of [102, Section 5], we give a
first level of explanation of the subtitle of this article, a second level being described
in Sect. 1.5.3. Namely, we introduce the notion of lotus �(F ) of a Newton fan F
(see Definition 1.5.4). If the fan originates from a Newton polygon N(f ), that is,
if F = F(f ) (see Definition 1.4.9), we imagine �(F ) as a blossoming of N(f ).
The lotus of a Newton fan F allows to understand visually the decomposition into
blow ups of the toric modification defined by the regularized fan F reg. For instance,
the dual graph of the final exceptional divisor, the Enriques diagram and the graph
of the proximity relation of the associated constellation embed naturally in it, as
subcomplexes of its 1-skeleton (see Propositions 1.5.11, 1.5.14 and 1.5.16).

Lotuses are built from petals, which are triangles with supplementary structure
(see Fig. 1.25):

Definition 1.5.1 Let N be a 2-dimensional lattice and let (e1, e2) be a basis of it.
Denote by δ(e1, e2) the convex and compact triangle with vertices e1, e2, e1 + e2,
contained in the real plane NR. It is the petal associated with the basis (e1, e2). Its
base is the segment [e1, e2], oriented from e1 to e2. The points e1 and e2 are called
the basic vertices of the petal. Its lateral edges are the segments [ei, e1 + e2], for
each i ∈ {1, 2}.

Once the petal δ(e1, e1 + e2) is constructed, the construction may be repeated
starting from each one of the bases (e1, e1 + e2) and (e1 + e2, e2) of N , getting two

e1 � basic vertex

basic vertex � e2

0

δ(e1, e2)

lateral edge

lateral edge

e1

e2

0

δ(e1, e2)

δ(e1, e1 + e2)

δ(e1 + e2, e2)

Fig. 1.25 Vocabulary and notations about petals
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new petals δ(e1, e1+ e2) and δ(e1+ e2, e2), and so on. Note that the bases produced
by this process are ordered such as to define always the same orientation of the
real plane NR—we say that they are positive bases. In this way, one progressively
constructs an infinite simplicial complex embedded in the cone σ0: at the n-th step,
one adds 2n petals to those already constructed. Each petal, with the exception of
the first one δ(e1, e2), has a common edge—its base—with exactly one of the petals
constructed at the previous step, called its parent.

The pairs of vectors (f1, f2) ∈ N2 which appear as bases of petals δ(f1, f2)

during the previous process may be characterized in the following way (see [102,
Remarque 5.1]):

Lemma 1.5.2 A segment [f1, f2], oriented from f1 to f2, is the base of a petal
δ(f1, f2) constructed during the previous process if and only if (f1, f2) is a positive
basis of the lattice N contained in the cone σ0. Said differently, if a positive basis
(f1, f2) of N is contained in the cone σ0 and is different from (e1, e2), then there
exists a unique permutation (i, j) of (1, 2) such that fj − fi ∈ σ0 ∩N .

We are ready to define the simplest kinds of lotuses:

Definition 1.5.3 The simplicial complex obtained as the union of all the petals
constructed by the previous process starting from the basis (e1, e2) of N , is called
the universal lotus �(e1, e2) relative to (e1, e2) (see Fig. 1.26). A lotus �

relative to (e1, e2) is either the segment [e1, e2] or the union of a non-empty set
of petals of the universal lotus �(e1, e2), stable under the operation of taking the
parent of a petal. The segment [e1, e2] is called the base of �. If � is of dimension
2, then the petal δ(e1, e2) is called its base petal. The point e1 is called the first
basic vertex and e2 the second basic vertex of the lotus. The lotus is oriented by
restricting to it the orientation of NR induced by the basis (e1, e2).

A lotus may be associated with any set E ⊆ [0,∞] or with any Newton fan:

Definition 1.5.4 Let N be a lattice of rank 2, endowed with a basis (e1, e2).

• If λ ∈ (0,∞), then its lotus, denoted �(λ) , is the union of petals of the
universal lotus �(e1, e2) whose interiors intersect the ray of slope λ. If λ ∈
{0,∞}, then its lotus �(λ) is just [e1, e2].

• If E ⊆ [0,∞], then its lotus �(E) is the union
⋃

λ∈E �(λ) of the lotuses of its
elements.

• If F is a Newton fan and F = F(E) in the sense of Definition 1.3.4, we say that
�(F ) := �(E) is the lotus of the fan F.

• A Newton lotus is the lotus of a Newton fan. That is, it is a lotus relative to
(e1, e2) with a finite number of petals.

We could have called the lotuses relative to (e1, e2) finite lotuses instead of
Newton lotuses. We chose the second terminology because in Definition 1.5.26
below we will introduce a more general kind of lotuses with a finite number of
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e1

e2

0

δ(e1, e2)

Fig. 1.26 Partial view of the universal lotus �(e1, e2) relative to (e1, e2)

petals, and we want to distinguish the class of lotuses of Newton fans inside that
more general class of lotuses.

A lotus �(E), for E ⊆ [0,∞], is a Newton lotus if and only E is a finite
set of non-negative rational numbers. Note that, as illustrated for instance by
Example 1.5.9 below, the structure of the lotus �(E) does not allow to reconstruct
the initial set E. For this reason, we enrich �(E) with several marked points, whose
knowledge allows to reconstruct E unambiguously:

Definition 1.5.5 Fix a Newton lotus �.

• If � = [e1, e2], we denote by ∂+� the compact and connected polygonal line
defined as the complement of the open segment (e1, e2) in the boundary of the
lotus �. If � = [e1, e2], we set ∂+� := [e1, e2]. The polygonal line ∂+� ⊆ �

is called the lateral boundary of the lotus �.
• We denote by p� the homeomorphism p� : [0,∞] → ∂+� which associates

with any λ ∈ [0,∞] the unique point p�(λ) ∈ ∂+� of slope λ. If � = �(E)

where E ⊆ Q+ ∪ {∞} is finite and λ ∈ E, then we call p�(E)(λ) the marked
point of λ (or of the ray of slope λ) in the lotus �(E). We consider �(E) as a
marked lotus using those marked points.
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Remark 1.5.6 Notice that if λ ∈ E, then p�(E)(λ) is by construction the unique
primitive element p(λ) of the lattice N , which has slope λ relative to the basis
(e1, e2). Therefore, it is independent of the remaining elements of the set E.

We distinguish also by geometric properties several vertices of a Newton lotus:

Definition 1.5.7 Assume that � is a Newton lotus. A vertex of � different from e1
and e2 is called a pinching point of the lotus � if it belongs to a unique petal of
it. If the lotus � is two-dimensional, then the lattice point which is connected to e2
(resp. to e1) inside the lateral boundary ∂+� of � is called the last interior point
(resp. first interior point) of the lateral boundary.

Remark 1.5.8 The pinching points of a Newton lotus �(E) are part of its marked
points. Two Newton lotuses �(E1) and �(E2) coincide as unmarked simplicial
complexes if and only if their sets of pinching points coincide.

Example 1.5.9 In Fig. 1.27 are represented the lotuses � (3/5) and �(E), where
E = {3/5, 2/1, 5/2} is the set whose fan F(E) was drawn in Fig. 1.8. The lotus
� (3/5) has only one pinching point, which is p (3/5). The pinching points of �(E)

are p (3/5) and p (5/2). Its marked points are p (3/5), p (2/1) and p (5/2). This
differentiates it from the lotus �(3/5, 5/2) := �({3/5, 5/2}), which is the same
simplicial complex if one forgets their respective marked points. The first interior
point of �(E) is p (1/2) and its last interior point is p (3/1).

By comparing Figs. 1.27 and 1.9, which we combined in Fig. 1.28, one sees
that the lateral boundary of the lotus �(3/5, 2/1, 5/2) is exactly the polygonal
line constructed when one performed the regularization of the fan F(3/5, 2/1, 5/2)

(see Proposition 1.3.9). This is a general phenomenon, as shown by the following
proposition.

Proposition 1.5.10 Let F be a fan subdividing the cone σ0. Then the regularization
F reg of F is obtained by subdividing σ0 using the rays generated by all the lattice
points lying along the lateral boundary ∂+�(F ) of the lotus �(F ).

p ( 3
5 )

e1

e2

p ( 5
2 )

p ( 2
1 )

p ( 3
5 )

e1

e2

Fig. 1.27 The Newton lotuses � (3/5), � (3/5, 2/1, 5/2) and their marked points
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e1

e2

p ( 5
2 )

p ( 2
1 )

p ( 3
5 )

e1

e2

Fig. 1.28 The regularized fan F reg (3/5, 2/1, 5/2) and the Newton lotus � (3/5, 2/1, 5/2)

Proof Consider two successive marked points p(λ) and p(μ) of the lateral
boundary ∂+�(F ). They are primitive elements of the ambient lattice N . Denote by
p(λ)+R+p(λ) the closed half line originating from the point p(λ) and generated by
the vector p(λ). Consider analogously the half-line p(μ) + R+p(μ). Let P(λ, μ)

be the polygonal line joining the points p(λ) and p(μ) inside ∂+�(F ). Consider
the union of the three previous polygonal lines: Q(λ, μ) := (p(λ)+ R+p(λ)) ∪
P(λ, μ) ∪ (p(μ)+ R+p(μ)).

As the pinching points of �(F ) belong to the marked points, this shows that
there are no pinching points in the interior of the polygonal line P(λ, μ). Therefore,
Q(λ, μ) is the boundary of a closed convex set Q̂(λ, μ) contained in the cone
R+〈p(λ), p(μ)〉. The complement R+〈p(λ), p(μ)〉 \ Q̂(λ, μ) is contained in the
union of the complement �(F ) \ ∂+�(F ) and the convex hull of the points 0, e1, e2
deprived of the segment [e1, e2]. Therefore, the origin 0 is the only point of N

contained in R+〈p(λ), p(μ)〉 \ Q̂(λ, μ). As all the vertices of Q(λ, μ) belong to
N , this shows that Q̂(λ, μ) is the convex hull of the set R+〈p(λ), p(μ)〉∩(N \ {0}).
One concludes using Proposition 1.3.9. ��

Consider again Fig. 1.28. As shown by Proposition 1.3.24, the polygonal line on
the left side gives a concrete embedding of the dual graph of the boundary ∂XF reg .
But it does not show the order in which were performed the blow ups into which
the associated modification ψF

σ0
: XF → Xσ0 decomposes (see Theorem 1.4.30).

It turns out that this order is indicated by the lotus on the right side of Fig. 1.28.
To understand this fact, recall first the combinatorial description of the blow up
of the orbit of dimension 0 of the smooth affine toric surface Xσ0 , explained in
Example 1.3.27: one gets it by subdividing the cone σ0 using the ray generated by
e1 + e2. In terms of the associated bases of N , one replaces the basis (e1, e2) by the
pair of bases (e1, e1 + e2) and (e1 + e2, e2). Graphically, this may be understood
as the passage from the base [e1, e2] of the petal δ(e1, e2) seen as the simplest 2-
dimensional lotus (see Definition 1.5.1) to its lateral boundary [e1, e1 + e2] ∪ [e1 +
e2, e2]. Again by Proposition 1.3.24, we may see this passage as the replacement
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of the dual graph of ∂Xσ0 by the dual graph of the boundary of the blown up toric
surface. Now, each new petal in the lotus �(F ) corresponds to the blow up of an
orbit of dimension 0 of the previous toric surface. Its base may be seen as the dual
graph of the irreducible components of the boundary meeting at that point. One gets:

Proposition 1.5.11 Let F be a Newton fan. Then:

• The lateral boundary ∂+�(F ) of the lotus �(F ) is the dual graph of the bound-
ary ∂XF reg of the smooth toric surface XF reg . Two vertices of it are joined by an
edge of the lotus �(F ) if and only if the corresponding orbits have intersecting
closures at some moment of the process of creation of ∂XF reg by blow ups of
orbits of dimension 0, which are particular infinitely near points of Oσ0 ∈ Xσ0 .

• If one associates with each orbit of dimension 0 the corresponding petal of
�(F ), then the parent map on the set of petals induces on the previous set of
0-dimensional orbits the restriction of the parent relation defined on the set of
infinitely near points of Oσ0 (see Definition 1.4.31).

Let us set a notation for the constellation created during a toric blow up process
(see Definition 1.4.31):

Definition 1.5.12 Let F be a Newton fan. Denote by CF the finite constellation

above Oσ0 consisting of the 0-dimensional orbits Oσ , where σ varies among the
regular 2-dimensional cones of the blow up process leading to the smooth toric
surface XF reg . It is the constellation of the fan F.

Let σ be one of the cones mentioned in Definition 1.5.12. It is of the form
R+〈f1, f2〉, where (f1, f2) is a positive basis of the lattice N . Proposition 1.5.11
shows that one may represent the 0-dimensional orbit Oσ either by the edge [f1, f2]
of the lotus �(F ) or by the petal δ(f1, f2). How to understand the Enriques diagram
of the constellation CF using the lotus �(F )? It turns out that this may be done
easily using the representing edges [f1, f2]. In order to explain it, let us introduce
first the following definition (see Figs. 1.29 and 1.30):

Definition 1.5.13 Let δ(f1, f2) be a petal of the universal lotus �(e1, e2). Assume
that it is different from δ(e1, e2), which means that there exists a unique permutation
(i, j) of (1, 2) such that fj − fi ∈ σ0 ∩ N (see Lemma 1.5.2). Then its Enriques
edge is its lateral edge [fj , f1 + f2], that is, its unique lateral edge which extends
an edge of its parent petal. The Enriques tree of a lotus � is:

• the union of the Enriques edges of all its petals different from δ(e1, e2), rooted at
its vertex e1 + e2, whenever � is of dimension 2;

• the vertex e1 + e2 of δ(e1, e2), if � = [e1, e2].
The extended Enriques tree of a lotus � is:

• the union of the Enriques subtree and of the lateral edge [e1, e1 + e2] of the base
petal δ(e1, e2) of �, whenever � is of dimension 2;

• the lateral edge [e1, e1 + e2] of δ(e1, e2), if � = [e1, e2].



86 E. R. García Barroso et al.

e1

e2

0

δ(e1, e2)

Fig. 1.29 Partial view of the Enriques subtree of the universal lotus �(e1, e2)

e1

e2

e1

e2

Fig. 1.30 The Enriques tree and the extended Enriques tree of the lotus � (3/5, 2/1, 5/2)

One has the following interpretation of the Enriques diagram of the constellation
of the fan F using the lotus �(F ). It allows to understand for which reason we
defined the Enriques tree of a lotus reduced to the base [e1, e2] in the previous way:

Proposition 1.5.14 Let F be a Newton fan. Then the Enriques diagram �(CF) of
the constellation CF of F (see Definition 1.5.12) is isomorphic to the Enriques
subtree of the lotus �(F ). This isomorphism sends each orbit Oσ belonging to CF
onto the point f1 + f2, if σ = R+〈f1, f2〉.
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Proof The basic idea is that we have a bijection between the set of infinitely near
points of Oσ0 and the set of prime exceptional divisors created by blowing them up.
Therefore, the parent binary relation may be thought as a binary relation on the set
of those prime exceptional divisors. In this proposition, we restrict to the divisors
which are the orbit closures Oρ , where ρ varies among the rays of the regularization
F reg of F which are distinct from the edges of σ0. Each such a ray is generated
by a lateral vertex of �(F ), therefore the parent binary relation among those orbit
closures may be also seen as a binary relation among those lateral vertices. One may
prove by induction on this number of rays, that is, on the number of petals of the
associated lotus �(F ), that the pairs of related vertices are precisely those which
are connected by an edge in the Enriques tree of �(F ).

The case F = σ0 corresponds to a constellation formed by Oσ0 alone. In this case
one looks at the prime divisor created by blowing it up, that is, at OR+〈e1+e2〉. This
explains why we defined �(Cσ0) as the vertex e1 + e2 of the petal δ(e1, e2). ��
Remark 1.5.15 The reason why we introduced also the notion of extended Enriques
tree in Definition 1.5.13, in addition to that of Enriques tree, will become clear
after understanding point (8) of Theorem 1.5.29. Briefly speaking, the constellations
associated to the toroidal pseudo-resolution processes have associated lotuses which
are glued from lotuses of Newton fans. An analog of Proposition 1.5.14 is also
true for them. The corresponding Enriques tree contains the Enriques trees of
the Newton fans created by the toroidal process, but also other edges. Those
supplementary edges are precisely the edges which have to be added to the Enriques
tree of a Newton fan in order to get the corresponding extended Enriques tree (see
Definition 1.5.26 below).

The lotus �(F ) contains also the graph of the proximity binary relation on the
constellation CF, whose set of vertices is the given constellation, two points being
joined by an edge if and only if one of them is proximate to the other one (see
Definition 1.4.31):

Proposition 1.5.16 Let F be a fan refining the regular cone σ0. Then the graph
of the proximity binary relation on the finite constellation CF is isomorphic to the
union of the edges of the lotus �(F ) which do not contain the vertices e1 and e2.

The proof of this proposition is based on the same principles as the proof of
Proposition 1.5.14 and is left to the reader.

1.5.2 Lotuses and Continued Fractions

In this subsection we explain a way to build, up to isomorphism, the lotus of a finite
set of positive rational numbers in the sense of Definition 1.5.4, starting from the
continued fraction expansions of its elements. Namely, given a positive rational
number λ, we show how to construct an abstract lotus �(λ) starting from the
continued fraction expansion of λ (see Definition 1.5.18) and we explain that �(λ) is
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isomorphic to the lotus �(λ). Then we show how to glue two abstract lotuses �(λ)

and �(μ) in order to get a simplicial complex isomorphic to the lotus �(λ, μ) (see
Proposition 1.5.23). This extends readily to arbitrary finite sets of positive rationals.

Recall first the following classical notion:

Definition 1.5.17 Let k ∈ N
∗ and let a1, . . . , ak be natural numbers such that a1 ≥

0 and aj > 0 if j ∈ {2, . . . , k}. The continued fraction with terms a1, . . . , ak is
the non-negative rational number:

[a1, a2, . . . , ak] := a1 + 1

a2 +
1

· · · + 1

ak

.

Any λ ∈ Q
∗+ may be written uniquely as a continued fraction [a1, a2, . . . , ak] if

one imposes the constraint that ak > 1 whenever λ = 1. One speaks then of the
continued fraction expansion of λ. Note that its first term a1 vanishes if and only
if λ ∈ (0, 1).

Definition 1.5.18 Let λ ∈ Q
∗+. Consider its continued fraction expansion λ =

[a1, a2, . . . , ak]. Its abstract lotus �(λ) is the simplicial complex constructed
as follows:

• Start from an affine triangle [A1, A2, V ], with vertices A1, A2, V .
• Draw a polygonal line P0P1P2 . . . Pk−1 whose vertices belong alternatively to

the sides [A1, V ], [A2, V ], and such that P0 := A2 and

{
P1 ∈ [A1, V ), with P1 = A1 if and only if a1 = 0,

Pi ∈ (Pi−2, V ) for any i ∈ {2, . . . , k − 1}.

By convention, we set also P−1 := A1, Pk := V . The resulting subdivision of
the triangle [A1, A2, V ] into k triangles is the zigzag decomposition associated
with λ.

• Decompose then each segment [Pi−1, Pi+1] (for i ∈ {0, . . . , k − 1}) into ai+1
segments, and join the interior points of [Pi−1, Pi+1] created in this way to Pi .
One obtains then a new triangulation of the initial triangle [A1, A2, V ], which is
by definition the abstract lotus �(λ).

The base of the abstract lotus �(λ) is the segment [A1, A2], oriented from A1 to
A2. One orients also the other edges of �(λ) in the following way:

• [Pi−1, Pi ] is oriented from Pi to Pi−1, for each i ∈ {1, . . . , k − 1}.
• An edge joining Pi to a point of the open segment (Pi−1, Pi+1) is oriented

towards Pi .
• An edge contained in a segment [V, Aj ] is oriented towards Aj , for each j ∈
{1, 2}.
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The abstract lotus �(λ) of λ ∈ Q
∗+ is a simplicial complex of pure dimension 2,

isomorphic to a convex polygon triangulated by diagonals intersecting only at ver-
tices and with a distinguished oriented base. It is well-defined, up to combinatorial
isomorphism of polygons triangulated by diagonals intersecting only at vertices,
respecting the bases and their orientations. The orientations of its other edges are
in fact determined by the orientation of the base. Those orientations will not be
important in the sequel, excepted in Proposition 1.5.21 below. For this reason we do
not draw them in our examples of abstract lotuses.

Example 1.5.19 Figures 1.31 and 1.32 represent the previous constructions applied
to the numbers λ = [4, 2, 5] and μ = [3, 2, 1, 4]. On the left are shown the initial
zigzag decompositions and on the right the final abstract lotuses �(λ) and �(μ).

The abstract lotus of a positive rational number is isomorphic with its lotus:

P 0 = A 2 P −1 = A 1

P 1

P 2

P 3 = V p ([4, 2, 5])

A 2 A 1

Fig. 1.31 The construction of the abstract lotus �([4, 2, 5])

P 0 = A 2 P −1 = A 1

P 1

P 2

P 3

P 4 = V p ([3, 2, 1, 4])

A 2 A 1

Fig. 1.32 The construction of the abstract lotus �([3, 2, 1, 4])
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Proposition 1.5.20 There is a unique isomorphism between the lotus �(λ) and
the abstract lotus �(λ), seen as simplicial complexes with a marked point and an
oriented base.

Proof The isomorphism sends Ai to ei for i = 1, 2. The proof may be done by
induction on k, the number of terms in the continued fraction expansion of λ. We
leave the details to the reader. ��

The previous isomorphism does not always send the orientations of the edges of
�(λ) as chosen after Definition 1.5.1 onto the orientations of the edges of �(λ) as
fixed in Definition 1.5.18. The possibility of defining various canonical orientations
on the edges of a lotus of the form �(λ) may be useful in applications.

The rational number λ > 0 may be recovered in the following way from the
structure of the corresponding abstract lotus:

Proposition 1.5.21 Assume that λ = p2/p1 with p1, p2 ∈ N
∗ coprime. Then, for

each j ∈ {1, 2}, the positive integer pj is equal to the number of oriented paths not
containing the base [A1, A2] and going from V to Aj inside the 1-skeleton of �(λ),
oriented as in Definition 1.5.18.

This proposition may be easily proved by induction on the number of petals of
�(λ). It shows a way in which the numbers leading to the construction of a Newton
lotus may be interpreted as combinatorial invariants of the lotus, seen purely as a
marked simplicial complex with oriented base.

Example 1.5.22 In Fig. 1.33 is represented the case (p1, p2) = (2, 3) of Proposi-
tion 1.5.21. We have drawn twice the lotus �(3/2) = �([1, 2]). On the right are
drawn the 2 oriented paths starting from V and arriving at A1. On the left are drawn
the 3 oriented paths starting from V and arriving at A2. We see that the constraint
not to contain the base is necessary, otherwise one would obtain 2 more paths from
V to A2 by adding the base to the paths from V to A1.

Suppose now that one has two numbers λ, μ ∈ Q
∗+. If λ = [a1, . . . , ak] and

μ = [b1, . . . , bl], let j ∈ {0, . . . , min{k, l}} be maximal such that ai = bi for
all i ∈ {1, . . . , j }. We may assume, up to permutation of λ and μ, that k = j or
aj+1 < bj+1. Define then:

Fig. 1.33 An illustration of
Proposition 1.5.21 for
p2/p1 = 3/2

A 2 A 1

V

p2 = 3
A 2 A 1

V

p1 = 2
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p ([4, 2, 5])

A 2 A 1

»+

p ([3, 2, 1, 4])

A 2 A 1

=

p ([4, 2, 5]) p ([3, 2, 1, 4])

A 2 A 1

Fig. 1.34 The abstract lotus �([4, 2, 5], [3, 2, 1, 4])

λ ∧ μ = μ ∧ λ :=
⎧
⎨

⎩

[a1, . . . , aj ], if k = j,[
a1, . . . , aj , aj+1

]
, if k = j + 1,

[
a1, . . . , aj , aj+1 + 1

]
, if k > j + 1.

(1.48)

Next proposition explains that the symmetric binary operation ∧ on Q
∗+ allows

to describe the intersection of two lotuses of the form �(λ):

Proposition 1.5.23 For any λ, μ ∈ Q
∗+, one has:

�(λ) ∩�(μ) = �(λ ∧ μ).

Therefore, the lotus �(λ, μ) is isomorphic as a simplicial complex with an oriented
base to the triangulated polygon obtained by gluing �(λ) and �(μ) along �(λ∧μ).

Proof Assume that λ = [a1, . . . , ak]. Proposition 1.5.20 shows in particular
that the lotus �(λ) has n := a1 + · · · + ak petals. Denote by (λi)1≤i≤n the
sequence of positive rationals such that the successive non-basic vertices of the
petals of �([a1, . . . , ak]) are the primitive vectors p(λ1), . . . , p(λn). The sequence
of continued fraction expansions of (λi)1≤i≤n is:

[1], [2], . . . , [a1], [a1, 1], [a1, 2], . . . , [a1, a2], [a1, a2, 1], . . . , [a1, . . . , ak].
(1.49)

One may prove this fact at the same time as Proposition 1.5.20, by making now an
induction on the number n of petals of �([a1, . . . , ak]), instead of the number k of
terms of the continued fraction.

The proposition results then by combining the previous fact with formula (1.48).
��

Example 1.5.24 Let us consider the two rational numbers λ = [4, 2, 5] and μ =
[3, 2, 1, 4] of Example 1.5.19. Then j = 0, k = 3, l = 4, therefore j + 1 <

min{k, l} and λ ∧ μ = [3 + 1] = 4. The lotus �(λ, μ) is therefore isomorphic to
the triangulated polygon with an oriented base of the right side of Fig. 1.34.
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Iterating the gluing operation, one may construct an abstract lotus
�(λ1, . . . , λk) combinatorially equivalent to any given Newton lotus �(λ1, . . . ,

λk), seen as a triangulated polygon with marked points and oriented base. One gets
an abelian monoid of (abstract) lotuses, the monoid operation ! generalizing the
gluing operation of Fig. 1.34. Namely, if E1 and E2 are finite subsets of Q+ ∪ {∞},
then:

�(E1) !�(E2) := �(E1 ∪ E2). (1.50)

The neutral element of this monoid is the segment [A1, A2] = �(∅) = �(0) =
�(∞) = �({0,∞}).

1.5.3 The Lotus of a Toroidal Pseudo-Resolution

In this subsection we reach a second level of explanation of the subtitle of this
article, the first level having been reached in Sect. 1.5.1 above. Namely, we define a
new kind of lotus by gluing the lotuses associated to the Newton fans produced
by Algorithm 1.4.22 (see Definition 1.5.26). We illustrate this definition by our
recurrent example (see Example 1.5.28) and by the case of an arbitrary branch (see
Example 1.5.30). Finally, we show how this lotus allows to visualize many objects
associated to the regularized algorithm and with the decomposition into blow ups of
points of the embedded resolution produced by it (see Theorem 1.5.29).

Consider again a reduced curve singularity C on the smooth germ of surface
(S, o). Fix a smooth branch L on (S, o), and run Algorithm 1.4.22. Denote as before
by π : (�, ∂�) → (S, L + L′) a resulting toroidal pseudo-resolution of C. We
associated to it a fan tree (θπ (C),Sπ ), as explained in Definition 1.4.33. One may
associate an analogous fan tree (θπreg (C),Sπreg ) to the toroidal resolution πreg :
(�reg, ∂�reg) → (S, L + L′) defined in Sect. 1.4.3 (see Proposition 1.4.29). One
sees that the trunks used in the two constructions are the same, as well as the gluing
rules. What changes is that θπreg (C) has more vertices than θπ(C), those labeled
by the irreducible components of the exceptional divisor of the modification η :
�reg → � which resolves the singularities of the surface �. Therefore:

Proposition 1.5.25 Seen as rooted trees endowed with [0,∞]-valued functions, the
fan trees (θπ (C),Sπ ) and (θπreg (C),Sπreg ) coincide. The second one contains more
vertices than the first one, labeled by the irreducible components of the exceptional
divisor of the minimal resolution η : �reg → �. The fan tree θπreg (C) of the
toroidal resolution πreg is isomorphic to the dual graph of the boundary ∂�reg by
an isomorphism which respects the labels of the irreducible components.

The disadvantage of the fan tree (θπreg (C),Sπreg ) is that one cannot see on it at
a glance the partial order of the blow ups leading to the resolution πreg : � → S of
C. We explained in Sect. 1.5.1 that this order may be visualized by using the notion
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of lotus, for each Newton modification of the regularized algorithm obtained by
replacing STEP 3 with STEP 3reg. In order to visualize the blow up structure of the
resolution process leading to the modification πreg : (�reg, ∂�reg) → (S, L+L′),
we glue those lotuses using the same rules as those allowing to construct the fan tree
from its trunks (see Definition 1.4.33):

Definition 1.5.26 Let C be a reduced curve singularity and (L, L′) be a cross on
the smooth germ (S, o). The lotus �π (C) of the toroidal pseudo-resolution π :
(�, ∂�) → (S, L+L′) of C is a simplicial complex of dimension 2 endowed with
a marked oriented edge called its base. It is obtained by gluing the disjoint union of
the lotuses (�(FAi,Bi (C)))i∈I in the following way:

1. Label each vertex of those lotuses with the corresponding irreducible com-
ponent Ek, Lj or Cl of the boundary ∂�reg of the smooth toroidal surface
(�reg, ∂�reg).

2. Identify all the vertices of
⊔

i∈I �(FAi,Bi (C)) which have the same label. The
result of this identification is �π(C) and the images inside it of the labeled points
of
⊔

i∈I �(FAi,Bi (C)) are its vertices. We keep for each one of them the same
label as in the initial lotuses.

Introduce the following terminology for the anatomy of �π (C):

• The petals of �π (C) are the images by the gluing morphism of the petals of the
initial lotuses (�(FAi,Bi (C)))i∈I .

• Its base is the edge labeled by the initial cross (L, L1) and its basic petal is the
petal having it as base.

• Its basic vertices are the images inside it of the basic vertices of the 2-
dimensional lotuses (�(FAj ,Bj (C)))j∈J which were not identified with other
vertices.

• Its lateral boundary ∂+�π (C) is the image by the gluing morphism of the
union of the lateral boundaries (∂+�(FAi,Bi (C)))i∈I in the sense of Defini-
tion 1.5.5.

• Its lateral vertices are the vertices of �π (C) which are not basic.
• Its membranes are the images inside it of the lotuses �(FAi,Bi (C)) used to

construct it.
• Its Enriques tree is the union of the Enriques tree of �(FA1,B1(C)) (remember

that (A1, B1) = (L, L′)) and of the extended Enriques trees of the other Newton
fans �(FAi,Bi (C)) (see Definition 1.5.13).

We introduce the notion of Enriques tree of a lotus in order to be able to state
point (8) of Theorem 1.5.29 below. See also Remark 1.5.15.

Remark 1.5.27 The lateral boundary ∂+�π(C) is a covering subtree of the 1-
skeleton of the lotus �π(C), that is, a subtree containing all of its vertices. The
membranes of �π (C) may be obtained by removing all the vertices of �π (C) and
by taking the closures inside �π (C) of the connected components of the resulting
topological space. The lotus �π(C) is a flag complex, that is, it may be reconstructed
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Fig. 1.35 The 2-dimensional Newton lotuses of Example 1.5.28

from its 1-skeleton by filling each complete subgraph with k vertices by a (k − 1)-
dimensional simplex. It turns out that there are such complete subgraphs only for
k ∈ {1, 2}, for which values of k the filling process adds nothing new, and for k = 3,
for which one gets all the petals of the lotus.

Example 1.5.28 Consider the toroidal pseudo-resolution process of Exam-
ple 1.4.28. The construction of the corresponding fan tree was explained in
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Fig. 1.36 The lotus of the toroidal pseudo-resolution of Example 1.5.28
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Fig. 1.37 Comparison of the fan tree and the lotus of Example 1.5.28

Example 1.4.36 and illustrated in Fig. 1.20. The left column of Fig. 1.35 represents
the Newton fans produced each time one runs STEP 2 of Algorithm 1.4.22. The
middle column shows the associated trunks and the right column the corresponding
lotuses.

The associated lotus �π (C) is represented in Fig. 1.36. It has 4 membranes of
dimension 2 and 7 membranes of dimension 1. The oriented base of each lotus
�(FAi,Bi (C)) used to construct it is indicated in red. The base of �π(C) is the
oriented edge whose vertices are labeled by L and L1. The basic vertices of �π(C)
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are those labeled by L, L1, L2, L3, L4. The part of the lateral boundary ∂+�π(C)

contained in the 2-dimensional lotuses (�(FAj ,Bj (C)))j∈J is represented in orange.
In order to get the whole lateral boundary, one has to add the 1-dimensional
lotuses of the fans associated to the crosses at which one stops at STEP 1, that
is, the segments [E3, C1], [E2, C2], [E2, C3], [E5, C4], [E4, C5], [E7, C6] and
[E8, C7].

In Fig. 1.37 are represented side by side the fan tree θπ(C) and the lotus
�π(C). Note that the fan tree is homeomorphic (forgetting the values of the slope
function at its vertices) with the lateral boundary ∂+�π(C), by a homeomorphism
which preserves the labels. This is a general fact, as formulated in point (4)
of Theorem 1.5.29 below. This homeomorphism is not an isomorphism of trees
because some of the edges of the fan tree—the blue ones—get subdivided in the
lateral boundary of the lotus. Those are precisely the edges which correspond to the
singular points of the surface �. One may see on the lateral boundary the structure
of the exceptional divisor of the minimal resolution of each such point.

For instance, the intersection point of the curves E1 and E6 on � gets resolved
by replacing that point with an exceptional divisor with two components. Their self-
intersection numbers in the smooth surface �reg are −4 and −3, as results from
point (5) of Theorem 1.5.29.

Here comes the announced visualization of the structure of the decomposition of
the modification πreg : �reg → S into blow ups of points in terms of the anatomy
of the lotus �π (C) (see Definition 1.5.26):

Theorem 1.5.29 Let C be a reduced curve singularity on the smooth germ of
surface (S, o). Consider a toroidal pseudo-resolution π : (�, ∂�) → (S, L+L′) of
C produced by Algorithm 1.4.22. Its lotus �π(C) represents the following aspects
of the associated embedded resolution πreg : (�reg, ∂�reg) → (S, L+ L′):

1. Its basic edges represent the crosses with respect to which STEP 2 of Algo-
rithm 1.4.22 was applied.

2. Its basic vertices represent the branches (Lj )j∈J of the crosses used during the
process, which were introduced each time one executed STEP 2.

3. Its lateral vertices represent the irreducible components Ek of the exceptional
divisor (πreg)−1(o) of the smooth modification πreg : �reg → S.

4. Its lateral boundary ∂+�π (C) is the dual graph of the boundary divisor ∂�reg

and is homeomorphic with the fan tree θπreg (C), by a homeomorphism which
respects the labels.

5. The opposite of the number of petals of �π(C) containing a given lateral vertex
is the self-intersection number of the irreducible component of (πreg)−1(o)

represented by that lateral vertex.
6. The edges of �π(C) represent the affine charts used in the decomposition of π

into a composition of blow ups of points, and the pairs of irreducible components
of (πreg)−1(

∑
j∈J Lj ) which are strict transforms of crosses used at some stage

of the composition of blow ups.
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7. The graph of the proximity binary relation on the constellation which is blown up
is the full subgraph of the 1-skeleton of the lotus �π (C) on its set of non-basic
vertices.

8. The Enriques tree of �π(C) is the Enriques diagram of the constellation of
infinitely near points at which are based the crosses introduced during the blow
up process leading to the boundary ∂�reg .

Proof Points (1) and (2) result from Proposition 1.4.18. Points (3) and (4) result
from Propositions 1.4.35, 1.5.10 and 1.5.25. Point (5) results from Corollary 1.2.28
and Proposition 1.2.37. A prototype of this result had been stated in [102, Thm.
6.2]. Points (6) and (7) result from Proposition 1.5.16. Point (8) results from
Proposition 1.5.14. ��
Example 1.5.30 Assume that C is a branch. Its fan tree θπ(C) is a segment [L, C].
Denote its interior vertices by P1 ≺L · · · ≺L Pk = P , with k ≥ 1. Here�L denotes
the total order on θπ(C) induced by the root L. Consider the continued fraction
expansions of their slopes Sπ (Pj ) = [pj , qj , . . . ], for all j ∈ {1, . . . , k}. Then the
lotus �π (C) is represented in Fig. 1.38. We explain in Examples 1.6.32 and 1.6.33
below how to give examples of branches which admit a pseudo-resolution process
with such a lotus.

Example 1.5.31 Let us consider again our recurrent example of toroidal pseudo-
resolution. Its associated lotus was represented in Fig. 1.36. In Fig. 1.39 are
represented the Enriques trees and extended Enriques trees of its membranes of

Fig. 1.38 The lotus of
toroidal pseudo-resolution for
one branch from
Example 1.5.30
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Fig. 1.39 The Enriques trees and the extended Enriques trees in Example 1.5.31
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Fig. 1.40 The Enriques tree of the toroidal pseudo-resolution of Example 1.5.31

dimension 2. Finally, in Fig. 1.40 is represented its full Enriques tree. In this figure
we have also represented the petals associated to the pairs (Ei, Cj ), in order to draw
the end edges of the Enriques tree.

1.5.4 The Dependence of the Lotus on the Choice of
Completion

In this subsection we show using two examples that the lotus �π (C) of a toroidal
pseudo-resolution process π of a plane curve singularity C ↪→ S depends on
the choice of auxiliary curves added each time one executes STEP 2 of Algo-
rithm 1.4.22, that is, on the choice of completion Ĉπ of C (see Definition 1.4.15).

In the following two Examples 1.5.32 and 1.5.33, we build the lotuses �π(C)

associated with two distinct embedded resolutions π : (�, ∂�) → (S, ∂S) of the
curve singularity C = Z(f ), defined by the power series f := y2−2xy+x2−x3 ∈
C[[x, y]], relative to local coordinates (x, y) on the germ (S, o). These examples
illustrate the fact that the associated lotus �π(C) (see Definition 1.5.26), which
is based on the toroidal structure of �, depends on the choices of auxiliary curves
done at STEP 2 of the Algorithm 1.4.22, that is, on the choice of completion Ĉπ of C

(see Definition 1.4.15). In both examples we run Algorithm 1.4.22 with L = Z(x),
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Fig. 1.41 The lotus �π (C) of Example 1.5.32

replacing STEP 3 by STEP 3reg as we explained in Sect. 1.4.3, and taking different
choices of auxiliary curves. The output, which determines the toroidal boundary on
�, provides two different lotuses. On both of them we recognize the same weighted
dual graph of the final total transform of C, thanks to point (4) of Theorem 1.5.29.

Example 1.5.32 We start the algorithm by choosing L1 := Z(y − x). The cross
(L, L1) at o is defined by the local coordinate system (x, y1 := y − x). Relative to
these coordinates, C has local equation y2

1−x3 = 0. The Newton polygonNL,L1(C)

has only one edge and its orthogonal ray has slope 3/2, hence FL,L′(C) � F(3/2).
The first trunk is just the segment [eL, eL1] with its point of slope 3/2 marked.

The Newton modification π := ψ
C, reg
L,L1

: (�, ∂�) → (S, ∂S) has three excep-
tional divisors E1, E2 and E3 which correspond to the rays of the regularization
F reg(3/2) = F(1, 2, 3/2) of the fan F(3/2) of slopes 1 and 2 and 3/2 respectively.
In this case, the strict transform CL,L1 of C is smooth and intersects transversally
the component E3 of the exceptional divisor, that is, the Newton modification π

is an embedded resolution of C. Note that when running the Algorithm 1.4.22, we
include the cross (E3, CL,L1) in the toroidal structure of the boundary of �.

The lotus �π(C) is built by gluing the lotus �L,L1(C) = �(3/2) with the lotus
[eE3, C] associated to the cross (E3, CL,L1), identifying the points labeled by E3
(see Fig. 1.41).

Example 1.5.33 We start the algorithm by choosing L1 := Z(y) and the cross
(L, L1) on (S, o). The Newton polygon NL,L1(C) has only one edge and its
orthogonal ray has slope 1, hence FL,L1(C) � F(1). The first trunk is the segment
[eL, eL1] with its midpoint marked. The first lotus is just the petal �1 := �(1) =
δ(eL, eL1) with base [eL, eL1].

The Newton modification ψC
L,L1

is the usual blow up of the point o. We restrict

it to the chart C2
v1,v2

, where x = v1, y = v1v2. The strict transform C1 := CL,L1

is defined in this chart by the equation v2
2 − 2v2 + 1 − v1 = 0. The exceptional

divisor E1 := Z(v1) intersects the strict transform C1 at the point o1 defined by
v2 = 1. When running the algorithm, we have to choose a smooth branch B2 such
that (E1, B2) defines a cross at o1. We set B2 := Z(v2 − 1) and u1 := v2 − 1.
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Then, the local coordinates (v1, u1) define the cross (E1, B2). We denote by L2
the projection to S of the line B2 = Z(u1), which is parametrized by v1 = t and
v2 = 1. One gets that L2, which is parametrized by x = t, y = t , has local equation
y − x = 0.

The strict transform C1 has local equation u2
1 − v1 = 0. The Newton polygon

NE1,B2(C1) has only one edge and its orthogonal ray has slope 1/2, hence its
associated fan is FE1,B2(C1) � F(1/2). The second trunk is just the segment

[eE1, eL2] with a marked point of slope 1/2. The modification ψ
C1,reg

E1,B2
defined by

the regularization of this fan has two exceptional divisors E2 and E3 corresponding
to the rays of the regularization of the fan F(1/2) of slopes 1 and 1/2 respectively.
When we consider the regularization of the fan FE1,B2(C1), we have to mark an
additional point of slope 1 in the second trunk [eE1, eL2]. The associated lotus is
�2 := �(1/2), with base [eE1, eL2].

In this example, the composition π := ψ
C1,reg
E1,B2

◦ ψC
L,L1

: (�, ∂�) → (S, ∂S)

is an embedded resolution of C, since the strict transform C2 of C is smooth and
intersects transversally the exceptional divisor of π at a point o2 ∈ E3. Notice that
when running the algorithm, we have to consider also the cross (E3, C2) at o2. Its
trunk coincides with its associated lotus. It is just the segment �3 := [eE3, C], with
no marked points.

The lotus �π(C) is represented in Fig. 1.43. It is obtained from �1, �2 and �3
(see Fig. 1.42) by identifying the points with the same label.

Remark 1.5.34 The lotus �π(C) may be embedded canonically into the set of
semivaluations of the local C-algebra ÔS,o (semi-valuations are defined similarly to
valuations, but dropping the last condition from Definition 1.2.19). Indeed, its base
membrane �(FL,L1(C)) embeds into the regular cone σ

L,L1
0 of Definition 1.3.32,

which may be interpreted valuatively by associating to each w ∈ σ
L,L1
0 the valuation

νw defined by Eq. (1.32). Each other membrane may be similarly interpreted
valuatively, and one may show that one gets in this way an embedding. Details
may be found in [102, Section 7].
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Fig. 1.42 The Newton lotuses �1, �2 and �3 of Example 1.5.33
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1.5.5 Truncated Lotuses

In this subsection we introduce an operation of truncation of the lotus of a toroidal
pseudo-resolution of a plane curve singularity C, and we explain how to use it
in order to visualize the dual graph of the total transform of C on the associated
embedded resolution, as well as the Enriques diagram of the constellation of
infinitely near points blown up for creating this resolution, in a way different from
that formulated in point (8) of Theorem 1.5.29.

Recall first from Definition 1.5.26 the construction of the lotus �π(C) of a
toroidal pseudo-resolution π : (�, ∂�) → (S, L + L′) of the curve singularity
C ↪→ S. As stated in point (4) of Theorem 1.5.29, its lateral boundary ∂+�π (C) is
isomorphic to the dual graph of the boundary divisor ∂�reg . Here �reg denotes the
minimal resolution of �, and ∂�reg is the total transform on it of the boundary
divisor ∂� of the toroidal surface (�, ∂�). The divisor ∂�reg is also the total
transform of the completion Ĉπ of C relative to π , that is, the sum of the total
transform of C by the smooth modification πreg : �reg → S and of the strict
transforms of the branches Lj introduced while running Algorithm 1.4.22.

How to get the dual graph of the total transform of C on �reg from the lateral
boundary ∂+�π (C)? One has simply to remove the ends of ∂+�π(C) which are
labeled by the branches Lj , as well as the edges which connect them to other vertices
of ∂+�π(C). This truncation operation performed on the tree ∂+�π(C) may be
seen as the restriction of a similar operation performed on the whole lotus �π (C).
Let us explain this truncation operation on �π(C), as well as some of its uses.

Consider first a petal δ(e1, e2) associated to a base (e1, e2) of a lattice N (see
Definition 1.5.1). Its axis is the median [(e1 + e2)/2, e1 + e2] of the petal, joining
the vertex e1 + e2 to the midpoint of the opposite edge. This axis decomposes the
petal into two semipetals.

The semipetals of a lotus are the semipetals of all its petals. Using this
vocabulary, as well as that introduced in Definition 1.5.26 about the anatomy
of lotuses of toroidal pseudo-resolutions, we may define now the operation of
truncation of such a lotus:

Fig. 1.43 The lotus �π (C)

of Example 1.5.33 eE 2
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eL

eL 1

eL 2

eE 3

C
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Definition 1.5.35 Let �π(C) be the lotus of a toroidal pseudo-resolution π of the

plane curve singularity C ↪→ (S, o). Its truncation �tr
π (C) is the union of the axis

of its basic petal, of all the semipetals which do not contain basic vertices and of all
the membranes which are segments, that is, of the edges of �π (C) which have an

extremity labeled by a branch of C. The lateral boundary ∂+�tr
π (C) of �tr

π (C)

is the part of the lateral boundary of �π(C) which remains in �tr
π (C).

Truncating the lotus �π (C) corresponds to forgetting its points whose corre-
sponding semivaluations depend on the choice of the branches Lj . One keeps
only those semivaluations determined by the given curve singularity C and by
the infinitely near points through which pass its strict transforms during the
blow up process (see Remark 1.5.34). In fact, the third author had introduced
truncated lotuses in [102]—under the name of sails—as objects which represent the
combinatorial type of a blow up process of a finite constellation, without considering
any supplementary branches passing through the points of the constellation.

By construction, the lateral boundary ∂+�tr
π (C) is isomorphic to the dual graph

of the total transform (πreg)∗(C). One may read again the self-intersection number
of each irreducible component of the exceptional divisor of πreg as the opposite of
the number of petals, semi-petals and axis containing the vertex representing it.

Note that both lotuses of Figs. 1.41 and 1.43 have the same truncations.
The reason is that their associated toroidal pseudo-resolutions lead to the same
embedded resolution of C by regularization and that the truncated lotus is a
combinatorial object encoding the decomposition of this resolution into blow ups
of points (Fig. 1.44).

Example 1.5.36 For instance, in Fig. 1.45 is shown the truncation of the lotus of
Fig. 1.36. Its lateral boundary is emphasized using thick orange segments. The
component of the exceptional divisor represented by the unique vertex of the lotus
contained in the axis has self-intersection number−4, as this vertex is contained in
the axis, in two semi-petals and in one petal of �tr

π (C).

Consider now the Enriques tree of the toroidal pseudo-resolution π . Its edges
are certain lateral edges of the 2-dimensional petals of �π (C) and of the 2-

Fig. 1.44 The two
semipetals and the axis of the
petal δ(e1, e2)

e1 + e2

e1

e2

0

axis

first semipetal

second semipetal
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Fig. 1.45 The truncation of the lotus of Fig. 1.36 (see Example 1.5.36)

dimensional petals constructed from the 1-dimensional petals of �π (C) as bases
(see Definition 1.5.26). For each edge [A, B] of the Enriques tree, one may consider
instead the homothetic segment (1/2)[A, B], joining the points (1/2)A and (1/2)B.
This homothety is well-defined if one interprets the elements of the segment [A, B]
as valuations (see Remark 1.5.34). If both A and B are vertices of the same petal,
then the segment (1/2)[A, B] joins two edge midpoints of this petal. Otherwise, the
interior points of the segment (1/2)[A, B] are disjoint from the lotus �π (C).

The union of such segments (1/2)[A, B]—which were called ropes by the third
author in [102]—is isomorphic to the Enriques tree of π . Therefore it is another
representation of the Enriques diagram of the constellation whose blow up creates
the resolution πreg.

It is convenient to draw in a same picture both the truncation �tr
π (C) and the

union of the ropes. For instance, for the lotus of Fig. 1.36 this union is represented
on the right side of Fig. 1.46. For comparison, the Enriques tree is represented on the
left side. An advantage of the right-side drawing is that the ropes whose interiors lie
outside the truncation are exactly the ropes which were represented by Enriques as
curved arcs. One may similarly determine from this drawing which edges go straight
in Enriques’ convention. For details, one may consult [102, Thm. 6.2]. Note that the
kites of the title of [102] (in French cerf-volants) were the unions of truncated lotuses
and of their ropes, as represented on the right side of Fig. 1.46.

Assume now that the combinatorial type of a plane curve singularity is given
either using the dual graph of its total transform by an embedded resolution,
weighted by the self-intersection numbers of the components of its exceptional
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Fig. 1.46 Two ways of visualizing the Enriques tree on a truncated lotus

divisor, or using the Enriques diagram of the decomposition of the resolution
morphism into blow ups of infinitely near points of o. How to get a series f ∈
C[[x, y]] defining a curve singularity with the given combinatorial type?

One may apply the following steps:

• Pass from the given tree to the associated truncated lotus. If the given tree is
an Enriques diagram, it may be more convenient for drawing purposes to think
about it as the union of ropes of the truncated lotus which is searched for.

• Complete the truncated lotus into a lotus having it as truncation. This step is not
canonical, as shown by the comparison of Figs. 1.41 and 1.43 above.

• Proceed as in Example 1.6.29 below, by constructing the fan tree of the lotus,
then the associated Eggers-Wall tree and writing finally a finite set of Newton-
Puiseux series whose associated Eggers-Wall tree is isomorphic with this one.

1.5.6 Historical Comments

The study of plane curve singularities by using sequences of blow ups of points
was initiated by Max Noether in his 1875 paper [89], and became common in the
meantime, as shown by the works [90] of Noether, [35] of Enriques and Chisini,
[126] of Du Val and [134, Sections I.2, II.2], [135] of Zariski.

Nowadays, a modification of C2 obtained as a sequence of blow ups of points
is studied most of the time through the structure of its exceptional divisor. One
encodes the incidences between its components, as well as their self-intersection
numbers in a weighted dual graph, which is a tree (see [104] for a description of the
development of this idea). When one looks at an embedded resolution of the plane
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curve singularity C, one adds new vertices to this graph, corresponding to the strict
transforms of the branches of C.

The dual trees of exceptional divisors were not the first graphs associated with a
process of blow ups of points. Another kind of tree, an Enriques diagram, encoding
the proximity relation between the infinitely near points which are blown up in
the process (see Definition 1.4.31), was associated with such a process in the 1917
book [35] of Enriques and Chisini. An example of an Enriques diagram, extracted
from [35, Page 383], may be seen in Fig. 1.47. Details about the notion of Enriques
diagram may be found in Casas’ book [19] or in the third author’s papers [96, 102],
the second written in collaboration with Pe Pereira. The proximity relation was
extended to higher dimensions by Semple in his 1938 paper [112]. Details about
this generalization and about other approaches to the study of curve singularities
of higher embedding dimension may be found in Campillo and Castellanos’ 2005
book [18].

In order to understand the relation between the Enriques diagram of a finite
constellation and the dual graph of the blow up of the constellation, the third author
introduced the notion of kite in his 2011 paper [102]. A kite was defined by gluing
lotuses into a sail, and attaching then ropes to this sail. The ropes were lying inside
each lotus as the veins in a leaf, and they allowed to visualize the Enriques diagram.
In turn, the dual graph could be visualised as the lateral boundary of the sail. A
sail was composed not only of petals, but also of axes and semi-petals. The lotuses
were also used in Castellini’s thesis [25], written under the supervision of the third
author. Castellini was able to do everything with petals, eliminating the use of axes,

Fig. 1.47 An Enriques diagram
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semi-petals and ropes, as what we call here the Enriques tree of a lotus proved to
be more convenient to visualize the Enriques diagram. Also, the terminology was
simplified, the gluing of lotuses resulting again in lotuses, instead of sails, as we do
in the present paper.

It turns out that lotuses already appeared in disguise before the paper [102]. Their
oldest ancestor is probably the proximity relation, defined in Enriques and Chisini’s
book [35, Page 381]. Indeed (see Theorem 1.5.29 (7)), the graph of the proximity
relation among all the points whose blow up composes the embedded resolution
produced by the second algorithm described in our paper may be identified with the
full subgraph of the 1-skeleton of the associated lotus on the set of vertices which
are not basic. The oldest drawings of such proximity graphs seem to be those of Du
Val’s 1944 paper [127] (see Figs. 1.48 and 1.49, in which one may also recognize
what we call the “Enriques tree” of a lotus, drawn with continuous segments).
Before, the proximity binary relation was related to the exceptional divisor of the
associated blow up process in Barber and Zariski’s 1935 paper [12] and Du Val’s
1936 paper [126]. Du Val introduced the notion of proximity matrix, equivalent to
that of proximity binary relation. In his 1939 paper [136], Zariski began a new ideal-
theoretical and valuation-theoretical trend in the study of infinitely near points. A
geometrical presentation of the previous approaches of study of infinitely near points
was given by Lejeune-Jalabert in her 1995 paper [78].

Fig. 1.48 Du Val’s “proximity graphs”
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Fig. 1.49 Du Val’s version of universal lotus

The graph of the proximity relation was mentioned again by Deligne in his 1973
paper [29], by Morihiko Saito in his 2000 paper [108] and by Wall in his 2004 book
[131, Sections 3.5, 3.6]. One may find drawings of simple such graphs only in the
first and the third reference.

Another occurrence of lotuses in disguise may be found in Schulze-Röbbecke’s
1977 Diplomarbeit [111] written under the supervision of Brieskorn. In that
paper are described particular divides (generic immersions of segments in a disc)
obtained by applying to branches A’Campo’s method of constructing δ-constant
deformations explained in the 1974–75 papers [6] and [7]. The diagram of Fig. 1.50,
extracted from page 57 of [111], indicates the general shape of the divides
constructed in that paper. One may recognize inside it part of the lotus associated
to a toroidal resolution process of a branch. In his already mentioned 2015 PhD
thesis [25], Castellini could extend Schulze-Röbbecke’s description to arbitrary
plane curve singularities, using in a crucial way the notion of lotus of a blow up
process.

Let us discuss now the relation of the universal lotus introduced in Defini-
tion 1.5.3 with other objects and constructions. The Enriques tree of the universal
lotus �(e1, e2) is an embedding into the cone σ0 of almost all the Stern-Brocot
tree defined by Graham, Knuth and Patashnik in [57, Page 116], in reference
to the 1858 paper [117] of Stern and the 1860 paper [16] of Brocot. This tree
represents the successive generation of the positive rational numbers starting from
the sequence (0/1, 1/0). At each step of the generating process, one performs the
Farey addition (a/b, c/d) → (a+c)/(b+d) on the pairs of successive terms of the
increasing sequence of rationals obtained at the previous steps. The vertices of the
Stern-Brocot tree correspond bijectively with the positive rationals. For each Farey
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Fig. 1.50 The general shape of Schulze-Röbbecke’s divides
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addition (a/b, c/d) → (a + c)/(b + d) in which c/d was created after a/b, one
joins the vertices corresponding to c/d and to (a + c)/(b + d). The embedding of
the Stern-Brocot tree represented in Fig. 1.29 is obtained by sending each vertex
corresponding to λ ∈ Q ∩ (0,∞) to the primitive vector p(λ) ∈ N ∩ σ0 (see
Notations 1.3.2) and each edge to a Euclidean segment. Another embedding in the
cone σ0 of the same part of the Stern-Brocot tree as above was described in [102,
Rem. 5.7]. That embedding may be obtained from the embedding of Fig. 1.29 by
applying a homothety of factor 1/2.

The sequence of continued fractions (1.49) appearing in the proof of
Proposition 1.5.23 was called the slow approximation (“approximation lente”)
of [a1, . . . , ak] in Lê, Michel and Weber’s paper [82, Appendice]. They used
such sequences in order to describe the construction of the dual graph of the
minimal embedded resolution of a plane curve singularity starting from the generic
characteristic exponents of its branches and the orders of coincidence between such
branches.

The zigzag decompositions introduced in Definition 1.5.18 are a variant of
the zigzag diagrams of the third’s author 2007 paper [101, Section 5.2]. Those
diagrams allow to relate geometrically the usual continued fractions to the so-called
Hirzebruch-Jung continued fractions. Those Hirzebruch-Jung continued fractions
are the traditional tool, going back to Jung’s 1908 paper [68] and Hirzebruch’s
1953 paper [62], to describe the regularization of a 2-dimensional strictly convex
cone. They are also crucial for the understanding of lens spaces, which becomes
obvious once one sees that those 3-manifolds are exactly the links of toric surface
singularities. See Weber’s survey [133] for more details and historical explanations
about the relations between lens spaces and complex surface singularities.

In [87, Section 9.1], Neumann and Wahl described a method for reconstructing
the dual graph of the minimal resolution of a complex normal surface singularity
whose link is an integral homology sphere from the so-called splice diagram of
the link. This method is based on the construction of a finite sequence of rationals
interpolating between two given positive rational numbers λ and μ. It may be
described in the following way using lotuses of sequences of positive rational
numbers:

• Construct by successive additions of petals the lotus �(λ, μ) as the union of
�(λ) and �(μ).

• Consider the increasing sequence of slopes of vertices of �(λ, μ) lying between
λ and μ, that is, of vertices of the lateral boundary ∂+�(λ, μ) (see Defini-
tion 1.5.5) lying on the arc joining the primitive vectors p(λ) and p(μ) of N .

In [40, Section 2.2], Fock and Goncharov described the tropical boundary
hemisphere of the Teichmüller space of the punctured torus as an infinite simplicial
complex with integral vertices embedded in the real affine space associated to a two-
dimensional affine lattice. This simplicial complex is a union of universal lotuses
(see [40, Fig. 1]).
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1.6 Relations of Fan Trees and Lotuses with Eggers-Wall
Trees

In Sect. 1.6.1 we explain how to associate an Eggers-Wall tree �L(C) to a plane
curve singularity C ↪→ (S, o), relative to a smooth branch L. It is a rooted
tree endowed with three structure functions, the index iL, the exponent eL and
the contact complexity cL. In Sect. 1.6.2 we express the Newton polygon of C

relative to a cross (L, L′) in terms of the Eggers-Wall tree �L(C + L′) of C + L′
relative to L (see Corollary 1.6.17). In Sect. 1.6.5 we prove that the fan tree θπ(C)

associated with a toroidal pseudo-resolution process of C is canonically isomorphic
with the Eggers-Wall tree �L(Ĉπ ) of the completion of C relative to this process
(see Theorem 1.6.27), and we explain how to compute the triple (iL, eL, cL) of
functions starting from the slope function of the fan tree (see Proposition 1.6.28). As
a prerequisite, in Sects. 1.6.3 and 1.6.4 we prove renormalization formulae, which
compare the Eggers-Wall tree of C relative to L and those of its strict transform
relative to the exceptional divisor of a Newton modification.

1.6.1 Finite Eggers-Wall Trees and the Universal Eggers-Wall
Tree

In this subsection we define the Eggers-Wall tree �L(C) of a reduced plane curve
singularity C ↪→ (S, o) relative to a smooth branch L (see Notations 1.6.7). It
is constructed from the Newton-Puiseux series of C relative to a local coordinate
system (x, y) such that L = Z(x) (see Definition 1.6.3), but it is independent
of this choice (see Proposition 1.6.6). It is a rooted tree whose root is labeled by
L and whose leaves are labeled by the branches of C. It is endowed with three
functions, the index iL, the exponent eL and the contact complexity cL, which allow
to compute the characteristic exponents of the Newton-Puiseux series mentioned
above and the intersection numbers of the branches of C (see Proposition 1.6.11).
Finally, we introduce the universal Eggers-Wall tree of (S, o) relative to L (see
Definition 1.6.12), as the projective limit of the Eggers-Wall trees of the plane curve
singularities contained in S. For more details and proofs one may consult our papers
[45, Subsection 4.3] and [46, Section 3].

Let L be a smooth branch on (S, o). Assume in the whole subsection that C is
reduced. Let (x, y) be a local coordinate system on (S, o), such that L = Z(x),
and let f ∈ C[[x, y]] be a defining function of C in this coordinate system. As a
consequence of the Newton-Puiseux Theorem 1.2.20, one has:

Theorem 1.6.1 Assume that C does not contain L, that is, that x does not divide
f (x, y). Then there exists a finite set Zx(f ) of Newton-Puiseux series ofC[[x1/N]]
and a unit u(x, y) of the local ring C[[x, y]], such that:
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f (x, y) = u(x, y)
∏

η(x)∈Zx (f )

(y − η(x)). (1.51)

The set Zx(f ) is obviously independent of the defining function f of C. For this
reason, we will denote it instead Zx(C). It is the disjoint union of the sets Zx(Cl),
when Cl varies among the branches of C. It allows to associate to f the following
objects:

Definition 1.6.2 Let (x, y) be a local coordinate system of (S, o) such that L =
Z(x) and let C be a reduced curve singularity on (S, o) not containing L.

• The finite subset Zx(C) := Zx(f ) from the statement of Theorem 1.6.1 is
called the set of Newton-Puiseux roots of C relative to x.

• The order of coincidence kx(ξ, ξ ′) of two Newton-Puiseux series ξ, ξ ′ is equal

to νx(ξ − ξ ′).
• The order of coincidence kx(Cl, Cm) of two distinct branches Cl and Cm

of C is the maximal order of coincidence of Newton-Puiseux roots of the two
branches: max{kx(ξ, ξ ′), ξ ∈ Zx(Cl), ξ ′ ∈ Zx(Cm)}.

• The set of characteristic exponents Chx(Cl) of a branch Cl of C relative to the
variable x is the set of orders of coincidence of pairs of distinct Newton-Puiseux
roots of it: {kx(ξ, ξ ′), ξ, ξ ′ ∈ Zx(Cl), ξ = ξ ′}.
This shows that for each ξ ∈ Zx(Cl), there exists some ξ ′ ∈ Zx(Cm) such

that νx(ξ − ξ ′) = kx(Cl, Cm). Therefore, knowing a Newton-Puiseux root of
Cl determines some Newton-Puiseux root of Cm until their order of coincidence
kx(Cl, Cm). This fact motivates the following construction of a rooted tree endowed
with two functions:

Definition 1.6.3 Let (x, y) be a local coordinate system such that L = Z(x) and C

be a reduced curve singularity on (S, o).

• The Eggers-Wall tree �x(Cl) of a branch Cl = L of C relative to x is a

compact segment endowed with a homeomorphism ex : �x(Cl) → [0,∞]
called the exponent function, and with marked points, which are the preimages
by the exponent function of the characteristic exponents of Cl relative to x. The
point (ex)−1(0) is labeled by L and (ex)−1(∞) is labeled by Cl . The index
function ix : �x(Cl) → N

∗ whose value ix(P ) on a point P ∈ �x(Cl) is
equal to the lowest common multiple of the denominators of the exponents of the
marked points belonging to the half-open segment [L, P).

• The Eggers-Wall tree �x(L) is reduced to a point labeled by L, at which
ex(L) = 0 and ix(L) = 1.

• The Eggers-Wall tree �x(C) of C relative to x is obtained from the disjoint
union of the Eggers-Wall trees �x(Cl) of its branches by identifying, for each
pair of distinct branches Cl and Cm of C, their points with equal exponents
not greater than the order of coincidence kx(Cl, Cm). Its marked points are
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Fig. 1.51 The Eggers-Wall trees of Z(f (x, y)) and Z(xyf (x, y)) from Example 1.6.4

its ramification points and the images of the marked points of the trees �x(Cl)

by the identification map. Its labeled points are analogously the images of the
labeled points of the trees �x(Cl), the identification map being label-preserving.
The tree is rooted at the point labeled by L. It is endowed with an exponent
function ex : �x(C) → [0,∞] and an index function ix : �x(C) → N

∗
obtained by gluing the exponent functions and index functions on the trees
�x(Cl) respectively.

Note that, by construction, the exponent function is surjective in restriction to
every segment [L, Cl] = �x(Cl) of �x(C) such that Cl = L and that the ends of
�x(C) are labeled by the branches of C and by the smooth reference branch L. The
marked points of �x(C) which are images of marked points of the subtrees �x(Cl)

may be recovered from the knowledge of the index function, as its set of points of
discontinuity. Therefore, the index function is constant on each open edge between
two consecutive marked points of �x(C). Moreover, it is continuous from below
relative to the partial order �L defined by the root L of �x(C).

The Eggers-Wall tree allows to determine visually the characteristic exponents
of each branch Cl . One has simply to follow the segment going from the root to the
leaf representing the branch and to read all the vertex weights of the discontinuity
points of the index function. In particular, if an internal vertex of such a segment is
not a ramification vertex of the tree, then its exponent is necessarily a characteristic
exponent of Cl .

Example 1.6.4 Consider again the plane curve singularity C = Z(f (x, y)) of
Sect. 1.2.6. That is, f (x, y) = (y2 − 4x3)(y3 − x7). Its Eggers-Wall tree is drawn
on the left side of Fig. 1.51. On the right side is drawn the Eggers-Wall tree of the
singularity Z(xy(y2− 4x3)(y3 − x7)), which is the sum of C and of the coordinate
axes.

Look at the segment joining the root to the branch Z(y3 − x7), on the left side
of Fig. 1.51. It contains two internal vertices, with exponents 3/2 and 7/3. The
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vertex of exponent 7/3 is not a ramification vertex of the tree, therefore 7/3 is a
characteristic exponent of this branch. In turn, 3/2 is not a characteristic exponent
of this branch, as the value of the index function does not increase when crossing
the corresponding vertex. Note that, by contrast, it increases when crossing the
same vertex on the segment joining the root to the leaf corresponding to the branch
Z(y2 − 4x3), which shows that 3/2 is a characteristic exponent of that branch.

We have represented both the Eggers-Wall tree of C and of its union with the
coordinate axes in order to show that the second one is homeomorphic to the dual
graph of the total transform of the union by its minimal embedded resolution,
while our example shows that this is not true if one looks at the total transform
of C alone (see Fig. 1.7). The previous homeomorphism is a general phenomenon,
valid for any plane curve singularity, as seen by combining Proposition 1.4.35 and
Theorem 1.6.27 below. Note that in full generality one needs to add to C more
branches than simply the coordinate axes, considering a completion in the sense of
Definition 1.4.15.

Example 1.6.5 Consider a plane curve singularity C whose branches Ci, 1 ≤ i ≤
3, are defined by the Newton-Puiseux series ξi , where:

ξ1 = x7/2 − x4 + 2x17/4 + x14/3, ξ2 = x5/2 + x8/3, ξ3 = x2.

The sets of characteristic exponents of the branches are Chx(C1) = {7/2, 17/4,

14/3 }, Chx(C2) = {5/2, 8/3}, Chx(C3) = ∅. One has kx(C1, C2) = 5/2,
kx(C1, C3) = kx(C2, C3) = 2. The Eggers-Wall trees �x(C1) and �x(C) relative
to x are drawn in Fig. 1.52. We represented the value of the corresponding exponent
near each marked or labeled point, and the value of the corresponding index function
near each edge.

In fact, the objects introduced in Definition 1.6.3 depend only on C and L, not
on the coordinate system (x, y) such that L = Z(x) (see [45, Proposition 103]):

Proposition 1.6.6 Let (x, y) be a local coordinate system such that L = Z(x) and
C be a reduced curve singularity on (S, o). Then the tree �x(C) endowed with the
pair of functions (ix, ex) is independent of the choice of local coordinate system
such that L = Z(x).
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Fig. 1.52 The Eggers-Wall
tree of the curve singularities
C1 and C of Example 1.6.5
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Proposition 1.6.6 motivates us to introduce the following notations:

Notations 1.6.7 Let L be a smooth branch and C be a reduced curve singularity on
(S, o). We denote (�L(C), iL, eL) := (�x(C), ix, ex), for any local coordinate
system (x, y) on (S, o) such that L = Z(x). We say that this rooted tree endowed
with two structure functions is the Eggers-Wall tree of C relative to L.

Remark 1.6.8 Let L be a smooth branch and C be a reduced curve singularity on
(S, o). Then for any point Q ∈ �L(C), we have:

iL(Q) = min{iL(A) , A is a branch on S such that Q �L A}, (1.52)

where Q �L A has a meaning in the Eggers-Wall-tree �L(C + A) ⊇ �L(C).
Indeed, if Q �L Cl for a branch Cl of C, and if B is a branch on S parametrized
by the truncation of a Newton-Puiseux series ξ ∈ Zx(Cl), obtained by keeping only
the terms of ξ of exponent < eL(Q), then Q �L B and iL(Q) = iL(B).

The exponent function and the index function determine a third function on the
tree �L(C), the contact complexity function (see [46, Def. 3.19]):

Definition 1.6.9 Let C be a reduced curve singularity on (S, o). The contact
complexity function cL : �L(C) → [0,∞] is defined by the formula:

cL(P ) :=
∫ P

L

deL

iL
.
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Note that in restriction to a segment [L, Cl ] = �L(Cl) of �L(C), the contact
complexity function is a bijection [L, Cl ] → [0,∞].
Remark 1.6.10 It follows immediately from Definition 1.6.9 that the contact com-
plexity function together with the index function determine the exponent function
by the following formula:

eL(P ) =
∫ P

L

iLdcL. (1.53)

The importance of the contact complexity function stems from the following
property, which in different formulation goes back at least to Smith [115, Section
8], Stolz [118, Section 9] and Max Noether [90]:

Proposition 1.6.11 Let L be a smooth branch and C be a reduced curve singularity
on (S, o), not containing L. Let A and B be two distinct branches of C. Denote by
A ∧L B the infimum of the points of �L(C) labeled by A and B, relative to the

partial order �L defined by the root L. Then:

cL(A ∧L B) = A · B
(L ·A) · (L · B)

. (1.54)

Proof One may find a proof of Proposition 1.6.11 in [131, Thm. 4.1.6]. Let us
just sketch the main idea. Fix a local coordinate system (x, y) on (S, o), such that
L = Z(x). Start from a normalization of the branch A of the form u → (un, ζ(u))

(see the explanations leading to formula (1.2)). Therefore, ζ(x1/n) is a Newton-
Puiseux root of A. By Theorem 1.6.1, one has a defining function of the branch B

of the form
∏

η(x)∈Zx(B)(y − η(x)). Proposition 1.2.8 implies that:

A · B = νu

⎛

⎝
∏

η(x)∈Zx(B)

(ζ(u)− η(un))

⎞

⎠ =
∑

η(x)∈Zx (B)

νu

(
ζ(u)− η(un)

)
.

The finite multi-set of rational numbers whose elements are summed may be
expressed in terms of the characteristic exponents of A and B which are not greater
than the order of coincidence of A and B. A little computation finishes the proof.

��
If C and D are two reduced plane curve singularities on (S, o), with C ⊆ D, then

by construction one has a natural embedding of rooted trees �L(C) ⊆ �L(D). The
uniqueness of the segment joining two points of a tree allows to define a canonical
retraction �L(D) → �L(C). One may consider then either the direct limit of the
previous embeddings, or the projective limit of the previous retractions, for varying
C and D. Both limits have natural topologies. The direct limit, which may be
thought simply as the union of all Eggers-Wall trees (�L(C))C , is not compact,
but the projective limit is compact. It is in fact a compactification of the direct limit.
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For this reason, the projective limit is more suitable in many applications. Let us
introduce a special notation for this notion, which will be used in Sect. 1.6.3 below.

Definition 1.6.12 Let L be a smooth branch on (S, o). The universal Eggers-Wall
tree �L of (S, o) relative to L is the projective limit of the Eggers-Wall trees
�L(C) of the various reduced curve singularities C on (S, o), relative to the natural
retraction maps �L(D) → �L(C) associated to the inclusions C ⊆ D.

1.6.2 From Eggers-Wall Trees to Newton Polygons

In this subsection we explain how the Newton polygon NL,L′(C) of a plane curve
singularity C relative to the cross (L, L′) (see Definition 1.4.14) may be determined
from the Eggers-Wall tree �L(C + L′) (see Corollary 1.6.17).

The Minkowski sum K1 +K2 of two subsets of a real vector space is the set
of sums v1 + v2, where each vi varies independently among the elements of Ki .
It is a commutative and associative operation. When both subsets are convex, their
Minkowski sum is again convex.

The following property is classical and goes back at least to Dumas’ 1906 paper
[30, Section 3] (where it was formulated in a slightly different, p-adic, context):

Proposition 1.6.13 If C and D are germs of effective divisors on (S, o), then:

NL,L′(C +D) = NL,L′(C)+NL,L′(D).

Proof This is a direct consequence of formula (1.35) and Proposition 1.4.12. ��
One may extend the notion of Newton polygon to series in two variables with

non-negative rational exponents whose denominators are bounded. They have again
only a finite number of edges. The simplest Newton polygons are those with at most
one compact edge:

Definition 1.6.14 Assume that a, b ∈ Q
∗+. One associates them the following

elementary Newton polygons (see Fig. 1.53):

{a

b

}
:= N(xa + yb),

{ a

∞
}
:= N(xa),

{∞
b

}
:= N(yb).

The quotient a/b is the inclination of the elementary Newton polygon
{a

b

}
.
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x a

y b

x a

y b

x a

y b

(a, 0)

(0, b ) (0, b )

(a, 0)
a
b := �(x a + y b ) a

∞ := �(x a ) ∞
b := �(y b )

Fig. 1.53 The elementary Newton polygons { a

b
}, { a

∞ }, { ∞
b
}

Note that for any a ∈ Q
∗+ ∪ {∞}, b ∈ Q

∗+ and any d ∈ N
∗, one has: d

{a

b

}
=

{
da

db

}

, where the left-hand side is the Minkowski sum of
{a

b

}
with itself d times.

This allows to write:

{a

b

}
= b

{
a/b

1

}

(1.55)

whenever b ∈ N
∗. The elementary Newton polygons are generators of the

semigroup of Newton polygons, with respect to Minkowski sum. In fact one has
more:

Proposition 1.6.15 Each Newton polygon N may be written in a unique way, up to
permutations of the terms, as a Minkowski sum of elementary Newton polygons with
pairwise distinct inclinations. Their compact edges are translations of the compact
edges of N.

Proof This is a consequence of the following property, which in turn may be proved
by induction on p ∈ N

∗: If N1,N2, . . . ,Np are elementary Newton polygons
with finite non-zero strictly increasing inclinations, then their Minkowski sum N
has exactly p compact edges which are translations of the compact edges of
N1,N2, . . . ,Np. Moreover, they are met in this order when one lists them starting
from the unique vertex of N lying on the vertical axis. ��

The next proposition explains how to compute the Newton polygon of a branch
C relative to a cross (L, L′), starting from the Eggers-Wall tree of C + L′ relative
to L:
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Lemma 1.6.16 Let (L, L′) be a cross and let C = L be a branch on (S, o). Then
the Newton polygon NL,L′(C) may be expressed as follows in terms of the Eggers-
Wall tree (�L(C + L′), eL, iL):

NL,L′(C) = iL(C)

{
eL(C ∧L L′)

1

}

.

The fan FL,L′(C) has a unique ray in the interior of the cone σ0, and its slope is
equal to eL(C ∧L L′). That is:

FL,L′(C) = F
(
eL(C ∧L L′)

)
.

Proof This is a consequence of Theorem 1.6.1. Indeed, let f ∈ C[[x]][y] be a
defining function for C relative to a local coordinate system (x, y) defining the cross
(L, L′). We know that its set of Newton-Puiseux roots Zx(f ) has C · L = iL(C)

elements. All of them have the same support, since C is a branch, which implies that
they form a single orbit under the Galois action of multiplication of x1/iL(C) by the
group of iL(C)-th roots of 1. The order of any such series is equal to kx(L′, C) =
eL(C∧LL′). We deduce from Proposition 1.6.13 that the Newton polygonNL,L′(C)

is equal to the Minkowski sum of the factors of f in formula (1.51). The first

assertion follows since the Newton polygon of y−η(x) is equal to

{
eL(C ∧L L′)

1

}

,

for any series η(x) ∈ Zx(f ), and then by taking into account formula (1.55). The
second assertion is an immediate consequence of the first one. ��

As a corollary we get the announced expression of the Newton polygon relative to
(L, L′) of a reduced curve singularity C in terms of the Eggers-Wall tree �L(C+L′)
of C + L′ relative to L:

Corollary 1.6.17 Let (L, L′) be a cross and let C be a reduced curve singularity
on (S, o) not containing the branch L. The Newton polygon NL,L′(C) of the germ
C with respect to the cross (L, L′) is equal to the Minkowski sum:

∑

l

iL(Cl)

{
eL(Cl ∧L L′)

1

}

, (1.56)

where Cl runs through the branches of C.

Proof By Proposition 1.6.13, the Newton polygon NL,L′(C) is the Minkowski sum
of the Newton polygons of its branches. One uses then Lemma 1.6.16 for each such
branch. ��

Note that the previous result extends to not necessarily reduced curve singulari-
ties C if one defines their Eggers-Wall tree as the Eggers-Wall tree of their reduction,
each leaf being endowed with the multiplicity of the corresponding branch in the
divisor C. Then, in the right-hand side of Eq. (1.56), each branch Cl has to be
counted with its multiplicity.
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1.6.3 Renormalization of Eggers-Wall Trees

Let (L, L′) be a cross on (S, o). In this subsection we will denote sometimes by
�o,L(C) the Eggers-Wall tree denoted before by �L(C), in order to emphasize

the point at which it is based. Indeed, we want to compare the previous tree with the
Eggers-Wall tree �ow,Ew (Cw) of the germ (Cw, ow) of the strict transform Cw of
C at a smooth point ow of the exceptional divisor Ew of a Newton modification
relative to the cross (L, L′), with respect to the germ at ow of the exceptional
divisor Ew itself. Notice that if C is a reduced curve, then the strict transform
Cw may consist of several germs of curves, one for each point of intersection of
Cw with Ew. We show that the universal Eggers-Wall tree �ow,Ew in the sense
of Definition 1.6.12 embeds naturally in the universal Eggers-Wall tree �o,L and
we explain how to relate their triples of structure functions (index, exponent and
contact complexity). We conceive the passage from �o,L(C) to �ow,Ew(Cw) as a
renormalization operation, which explains the title of this subsection. We will give
another proof of the renormalization Proposition 1.6.22 in Sect. 1.6.4, in terms of
Newton-Puiseux series.

Let us fix a cross (L, L′) on (S, o). Fix also a weight vector w = cw e1 +
dw e2 ∈ σ0 ∩NL,L′ . Denote by πw : (Sw, ∂Sw) → (S, L + L′) the modification

obtained by subdividing σ0 along the ray R+w. If A is a branch on S, we denote by
Aw the strict transform of A by πw . We look at the modification πw in the toroidal

category, relative to the boundaries ∂S := L + L′ and ∂Sw := Lw + Ew + L′w ,
where Ew is the exceptional divisor of the morphism πw.

Denote by W the point of �L(L′) corresponding to w, that is, the unique point
of �L(L′) whose exponent is the slope of the ray R+w in the basis (e1, e2):

eL(W) = dw

cw

. (1.57)

Since (L, L′) is a cross on (S, o) and W ∈ �L(L′), one has that iL(W) = 1.
Therefore, by Definition 1.6.9, the contact complexity of W is:

cL(W) = dw

cw

. (1.58)

Recall that A ∧L B denotes the infimum of the points A and B of the universal
Eggers-Wall tree �o,L relative to the partial order �L induced by the root L. We
need the following lemma:

Lemma 1.6.18 Let A be a branch on (S, o) different from L, L′. The following
properties are equivalent:

1. The strict transform Aw of A by πw intersects Ew \ (Lw ∪ L′w).
2. The fan FL,L′(A) is the subdivision of σ0 along the ray R+w.
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3. A ∧L L′ = W .

In addition, if these properties hold, then the order of vanishing of A along Ew is
equal to dwiL(A) and the intersection number Ew ·Aw is iL(A)/cw.

Proof The equivalence of these three properties is immediate from Proposi-
tions 1.4.18 and 1.6.16. Recall that the order of vanishing ordEw (A) is by definition
the multiplicity of Ew in the divisor (π∗wL), that is, the value taken by the
divisorial valuation ordEw defined by Ew on a defining function f of A. Thanks to
Proposition 1.4.18, this value is equal to tropA

L,L′(w), which may be written dwiL(A)

by Lemma 1.6.16. By Proposition 1.4.18, Ew · Aw is equal to the integral length
of the compact edge of the Newton polygon NL,L′(A). The equality Ew · Aw =
iL(A)/cw follows by using Lemma 1.6.16 again. ��
Lemma 1.6.19 Let A and B be two branches on (S, o). Consider the point W ∈
�L(L′) fixed above, determined by relation (1.57). Assume that W = A ∧L L′ =
B ∧L L′ inside the universal Eggers-Wall tree �L. Then the following conditions
are equivalent:

1. A ∧L B = W .

2. A · B = dw

cw
(L ·A)(L · B).

3. Aw ∩ Ew = Bw ∩ Ew.

Proof

Proof of 1 ⇒ 2 This implication is a consequence of Formulae (1.54) and (1.58).

Proof of 2 ⇒ 1 Let us denote by W ′ the point A ∧L B. The assumption W �L

A, W �L B implies that W �L W ′. By Formula (1.54), we get cL(W ′) = dw/cw =
cL(W). Since the function cL is strictly increasing on [L, A], the inequalities L �L

W �L W ′ �L A imply that W = W ′.

Proof of 1 ⇔ 3 Let (x, y) be a system of local coordinates defining the cross
(L, L′). Denote by fA a defining function of A with respect to this system and by KA

the compact edge of the Newton polygon NL,L′(A). By the proof of Lemma 1.6.16,
if αA is the coefficient of xdw/cw in a fixed Newton-Puiseux series of A, then the
restriction of fA to the compact edge KA is equal to:

⎛

⎝
∏

γ cw=1

(y − αA γ xdw/cw)

⎞

⎠

iL(A)/cw

= (ycw − α
cw

A xdw)iL(A)/cw .

We consider similar notations for the branch B. By Proposition 1.4.18, the point of
intersection of the strict transform of Aw with Ew is parametrized by the coefficient
α

cw

A . The desired equivalence follows since α
cw

A = α
cw

B if and only if for every
γ ∈ C with γ cw = 1, one has that αA = γ · αB , which is also equivalent to



122 E. R. García Barroso et al.

the property kL(A, B) = dw/cw by the definition of the order of coincidence (see
Definition 1.6.2). ��
Proposition 1.6.20 Let A and B be two branches on S. Consider the point W ∈
�L(L′) fixed above. Assume that W = A ∧L L′ = B ∧L L′. Then:

1. L · A = cw(Ew · Aw).

2. A · B = Aw · Bw + dw

cw

(L · A)(L · B).

3. Aw · Bw > 0 if and only if W ≺L A ∧L B.

4. cL(A ∧L B) = 1

c2
w

cEw(Aw ∧Ew Bw)+ dw

cw

.

Proof Notice first that the hypothesis and Lemma 1.6.18 imply that the strict
transforms Aw, Bw of A and B by πw intersect Ew \ (Lw ∪ L′w). If C is a branch

on (S, o), denote by (π∗wC)ex the exceptional part of the total transform divisor

(π∗wC) = (π∗wC)ex + Cw of C on Sw .

Proof of 1 We have:

L · A (i)== (π∗wL) · (π∗wA) =
(ii)== (π∗wL) · Aw =
(iii)== (π∗wL)ex ·Aw =
(iv)== ordEw (L)(Ew · Aw) =
(v)== νw(χε1)(Ew · Aw) =
(vi)== ((cwe1 + dwe2) · ε1)(Ew ·Aw) =
(vii)== cw(Ew · Aw).

Let us explain each one of the previous equalities:

• Equality (i) results from the birational invariance of the intersection product, if
one works with total transforms of divisors.

• Equality (ii) is a consequence of the equality (π∗wL)·(π∗wA)ex = 0, which results
from the projection formula (see [61, Appendix A1]), applied to the divisors L

on S, (π∗wA)ex on Sw and to the proper morphism πw.
• Equality (iii) follows from the hypothesis Lw ·Aw = 0 and the bilinearity of the

intersection product.
• Equality (iv) is a consequence of the equality (π∗wL)ex = ordEw (L)Ew .
• Equality (v) results from the equalities ordEw = νw (see Eq. (1.32)) and x = χε1 .
• Equality (vi) results from the fact that w = cwe1 + dwe2.
• Equality (vii) results from the fact that (ε1, ε2) is the dual basis of (e1, e2).

Proof of 2. Let us choose a branch A′ on (S, o) such that:

iL(A) = iL(A′) and W = A ∧L L′ = A′ ∧L L′. (1.59)
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Lw Lw

Bw

Aw Aw

Ew

L

LA AB

W

0

0

0

Fig. 1.54 The choice of branch A′ in the proof of Proposition 1.6.20 (2)

Using Lemma 1.6.19, we can translate this hypothesis in terms of the total transform
of the branches A, A′ by πw. On the left side of Fig. 1.54 is represented the total
transform of L + L′ + A + A′ + B by πw and on its right side is represented the
Eggers-Wall tree �L(L+ L′ + A+ A′ + B), for some branch B. Then:

A · B (i)== (π∗wA) · (π∗wB) =
(ii)== (π∗wA) · Bw =
(iii)== Aw · Bw + (π∗wA)ex · Bw =
(iv)== Aw · Bw + (π∗wA′)ex · Bw =
(v)== Aw · Bw + (π∗wA′) · Bw =
(vi)== Aw · Bw + A′ · B =
(vii)== Aw · Bw + (L ·A′)(L · B) cL(W) =
(viii)== Aw · Bw + (L ·A)(L · B)

dw

cw

.

Let us explain each one of the previous equalities:

• Equalities (i) and (ii) are analogs of the equalities (i) and (ii) in the proof of
point (1) above.

• Equality (iii) results from the bilinearity of the intersection product.
• Equality (iv) results from the hypothesis (1.59) and Lemma 1.6.18, which imply

that ordEw(A) = ordEw (A′). Then one concludes using the equality (π∗wC)ex ·
Bw = ordEw (C)(Ew · Bw), for each C ∈ {A, A′}.

• Equality (v) results from the fact that, by construction, A′w and Bw are disjoint.
• Equality (vi) results from the projection formula.
• Equality (vii) results from Lemma 1.6.19.
• Equality (viii) results from Eq. (1.58) and from the equality L · A = L · A′,

which is a consequence of the hypothesis (1.59) and the equality L · C = iL(C)

for each C ∈ {A, A′}.
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Proof of 3 By hypothesis, the strict transforms Aw and Bw intersect the set
Ew \ (Lw ∪ L′w), which is equal to the torus orbit OR+w . By the proof of
Proposition 1.4.18, this implies that w is orthogonal to the compact edges of the
Newton polygons NL,L′(A) and NL,L′(B). Lemma 1.6.16 implies that eL(W) =
eL(A ∧L L′) = eL(B ∧L L′). As the three points W, A ∧L L′, B ∧L L′ belong
to the segment [L, L′] and that eL is strictly increasing on it, we get the equalities
W = A∧L L′ = B ∧L L′. This implies that W �L A, W �L B. The claim follows
from point (2) by using Lemma 1.6.19.

Proof of 4. Dividing both sides of the formula of point (2) by the product (L ·A)(L ·
B), we get:

A · B
(L ·A) · (L · B)

= Aw · Bw

(L ·A) · (L · B)
+ dw

cw

.

Using point (1), we get:

Aw · Bw

(L ·A) · (L · B)
= 1

c2
w

Aw · Bw

(Ew ·Aw) · (Lw · Bw)
.

By applying formula (1.54) twice we obtain the desired formula:

cL(A ∧L B) = 1

c2
w

cEw (Aw ∧Ew Bw)+ dw

cw

. (1.60)

��
Let us define in combinatorial terms a natural embedding of the universal Eggers-

Wall tree �ow,Ew into the universal Eggers-Wall tree �o,L (see 1.6.12):

Definition 1.6.21 Let Aw be a branch on the germ of surface (Sw, ow). Denote by A

its image by the modification πw. The natural embedding of the universal Eggers-
Wall tree �ow,Ew into the universal Eggers-Wall tree �o,L is defined by sending
each point Q of the Eggers-Wall segment �ow,Ew (Aw) to the unique point Q′ of
�o,L(A) which satisfies:

cL(Q′) = 1

c2
w

cEw (Q)+ dw

cw

. (1.61)

If (Cw, ow) is a reduced curve on (Sw, ow), then the embedding of the Eggers-
Wall tree �ow,Ew(Cw) in �o,L(C) is well-defined thanks to Formula (1.60) applied
to any pair Aw, Bw of branches of (Cw, ow). That is, the embeddings of the Eggers-
Wall segments of its branches glue into an embedding of �ow,Ew(Cw) in �o,L(C).
Notice that the root Ew of �ow,Ew (Cw) corresponds to the point W ∈ �o,L(L′)
defined by relation (1.57) and that the leaf of �ow,Ew labeled by Aw corresponds to
the leaf of �o,L labeled by A.
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The following proposition describes how to pass from the functions (iEw , eEw )

on the tree �ow,Ew (Cw) to the functions (iL, eL) on �o,L(C):

Proposition 1.6.22 Let (Cw, ow) be a reduced curve singularity on (Sw, ow).
Identify the tree �ow,Ew(Cw) with the subtree of �o,L(C) defined by the natural
embedding of Definition 1.6.21. One has the following relations in restriction to this
subtree:

1. iL = cw iEw .

2. eL = 1

cw

eEw +
dw

cw

.

Proof Proof of 1. We show first the assertion for an end of �ow,Ew (Cw) corre-
sponding to a branch Bw of Cw . By the definition of the index function, we have the
equalities iL(B) = L ·B and iEw (Bw) = Ew ·Bw . Combining these equalities with
point (1) of Proposition 1.6.20, we get:

iL(B) = cwiEw (Bw). (1.62)

Let Q = Ew be any rational point of �ow,Ew (Cw). By the equality (1.52), there
exists a branch Aw on the germ of surface (Sw, ow) such that iEw (Aw) = iEw (Q).
We get:

iL(Q)
(1.52)≤ iL(A)

(1.62)= cwiEw (Aw) = cwiEw (Q).

This implies that iL(Q) ≤ cwiEw (Q). Analogously, using again equality (1.52),
there exists a branch B on the germ (S, o) such that W ≺L Q ≺L B and
iL(B) = iL(Q). By Definition 1.6.21 of the natural embedding of �ow,Ew in �o,L,
this implies that Q ≺Ew B. Therefore:

iL(Q) = iL(B)
(1.62)= cwiEw (Bw)

(1.52)≥ cwiEw (Q).

It follows that iL(Q) = cwiEw (Q). We have shown that the equality in point (1)
holds in restriction to the rational points of �ow,Ew(Cw), and by the continuity
properties of the index functions, it holds for every point of �ow,Ew (Cw).
Proof of 2. Let P be a point of �ow,Ew (Cw). This implies that W �L P . By the
integral formula (1.53), we get:

eL(P ) =
∫ P

L

iLdcL =
∫ W

L

iLdcL +
∫ P

W

iLdcL.
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Using again Eq. (1.53), we have:

∫ W

L

iLdcL = eL(W) = dw

cw

. (1.63)

We compute the second integral
∫ P

W
iLdcL by making a change of variable.

Differentiating formula (1.61), we get dcL = (1/c2
w)dcEw . Using the expression

for iL of point (1), we obtain:

∫ P

W

iLdcL = 1

cw

∫ P

W

iEw dcEw =
1

cw

eEw (P ), (1.64)

where we have used again the integral formula (1.53). We end the proof by
combining the equalities (1.63) and (1.64):

eL(P ) = dw

cw

+ 1

cw

eEw (P ).

��
Remark 1.6.23 Identify the tree �ow,Ew with the subtree of the universal Eggers-
Wall tree �o,L defined by the embedding of Definition 1.6.21. As a consequence of
Proposition 1.6.22, the two formulae stated in it also hold on �ow,Ew .

1.6.4 Renormalization in Terms of Newton-Puiseux Series

We give a different proof of Proposition 1.6.22 by using Newton-Puiseux series.
This proof relates the Newton modifications in the toroidal category of Defini-
tion 1.4.14 with the Newton maps, which appear sometimes in the algorithmic
construction of Newton-Puiseux series (see Sect. 1.6.6).

We keep the notations introduced at the beginning of Sect. 1.6.3. Let A be
a branch on (S, o) such that Aw intersects Ew at a point ow ∈ Ew \ (Lw ∪
L′w). Consider local coordinates (x, y) defining the cross (L, L′). Recall from
Definition 1.6.2 that Zx(A) denotes the set of Newton-Puiseux roots of A relative
to x. Let us choose η ∈ Zx(A). It may be expressed as:

η =
∑

k≥m

αkxk/n, (1.65)

where n = A ·L, m = A ·L′. Hence αm = 0. All the series in Zx(A) have the same
support, since they form a single orbit under the Galois action of multiplication of
x1/n by the complex n-th roots of 1 (see Remark 1.2.21).
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Let us denote p := gcd(n, m). Our hypothesis that Aw meets Ew \ (Lw ∪ L′w)

implies that:

n = cw · p, m = dw · p. (1.66)

The branch A is defined by f = 0, where:

f =
∏

γ n=1

(y − (γ · η)(x)) = (ycw − αcw
m xdw)p + . . . . (1.67)

We have only written on the right-hand side of (1.67) the restriction of f to the
unique compact edge of the Newton polygon of f (x, y).

Lemma 1.6.24 There exist local coordinates (x1, y1) on the germ (Sw, ow) such
that Ew = Z(x1) and the map πw is defined by:

{
x = x

cw

1 ,

y = x
dw

1 (αm + y1).
(1.68)

Proof Consider a vector w′ = awe1 + bwe2 such that:

bwcw − awdw = 1. (1.69)

Therefore the cone σ = R+〈w, w′〉 is regular and included in one cone of the
fan FL,L′(A). As explained in the proof of Proposition 1.4.18, we can look at the
intersection of Aw with the orbit OR+w = Ew \ (Lw ∪ L′w) in the open subset
corresponding to this orbit on the toric surface Xσ = C

2
u,v . The toric morphism ψσ

σ0
is the monomial map defined by

{
x = ucwvaw

y = udwvbw

(see Example 1.3.26). The orbit OR+w, seen on the surface C
2
u,v , is the pointed

axis C
∗
v . The maximal monomial in (u, v) which divides (ψσ

σ0
)∗f is equal to

(ucwdwvawdw)p. After factoring out this monomial and setting u = 0 we get:

(vawcw−bwdw − αcw
m )p (1.69)= (v − αcw

m )p. (1.70)

This shows that the point ow has coordinates (u, v) = (0, α
cw
m ). The formulae

{
u = x1(y1 + αm)−aw ,

v = (y1 + αm)cw ,
(1.71)
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define local coordinates (x1, y1) at ow, since the jacobian determinant of (u, v−α
cw
m )

with respect to (x1, y1) does not vanish at (0, 0). Notice also that Z(x1) = Z(u) =
Ew. By (1.69) we get:

{
x = x

cw

1 (y1 + αm)−awcw(y1 + αm)awcw = x
cw

1
y = x

dw

1 (y1 + αm)bwcw−dwaw = x
dw

1 (αm + y1).
��

Proposition 1.6.25 With respect to the coordinates (x1, y1) introduced in
Lemma 1.6.24, the series

ηw :=
∑

k>m

αmx
(k−m)/p
1 ,

is a Newton-Puiseux series parametrizing the branch Aw on (Sw, ow).

Proof By formula (1.70), we have that (Aw ·Ew)ow = p. It follows that the Newton-
Puiseux series in Zx1(Aw) must have exponents in (1/p)N∗. By composing (1.68)
with the change of variable

x1 = x
p
2 , (1.72)

we get:

{
x = xn

2 ,

y = x
dwp
2 (αm + y1).

(1.73)

Apply the substitution (1.73) to the factor y − (γ · η)(x1/n), using that x2 = x1/n

by definition, and factor out the monomial x
dwp

2 . We get the series

(αm + y1)− αmγ m −
∑

k>m

αkγ kxk−m
2 ∈ C[[x2, y1]]. (1.74)

This series has vanishing constant term if and only if γ m = 1. Since γ n = 1 and
gcd(n, m) = p, one may check that this condition holds if and only if γ p = 1, and
in this case for any k > m one has γ k = γ k−m. It follows that the series (1.74)
which are non-units are precisely the conjugates of the series y1 − ηw(x

1/p

1 ) under

the Galois action, since x2 = x
1/p
1 by definition (1.72). Therefore, the product of

all the conjugates of y1 − ηw(x
1/p

1 ) under the Galois action defines a polynomial in
C[[x1]][y1]which divides the strict transform of f by the map (1.68). The remaining
factor is a series with nonzero constant term, and must belong to the ring C[[x1, y1]]
since it is invariant under the Galois action. ��
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Corollary 1.6.26 Let A, B be two branches on (S, o) such that ow ∈ Aw∩Bw∩Ew.
Then:

kx(A, B) = dw

cw

+ cw · kx1(Aw, Bw).

Proof By point (3) of Proposition 1.6.20, the inequality Aw ·Bw > 0 (which results
from the hypothesis that ow ∈ Aw ∩Bw) implies that kx(A, B) > dw/cw. It follows
that if we fix a Newton-Puiseux series η ∈ Zx(A), then there exists ξ ∈ Zx(B) with
the same order and the same leading coefficient. We can apply Lemma 1.6.24, using
this leading coefficient, to define suitable local coordinates (x1, y1) at the point o1.
The formula results from Proposition 1.6.25 by taking into account the facts that
ηw ∈ Zx1(Aw) and ξw ∈ Zx1(Bw). ��

Corollary 1.6.26 implies readily Proposition 1.6.22.

1.6.5 From Fan Trees to Eggers-Wall Trees

In this subsection we assume that C is reduced. We explain that there exists a
canonical isomorphism from the fan tree θπ(C) of a toroidal pseudo-resolution π of
C produced by running Algorithm 1.4.22, to the Eggers-Wall tree of the completion
Ĉπ of C (see Theorem 1.6.27). We also explain how to compute the index, exponent
and contact complexity functions on the Eggers-Wall tree from the slope function
on the fan tree (see Proposition 1.6.28).

Let L be a smooth branch on the germ (S, o). Assume that we run Algo-
rithm 1.4.22, arriving at a toroidal pseudo-resolution π : (�, ∂�) → (S, L + L′).
Consider the corresponding completion Ĉπ , in the sense of Definition 1.4.15. There
are two trees associated with this setting which have their ends labeled by the
branches of Ĉπ , the fan tree θπ(C) and the Eggers-Wall tree �L(Ĉπ ). How are
they related? It turns out that they are isomorphic:

Theorem 1.6.27 There is a unique isomorphism from the fan tree θπ(C) to the
Eggers-Wall tree �L(Ĉπ ), which preserves the labels of the ends of both trees by
the branches of Ĉπ .

Proof At the first step of Algorithm 1.4.22, one chooses a smooth branch L′ such
that (L, L′) is a cross on (S, o). By definition, the branch L′ is a component of the
completion Ĉπ . Let us consider the segment [L, L′] of �L(Ĉπ ) and the first trunk
θFL,L′ (C) = [eL, eL′ ]. We have a homeomorphism

�o : [eL, eL′ ] → [L, L′] = �L(L′)

sending a vector w ∈ [eL, eL′ ] to the unique point W ∈ [L, L′] whose exponent
eL(W) is equal to the slope of w with respect to the basis (eL, eL′) of NL,L′ . By
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Corollary 1.6.17, the map �o defines also a bijection between the set of marked
points of the trunk, according to Definition 1.4.33, and the set of the marked
points of the tree �L(Ĉπ ) which belong to the segment [L, L′] according to
Definition 1.6.3.

Let oi be a point of ∂SFL,L′ (C), lying on the strict transform of C. The point

oi is considered at the fourth step of Algorithm 1.4.22. Let Ai denote the germ
of ∂SFL,L′ (C) at oi and let (Ai, Bi) be the cross at oi chosen when one passes

again through the first and second steps of Algorithm 1.4.22. By definition, Li :=
πL,L′(Bi) is a branch of Ĉπ . We denote by Ĉπ,oi (resp. Coi ) the germ of the

strict transform of Ĉπ (resp. C) at the point oi . We use the Notations 1.4.25. Let
us consider the segment [Ai, Li ] of the Eggers-Wall tree �oi,Ai (Ĉπ,oi ) and the
trunk θFAi ,Bi

(Coi
) = [eAi , eBi ]. Arguing as before, we obtain a homeomorphism

�oi : [eAi , eBi ] → [Ai, Li ] which sends w ∈ [eAi , eBi ] to the unique point
W ∈ [Ai, Li ] such that eAi (W) is equal to the slope of w with respect to the basis
(eAi , eBi ) of the lattice NAi,Bi . In addition, we get also that the homeomorphism
�oi defines a bijection between the marked points of the trunk θFAi ,Bi

(Coi
) and the

marked points of �oi,Ai (Ĉπ,oi ) on the segment [Ai, Li ]. By Proposition 1.6.22, we
have an embedding of the Eggers-Wall tree �oi,Ai (Ĉπ,oi ) such that the root Ai of
this tree is sent to the marked point L′ ∧L Li of �L(Ĉπ ). By Definition 1.4.33, the
point eAi of the trunk θ(FAi,Bi (C)) is identified with the marked point labeled by
Ai on θ(FL,L′(C)), during the construction of the fan tree θπ(C).

If T is a tree and P1, . . . , Ps ∈ T, we denote by [P1, . . . , Ps ] the smallest subtree
of T containing P1, . . . , Ps . We apply this notation for the subtree [eL, eL′, eBj ] of

θπ(C) and the subtree [L, L′, Lj ] of �L(Ĉπ ). The previous discussion implies that
the homeomorphisms �o and �oi can be glued into a homeomorphism

[eL, eL′, eBj ] → [L, L′, Lj ],

which sends the ramification vertex eAi of the tree [eL, eL′, eBj ] to the rami-
fication vertex L′ ∧L Lj of [L, L′, Lj ]. We repeat this construction each time
we pass through a cross at the first and second steps during the iterations of
Algorithm 1.4.22. By induction, we get a finite number of homeomorphisms �oj ,

which glue into a homeomorphism � : θπ(C) → �L(Ĉπ ) which respects the
labelings of the ends of both trees by the branches of Ĉπ . ��

Identify the two rooted trees θπ(C) and �L(Ĉπ) by the isomorphism of
Theorem 1.6.27. For every point P ∈ θπ(C), define the set δP ⊂ [L, P) as the
finite subset of discontinuity points of the restriction of the slope function Sπ to
the segment [L, P). If λ ∈ Q

∗, denote by den(λ) the denominator q of λ, when
one writes it in the form p/q , with (p, q) ∈ Z × N

∗, and p, q coprime. The fan
tree θπ(C) comes endowed with only one function, the slope function Sπ , while
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the Eggers-Wall tree is endowed with the index iL, the exponent eL and the contact
complexity cL functions. These functions are related by:

Proposition 1.6.28 For every P ∈ θπ(C), one has:

1. iL(P ) =
∏

Q∈δP

den(Sπ(Q)).

2. eL(P ) =
∫ P

L

1

iL
dSπ .

3. cL(P ) =
∫ P

L

1

i2L
dSπ .

Proof In order to follow the proof, one has to keep in mind the isomorphism of the
fan tree with the Eggers-Wall tree built in Theorem 1.6.27. If the set δP is empty,
that is, if the slope function Sπ is continuous in restriction to [L, P), then P belongs
to the first trunk [L, L′]. By definition, for any Q ∈ [L, L′] we have:

iL(Q) = 1, eL(Q) = Sπ(Q). (1.75)

Hence the equalities (1), (2) and (3) hold trivially for P .
We prove the assertions (1) and (2) by induction on the number of elements of

the set δP of discontinuity points. Assume that δP = {W = W1, W2, . . . , Wk}
with k ≥ 1, and W ≺L W2 ≺L · · · ≺L Wk ≺L P . By construction, the point
W belongs to the first trunk of θπ(C). Then, using the notation (1.57), we have
eL(W) = dw/cw = Sπ (W), with cw = den(Sπ (W)). We decompose the integral of
the second member of equality (2) in the form:

∫ P

L

1

iL
dSπ =

∫ W

L

1

iL
dSπ +

∫ P

W

1

iL
dSπ .

By (1.75), one has:

∫ W

L

1

iL
dSπ = eL(W) = dw

cw

. (1.76)

With the notations of Sect. 1.6.3, we consider the reduced curve Cw at (Sw, ow),
consisting of those branches Aw which are the strict transforms of branches A of C

such that W ≺L P ≺L A (see point (3) of Proposition 1.6.20). Proposition 1.6.22
implies that:

iL(Q) = cwiEw (Q), for Q ∈ [W, P ] ⊂ �Ew(Cw). (1.77)

Hence:

∫ P

W

1

iL
dSπ = 1

cw

∫ P

W

1

iEw

dSπ = 1

cw

eEw(P ). (1.78)
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To understand the last equality of (1.78), apply the induction hypothesis to the
integral

∫ P

W
(1/iEw)dSπ , with respect to the set {W2, . . . , Wk} of discontinuity points

of the restriction of the slope function Sπ to [W, P). The equality (2) follows
from (1.76), (1.78) and point (2) of Proposition 1.6.22.

The equality (1) follows similarly by (1.77) and the induction hypothesis applied
to iEw (P ).

Let us prove the equality (3). By point (2) one has deL = (1/iL)dSπ . Therefore:

cL(P ) =
∫ P

L

1

iL
deL =

∫ P

L

1

i2L
dSπ .

��
Example 1.6.29 Consider the toroidal pseudo-resolution process of Exam-
ple 1.4.28. Figure 1.55 shows the fan tree θπ(C) and the corresponding Eggers-Wall
tree �L(Ĉπ), for which are indicated the values of the exponent and the index
functions. We computed them using Proposition 1.6.28. For instance, we have

iL(E6) = 1 · 5 = 5, eL(E6) = 3

5
+ 1

5
· 5

3
= 14

15
, iL(E8) = 1 · 5 · 3 = 15 and

eL(E8) = 14

15
+ 1

15
· 1

2
= 29

30
.

Proposition 1.6.28 allows us to define a concrete reduced curve singularity C

which admits the toroidal resolution process described in Example 1.4.28, whose
lotus was represented in Fig. 1.36 and whose Enriques tree was represented in
Fig. 1.40. Namely, we fix local coordinates (x, y) and we choose Newton-Puiseux
series η1(x), . . . , η7(x) defining branches C1, . . . , C7, then we take supplementary
series λ1(x), . . . , λ4(x) defining branches L1, . . . L4, such that the Eggers-Wall tree
�L(C1+· · ·+C7+L1+· · ·+L4) is that on the right side of Fig. 1.55. For instance,
one may choose:

η1(x) := x5/2, η2(x) := x2, η3(x) := −x2, η4(x) := x3/5 + x3/4,

η5(x) := x3/5 + x11/15 η6(x) := 2x3/5 + x6/5, η7(x) := 2x3/5 + x14/15 + x29/30,

λ1(x) := 0, λ2(x) := x3/5, λ3(x) := 2x3/5, λ4(x) := 2x3/5 + x14/15.

Remark 1.6.30 The right part of Fig. 1.55 shows the Eggers-Wall tree of the
completion of a plane curve singularity generated by a toroidal pseudo-resolution
process. One may verify that it satisfies the following property which characterizes
the Eggers-Wall trees of such completions: each vertex which is not an end of the
tree is contained in the interior of a segment in restriction to which the index function
is constant (in particular, such an Eggers-Wall tree has no vertices of valency 2).
When one has such an Eggers-Wall tree, it originates from a fan tree as described
in Proposition 1.6.28. But this fan tree is not unique. One has to determine first
which segments of the Eggers-Wall tree are trunks of the fan tree, and there may
be different choices. For instance, in Fig. 1.55 one could decide that the segment
[L, C2] is a trunk, instead of [L, L1]. Once the trunks are chosen, the sets δP are
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Fig. 1.55 The fan tree θπ (C) and the corresponding Eggers-Wall tree �L(Ĉπ ) in Example 1.6.29

determined for every point P of the tree. This allows to compute the slope function
Sπ by integrating the differential relation dSπ = iLdeL, which is a consequence of
Proposition 1.6.28 (2).

Proposition 1.6.28 may be written more explicitly as follows:

Corollary 1.6.31 Let P be a vertex of θπ(C) = �L(Ĉπ ), different from the root
L. Assume that when one moves on the segment [L, P ] from L to P , one meets
successively the vertices P1, . . . , Pk = P of δP ∪ {P }. Denote Sπ(Pj ) = dj/cj

with coprime cj , dj ∈ N
∗, for all j ∈ {1, . . . , k} (with ck = 1 and dk = ∞ if P is a

leaf of the tree). Then:

1. iL(P ) = c1 · · · ck−1.

2. cL(P ) = d1

c1
+ d2

c2
1c2

+ d3

c2
1c2

2c3
+ · · · + dk

c2
1 · · · c2

k−1ck

.

3. eL(P ) = d1

c1
+ d2

c1c2
+ d3

c1c2c3
+ · · · + dk

c1 · · · ck

.

Example 1.6.32 Let us specialize Corollary 1.6.31 to the case where P is a leaf of
θπ(C) = �L(Ĉπ ), labeled by a branch C. Therefore the characteristic exponents of
a Newton-Puiseux series of C relative to L are:

mj

n1 · · · nj

:= d1

c1
+ d2

c1c2
+ · · · + dj

c1 · · · cj

, (1.79)
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for all j ∈ {1, . . . , k}. Here the positive integers (m1, . . . , mk) and (n1, . . . , nk) are
chosen such that mj and nj are coprime for all j ∈ {1, . . . , k}. The relations (1.79)
may be reexpressed in the following way:

(cj , dj ) = (nj , mj − nj ·mj−1), (1.80)

for all j ∈ {1, . . . , k} (with the convention m0 := 0). Sometimes the couples
(mj , nj ) are called the Puiseux pairs and the couples (dj , cj ) are called the Newton
pairs of the given Newton-Puiseux series. The importance of using both sequences
of pairs in the topological study of plane curve singularities was emphasized by
Eisenbud and Neumann in their book [34, Page 6]. More details may be found in
Weber’s survey [132, Section 6.1].

Example 1.6.33 This is a continuation of Example 1.6.32. Consider pairs of
coprime integers (nj , mj ) ∈ N

∗ × N
∗ with nj > 1, for j = 1, . . . , k and the

Newton-Puiseux series

xm1/n1 + xm2/(n1n2) + · · · + xmk/(n1···nk),

defining a branch C. We can build a toroidal pseudo-resolution π of C with respect
to L = Z(x), such that Ĉπ = L + C +∑k

j=1 Lj and the branches L1, . . . , Lk are
defined by the Newton-Puiseux series:

0, xm1/n1 , xm1/n1 +xm2/(n1n2), . . . , xm1/n1 +xm2/(n1n2)+· · ·+xmk−1/(n1···nk−1).

Then the associated lotus is as represented in Fig. 1.38. Using formula (1.80) and
the notations introduced in Example 1.5.30, we have:

mj

nj

−mj−1 = [pj , qj , . . .],

for all j ∈ {1, . . . , k}. In fact, one gets the same lotus whenever C is an arbitrary
branch with the previous characteristic exponents relative to L and the branches
Lj are semiroots of C (see [99, Corollary 5.6]). This shows that our notion of
completion of a reduced curve singularity C relative to a toroidal pseudo-resolution
process is a generalization of the operation which adds to a branch a complete
system of semiroots relative to L (see [99, Definition 6.4]).

1.6.6 Historical Comments

Historical information about the notion of characteristic exponent may be found in
our paper [44, Introduction, Rem. 2.9].
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Fig. 1.56 A Kuo-Lu tree

Fig. 1.57 An Eggers tree

In addition to the older Enriques diagrams and dual graphs of exceptional divisors
of embedded resolutions, Kuo and Lu associated a third kind of tree to a curve
singularity C = Z(f (x, y)) in their 1977 paper [75]. An example of such a tree,
extracted from their paper, is shown in Fig. 1.57. Their trees were rooted and
their sets of leaves were in bijection with the set of Newton-Puiseux series η(x)

associated with the corresponding plane curve singularity C. They used their trees
in order to relate the structure of C to that of its polar curve defined by the equation
∂f

∂y
= 0 (Fig. 1.56).

In his 1983 paper [33], Eggers showed that a kind of Galois quotient of the Kuo-
Lu tree of f was more convenient for this purpose. Figure 1.57 shows the first
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example given in [33]. A variant of the Eggers tree, better suited for computations,
was introduced by Wall [130] and presented in more details in his textbook [131,
Sections 4.2 and 9.4].

The third author coined in his 2001 thesis [98] the name Eggers-Wall tree for
Wall’s version of Eggers’ tree. He proved in [98, Section 4.4] that the Eggers-Wall
tree of C relative to generic coordinates could almost always be embedded in the
dual graph of the minimal embedded resolution of C as the convex hull of its vertices
representing the branches of C. He discovered this fact experimentally, by applying
in many examples the first author’s algorithm described in her 1996 thesis [42,
Section 1.4.6], for the passage from Eggers’ tree to the dual graph. Another proof of
this embedding result was obtained in terms of certain toroidal-pseudo resolutions
introduced by the second author in [52, Section 3.4]. Wall improved the description
of this embedding in his 2004 book [131], and Favre and Jonsson explained it
differently from their valuative viewpoint in their 2004 book [38, Appendix D2].
Recently, we gave a new viewpoint on this embedding result in [45, Theorem
112], in the framework of Eggers-Wall trees defined relative to arbitrary coordinate
systems. It is important to consider the Eggers-Wall tree of C relative to coordinate
systems which are not necessarily generic relative to C. Indeed, this freedom is
essential when one wants to compare the Eggers-Wall tree of C with that of its
strict transform by a blow up or a more complicated toric modification, because
after such a modification the natural coordinate x defines the exceptional divisor,
and is not necessarily generic with respect to the strict transform. In his paper
[100], extracted from his thesis [98], the third author did not consider any genericity
hypothesis, in order to extend the definition of this kind of tree to higher dimensional
quasi-ordinary hypersurface singularities. This generalized notion of Eggers-Wall
tree was further developed in connexion with the study of the associated polar
hypersurfaces in the 2005 paper [43] of the first and second authors. In turn, the
notion of Kuo-Lu tree was extended to quasi-ordinary hypersurface singularities by
the first author and Gwoździewicz in their 2015 paper [47] and used again by them
in [48], in order to study the structure of higher order polars of such singularities.

The notations for elementary Newton polygons described in Definition 1.6.14
were introduced by Teissier in his 1977 paper [120, Section 3.6], where he restricted
them to a, b ∈ N

∗ ∪ {∞}. Allowing the two numbers in Definition 1.6.14 to be
rational is convenient in order to express Newton polygons in terms of Eggers-Wall
trees (see Corollary 1.6.17).

Let us consider now the valuative aspects of Eggers-Wall trees. Favre and
Jonsson proved in their 2004 book [38] that the set of semivaluations of the local
C-algebra ÔS,o which are normalized by the constraint that a defining function x of
the smooth germ L has value 1, has a natural structure of rooted real tree, which
they called the valuative tree. In his 2015 survey [67], Jonsson revisited part of
the theory of [38] with a more geometric approach which is valid for algebraically
closed fields of arbitrary characteristic. Favre and Jonsson gave several descriptions
of its tree structure. In our paper [46, Theorem 8.34] we gave a new description of
it, as the universal Eggers-Wall tree of Definition 1.6.12. Namely, we proved that
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the valuative tree could also be obtained as a projective limit of Eggers-Wall trees.
The main point of our proof is that �L(C) embeds naturally in the valuative tree,
for any C. We showed also in [46, Theorem 8.18] that the triple (iL, 1 + eL, cL) is
the pullback by this embedding of a triple of three natural functions on the valuative
tree: the multiplicity, the log-discrepancy and the self-interaction.

An advantage of the identification of �L with the valuative tree is that it allows
to get an interpretation of the points of �L which do not belong to any �L(C) as
special infinitely singular semivaluations, in the language of [38] and [67].

Another advantage is obtained when the base algebraically closed field has
positive characteristic. Let us define the functions iL, cL and eL on θπ(C) by the
equalities appearing in Proposition 1.6.28. This provides a definition of a notion
of Eggers-Wall tree in positive characteristic, where Newton-Puiseux series are
not enough for the study of plane curve singularities (see Remark 1.2.17). The
approach of Sect. 1.6.3 may be generalized to prove that in restriction to θπ(C),
the multiplicity function relative to L is equal to iL, the contact complexity function
relative to L is equal to cL and the log-discrepancy function relative to L is equal
to 1 + eL. This abstract Eggers-Wall tree may be associated with the ultrametric
distance on the branches of C, as described in our paper [45]. It may be seen also as
a generalization of the notion of characteristic exponents in positive characteristic
introduced in Campillo’s book [17], where the author computes these exponents
using Hamburger-Noether expansions (see [17, Section 3.3]), infinitely near points
(see [17, Remark 3.3.8]) or Newton polygons (see [17, Section 3.4]).

Assume now that the germ C is holomorphic. Then the Enriques diagram and the
weighted dual graph of the minimal embedded resolution, as well as the Eggers-Wall
tree relative to generic coordinates encode the same information, which is equivalent
to the embedded topological type of C. Proofs of this fundamental fact may be found
in Wall’s book [131, Propositions 4.3.8 and 4.3.9].

A basic problem is then to find methods to transform one kind of tree into the two
other kinds. Noether described in [90] how to pass from the characteristic exponents
of an irreducible curve singularity C to the structure of the blow up process leading
to an embedded resolution. Enriques and Chisini generalized this approach in [35,
Libr. IV, Cap. I] to the case when C is not necessarily irreducible. Namely, they
showed how to pass from the characteristic exponents of its branches and the orders
of coincidence of pairs of branches in generic coordinates to the associated Enriques
diagram.

Zariski and Lejeune-Jalabert proved by different methods in their 1971 paper
[137] and 1972 thesis [77] respectively, that the characteristic exponents of the
branches of C and the intersection numbers of its pairs of branches determine the
embedded topological type of C and the combinatorics of its minimal embedded
resolution. This may be seen as a proof of the fact that the weighted dual graph
of the minimal embedded resolution is equivalent to the generic Eggers-Wall tree.
Methods to pass from the knowledge of the characteristic exponents and intersection
numbers to the dual graph were explained by Eisenbud and Neumann [34, Appendix
to Ch. 1], Brieskorn and Knörrer [15, Section 8.4], Michel and Weber [86], de Jong
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and Pfister [66, Section 5.4] and an algorithm was described by the first author in
[42, Sect. 1.4.6].

Let us mention now several other trees which were associated to plane curve
singularities.

As explained in Sect. 1.4.5, the changes of variables considered by Puiseux
(called sometimes Newton maps) were compositions of affine and of toric ones,
which in general were not birational. Nevertheless, an algorithm of abstract reso-
lution and of computation of Newton-Puiseux series may be developed also using
them. A variant of the fan trees, adapted to this context and called Newton trees,
was used by Cassou-Noguès in her papers mentioned in Sect. 1.4.5, written alone
or in collaboration. The Newton trees encode also the toroidal pseudo-resolution
processes described in the paper [21] of Cassou-Noguès and Libgober. We refer the
reader especially to the papers [20] and [22] for more details about this approach.
The changes of coordinates (1.71), which are very similar to Newton maps, were
also used in the paper [72] of Kennedy and McEwan to study the monodromy of
holomorphic plane curve singularities.

Newton maps and Newton trees have been used to study the singularities of
quasi-ordinary hypersurfaces by Artal, Cassou-Noguès, Luengo and Melle Hernán-
dez (see for instance [10] and [11]). In their 2014 paper [55], the second author and
González Villa compared the Newton maps with the toric morphisms appearing in
a toroidal pseudo-resolution of an irreducible germ of quasi-ordinary hypersurface.

Newton trees are algebraic variants of the splice diagrams associated by Eisen-
bud and Neumann in their 1986 book [34] to any oriented graph link in an integral
homology sphere, extending a graphical convention introduced by Siebenmann in
his 1980 paper [114]. In our recent paper [46, Section 5], we explained how to pass
from the Eggers-Wall tree of a holomorphic plane curve singularity C relative to a
smooth branch L to the splice diagram of the oriented link of L+ C in S

3.
In his 1993 papers [69] and [70], Kapranov associated a version of Kuo and

Lu’s trees to finite sets of formal power series with complex and real coefficients
respectively. He called them Bruhat-Tits trees.

A version of Kuo and Lu’s trees was used recently by Ghys in his book [50] about
the topology of real plane curve singularities. He associated two such trees, one for
x > 0 and another one for x < 0 to any germ whose branches are smooth and
transversal to the reference branch x = 0, and studied their relation, describing
all the possible couples of such trees. In a theorem proved with Christopher-
Lloyd Simon (see [50, Page 266]), Ghys extended this analysis to all plane curve
singularities with only real branches. For this more general problem, it was not any
more a variant of Kuo and Lu’s tree which was crucial, but a real version of the
dual graph of the associated minimal resolution. A different real version of the dual
resolution graph was introduced before by Castellini in [25, Chap. 3].

Ghys’ version of Kuo and Lu’s trees was also used by Sorea in her study [116] of
curve singularities defined over R but without any real branch, that is, singularities
of real analytic functions f (x, y) in the neighborhood of a local maximum or
minimum. Those trees were related in this work with another kind of tree, defined
using Morse theory, the so-called Poincaré-Reeb tree of the function f relative to x.
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Versions of our fan tree were considered by Weber in his 2008 survey [132] about
the embedded topological type of holomorphic plane curve singularities, based on
the earlier 1985 preprint [86] of Michel and Weber, which contained also many
examples. The reading of Weber’s survey [132] should facilitate the interpretations
of the objects manipulated in this paper in terms of the embedded topological type
of C.

1.7 Overview and Perspectives

We begin this final section by an overview of the content of the paper. Then we
formulate a few remarks about perspectives of development of the use of lotuses in
the study of singularities. The final Sect. 1.7.3 contains a list of notations used in
this paper.

1.7.1 Overview

In this subsection we give an overview of the construction of the fan tree and of
the associated lotus from the Newton fans generated by a toroidal pseudo-resolution
process of a plane curve singularity. It helps us to understand the relations between
Newton polygons, Newton-Puiseux series, iterations of blow ups, final exceptional
divisor and the associated Enriques diagrams, dual graphs and Eggers-Wall trees.

We invite the reader to look at Fig. 1.58, which combines Figs. 1.35 and 1.37,
but without their labels. Let us recall briefly the names and main properties of the

L

L

Fig. 1.58 Overview of the constructions of the paper
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objects presented in this drawing, which is our way to encode the combinatorics of
Algorithm 1.4.22, and how they allow to visualize the relations between Enriques
diagrams, dual graphs and Eggers-Wall trees (see Theorem 1.5.29):

1. Given a curve singularity C embedded in a smooth germ of surface S, study it
using a cross (L, L′) (see Definition 1.3.31).

2. Construct the Newton fan FL,L′(C) from the associated Newton polygon
NL,L′(C) (see Definitions 1.4.2 and 1.4.14).

3. Draw the trunk θFL,L′ (C) (see Definition 1.4.32) and the lotus �(FL,L′(C)) (see

Definitions 1.5.4 and 1.5.5) of the Newton fan.
4. As a simplicial complex, the lotus of a Newton fan is determined by the

continued fraction expansions of the slopes of the fan’s rays (see Sect. 1.5.2).
5. Make the Newton modification (see Definition 1.4.14) determined by the

Newton fan and look at the germs of the strict transform of C at all its
intersection points with the exceptional divisor. All those points are smooth on
the reduced total transform of L+L′. For each such germ of the strict transform
of C, complete locally the exceptional divisor into a cross.

6. Each new cross allows to construct again a trunk and a lotus associated to the
corresponding germ of the strict transform of C. Combining the corresponding
Newton modifications, one gets a new level of Newton modifications.

7. One iterates these constructions until reaching a toroidal surface � (see
Definition 1.3.29) on which the total transform of C and of all the crosses used
during the process is an abstract normal crossings curve, forming the boundary
divisor ∂� of a toroidal pseudo-resolution π of C (see Definition 1.4.15). The
map π is also a toroidal pseudo-resolution of the completion Ĉπ = π(∂�) of C

relative to π (see Definition 1.4.15), which is a curve singularity containing the
branches of C and all the branches whose strict transforms are chosen to define
crosses at certain steps of Algorithm 1.4.22.

8. In order to get a global combinatorial view, one constructs the associated fan
tree (θπ (C),Sπ ) (see Definition 1.4.33), by gluing the trunks generated by
the toroidal pseudo-resolution process. The function Sπ : θπ(C) → [0,∞]
is called the slope function.

9. The fan tree does not allow to visualize the decomposition of the regularization
πreg of π (see Proposition 1.4.29) into blow ups of points. In order to get such
a vision, one constructs the lotus �π(C) of the process (see Definition 1.5.26)
by gluing the Newton lotuses (see Definition 1.5.4) of the strict transforms of
C relative to all the crosses used during the process.

10. The edges of the lotus correspond bijectively to the crosses created during
the toroidal embedding resolution process by blow ups of points (see Theo-
rem 1.5.29 (6)). Therefore, one may see the lotus as the space-time of the
evolution of the dual graphs of the toroidal surfaces appearing during this
process.

11. The graph of the proximity binary relation (see Definition 1.4.31) on the
constellation which is blown up is the full subgraph of the 1-skeleton of the
lotus �π (C) on its set of non-basic vertices (see Theorem 1.5.29 (7)).
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12. The Enriques diagram (see Definition 1.4.31) of the constellation of infinitely
near points blown up in order to decompose πreg, which are the base points
of the crosses appearing in the algorithm, is isomorphic with the Enriques tree
(see Definition 1.5.26) of the lotus �π (C).

13. There is a second way of visualizing the Enriques diagram, using a truncated
lotus �tr

π (C) (see Sect. 1.5.5).
14. The fan tree θπ(C) is homeomorphic with the lateral boundary ∂+�π (C) (see

Definition 1.5.26) of the lotus generated by running Algorithm 1.4.22.
15. The lateral boundary ∂+�π (C) is isomorphic with the dual graph (see Defini-

tion 1.3.22) of the boundary divisor ∂�. There is a simple combinatorial rule
for reading on the lotus the self-intersection numbers of the components of the
exceptional divisor of the modification πreg (see Theorem 1.5.29 (5)).

16. The fan tree θπ(C) is also isomorphic with the Eggers-Wall tree �L(Ĉπ) (see
Definition 1.6.3) of the completion of C relative to the toroidal modification π

(see Theorem 1.6.27). The triple of functions (index iL, exponent eL, contact
complexity cL) defined on �L(Ĉπ ) is determined by the slope function Sπ on
the fan tree through explicit formulae (see Proposition 1.6.28).

17. If (L, L′) is a cross on S, then the Eggers-Wall tree �L(C+L′) determines the
Newton polygon NL,L′(C) (see Corollary 1.6.17).

1.7.2 Perspectives

In this subsection we give a few perspectives on possible uses of lotuses. We believe
that the lotuses of plane curve singularities may be useful in the following research
topics:

1. In the study of the topology of δ-constant deformations of such singularities.
As mentioned in Sect. 1.6.6, Castellini’s work [25] gives a first step in this
direction. An important advantage of lotuses in this context is that the lotuses of
the singularities appearing in the deformations constructed in [25] by A’Campo’s
method embed in the lotus of the original singularity. This embedding relation
is much more difficult to express in terms of classical tree invariants of plane
curve singularities. A crucial question is to understand whether this embedding
property is specific to A’Campo type deformations, or if it extends to other kinds
of δ-constant deformations.

2. In the analogous study for real plane curve singularities. One should probably
describe real variants of the lotuses, embedded canonically up to isotopy in an
oriented real plane. Again, Castellini’s work [25, Sect. 3.3.2] gives a first step in
this direction.

3. In the extension of the distributive lattice structures described by Pe Pereira and
the third author in [96] to arbitrary finite constellations, and in the application
of those structures to the problem of adjacency of plane curve singularities. The
natural operad structure on the set of finite lotuses associated to toroidal pseudo-
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resolution processes (defined by gluing the base of one lotus to an edge of the
lateral boundary of another lotus) could be also useful in this direction.

4. In the study of complex surface singularities through the Hirzebruch-Jung
method (see [103]). This method starts from a finite projection to a germ of
smooth surface, and considers then an embedded resolution of the discriminant
curve. The lotuses of such discriminant curves could be used as supports for
encoding information about the initial finite projection, from which one could
read invariants of the surface singularity.

1.7.3 List of Notations

In order to help browsing through the text, we list the notations used for the main
objects met in it:
{

a
b

}
Elementary Newton polygon (see Definition 1.6.14).

[a1, . . . , ak] Continued fraction with terms a1, . . . , ak (see Definition 1.5.17).
cm(f ) Coefficient of the monomial χm in the series f (see Defini-

tion 1.4.1).
cL Contact complexity function (see Definition 1.6.9).
CL,L′ Strict transform of C by the Newton modification ψC

L,L′ (see
Definition 1.4.14).

Ĉπ Completion of C relative to the toroidal pseudo-resolution π (see
Definition 1.4.15).

Conv(Y ) Convex hull of a subset Y of a real affine space.
χm Monomial with exponent m ∈ M (see the beginning of

Sect. 1.3.2).
∂X Toric boundary of the toric variety X (see Definition 1.3.18), or

toroidal boundary of the toroidal variety X (see Definition 1.3.29).
∂+�π (C) Lateral boundary of the lotus �π(C) (see Definition 1.5.5).
eL Exponent function (see Definition 1.6.3 and Notations 1.6.7).
fK Restriction of f to the compact edge K of its Newton polygon

(see Definition 1.4.2).
F(f ) Newton fan of the non-zero series f ∈ C[[x, y]] (see Defini-

tion 1.4.9).
FL,L′(C) Newton fan of C relative to the cross (L, L′) (see Defini-

tion 1.4.14).
F reg Regularization of the fan F (see Definition 1.3.8).
�(C) Enriques diagram of the finite constellation C (see Defini-

tion 1.4.31).
Hf,ρ Supporting half-plane of the Newton polygon N(f ) determined

by the ray ρ ⊂ σ0 (see Proposition 1.4.7).
iL Index function (see Definition 1.6.3 and Notations 1.6.7).
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kx(ξ, ξ ′) Order of coincidence of two Newton-Puiseux series (see Defini-
tion 1.6.2).

kx(C, C′) Order of coincidence of two distinct branches, relative to a local
coordinate system (x, y) (see Definition 1.6.2).

lZ Integral length (see Definition 1.3.1).
(L, L′) Cross on a germ of smooth surface (see Definition 1.3.31).
�(F ) Lotus of the Newton fan F (see Definition 1.5.4).
�(λ1, . . . , λr ) Lotus associated to the finite set {λ1, . . . , λr } ⊂ Q+ ∪ {∞} (see

Definition 1.5.4).
�π(C) Lotus of the toroidal pseudo-resolution π of C (see Defini-

tion 1.5.26).
�trunc

π (C) Truncation of the lotus �π(C) (see Definition 1.5.35).
mo(C) Multiplicity of the plane curve singularity C at the point o (see

Definition 1.2.5).
ML,L′ Monomial lattice associated to the cross (L, L′), (see Defini-

tion 1.3.32).
N Set of non-negative integers.
N
∗ Set of positive integers.

NL,L′ Weight lattice associated to the cross (L, L′) (see Defini-
tion 1.3.32).

N(f ) Newton polygon of the non-zero series f ∈ C[[x, y]] (see
Definition 1.4.2).

NL,L′(C) Newton polygon of C relative to the cross (L, L′) (see Defini-
tion 1.4.14).

Oρ Toric orbit associated to the cone ρ of a fan (see the rela-
tion (1.22)).

ÔS,o Completed local ring of the complex surface S at the point o (see
Definition 1.2.5).

π∗(C) Total transform of a plane curve singularity C by a modification π

(see Definition 1.2.31).
ψF

σ Toric morphism from XF to Xσ associated to any fan F which
subdivides the cone σ (see relation (1.25)).

ψC
L,L′ Newton modification defined by C relative to the cross (L, L′)

(see Definition 1.4.14).
R+ Set of non-negative real numbers.
S(f ) Support of the power series f ∈ C[[x, y]] (see Definition 1.4.1).
Sπ Slope function of the toroidal pseudo-resolution π of C (see

Definition 1.4.33).
σ0 Regular cone generated by the canonical basis of the lattice Z

2.
σ

L,L′
0 Regular cone generated by the canonical basis of the lattice NL,L′

(see Definition 1.3.32).
tw One parameter subgroup of the algebraic torus TN , corresponding

to the weight vector w ∈ N (see the beginning of Sect. 1.3.2).
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TN Complex algebraic torus with weight lattice N (see for-
mula (1.16)).

tropf Tropicalization of the non-zero power series f ∈ C[[x, y]] (see
Definition 1.4.4).

tropC
L,L′ Tropical function of the curve singularity C relative to the cross

(L, L′) (see Definition 1.4.14).
θ(F ) Trunk of the fan F (see Definition 1.4.32).
θπ(C) Fan tree of the toroidal pseudo-resolution π of C (see Defini-

tion 1.4.33).
�L(C) Eggers-Wall tree of the plane curve singularity C relative to the

smooth branch L (see Definition 1.6.3 and Notations 1.6.7).
�L Universal Eggers-Wall tree (see Definition 1.6.12).
Xσ Affine toric variety defined by the fan consisting of the faces of

the cone σ (see Definition 1.3.14).
XF Toric variety defined by the fan F (see Definition 1.3.15).
! Operation of the monoid of abstract lotuses (see formula (1.50)).
∧ Operation on the set Q∗+ allowing to describe the intersection of

Newton lotuses (see formula (1.48)).
Z(f ) Zero-locus of a holomorphic function f or of a formal germ f ∈

ÔS,o.
Zx(C) Set of Newton-Puiseux roots of a plane curve singularity C relative

to a local coordinate system (x, y) (see Definition 1.6.2).
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of Math. Studies 71, (1971), Princeton Univ. Press., Thm. 3.14). This is why we
proceed in two steps.

1. When (X, p) a normal germ of surface, p is an isolated singular point and the
link LX of (X, p) is a well defined differentiable three-manifold. Using the good
minimal resolution of (X, p), LX is given as the boundary of a well defined
plumbing (see Sect. 2.2) which has a negative definite intersection form (see
Hirzebruch et al., Differentiable manifolds and quadratic forms, Math. Lecture
Notes, vol 4 (1972), Dekker, New-York and Neumann, A calculus for plumbing
applied to the topology of complex surface singularities and degenerating
complex curves, Trans. Amer. Math. Soc. 268 (1981), p. 299–344).

2. In Sect. 2.3, we use a suitably general morphism, π : (X, p) → (C2, 0),
to describe the topology of a surface germ (X, p) which has a 1-dimensional
singular locus (�, p). We give a detailed description of the quotient morphism
induced by the normalization ν on the link LX̄ of (X̄, p̄) (see also Sect. 2.2 in
Luengo-Pichon, Lê ‘s conjecture for cyclic covers, Séminaires et congrès 10,
(2005), p. 163–190. Publications de la SMF, Ed. J.-P. Brasselet and T. Suwa).

In Sect. 2.4, we give a detailed proof of the existence of a good resolution of
a normal surface germ by the Hirzebruch-Jung method (Theorem 2.4.6). With
this method a good resolution is obtained via an embedded resolution of the
discriminant of π (see Friedrich Hirzebruch, Über vierdimensionale Riemannsche
Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen,
Math. Ann. 126 (1953) p. 1–22). An example is given Sect. 2.6. An appendix
(Sect. 2.5) is devoted to the topological study of lens spaces and to the description
of the minimal resolution of quasi-ordinary singularities of surfaces. Section 2.5
provides the necessary background material to make the proof of Theorem 2.4.6
self-contained.

2.1 Introduction

Let I be a reduced ideal in C{z1, . . . , zn} such that the quotient algebra AX =
C{z1, . . . , zn}/I is two-dimensional. The zero locus, at the origin 0 of Cn, of a set
of generators of I is an analytic surface germ embedded in (Cn, 0). Let (X, 0) be its
intersection with the compact ball B2n

ε of radius a sufficiently small ε, centered at
the origin in C

n, and LX its intersection with the boundary S2n−1
ε of B2n

ε . Let � be
the set of the singular points of (X, 0).

As I is reduced � is empty when (X, 0) is smooth, it is equal to the origin when
0 is an isolated singular point, it is a curve when the germ has a non-isolated singular
locus (in particular we do not exclude the cases of reducible germs).

If � is a curve, K� = �∩S2n−1
ε is the disjoint union of r one-dimensional circles

(r being the number of irreducible components of �) embedded in LX . We say that
K� is the link of �. By the conic structure theorem (see [18]), for a sufficiently
small ε, (X, �, 0) is homeomorphic to the cone on the pair (LX, K�) and to the
cone on LX when � = {0}.
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On the other hand, thanks to A. Durfee [7], the homeomorphism class of
(X, �, 0) depends only on the isomorphism class of the algebra AX (i.e. is
independent of a sufficiently small ε and of the choice of the embedding in (Cn, 0)).
We say that the analytic type of (X, 0) is given by the isomorphism class of AX

and, we say that its topological type is given by the homeomorphism class of the
pair (X, 0) if 0 is an isolated singular point, and by the homeomorphism class of the
triple (X, �, 0) if the singular locus � is a curve.

Definition 2.1.1 The link of (X, 0) is the homeomorphism class of LX if 0
is an isolated singular point (in particular if (X, 0) is normal at 0), and is the
homeomorphic class of the pair (LX, K�) if the singular locus � is a curve.

This paper is devoted to the description of the link of (X, 0).

2.1.1 Good Resolutions

Definition 2.1.2 A morphism ρ : (Y, EY ) → (X, 0) where EY = ρ−1(0) is the
exceptional divisor of ρ, is a good resolution of (X, 0) if :

1. Y is a smooth complex surface,
2. the total transform ρ−1(�) =: E+

Y is a normal crossing divisor with smooth
irreducible components.

3. the restriction of ρ to Y \E+
Y is an isomorphism.

Definition 2.1.3 Let ρ : (Y, EY ) −→ (X, 0) be a good resolution of (X, 0).
The dual graph associated to ρ, denoted G(Y), is constructed as follows. The

vertices of G(Y) represent the irreducible components of EY . When two irreducible
components of EY intersect, we join their associated vertices by edges whose
number is equal to the number of intersection points. A dual graph is a bamboo
if the graph is homeomorphic to a segment and each vertex represents a rational
curve.

If Ei is an irreducible component of EY , let us denote by ei the self-intersection
number of Ei in Y and by gi its genus. To obtain the weighted dual graph
associated to ρ, denoted Gw(Y ), we weight G(Y) as follows. A vertex associated
to the irreducible Ei of EY is weighted by (ei) when gi = 0 and by (ei, gi) when
gi > 0.

For example if X = {(x, y, z) ∈ C
3, zm = xkyl}, where m, k and l are integers

greater than two and pairwise relatively prime, Fig. 2.1 describes the shape of the
dual graph of the minimal good resolution of (X, 0).

Remark 2.1.4 If (X, 0) is reducible, let (∪1≤i≤rXi, 0) be its decomposition as a
union of irreducible surface germs. Let νi : (X̄i , pi) → (Xi, 0) be the normalization
of the irreducible components of (X, 0). The morphisms νi induce the normalization
morphism on the disjoint union

∐
1≤i≤r (X̄i, pi).
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(e1 () en )
>< . . . . . .

Fig. 2.1 Gw(Y ) when X = {(x, y, z) ∈ C
3, zm = xkyl}. Here G(Y) is a bamboo. The arrows

represent the strict transform of {xy = 0}. In particular if m = 12, k = 5 and l = 11 the graph has
three vertices with e1 = −3, e2 = −2, e3 = −3 (see [16, p. 759])

Remark 2.1.5 First of all, for any good resolution ρ : (Y, EY ) → (X, 0) there
exists a factorization through the normalization ν : (X̄, p̄) → (X, 0) (see [11, Thm.
3.14]). In Sect. 2.3, we describe the topology of normalization morphisms. After that
it will be sufficient to describe the topology of the links of normal surface germs.

A good resolution is minimal if its exceptional divisor doesn’t contain any
irreducible component of genus zero, self-intersection −1 and which meets only
one or two other irreducible components. Let ρ : (Y, EY ) → (X, 0) be a good
resolution and ρ′ : (Y ′, EY ′) → (X, 0) be a good minimal resolution of (X, 0).
Then there exists a morphism β : (Y, EY ) → (Y ′, EY ′) which is a sequence of
blowing-downs of irreducible components of genus zero and self-intersection −1
(see [11, Thm 5.9] or [1, p. 86]). It implies the unicity, up to isomorphism, of the
minimal good resolution of (X, 0).

As there exists a factorization of ρ′ through ν, (Y ′, EY ′) is also the minimal good
resolution of (X̄, p̄). Let ρ̄ : (Y ′, EY ′) → (X̄, p̄) be the minimal good resolution of
(X̄, p̄) defined on (Y ′, EY ′). What we said just above implies that ρ = ν ◦ ρ̄ ◦ β,
i.e. ρ is the composition of the following three morphisms:

(Y, EY )
β−→ (Y ′, EY ′)

ρ̄−→ (X̄, p̄)
ν−→ (X, 0)

2.1.2 Link of a Complex Surface Germ

In Sect. 2.2, we describe the topology of a plumbing and the topology of its
boundary. We explain how the existence of a good resolution describes the link
of a normal complex surface germ as the boundary of a plumbing of disc bundles
on oriented smooth compact real surfaces with empty boundary. The boundary of a
plumbing is, by definition, a plumbed 3-manifold [10, 20] or equivalently a graph
manifold in the sense of Waldhausen [23]. The plumbing given by the minimal good
resolution of (X, 0) has a normal form in the sense of Neumann [20] and represents
its boundary in a unique way.

It implies that the link of a normal complex surface germ (X, 0) determines the
weighted dual graph of its good minimal resolution. In particular, if the link is S3,
then the good minimal resolution of (X, 0) is an isomorphism and (X, 0) is smooth
at the origin. This is the famous result obtained in 1961 by Mumford [19]. When
the singular locus of (X, 0) is an irreducible germ of curve, its link can be S3. Lê’s
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conjecture, which is still open (see [14] and [2] for partial results), states that it can
only happen for an equisingular family of irreducible curves.

In Sect. 2.3, we use a suitably general projection π : (X, 0) → (C2, 0) (as told
in Sect. 2.3.1) to describe the topology of the restriction νL : LX̄ → LX of the
normalization ν on the link LX̄. We will show that νL is a homeomorphism if and
only if a general hyperplane section of (X, 0) is locally irreducible at z for all points
z ∈ (� \ {0}). Otherwise, as stated without a proof in Luengo-Pichon [14], νL is the
composition of two kind of topological quotients: curlings and identifications. Here,
we give detailed proofs. Some years ago, John Milnor asked me for a description
of the link of a surface germ with non-isolated singular locus. I hope that Sect. 2.3
gives a satisfactory answer.

In Sect. 2.4 we suppose that (X, 0) is normal. We use a finite morphism
π : (X, 0) → (C2, 0) and its discriminant �, to obtain a good resolution
ρ : (Y, EY ) → (X, 0) of (X, 0). We follow Hirzebruch’s method (see [9], see
also Brieskorn [5] for a presentation of Hirzebruch’s work). The scheme to obtain
ρ is as in [15], but our redaction here is quite different. In [15], the purpose is
to study the behaviour of invariants associated to finite morphisms defined on
(X, 0). Here, we explain in detail the topology of each steps of the construction
to specify the behaviour of ρ. Hirzebruch’s method uses the properties of the
topology of the normalization, presented in Sect. 2.3, and the resolution of the
quasi-ordinary singularities of surfaces already studied by Jung. This is why one
says that this resolution ρ is the Hirzebruch-Jung resolution associated to π. Then
LX is homeomorphic to the boundary of a regular neighborhood of the exceptional
divisor EY of ρ : (Y, EY ) → (X, 0) which is a plumbing as defined in Sect. 2.2.

Section 2.5 is an appendix which can be read independently of the other sections.
We suppose again that (X, 0) is normal. We give topological proofs of basic results,
already used in Sect. 2.4 on finite morphism φ : (X, 0) → (C2, 0), in the following
two cases:

1. The discriminant of φ is a smooth germ of curve. Then, in Lemma 2.5.6, we
show that (X, 0) is analytically isomorphic to (C2, 0) and that φ is analytically
isomorphic to the map from (C2, 0) to (C2, 0) defined by (x, y) %→ (x, yn).

2. The discriminant of φ is a normal crossing. By definition (X, 0) is then a quasi-
ordinary singularity and its link is a lens space. We prove that the minimal
resolution of (X, 0) is a bamboo of rational curves (Proposition 2.5.7).

Section 2.6 is an example of Hirzebruch-Jung’s resolution.

2.1.3 Conventions

The boundary of a topological manifold W will be denoted by b(W).

A disc (resp. an open disc) will always be an oriented topological manifold
orientation preserving homeomorphic to {z ∈ C, |z| ≤ 1} (resp. to {z ∈ C, |z| < 1}).
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A circle will always be an oriented topological manifold orientation preserving
homeomorphic to S = {z ∈ C, |z| = 1}. Moreover, for 0 < α, we use the following
notation: Dα = {z ∈ C, |z| ≤ α}, and Sα = b(Dα).

2.2 The Topology of Plumbings

In this Section (X, 0) is a normal complex surface germ.
The name “plumbing” was introduced by David Mumford in [19]. There, he

showed that the topology of a resolution of a normal singularity of a complex surface
can be described as a “plumbing”.

In [9], Hirzebruch constructed good resolutions of normal singularities. Let ρ :
(Y, EY ) → (X, 0) be a good resolution of the normal germ of surface (X, 0). Each
irreducible component Ei of the exceptional divisor is equipped with its normal
complex fiber bundle. With their complex structure the fibers have dimension 1. So,
a regular compact tubular neighbourhood N(Ei) of Ei in Y , is a disc bundle. As Ei

is a smooth compact complex curve, Ei is an oriented differential compact surface
with an empty boundary. Then, the isomorphism class, as differential bundle, of
the disc bundle N(Ei) is determined by the genus gi of Ei and its self-intersection
number ei in Y. The complex structure gives an orientation on Y and on Ei , these
orientations induce an orientation on N(Ei) and on the fibers of the disc bundle over
Ei .

Remark 2.2.1 By definition (X, 0) is a sufficiently small compact representative
of the given normal surface germ. Let k be the number of irreducible components
of EY , M(Y) = ∪1≤i≤kN(Ei) is a compact neighborhood of EY . There exists a
retraction by deformation R : Y → M(Y) which induces a homeomorphism from
the boundary of Y, b(Y ) = ρ−1(LX), to the boundary b(M(Y )). So, the boundary
of M(Y) is the link of (X, 0).

Definition 2.2.2 Let N(Ei), i = 1, 2, be two oriented disc bundles on oriented
smooth compact differentiable surfaces, with empty boundary, Ei, i = 1, 2, and let
pi ∈ Ei . The plumbing of N(E1) and N(E2) at p1 and p2 is equal to the quotient
of the disjoint union of N(E1) and N(E2) by the following equivalence relation.
Let Di be a small disc neighbourhood of pi in Ei , and Di ×�i be a trivialization of
N(Ei) over Di , i = 1, 2. Let f : D1 → �2 and g : �1 → D2 be two orientation
preserving diffeomorphisms such that f (p1) = 0 and g(0) = p2.

For all (v1, u1) ∈ D1×�1, the equivalence relation is (v1, u1) ∼ (g(u1), f (v1)).

Remark 2.2.3 The diffeomorphism class of the plumbing of N(E1) and N(E2) at
(p1, p2) does not depend upon the choices of the trivializations nor on the choices
of f and g. Moreover, in the plumbing of N(E1) and N(E2) at p1 and p2:

1. The image of E1 intersects the image of E2 at the point p12 which is the class, in
the quotient, of (p1 × 0) ∼ (p2 × 0).
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2. The plumbing is a gluing of N(E1) and N(E2) around the chosen neighbour-
hoods of (p1 × 0) and (p2 × 0).

3. In the plumbing, D1 × 0 ⊂ E1 is identified, via f , with the fiber 0 × �2 of
the disc bundle N(E2) and the fiber 0 × �1 of N(E1) is identified, via g, with
D2 × 0 ⊂ E2.

Definition 2.2.4 More generally we can perform the plumbing of a family
N(Ei), i = 1, . . . , n, of oriented disc bundles on oriented smooth compact
differentiable surfaces Ei with empty boundary, at a finite number of pairs of
points (pi, pj ) ∈ Ei ×Ej . Let gi be the genus of Ei and ei be the self-intersection
number of Ei in N(Ei). The vertices of the weighted plumbing graph associated
to such a plumbing represent the basis Ei, i = 1, . . . , n, of the bundles. These
vertices are weighted by ei when gi = 0, and by (ei, gi) when 0 < gi . Each edge
which relates (i) to (j), represents an intersection point between the image of Ei

and Ej in the plumbing.
In the boundary of the plumbing of the family N(Ei), i = 1, . . . , n, the

intersections b(N(Ei)) ∩ b(N(Ej ) are a union of disjoint tori which is the family
of plumbing tori of the plumbing.

We can perform a plumbing between N(Ei) and N(Ej ) at several pairs of points
of Ei × Ej if and only if every two such pairs of points (pi, pj ) and (p′i , p′j ) are
such that pi = p′i and pj = p′j . Let kij ≥ 0 be the number of these pairs of points.
Obviously, kij is the number of disjoint tori which form the intersection b(N(Ei))∩
b(N(Ej ) and also the number of edges which relate the vertices associated to Ei

and Ej in the plumbing graph associated to the plumbing.
An oriented disc bundle N(E) on a differential compact surface E of genus g

and empty boundary is determined as differentiable bundle by g and by the self-
intersection number of E in N(E). If two plumbings have the same weighted
plumbing graph, there exists a diffeomorphism between the two plumbings such that
its restriction on the corresponding disc bundles is an isomorphism of differentiable
disc bundles.

Proposition 2.2.5 Let ρ : (Y, EY ) → (X, 0) be a good resolution of the normal
germ of surface (X, 0). Then a regular neighbourhood, in Y, of the exceptional
divisor EY , is diffeomorphic to a plumbing of the disc bundles N(Ei). The
plumbings are performed around the double points pij = Ei ∩ Ej .The associated
weighted plumbing graph coincides with the weighted dual graph Gw(Y ) of ρ. To
each point pij ∈ (Ei ∩Ej) we associate a torus T (pij ) ⊂ (b(N(Ei))∩b(N(Ej ))).

Proof We choose trivializations of the disc bundles N(Ei) and N(Ej ) in a small
closed neighborhood V of pij . First, we center the trivializations at (0, 0) = pij and
we parametrize V as disc a bundle

1. over Ei by Vi = {(vi , ui) ∈ Di ×�i}, where Di × 0 is a disc neighborhood of
(0, 0) = pij in Ei and vi ×�i is the normal disc fiber at vi ∈ Di .

2. over Ej by Vj = {(vj , uj ) ∈ Dj ×�j }, where Dj × 0 is a disc neighborhood
of (0, 0) = pij in Ej and vj ×�j is the normal disc fiber at vj ∈ Dj .
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As EY is a normal crossing divisor, we can parametrize V in such a way that EY ∩
V = {uv = 0} where v = vi = uj and u = vj = ui . These equalities provide
the plumbing of N(Ei) and N(Ej ) around pij . By construction , the associated
weighted plumbing graph is equal to Gw(Y ). ��
Definition 2.2.6 The union of disc bundles M(Y) = ∪1≤i≤kN(Ei) is the plumb-
ing associated to ρ : (Y, EY ) → (X, 0).

With the above notation, in a neighborhood of pij , there is a unique connected
component of the intersection (b(N(Ei))∩b(N(Ej ))) which is parametrized by the
torus b(Di)× b(�i) which is glued point by point with b(Dj)× b(�j).

Definition 2.2.7 The image of (b(Di)×b(�i)) ∼ (b(Dj)×b(�j )) in the boundary
of M(Y) is the plumbing torus T (pij ) associated to pij .

2.3 The Topology of the Normalization

In this Section (X, 0) is the intersection of a reduced complex surface germ, which
can have a 1-dimensional singular locus, with the compact ball B2n

ε of radius a small
ε (i.e. where ε is as in Milnor’s Theorem 2.10 of [18]), centered at the origin in C

n.
As in the Introduction (Sect. 2.1), LX is the intersection of X with the boundary
S2n−1

ε of B2n
ε .

2.3.1 LX as Singular Covering over S3

We choose a general projection π : (X, 0) → (C2, 0). We denote by � the singular
locus of π (in particular � ⊂ �) and by � its discriminant (� = π(�)). In fact it
is sufficient to choose new coordinates in C

n, (x, y, w1, . . . , wn−2) ∈ C
n, such that

the restriction on (X, 0) of the projection

(x, y, w1, . . . , wn−2) %→ (x, y),

denoted by π , is finite and such that, for a sufficiently small α with α < ε, and all
a ∈ C with |a| ≤ α, the hyperplanes Ha = {x = a} meet transversally the singular
locus � of π. In particular, H0 ∩ � = {0}.
Convention and Notation

Let Dα ×Dβ ∈ C
2 be a polydisc at the origin in C

2 where 0 < α < β < ε are
chosen sufficiently small such that the following two points are satisfied:

I) B = B2n
ε ∩ π−1(Dα × Dβ) is a good semi-analytic neighborhood of (X, 0) in

the sense of A. Durfee [7]. Then (X ∩ B, 0) is homeomorphic to (X, 0). In this
section (X, 0) is given by (X ∩B, 0). The link LX = X ∩ b(B) is the link of X.
The link of � is the link K� = � ∩ b(B) embedded in LX.
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II) We have the following inclusion:

K� = � ∩ ((Sα ×Dβ) ∪ (Dα × Sβ)) ⊂ (Sα ×Dβ).

In this section, we choose such a K� to represent the link of � embedded in the
3-sphere (with corners) ((Sα × Dβ) ∪ (Dα × Sβ)). Let δj , 1 ≤ j ≤ r, be the r

branches of the discriminant �. Let N(K�) be a tubular compact neighborhood of
K�. So, N(K�) is a disjoint union of r solid tori. For a sufficiently small N(K�),
the union N(K�) of the connected components of LX∩π−1(N(K�)) which contain
a connected component of K� , constitutes a tubular compact neighbourhood of K�

in LX.
Let us denote by N̊(K�) the interior of N(K�). The exterior M of the link K�

is defined by:

M = ((Sα ×Dβ) ∪ (Dα × Sβ)) \ N̊(K�).

Moreover, let γ be a branch of the singular locus � of π . So, π(γ ) = δ is a
branch of �. Let N(Kδ) (resp. N(Kγ )) be the connected component of N(K�)

(resp. of N(K�)) which contains the link Kδ (resp. Kγ ).

Remark 2.3.1 The restriction πL : LX → ((Sα×Dβ)∪ (Dα ×Sβ)) of π to LX is a
finite morphism, its restriction on M is a finite regular covering. If γ is not a branch
of the singular locus � of X, πL restricted to N(Kγ ) is a ramified covering with Kγ

as ramification locus. If γ is a branch of �, N(Kγ ) is a singular pinched solid torus
as defined in Definition 2.3.13 and πL restricted to N(Kγ ) is singular all along Kγ .

2.3.2 Waldhausen Graph Manifolds and Plumbing Graphs

Definition 2.3.2 A Seifert fibration on an oriented, compact 3-manifold is an
oriented foliation by circles such that every leaf has a tubular neighbourhood (which
is a solid torus) saturated by leaves. A Seifert 3-manifold is an oriented, compact
3-manifold equipped with a Seifert fibration.

Remark 2.3.3

1. A Seifert 3-manifold M can have a non-empty boundary. As this boundary is
equipped with a foliation by circles, if B(M) is non-empty it is a disjoint union
of tori.

2. Let D be a disc and r be a rotation of angle 2πq/p where (q, p) are two positive
integers prime to each other and 0 < q/p < 1. Let Tr be the solid torus equipped
with a Seifert foliation given by the trajectories of r in the following mapping
torus:

Tr = D × [0, 1]/(z, 1) ∼ (r(z), 0).
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In particular, l0 = (0 × [0, 1])/(0, 1) ∼ (0, 0) is a core of Tr. The other
leaves are (q, p)-torus knots in Tr . Let T0 be D × S equipped with the trivial
fibration by circles l(z) = {z} × S, z ∈ D. A solid torus T (l) which is a tubular
neighbourhood of a leave l of a Seifert 3-manifold M is either

1) orientation and foliation preserving homeomorphic to T0. In this case, l is a
regular Seifert leave.

2) or, is orientation and foliation preserving homeomorphic to Tr . In this case, l

is an exceptional leave of M .

3. The compactness of M implies that the set of exceptional leaves is finite.

Definition 2.3.4 Let M be an oriented and compact 3-manifold. The manifold M

is a Waldhausen graph manifold if there exists a finite family T, of disjoint tori
embedded in M , such that if Mi, i = 1, . . . , m, is the family of the closures of the
connected components of M \T, then Mi is a Seifert manifold for all i, 1 ≤ i ≤ m.
We assume that it gives us a finite decomposition M = ∪1≤i≤mMi into a union of
compact connected Seifert manifolds which satisfies the following properties:

1. For each Mi, i = 1, . . . , m, the boundary of Mi is in T i.e. b(Mi) ⊂ T.
2. If i = j we have the inclusion (Mi ∩Mj) ⊂ T.
3. The intersection (Mi ∩ Mj), between two Seifert manifolds of the given

decomposition, is either empty or equal to the union of the common boundary
components of Mi and Mj .

Such a decomposition M = ∪1≤i≤mMi , is the Waldhausen decomposition of
M , associated to the family of tori T.

Remark 2.3.5 One can easily deduce from Definition 2.2.4, that the family of the
plumbing tori gives a decomposition of the boundary of a plumbing as a union of
Seifert manifolds because the boundary of a disc bundle is a circle bundle. So, the
boundary of a plumbing is a Waldhausen graph manifold.

In [20], W. Neumann shows how to construct a plumbing from a given Wald-
hausen decomposition of a 3-dimensional oriented compact manifold.

As in Sect. 2.3.1, we consider the exterior M = ((Sα×Dβ)∪(Dα×Sβ))\N̊(K�)

of the link K�. The following proposition is well known (for example see [8, 17]).
Moreover, a detailed description of M , as included in the boundary of the plumbing
graph given by the minimal resolution of �, is given in [12, p. 147–150].

Proposition 2.3.6 The exterior M of the link of a plane curve germ � is a
Waldhausen graph manifold. The minimal Waldhausen decomposition of M can be
extended to a Waldhausen decomposition of the sphere ((Sα × Dβ) ∪ (Dα × Sβ))

in which the connected components of K� are Seifert leaves. Moreover, with such
a Waldhausen decomposition, the solid tori connected components of N(K�) are
saturated by Seifert leaves which are oriented circles transverse to (a×Dβ), a ∈ Sα .
The cores K� of N(K�) are a union of these Seifert leaves.
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2.3.3 The Topology of LX When LX Is a Topological Manifold

If (X, 0) is not normal, let νL : LX̄ → LX be the normalization of (X, 0) restricted
to the link of (X̄, p) (if (X, 0) is normal νL is the identity).

Remark 2.3.7 The link of a normal complex surface germ is a Waldhausen graph
manifold. Indeed, the composition morphism πL ◦ νL is a ramified covering with
the link K� as set of ramification values:

(πL ◦ νL) : LX̄ → ((Sα ×Dβ) ∪ (Dα × Sβ)).

We can take the inverse image under πL ◦ νL of the tori and of the Seifert leaves of
a Waldhausen decomposition of ((Sα ×Dβ) ∪ (Dα × Sβ)) in which K� is a union
of Seifert leaves, to obtain a Waldhausen decomposition of LX̄. Then, the plumbing
calculus [20] describes LX̄ as the boundary of a plumbing without the help of a
good resolution of (X̄, p).

If the singular locus (�, 0) of (X, 0) is one-dimensional, let (σ, 0) be a branch
of (�, 0) and s be a point of the intersection σ ∩ {x = a}. Let δ = π(σ) be the
branch of the discriminant � which is the image of σ by the morphism π . Then,
πL(s) = (a, y) ∈ (Sα ×Dβ). Let N(Kδ) be a solid torus regular neighbourhood of
Kδ in (Sα × Dβ) and let N(Kσ ) be the connected component of (πL)−1(N(Kδ))

which contains s (and Kσ ).
Let (C, s) be the germ of curve which is the connected component of N(Kσ ) ∩

{x = a} which contains s. For a sufficiently small α = |a|, (C, s) is reduced and its
topological type does not depend upon the choice of s. In particular, the number of
the irreducible components of (C, s) is well defined, let us denote this number by
k(σ ).

Definition 2.3.8

1. By definition (C, s) is the hyperplane section germ of σ at s.
If k(σ ) = 1, σ is a branch of � with irreducible hyperplane sections. Let
� = �1 ∪ �+ where �1 is the union of the branches of � with irreducible
hyperplane sections and �+ is the union of the branches of � with reducible
hyperplane sections.

2. Let Di, 1 ≤ i ≤ k be k oriented discs centered at 0i ∈ Di . A k-pinched disc
k(D) is a topological space orientation preserving homeomorphic to the quotient
of the disjoint union of the k discs by the identification of their centers in a unique
point 0̃ i.e. 0i ∼ 0j for all i and j where 1 ≤ i ≤ k, 1 ≤ j ≤ k. The center of
k(D) is the equivalence class 0̃ of the centers 0i, 1 ≤ i ≤ k.

3. If h : k(D) → k(D)′ is a homeomorphism between two k-pinched discs with
k > 1, h(0̃) is obviously the center of k(D)′. We say that h is orientation
preserving if h preserves the orientation of the punctured k-pinched discs
(k(D) \ {0̃}) and (k(D)′ \ {0̃}).
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Lemma 2.3.9 Let (C, s) be the germ of curve which is the connected component of
N(Kσ ) ∩ {x = a} which contains s. Then, C is a k(σ )-pinched disc centered at s

and N(Kσ ) is the mapping torus of C by an orientation preserving homeomorphism
h which fixes the point s.

Proof As (C, s) is a germ of curve with k(σ ) branches, up to homeomorphism
(C, s) is a k(σ )-pinched disc with s = 0̃.

We can saturate the solid torus N(Kδ) = π(N(Kσ )) with oriented circles
such that Kδ is one of these circles and such that the first return homeomorphism
defined by these circles on the disc π(C) is the identity. Let γ be one circle of
the chosen saturation of N(Kδ). Then π−1(γ ) ∩ N(Kσ ) is a disjoint union of
oriented circles because π restricted to N(Kσ ) \ Kσ is a regular covering and
(π−1(Kδ) ∩ N(Kσ )) = Kσ . So, N(Kσ ) is equipped with a saturation by oriented
circles. The first return map on C along the so constructed circles is an orientation
preserving homeomorphism h such that h(s) = s because Kσ is one of the given
circles. ��
Lemma 2.3.10 As above, let (C, s) be the hyperplane section germ at s ∈ σ ∩{x =
a}. Let σ̄j , 1 ≤ j ≤ n, be the n irreducible components of ν−1

L (σ) and let dj be the
degree of νL restricted to σ̄j . Then, we have

k(σ ) = d1 + · · · + dj + · · · + dn.

Proof The normalization ν restricted to X̄ \ �̄, where �̄ = π−1(�), is an
isomorphism. The number n of the irreducible components of ν−1

L (σ) is equal to
the number of the connected components of ν−1

L (N(Kσ )). So, n is the number of
the connected components of the boundaries b(ν−1

L (N(Kσ ))) which is equal to the
number of the connected components of b(N(Kσ )). Let τj , 1 ≤ j ≤ n, be the n

disjoint tori which are the boundary of N(Kσ ). The degree dj of ν restricted to σ̄j

is equal to the number of points of ν−1
L (s) ∩ (σ̄j ).

Let (γj , s) be an irreducible component of (C, s) such that mj = b(γj ) ⊂ τj .
The normalization ν restricted to (ν−1

L (γj \ {s})) is an isomorphism over the
punctured disc (γj \ {s}). So, the intersection ν−1

L (γj ) ∩ σ̄j is a unique point pj .
As (X̄, p) is normal, pj is a smooth point of (X̄, p) and then, ν−1

L (γj ) is irreducible
and it is the only irreducible component of ν−1

L (C) at pj . By symmetry there is
exactly one irreducible component of ν−1

L (C) at every point of ν−1
L (s) ∩ (σ̄j ).

So, dj is the number of the meridian circles of the solid torus N(Kσ̄j ) obtained

by the following intersection (ν−1
L (C)) ∩ (ν−1

L (τj )). But ν restricted to (ν−1
L (τj ))

is an isomorphism and dj is also the number of connected components of C ∩ τj .
So, d1 + · · · + dj + · · · + dn, is equal to the number of connected components of
b(C) = C ∩ b(N(Kσ )) which is the number of irreducible components of (C, s).

��
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Remark 2.3.11 A well-known result of analytic geometry could be roughly stated
as follows: “The normalization separates the irreducible components”. Here, (X, 0)

has k(σ ) irreducible components around s ∈ σ . Using only basic topology,
Lemma 3.3.4 proves that (ν−1

L (s)) has k(σ ) = d1 + · · · + dj + · · · + dn distinct
points and that there is exactly one irreducible component of ν−1

L (C) at every point
of ν−1

L (s). This gives a topological proof that the normalization ν separates the k(σ )

irreducible components of (C, s) around s ∈ σ .

Proposition 2.3.12 The following three statements are equivalent:

1. LX is a topological manifold equipped with a Waldhausen graph manifold
structure.

2. The normalization ν : (X̄, p) → (X, 0) is a homeomorphism.
3. All the branches of � have irreducible hyperplane sections.

Proof The normalization ν restricted to X̄ \ �̄, where �̄ = π−1(�), is an
isomorphism. The normalization is a homeomorphism if and only if ν restricted
to �̄ = π−1(�) is a bijection. This is the case if and only if we have 1 =
d1 + · · · + dj + · · · + dn for all the branches σ of �. But, by Lemma 2.3.10,
k(σ ) = d1 + · · · + dj + · · · + dn. This proves the equivalence of the statements 2
and 3.

Let (C, s) be the hyperplane section germ at s ∈ σ ∩ {x = a}. If LX is
a topological manifold, it is a topological manifold at s and k(σ ) = 1 for all
branches σ of �. If all the branches of � have irreducible hyperplane sections,
we already know that the normalization ν : (X̄, p) → (X, 0) is a homeomorphism.
Then, the restriction νL of ν to LX̄ is also a homeomorphism. By Remark 2.3.7,
LX̄ is a Waldhausen graph manifold. In particular, we can equip LX with the
Waldhausen graph manifold structure carried by νL. This proves the equivalence
of the statements 1 and 3. ��

2.3.4 Singular LX, Curlings and Identifications

In Sect. 2.3.3 (Definition 2.3.8), we have considered the union �+ of the branches
of the singular locus � of (X, 0) which have reducible hyperplane sections. We
consider a tubular neighbourhood N+ = ∪σ⊂�+N(Kσ ) of the link K�+ of �+ in
LX. As in the proof of Proposition 2.3.12, the exterior M1 = LX \ N̊+, of K�+ in
LX, is a topological manifold because ν restricted to ν−1(M1) is a homeomorphism.
From now on σ is a branch of �+. The definition of �+ implies that LX is
topologically singular at every point of Kσ . In this section, we show that N(Kσ ) is a
singular pinched solid torus. In Lemma 2.3.9, it is shown that N(Kσ ) is the mapping
torus of a k(σ )-pinched disc by an orientation preserving homeomorphism. But, the
homeomorphism class of the mapping torus of a homeomorphism h depends only
on the isotopy class of h. Moreover the isotopy class of an orientation preserving
homeomorphism h of a k-pinched disc depends only on the permutation induced
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by h on the k discs. In particular, if h : D → D is an orientation preserving
homeomorphism of a disc D the associated mapping torus

T (D, h) = [0, 1] ×D/(1, x) ∼ (0, h(x))

is homeomorphic to the standard torus S ×D.

Definition 2.3.13

1. Let k(D) be the k-pinched disc quotient by identification of their centrum of
k oriented and ordered discs Di, 1 ≤ i ≤ k. Let c = c1 ◦ c2 ◦ · · · ◦ cn be
a permutation of the indices {1, . . . , k} given as the composition of n disjoint
cycles cj , 1 ≤ j ≤ n, where cj is a cycle of order dj . Let h̃c be an orientation
preserving homeomorphism of the disjoint union of Di, 1 ≤ i ≤ k such that
h̃c(Di) = Dc(i) and h̃c(0i) = 0c(i). Then, h̃c induces an orientation preserving
homeomorphism hc on k(D). By construction we have hc(0̃) = 0̃. A singular
pinched solid torus associated to the permutation c is a topological space
orientation preserving homeomorphic to the mapping torus T (k(D), c) of hc:

T (k(D), c) = [0, 1] × k(D)/(1, x) ∼ (0, hc(x))

The core of T (k(D), c) is the oriented circle l0 = [0, 1] × 0̃/(1, 0̃) ∼
(0, 0̃). A homeomorphism between two singular pinched solid tori is orientation
preserving if it preserves the orientation of k(D) \ {0̃} and the orientation of the
trajectories of hc in its mapping torus T (k(D), c).

2. A d-curling Cd is a topological space homeomorphic to the following quotient
of a solid torus S ×D :

Cd = S ×D/(u, 0) ∼ (u′, 0) ⇔ ud = u′d .

Let q : (S × D) → Cd be the associated quotient morphism. By definition,
l0 = q(S × {0}) is the core of Cd .

Example 2.3.14 Let X = {(x, y, z) ∈ C
3 where zd −xyd = 0}. The normalization

of (X, 0) is smooth i.e. ν : (C2, 0) → (X, 0) is given by (u, v) %→ (ud , v, uv). Let
T = {(u, v) ∈ (S ×D) ⊂ C

2}. Let πx : ν(T ) → S be the projection (x, y, z) %→ x

restricted to ν(T ). Here the singular locus of (X, 0) is the line σ = (x, 0, 0), x ∈ C.
We have N(Kσ ) = LX ∩ (π−1

x (S)) = ν(T ) as a tubular neighbourhood of Kσ . Let
q : T → Cd be the quotient morphism defined above. There exists a well defined
homeomorphism f : Cd → N(Kσ ) which satisfies f (q(u, v)) = (ud , v, uv). So,
N(Kσ ) is a d-curling and Kσ is its core. Moreover, f restricted to the core l0 of Cd

is a homeomorphism onto Kσ .

Figure 2.2 shows schematically �̄ = ν−1(�) ⊂ X̄ and � when � is irreducible
and � \� has two irreducible components.
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Fig. 2.2 Schematic picture of π and ν when there is a 2-curling on � = γ2

Lemma 2.3.15 A d-curling is a singular pinched solid torus associated to a d-
cycle, i.e. if c is a d-cycle, then Cd is homeomorphic to T (d(D), c).

Proof We use the notation of Example 2.3.14. The model of d-curling obtained in
this example is the tubular neighbourhood N(Kσ ) of the singular knot of the link LX
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of X = {(x, y, z) ∈ C
3 where zd − xyd = 0}. As we work up to homeomorphism,

it is sufficient to prove that N(Kσ ) is a singular pinched solid torus associated to a
d-cycle. We can saturate the solid torus T by the oriented circles lb = S × {b}, b ∈
D. The circles ν(lb), b ∈ D also saturate N(Kσ ) with oriented circles. The fiber
π−1

x (a) = (C, (a, 0, 0)) is a singular fiber of the fibration πx : ν(T ) → Sα . The
equation of the curve germ C at (a, 0, 0) is {zd−ayd = 0}, this is a plane curve germ
with d branches. So, C is homeomorphic to a d-pinched disc. Moreover, the first
return along the circles ν(lb) is a monodromy h of πx which satisfies the conditions
given in Definition 3.4.1 to obtain a singular pinched solid torus associated to a
d-cycle.

Indeed, (πx ◦ ν) : T → Sα is a trivial fibration with fiber ν−1(C) = {({ui} ×
Dβ), ud

i = a} which is the disjoint union of d ordered meridian discs of T . The
first return hT along the oriented circles lb is a cyclic permutation of the ordered d

meridian discs and (hT )d is the identity morphism. Moreover ν restricted to T \(S×
{0}) is a homeomorphism. As hT is a lifting of h by ν, the monodromy h determines
N(Kσ ) as a singular pinched solid torus associated to a d-cycle. ��
Proposition 2.3.16 Let σ be a branch of the singular locus of (X, 0) which has
a reducible hyperplane section. Let (C, s) be the hyperplane section germ at s ∈
σ ∩ {x = a}. Let σ̄j , 1 ≤ j ≤ n, be the n irreducible components of ν−1

L (σ) and let
dj be the degree of νL restricted to σ̄j . Let cj be a dj -cycle and let c = c1◦c2◦· · ·◦cn

be the permutation of k(σ ) = d1 + · · · + dj + · · · + dn elements which is the
composition of the n disjoint cycles cj . A tubular neighbourhood N(Kσ ) of Kσ

is a singular pinched solid torus associated to the permutation c. Moreover, the
restriction of ν to

∐
1≤j≤n N(Kσ̄j ) is the composition of two quotients: the quotients

which define the dj -curlings followed by the quotient fσ which identifies their cores.

Proof Let N(Kσ̄j ), 1 ≤ j ≤ n be the n connected components of ν−1(N(Kσ )). So,
N(Kσ ) \Kσ has also n connected components and (N(Kσ ))j = ν(N(Kσ̄j )) is the
closure of one of them. Every N(Kσ̄j ) is a solid torus and the restriction of ν to its
core Kσ̄j has degree dj . The intersection (ν−1(C))∩N(Kσ̄j ) is a disjoint union of dj

ordered and oriented meridian discs of N(Kσ̄j ). We can choose a homeomorphism
gj : (S ×D) → N(Kσ̄j ) such that (ν ◦ gj )−1(C) = {u} ×D, udj = 1.

The model of a dj -curling gives the quotient qj : (S × D) → Cdj . As in
Example 2.3.14, there exists a unique homeomorphism fj : Cdj → (N(Kσ ))j

such that fj ◦ qj = ν ◦ gj . So, (N(Kσ ))j is a dj -curling. In particular, if νj is the
restriction of ν to N(Kσ̄j ), then νj = fj ◦ qj ◦ (gj )−1. Up to homeomorphism νj is
equivalent to the quotient which defines the dj -curling.

But for all j, 1 ≤ j ≤ n, we have ν(Kσ̄j ) = (Kσ ). Up to homeomorphism,
N(Kσ ) is obtained as the quotient of the disjoint union of the dj -curlings by the
identification of their cores. The disjoint union of the fj induces a homeomorphism
fσ from

N = (
∐

1≤j≤n

Cdj )/qj (u, 0) ∼ qi(u, 0) ⇔ ν(gj (u, 0)) = ν(gi(u, 0))
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onto N(Kσ ). Up to homeomorphism, the restriction of ν to
∐

1≤j≤n N(Kσ̄j ) is the
composition of two quotients: the quotients which define the dj -curlings followed
by the quotient fσ which identifies their cores. It is sufficient to prove that N =
T (k(σ )(D), c) where c is the composition of n disjoint cycles cj of order dj .
By Lemma 2.3.15, Cdj = T (dj (D), cj ) and it is obvious that the identifications
correspond to the disjoint union of the cycles. ��

2.4 Hirzebruch-Jung’s Resolution of (X, 0)

In this section (X, 0) is a normal surface germ.
Let π : (X, 0) −→ (C2, 0) be a finite analytic morphism which is defined on

(X, 0). For example π can be the restriction to (X, 0) of a linear projection, as
chosen in the beginning of Sect. 2.3.1. But the construction can be performed with
any finite morphism π . We denote by � the singular locus of π and by � = π(�)

its discriminant.
Let r : (Z, EZ) → (C2, 0) be the minimal embedded resolution of �, let EZ =

r−1(0) be the exceptional divisor of r , and let E+
Z = r−1(�) be the total transform

of �. The irreducible components of EZ are smooth complex curves because the
resolution r is obtained by a sequence of blowing up of points in a smooth complex
surface. Let us denote by E0

Z the set of the smooth points of E+
Z . So, E+

Z \E0
Z is the

set of the double points of E+
Z .

Here, we give a detailed construction of the Hirzebruch-Jung resolution ρ :
(Y, EY ) → (X, 0) associated to π. This will prove the existence of a good resolution
of (X, 0). As the link LX is diffeomorphic to the boundary of Y , this will describe
LX as the boundary of a plumbing. In particular, we will explain how to obtain
the dual graph G(Y) of EY when we have the dual graph G(Z) associated to EZ.
Knowing the Puiseux expansions of all the branches of �, there exists an algorithm
to compute the dual graph Gw(Z) weighted by the self-intersection numbers of the
irreducible components of E(Z) (For example see [6] and Chap. 6 and 7 in [17]).
Except in special cases, the determination of the self-intersection numbers of the
irreducible components of EY is rather delicate.

2.4.1 First Step: Normalization

We begin with the minimal resolution r of �. The pull-back of π by r is a finite
morphism πr : (Z′, EZ′) → (Z, EZ) which induces an isomorphism from EZ′
to EZ . We denote rπ : (Z′, EZ′) → (X, 0), the pull-back of r by π. Figure 2.3
represents the resulting commutative diagram.

In general Z′ is not normal. Let n : (Z̄, EZ̄) → (Z′, EZ′) be the normalization
of Z′.
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Fig. 2.3 The diagram of the
pull-back of the resolution r

by π

(Z, E Z () 2, 0)

(X, 0( )Z 0, E Z 0)

π πr

r

rπ

Remark 2.4.1

1. By construction, the discriminant locus of πr ◦ n is included in E+
Z = r−1(�)

which is the total transform of � in Z. As, X is normal at 0, (X \ {0}) has no
singular points.

2. As the restriction of r to Z\EZ is an isomorphism, the restriction of rπ to Z′\EZ′
is also an isomorphism. We denote by �′ (resp. �̄) the closure of (rπ )−1(� \ {0})
in EZ′ (resp. the closure of (rπ ◦ n)−1(� \ {0}) in EZ̄). The restriction of rπ to
�′ (resp. (rπ ◦ n) on �̄) is an isomorphism onto �.

3. The singular locus of Z′ is included in EZ′ . The normalization n restricted to
Z̄ \ EZ̄ is an isomorphism.

Notation We use the following notations:
E+

Z′ = EZ′ ∪�′, and E0
Z′ is the set of the points of EZ′ which belong to a unique

irreducible component of E+
Z′ . Similarly: E+

Z̄
= EZ̄ ∪ �̄, and E0

Z̄
is the set of the

points of EZ̄ which belong to a unique irreducible component of E+
Z̄

.

Proposition 2.4.2 Every singular point of Z̄ belongs to at least two irreducible
components of E+

Z̄
. The restriction of the map (πr ◦ n) to EZ̄ induces a finite

morphism from EZ̄ to EZ which is a regular covering from (πr ◦n)−1(E0
Z) to (E0

Z).

Proof As X is normal at 0, (X \ {0}) has no singular points. The pull-back
construction implies that:

1. The morphism πr is finite and its generic degree is equal to the generic degree
of π. Indeed, πr restricted to EZ′ is an isomorphism. Moreover, the restriction of
πr to (Z′ \ EZ′) is isomorphic, as a ramified covering, to the restriction of π to
(X \ {0}). So, the restriction morphism (πr)| : (Z′ \EZ′) → (Z \EZ) is a finite
ramified covering with ramification locus �′.
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2. As the restriction of r to (Z \ EZ) is an isomorphism, then the restriction of rπ

to (Z′ \EZ′) is also an isomorphism. So, the restriction of (rπ ◦n) to (Z̄ \EZ̄) is
an analytic isomorphism onto the non-singular analytic set (X \ {0}). It implies
that (Z̄ \ EZ̄) is smooth.

If P̄ ∈ E0
Z̄

, then P = (πr ◦ n)(P̄ ) is a smooth point of an irreducible component
Ei of EZ . The normal fiber bundle to Ei in Z can be locally trivialized at P . We can
choose a small closed neighborhood N of P in Z such that N = D×� where D and
� are two discs , N ∩EZ = (D×0) and for all z ∈ D, z×� are fibers of the bundle
in discs associated to the normal bundle of Ei . We choose N̄ = (πr ◦ n)−1(N) as
closed neighborhood of P̄ in Z̄. But Z̄ is normal and the local discriminant of the
restriction (πr ◦ n)| : (N̄, P̄ ) → (N, P ) is included in D × 0 which is a smooth
germ of curve. In that case, the link of (N̄, P̄ ) is S3 (in Lemma 2.5.6, we give a
topological proof of this classical result). As Z̄ is normal, by Mumford’s Theorem
[19], P̄ is a smooth point of Z̄. This ends the proof of the first statement of the
proposition.

Now, we know that the morphism (πr ◦ n)|N̄ : (N̄, P̄ ) → (N, P ) is a finite
morphism between two smooth germs of surfaces with non-singular discriminant
locus. Let d be its generic order. By Lemma 2.5.6, such a morphism is locally
isomorphic (as an analytic morphism) to the morphism defined on (C2, 0) by
(x, y) %→ (x, yd). So, D̄ = (πr ◦ n)−1(D × 0) is a smooth disc in E0

Z̄
and the

restriction of such a morphism to {(x, 0), x ∈ D̄} is a local isomorphism.
By definition of E0

Z, P ∈ (Ei ∩ E0
Z) is a smooth point in the total transform

of �. If we take a smooth germ (γ, P ) transverse to Ei at P , then (r(γ ), 0) is
not a branch of �. The restriction of π to π−1(r(γ ) \ 0) is a regular covering.
Let k be the number of irreducible components of π−1(r(γ )). The number k is
constant for all P ∈ Ei∩E0

Z. Let P ′ be the only point of (πr)
−1(P ). Remark 2.3.11,

which uses Lemma 2.3.10, shows that the k irreducible components of the germ of
curve ((πr)

−1(γ ), P ′) are separated by n. So, the restriction of the map (πr ◦ n) to
((πr ◦ n)−1(Ei ∩ E0

Z)) is a regular covering of degree k. ��
Definition 2.4.3 A germ (W, 0) of complex surface is quasi-ordinary if there
exists a finite morphism φ : (W, p) → (C2, 0) which has a normal-crossing
discriminant. A Hirzebruch-Jung singularity is a quasi-ordinary singularity of
normal surface germ.

Lemma 2.4.4 Let P̄ be a point of EZ̄ which belongs to several irreducible
components of E+

Z̄
. Then P̄ belongs to two irreducible components of E+

Z̄
. Moreover,

either P̄ is a smooth point of Z̄ and E+
Z̄

is a normal crossing divisor around P̄ , or

P̄ is a Hirzebruch-Jung singularity of Z̄.

Proof If P̄ be a point of EZ̄ which belongs to several irreducible components of
E+

Z̄
then P = (πr ◦ n)(P̄ ) is a double point of E+

Z . Moreover Z is smooth and

E+
Z is a normal crossing divisor. We can choose a closed neighbourhood N of P

isomorphic to a product of discs (D1 × D2), and we take N̄ = (πr ◦ n)−1(N).
For a sufficiently small N, the restriction of (πr ◦ n) to the pair (N̄, N̄ ∩ E+

Z̄
) is a
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finite ramified morphism over the pair (N̄, N̄ ∩ E+
Z̄

) and the ramification locus is

included in the normal crossing divisor (N ∩ E+
Z ). The pair (N̄, P̄ ) is normal and

the link of the pair (N, N ∩E+
Z ) is the Hopf link in S3. Then the link of N̄ is a lens

space, and the link of (πr ◦n)−1(N ∩E+
Z ) has two components (Lemma 2.5.4 gives

a topological proof of this classical result). So, E+
Z̄

has two irreducible components

at P̄ . We have two possibilities:

1. P̄ is a smooth point in Z̄. Then the link of the pair (N̄, N̄ ∩E+
Z̄

) is the Hopf link

in S3 and E+
Z̄

is a normal crossing divisor at P̄ .

2. P̄ is an isolated singular point of Z̄. Then, the link of N̄ is a lens space which
is not S3. The point P̄ is a Hirzebruch-Jung singularity of Z̄ equipped with the
finite morphism

(πr ◦ n)|N̄ : (N̄, N̄ ∩ E+
Z̄

) → (N, N ∩ E+
Z )

which has the normal crossing divisor N ∩E+
Z as discriminant. ��

The example given in Sect. 2.6 illustrates the following Corollary.

Corollary 2.4.5 Let G(Z̄) be the dual graph of EZ̄ . Proposition 2.4.2 and
Lemma 2.4.4 imply that (πr ◦ n) induces a finite ramified covering of graphs
from G(Z̄) onto G(Z).

2.4.2 Second Step: Resolution of the Hirzebruch-Jung
Singularities

If P̄ is a singular point of Z̄, then P = (πr ◦ n)(P̄ ) is a double point of E+
Z . In

particular, there are finitely many isolated singular points in Z̄. The singularities of
Z̄ are Hirzebruch-Jung singularities. More precisely, let P̄i , 1 ≤ i ≤ n, be the finite
set of the singular points of Z̄ and let Ūi be a sufficiently small neighborhood of P̄i

in Z̄. We have the following result (see [9] for a proof, see also [11, 22] and [13])
and, to be self-contained, we give a proof in Sect. 2.5.3 (Proposition 2.5.7):

Theorem The exceptional divisor of the minimal resolution of (Ūi, P̄i ) is a normal
crossings divisor with smooth rational irreducible components and its dual graph is
a bamboo (it means is homeomorphic to a segment).

Let ρ̄i : (U ′
i , EU ′

i
) → (Ūi, P̄i ) be the minimal resolution of the singularity

(Ūi, P̄i ). From [13] (corollary 1.4.3), see also [22] (paragraph 4), the spaces U ′
i and

the maps ρ̄i can be glued, for 1 ≤ i ≤ n, in a suitable way to give a smooth space Y

and a map ρ̄ : (Y, EY ) → (Z̄, EZ̄) satisfying the following property (Fig. 2.4).
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Fig. 2.4 The commutative
diagram of the morphisms
involved in the
Hizebruch-Jung resolution ρ

of π . By construction
ρ = rπ ◦ n ◦ ρ̄

Theorem 2.4.6 Let us denote ρ = rπ ◦n◦ ρ̄. Then, ρ : (Y, EY ) → (X, p) is a good
resolution of the singularity (X, p) in which the total transform ρ−1(�) = E+

Y of
the singular locus � of π is a normal crossings divisor.

Proof The surface Y is smooth because ρ̄ is a resolution of all the singular points
of Z̄. As proved in Proposition 2.4.2 and Lemma 2.4.4, the only possible singular
points of the irreducible components of EZ̄ are the double points P̄i of E+

Z̄
. These

points are resolved by the resolutions ρ̄i . So, the strict transform, by ρ̄, of the
irreducible components of EZ̄ are smooth.

The irreducible components of EY created during the resolution ρ̄ are smooth
rational curves. So, all the irreducible components of EY are smooth complex
curves.

By Lemma 2.4.4, the only possible points of E+
Z̄

around which E+
Z̄

is not smooth

or a normal crossing divisor are the Hirzebruch-Jung singularities P̄i , 1 ≤ i ≤ n.
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But as the ρ̄i , 1 ≤ i ≤ n, are good resolutions of these singularities, ((ρ̄i)
−1(Ūi))∩

(E+
Y ), 1 ≤ i ≤ n, are normal crossing divisors. ��
As ρ is the composition of three well defined morphisms which depend only on

the choice of the morphism π and as we follow the Hirzebruch-Jung method, we
have the following definition.

Definition 2.4.7 The morphism ρ : (Y, EY ) → (X, 0) is the Hirzebruch-Jung
resolution associated to π .

Corollary 2.4.8 The dual graph G(Y) of EY is obtained from the dual graph G(Z̄)

of EZ̄ by replacing the edges, which represent the Hirzebruch-Jung singular points
of Z̄, by a bamboo.

Let ρ′′ : (Y ′′, EY ′′ ) → (X, 0) be a good resolution of (X, 0). Let E be an
irreducible component of the exceptional divisor EY ′′ and let E0 be the set of the
smooth points of E in EY ′′ . Let us recall that E is a rupture component of EY ′′
if the Euler characteristic of E0 is strictly negative. Now we can use the following
result (for a proof see [11, Theorem 5.9, p.87]):

Theorem Let ρ′ : (Y ′, EY ′) → (X, 0) be the minimal resolution of (X, 0). There
exists β : (Y, EY ) → (Ỹ ′, EY ′) such that ρ′ ◦ β = ρ and the map β consists
in a composition of blowing-downs of irreducible components, of the successively
obtained exceptional divisors, of self-intersection −1 and genus 0, which are not
rupture components.

2.5 Appendix: The Topology of a Quasi-ordinary Singularity
of Surface

2.5.1 Lens Spaces

One can find details on lens spaces and surface singularities in [24]. See also [21].

Definition 2.5.1 A lens space L is an oriented compact three-dimensional topo-
logical manifold which can be obtained as the union of two solid tori T1 ∪ T2 glued
along their boundaries. The torus τ = T1 ∩ T2 is the Heegaard torus of the given
decomposition L = T1 ∪ T2.

Remark 2.5.2 If L is a lens space, there exists an embedded torus τ in L such that
L \ τ has two connected components which are open solid tori T̊i , i = 1, 2. Let
Ti, i = 1, 2, be the two compact solid tori closure of T̊i in L. Of course τ = T1∩T2.

In [3], F. Bonahon shows that a lens space has a unique, up to isotopy, Heegaard
torus. This implies that the decomposition L = T1 ∪ T2 is unique up to isotopy, it is
“the” Heegaard decomposition of L.

A lens space L with a decomposition of Heegaard torus τ can be described as
follows. The solid tori Ti, i = 1, 2, are oriented by the orientation induced by L.
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Let τi be the torus τ with the orientation induced by Ti . By definition a meridian mi

of Ti is a closed oriented circle on τi which is the boundary of a disc Di embedded
in Ti . A meridian of a solid torus is well defined up to isotopy. A parallel li of Ti is
a closed oriented curve on τi such that the intersection mi ∩ li = +1 (we also write
mi (resp. li ) for the homology class of mi (resp. li) in the first homology group of
τi). The homology classes of two parallels differ by a multiple of the meridian.

We choose on τ2, an oriented meridian m2 and a parallel l2 of the solid torus T2.

As in [24, p. 23], we write a meridian m1 of T1 as m1 = nl2 − qm2 with n ∈ N and
q ∈ Z where q is well defined modulo n. As m1 is a closed curve on τ , q is prime to
n. Moreover, the class of q modulo n depends on the choice of l2. So, we can chose
l2 such that 0 ≤ q < n.

Let τ be a boundary component of an oriented compact three-dimensional
manifold M. Let T be a solid torus given with a meridian m on its boundary. If
γ is a circle embedded in τ there is a unique way to glue T to M by an orientation
reversing homeomorphism between the boundary of T and τ which send m to γ .
The result of such a gluing is unique up to orientation preserving homeomorphism
and it is called the Dehn filling of M associated to γ .

Definition 2.5.3 By a Dehn filling argument, it is sufficient to know the homology
class m1 = nl2 − qm2 to reconstruct L. By definition the lens space L(n, q) is the
lens space constructed with m1 = nl2 − qm2. We have two special cases:

1. m1 = m2, if and only if L is homeomorphic to S1 × S2,
2. m1 = l2 if and only if L is homeomorphic to S3.

Lemma 2.5.4 Let φ : (W, p) → (C2, 0) be a finite morphism defined on an
irreducible surface germ (W, p). If the discriminant � of φ is included in a normal
crossing germ of curve, then the link LW of (W, p) is a lens space. The link K� of
the singular locus � of φ, has at most two connected components. Moreover, K� is
a sub-link of the two cores of the two solid tori of a Heegaard decomposition of LW

as a union of two solid tori.

Proof After performing a possible analytic isomorphism of (C2, 0), � is, by
hypothesis, included in the two axes i.e. � ⊂ {xy = 0}.

Let Dα ×Dβ ∈ C
2 be a polydisc at the origin in C

2 where 0 < α < β < ε are
chosen sufficiently small as in Sect. 2.3.1. Then, the restriction φL of φ on the link
LW is a ramified covering of the sphere (with corners)

S = (Sα ×Dβ) ∪ (Dα × Sβ)

with a set of ramification values included in the Hopf link Kxy = (Sα×{0})∪({0}×
Sβ).

Let N(Kxy) be a small compact tubular neighborhood of Kxy in S. Then,
N(Kxy) is the union of two disjoint solid tori Ty = (Sα × Dβ ′), 0 < β ′ < β,
and Tx = (Dα′ × Sβ), 0 < α′ < α. Then, φ−1

L (Tx) (resp. φ−1
L (Ty)) is a union of
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rx > 0 (resp. ry > 0 ) disjoint solid tori because the set of the ramification values
of φL is included in the core of Tx (resp. Ty).

Let V be the closure, in S, of S\N(Kxy). But, V is a thickened torus which does
not meet the ramification values of φL. Then, φ−1

L (V ) is a union of r > 0 disjoint
thickened tori. But, LW is connected because (W, p) is irreducible by hypothesis.
The only possibility to obtain a connected space by gluing φ−1

L (Tx), φ−1
L (Ty) and

φ−1
L (V ) along their boundaries is 1 = r = rx = ry .

So, φ−1
L (Tx) (resp. φ−1

L (Ty)) which is in LW a deformation retract of T2 =
φ−1

L (Sα × Dβ) (resp. T1 = φ−1
L (Dα × Sβ) ) is a single solid torus. Then

τ = φ−1
L (Sα × Sβ) is a single torus. We have proved that LW is the lens space

obtained as the union of the two solid tori T1 and T2 along their common boundary
τ = φ−1

L (Sα × Sβ). So, T1 ∪ T2 is a Heegaard decomposition of LW as a union of
two solid tori.

By hypothesis K� ⊂ (Sα×{0})∪({0}×Sβ). Then, K� is included in the disjoint
union of φ−1

L (Sα × {0}) and φ−1
L ({0} × Sβ) which are the cores of T1 and T2. So,

K� has at most two connected components. ��
Example 2.5.5 Let n and q be two relatively prime strictly positive integers. We
suppose that q < n. Let X = {(x, y, z) ∈ C

3 s.t. zn − xyq = 0}. The link LX of
(X, 0) is the lens space L(n, n − q).

Indeed, let φ : (X, 0) → (C2, 0) be the projection (x, y, z) %→ (x, y) restricted
to X. The discriminant � of φ is equal to {xy = 0}. By Lemma 2.5.4, LX is a lens
space. As in the proof of Lemma 2.5.4, LX = φ−1(S) where

S = (Sα ×Dβ) ∪ (Dα × Sβ).

In the proof of Lemma 2.5.4, it is shown that T2 = φ−1(Sα × Dβ) and T1 =
φ−1(Dα × Sβ) ) are two solid tori. Let (a, b) ∈ (Sα × Sβ). As n and q are relatively
prime m1 = φ−1({a} × Sβ) and m2 = φ−1(Sα × {b}) are connected. So, mi, i =
1, 2, is a meridian of Ti .

We choose c ∈ C such that cn = abq . Let l2 = {z = c} ∩ φ−1(Sα × Sβ). On the
torus τ = φ−1(Sα×Sβ), oriented as the boundary of T2, we have m2∩ l2 = +1 and
m1 = nl2 − (−q)m2. As defined in Definition 2.5.3, we have LX = L(n,−q) =
L(n, n− q).

2.5.2 Finite Morphisms with Smooth Discriminant

Lemma 2.5.6 Let φ : (W, p) → (C2, 0) be a finite morphism, of generic degree
n, defined on a normal surface germ (W, p). If the discriminant of φ is a smooth
germ of curve, then (X, 0) is analytically isomorphic to (C2, 0) and φ is analytically
isomorphic to the map from (C2, 0) to (C2, 0) defined by (x, y) %→ (x, yn).
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Proof After performing an analytic automorphism of (C2, 0), we can choose
coordinates such that � = {y = 0}.

Let Dα ×Dβ ∈ C
2 be a polydisc at the origin in C

2 where 0 < α < β < ε are
chosen sufficiently small as in Sect. 2.3.1. Then, the restriction φL of φ on the link
LW is a ramified covering of the sphere (with corners)

S = (Sα ×Dβ) ∪ (Dα × Sβ)

with a set of ramification values included in the trivial link Ky = (Sα × {0}).
Here, we satisfy the hypotheses of Lemma 2.5.4. So, T2 = φ−1

L (Sα × Dβ) and
T1 = φ−1

L (Dα × Sβ) are two solid tori with common boundary τ = φ−1
L (Sα × Sβ).

We take a ∈ Sα and b ∈ Sβ.

Let us consider Da = φ−1
L ({a} ×Dβ) ⊂ T2 and Db = φ−1

L (Dα × {b}) ⊂ T1.

Here the singular locus of φL is the core of T2 and does not meet T1.
The restriction of φL to φ−1

L (Dα × {b}) is a regular covering of a disc. Then Db

is a disjoint union of n discs where n is the general degree of φL. Let m1 be the
oriented boundary of one of the n discs which are the connected components of Db.
By definition m1 is a meridian of T1.

The restriction of φL to Da is a covering of a disc and (a × 0) is the only
ramification value . Then Da is a disjoint union of d discs where d < n. On τ ,
the intersection between the circles boundaries of Da and Db is equal to n because
it is given by the (positively counted) n points of φ−1

L (a × b). The restriction of
φL to T1 is a Galois covering of degree n which permutes cyclically the connected
components of Da . So, on the torus τ = b(T1), any of the d circles boundaries of
the connected components of Da intersects any of the n circles boundaries of the
connected components of Db. So computed, the intersection b(Da)∩b(Db) is equal
to nd . But, nd = n because this intersection is given by the n points of φ−1

L (a × b).
So, d = 1 and Da has a unique connected component. The boundary of Da is

a meridian m2 of T2. As m1 is the boundary of one of the n connected components
of Db, m1 ∩ m2 = +1 and m1 can be a parallel l2 of T2. This is the case 2)
in Definition 2.5.3, so the link LW of (W, p) is the 3-sphere S3. As (W, p) is
normal, by Mumford [19], (W, p) is a smooth surface germ i.e (W, p) is analytically
isomorphic to (C2, 0). The first part of Lemma 2.5.6 has been proved.

(*) Moreover φ−1
L (Sα × {0})∪ ({0} × Sβ) is the union of the cores of T1 and T2.

Then, (Sα × {0}) ∪ ({0} × Sβ) is a Hopf link in the 3-sphere LW .
From now on, φ : (C2, 0) → (C2, 0) is a finite morphism and its discriminant

locus is {y = 0}. Let us write φ = (φ1, φ2). The link of the zero locus of the function
germ

(φ1.φ2) : (C2, 0) → (C,0)

is the link describe above (see (*)), i.e. it is a Hopf link. The function (φ1.φ2)

reduced is analytically isomorphic to (x, y) %→ (xy). But φ1 is reduced because
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its Milnor fiber is diffeomorphic to Da = φ−1
L ({a} ×Dβ) ⊂ T2 which is a disc. So,

φ1 is isomorphic to x.
The Milnor fiber of φ2 is diffeomorphic to the disjoint union of the n discs

Db = φ−1
L (Dα × {b}) ⊂ T1. When the Milnor fiber of a function germ f :

(C2, 0) → (C, 0) has n connected components, n is the g.c.d. of the multiplicities
of the irreducible factors of f . Here φ2 = gn where g is an irreducible function
germ. We already have seen that φ2 reduced is isomorphic to y. This completes the
proof that φ2 is isomorphic to yn and φ = (φ1, φ2) is isomorphic to (x, yn). ��

2.5.3 The Hirzebruch-Jung Singularities

Proposition 2.5.7 Let (W, p) be a normal surface germ such that there exists a
finite morphism φ : (W, p) → (C2, 0) which has a normal-crossing discriminant
(�, 0). Then, (W, p) has a minimal good resolution ρ : (W̃ , EW̃ ) → (W, p) such
that:

I) the exceptional divisor EW̃ of ρ has smooth rational irreducible components
and its dual graph is a bamboo. We orient the bamboo from the vertex (1) to the
vertex (k). The vertices are indexed by this orientation,

II) the strict transform of φ−1(�) has two smooth irreducible components which
meet EW̃ transversally, one of them at a smooth point of E1 and the other
component at a smooth point of Ek .

Proof After performing an analytic isomorphism of (C2, 0), we can choose coor-
dinates such that � = {xy = 0}. We have to prove that there exists a minimal
resolution ρ of (W, p) such that the shape of the dual graph of the total transform of
� in W̃ looks like the graph drawn in Fig. 2.5 where all vertices represent smooth
rational curves.

By Lemma 2.5.4, the link LW of (W, p) is a lens space. If LW is homeomorphic
to S3, (W, p) is smooth by Mumford [19], and there is nothing to prove. Otherwise,
let n and q be the two positive integers, prime to each other, with 0 < q < n,
such that LW is the lens space L(n, n − q). By Brieskorn [4] (see also Sect. 2.5 in
[24]), the normal quasi-ordinary complex surface germs are taut. It means that any
normal quasi-ordinary complex surface germ (W ′, p′) which has a link orientation
preserving homeomorphic to L(n, n − q) is analytically isomorphic to (W, p). In

(lȳ ) (l x̄ )(1) (k )
< >. . . . . .

Fig. 2.5 The shape of the dual graph of G(W̃) to which we add an arrow to the vertex (1) to
represent the strict transform of {x = 0} and another arrow to the vertex (k) to represent the strict
transform of {y = 0}
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particular, (W, p) and (W ′, p′) have isomorphic minimal good resolutions. Now,
it is sufficient to describe the good minimal resolution of a given normal quasi-
ordinary surface germ which has a link homeomorphic to L(n, n−q). As explained
below, we can use (X̄, p̄) where ν : (X̄, p̄) → (X, 0) is the normalization of X =
{(x, y, z) ∈ C

3 s.t. zn − xyq = 0}. ��
Lemma 2.5.8 Let n and q be two relatively prime positive integers. We suppose
that 0 < q < n. Let X = {(x, y, z) ∈ C

3 s.t. zn − xyq = 0}. There exists a good
resolution ρY : (Y, EY ) → (X, 0) of (X, 0) such that the dual graph G(Y) of EY

is a bamboo and the dual graph of the total transform of {xy = 0} has the shape of
the graph given in Fig. 2.5.

Lemma 2.5.8 implies Proposition 2.5.7. Indeed:

1) In Example 2.5.5, we show that the link LX of (X, 0) is the lens space L(n, n−
q). Let ν : (X̄, p̄) → (X, 0) be the normalization of (X, 0). The singular locus
of (X, 0) is the line � = {(x, 0, 0), x ∈ C}. For a ∈ C, the hyperplane section
of X at (a, 0, 0) is the plane curve germ {zn − ayq = 0}. As n and q are prime
to each other {zn − ayq = 0} is irreducible. Then, by Proposition 2.3.12, ν is a
homeomorphism. So, the link LX̄ of (X̄, 0) is the lens space L(n, n − q).

2) Let ρY : (Y, EY ) → (X, p) be a good resolution of (X, 0) given as in
Lemma 2.5.8, in particular the dual graph G(Y) of EY is a bamboo. As any
good resolution factorizes through the normalization ν : (X̄, p̄) → (X, 0) (see
[11, Thm. 3.14]), there exists a unique morphism ρ̄Y : (Y, EY ) → (X̄, p̄) which
is a good resolution of (X̄, p̄) . Let ρ′ : (Y ′, EY ′) → (X̄, p̄) be the minimal good
resolution of (X̄, p̄). Then, (for example see [11, Thm 5.9] or [1, p. 86]), there
exists a morphism β : (Y, EY ) → (Y ′, EY ′) which is a sequence of blowing-
downs of irreducible components of genus zero and self-intersection −1. By
Lemma 2.5.8, the dual graph G(Y) is a bamboo and the dual graph of the total
transform of {xy = 0} has the shape of the graph given in Fig. 2.5. So, the
morphism of graph β∗ : G(Y) → G(Y ′) induced by β, is only a contraction of
G(Y) in a shorter bamboo.

Proof (of Lemma 2.5.8) In X, we consider the lines lx = {(x, 0, 0), x ∈ C} and
ly = {(0, y, 0), y ∈ C} and the singular locus of (X, 0) is equal to lx . We prove
Lemma 2.5.8 by a finite induction on q ≥ 1.

1) If q = 1, X = {(x, y, z) ∈ C
3 s.t. zn − xy = 0} is the well-known normal

singularity An−1. The minimal resolution is a bamboo of (n − 1) irreducible
components of genus zero. Indeed, to construct ρY : (Y, EY ) → (X, 0), it is
sufficient to perform a sequence of blowing-ups of points ( we blow up n/2
points when n is even and (n − 1)/2 points when n is odd). We begin to blow
up the origin, this separates the strict transform of the lines lx and ly . The
exceptional divisor, in the strict transform of (X, 0) by the blowing-up of the
origin in C

3, has two irreducible rational components when n > 2 and only
one irreducible rational component when n = 2. If n > 2, we continue by the
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blowing-up of the intersection point of the two irreducible components of the
exceptional divisor.

2) If 1 < q < n, we state the following points I and II which describe how we
proceed, we justify them just below.

I) As n and q are relatively prime , the remainder r of the division n = mq + r

is prime to q and 1 < r < q . Let R : Z → C
3 be a sequence of m blowing-

ups of the line lx in C
3 and of its strict transforms in a smooth 3-dimensional

complex space. Let Y1 be the strict transform of X by R. Let ρ : (Y1, E) →
(X, 0) be R restricted to Y1 and let E = ρ−1(0) ⊂ Y1. The total transform
of lx ∪ ly by ρ, which is equal to E+ = ρ−1(lx ∪ ly ), has a dual graph which
is a bamboo as in Fig. 2.5 with k = m vertices. Let l1

x be the strict transform
of lx by ρ. Then, l1

x only meets the irreducible component of E obtained by
the last blowing-up of a line. The equation of Y1 along l1

x is {zr − xyq = 0}.
II) If r = 1, Y1 is smooth and Lemma 2.5.8 is proved i.e. ρY = ρ. If r > 2,

after the division q = m′r + r ′ with remainder r ′, we have r ′ < r . As r is
prime to q , r ′ is prime to r and 0 < r ′. Moreover, we have r ′ < q because
r < q . Let R′ : Z′ → Z be a sequence of m′ blowing-ups of the line l1

x

and of its strict transforms. Let Y2 be the strict transform of Y1 by R′ and let
ρ′ : (Y2, E′) → (Y1, E) be R′ restricted to Y2. As r < q , ρ′ is bijective, the
dual graph of ρ′−1(E+) is equal to the dual graph of E+, which is a bamboo
as in Fig. 2.5 with k = m vertices. Moreover, the equation of Y2, along the
strict transform of l1

x by ρ′, is {zr − xyr ′ = 0}. As 1 ≤ r ′ < r with relatively
prime r and r ′, Lemma 2.5.8 is proved by induction.

Let us justify the above statements I) and II) by an explicit computation of the
blowing-up of lx . We consider Z1 = {((x, y, z), (v : w)) ∈ C

3 × CP 1, s. t. wy −
vz = 0}. By definition, the blowing-up of lx in C

3, R1 : Z1 → C
3, is the projection

on C
3 restricted to Z1.

As in statement I), we consider X = {(x, y, z) ∈ C
3 s.t. zn − xyq = 0} with

q < n. We have to describe the strict transform Y11 of (X, 0) by R1, the restriction
ρ1 : (Y11, E) → (X, 0) of R1 to Y11, E1 = ρ−1

1 (0) and E+
1 = ρ−1

1 (lx ∪ Ly).

I) In the chart v = 1, we have (Z1 ∩ {v = 1}) = {((x, y, wy), (1 : w)) ∈ C
3 ×

CP 1}. The equation of R−1
1 (0) ∩ {v = 1} and of E1 ∩ {v = 1} is y = 0.

The equation of (R−1
1 (X)∩{v = 1}) = (Y11∩{v = 1}) is {wnyn−q−x = 0}. So,

all the points of ({v = 1} ∩ Y11) are non singular and ({v = 1} ∩ {x = 0} ∩ Y11)

doesn’t meet E1.
The strict transform of lx is not in Y11 ∩ {v = 1}. If x = 0, we have:

E1 ∩ {v = 1} = {((0, 0, 0), (1 : w)), w ∈ C} ⊂ Y11.

In Y11, the strict transform l̃y = {((0, y, 0), (1 : 0)), y ∈ C} of ly meets E1 at
((0, 0, 0), (1 : 0)).
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II) In the chart w = 1, we have (Z1 ∩ {w = 1}) = {((x, vz, z), (v : 1)) ∈ C
3 ×

CP 1}. The equation of R−1
1 (0) ∩ {w = 1} and of E1 ∩ {w = 1} is z = 0.

The equation of (Y11 ∩ {w = 1}) is {zn−q − xvq = 0}. So, the strict transform
of lx is equal to

l̃x = ({w = 1} ∩ Y11 ∩ R−1
1 (lx)) = {((x, 0, 0), (0 : 1)) ∈ C

3 × CP 1}.

The strict transform l̃x meets E1 at the point p1 = E1 ∩ l̃x = ((0, 0, 0), (0 : 1).
Then, E1 = ((0, 0, 0) × CP 1) is included in Y11, moreover, l̃x and l̃y meet
E1 at two distinct points. The total transform E+

1 = ρ−1
1 (lx ∪ Ly) consists

of one irreducible component E1 and two germs of curves which meet E1 in
two distinct points. Moreover the equation of Y11 along its singular locus l̃x is
{zn−q − xyq = 0}. By induction we obtain, as stated in I), the germ (Y1, 0)

defined by {zr − xyq = 0} with 1 ≤ r = n−mq < q .

To justify statement II), we again consider the blowing-up of lx , R1 : Z1 → C
3.

Let Y12 be the strict transform of Y1 by R1 and let ρ′1 : Y12 → Y1 be R1 restricted to
Y12. Then, Y12 has the equation {wr − xyq−r = 0} in the chart v = 1. For all x ∈ C,
the intersection of Y12 with y = 0 is the only point ((x, 0, 0)), (1 : 0)). In the chart
w = 1, Y12 has the equation {1 − xvqzq−r = 0} and has empty intersection with
z = 0. This proves that ρ′1 is bijective and by induction the map ρ′ : (Y2, E′) →
(Y1, E) describe above in II) is also bijective. ��
Examples

1) Let us consider X = {(x, y, z) ∈ C
3 s.t. zn − xyn−1 = 0}. The link of (X, 0)

is the lens space L(n, 1). Let R1 : Z1 → C
3 be the blowing-up of the line lx in

C
3. Let Y be the strict transform of X by R1. The equation of Y along the strict

transform of lx is {z − xyn−1 = 0}. So, Y is non singular and we have obtained
a resolution of X. Here the dual graph of the total transform of lx ∪ ly is as in
Fig. 2.5 with only one vertex.

2) Let us consider X = {(x, y, z) ∈ C
3 s.t. zn−xyn−2 = 0} with n odd and 3 < n.

The link of (X, 0) is the lens space L(n, 2). Let R1 : Z1 → C
3 be the blowing-

up of the line lx in C
3. The equation of the strict transform Y1, of X by R1, along

the strict transform of lx is {z2 − xyn−2 = 0}. Let ρ : (Y1, E) → (X, 0) be R1
restricted to Y1. We write n = 2m+ 3. As proved above, after m blowing-ups of
lines, we obtain a surface Y2 and a bijective morphism ρ′ : (Y2, E′) → (Y1, E)

such that the equation of Y2 along the strict transform of lx is {z2 − xy = 0}.
The exceptional divisor E of ρ (resp. E′of (ρ ◦ ρ′)) is an irreducible smooth
rational curve. The blowing-up ρ′′, of the intersection point between E′ and the
strict transform of lx , is a resolution of Y2 and the exceptional divisor of ρ′′ is
a smooth rational curve. Then, ρ ◦ ρ′ ◦ ρ′′ is a resolution of X = {(x, y, z) ∈
C

3 s.t. zn − xyn−2 = 0}, the dual graph of its exceptional divisor is a bamboo
with two vertices.
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2.6 An Example of Hirzebruch-Jung’s Resolution

We give the Hirzebruch-Jung resolution of the germ of surface in C
3 which satisfies

the following equation:

z2 = (x − y + y3)(x − y + y2)(y34 − (x − y)13).

where π : (X, 0) → (C2, 0) is the projection on the (x, y)-plane. It is a generic
projection. In [15] this example is also explored when π is replaced by a non generic
projection.

The discriminant locus of π = (f, g) is the curve � which has three components
with Puiseux expansions given by :

x = y − y2

x = y − y3

x = y + y34/13

Notice that the three components of � have 1 as first Puiseux exponent and
respectively 2, 3, 34/13 as second Puiseux exponent.

The coordinate axes are transverse to the discriminant locus of π . The dual graph
G(Z) is in Fig. 2.6.

The dual graph G(Z̄) of EZ̄ admits a cycle created by the normalization. The
irreducible component E′

9 of EY is obtained by the resolution ρ̄. The irreducible
components of the exceptional divisor associated to the vertices of G(Z̄) and G(Y)

have genus equal to zero (Fig. 2.7).
The minimal good resolution ρ is obtained by blowing down E′

6. Its dual graph
is in Fig. 2.8.

Fig. 2.6 The dual graph of the minimal resolution of �. An irreducible component of the strict
transform of � is represented by an edge with a star. An edge ended by an arrow represents the
strict transform of {x = 0}



2 The Topology of Surface Singularities 181

Fig. 2.7 The dual graph G(Y) of the Hirzebruch-Jung resolution associated to π

Fig. 2.8 The dual graph G(Y ′) of the minimal resolution of (X, 0)
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Abstract The problem of resolution of singularities and its solution in various
contexts can be traced back to I. Newton and B. Riemann. This paper is an attempt
to give a survey of the subject starting with Newton till the modern times, as well as
to discuss some of the main open problems that remain to be solved. The main
topics covered are the early days of resolution (fields of characteristic zero and
dimension up to three), Zariski’s approach via valuations, Hironaka’s celebrated
result in characteristic zero and all dimensions and its subsequent strengthenings and
simplifications, existing results in positive characteristic (mostly up to dimension
three), de Jong’s approach via semi-stable reduction, Nash and higher Nash blowing
up, as well as reduction of singularities of vector fields and foliations. In many
places, we have tried to summarize the main ideas of proofs of various results
without getting too much into technical details.

3.1 Introduction

Let X be a singular irreducible algebraic variety. A resolution of singularities of X

is a birational proper morphism

π : X′ → X (3.1)

such that X′ is non-singular.
A morphism π : X′ → X is said to be birational if there exists a proper algebraic

subvariety Y � X such that π induces an isomorphism

π

∣
∣
∣X′\π−1(Y ) : X′ \ π−1(Y ) → X \ Y .

The subvariety Y is sometimes called the center of the blowing up π and Y ′ :=
π−1(Y ) the exceptional set of π .
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π π

X 0

X

(a)

π

(b)

Fig. 3.1 Resolution of singularities. The center of the blowing up is in blue and the exceptional
set in red. (a) Nodal curve y2− x2 − x3 = 0. (b) Non-degenerate quadratic cone z2− x2 − y2 = 0

A morphism π is birational if and only if it induces an isomorphism

K(X) ∼= K(X′)

between the fields of rational functions of X and X′.
Figure 3.1 depicts resolution of singularities of the nodal curve and of the non-

degenerate quadratic cone.
The equivalence relation induced by all the relations of the form X ∼ X′ where

X′ admits a birational morphism (3.1) is called the birational equivalence relation.
A very closely related question is resolution of singularities of analytic varieties.

To state it, replace “algebraic” by “analytic” and “birational” by “bimeromorphic”
in the definitions above.

Locally (in the sense of valuation theory explained in detail below) resolution
of singularities can be understood as parametrizing wedges of the singular variety
X by non-singular algebraic varieties. If X is an (analytically) irreducible curve,
resolution of singularities of X is the same as a parametrization of X by a non-
singular curve.
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The goal of this paper is to give a survey of known results about existence
and various constructions of resolution of singularities in cases where it has been
achieved as well as discuss the status of this problem in cases when it is still open.

3.1.1 Motivation, Significance and Some Applications
of Resolution of Singularities

(1) There are many objects and constructions which can only be defined, or at least
are much easier to define and study for non-singular varieties. These include
Hodge theory, singular and étale cohomology, the canonical divisor, etc.

(2) The classification problem.

In any branch of mathematics, there are usually guiding problems, which are so
difficult that one never expects to solve them completely, yet which provide stimulus
for a great amount of work, and which serve as yardsticks for measuring progress in
the field. In algebraic geometry such a problem is the classification problem. In its
strongest form, the problem is to classify all algebraic varieties up to isomorphism. We
can divide the problem into parts. The first part is to classify varieties up to birational
equivalence. As we have seen, this is equivalent to the question of classifying all the
function fields (finitely generated extension fields over k) up to isomorphism. The
second part is to identify a good subset of a birational equivalence class, such as the
nonsingular projective varieties, and classify them up to isomorphism. The third part
is to study how far an arbitrary variety is from one of the good ones considered above.
In particular, we want to know (a) how much do you have to add to a nonprojective
variety to get a projective variety, and (b) what is the structure of singularities, and how
can they be resolved to give a nonsingular variety?

Robin Hartshorne, Algebraic Geometry, §1.8 What is Algebraic Geometry? [88].

From this point of view, resolution of singularities answers a very natural
question: does every birational equivalence class contain a non-singular variety
(a non-singular model) and, more precisely, is every singular variety X

birationally dominated by a non-singular one as in (3.1)? Once this question
has been answered affirmatively, one may, on the one hand, look for birational
invariants, that is, numbers associated to the given birational equivalence class
and defined in terms of some non-singular model, and, on the other hand,
address the finer questions about the relation between different non-singular
models in the given birational equivalence class and what can be said about the
relation between the resolution of singularities and the original singular variety
which it dominates. This is a very active area of research, known as the Mori
program; it has been the stage of some spectacular recent developments.

(3) Embedded desingularization is a somewhat stronger form of resolution of
singularities, which is particularly useful for applications. Suppose that X is
embedded in a regular variety Z. Embedded desingularization asserts that there
exists a sequence ρ : Z̃ → Z of blowings up along non-singular centers
(this notion will be defined precisely below), under which the total transform
ρ−1(X) of X becomes a divisor with normal crossings, which means that all



3 Resolution of Singularities: An Introduction 187

of its irreducible components are smooth hypersurfaces and locally at each
point of Z̃, ρ−1(X) is defined by a monomial with respect to some regular
system of parameters. Geometrically, this means that at every point of Z̃ there
exists a local coordinate system such that ρ−1(X) looks locally like a union of
coordinate hyperplanes, counted with certain multiplicities. Thus divisors with
normal crossings locally have a very simple structure. There are many situations
in which it is useful to know that every closed subvariety can be turned into
a divisor with normal crossings by blowing up. For example, this is used for
compactifying algebraic varieties (problem (b) mentioned in the passage by R.
Hartshorne cited above). Let X be a regular algebraic variety over a field k,
embedded in some projective space P

n
k . If X is not closed in P

n
k , we can always

consider its Zariski closure X̄, which is, by definition, projective over k. The
problem is that even though we started with a regular X, X̄ may well turn out
to be singular. Resolution of singularities, together with its embedded version,
assures us that, after blowing up closed subvarieties, disjoint from X, we may
embed X in a regular projective variety X′ such that X′\X is a normal crossings
divisor.

(4) Finally, resolution of singularities is useful for studying singularities them-
selves. Namely, let ξ ∈ X be a singularity and let π : X̃ → X be a
desingularization. We may adopt the following philosophy for studying the
singularity ξ . All the regular points are locally the same; every singular point
is singular in its own way. We may regard resolution of singularities as a way
of getting rid of the local complexity of the singularity ξ and turning it into
global complexity of the regular variety X̃. Thus some global invariant of X̃

may also be regarded as an invariant of the singularity ξ . For example, if X is
a surface and the singularity ξ is isolated, then π−1(ξ) is a collection of curves
on the regular surface X̃. By embedded resolution for curves, we may further
achieve the situation where π−1(ξ) is a normal crossings divisor (a resolution
of singularities having this property is called a good resolution). If {Ei}1≤i≤n,
are the irreducible components of π−1(ξ), then the intersection matrix (Ei.Ej )

(equivalently, the dual graph of the configuration
n⋃

i=1
Ei ) is an important

combinatorial invariant associated to the singularity ξ . A good illustration of
the usefulness of replacing local difficulties by global is D. Mumford’s theorem
that asserts that a normal surface singularity which is topologically trivial is
regular. More precisely, given a normal surface singularity ξ ∈ X over C, one
may consider its link, which is the intersection of X with a small Euclidean
sphere centered at ξ . The link is a real 3-dimensional manifold. Mumford’s
theorem asserts that if the link is simply connected, then ξ is regular. The
idea behind Mumford’s proof is that the link is nothing but the boundary of

a tubular neighbourhood of the collection
n⋃

i=1
Ei of non-singular curves on the

non-singular surface X̃. This really helps analyze the link.
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3.2 A Brief Early History of the Subject: First Constructions
of Resolution of Curve Singularities

3.2.1 Newton Polygon and Newton’s Rotating Ruler Method
for Resolving Plane Curve Singularities

Resolution of singularities of plane curves is due to Newton and Puiseux.
Consider a polynomial or a power series f (x, y) = ∑

i,j∈N
ajix

iyj , where aij ∈ C,

f (0, 0) = 0 and there exists a strictly positive integer n such that

a0n = 0 (3.2)

(that is, the monomial yn appears in f with a non-zero coefficient). Newton and
Puiseux proved that, viewed as an equation in y to be solved in functions of x,
f (x, y) = 0 has a solution in Puiseux series of x (by definition, in a Puiseux series
the exponents are rational numbers with bounded denominators).

Theorem 3.2.1 (Newton 1676, Puiseux 1850) There exists a strictly positive

integer m and a Puiseux series y(x) =
∞∑

i=1
cix

i
m such that f (x, y(x)) ≡ 0 as a

series in x
1
m .

Remark 3.2.2 Let K =
∞⋃

m=1
C

((
x

1
m

))
. Theorem 3.2.1 says, in particular, that K

is algebraically closed. This was the motivation and the point of view adopted by
Puiseux.

Newton Polygon
In order to prove Theorem 3.2.1, Newton introduced the notion of Newton

polygonwhich, together with its generalization to higher dimensions called Newton
polyhedron [60, 94–96, 140] has proved to be one of the most fundamental tools in
the theory of resolution of singularities.

Let R2+ denote the first quadrant of R2.

Definition 3.2.3 The Newton polygon of f , which we will denote by �(f, y), is
the convex hull of the set

⋃

(i,j)∈N2

aij =0

(
(i, j)+ R

2+)
)
⊂ R

2.

Let n be the smallest strictly positive integer satisfying (3.2).

Definition 3.2.4 The vertex (0, n) is called the pivotal vertex of �(f, y). The non-
vertical edge of �(f, y) containing (0, n) is called the leading edge of �(f, y).



3 Resolution of Singularities: An Introduction 189

As Newton says, to trace the leading edge we put a vertical ruler through (0, n) and
rotate it till it hits another point (i, j) with aij = 0 (equivalently, another vertex of
�(f, y)). Let E denote the leading edge of �(f, y). Let inEf := ∑

(i,j)∈E

aij xiyj .

The polynomial inEf is called the initial form of f with respect to E. The
leading edge, the pivotal point, the initial form of f with respect to an edge and
their generalizations to the higher dimensional context of Newton polyhedra play a
crucial role in many constructions of resolution of singularities today.

We give a sketch of Newton’s proof of Theorem 3.2.1.

Proof If E is horizontal then yn | f , so y = 0 is a root of f of multiplicity n.
Assume that E is not horizontal. Let α be a root of inEf (1, y) and s the multiplicity
of the root α.

Write the slope of E as − q
r

, where q and r are two relatively prime strictly
positive integers. There are two cases to be considered.

Case 1. We have inEf = a0n

(
y − αx

r
q

)n

. In other words,

s < n. (3.3)

Put x1 = x
1
q and y1 = y

xr
1
− α. Make the substitution

x = x
q
1 (3.4)

y = y1x
r
1 + αxr

1 . (3.5)

Case 2. We have inEf = a0n

(
y − αx

r
q

)n

. Note that in this case, by Newton’s

binomial theorem, we have
(
n− 1, r

q

)
∈ E. This implies that r

q
∈ N (in other

words, q = 1) and ar,n−1 = 0.

Remark 3.2.5 Here we are using in a crucial way the fact that char C = 0. This
phenomenon will have important repercussions later when we discuss H. Hironaka’s
proof of resolution of singularities in characteristic zero and all dimensions, the
notions of Tschirnhausen transformation and maximal contact used there and the
failure of all them over fields of characteristic p > 0.

Put x1 = x and y1 = y − αxr
1. Make the substitution

x = x1 (3.6)

y = y1 + αxr
1 . (3.7)

In both cases, let f1(x1, y1) denote the polynomial or power series, resulting from
substituting (3.4)–(3.5) (resp. (3.6)–(3.7)) into f . Let

n1 = n− s in Case 1 (3.8)

n1 = n in Case 2. (3.9)
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A direct computation shows the following:

(a) the Newton polygon �(f1, y1) has (0, n1) as a vertex
(b) in Case 2, the slope of the leading edge of �(f1, y1) is strictly greater than − 1

r
.

Now, iterate the procedure to construct (xi, yi) and fi for i ∈ N. Since in Case
1 we have n1 < n, Case 1 can occur at most n times. Take i0 ∈ N such that Case
2 occurs for all i ≥ i0. For i > i0, let − 1

ri
denote the slope of the leading edge

of the Newton polyhedron �(fi, yi). Our iterative procedure produces xi = xi0 ,

yi = yi0 −
i−1∑

j=i0

bjx
rj

i0
for suitable bj ∈ C. According to statement (b) above, the

sequence of integers (ri)i is strictly increasing with i, hence goes to ∞ (it may
happen that the leading edge of �(fi, yi) becomes horizontal for some finite i, in
which case we set all the subsequent coefficients bj to be equal to 0; the procedure

will stop here). Let y∞ := yi0 −
∞∑

j=i0

bjx
rj

i0
, substitute yi0 = y∞ +

∞∑
j=i0

bjx
rj

i0
into

fi0 and let f∞ be the resulting polynomial (resp. power series). The leading edge of
�(f∞, y∞) has slope strictly greater than − 1

ri
for all i, hence it is horizontal. Thus

y
ni0∞
∣
∣
∣ f∞, so yi0

(
xi0

) :=
∞∑

j=i0

bjx
rj

i0
is a root of fi0 of multiplicity ni0 .

Let m :=
i0∏

j=0
qi , Q :=

i0∑

j=0

j∏

�=0
q� and R :=

i0∑

j=0

j∏

�=0
r�. By construction, we have

xi0 = x
1
m (3.10)

and

yi0 = yx
− R

Q + g
(
x

1
m

)
, (3.11)

where g is a suitable polynomial with complex coefficients. Let
∞∑

i=1
cix

i
m be the

Puiseux series x
R
Q

(
∞∑

j=i0

bjx

rj
m

i0
− g
(
x

1
m

)
)

. Making the substitution (3.10)–(3.11)

back into fi0 and setting y(x) :=
∞∑

i=1
cix

i
m , we see that (y − y(x))ni0 | f , that is,

y(x) is a root of f of multiplicity ni0 , as desired. ��
Remark 3.2.6 Every time Case 1 occurred in Newton’s algorithm some choices
needed to be made. For example, if Case 1 happens at the first step we had to
choose a root α of inEf . Counted with multiplicity there were s = n − n1 such
choices. Starting with the step i0 we have constructed a root of f of multiplicity ni0 .
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Therefore the total number of roots of f obtained by this procedure, counted with

multiplicity, is ni0 +
i0−1∑

j=0

(
nj − nj+1

) = n.

Remark 3.2.7 In the Newton–Puiseux theorem, assume that f is either a poly-
nomial or a convergent power series. It is not hard to show (by estimating the
coefficients bj at each step of the construction) that the Puiseux series produced
by Newton’s algorithm is also convergent. Assume, in addition, that the plane
complex curve C := {f (x, y) = 0} is irreducible as an analytic space (in other
words, has only one branch near the origin). Then Newton’s procedure gives a
parametrization of C near the origin by a complex disk with the coordinate xi0 ,
that is, a resolution of singularities of a suitable neighbourhood of the origin in C.
Algebraically, this resolution of singularities is described by the birational, injective

ring homomorphism C{x, y} ↪→ C{xi0}, that maps x to xm
i0

and y to
∞∑

i=1
cix

i
i0

.

More generally, if the analytic curve C has several branches, parametrizations
of each of them are obtained by making suitable choices of roots in Newton’s
algorithm.

While we are on the subject of resolution of plane curve singularities and Newton
polygon, we mention an important work [114] by Monique Lejeune-Jalabert that
paved the way to the approach to resolution of singularities and local uniformization
via key polynomials (see below).

Global resolution of singularities of analytic curves is due to B. Riemann and was
achieved using complex-analytic methods. Indeed, the Riemann surface associated
to a complex-analytic curve is its resolution of singularities.

Purely algebraic proofs of resolution of curve singularities were given much later
by Italian geometers like Albanese [13]. Albanese’s proof consists in projecting
a singular curve embedded in a projective space of a sufficiently large dimension
(more than twice than the degree of the curve) from one of its singular points and
showing that this process improves the singularity. Below we will discuss a beautiful
one-step procedure defined by O. Zariski [168] that resolves singularities of curves.

3.3 Blowing Up, Multiplicity and the Hilbert–Samuel
Function

In this section we introduce one of the main tools for constructing resolution of
singularities: blowing up. Blowing up of a variety X along a subvariety Y (more
generally, along an ideal sheaf I) is a birational projective morphism π : X′ → X,
defined below, that induces an isomorphism π

∣
∣
X′\π−1(Y ) : X′ \ π−1(Y ) → X \ Y .

As we will see, blowing up of a non-singular variety along a non-singular subvariety
is again non-singular. Thus a very general idea for constructing a resolution of
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singularities of a variety X, that we will explain in more detail below, goes as
follows.

(1) Embed X in a non-singular variety Z.
(2) Construct a sequence

Z
ρ1←− Z1

ρ2←− . . .
ρi←− Zi (3.12)

of blowings up along non-singular centers and study the strict transform Xi

of X in Zi (defined below) in the hope of improving and eventually eliminating
the singularities of Xi . We now go for precise definitions.

Let X be an affine algebraic variety with coordinate ring A and I = (f1, . . . , fn)

an ideal of A. As usual, V (I) will denote the zero locus of I .

Definition 3.3.1 The blowing up of X along I is the birational projective mor-
phism π : X̃ → X, defined as follows. Consider the morphism φ : X\V (I) →
X ×k P

n−1
k , which sends every ξ ∈ X \ V (I) to (ξ, (f1(ξ) : · · · : fn(ξ))) ∈

X×kP
n−1
k . The blowing up X̃ is defined to be the closure φ(X \ V (I)) ⊂ X×kP

n−1
k

in the Zariski topology.

Remark 3.3.2 Since the blowing up X̃ = φ(X \ V (I)) ⊂ X ×k P
n−1
k , the natural

projection X ×k P
n−1
k → X induces a map X̃ → X. In particular, X̃ is projective

over X.
The natural map π : X̃ → X is an isomorphism away from V (I) (the inverse

mapping is given by φ). This means that the map π : X̃ → X is birational.

Remark 3.3.3 If X is irreducible (that is, A is an integral domain), then X̃ is covered
by n affine charts Ui , i ∈ {1, . . . , n} with coordinate rings

A

[
f1

fi

, . . . ,
fn

fi

]

, 1 ≤ i ≤ n, (3.13)

where the glueing of the charts is implicit in the notation.

Example 3.3.4

1) Blowing up the plane at a point. Let X = k2 be the affine plane, A = k[x, y]
its coordinate ring and I = (x, y) the ideal defining the origin. Let (u1, u2) be
homogeneous coordinates on P

1
k . We have the map k2\{0} → k2×P

1
k that sends

the point (x, y) to the point (u1 : u2) ∈ P
1
k .

The blowing up X̃ is defined in k2 ×k P
1
k by the equation xu2 − yu1 = 0. For

example, if k = R, then X̃ is nothing but the Möbius band.
Perhaps the most useful way of thinking about the blowing up X̃ is that it
is a variety glued together from two coordinate charts with coordinate rings

k
[
u1, u2

u1

]
and k

[
u2, u1

u2

]
, where, again, the glueing is implicit in the notation.
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2) More generally, we can blow up the affine n-space at the origin. Let

A = k[x1, . . . , xn], I = (x1, . . . , xn).

Let u1, . . . , un denote homogeneous coordinates on P
n−1
k . Then X̃ ⊂

kn × P
n−1
k is the subvariety defined by the equations xiuj − xjui , 1 ≤

i, j ≤ n. Again, X̃ is covered by n coordinate charts with coordinate rings

k
[

u1
ui

, . . . ,
ui−1
ui

, ui,
ui+1
ui

, . . . , un

ui

]
, 1 ≤ i ≤ n.

3) Even more generally, the blowing up X̃ of kn along (x1, . . . , xl) for l < n is the
subvariety of kn × P

l−1 defined by the equations xiuj − xjui , 1 ≤ i, j ≤ l.
The blowing up X̃ is covered by l coordinate charts with coordinate rings

k
[

u1
ui

, . . . ,
ui−1
ui

, ui,
ui+1
ui

, . . . , ul

ui
, ul+1, . . . , un

]
. Intuitively, we may think of

this last construction as first blowing up the origin in kl and then taking the
direct product of the whole situation with kn−l .

3.3.1 The Universal Mapping Property of Blowing Up

We now give a characterization of the blowing up of a variety X along an ideal
I ⊂ A by a universal mapping property (in particular, this characterization makes
no reference to any particular ideal base (f1, . . . , fn) of I ).

Let π : X̃ → X be a morphism of algebraic varieties and I a coherent ideal
sheaf on X. Let X̃ = ⋃

i,j∈�i

Vij and X = ⋃

1≤i≤s

Ui be the respective coverings by

affine charts, where the �i are certain index sets such that π−1(Ui) = ⋃

j∈�i

Vij ,

1 ≤ i ≤ s. Let Ai denote the coordinate ring of Ui and Bij that of Vij . For each i

and each j ∈ �i we have a homomorphism Ai → Bij . Let π∗I denote the coherent
ideal sheaf on X̃ whose ideal of sections over Vij is IiBij .

Let X be a scheme and I a coherent ideal sheaf on X. The idea, which we now
explain in detail, is that the blowing up π : X̃ → X of X along I is characterized
by the universal mapping property with respect to making π∗I invertible (see the
Definition below).

Definition 3.3.5 Let I be an ideal in a ring A. The ideal I is said to be locally
principal if for every maximal ideal m of A the ideal IAm is principal. The ideal I

is said to be invertible if for every maximal ideal m of A the ideal IAm is principal
and generated by a non-zero divisor.

Of course, if A is a domain, then invertible and locally principal are the same thing;
this case will be our main interest in the present paper.

Definition 3.3.6 An ideal sheaf I on a variety X is locally principal if there exists
an affine open cover X = ⋃

i

Ui such that, denoting by Ai the coordinate chart of
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Ui , the ideal IUi of sections of I is a principal ideal of Ai for all i. The ideal sheaf
I is said to be invertible if each IUi is principal and generated by an element which
is not a zero divisor.

Again, if X is irreducible then invertible and locally principal are the same thing.
Let the notation be as in (3.13) above. We have

IA

[
f1

fi
, . . . ,

fi−1

fi
,

fi+1

fi
, . . . ,

fn

fi

]

= (f1, . . . , fn)A

[
f1

fi
, . . . ,

fi−1

fi
,

fi+1

fi
, . . . ,

fn

fi

]

=

= (fi )A

[
f1

fi

, . . . ,
fi−1

fi

,
fi+1

fi

, . . . ,
fn

fi

]

, (3.14)

so that π∗I is invertible on X̃. Since we are dealing with a local property, this
statement remains valid even if X is not affine. In other words, if π : X̃ → X is the
blowing up of a coherent ideal sheaf I, then π∗I is invertible.

We now point out that this property is also sufficient to characterize blowing
up. Namely, the blowing up π of I is the smallest (in the sense explained in
Theorem 3.3.7 below) projective morphism such that π∗I is invertible. More
precisely, we have the following theorem.

Theorem 3.3.7 (The Universal Mapping Property of Blowing Up [88], Propo-
sition II.7.14, p. 164) Let ρ : Z → X be a morphism of irreducible algebraic
varieties such that ρ∗I is invertible. Then ρ factors through X̃ in a unique way.

Proof We briefly sketch the idea of the proof. Since ρ∗I is invertible, at each point

of Z it must be generated by one of the fi . Hence Z admits a covering Z =
n⋃

i=1
Vi

by affine charts with coordinate rings Bi such that IBi = (fi)Bi . Then
fj

fi
∈ Bi , so

A

[
f1

fi

, . . . ,
fi−1

fi

,
fi+1

fi

, . . . ,
fn

fi

]

↪→ Bi. (3.15)

The inclusion (3.15) determines a morphism λi : Vi → Ui of affine algebraic
varieties, where Ui is as in (3.13). Glueing together the morphisms λi , 1 ≤ i ≤ n,
gives the desired factorization of ρ through X̃. ��
Remark 3.3.8 All of the above definitions, constructions and results can easily be
generalized to the case of varieties that may be reducible. We chose to work with
irreducible ones to simplify the notation and the exposition.

3.3.2 Strict Transforms

Let Z be an irreducible variety and I a coherent ideal sheaf on Z. Let ι : X ↪→ Z

be a closed irreducible subvariety of Z with its natural inclusion ι. Let π : Z̃ → Z
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be the blowing up along I. Let X̃ := π−1(X\V (I)) ⊂ Z̃, where “¯” denotes the
closure in the Zariski topology.

Definition 3.3.9 The variety X̃ is called the strict transform of X under π .

Of course, X̃ ⊂ π−1(X) = X̃ ∪ π−1(V (I)). To distinguish it from the strict
transform, π−1(X) is sometimes called the total transform of X under π . We state
the following useful fact without proof.

Theorem 3.3.10 The variety X̃ together with the induced morphism ρ : X̃ → X is
nothing but the blowing up of the coherent ideal sheaf ι∗I on X.

Example 3.3.11 Let k be a field and u, v—independent variables. Let Z = k2 be
the affine plane with coordinate ring k[u, v], I = (u, v) and X—the plane curve{
u2 − v3 = 0

} ⊂ Z.
The blowing up Z̃ of Z along I is covered by two affine charts with coordinate

rings

k
[u

v
, v
]

and k
[
u,

v

u

]
.

Let us denote the coordinates in the first chart U1 by u1, v1, so that v = v1, u =
u1v1. Let u2, v2 be the coordinates in the second chart U2, so that u = u2, v = u2v2.

To calculate the strict transform X̃ of U2, we first find its full inverse image. This
inverse image is defined by the equation u2−v3, but written in the new coordinates:

u2 − v3 = u2
2 − u3

2v
3
2 = u2

2(1− u2v
3
2).

Here u2 = 0 is the equation of the exceptional divisor. To obtain the strict transform
X̃, we must factor out the maximal power of u2 out of the equation. In this case,
X̃ ∩ U2 is defined by 1− u2v3

2. In U1, we have

u2 − v3 = u2
1v2

1 − v3
1 = v2

1(u2
1 − v1).

Here v1 = 0 is the equation of exceptional divisor, so that X̃ ∩ U1 = V (u2
1 − v1).

In particular, note that although X had a singularity at the origin, X̃ is non-singular.
Thus, in this example we started with a singular variety X with one singular point,
blew up the singularity and found that the strict transform of X became non-singular.
That is, we obtained a resolution of singularities of X after one blowing up.
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3.3.3 Fundamental Numerical Characters of Singularity:
Multiplicity and the Hilbert–Samuel Function

We can now elaborate on the very general description of many constructions of
resolution of singularities by sequences of blowings up, given at the beginning of
this section.

Typically, we embed the variety X we want to desingularize into an ambient
non-singular variety Z. Our goal is to successively construct a sequence (3.12) of
blowings up along non-singular centers (that is, blowings up that are isomorphic
to 3) of Example 1 locally in the classical or étale topology) and study the strict
transform Xi of X in Zi . We want to choose the center of the blowing up ρi

at each step so as to “improve” the singularities of Xi . The precise meaning of
“improve” is the following. Associate to each singular point ξ of Xi a discrete,
upper-semicontinuous numerical character d(ξ), that is, an element of a fixed well-
ordered set, usually a finite string of non-negative integers or a function N → N.
Improving the singularities of Xi means ensuring that

max {d(ξ) | ξ ∈ Xi+1 } < max {d(ξ) | ξ ∈ Xi } . (3.16)

Experience shows that the best bet for achieving the strict inequality (3.16) is to
blow up the largest possible centers contained in the maximal stratum of d(ξ).

In this subsection we define the most fundamental numerical characters that
usually go into the leading place of d(ξ): multiplicity and its generalization—the
Hilbert–Samuel function.

Let k be a field, n a strictly positive integer and X = V (f ) an (n−1)-dimensional
hypersurface in kn. Write f = ∑

α

cαuα, where cα ∈ k, u = (u1, . . . , un), α =

(α1, . . . , αn) runs over a finite subset of Nn and uα =
n∏

j=1
u

αj

j is the usual multi-

index notation. Further, we will use the notation |α| =
n∑

j=1
αj .

Definition 3.3.12 The multiplicity of f at the origin of kn is the quantity

mult0f := min{|α| | cα = 0}.

The multiplicity at any other point ξ = (a1, . . . , an) of kn is defined similarly, but
using the expansion of f in terms of ui − ai instead of the ui .

Equivalently, the multiplicity of f at ξ is given by multξ f=max {n ∈ N | f ∈ mn },
where m = { g

h

∣
∣ g, h ∈ k[u], g(ξ) = 0 = h(ξ)

}
is the maximal ideal of the local

ring of kn at ξ .
The only problem with this definition is that it is only valid for hypersurfaces

whereas we would like to work with varieties of arbitrary codimension. The
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generalization of multiplicity that is used in many constructions is the Hilbert–
Samuel function [21], which we now define.

Definition 3.3.13 Let (A, m, k) be a local Noetherian ring. The Hilbert–Samuel
function of A is the function HA,m : N → N, defined by HA,m(n) =
length

(
A

mn+1

)
(considered as an A-module).

By additivity of length,

length

(
A

mn+1

)

=
n∑

i=0

dimk

mi

mi+1 , (3.17)

where the mi

mi+1 are k-modules, that is, k-vector spaces.

Note that since A is Noetherian, each of mi is finitely generated, so that all the
quantities in (3.17) are finite.

Theorem 3.3.14 (Hilbert–Serre) The function HA,m(n) is a polynomial for n (
0. In other words, there exists a polynomial P(n) with rational coefficients, such
that

P(n) = HA,m(n) for n ( 0.

The polynomial P(n) is called the Hilbert polynomial of A.

Notation Let d(A) denote the degree of the Hilbert polynomial of A.

Example 3.3.15

1) Let k be a field and A = k[x1, . . . , xd ] the polynomial ring in d variables. Let
m = (x1, . . . , xd) be the maximal ideal corresponding to the origin in kd . Con-
sider the localization Am. The Hilbert-Samuel function of Am is HAm,m(n) =
length

(
A

mn+1

)
= (n+d

d

)
, which is a polynomial in n of degree d . In this case,

HAm,m(d) is a polynomial for all n, not merely for n sufficiently large.
2) Let B := Am

(f )
, where f is a polynomial of multiplicity μ at the origin and let n

denote the maximal ideal of B. It is not hard to show that

HB,n =
(

n+ d

d

)

if n < μ

=
(

n+ d

d

)

−
(

n+ d − μ

d

)

if n ≥ μ. (3.18)

Now,
(
n+d

d

)−(n+d−μ
d

)
is a polynomial of degree d−1, whose leading coefficient

is μ
(d−1)! . This shows that in the case of hypersurface singularities multiplicity

can be recovered from the Hilbert–Samuel function. In fact, in this case
multiplicity and the Hilbert–Samuel function are equivalent sets of data.
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An important property of multiplicity, the Hilbert–Samuel function and the Hilbert
polynomial is that they are upper semicontinuous. This means that the stratum
of points on an algebraic variety X where the multiplicity (resp. Hilbert–Samuel
function, resp. the Hilbert polynomial) is greater than or equal to a given value is a
closed algebraic subvariety of X.

3.3.4 Normal Flatness and the Stability of the Hilbert–Samuel
Function Under Blowing-Up

In this subsection we provide further details on the above program of resolving the
singularities of any algebraic variety by constructing a sequence (3.12) of blowings
up that strictly decreases a certain upper semicontinuous numerical invariant d(ξ),
ξ ∈ X.

For a point ξ ∈ X, we denote by OX,ξ the local ring of X at ξ , that is, the ring
formed by all the rational functions g

h
on X whose denominator h does not vanish

at ξ . Let mX,ξ denote the maximal ideal of OX,ξ ; it is the ideal formed by all the g
h

such that g(ξ) = 0. Write HX,ξ for HOX,ξ ,mX,ξ
.

We define the leading component of our numerical invariant d(ξ) to be the
Hilbert–Samuel function HX,ξ (resp. multξ X if X is a hypersurface, where multξ X

denotes the multiplicity at ξ of a local defining equation of X in an ambient non-
singular variety Z near ξ ).

Let X be an algebraic variety, Y a subvariety of X and ξ a point of Y . Let IY

denote the ideal sheaf, defining Y in X. The normal cone of Y in X is defined to be
the algebraic variety with coordinate ring

∞⊕

n=0

In
Y

In+1
Y

.

Assume that Y is non-singular.

Definition 3.3.16 (H. Hironaka 1964) We say that X is normally flat along Y at

ξ if
∞⊕

n=0

In

Y,ξ

In+1
Y,ξ

is a free OY,ξ -module. We say that X is normally flat along Y if it is

normally flat at every point ξ ∈ Y (equivalently, if CX,Y is flat over Y ).

Theorem 3.3.17 (B. Bennett, H. Hironaka) The variety X is normally flat along
Y at ξ if and only if HX,η = HX,ξ for all η ∈ Y near ξ (in other words, the Hilbert–
Samuel function of X is locally constant on Y near ξ ).

The next theorem (valid over fields of arbitrary characteristic) constitutes the first
step of the above program of constructing a resolution of singularities of any
algebraic variety by lowering a suitable numerical character d(ξ). Namely, it says
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that a blowing up along a center Y over which X is normally flat does not increase
the Hilbert–Samuel function (resp. multiplicity).

Theorem 3.3.18 (H. Hironaka 1964) Let Y ⊂ X be a non-singular algebraic
subvariety of X over which X is normally flat. Let H denote the common Hilbert–
Samuel function HX,ξ for all ξ ∈ Y . Let π : X̃ → X be the blowing up along Y and
ξ̃ ∈ π−1(Y ). Then

HX̃,ξ̃ ≤ H (3.19)

(we compare Hilbert–Samuel functions in the lexicographical order, but in fact all
the inequalities we write such as (3.19) hold componentwise, that is, separately for
each n).

A subvariety Y as in the Theorem is sometimes referred to as a permissible center
of blowing up and the blowing π itself as a permissible blowing up.

If we can achieve strict inequality in (3.19), our proof of resolution of singular-
ities will be finished by induction. The difficult question is: what to do if equality
holds in (3.19)?

3.4 Resolution of Surface Singularities over Fields of
Characteristic Zero

Resolution of singularities of surfaces was constructed in late nineteenth—early
twentieth century by the Italian school (P. del Pezzo 1892, Beppo Levi 1897 [115,
116], O. Chisini 1921 [51], G. Albanese 1924 [13]) as well as by H.W.E. Jung 1908
[106], followed by the first completely rigorous algebraic proof by R. Walker 1935
[162] and another one by O. Zariski 1939 [169, 171].

Let k be an algebraically closed field of characteristic zero. Below we briefly
summarize Beppo Levi’s, Jung’s and O. Zariski’s constructions of resolution of
singularities of surface over k, with Beppo Levi’s proof valid only for hypersurfaces.

3.4.1 Beppo Levi’s Method

Let X be an algebraic surface over k, embedded in a smooth threefold Z. For a point
ξ ∈ X let multξ X denote the multiplicity at ξ of a local defining equation of X in Z

near ξ . Beppo Levi’s algorithm goes as follows.

1) Let μ = max
{

multξ X
∣
∣ ξ ∈ X

}
.

2) Let Sμ =
{
ξ ∈ X

∣
∣ multξ X = μ

}
. By upper semicontinuity of multiplicity, Sμ

is an algebraic subvariety of X, that is, a union of algebraic curves and points.
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3) First assume that Sμ is not a union of a normal crossings divisor with a finite set
of points.

4) The set of points of Sμ where it fails to be a normal crossings divisor is finite.
Blow up each of these points, and keep doing so until Sμ becomes a union of a
normal crossings divisor with a finite set of points.

5) If Sμ is a union of a normal crossings divisor with a finite set of points, let
π : X̃ → X be a blowing up of an irreducible component of Sμ.

6) By Theorem 3.3.18 (which Beppo Levi proved in the special case of two-
dimensional hypersurfaces over fields of characteristic zero), we have

μ ≥ max
{

multξ̃ X̃

∣
∣
∣ ξ̃ ∈ X̃

}
. (3.20)

7) If equality holds in (3.20), let S̃μ =
{
ξ̃ ∈ X̃

∣
∣
∣ multξ̃ X̃ = μ

}
. Again by

Theorem 3.3.18 we have S̃μ ⊂ π−1(Sμ). Observe that S̃μ is again a union of
a normal crossings divisor with a finite set of points (or the empty set).

8) Keep repeating the procedure of 5) until the locus of points of multiplicity μ

becomes the empty set. This completes the proof by induction on μ.

Remark 3.4.1 Predictably, Beppo Levi’s method of resolution of singularities fails
starting with dimension three. Reference [144] gives an example of a threefold X

in k4 all of whose singular points have multiplicity 2. The locus of multiplicity
2 is a normal crossings subvariety consisting of two lines that meet each other at
the origin. Blowing up any one of the two lines produces a new threefold whose
multiplicity 2 locus is a union of three lines. Blowing up one of those three lines
yields a threefold containing a singularity, isomorphic to the origin in X. Thus there
exists an infinite sequence of blowings up along non-singular components of the
locus of multiplicity 2 which does not resolve the singularities of X.

It was later pointed out by Zariski that none of the proofs of resolution of surfaces
by the Italian geometers was complete and some were outright wrong. The first
completely rigorous algebraic proof was given by R. Walker in 1935 [162].

3.4.2 Normalization

Before discussing the proofs by Jung and O. Zariski of 1939, we need to introduce
the notion of normalization.

Let A be an integral domain with field of fractions K . We may consider the
integral closure Ā of A in K (sometimes it is also called the normalization of A).
If A if of finite type over k, it is the coordinate ring of an irreducible affine algebraic
variety X. The inclusion A ↪→ Ā gives rise to the natural birational finite (hence
projective) morphism π : X̄ → X of irreducible algebraic varieties. The canonical
morphism π is called the normalization of the variety X. Because of the uniqueness
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of normalization, even if X is not affine, the separate normalizations of the various
affine charts of X glue together in a natural way to yield the normalization of X.

Definition 3.4.2 An integral domain is said to be normal if it coincides with its
normalization. An algebraic variety is said to be normal if the coordinate rings of all
of its affine charts are normal.

The notion of normalization was defined (surprisingly late—in 1939) by Oscar
Zariski [168]. This is a great example of the usefulness of the algebraic language
in geometry: this notion, extremely important as it turned out to be, did not
occur to anyone until the algebraic language was developed. The importance of
normalization for resolution of singularities is explained by the following result.

Theorem 3.4.3 (Zariski) Let A be a one-dimensional Noetherian local ring. Then
A is regular if and only if A is normal.

Corollary 3.4.4 (Zariski) If X is a normal algebraic variety,

dim Sing(X) ≤ dim X − 2.

Geometrically, Theorem 3.4.3 says that normalization resolves the singularities of
curves. More generally, it says that for an arbitrary reduced variety normalization
resolves the singularities in codimension 1. When normalization was defined, the
theorem of resolution of singularities of curves was known for almost a century,
yet it was quite a surprise that it had such a simple and elegant proof and that the
procedure for desingularization had such a simple description.

We now summarize Jung’s and Zariski’s methods for the resolution of surfaces.

3.4.3 Jung’s Method

1) Fix a projection σ : X → C
2 from our affine singular surface X to a plane and

consider the branch locus C of the σ .
2) Apply embedded resolution of plane curve singularities to the curve C, that is,

construct a sequence ρ : W ′ → C
2 of point blowings up such that the total

transform of C under ρ is a normal crossings divisor.
3) Let X′ := X ×

C
2 W ′. We obtain a cartesian square

X

σ

X

σ

W
ρ

C
2 (3.21)

4) Let X̄ → X′ be the normalization of X′. The branch locus of X̄ over W ′ is still
a normal crossings divisor.
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5) Observe that the fact that the branch locus of the normal surface X̄ has normal
crossings implies that the singularities of X̄ are of a very special type, namely,
cyclic quotient singularities (that is, singularities obtained from C

2 by taking a
quotient by a cyclic group; these are precisely the toric ones among the normal
surface singularities).

6) Resolve the cyclic quotient singularities by hand.

Remark 3.4.5 Even though normalization was officially defined by Zariski in 1939,
Jung constructs it by hand in this special case. Items 4) and 6) in Jung’s proof use
complex-analytic and topological methods (namely, the theory of ramified coverings
of analytic varieties).

3.4.4 Zariski’s Method

Let k be an algebraically closed field of characteristic zero and X an algebraic
surface over k. Zariski’s method for desingularizing X goes as follows.

1) Let X̄ → X be the normalization of X. According to Corollary 3.4.4, Sing
(
X̄
)

has codimension 2 in X̄, that is, is a finite union of isolated points.
2) Let X′ → X be the blowing up of all the singular points of X̄.
3) Replace X by X′ and go back to step 1). Keep iterating steps 1) and 2) until the

singularities are resolved.

Remark 3.4.6 Zariski’s algorithm has the virtue of being extremely easy to state.
However, proving that it works is technically quite difficult (an improved version of
this result was given later by J. Lipman). An intermediate step in the proof is to show
that after finitely many iterations the resulting surface X(i) has only sandwiched
singularities (see the definition below).

Definition 3.4.7 A surface singularity (X, ξ) is said to be sandwiched if a neigh-
bourhood of ξ in X admits a birational map to a non-singular surface.

Being sandwiched is quite a strong restriction; in particular, sandwiched singulari-
ties are rational.

3.5 Oscar Zariski

The appearance on the scene of O. Zariski and his school marks a completely new
era in the study of resolution of singularities. In the earlier section we mentioned the
introduction of normalization which gives a one-step procedure for desingularizing
curves in all characteristics, as well as Zariski’s proof of resolution for surfaces.
In the late nineteen thirties and early forties Zariski proposed a completely new
approach to the problem using valuation theory (building on some earlier ideas of
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Krull). In a nutshell this approach can be summarized as saying that valuation theory
provides a natural notion of “local” in birational geometry and allows to state a local
version of the resolution problem called Local Uniformization.

3.5.1 Valuations

For a detailed treatment of the basics of valuation theory, we refer the reader to [174]
and [155].

Definition 3.5.1 An ordered group is an abelian group � together with a subset
P ⊂ � (here P stands for “positive elements”) which is closed under addition and
such that

� = P
∐
{0}
∐

(−P).

Remark 3.5.2 The above decomposition induces a total ordering on �:

a < b ⇐⇒ b − a ∈ P.

Thus an equivalent way to define an ordered group would be “a group with a total
ordering which respects addition, that is, a > 0, b > 0 ,⇒ a + b > 0”.

Note that an ordered group is necessarily torsion-free.

Example 3.5.3 The additive groupsZ,R with the usual ordering are ordered groups.
Any subgroup � ⊂ R is an ordered group with the induced ordering (more generally,
any subgroup of an ordered group is an ordered group). The group Z

n with the
lexicographical ordering is an ordered group.

All the ordered groups that appear in algebraic geometry are subgroups of groups

of the form
r⊕

i=1
�i , where �i ⊂ R for all i and the total order is lexicographic.

We are now ready to define valuations. Let K be a field, � an ordered group. Let
K∗ denote the multiplicative group of K .

Definition 3.5.4 A valuation of K with value group � is a surjective group
homomorphism ν : K∗ → � such that for all x, y ∈ K∗

ν(x + y) ≥ min{ν(x), ν(y)}. (3.22)

Remark 3.5.5 Let K be a field, ν a valuation of K and x, y non-zero elements of
K such that ν(x) = ν(y). It is a consequence of Definition 3.5.4 that in this case
equality must hold in (3.22), that is,

ν(x + y) = min{ν(x), ν(y)}. (3.23)
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Example 3.5.6 Let X be an irreducible algebraic variety, K = K(X) its field of
rational functions, ξ ∈ X such that OX,ξ is a regular local ring. Let mX,ξ be the
maximal ideal of OX,ξ . Define νξ : K∗ → Z by

νξ (f ) = multξ f = max
{
n

∣
∣
∣ f ∈ mn

X,ξ

}
, f ∈ OX,ξ .

The map νξ extends from OX,ξ to all of K in the obvious way by additivity:

νξ

(
f

g

)

= νξ (f )− νξ (g).

The map νξ induces a group homomorphism because
⊕ mn

X,ξ

mn+1
X,ξ

is an integral domain.

In the above example, note that ξ could be any scheme-theoretic point; for
example, it could stand for the generic point of an irreducible codimension 1
subvariety. In that case, the condition that OX,ξ be non-singular holds automatically
whenever X is normal (Theorem 3.4.3).

Remark 3.5.7 Let X be an irreducible algebraic variety, A its coordinate ring,

K = K(X)

the field of fractions of A, I ⊂ A an ideal. We can generalize the above example as
follows. Define

νI (f ) = max{n | f ∈ In}, for f ∈ A.

In general, νI is a pseudo-valuation, which means that the condition of additivity
in the definition of valuation is replaced by the inequality νI (xy) ≥ νI (x)+ νI (y).
The map νI is a valuation if and only if ⊕ In

In+1 is an integral domain (a condition
which always holds if I is maximal and AI is regular).

Valuations of the form νI are called divisorial. The reason for this name is that
if A is the coordinate ring of an affine algebraic variety X, even if dim AI > 1, we
can always blow up X along I . Let π : X̃ → X be the blowing up along I . Then
K(X) = K

(
X̃
)
.

The property that ⊕ In

In+1 is a domain means that the exceptional divisor

D̃ := V (π∗I) = π−1(V (I))

is irreducible. Then OX̃,D̃ is a regular local ring of dimension 1 and νI = νD̃

measures the order of zero or pole of a rational function at the generic point of
D̃. This example illustrates an important philosophical point about valuations: a
valuation is an object associated to the field K , that is, to an entire birational
equivalence class, not to a particular model in that birational equivalence class. Thus
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to study a given valuation, one is free to perform blowings up until one arrives at a
model which is particularly convenient for understanding this valuation.

Valuation Rings
Let K be a field, � an ordered group, ν : K∗ � � a valuation of K . Associated

to ν is a local subring (Rν,mν) of K , having K as its field of fractions:

Rν = {x ∈ K∗ | ν(x) ≥ 0} ∪ {0}
mν = {x ∈ K∗ | ν(x) > 0} ∪ {0}. (3.24)

Example 3.5.8 (Divisorial Valuations) Let X be an irreducible algebraic variety,
D ⊂ X a closed irreducible subvariety, ξ the generic point of D.

Assume that OX,ξ is a regular local ring of dimension 1. Let t be a generator of
mX,ξ . Then K = (OX,ξ )t . Indeed, any element f ∈ OX,ξ can be written as f = tnu,
where n ∈ N and u is invertible. For each f = tnu as above, we have νD(f ) = n.
Then Rν = OX,D .

Definition 3.5.9 Let (R1,m1), (R2,m2) be two local domains with the same field
of fractions K . We say that R2 birationally dominates R1, denoted R1 < R2, if

R1 ⊂ R2 and (3.25)

m1 = m2 ∩ R1. (3.26)

Remark 3.5.10 One of the main examples of birational domination encountered in
algebraic geometry is the following. Let X be an irreducible algebraic variety and
π : X′ → X a blowing up of X. Let ξ ∈ X, ξ ′ ∈ X′ be such that ξ = π(ξ ′). Then
OX,ξ < OX′,ξ ′ .

Theorem 3.5.11 Let (R,m) be a local domain with field of fractions K . The
following conditions are equivalent:

(1) R = Rν for some valuation ν : K∗ � �

(2) for any x ∈ K∗, either x ∈ R or 1
x
∈ R (or both)

(3) the ideals of R are totally ordered by inclusion
(4) (R,m) is maximal (among all the local subrings of K) with respect to birational

domination.

Remark 3.5.12 Although we omit the proof of Theorem 3.5.11, we note that the
proof of the implication (3) ,⇒ (1) involves reconstructing the valuation ν (in
a unique way, modulo the obvious equivalence relation) from the valuation ring.
Hence the valuation ring Rν determines ν up to equivalence.

For future reference, we define two important numerical characters of valuations:
rank and rational rank.
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Definition 3.5.13 An subgroup � of an ordered group � is said to be isolated if �

is a segment with respect to the given ordering: if a ∈ �, b ∈ � and −a ≤ b ≤ a

then b ∈ �.

The set of isolated subgroups of an ordered group � is totally ordered by inclusion.

Definition 3.5.14 Let ν be a valuation with value group �. The rank of ν, denoted
rk ν, is the number of distinct isolated subgroups of �. We have rk ν = dim Rν .

Definition 3.5.15 The rational rank of ν is, by definition, rat.rk ν := dimQ �⊗ZQ.

Theorem 3.5.11 (in particular, its part (4)) paves the way for a geometric interpreta-
tion of valuations. This is due to Zariski in the nineteen forties, when he developed
valuation theory with the express purpose of applying it to the problem of resolution
of singularities. To explain how valuations provide a natural notion of “local” in
birational geometry and to give a precise statement of the Local Uniformization
Theorem we need the notion of center of a valuation and also that of local blowing
up with respect to a valuation, which we now define.

Definition 3.5.16 Let (R,m, k) be a local domain with field of fractions K and ν

a valuation of K . We say that ν is centered in R if R < Rν (this is equivalent to
saying that ν(R) ≥ 0 and ν(m) > 0).

If X is an irreducible algebraic variety with K = K(X) and ξ a point of X, we
say that ν is centered in ξ (or that ξ is the center of ν on X) if it is centered in the
local ring OX,ξ , that is, if OX,ξ < Rν .

The center of a given valuation ν on a variety X is uniquely determined by ν.
Let X be an irreducible algebraic variety, ξ a point of X and I a coherent ideal

sheaf on X. Let π : X1 → X be the blowing up of X along I. Take a point
ξ1 ∈ π−1(ξ). The map π induces a local homomorphism σ : OX,ξ → OX1,ξ1 of
local rings.

Definition 3.5.17 A homomorphism of the form σ : OX,ξ → OX1,ξ1 , where ξ1
is a point of π−1(ξ), is called a local blowing up of OX,ξ along IX,ξ . Let ν be a
valuation, centered at OX,ξ . We say that σ is a local blowing up with respect to ν

if ν is centered at OX1,ξ1 , that is,

ν(OX1,ξ1) ≥ 0
(
OX1,ξ1

) ≥ 0

and ν
(
mX1,ξ1

)
> 0.

Let X be an irreducible algebraic variety, ξ a point of X and ν a valuation of K =
K(X), centered at ξ . Let π : X′ → X be a birational projective morphism. The
following theorem is a version of the valuative criterion of properness:

Theorem 3.5.18 There exists a unique point ξ ′ ∈ π−1(ξ) such that ν is centered in
ξ ′.
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The notion of center of a valuation together with Theorem 3.5.18 allows us to divide
the problem of resolution of singularities into two parts: local and global. The local
version of resolution of singularities is called Local Uniformization.

Let X, K and ν be as above and assume that ν is centered at a point ξ of X.

Definition 3.5.19 A local uniformization of X with respect to ν is a birational
projective morphism π : X′ → X such that the center ξ ′ of ν in π−1(ξ) is a regular
point of X′.

Zariski proved in 1940 that if X is an algebraic variety over a field of characteristic
zero then X admits a local uniformization with respect to any valuation, centered at
a point of X [170]. The same question is still open for fields of characteristic p > 0
(the papers [130, 131] and [132] show that to prove Local Uniformization in its full
generality, it is sufficient to prove it for valuations of rank 1).

Clearly, a resolution of singularities π : X′ → X also constitutes a local
uniformization simultaneously with respect to every valuation ν, centered at a point
of X. The converse, however, is not so clear: assume that local uniformization is
known with respect to every valuation. Does this imply the existence of resolution
of singularities of X?

To study this question, Zariski introduced what is known today as the Zariski–
Riemann space. Let X be an irreducible algebraic variety. Consider the totality of all
the birational projective morphisms Xα → X. This set naturally forms a projective
system, whose arrows are birational projective morphisms. Indeed, given two such
morphisms

Xα → X and (3.27)

Xβ → X, (3.28)

one can construct a new variety Xαβ together with birational projective morphisms

λα : Xαβ → Xα, (3.29)

λβ : Xαβ → Xβ (3.30)

which make the diagram

Xαβ

λβ

λα

Xβ

πβ

Xα
πα

X (3.31)

commute. The variety Xαβ is the unique irreducible component of the cartesian
product Xα ×X Xβ which maps dominantly onto X, Xα and Xβ . More explicitly,
since πα and πβ are birational, there exist non-empty open subvarieties U ⊂ X,
Uα ⊂ Xα and Uβ ⊂ Xβ such that πα|Uα : Uα

∼= U and πβ |Uβ : Uβ
∼= U . Then
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U ∼= Uα ×U Uβ embeds naturally into Xα ×X Xβ as an irreducible open set. The
variety Xαβ is nothing but the Zariski closure of U in Xα ×X Xβ . Geometrically,
one should think of Xαβ as the graph of the birational correspondence between Xα

and Xβ .
Let S := lim←−

α

Xα.

Theorem 3.5.20 (Zariski) There is a natural bijection between S and the set

M := {valuations ν of K, centered at points of X} .
We briefly sketch the proof.

Proof First, fix a valuation ν of K , centered at a point ξ ∈ X. By Theorem 3.5.18,
for each πα : Xα → X in our projective system, there exists a unique ξα ∈ π−1(ξ)

such that ν is centered at ξα . Therefore we can associate to ν a collection {ξα ∈
Xα}α, compatible with the morphisms in our projective system, that is, an element
of S. This defines a natural map f : M → S.

Conversely, take an element {ξα ∈ Xα}α ∈ S. The local rings OXα,ξα form
a direct system, whose arrows are relations of birational domination. It should
therefore not come as a surprise that the direct limit R := lim−→→α

OXα,ξα of this

system is a local subring of K , maximal with respect to <, that is, a valuation
ring. To prove this rigorously, a short argument using the equivalence (1)⇐⇒(2)
of Theorem 3.5.11 is required. We omit the details.

This defines the map g : S → M . It is routine to check that the maps f and g are
inverse to each other. ��
Definition 3.5.21 The set S is called the Zariski–Riemann space associated to X.

Zariski’s original name for this object (in the special case when X was a projective
variety over k) was the abstract Riemann surface of the field K . The thinking was
that in the special case when k = C and dim X = 1, the projective system defining
S is finite and its inverse limit is nothing but the resolution of singularities of X,
that is, a smooth complex projective curve, or a Riemann surface. However, when
dim X ≥ 2, S does not even have a structure of a variety or a scheme, only one of
a ringed space. It resembles more John Nash’s space of arcs than it does anything
like a Riemann surface. This is why the name “Zariski–Riemann space” seems more
appropriate.

In order to address the problem of “glueing” the local uniformizations with
respect to various valuations, it is useful to introduce a topology on S. Namely,
S is naturally endowed with the inverse limit topology (which is usually referred to
as the Zariski topology on S). By definition of inverse limit, for each Xα in our
projective system we have a natural map ρα : S → Xα ; this map assigns to each
valuation ν centered at a point ξ ∈ X the center of ν in Xα , lying over ξ . A base
for the Zariski topology is given by all the sets of the form ρ−1

α (U) where Xα runs
over the entire projective system and U over all the Zariski open sets of Xα . In other
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words, the Zariski topology is the coarsest topology which makes all the maps ρα

continuous.

Theorem 3.5.22 (Zariski [173], Chevalley) The topological space S is compact.

We spell out the main idea of the proof. By definition, S comes with a natural
embedding ι into the direct product

∏

α
Xα . Each Xα is compact with respect to

its Zariski topology, hence so is
∏

α
Xα by Tychonoff’s theorem. If all the topologies

in sight were Hausdorff, ι would be a closed embedding, and the compactness of S

would follow immediately. Indeed, this is how one proves a standard theorem from
general topology: an inverse limit of compact Hausdorff spaces is again compact.

Unfortunately, none of the spaces we are working with here are Hausdorff. The
next idea is to replace the Zariski topology on the Xα by a finer, Hausdorff topology,
pass to the inverse limit and conclude compactness as above, and then observe that
the compactness property is preserved by passing from a finer topology to a coarser
one. This is, indeed, what Zariski did in the special case of projective varieties over
C. He replaced the Zariski topology by the classical Euclidean topology and the
proof was completed as above. Finally, Chevalley came up with a proof, which
follows roughly the same plan, but is applicable to varieties over fields of any
characteristic and even to arbitrary noetherian schemes.

Once Zariski proved the Local Uniformization Theorem in characteristic zero,
his plan went as follows. For each valuation ν ∈ S, let π : X′ → X be the local
uniformization with respect to ν and let ξ ′ be the center of ν on X′. Let U denote
the preimage in S of the set Reg(X′). By definition, U is an open set, containing
ν. Furthermore, for every ν′ ∈ U the map π constitutes local uniformization
also with respect to ν′. Conclusion: once we achieve local uniformization with
respect to some ν ∈ S, we automatically achieve it for all the valuations in some
open neighbourhood U of ν. Since this can be done for every ν ∈ S, we obtain
an open covering of S by sets U , for each of which there exists a simultaneous
local uniformization of all the elements of U . By compactness, this open covering
admits a finite subcovering. Finally, we obtain: there exist finitely many birational
projective morphisms πi : Xi → X, 1 ≤ i ≤ n, having the following property.
Let ρi : S → Xi denote the natural map, given by the definition of projective limit.

Then
n⋃

i=1
ρ−1(Reg(Xi)) = S.

At this point, the problem of resolution of singularities in characteristic zero was
reduced to one of “glueing” the n partial desingularizations Xi together to produce
a global resolution of singularities. More precisely by induction on n it is sufficient
to prove the following:

There exists an algebraic variety X12 together with birational projective mor-
phisms

λ1 : X12 → X1 (3.32)

λ2 : X12 → X2, (3.33)
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having the following properties:

1) the diagram

X12
λ2

λ1

X2

π2

X1
π1

X (3.34)

commutes
2) we have Reg(X12) ⊃ λ−1

1 (Reg(X1)) ∪ λ−1
2 (Reg(X2)).

The glueing problem is highly non-trivial because the local uniformization
algorithms used to construct the partial resolutions Xi depend on the respective
valuations. A priori absolutely nothing is known about the nature of the birational
correspondences among the various Xi .

Zariski was able to solve this problem in dimension 2 by proving his famous
factorization theorem: a birational morphism between non-singular surfaces is a
composition of point blowings up (see [10] for a much more difficult version of this
result in higher dimensions). It is also worth mentioning that Zariksi’s factorization
theorem together with Castelnuovo’s criterion for contractibility of rational curves
on non-singular surfaces implies the existence of minimal resolution for surfaces,
that is, a resolution such that every other resolution of singularities factors through
it.

With much greater difficulty Zariski advanced to dimension three [172]. This
work of Zariski was recently generalized and systematized by O. Piltant [136].
Thanks to this, we now have a general procedure for glueing local uniformizations in
dimension three in a much more general context and for much more general objects
than just algebraic varieties or schemes.

3.6 Resolution of Singularities of Algebraic Varieties over
a Ground Field of Characteristic Zero

Almost twenty-five years have passed after Zariski’s proof of his Local Uniformiza-
tion Theorem until H. Hironaka proved the existence of resolution of singularities
in characteristic zero without using valuations or the Zariski–Riemann space. This
(next) revolution in the field of resolution of singularities is the subject of the present
section.

Theorem 3.6.1 (H. Hironaka [93]) Every variety X over a ground field of charac-
teristic zero admits a resolution of singularities.

Hironaka’s original proof of this was over 200 pages long. It is one of the most
technically difficult and one of the most often quoted results of the twentieth century
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mathematics. We give a very brief sketch of the main ideas of the proof, as seen from
55 years into the future.

Proof

Step 1. The definition of normally flat (see Definition 3.3.16 and Theo-
rem 3.3.17).

Step 2:

Proposition 3.6.2 Let X be an algebraic variety and Y a smooth subvariety of X.
Assume that X is normally flat along Y . Let π : X̃ → X be the blowing up of
X along Y . Take a point ξ̃ ∈ π−1(Y ). Then the Hilbert–Samuel function HX̃,ξ̃ is
smaller than or equal to the common Hilbert–Samuel function HX,ξ of all the points
ξ ∈ X. In particular, the blowing up π does not increase the maximal value of the
Hilbert–Samuel function HX,ξ of all the points ξ ∈ X. ��
To complete the proof of the Theorem, it is sufficient to construct a sequence of
blowings up of X that decreases the Hilbert–Samuel function strictly.

Step 3. Reduce the problem to the case when X is an n-dimensional hypersurface
embedded into kn+1:

X = V (f ), where f ∈ k[x, y], y is a single variable and x = (x1, . . . , xn).

(3.35)

This amounts to choosing a Gröbner basis (or a standard basis in Hironaka’s
terminology) (f1, . . . , fr ) of the defining ideal I of X having the following
properties.

(a) The maximal locus of the Hilbert–Samuel function of X is equal to the
intersection of the loci of maximal multiplicity of the polynomials fi . In
particular, a blowing up center Y is permissible for X if and only if it is
simultaneously permissible for each of the hypersurfaces V (fi). This property
holds after any permissible sequence of blowings up under which the maximal
value of the Hilbert–Samuel function does not decrease.

(b) Let

π : X̃ → X (3.36)

be a permissible sequence of blowings up. The sequence π strictly decreases
the maximal value of the Hilbert–Samuel function of X if and only if it
strictly decreases the maximal multiplicity of a singularity of at least one of
the hypersurfaces V (fi).

Remark 3.6.3 In 1977 H. Hironaka proved that, regardless of the characteristic of
the ground field there exists a basis (f1, . . . , fr ) of I such that (a) and (b) hold [97].

Step 4. From now on, assume that X is a hypersurface as in (3.35). Let μ :=
mult0f ; assume that μ is the greatest multiplicity of a singular point of X. Using
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the Henselian Weierstrass Preparation Theorem, further reduce the problem to

the case when f has the form f (x, y) = yμ+
μ∑

i=1
φi(x)yμ−i , where mult0φi ≥ i.

This requires replacing X by a suitable étale covering, but we will not dwell on
this point here.

Step 5. Make the Tschirnhausen transformation, that is, the change of coordi-
nates y → y+ 1

μ
φ1(x). This amounts to ensuring that in the new coordinates we

have

φ1(x) = 0. (3.37)

We will assume that (3.37) holds from now on. In this situation we say that y is
a maximal contact coordinate for X.

Step 6. The following Proposition is proved by an easy direct calculation.

Proposition 3.6.4

(1) The maximal contact hyperplane W := {y = 0} contains all the points of X

of multiplicity μ sufficiently close to the origin. In particular, every permissible
center Y is contained in W .

(2) Let (3.36) be a permissible blowing up with center Y . Take a point ξ̃ ∈ π−1(Y )

and let f̃ be a local defining equation of X̃ near ξ̃ . If multξ̃ f̃ = μ then ξ̃ lies in
the strict transform of W . ��

This looks like a good setup for induction on dim X. Indeed, on the one hand, we
are only interested in blowing up centers Y that are contained in the hyperplane W .
On the other hand, the only points we are interested in studying after blowing up
belong to the strict transform of W . Thus the next idea is to try to define a variety
V strictly contained in W and relate the problem of desingularizing V to that of
desingularizing our original variety X.

Step 7. In fact, instead of a variety V we need to consider a more general object:
a scheme, defined by the idealistic exponent, associated to f . Precisely, consider

the ideal H :=
(

φ
μ!
i

i

)

2≤i≤μ

⊂ k[x]. After defining the notion of a permissible

blowing up center for V (H) and showing that a center Y is permissible for V (H)

if and only if it is permissible for X, one can use the induction assumption to
construct a sequence (3.36) of permissible blowings up that monomializes the
ideal H (by this we mean that π∗H is principal and generated locally near every
point of X̃ by a single monomial in suitable coordinates; this should be thought of
as an embedded resolution of V (H)). This is an important feature of Hironaka’s
construction: in order to construct a resolution of singularities of n-dimensional
varieties, we need embedded resolution in dimension n−1. Because of this, both
resolution and embedded resolution are proved by two simultaneous inductions:
embedded resolution in dimension n − 1 ,⇒ resolution in dimension n ,⇒
embedded resolution in dimension n.
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Step 8. By Step 7, assume that H is generated by a monomial ω. To monomialize
f it remains to construct a sequence of blowings up along permissible coordinate
subvarieties (3.36) such that at each point of X̃ one of the monomials ω and yμ!
divides the other. This is a special case of a purely combinatorial problem that
has been variously called Hironaka’s game, Perron’s algorithm and resolution
of (not necessarily normal) toric varieties by permissible blowings up. It is the
combinatorial skeleton of resolution of singularities that appears, implicitly or
explicitly in every desingularization algorithm that consists of a sequence of
blowings up along non-singular subvarieties of the ambient regular variety. We
refer the reader to [71, 142, 170] and [125] for various solutions of this problem
(see [143] for a counterexample to a harder version of Hironaka’s game, needed
for resolution in characteristic p > 0). ��

Remark 3.6.5 The assumption char k = 0 is used crucially in Step 5. Naively,
one sees that 1

μ
makes no sense when char k = p > 0 and p | μ. More

seriously, R. Narashimhan [128] gave the following example showing that in
positive characteristic there might not exist a non-singular subvariety satisfying (1)
of Proposition 3.6.4, that is, containing all the points of multiplicity μ sufficiently
near the origin.

Example 3.6.6 Let k be a perfect field of characteristic 2 and consider the hyper-
surface X defined by f (x, y) = y2 + x1x

3
2 + x2x

3
3 + x3x

7
1 = 0 in k4. This

threefold has multiplicity 2 at the origin and all of its points are either non-singular
or have multiplicity 2, so its multiplicity 2 locus coincides with the singular locus.
The singular locus Sing(X) is defined by ∂f

∂x1
= ∂f

∂x2
= ∂f

∂x3
= 0, that is,

x3
2 +x3x6

1 = x1x
2
2 +x3

3 = x2x
2
3 +x7

1 = 0. We find that Sing(X) is the parametrized
curve t → (

t7, t19, t15, t32
)

and that this curve has embedding dimension 4 at the
origin. Thus it is not contained in any proper non-singular subvariety of k4 passing
through the origin. This shows that in this case there does not exist a non-singular
variety W satisfying (1) of Proposition 3.6.4.

Much work has been done since 1964 to simplify and better understand
resolution of singularities in characteristic zero. We mention [18, 20, 22–35, 41–
43, 65, 76, 77, 90, 112, 150–152, 160, 163, 166, 167].

Many of the later proofs (starting with Bierstone–Milman and Villamayor) have
the following transparent structure. One defines a discrete, upper semi-continuous
numerical character of singularity d(ξ), consisting of the Hilbert–Samuel function
followed by a finite string of non-negative integers. We regard the set of possible
values of d(ξ) as being totally ordered by the lexicographical ordering. One stratifies
the singular variety X according to d(ξ). By upper semi-continuity, the maximal
stratum Smax of d(ξ) is a closed subvariety of X. One shows that Smax is a normal
crossings subvariety and chooses one of its coordinate subvarieties Y in a canonical
way (discussed and explained below by example). One lets π : X̃ → X be the
blowing up along Y and one shows that for every ξ̃ not belonging to the strict

transforms of components of Smax other than Y we have d
(
ξ̃
)

< d(ξ). Repeating
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this procedure for the other components of Smax we strictly lower the maximum
value of d(ξ). This completes the proof by induction on d(ξ).

3.6.1 Functorial Properties of Resolution in Characteristic
Zero

The later proofs cited above are functorial with respect to smooth morphisms (flat
morphisms with non-singular fibers). This means that they produce a functor from
the category of varieties and smooth morphisms to the category of non-singular
varieties and smooth morphisms that assigns to each variety X its resolution of
singularities X̃. Being a functor simply means that each smooth morphism of
varieties φ : X → V lifts (necessarily uniquely) to a smooth morphism φ̃ : X̃ → Ṽ

of their resolutions. In particular, if φ is an open embedding (resp. an isomorphism),
so is φ̃. In this way we obtain that our procedure of resolution of singularities is
equivariant with respect to automorphisms of X, any group actions on X, etc.

Choosing a Unique Coordinate Subvariety of Smax in a Canonical Way
We illustrate the situation by example.

Example 3.6.7 Consider the surface X defined by the equation z2 − x3y3 = 0.
Its singular locus coincides with its locus of multiplicity 2 and is the union of the
x-axis and the y-axis. These two axes play a symmetric role (in fact, they can
be carried into each other by an automorphism X). From a naive point of view,
blowing up the origin does not seem to improve the singularity, so one is tempted
to blow up one of the one-dimensional components of Sing(X). However, there is
no way to do this and respect the functoriality described above. Even if one did not
care for functoriality in its own right, a desingularization algorithm that involves an
arbitrary choice of a branch would present serious problems: after all, there could
be a singularity that locally looks like X but such that the two branches of Sing(X)

are in fact two branches of the same irreducible curve.

The modern solution to this problem goes as follows. Start by blowing up the
origin since it is the only canonical choice that can be made. The multiplicity 2
locus Sing

(
X̃
)

of X̃ now consists of three lines: the respective strict transforms L̃x

and L̃y of the x- and the y-axes and the exceptional divisor E. At first glance the
singular points E ∩ L̃x and E ∩ L̃y look worse than the singularity at the origin
that we started with, and Sing

(
X̃
)

is again a union of two lines near each of those
points. However, they have one important new advantage: there is a natural ordering
on the set of irreducible components of the equimultiple locus, namely, the order of
appearance of those components in the history of the resolution process until this
point. This settles the difficult issue of which component should be blown up first.

This points to another important feature of all the known resolution procedures
by permissible blowings up: the choice of the blowing up center at each step depends
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not only on our singular variety itself but also on the history of the resolution process
up to the given point.

Two recent preprints, [11] and [122], get around this problem by working in the
2-category of excellent Deligne–Mumford stacks instead of varieties or schemes
(stacks are beyond the scope of this survey, but a definition of excellent and quasi-
excellent schemes is given in the Appendix).

Finally, we mention a construction of resolution of singularities of analytic
varieties due to J.M. Aroca, H. Hironaka and J.L. Vicente Cordoba [14–16] as well
as the paper [98] by H. Hironaka.

3.7 Resolution of Singularities of Algebraic Varieties over
a Ground Field of Positive Characteristic

3.7.1 Resolution in Dimensions 1, 2 and 3

As mentioned above, resolution of curve singularities in arbitrary characteristic was
settled in 1939 when Zariski defined normalization: this one-step procedure works
equally well in characteristic zero and characteristic p > 0.

The first proof for surfaces is due to S. Abhyankar in 1956 [1] with subsequent
strengthenings by H. Hironaka [100] and J. Lipman [117] to the case of more general
2-dimensional schemes, with Lipman giving necessary and sufficient condition for
a 2-dimensional scheme to admit a resolution of singularities. See also [64].

The next breakthrough came in 1966, again due to S. Abhyankar, who proved
resolution of singularities for threefolds except in characteristics 2, 3 and 5. The
idea of Abhyankar’s proof is the following. The starting point of the proof is an
Auxiliary Theorem which says that any d-dimensional variety over an algebraically
closed ground field can be birationally transformed to a variety having no e-fold
point for any e > d!. The proof of this Auxiliary Theorem generalizes an argument
used by Albanese [13] in the surface case combined with the Veronese embedding.
Since 3! = 6, in the special case d = 3 we obtain that our variety has singularities
of multiplicity at most 6. If p > 6 then all the singularities have multiplicity strictly
smaller than the characteristic of the ground field (this is precisely the reason for the
restriction on the characteristic of the ground field in Abhyankar’s proof). Roughly
speaking, in this situation one can imitate characteristic zero methods to finish the
proof. Still, Abhyankar’s proof is extremely technical and difficult and comprises a
total of 508 pages [2–6]. For a more recent and more palatable proof we refer the
reader to [66].

Resolution of singularities for surfaces was reproved by J. Giraud in 1983 [80],
using a novel idea that has proved to be very influential for subsequent work (see
also [52, 57–59]). Namely, let k be a perfect field of characteristic p > 0 and
consider the (typical and significant) special case of a surface in k3, defined by
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an equation of the form

f (x1, x2, y) = yp − g(x1, x2) = 0, (3.38)

where g is some polynomial in two variables of multiplicity strictly greater than p.
If we wanted to imitate characteristic zero methods, we would naturally study the
transformation law for g under blowing up and try to relate the resolution problem
for f to the problem of monomialization of g. We already mentioned in the previous
section that the main obstruction to imitating characteristic zero proof in the case of
characteristic p > 0 is the non-existence of maximal contact coordinates in the
situation when p divides the multiplicity of a defining equation. A natural idea for
a replacement of maximal contact coordinates in the case of Eq. (3.38) is to use a
transformation of the form

y → y + φ(x1, x2) (3.39)

to make sure that no monomials which are p-th powers appear in g. However, unlike
maximal contact coordinates in characteristic zero which are stable under coordinate
changes in the x variables and under blowings up that do not lower the Hilbert–
Samuel function, the above “maximal contact” coordinates in positive characteristic
can be destroyed even by the simplest of linear homogeneous coordinate changes,
as the following example shows.

Example 3.7.1 Take g = x1x
2p−1
2 in (3.39). Then g is a single monomial that is not

a p-th power. However, after a coordinate change (x1, x2) → (x1 + x2, x2) the new
equation involves the monomial x

p

2 .

Giraud’s idea for dealing with this difficulty was to study the behaviour of the
differential dg (instead of that of g itself) under permissible blowings up. The point
is that the differential dg is stable under coordinate changes of the form (3.39). The
drawback of this approach is that the transformation rules of dg under blowing up
are much more complicated than those for g itself. In spite of this, Giraud was able
to give a new proof of resolution of surface singularities using this idea.

The method of Giraud was systematically exploited by his Ph.D student V.
Cossart to give, in his Ph.D thesis [53], a proof of resolution of singularities of
threefolds defined by equations of the form yp − f (x1, x2, x3) = 0, which for a
long time had been considered to be the basic and significant special case, exhibiting
most of the phenomena and difficulties of the general problem.

The same result was obtained independently and by different methods by T.T.
Moh [124]. Both works are of a formidable technical difficulty and comprise
hundreds of pages.

It was not until much later that V. Cossart and O. Piltant settled the problem of
resolution of threefolds in complete generality (their theorem holds for arbitrary
quasi-excellent noetherian schemes of dimension three, including the arithmetic
case) in a series of three long papers spanning the years 2008 to 2019 [61–63],
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building on the earlier works [54–56]. The overall method is based on the idea
of Giraud mentioned above. The main point is to prove the Local Uniformization
Theorem. After that global resolution of singularities becomes an immediate
consequence of Piltant’s work [136] that axiomatizes Zariski globalization in three
dimensions.

3.7.2 Resolution and Local Uniformization in Dimension Four
and Higher

In this subsection we briefly mention and discuss known recent partial results,
programs and attempts at proofs in arbitrary dimension.

In the paper [153] Michael Temkin proves a version of the Local Uniformization
Theorem in which the required desingularization map π : X̃ → X is generically
finite instead of being birational (in other words, it induces a finite extension

ι : K(X) ↪→ K
(
X̃
)

of function fields instead of an isomorphism). In Temkin’s proof the extension ι can
be taken to be purely inseparable. Among other things, he gives a rigorous proof of
a fact that until then was a mere philosophical belief: to prove Local Uniformization
(for varieties over fields of characteristic p > 0) it is sufficient to prove it for
hypersurfaces defined by equations of the form yp + g(x1, . . . , xn) = 0.

A similar, though in some sense complementary result was obtained by H. Knaf
and F.-V. Kuhlmann [111]: they also prove Local Uniformization after a finite
extension ι of function fields, but in their case the extension ι is Galois (combined
with a purely inseparable extension of the residue field of the valuation ring in the
case of non-perfect residue fields). In the paper [110] the same authors prove Local
Uniformization with respect to Abhyankar valuations. A valuation ν is said to be
Abhyankar if equality holds in Abhyankar’s inequality:

rat.rk ν + tr.deg(kν/k) = tr.deg(K/k),

where k denotes the ground field, K = K(X) is the field of rational functions of the
variety X we want to desingularize and kν is the residue field of the valuation ring.

It is well known that to prove the Local Uniformization Theorem it is sufficient to
prove it for the case of hypersurfaces (since in the case of general varieties one can
handle the defining equations one by one). Let X be a hypersurface in kn defined by
an equation f (u1, . . . , un) = 0. We would like to construct a local uniformization
with respect to a given valuation ν. Consider the extension

θ : k(u1, . . . , un−1) ↪→ k(u1, . . . , un−1)[un]
(f )

(3.40)

of valued fields.
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One way of thinking of the main difficulty of constructing a local uniformization
of X with respect to ν is in terms of the defect δ of the extension θ (this point of view
has been promoted by F.-V. Kuhlmann among others, see [113]). Defining defect
is beyond the scope of this survey, but we briefly mention some of its properties
relevant to us.

Let

p = 1 if char kν = 0 (3.41)

= char k if char kν > 0. (3.42)

The defect δ is always a power of p, hence is equal to 1 if char k = 0. We
have δ = 1 as well in the case of Abhyankar valuations (this explains why the
characteristic zero case as well as the case of Abhyankar valuations is easier to
handle than the case of arbitrary valuations in characteristic p > 0). The philosophy
that “all the difficulty of local uniformization lies in the defect” has been understood
for some time, but we would like to mention two recent works that make the above
statement precise: J.-C. San Saturnino [139, Theorem 6.5] and S. D. Cutkosky–H.
Mourtada [67].

We mention two papers by B. Teissier, [148] and [149], that propose another
possible approach to constructing Local Uniformization using the graded algebra
associated to the given valuation ν and trying to interpret this graded algebra as the
coordinate ring of an (infinite-dimensional) toric variety that is a deformation of the
variety X we want to desingularize, inspired by the case of plane curve singularities
[12, 81].

Finally, for the approach to local uniformization via key polynomials we refer
the reader to [7, 8, 68, 69, 91, 92, 118–120, 133, 138, 139, 147, 156–159]. J.
Decaup’s Ph.D. thesis carries out the program of proving a strengthening of the
Local Uniformization Theorem over fields of characteristic zero, but with a view to
generalizing the result to fields of positive characteristic.

There has also been recent work whose goal is to construct (or at least make
progress toward constructing) global resolution of singularities directly, without
going through valuation theory and local uniformization, but the jury is still out
on how close to or far from a complete proof we are: [19, 36–39, 44, 89, 101–
104, 107, 108].

3.8 An Alternative Approach by J. de Jong et al. via
Semi-stable Reduction

In 1996 a major event occurred in the field of resolution of singularities: J. de Jong
[70] proved the existence of resolution of singularities for varieties over fields of
arbitrary characteristic by alterations:
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Definition 3.8.1 An alteration is a proper surjective morphism

π : X̃ → X (3.43)

such that the induced homomorphism K(X) ↪→ K
(
X̃
)

of function fields is finite.

Theorem 3.8.2 Let X be a variety over a ground field k. There exists an alter-
ation (3.43) such that X̃ is non-singular. In fact, we can choose X̃ to be a
complement of a normal crossings divisor in some regular projective variety X′.

We briefly summarize his proof which uses the compactification of moduli stacks
of curves of genus g by stable curves (in the special case when X is projective).

Proof

Step 1. Take a sufficiently general projection ρ : X → Y to a variety Y of
dimension dim X − 1, so that the fibers of ρ are curves.

Step 2. Normalizing X, we may assume, in addition, that X is normal. After
further modifying X by a birational transformation, we may choose the fibration
morphism to Y to be generically smooth along any component of any fiber.

Step 3. Choose a sufficiently general and sufficiently ample relative divisor H on
X over Y . After taking a base change with an alteration Y ′ → Y , we may assume
that H is a union of sections σi : Y → X:

H =
n⋃

i=1

σi(Y )

(this is one of the places in the proof where we actually need to use an alteration
rather than a birational map).

Step 4. Since H was chosen sufficiently general and sufficiently ample, for every
component of every fiber of ρ there are at least three sections σi , intersecting it
in distinct points of the smooth locus of ρ. Therefore there exists a Zariski open
subset U ⊂ Y such that for each η ∈ U the fiber ρ−1(η), together with the points
determined by the σi , is a stable n-pointed curve of certain genus g. By definition
of the moduli stack Mg,n of stable curves of genus g with n marked points, we
obtain a unique morphism U →Mg,n such that the family

ρ

∣
∣
∣ρ−1(U) : ρ−1(U) → U (3.44)

is the pullback of the universal family of stable n-pointed curves of genus g over
Mg,n. Now, Mg,n admits a finite étale covering M → Mg,n by a projective
scheme M; the universal family of stable n-pointed curves of genus g can be
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lifted to M . Putting U ′ := U ×Mg,n
M , we obtain a cartesian diagram

U
θ

λ

M

U Mg,n (3.45)

where λ is an alteration and the pullback of the family of curves (3.44) under λ

coincides with the pullback of the universal family by θ (this is the second place
in the proof where we genuinely need to use alterations rather than birational
morphisms).

Step 5. Let XU denote the preimage of U in X. Let Y ′ be the closure of

Im(U ′ → Y × M̄) ⊂ Y × M̄.

Then Y ′ is a projective variety over k and Y ′ → Y is an alteration which is
generically étale. The smooth stable n-pointed curve (XU , σ1|U , . . . , σn|U )×U ′
extends to a stable n-pointed curve X′ over Y ′.

Step 6. Replacing Y by Y ′ and X by X′ we reduce the problem to the case in
which there exist a stable n-pointed curve (C, τ1, . . . , τn) over Y , a nonempty
open subvariety U ⊂ Y and an isomorphism β : CU → XU mapping the section
τi |U to the section σi |U (where CU denotes the preimage of U in C). It can be
proved that the rational map β can me be made into a morphism, possibly after
base change by a birational projective transformation of Y .

To Summarize the Result of Steps 4–6 We started out with a morphism ρ whose
generic fiber was a stable n-pointed curve of genus g. We ended up with a morphism
ψ , all of whose fibers are stable n-pointed curves. In other words, we have reduced
the problem to the case where all the fibers of ρ are stable pointed curves (and the
generic fiber is non-singular).

Step 7. By induction on dim X, resolve the singularities of Y . Furthermore, by
the induction hypothesis in the non-projective case we may assume that the non-
smooth locus of the morphism ρ is a normal crossings divisor (note that we are
using the induction hypothesis in the non-projective case even to prove the result
for projective X).

Step 8. At this point the only singularities of C are given by equations of the form

xy = t
n1
1 . . . t

nd

d .

These are resolved explicitly by hand. ��
Now assume that char k = 0. Shortly after the appearance of de Jong’s theorem on
alterations D. Abramovich and J. de Jong [9] took it as a starting point to give a new
proof of resolution of singularities by birational morphisms in characteristic zero.
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Their proof goes as follows. Fix an alteration X′ → X such that X′
is non-singular. We may assume that the corresponding finite extension
K(X) ↪→ K(X′) of function fields is Galois. Let G denote the Galois group
Gal(K(X′)/K(X)). Then G acts on X′ and the quotient of this action birationally
dominates X. By induction on dim X we may assume that the subvariety{
ξ ∈ X′ ∣∣ g(ξ) = ξ for some g ∈ G

}
of points of X′ fixed by at least one g ∈ G

is a normal crossings divisor. A few auxiliary blowups make the quotient X′/G

toroidal. Finally, the authors apply the well known result on resolution of toroidal
singularities [109, Theorem 11∗] to finish the argument.

Another proof of resolution of singularities in characteristic zero based on the
same idea but quite different in detail from the Abramovich–de Jong one was given
independently by F. Bogomolov and T. Pantev [40].

3.9 Resolving Singularities in Characteristic Zero by Nash
and Higher Nash Blowing Up: Results and Conjectures

The goal of this section is define Nash and higher Nash blowing up and to give an
overview of both known results and conjectures involving their desingularization
properties.

H. Hironaka’s proof that every algebraic variety over a field of characteristic
zero admits a resolution of singularities provided an inspiration to John Nash for
several extremely fruitful ideas, one of the most important being the introduction of
Nash blowing up as a conjectural method for constructing a canonical resolution of
singularities of varieties in characteristic zero.

Let k be a field and X an affine irreducible algebraic variety of dimension n

embedded in kN .

Definition 3.9.1 The Gauss map φ : X \ Sing(X) → G := Grass(N, n) is the
map that sends every non-singular point ξ ∈ X to its tangent space, viewed as a
point of G.

Definition 3.9.2 The Nash blowing up NX of X is the closure graph(φ) of
graph(φ) in X ×G.

We have a canonical map μ : NX −→ X induced by the canonical projection of
X×G onto the first factor. Over X \ Sing(X) the variety μ−1(X \ Sing(X)) is the
graph of the Gauss map, hence isomorphic to X \ Sing(X). Thus μ is birational.
Since G is a projective variety, the morphism μ is projective.

If X is a complete intersection defined by equations

f1(x1, . . . , xN) = · · · = f�(x1, . . . , xN) = 0
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then μ coincides with the blowing up of the Jacobian ideal, that is, the ideal

generated by all the (� × �)-minors of the Jacobian matrix
(

∂fi

∂xj

)

1≤i≤�
1≤j≤N

. Even if

X is not a complete intersection, there is a similar description of Nash blowing
up in terms of the Jacobian matrix, though it took mankind much longer to come
up with it. Namely, let r = N − n = codim(X, kN). Let M be a submatrix of
the Jacobian matrix formed by r rows that are linearly independent as K-vectors
(where, as usual, K = K(X) denotes the field of rational functions of X). Then μ

coincides with the blowing up of the ideal generated by all the (r× r)-minors of the
matrix M .

The above constructions seem, a priori, to depend on the chosen embedding
ι : X ↪→ C

N . We now give two other characterization of Nash blowing up, both of
them independent of ι.

This construction of an ideal whose blowing up coincides with the Nash blowing
up is a special case of a more general construction of the determinant of a module
(in this case, the module of Kahler differentials of X) due to Rossi in the analytic
case and to O. Villamayor [161] in the general setting. Namely, let R be a domain,
K its field of fractions and M and R-module. Let r := dimK(M ⊗R K) denote the
generic rank of M .

Definition 3.9.3 The determinant of M is Im
(∧r

M −→ ∧r
M ⊗R K ∼= K

)
.

We think of the determinant as a fractional ideal, that is, an R-submodule of
K . Clearing denominators, we can construct a non-canonical isomorphism of R-
modules between a fractional ideal and an honest ideal of R. To obtain an ideal
whose blowing up coincides with Nash blowing up, we take the determinant of the
module !1

X/C of Kahler differentials whose generic rank is n.
Finally, Nash blowing up can be characterized by a universal mapping property.

Namely, we have the following

Proposition 3.9.4 Let μ : X′ → X be the Nash blowing up of X. The following
statements hold.

(1) The OX′ -module
μ∗!n

X/C

torsion is locally principal (that is, generated by a single
element).

(2) the Nash blowing up μ has the universal mapping property with respect to (1).
This means, by definition, that every birational morphism λ : V → X such that
λ∗!n

X/C

torsion is locally principal factors through X′ in a unique way.

With a view of constructing a resolution of singularities of X, consider the sequence

X
μ1←− X1

μ2←− . . .
μi←− Xi

μi+1←− . . . (3.46)

where each μi is either a Nash blowing up or a normalized Nash blowing up (that
is, a Nash blowing up followed by normalization). The question posed to Hironaka
by Nash was: does Xi become non-singular for i ( 0?
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An affirmative answer to this question would provide a very simple and natural
algorithm for resolving singularities over fields of characteristic zero.

Unfortunately, very little is known about Nash’s question, despite considerable
effort by many mathematicians. Let us briefly summarize the existing results.

In order to have any hope for the answer to be affirmative, we must at least
ensure that no singular variety remains unchanged after Nash blowing up. This is
the content of Nobile’s Theorem:

Theorem 3.9.5 (Nobile [129]) The Nash blowing up μ : X′ → X is an
isomorphism if and only if X is non-singular.

The “if” part of the Theorem is trivial, so its main content is “only if”.

Corollary 3.9.6 If dim X = 1 iterating Nash blowing up produces a resolution of
singularities.

Proof Let X̃ → X be the resolution of singularities of X. As we saw earlier, X̃ is
nothing but the normalization of X. In particular, OX̃ is a finite (hence a noetherian)
OX-module. Now, the sequence of morphisms (3.46) induces a sequence

OX

μ∗1−→ OX1

μ∗2−→ . . .
μ∗i−→ OXi

μ∗i+1−→ . . . (3.47)

of homomorphisms of rings, with all the OXi contained in OX̃. Since OX̃ is a
noetherianOX-module, the sequence (3.47) must stabilize after OXi for some i ∈ N.
By Nobile’s theorem, Xi is non-singular. ��
Remark 3.9.7 Assume that char k = p > 0, fix a prime number q = 2 and consider
the plane curve X = {f (x, y) = yp + xq = 0}. This is a complete intersection
variety whose Jacobian ideal J is principal (since ∂f

∂y
= 0). Hence the Nash blowing

up μ : X′ → X is an isomorphism. Thus Nobile’s theorem does not hold over
fields of positive characteristic. There seems to be little hope to devise a plausible
approach to resolution over fields of characteristic p > 0 along the lines of Nash
blowing up.

Theorem 3.9.8 (Rebassoo [137]) Iterating Nash blowings up gives resolution of
singularities of any surface X defined in C

3 by an equation of the form

za − xbyc = 0. (3.48)

The proof is quite long and technical. One of the difficulties is that after Nash
blowing up X stops being a hypersurface, though, as we will see below, it remains
a toric variety.

Theorem 3.9.9 (Hironaka [99]) Starting with a surface X, consider a
sequence (3.46) of morphisms such that each μi dominates the Nash blowing
up of Xi−1 (that is, μi is a composition of Nash blowing up with another birational
projective morphism). There exists i ∈ N such that the normalization X̄i of Xi



224 M. Spivakovsky

dominates a non-singular surface (in other words, X̄i has at most sandwiched
singularities).

Using this result as a starting point, M. Spivakovsky proved in 1985 that iterating
normalized Nash blowings up resolves the singularities of any surface over a field
of characteristic zero:

Theorem 3.9.10 ([146]) Assume that dim X = 2 and each μi in (3.46) is a
normalized Nash blowing up. Then Xi is non-singular for i ( 0.

By Hironaka’s result, it is enough to prove this Theorem in the case when X has
at most sandwiched singularities. Again, the proof is long and technical. The first
step is a classification of sandwiched surface singularities, accomplished in [146],
building on a classification of valuations in function fields of surfaces [145].

Another important ingredient in the proof is a geometric characterization of Nash
blowing up in terms of polar curves, inspired by [83, 84].

3.9.1 Nash Blowing Up and the Base Locus of the Polar Curve

Consider a variety X of dimension n embedded in C
N .

Definition 3.9.11 (Lê–Teissier) The first polar variety of X is the closure of the
critical locus of a generic projection X → C

n, restricted to X \ Sing(X). If X is a
surface, the first polar variety is referred to as the polar curve of X; it is the critical
locus of a generic projection X → C

2.

One should think of the polar curve as a linear system: as we vary the generic
projection, we obtain a family of polar curves, all of them linearly equivalent to
each other. In this way, we may talk about the base locus of the polar curve. Another
way of thinking of polar curves is as zeroes of sections of the sheaf !2

X/C of Kahler
differentials. This is why making this sheaf (modulo torsion) locally principal is
equivalent to removing the base locus of the strict transform of the polar curve.

Proposition 3.9.12 ([146]) Let X be a variety of dimension n.

(1) Consider a birational transformation μ : X′ → X, dominating the Nash
blowing up of X. The linear system formed by the strict transforms of the first
polar variety has no base points (we say that Nash blowing up resolves the base
points of the first polar variety).

(2) Conversely, assume that μ resolves the base points of the first polar variety and
that X′ is normal. Then X′ dominates the Nash blowing up of X.
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This leads to the following method of computing the normalized Nash blowing up of
any given normal surface singularity (this method is essentially due to G. Gonzalez-
Sprinberg [83, 84]). Consider the commutative diagram

Y
σ

π

Y

π

X
μ

X (3.49)

where π and π ′ are the respective minimal resolutions of singularities of X and X′,
μ is the normalized Nash blowing up and σ the factorization of μ ◦ π ′ through Y

given by definition of the minimal resolution Y .
By Zariski’s factorization theorem, σ is a sequence of blowings up of points.

Now, μ resolves the base points of the polar curve, hence so does μ ◦ π ′. Since,
by Theorem 3.9.12, μ is the “smallest” birational transformation with this property,
σ is the smallest sequence of point blowings up that resolves the base points of
the strict transform of the polar curve of X in Y . The method for studying the
desingularization properties of Nash blowing up, inspired by [83–85], consists of
computing directly the strict transform of the polar curve in Y , particularly, its base
points, and thus deducing information about σ and Y ′.

Once we classify sandwiched singularities, we consider a subclass of them called
minimal singularities (rational singularities of surfaces with reduced fundamental
cycle; this includes all the toric surface singularities). In the case of minimal
singularities the polar curve, and thus σ and Y ′, can be computed explicitly. We
show that the number of irreducible exceptional curves of π ′ is at most one half of
the number of irreducible exceptional curves of π . Thus, if we let E be the number
of irreducible exceptional curves in the minimal resolution of the surface X, the
singularities of X are resolved after at most log2 E normalized Nash blowings up.

In the case of non-minimal sandwiched singularities our results are much less
explicit, but we are able to get enough information about the polar curve to give
an indirect proof that if X has at most sandwiched singularities then after finitely
many normalized Nash blowings up the resulting surface Xi has at most minimal
singularities. This completes the proof.

3.9.2 Nash Blowing Up of Toric Varieties

Recently, there has been a resurgence of interest in resolution of singularities by
iterating Nash blowing up, particularly, in the case of (not necessarily normal) toric
varieties. We summarize some of the main advances here.



226 M. Spivakovsky

Let n be a strictly positive integer. Consider a semigroup � ⊂ Z
n having the

following properties:

(1) � generates Zn as an additive group
(2) the cone C generated by � in R

n ⊃ Z
n is strictly convex (this means that

C contains no straight lines). Let γ1, . . . , γs be a set of generators of � (not
necessarily minimal).

Definition 3.9.13 The affine toric variety X determined by � is the image of the
map

C
n → C

s

defined by t → (tγ1 , . . . , tγs ) (here we are using the multi-index notation: t =
(t1, . . . , tn), each γi is an n-vector and tγi =

n∏

j=1
t
γij

j ).

As everything else related to toric varieties, the Nash blowing up of such a
variety can be described combinatorially. More precisely, we can compute the
logarithmic Jacobian ideal explicitly in terms of the elements γ1, . . . , γs . This task
was accomplished, independently, in [82] and [86] (the latter paper includes the case
of reducible toric varieties). Namely, the module !n

X,C is generated by elements of
the form dtγi1

∧ · · ·∧ dtγin , where (i1, . . . , in) runs over all the n-tuples of distinct
elements of {1, . . . , s}. We have

dtγi1
∧
· · ·
∧

dtγin = det
(
γi1 , . . . γin

)
t

n∑

j=1
γij
−n

dt1
∧
· · ·
∧

dtn.

Thus the logarithmic Jacobian ideal we must blow up to compute the Nash blowing

up is the ideal generated by all the monomials t

n∑

j=1
γij
−n

as (i1, . . . , in) runs over all
the n-tuples of distinct elements of {1, . . . , s} satisfying

det
(
γi1, . . . γin

) = 0. (3.50)

Picking one of these monomials specifies a coordinate chart of the Nash blowing
up. For example, assume that det (γ1, . . . , γn) = 0 and consider the coordinate

chart determined by the monomial t

n∑

j=1
γj−n

. The semigroup �1 that determines the
corresponding affine toric variety is generated by γ1, . . . , γs and all the vectors of
the form

n∑

j=1

γij −
n∑

j=1

γj , (3.51)
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where (i1, . . . , in) runs over all the n-tuples of distinct elements of {1, . . . , s}
satisfying (3.50). Now, an important special case to be considered is one when there
exists j ∈ {1, . . . , n} such that ij ′ = j ′ for all j ′ ∈ {1, . . . , n} \ {j } and ij = j .
Then the condition (3.50) amounts to saying that

det
(
γ1, . . . , γj−1, γij , γj+1, . . . , γn

) = 0. (3.52)

One can show that after a permutation of the n-tuple (i1, . . . , in) we can achieve the
situation where condition (3.52) holds for all j ∈ {1, . . . , n} simultaneously. This
shows that �1 is generated by γ1, . . . , γs and all the differences of the form

γi − γj , j ∈ {1, . . . , n}, i ∈ {n+ 1, . . . , s}
such that det

(
γ1, . . . , γj−1, γi, γj+1, . . . , γn

) = 0 (3.53)

A complete list of coordinate charts on the Nash blowing up of the toric variety
X is obtained in this way, after imposing the additional condition that the resulting
semigroup determines a strictly convex cone.

One way of thinking of the choice of an affine coordinate chart on the Nash
blowing up is in terms of valuations. We saw earlier that by a theorem of Zariski
fixing a valuation ν of the rational function field K(X) of X is equivalent to
specifying a (scheme-theoretic) point called the center of ν on every blowing up of
X. Here we are interested in a less precise version of this statement: specifying the
values ν(t1),. . . ,ν(tn) of the torus variables t1,. . . ,tn limits the choice of a coordinate
chart to those charts that contain the center of ν. Namely, a coordinate chart as above
contains the center of ν if and only if for every pair i, j as in (3.53) we have

ν
(
tγi
) ≥ ν

(
tγj
)
. (3.54)

In general, even under this restriction the choice of the coordinate chart is not
uniquely determined, unless the inequality in (3.54) is strict for all the choices of
i, j as in (3.53). This last statement holds whenever the values ν(t1),. . . ,ν(tn) are
Q-linearly independent.

In [72] and [73] it is shown that if dim X = 2 and the rank of the group
generated by ν(t1) and ν(t2) coincides with its rational rank then iterating Nash
blowing up resolves the singularities of X in all the coordinate charts compatible
with the valuation ν. In [82] the same result is proved for X of arbitrary dimension.

The simplest case of a group whose rank differs from its rational rank is that of
rank 1 and rational rank 2. Thus the simplest case in which resolution of singularities
of toric varieties by iterating Nash blowing up is not known is the following.

An Open Problem
Let � = (γ1, . . . , γs) ⊂ Z

2 be a semigroup which generates Z2 as a group, such
that the cone generated by it is strictly convex. Let α be an irrational number. Let
L : Z2 → R be the map given by L(x, y) = x + αy. Assume that L(� \ {0}) > 0
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and that L(γ1) < L(γ2) < L(γj ) for j > 2. Let �1 be the semigroup generated by
γ1, γ2 and all the differences of the form γi − γ1 and γj − γ2 where det(γi, γ2) = 0
and det(γj , γ1) = 0. Replace � by �1 (as we explained above, this corresponds to
performing a Nash blowing up of our toric surface and picking the unique coordinate
chart prescribed by the valuation such that ν(t1) = 1 and ν(t2) = α). Question: is it
true that after finitely many iterations of this procedure the resulting semigroup �i

is generated by two elements?
There is overwhelming computer evidence that the answer to this question is

affirmative. Rebassoo’s theorem is a special case of this, providing further evidence.
On this subject we also mention the paper [17].

3.9.3 Higher Nash Blowing Up

Let X ⊂ C
N be an irreducible affine algebraic variety of dimension n and R its

coordinate ring. Consider the map λ : R ⊗k R → R which sends a ⊗ b to ab. Let
I = Ker(λ). We view I as an R-module via the map R → R ⊗k R, r → r ⊗ 1.

For i ∈ N, i ≥ 2, the higher Nash blowing up NiX of X was defined by Oneto

and Zatini [134] in terms of the Grassmanian of the i-jet module
(

I
I i+1

)∗
and by

Takehiko Yasuda [164] using Hilbert schemes of points of length
(
n+i
n

)
, with an

alternative, explicit characterization by E. Chavez, D. Duarte and A. Giles in terms
of the generalized Jacobian matrix [50]. We summarize the first two constructions
here.

For a point x ∈ X. Let (Rx,mx) be the localization of R at the point x and Ix the
localization of I . Consider the following C = Rx

mx
-vector space:

T i
x X :=

(
Ix

I i+1
x

⊗R C

)∗

This is a vector space of dimension L = (i+n
n

) − 1 whenever x is a non-singular

point. Since X ⊂ C
N , we have T i

x X ⊂ T i
xC

N = C
M where M = (N+i

N

)− 1, that is,
we may view T i

x X as an element of the Grassmanian G(M, L). Consider the Gauss
map:

Gi : X \ Sing(X) → G(M, L) (3.55)

x → T i
x X. (3.56)

Denote by Xi the Zariski closure of the graph of Gi . Call μi the restriction to Xi of
the projection of X ×G(M, L) to X.

Definition 3.9.14 ([134, Definition 1.1]) The pair (Xi, μi) is called the Nash
blowing up of X relative to I

I i+1 .
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Similarly to the usual Nash blowing up, the Nash blowing up relative to I

I i+1

coincides with the blowing up of the determinant of the module I
I i+1 [134].

Next, we summarize Yasuda’s construction. Consider a C-rational point x ∈ X

and let m be the corresponding maximal ideal of R. Let n = dim X. Let x(i) :=
Spec R

mi+1 be the i-th infinitesimal neighborhood of x. If X is smooth at x, then x(i)

is a closed subscheme of X of length L+ 1 = (i+n
n

)
(that is, R

mi+1 has length L+ 1
as an R-module). Therefore, it corresponds to a point [x(i)] ∈ HilbL+1(X), where
HilbL+1(X) is the Hilbert scheme of (L+1)-points of X (see [127, Definition 1.2]).
If Reg(X) denotes the smooth locus of X, we have a map

δi : Reg(X) → HilbL+1(X) (3.57)

x → [x(i)] (3.58)

Definition 3.9.15 ([164, Definition 1.2]) The higher Nash blowup of X of order i,
denoted by NiX, is the closure of the graph of δn in X×k H ilbL+1(X) with reduced
scheme structure. By restricting the projection X×k H ilbL+1(X) → X to NiX we
obtain a map πn : NiX → X.

This map is projective, birational, and is an isomorphism over Reg(X).

Proposition 3.9.16 ([164, Proposition 1.8]) For every variety X and every strictly
positive integer i, we have a canonical isomorphism (Ni(X), πn) ∼= (Xi, μi). In
particular, N1(X) is canonically isomorphic to the classical Nash blowup of X.

Yasuda conjectured that for i large enough, the i-th Nash blowup of X is non-
singular [164, Conjecture 0.2]. If the conjecture were true, this construction would
give a one-step resolution of singularities. In the same paper, the author proves that
the conjecture is true for curves (here we give the statement only for irreducible
varieties whereas Yasuda’s result is stated and is proved for varieties that may be
reducible.):

Theorem 3.9.17 ([164, Corollary 3.7]) Let X be an irreducible variety of dimen-
sion 1. For i large enough the variety NiX is non-singular.

The proof of this is not trivial and consists of two parts. First, the author shows
that for i ( 0 the transformation Ni separates the (analytic) branches of X, that
is, X becomes analytically irreducible at every point. Yasuda goes on to show that
each branch gets desingularized by Ni for i ( 0. Precisely, he shows the following.
Assume that X is analytically irreducible at a certain point ξ . The resolution of
singularities of X gives an injection ofOX,ξ into a regular local ring and thus induces
a discrete rank 1 valuation ν on OX,ξ . Consider the semigroup � := ν(OX,ξ \{0}) ⊂
N and let 0 = s0, s1, s2, s3, . . . be the complete list of elements of � arranged in an
increasing order.

Theorem 3.9.18 ([164, Theorem 3.3]) For an integer i ∈ N the curve NiX is non-
singular if and only if si+1 − 1 ∈ �.
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Since � coincides with N for i ( 0, Theorem 3.9.18 immediately implies
Theorem 3.9.17 in the case of analytically irreducible curves.

Yasuda has stated that the A3 singularity (that is, the singularity defined by the
equation z4 − xy = 0) is probably a counterexample to his conjecture (see [166,
Remark 1.5]). Recently Rin Toyama [154] has shown that this is, indeed, the case,
building on earlier work by D. Duarte.

Incredibly, the analogue of Nobile’s theorem (that is, the statement that a higher
Nash blowing up of X is an isomorphism if and only if X is non-singular) is not
known for higher Nash blowing up. The best partial results on this subject are due to
D. Duarte, who proved it for normal toric varieties [74] and for normal hypersurfaces
[75]. It has recently been proved for toric curves [50].

Finally, we mention another conjecture of T. Yasuda about higher Nash blowing
up of (analytically) irreducible curves. Let X be an analytically irreducible curve,
� its associated semigroup and the si elements of � listed in increasing order, as
above.

Conjecture 3.9.19 (Yasuda [165]) Let �i denote the semigroup associated to the
analytically irreducible curve NiX. We have �i = {s� − sj | � > i, j ≤ i}.
The paper [50] contains the following results:

(1) a definition of the higher-order Jacobian matrix J of an affine algebraic variety,
so that the i-th higher Nash blowing up coincides with the blowing up of an
ideal generated by suitable minors of J in a way completely analogous to that
of usual Nash blowing up described above

(2) a proof that the higher Nash blowings up of a toric variety are themselves toric
varieties

(3) a proof of Conjecture 3.9.19 in the case of toric curves
(4) as an immediate corollary of (3), a proof of the analogue of Nobile’s theorem

for toric curves
(5) a family of counterexamples to Conjecture 3.9.19 in the general case (namely,

the parametrized curves t → (
t4, t4i+2 + t4i+3

)
giving a counterexample for

each positive integer i).

3.10 Reduction of Singularities of Vector Fields, Foliations
by Lines and Codimension One Foliations

Let K be the field of rational functions of a projective algebraic variety M0 of
dimension n over an algebraically closed field k of characteristic zero.

Consider the n-dimensional K-vector space DerkK of k-derivations from K to
itself.
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Definition 3.10.1 A foliation by lines is a 1-dimensional K-vector subspace

L ⊂ DerkK.

Take a regular point P on a projective model M of the field K . We know that

DerkOM,P ⊂ DerkK

is a free OM,P -module of rank n generated by the partial derivatives ∂
∂zi

, i ∈
{1, 2, . . . , n}, for a regular system of parameters z1, z2, . . . , zn of the local ring
OM,P .

Definition 3.10.2 The free rank one submodule LM,P := L ∩ DerkOM,P of
DerkOM,P is called the local foliation induced by L at M, P .

Let mM,P denote the maximal ideal of OM,P .

Definition 3.10.3 A germ of a vector field ξ ∈ DerkOM,P is said to be non-
singular if ξ /∈ mM,P DerkOM,P . The germ ξ is elementary if it is singular and
the k-linear endomorphism

ξ : mM,P

m2
M,P

→ mM,P

m2
M,P

(3.59)

is not nilpotent.
We say that L is non-singular (resp. elementary) at P if there is a germ ξ ∈ LM,P

that is non-singular (resp. elementary). If Y ⊂ M is an irreducible subvariety, we
say that L is non-singular (resp. elementary) at Y if it is so at a generic point of Y .
Note that this definition makes sense only if M itself is non-singular at the generic
point of Y .

A plane vector field D = a ∂
∂x
+ b ∂

∂y
, with a, b two relatively prime polynomials in

x and y, defines a one-dimensional saturated foliation F having singularities at the
zeroes of D (that is, the common zeroes of a and b). It was proved by Seidenberg in
1968 [141] that after a finite number of point blowings up of the ambient plane we
obtain a foliation F̃ which is given locally at each singular point by a vector field D̃

whose linear part has eigenvalues 1 and λ, with λ /∈ Q+ (= strictly positive rational
numbers); see also [45]. The above singularities may be thought of as final forms in
the sense that they are preserved under all subsequent point blowings up. Note also
that these singularities are characterized by the fact that they are elementary in the
sense of Definition 3.10.3 and remain elementary after the subsequent blowings up.
On the other hand, if the eigenvalues are 1, λ ∈ Q+, the linear part of the vector
field (cf. (3.59)) will become nilpotent after finitely many blowings up.

This points to a new feature of the desingularization problem for vector fields
and foliations: in general, it is not possible to make them non-singular by blowings
up, so one must start by defining the final form of the singularity that one is trying
to achieve. This is why in this subject we usually talk about reduction rather than
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resolution of singularities. A counterexample by F. Sanz and F. Sancho shows that
starting with dimension three it is not possible to arrive at elementary singularities
by a sequence of blowings up along non-singular centers (see the Introduction
to [135]). Therefore a new notion of a final form of singularities is needed. In
higher dimensions a useful and natural notion seems to be that of log-elementary
singularities, motivated by the results of [46].

Let the notation be as in the beginning of this section.

Definition 3.10.4 A germ of a vector field ξ ∈ DerkOM,P is said to be log-
elementary if there is a regular system of parameters z1, z2,. . . ,zn of OM,P , and

an integer e, 0 ≤ e ≤ n such that ξ has the form ξ =
e∑

i=1
aizi

∂
∂zi

+
n∑

i=e+1
ai

∂
∂zi

,

where ai ∈ OM,P for i ∈ {1, 2, . . . , n} and aj /∈ m2
M,P for at least one index j . We

say that L is log-elementary at P if there is a germ ξ ∈ LM,P that is log-elementary.
If Y ⊂ M is an irreducible subvariety, we say that L is log-elementary at Y if it is
so at a generic point of Y .

The following result is the main theorem of [49]:

Theorem 3.10.5 Assume that n = 3. Consider a foliation by lines L ⊂ DerkK .
There is a birational projective morphism M → M0 such that L is log-elementary
at all the points of M .

The general structure of the proof is à la Zariski. First, a local uniformization along
any valuation ν of K vanishing on k is established: a sequence of blowings up M →
M0 along non-singular centers is constructed such that L is log-elementary at the
center Y of ν on M . After that Theorem 3.10.5 is deduced from the Piltant–Zariski
general globalization procedure in dimension three [136]: one just has to check that
Piltant’s axioms I–VI hold in this special case. The proof of local uniformization of
three-dimensional vector fields is inspired by [46] and [47].

We mention, without giving the details, the following related results on reduction
of singularities of foliations and vector fields.

(1) The paper [48] constructs a reduction of singularities of codimension 1
foliations in ambient dimension 3.

(2) The paper [135] accomplishes reduction of singularities of real-analytic vector
fields; the real setting is used in an essential way in the proof.

(3) The paper [123] proves reduction of singularities of foliations by curves in
ambient dimension 3 to canonical ones (the condition of being canonical
is somewhat stronger than being log-elementary), but in the 2-category of
Deligne–Mumford stacks.

(4) The papers [78, 79] prove the Local Uniformization theorem for codimension
one foliations in all dimensions, under two restrictions on the given valuation
ν: rk ν = 1 and kν = C.
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3.11 Appendix

It is natural to pose the problem of resolution of singularities in the more general
context of noetherian schemes.

Definition 3.11.1 Let X be a reduced noetherian scheme. A resolution of singu-
larities of X is a blowing up X′ → X along a subscheme of X, not containing any
irreducible components of X, such that X′ is non-singular.

In this Appendix we address the question of the hypotheses that must be imposed
on X in order for resolution of singularities to exist. Let Reg(X) denote the set of
regular points of X. It is obvious that the following condition is necessary for the
existence of a resolution of singularities of X:

(1) Reg(X) must contain a non-empty Zariski open set.
Furthermore, suppose X admits a resolution of singularities π : X′ → X and
let

π̄ : X̄ → X

denote the normalization of X. Then π must factor through X̄. We have X̄ =
Spec π∗OX′ and π∗OX′ is a coherent sheaf of OX-modules. This gives another
necessary condition for the existence of resolution:

(2) X̄ must be finite over X.

Moreover, since the usual methods involve blowing up and induction on dim X,
we are led to assume that (1) and (2) hold for every reduced scheme of finite type
over X. By Nagata’s criterion, (1) then implies that X is a J-2 scheme, that is, for
every scheme X̃, reduced and of finite type over X, Reg(X̃) is open.

Grothendieck [87, IV.7.9] proved that if all of the irreducible closed subschemes
of X and all of their finite purely inseparable covers admit resolution of singularities,
then X must satisfy a somewhat stronger condition than (1)∧(2) above, called quasi-
excellence, which we now define. For a point ξ on a scheme we will denote by κ(ξ)

the residue field of the local ring of that point.

Definition 3.11.2 ([121, Chapter 13, (33.A), p. 249]) Let σ : X → Y be a
morphism of noetherian schemes. We say that σ is regular if it is flat, and for every
ξ ∈ Y the fiber X×Y Spec κ(ξ) is geometrically regular over κ(ξ) (this means that
for every finite field extension κ(ξ) → k′, the scheme X ×Y Spec k′ is regular).

Remark 3.11.3 If κ(ξ) is perfect, the fiber X×Y Spec κ(ξ) is geometrically regular
over κ(ξ) if and only if it is regular.

Remark 3.11.4 It is known that a morphism of finite type is regular in the above
sense if and only if it is smooth (that is, flat with smooth fibers).
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3.11.1 Quasi-excellent Schemes

Regular morphisms come up in a natural way when one wishes to pass to the formal
completion of a local ring at a singularity:

Definition 3.11.5 ([121, (33.A) and (34.A)]) Let R be a noetherian ring. For a
maximal ideal m of R, let R̂m denote the m-adic completion of R. We say that R is
a G-ring if for every maximal ideal m of R, the natural map Spec R̂m → Spec R

is a regular morphism.

Definition 3.11.6 ([121, (34.A), p. 259]) Let X be a noetherian scheme. We say
that X is quasi-excellent if the following two conditions hold:

(1) X is J-2, that is, for every scheme X̃, reduced and of finite type over X, Reg(X̃)

is open in the Zariski topology.
(2) For every closed point ξ ∈ X, OX,ξ is a G-ring.

Remark 3.11.7 If X = Spec R with R a local noetherian ring then (2) ,⇒ (1) in
the above definition [121].

A scheme is said to be excellent if it is quasi-excellent and universally catenary.
In general, rings that arise from natural constructions in algebra and geometry are
excellent. Complete and complex-analytic local rings are excellent (see [121, The-
orem 30.D] for a proof that every complete local ring is excellent and [121, (33.H),
Theorem 78, p. 257] for a proof of finiteness of normalization for quasi-excellent
schemes). Both excellence and quasi-excellence are preserved by localization and
passing to schemes of finite type over X [121, Chapter 13, (33.G), Theorem 77, p.
254]. In particular, every scheme that is essentially of finite type over a field, Z, Z(p),
Zp, the Witt vectors or any other excellent Dedekind domain, or over a complete or
complex-analytic local ring is excellent. See [126, Appendix A.1, p. 203], for some
examples of non-excellent rings.

If X is a quasi-excellent scheme then for every ξ ∈ X the natural map

Spec ÔX,ξ → X

is a regular homomorphism (by Definition 3.11.6 (2)). Thus, the passage to the
formal completion is a natural operation in the category of quasi-excellent schemes;
in particular, it does not change the nature of singularity.

Once local uniformization is proved in a given context, in order to globalize it
and to make it canonical (that is, functorial in the category whose objects are quasi-
excellent noetherian schemes and whose morphisms are regular morphisms), one is
interested in local uniformization algorithms determined, locally at every point ξ ,
by the formal completion ÔX,ξ of OX,ξ .

Grothendieck’s result means that the largest subcategory of the category of
noetherian schemes, closed under passing to closed subschemes and finite purely
inseparable covers, for which resolution of singularities could possibly exist, is that
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of quasi-excellent schemes. In [87, IV.7.9], Grothendieck conjectures that resolution
of singularities exists in this most general possible context.

We take this opportunity to mention a recent paper [105] by L. Illusie, Y. Laszlo
and F. Orgogozo, based on the ideas of Ofer Gabber.
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Abstract This is a survey of stratification theory in the differentiable category from
its beginnings with Whitney, Thom and Mather until the present day. We concentrate
mainly on the properties of C∞ stratified sets and of stratifications of subanalytic or
definable sets, with some reference to stratifications of complex analytic sets. Brief
mention is made of the theory of stratified mappings.

4.1 Stratifications

The idea behind the notion of stratification in differential topology and algebraic
geometry is to partition a (possibly singular) space into smooth manifolds with some
control on how these manifolds fit together.
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In 1957 Whitney [146] showed that every real algebraic variety V in Rn can be
partitioned into finitely many connected smooth submanifolds of Rn. This he called
a manifold collection. Such a partition is obtained by showing that the singular part
of V is again algebraic and of dimension strictly less than that of V . One obtains
thus a filtration of V by algebraic subvarieties,

V ⊃ SingV ⊃ Sing(SingV ) ⊃ . . .

In 1960, Thom [120] replaced the term “manifold collection” of Whitney, by
“stratified set”, introduced the notions of “stratum” and “stratification”, and initiated
a theory of stratified sets and stratified maps. Later, in 1964, Thom proposed that a
stratification should have the property that transversality of a map g : Rm → Rn

to the strata of a stratified set in Rn be an open condition on maps in C∞(Rm,Rn),
and that there should be some “local triviality” in a neighbourhood of each stratum.

As a result Whitney refined his definition in 2 papers [147, 148] which appeared
in 1965, concerning stratifications of real and complex analytic varieties, introduc-
ing his conditions (a) and (b). He proved the existence of stratifications satisfying
these conditions for any real or complex analytic variety, remarked that Thom’s
openness of transversality follows from condition (a) and conjectured a local
fibration property (known as Whitney’s holomorphic fibering conjecture, this was
finally proved by Parusinski and Paunescu in 2017 [102] after a partial version
obtained by Hardt and Sullivan in 1988 [49]). Thom then developed a theory of
C∞ stratified sets, described in detail in his 1969 paper entitled “Ensembles et
morphismes stratifiés” [123]. The following year Mather gave a series of lectures
at Harvard giving a revised account of Thom’s theory of stratified sets and maps,
and it is Mather’s definitions that have been generally used since then. Mather’s
1970 notes of his lectures, which circulated widely via photocopies, were finally
published in 2012 [81]. The reader may profitably consult also [36] and [105] for
detailed presentations of the theory of stratified sets.

I will now describe what has become the accepted notion of Whitney stratifica-
tion.

Definition 4.1.1 Let Z be a closed subset of a differentiable manifold M of class
Ck . A Ck stratification of Z is a filtration by closed subsets

Z = Zd ⊃ Zd−1 ⊇ · · · ⊇ Z1 ⊇ Z0

such that each difference Zi − Zi−1 is a differentiable submanifold of M of class
Ck and dimension i, or is empty. Each connected component of Zi −Zi−1 is called
a stratum of dimension i. Thus Z is a disjoint union of the strata, denoted {Xα}α∈A,
and Z is a stratified set.

Example 4.1.2 The filtration of a realisation of a simplicial complex defined by
skeleta is a C∞ stratification, where the strata are the open simplices.

We would like our stratifications to “look the same” at different points on the
same stratum. This turns out to be possible if “looking the same” is interpreted as
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having neighbourhoods which are homeomorphic, a kind of equisingularity. Various
stronger equisingularity conditions, also called regularity conditions, have been
introduced ensuring this. An obvious necessary condition is as follows:

Definition 4.1.3 A stratification Z = ⋃α∈A Xα satisfies the frontier condition if
∀(α, β) ∈ A × A such that Xα ∩ Xβ = ∅, one has Xα ⊆ Xβ . As the strata are
disjoint this means that either Xα = Xβ or Xα ⊂ Xβ \Xβ .

Definition 4.1.4 One says that a stratification is locally finite if the number of strata
is locally finite.

4.2 Whitney’s Conditions (a) and (b)

The most widely used of the different regularity conditions proposed so as to
provide adequate “equisingularity” of a stratification are the conditions (a) and (b)

of Whitney.

Definition 4.2.1 Take two adjacent strata X and Y , i.e. two C1 submanifolds of M

such that Y ⊂ X \ X, so that X is adjacent to Y . The pair (X, Y ) is said to satisfy
Whitney’s condition (a) at y ∈ Y , or to be (a)-regular at y if : for all sequences
{xi} ∈ X with limit y such that, in a local chart at y, {Txi X} tends to τ in the
grassmannian GdimM

dimX , one has TyY ⊆ τ .
When every pair of adjacent strata of a stratification is (a)-regular (at each point)

then we say that the stratification is (a)-regular.

Definition 4.2.2 The pair (X, Y ) is said to satisfy Whitney’s condition (b) at y ∈ Y ,
or to be (b)-regular at y if : for all sequences {xi} ∈ X and {yi} ∈ Y with limit y

such that, in a local chart at y, {Txi X} tends to τ and the lines xiyi tend to λ, one
has λ ∈ τ .

When every pair of adjacent strata of a stratification is (b)-regular (at each point)
then we say that the stratification is (b)-regular.

Definition 4.2.3 Let Z be a closed subset of a differentiable manifold M of class
C1. When Z = ⋃α∈A Xα is a locally finite (b)-regular stratification satisfying the
frontier condition, we say we have a Whitney stratification of Z.

Remark 4.2.4 It will be a nontrivial consequence of the theory that the frontier
condition is automatically satisfied by pairs of adjacent strata of a locally finite
(b)-regular stratification.

Definition 4.2.5 Let π : TY → Y be the retraction of a C1 tubular neighbourhood
of Y in M . A pair of adjacent strata (X, Y ) is said to be (bπ)-regular if for all
sequences {xi} in X such that xi tends to y and the lines xiπ(xi) tend to λ and the
tangent planes Txi X tend to τ , then λ ∈ τ .

When every pair of adjacent strata of a stratification is (bπ)-regular (at each
point) then we say that the stratification is (bπ)-regular.
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Exercises

1. (b) ⇒ (a).
2. (b) ⇔ (bπ) ∀π .
3. (b) holds if both (a) and (bπ) hold for some π .
4. If (X, Y ) is (b)-regular at y ∈ Y , then dim Y < dim X.

The following standard example due to Whitney shows that (a) does not imply
(b).

Example 4.2.6 Let Z = Z2 = {y2 = t2x2 + x3} ⊂ R3. Set Z1 = {(0, 0, t)|t ∈ R}
and Z0 = ∅. Then Z2 ⊃ Z1 ⊃ Z0 = ∅ is a filtration defining a C∞ stratification
with 4 strata of dimension 2 and one stratum of dimension 1. The strata are defined
as follows : X1 = (Z2 − Z1) ∩ {t > 0} ∩ {x < 0}, X2 = (Z2 − Z1) ∩ {t <

0} ∩ {x < 0}, X3 = (Z2 − Z1) ∩ {y < 0} ∩ {x > 0}, X4 = (Z2 − Z1) ∩ {y >

0} ∩ {x > 0}, Y = Z1. One can check that the pairs of strata (X3, Y ) and (X4, Y )

are (b)-regular, and in fact they form C∞ manifolds with boundary, while (X1, Y )

and (X2, Y ) are not (b)-regular at (0, 0, 0), although they are (a)-regular. Note that
the frontier condition does not hold for (X1, Y ) and (X2, Y ). It is possible to unite
X1 and X2 into one connected stratum by turning Y into a circle, so that the frontier
condition holds. But (b) will still fail.

Next we give examples showing that (bπ) does not imply (a).

Example 4.2.7 Let Z = {y2 = tx2} ⊂ R3; with filtration Z = Z2 ⊃ Z1 = (Ot) ⊃
Z0 = ∅. The stratification is (bπ)-regular if π is the canonical projection onto the
t-axis, but it is not (a)-regular, and does not satisfy the frontier condition.

Example 4.2.8 Let Z = {x3 + 3xy5 + ty6 = 0} ⊂ R3, with filtration Z = Z2 ⊃
Z1 = (Ot) ⊃ Z0 = ∅. Here the stratification is not (a)-regular, but is (bπ)−regular
where π is projection to the t-axis, and satisfies the frontier condition.

Wall [144] conjectured geometric versions of conditions (a) and (b), and these
conjectures were proved in [131]. Different proofs were given later by Hajto [43]
and by Perkal [104]. Recall that each tubular neighbourhood of a submanifold Y of
a manifold M is given by a diffeomorphism φ defined on a neighbourhood U of Y .
We denote by πφ : U → Y the associated retraction and by ρφ : U → [0, 1) the
associated tubular function.

Theorem 4.2.9 (Trotman [131]) Let X, Y be disjoint C1 submanifolds in a C1

manifold M , with Y ⊂ X \ X. Then X is (b)-regular (resp. (a)-regular) over Y if
and only if for every C1 diffeomorphism φ defining a tubular neighbourhood of Y

the map (πφ, ρφ)|X (resp. πφ |X) is a submersion.

The theorem implies that conditions (a) and (b) are C1 invariants. Examples
exist showing that it is not sufficient to take C2 diffeomorphisms φ [62].

One of the main reasons that Whitney stratifications are of interest is because
analytic varieties can be Whitney stratified.
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Theorem 4.2.10 (Whitney [147, 148]) Every analytic variety (in Rn or Cn) admits
a Whitney stratification whose strata are analytic (hence C∞) manifolds.

The main point in the proof of this theorem is to show that the Whitney conditions
are stratifying, i.e. true on an analytic open dense set of a given subspace. This is
proved by contradiction using a wing lemma. Also in 1965, Łojasiewicz proved the
existence of Whitney stratifications of semi-analytic sets [79]. Hironaka and Hardt
proved that the same is true of every subanalytic set [46, 55]. Hironaka’s proof uses
resolution of singularities. More accessible existence proofs for semialgebraic sets
using Whitney’s wing lemma method are due to Thom [122] and to Wall [144].
A more elementary proof for subanalytic sets is due to Denkowska, Wachta and
Stasica [22, 24]. More generally, existence theorems for Whitney stratifications of
definable sets in o-minimal structures [25] have been given by Loi [78], by van den
Dries and Miller [26], and by Nguyen, Trivedi and Trotman [95]. Another proof of
the o-minimal case follows from the work of Halupczok and Yin [44].

Whitney’s theorem above is a pure existence statement, proved by contradiction
using Whitney’s wing lemma. Teissier in [118] obtained a much more precise
result for complex analytic sets: a complex analytic stratification is Whitney (b)-
regular if and only if the multiplicities of its polar varieties are constant along strata.
So Whitney regularity is equivalent to the constance of a finite set of numerical
invariants. The existence theorem follows. Teissier’s theorem also implies the
existence, for a complex analytic set, of a canonical minimal Whitney stratification
of which all others are refinements (see [118]). It also gives rise to the most general
Plücker formula, expressing the degree of the dual variety of a projective variety
in terms of topological characters of its canonical Whitney stratification and its
general plane sections [37]. Another way of characterising Whitney conditions for
complex analytic varieties was developed by Gaffney [32] using the integral closure
of modules. Gaffney also gives real analogues characterising Whitney (b)-regularity
using the real integral closure.

There are other situations where Whitney stratifications arise naturally. The
stratification of a smooth manifold by the orbit types of a proper Lie group action is
Whitney regular (this was known to Bierstone in the 1970s [10] and was reproved
several times, cf. [105]), but in fact a much stronger result holds: it is smoothly
locally trivial [35, 145]! Another situation where a natural Whitney stratification
turns out to be smoothly local trivial is the partition of a compact smooth manifold
into unstable manifolds of a generic Morse function. That this is a Whitney
stratification was proved by Nicolaescu [96], while Laudenbach proved the stronger
smooth local triviality [74].

One can ask why one should study Whitney’s condition (a), as it is strictly
weaker than condition (b). One reason is that it is both simple to understand and
easy to check. A second reason is that it is a necessary and sufficient condition for
transversality to the strata of a stratification to be an open property, as we shall see
in the next theorem, often cited in the literature.
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Definition 4.2.11 We say that a map f : N → M between C1 manifolds is
transverse to a C1 stratification of a closed set Z ⊂ M , if ∀x ∈ N such that
f (x) ∈ Z, then

(df )xTxN + Tf (x)X = Tf (x)M

where X is the stratum containing f (x), i.e. the map f is transverse to each stratum
of the stratification of Z.

Theorem 4.2.12 (Trotman [130]) A locally finite C1 stratification of a closed
subset Z of a C1 manifold M is (a)-regular if and only if for every C1 manifold
N , {f ∈ C1(N, M)|f is transverse to the strata of Z} is an open set in the Whitney
C1 topology.

The sufficiency of (a)-regularity here is due to Feldman in 1965 [28]. A simple
proof of necessity in Theorem 4.2.12 can be extracted from the proof of a recent
relative version of the theorem given by Trivedi and Trotman [125].

A partial version of this theorem in the holomorphic case is due to Trivedi [124].
Let H(M, N) denote the space of holomorphic mappings between two complex
analytic manifolds M and N .

Theorem 4.2.13 (Trivedi) Let M be a Stein manifold and N be an Oka manifold.
Let � be a stratification of a complex analytic subvariety in N . Let r be the minimum
of the dimensions of strata in �. If dim M = dim N − r and there exists a compact
set K in M such that the set of maps TK = {f ∈ H(M, N) : f �K �} is open in
H(M, N), then � is an a-regular stratification.

Another application of Whitney (a)-regularity is the following.

Theorem 4.2.14 (Kuo-Li-Trotman [70]) Let X be a stratum of an (a)-regular
stratification of a subset Z of Rn. For each x ∈ X and for every pair of Lipschitz
transversals M1, M2 to X at x (a Lipschitz transversal is defined to be the graph of
a Lipschitz map NxX → TxX), there is a homeomorphism

(M1, Z ∩M1, x) → (M2, Z ∩M2, x).

Such results justify the separate study and verification of (a)-regularity.
A natural geometric operation is to take transverse intersections of geometric

objects. Suppose Z and Z′ are two closed stratified sets of a manifold M . Denote
the set of strata by � and �′ respectively. If � and �′ are transverse, i.e. if for all
X ∈ �, and for all X′ ∈ �′, X and X′ are transverse as submanifolds of M , then
we can stratify Z ∩Z′ by � ∩�′ = {X∩X′|X ∈ �, X′ ∈ �′}. Moreover Z ∪Z′ is
naturally stratified by adding the complements in Z (resp. Z′) {(X\X∩Z′)|X ∈ �}
(resp. {(X′ \X′ ∩ Z)|X′ ∈ �′}).
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Theorem 4.2.15 If (Z, �) and (Z′, �′) are Whitney (b)-regular (resp. (a)-
regular), and have transverse intersections in M , then (Z ∩ Z′, � ∩ �′) is
(b)-regularly (resp. (a)-regularly) stratified, as is also Z ∪ Z′.

This can often be useful. The case of (b)-regularity was treated by Gibson in 1976
[36]. A general theorem of this kind was proved by Orro and Trotman in 2002
[98, 99] for a large class of regularity conditions including the (w)-regularity of the
next section.

Other useful properties of Whitney stratified sets include stability under taking
products, and triangulability.

Products If Z and Z′ are Whitney stratified then so is Z × Z′. A similar result is
true for the (w)-regular stratified sets of the next section.

Triangulation It is known that compact Whitney stratified sets are triangulable
(Goresky [38], Verona [143], Shiota [112]). The non-compact case follows from
another result of Shiota [111] stating that every Whitney stratified set is home-
omorphic to a subanalytic set, from which triangulability follows by citing the
triangulability of subanalytic sets due to Hironaka [56] and Hardt [47].

However there remains an outstanding open question [39]: does a Whitney
stratified set (Z, �) have a triangulation whose open simplexes are the strata of a
Whitney stratification refining � ? In other words, does every Whitney stratified set
admit a Whitney triangulation ? The existence of Whitney (b)-regular triangulations
was proved by Shiota for semialgebraic sets [114], and by Czapla [19] for definable
sets in o-minimal structures.

As we want our stratifications to “look the same” at different points of a given
stratum one might hope that there is a C1 diffeomorphism mapping neighbourhoods
of a point y1 on Y to neighbourhoods of another point y2 on Y . This is not true in
general, as illustrated by the following celebrated example.

Example 4.2.16 (Whitney) Let Z = {(x, y, t)|xy(x−y)(x− ty)= 0, t = 1} ⊂ R3,
stratified by Z = Z2 ⊃ Z1 = (Ot). This is a family of 4 lines parametrised by t .
The stratification is (b)-regular, but there is no C1 diffeomorphism mapping Zt1 to
Zt2 where Zt = Z ∩ (R2 × {t}), because of the cross-ratio obstruction. (A linear
isomorphism of the plane preserving three distinct lines through a point preserves
also any fourth line through that point.)

One may observe that Z in the previous example is a union of eight C1

manifolds-with-boundary, with (0t) the common boundary. Pawłucki [103] proved
a general theorem showing this property: if X and Y are subanalytic adjacent strata
such that X is (b)-regular over Y , and dim X = dim Y+1, then X∪Y is a finite union
of C1 manifolds-with-boundary with common boundary Y . A generalisation to
definable sets in polynomially bounded o-minimal structures was given by Trotman
and Valette [135], who show also that this property fails for definable sets in non
polynomially bounded o-minimal structures.
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Although Example 4.2.16 means we cannot expect to have in general local C1

triviality of Whitney stratified sets even in the real algebraic case, we can obtain
what is known as local topological triviality. The following, together with Whitney’s
existence Theorem 4.2.10, constitutes the fundamental theorem of stratification
theory.

Theorem 4.2.17 (Thom-Mather [81, 123]) Let (Z, �) be a Whitney stratified
subset of a C2 manifold M . Then for each stratum Y ∈ � and each point
y0 ∈ Y there is a neighbourhood U of y0 in M , a stratified set L ⊂ Sk−1 and a
homeomorphism

h : (U, U ∩ Z, U ∩ Y ) → (U ∩ Y )× (Bk, c(L) ∩ Bk, 0)

such that p1 ◦ h = πY , where c(L) is the cone on the link L with vertex 0, Bk is the
k-ball centred at 0, and πY is the projection onto U ∩Y of a tubular neighbourhood.

A typical application of this theorem is Fukuda’s proof that the number of
topological types of polynomial functions p : Rn → R of given degree d is finite
[30].

Theorem 4.2.17 applies without any hypothesis of analyticity or subanalyticity.
If the strata are assumed to be semialgebraic, Coste and Shiota [18] have shown
that the trivialising homeomorphism h may be chosen to be semialgebraic, using
real spectrum methods in their proof. See Shiota’s book [112] for a more general
result applying to definable sets and providing a definable trivialisation. The proof
of Mather [81] of Theorem 4.2.17 uses the notion of controlled vector field, and the
homeomorphism h resulting from Mather’s proof is obtained by integrating such
controlled vector fields, so that the resulting homeomorphism h will not in general
be semialgebraic even if the strata are semialgebraic.

A (stratified) vector field v on a stratified set (Z, �) is defined by a collection
of vector fields {vX|X ∈ �}. It is controlled when (πY )∗vX(x) = vY (πY (x)) and
(ρY )∗vX(x) = 0 on a tubular neighbourhood TY of Y , where TY is part of a set
of compatible tubular neighbourhoods called control data. See Mather’s notes [81]
for details of the theory of control data and of controlled vector fields. It was not
until 1996 that a proof was published that these stratified controlled vector fields
could be assumed to be continuous : given a vector field vY on a stratum Y of
a Whitney stratified set, or indeed a Bekka stratified set (see Sect. 4.8 below),
there exists a continuous controlled stratified vector field {vX} on M extending vY

(Shiota [112] for Whitney stratified sets, du Plessis [106] for the more general Bekka
stratified sets). This result has been used for example by Hamm [45] to simplify
some statements in stratified Morse theory [41], and by S. Simon to prove a stratified
version of the Poincaré-Hopf theorem [116].

The proof of local topological triviality and conicality of Whitney stratified sets
as stated in Theorem 4.2.17 is in fact an easy consequence of the following more
general first isotopy lemma of Thom [81, 123]:



4 Stratification Theory 251

Theorem 4.2.18 Let Z be a Whitney stratified subset of a C2 manifold M , and let
f : M → Rk be a C2 map such that f |Z is proper and the restriction of f to each
stratum of Z is a submersion. Then there is a stratum-preserving homeomorphism
h : Z → Rk × (f−1(0)∩Z) which commutes with the projection to Rk , so that the
fibres of f |Z are homeomorphic by a stratum-preserving homeomorphism.

There is a second isotopy lemma for stratified maps satisfying Thom’s (af ) con-
dition (see Definition 4.4.1 below), a relative version of condition (a) [81, 82, 123].
These two isotopy lemmas were first used in the proof of the difficult topological
stability theorem : the space of topologically stable mappings is dense in the space of
proper smooth mappings between two smooth manifolds [36, 82, 83, 107, 121, 123].
A recent strengthening of Theorem 4.2.17, obtaining continuity of the tangent
spaces to the leaves defined by fixing points in the normal slice, implies the
density of strongly topologically stable mappings in the space of proper mappings
[89]. Strong topological stability refers to imposing continuity of the commuting
homeomorphisms as functions of a varying map.

4.3 The Kuo-Verdier Condition (w)

Condition (a) for (X, Y ) says that the distance between the tangent space to X at
x and the tangent space to Y at y tends to zero as x tends to y. Kuo and Verdier
studied what happens when the rate of vanishing of this distance is O(|x − πY (x)|)
[67, 142].

Definition 4.3.1 Two adjacent strata (X, Y ) in a C1 manifold M are said to be (w)-
regular at y0 ∈ Y , or to satisfy the Kuo-Verdier condition (w) , if there exist a
constant C > 0 and a neighbourhood U of y0 in M such that

d(TyY, TxX) < C||x − y||

∀x ∈ U ∩X,∀y ∈ U ∩ Y .

Here, for vector subspaces V and W of an inner product space E,

d(V, W) = sup{inf{sinθ(v, w)|w ∈ W∗}|v ∈ V ∗}

where θ(v, w) is the angle between v and w.
Note that d(V, W) = 0 ⇔ V ⊂ W , and that d(V, W) = 1 ⇔ ∃v ∈ V ∗, v ⊥ W .

Proposition 4.3.2 (Kuo [66]) For semi-analytic X and Y , (w) ⇒ (b).

Verdier observed that Kuo’s proof that (w) implies (b) in [66] (where Kuo
takes as hypothesis a weaker condition, that he called the ratio test) works too for
subanalytic sets [142], and Loi [78] extended this result to the case of definable sets
in o-minimal structures.
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So (w)-regularity is a stronger regularity condition than (b) for definable
stratified sets (it no longer implies (b) in general for C∞ stratified sets as shown
by Example 4.3.7 below). Moreover it turns out to be generic too, as the following
theorem shows.

Theorem 4.3.3 (Verdier [142]) Every subanalytic set admits a locally finite (w)-
regular stratification.

This is also true for definable sets in arbitrary o-minimal structures as shown by
Loi [78]. Other proofs in the subanalytic case are due to Denkowska and Wachta
[23], and to Łojasiewicz, Stasica and Wachta [80], both of these proofs avoiding
resolution of singularities. Another proof, due to Kashiwara and Schapira [63],
follows from the equivalence of (w) and their microlocal condition μ [134].

For complex analytic sets a major result proved in 1982 by Teissier, with a
contribution by Henry and Merle, implies the equivalence of (b) and (w) [50, 118].
Real algebraic examples showing that (b) does not imply (w) are common because
(b) is a C1 invariant [131] while (w) is not a C1 invariant (although it is a C2

invariant), as shown by the following example.

Example 4.3.4 (Brodersen-Trotman [15]) Let Z = {y4 = t4x + x3} ⊂ R3. Then
the stratification of Z defined by Z = Z2 ⊃ Z1 = (Ot) is (b)-regular but not
(w)-regular. Z is actually the graph of the C1 function f (x, t) = (t4x + x3)1/4.

Infinitely many real algebraic examples with (b) holding but not (w) may be
found in the combined classifications of Juniati, Noirel and Trotman [59, 60, 97,
133]. The first such semialgebraic example was given in [128].

One can characterise (w)-regularity using stratified vector fields as follows.

Proposition 4.3.5 (Brodersen-Trotman [15]) A stratification is (w)-regular ⇔
every vector field on a stratum Y extends to a rugose stratified vector field in a
neighbourhood of Y .

Here a stratified vector field {vX : X ∈ �} is called rugose near y0, in a stratum Y ,
when there exists a neighbourhood U of y0 and a constant C > 0, such that for all
adjacent strata X, ∀x ∈ U ∩X,∀y ∈ U ∩ Y ,

‖ vX(x)− vY (y) ‖≤ C ‖ x − y ‖ .

This resembles an asymmetric Lipschitz condition, and poses the question of
when the extension of a Lipschitz vector field can be chosen to be Lipschitz. This
we will discuss in Sect. 4.5.

There is a somewhat weaker version of the Thom-Mather isotopy theorem, due to
Verdier [142] in 1976, for his (w)-regular stratified sets. He obtains local topological
triviality but not the local conicality of Theorem 4.2.17.

Theorem 4.3.6 (Verdier) Let (Z, �) be a (w)-regular C2 stratified subset of a C2

manifold M . Then for each stratum Y ∈ � of codimension k in M , and each point
y0 ∈ Y there is a neighbourhood U of y0 in M , a stratified set N ⊂ Bk and a rugose
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homeomorphism

h : (U, U ∩ Z, U ∩ Y ) → (U ∩ Y )× (Bk, N, 0)

such that p1 ◦ h = πY , where Bk is the k-ball centred at 0, and πY is the projection
onto U ∩ Y of a tubular neighbourhood.

The proof is by integration of rugose vector fields [142]. Another approach to
this isotopy theorem was given by Fukui and Paunescu [31].

Example 4.3.7 The topologist’s sine curve in R2, with Z the closure of {y =
sin(1/x) : x > 0}, provides an example of a (w)-regular stratified set Z which is
not Whitney stratified : (bπ) fails at every point of the 1-dimensional stratum on the
y-axis. Clearly the conical conclusion of the Thom-Mather isotopy Theorem 4.2.17
fails to hold.

Remark 4.3.8 The homeomorphism obtained in the Thom-Mather isotopy Theo-
rem 4.2.17 is also rugose, because it is controlled, given by integrating controlled
vector fields (see [81]).

4.4 Stratified Maps

Knowing that subanalytic sets may be stratified with regularity conditions ensuring
local topological control one can ask whether similar structure theorems can be
proved for mappings. Hardt [46] proved that every proper real analytic mapping
between real analytic manifolds may be stratified, in the sense that one may find
Whitney stratifications of source and target such that restricted to each stratum of the
source the map is a submersion onto the stratum in the target. However Thom[120]
had already observed in 1962 that in a family of polynomial maps the topological
type can vary continuously. He proposed a type of regularity condition on maps to
avoid this phenomenon [123] as follows.

Definition 4.4.1 A map f defined on a stratified set in a manifold M with Y a
stratum is said to satisfy the Thom condition (af ) at y ∈ Y when f is of constant
rank on each stratum and

Ty(Y ∩ f−1(f (y))) ⊂ limx→yTx(X ∩ f−1(f (x))),

where, for X a stratum and x ∈ X tending to y, the limit is taken in the appropriate
grassmannian GdimM

dimX−k if f restricted to X has rank k.

When the map f is constant on X and Y this is just (a)-regularity.
Thom conjectured in the 1960s that proper stratified maps satisfying (af ) should

be triangulable. This was proved by Shiota in 2000 [113] after an earlier partial



254 D. Trotman

result by Verona in his book [143]. See also [115] for the non-proper semialgebraic
case.

A striking result [76] by Lê and Saito in complex equisingularity, showing the
naturality of Thom’s condition, is that constancy of the Milnor numbers of a family
of isolated hypersurface singularities defined by

F : (Cn ×C, 0× C) → (C, 0)

is equivalent to the map F satisfying (aF ) with respect to the stratification with 3
strata,

Cn+1 ⊃ F−1(0) ⊃ (0× C).

If instead of inclusion in Definition 4.4.1 which says the distance between the two
tangent spaces goes to zero, one requires that this distance is bounded above by a
constant times the distance of x to Y , one then obtains a condition (wf ) generalising
the Kuo-Verdier condition (w) of Definition 4.3.1. A study of (wf ) in the complex
analytic case with geometric characterisations, analogous to Teissier’s study of (w)

and (b) in [118] was carried out by Henry, Merle and Sabbah [53]. Gaffney and
Kleiman give algebraic versions of (wf ) in the complex case see [33]. In the real
C∞ case (wf ) is one of a family of regularity conditions on maps and spaces studied
by Trotman and Wilson in [137].

For subanalytic functions one can always stratify a map so that (wf ) holds
(Hironaka [57] for (af ) and Parusiński [100] for (wf )). The blowup of a point
in the plane provides a counterexample to the existence of a stratification (af ) when
the target space has dimension at least 2.

Associated to Thom maps (stratified maps satisfying (af )) there is a second
isotopy lemma for which we refer to [81] and [82]. This is important in the study of
topological stability of mappings [83], Mather using it to complete the proof of the
density of the set of topologically stable mappings between smooth manifolds.

Having seen that conditions (a) and (w) have relative versions (af ) and (wf )

one may wonder about a possible relative version (bf ) of condition (b). So far
there have been 3 different conditions called (bf ) in the literature, introduced
and used respectively by Thom [123], by Henry and Merle [51] and by Nakai
[90]. There is also a condition (D) due to Goresky [39]. No comparative study
of these conditions has been undertaken. However Murolo has recently worked out
properties of Goresky’s condition (D) [88].

4.5 Lipschitz Stratifications

Mostowski in 1985 [85] introduced conditions (L) on a stratification, which
further strengthen the Kuo-Verdier condition (w) and these imply the possibility of
extending Lipschitz vector fields and can indeed be characterised by the existence
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of certain Lipschitz extensions of Lipschitz vector fields (see Theorem 4.5.3 below)
[101].

Definition 4.5.1 (Mostowski) Let Z = Zd ⊃ · · · ⊃ Z� = ∅ be a closed stratified

set in Rn. Write
◦
Zj= Zj −Zj−1. Let γ > 1 be a fixed constant. A chain for a point

q ∈ ◦Zj is a strictly decreasing sequence of indices j = j1, j2, . . . , jr = � such that
each js(s ≥ 2) is the greatest integer less than js−1 for which

dist(q, Zjs−1) ≥ 2γ 2dist(q, Zjs ).

For each js, 1 ≤ s ≤ r , choose qjs ∈
◦
Zjs such that qj1 = q and |q − qjs | ≤

γ dist(q, Zjs ).

If there is no confusion we call {qjs }rs=1 a chain of q .

For q ∈ ◦Zj , let Pq : Rn → Tq(
◦
Zj) be the orthogonal projection to the tangent space

and let P⊥
q = I − Pq be the orthogonal projection to he normal space (Tq(

◦
Zj )⊥.

Definition 4.5.2 (Mostowski) A stratification � = {Zj }dj=� of Z is said to be a
Lipschitz stratification, or to satisfy the (L)-conditions, if for some constant C > 0

and for every chain {q = qj1, . . . , qjr } with q ∈ ◦Zj1 and each k, 2 ≤ k ≤ r ,

| P⊥
q Pqj2

· · ·Pqjk
| ≤ C | q − qj2 | /djk−1(q) (L1)

and for each q ′ ∈ ◦Zj1 such that | q − q ′ | ≤ (1/2γ ) dj1−1(q),

| (Pq − Pq ′)Pqj2
· · ·Pqjk

| ≤ C | q − q ′ | /djk−1(q) (L2)

and

| Pq − Pq ′ | ≤ C | q − q ′ | /dj1−1(q) (L3).

Here dist(−, Z�−1) ≡ 1, by convention.
It is not hard to show that for a given Lipschitz stratification ∃ C > 0 such that

∀x ∈ ◦Zj ,∀y ∈ ◦Zk, k < j then

|P⊥
x Py | ≤ C|x − y|

dist(y, Zk−1)
,

and because |P⊥
x Py | = d(Ty

◦
Zk,

◦
Zj), (w)-regularity follows with a precise

estimation for the constant (which can tend to infinity as y approaches Zk−1).
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Parusiński has given the following characterisation of Mostowski’s Lipschitz
conditions in terms of extensions of vector fields.

Theorem 4.5.3 (Parusiński [101]) A stratification Z = Zd ⊃ Zd−1 ⊃ · · · ⊃
Z0 ⊃ Z−1 = ∅ is Lipschitz if and only if there exists a constant K > 0 such that for
every subset W ⊂ Z such that

Zj−1 ⊂ W ⊂ Zj

for some j = �, . . . , d where � is the lowest dimension of a stratum of Z,
each Lipschitz �-compatible vector field on W with Lipschitz constant L which
is bounded on W ∩ Z� by a constant C > 0, can be extended to a Lipschitz �-
compatible vector field on Z with Lipschitz constant K(L+ C).

He also proved an existence theorem for subanalytic sets.

Theorem 4.5.4 (Parusiński [101]) Every subanalytic set admits a Lipschitz strat-
ification. Moreover such Lipschitz stratifications are locally bilipschitz trivial.

The initial existence theorem for Lipschitz stratifications was for complex analytic
sets, due to Mostowski in 1985 [85]. It is not true that definable sets in arbitrary
o-minimal structures admit Lipschitz stratifications.

Example 4.5.5 (Parusinski) Let X(t) be the union of the x-axis and the graph y =
xt (x > 0) in R3 = (x, y, t). Then the Lipschitz types of X(t) are distinct for all
t > 1. By Miller’s dichotomy every non polynomially bounded o-minimal structure
contains this as a definable set.

However we do have an existence theorem in the polynomially bounded case.

Theorem 4.5.6 (Nguyen-Valette [93]) Every definable set in a polynomially
bounded o-minimal structure admits a definable Lipschitz stratification.

Halupczok and Yin have given another proof of this result [44].
It is clear that the (L)-conditions are much more of a constraint than is (w). Here

are some simple examples showing that the two conditions are distinct.

Example 4.5.7 (Mostowski) In C4 or R4 let Z = {y = z = 0} ∪ {y = x3, z = tx}.
Then (w) holds along the t-axis, but (L) fails.

Example 4.5.8 (Koike-Juniati [61]) In R3 let Z = {y2 = t2x2 + x3, x ≥ 0} and
stratify by Z = Z2 ⊃ Z1 = 〈Ot〉. It is easy to check that (w) holds for this
semialgebraic example, while (L2) fails : let q = qj1 = q2 = (t2,

√
2t3, t), q ′ =

(t2,−√2t3, t), qj2 = q1 = (0, 0, t), as t → 0.
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4.5.1 Teissier’s Criteria for a Good Equisingularity Condition

In his 1974 Arcata lectures [117] Teissier gave a list of criteria for a good equisingu-
larity condition E on a stratification of a complex analytic set; E-regularity should
in particular:

1) be as strong as possible;
2) be generic, i.e. every complex analytic set should possess an E-regular stratifi-

cation;
3) imply local topological triviality along strata;
4) imply equimultiplicity;
5) be preserved after intersection with generic linear spaces containing a given

stratum, locally linearised (E ⇒ E∗, see below for a precise definition).

Criteria 2) to 5) hold for Whitney (b)-regularity (see Teissier [118]), which turns
out to be equivalent to (w) in the complex case as noted above. Criterion 5) is an
essential part of the proof of this result via the equimultiplicity of polar varieties.
(Recall that (b) does not imply (w) for real algebraic varieties by Example 4.3.4.)

Criterion 4) is a theorem of Hironaka from 1969 [54].

Theorem 4.5.9 (Hironaka) For a complex analytic Whitney stratified variety V

the pointwise multiplicity m(V, p) is constant on each stratum.

Definition 4.5.10 (E∗-regularity) Let M be a C2 manifold. Let Y be a C2

submanifold of M and let y ∈ Y . Let X be a C2 submanifold of M such that y ∈ X

and Y ∩X = ∅. Let E denote an equisingularity condition (e.g. (b), (w), (L)). Then
(X, Y ) is said to be Ecodk-regular at y (0 ≤ k ≤ codY ) if there exists an open dense
subset Uk of the grassmannian of codimension k subspaces of TyM containing TyY ,
such that if W is a C2 submanifold of M with Y ⊂ W near y, and TyW ∈ Uk , then
W is transverse to X near y, and (X ∩W, Y) is E-regular at y.

One says finally that (X, Y ) is E∗-regular at y if (X, Y ) is Ecodk-regular for all
k, 0 ≤ k < codY .

Theorem 4.5.11 (Navarro Aznar-Trotman [92]) For subanalytic stratifications,
(w) ⇒ (w∗), and if dim Y = 1, (b) ⇒ (b∗).

The fact that (b∗)-regular stratifications exist for subanalytic sets allows one to
prove that stratified Morse functions (in the sense of Goresky and MacPherson [41])
exist and are generic, using (bcod1). The rapid spiral is an example of a Whitney
stratified set for which no (stratified) Morse functions exist [41].

Question: Is it true that (b) ⇒ (b∗) for subanalytic stratifications in general, i.e.
when dim Y ≥ 2 ?

Theorem 4.5.12 (Teissier [118]) For complex analytic stratifications, (b) ⇒ (b∗).

Theorem 4.5.13 (Juniati-Trotman-Valette [61]) For subanalytic stratifications,
(L) ⇒ (L∗).
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According to the 1974 criteria of Teissier [117], Whitney regularity is a good
equisingularity condition. Because Mostowski’s Lipschitz condition (L) is stronger
it may be considered better as it also satisfies Teissier’s criteria.

Many results concerning E∗-regularity for different equisingularity conditions E

in the complex analytic context are described in [77], including a kind of converse
to the Thom-Mather local triviality Theorem 4.2.17, namely that (T T ∗) implies (b),
where (T T ) means local topological triviality along strata.

4.6 Definable Trivialisations

We have seen that Whitney (b)-regularity ensures local topological triviality.
Mostowski and Parusiński proved that an (L)-regular stratification of a subanalytic
set is locally bilipschitz trivial (Theorem 4.5.4). It is natural to ask if such
trivialisations can be chosen to be definable. Or specifically if Z is a semialgebraic
set, is there some stratification which is locally semialgebraically trivial ? This was
proved by Hardt in 1980 [48]. His method was improved by G. Valette who obtained
local semialgebraic bilipschitz triviality [139, 140].

Theorem 4.6.1 (Hardt) Semialgebraic sets admit locally semialgebraically trivial
stratifications.

Theorem 4.6.2 (Valette) Semialgebraic sets admit locally semialgebraically bilip-
schitz trivial stratifications.

There are also subanalytic versions of these results. For semialgebraic (b)-
regular stratifications Coste and Shiota [18] proved a semialgebraic isotopy theorem
using real spectrum methods. See the book of Shiota [112] for further details and
references.

A recent (2017) very powerful theorem by Parusiński and Paunescu [102],
proving the Whitney fibering conjecture of 1965 [147], produces a subanalytic
trivialisation of a given stratified analytic variety (real or complex) which is
moreover arc-analytic, as is its inverse. The hypothesis on the stratified set is a type
of Zariski equisingularity, stronger than (w)-regularity, hence implying Whitney
(b)-regularity by Proposition 4.3.2. The relation between this notion of Zariski
equisingularity and Mostowski’s Lipschitz condition of Definition 4.5.2 is currently
being studied in the case of complex analytic varieties by Parusiński and Paunescu.
See Parusiński’s contribution to this handbook for details of their work.

4.7 Abstract Stratified Sets

One may begin the study of differentiable manifolds in two ways, either by starting
with the abstract definition and eventually proving the existence of an embedding
into euclidean space [58], or by starting with submanifolds of euclidean space
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[42] so that the abstract concept is obtained by taking an equivalence class by
diffeomorphisms. In a similar way there is a definition of abstract stratified set, due
to Mather [81]. He developed this definition by adapting ideas of Thom [123], who
gave a different definition of an abstract stratified set, so that the resulting spaces
are called Thom-Mather stratified sets.

Definition 4.7.1 An abstract stratified set is a triple (Z, �,T) satisfying 9
axioms:

A1) Z is a locally compact second countable Hausdorff space, hence metrisable.
A2) � is a partition of Z into locally closed subsets, called the strata.
A3) Each stratum is a topological manifold with a differentiable structure of class

Ck .
A4) � is locally finite.
A5) � satisfies the frontier property.
A6) T is a triple ({TX}, {πX}, {ρX}) where for each X ∈ �, TX is an open

neighbourhood of X in V , πX : TX −→ X is a continuous retraction of TX

onto X, and ρX : TX −→ [0,∞) is a continuous function. We call TX the
tubular neighbourhood of X, πX the local retraction of TX onto X, and ρX the
tubular function of X.

A7) X = {v ∈ TX : ρX(v) = 0}.
Notation For strata X, Y , let TX,Y = TX ∩ Y , let πX,Y = πX|TX,Y : TX,Y −→ X

and let ρX,Y = ρX|TX,Y : TX,Y −→ (0,∞).

A8) For each pair of strata X, Y , (πX,Y , ρX,Y ) : TX,Y −→ X × (0,∞) is a Ck

submersion (hence dim X < dim Y if TX,Y = ∅).
A9) For strata W < X < Y we have πW,X ◦ πX,Y (z) = πW,Y (z), and ρW,X ◦

πX,Y (z) = ρW,Y (z). These are called control conditions .

Such abstract stratified sets are triangulable, as shown by Goresky [38] and by
Verona [143].

Mather’s proof in [81] of the first isotopy lemma of Thom for stratified
submersions on Whitney stratified sets (Theorem 4.2.18 above) uses Mather’s result
that every Whitney stratified subset of a manifold admits the structure of an abstract
stratified set. He then proves the isotopy lemma in the abstract context.

It is then natural to ask about an embedding theorem for abstract stratified sets,
similar to the embedding theorem for smooth manifolds. Teufel [119] and Natsume
[91] proved that every abstract stratified set of dimension n can be embedded
in R2n+1 as a Whitney stratified set. Noirel [97] improved their statements by
showing that the resulting Whitney stratified set may be made subanalytic as may the
induced local retractions and tubular functions. Also he showed that the embedded
stratification may be made (w)-regular (hence also (b)-regular by the subanalytic
version of Proposition 4.3.2). Moreover the embedded set and the induced control
data can be made semialgebraic if the set is compact [97].

Note that in the C∞ category (w)-regular stratified sets do not in general admit
the structure of a Thom-Mather abstract stratified set because they are not always
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locally conical as shown by Example 4.3.7. However they are locally topologically
trivial as shown directly by Verdier using integration of rugose stratified vector fields
[142].

Much work has been done generalising the differential properties of smooth
manifolds to abstract stratified sets in the above sense. See Sect. 4.11 below for
some references.

4.8 K. Bekka’s (c)-Regularity

It can be important to be more precise as to when a stratification is locally
topologically trivial in the sense of Theorem 4.2.17, for example when classifying
topologically or when studying topological stability (cf. work of Damon, Looijenga,
Wirthmüller and the book of du Plessis and Wall [107]). Then one needs the weakest
regularity condition on a stratification ensuring local topological triviality. This
principle led to the introduction of the following condition.

Definition 4.8.1 (K. Bekka) A stratified set (Z, �) in a manifold M is (c)-regular
if for every stratum Y of � there exists an open neighbourhood UY of Y in M

and a C1 function ρY : UY → [0,∞) such that ρY
−1(0) = Y and the restriction

ρY |UY∩Star(Y ) is a Thom map, where Star(Y ) = ⋃{X ∈ �|X ≥ Y }, i.e. ∀X ∈
Star(Y ), with ρXY = ρY |X and x ∈ X,

limx→yTx(ρXY
−1(ρY (x))) ⊇ TyY ∀y ∈ Y.

Note that ρY : UY → [0,∞) is defined globally on a neighbourhood of Y . So this
is not a local condition. Local (c)-regularity is developed and used by Schürmann
[109].

Theorem 4.8.2 (Bekka [4]) (c)-regular stratifications are locally topologically
trivial along strata.

The proof is by proving the existence of an abstract stratified structure of Thom-
Mather which allows the use of Mather’s theory of controlled stratified vector fields
[81] and implies that the conclusions of Theorems 4.2.17 and 4.2.18 are satisfied.
If one only requires constance of homological or cohomological data then one can
weaken (c) even further—see chapter 4 of the book of Schürmann [109].

Characterisations of condition (c) are given by Bekka and Koike in [5].
We saw how (w) and (L) are characterised by the existence of appropriate lifts

of vector fields. Here is the corresponding result for (c)-regularity.

Theorem 4.8.3 (du Plessis-Bekka [106]) A stratification is (c)-regular ⇔ every
C1 vector field on a stratum Y admits a continuous controlled stratified extension to
a neighbourhood of Y .
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This means that there exists a family of vector fields {vX|X ∈ Star(Y )} such that
v =⋃ vX is continuous (in T M), while being controlled as defined above.

How do (b) and (c) compare ?
I proved [131] that (b) over a stratum Y is equivalent to the property that for

every C1 tubular neighbourhood TY of Y the restriction to neighbouring strata
of the associated map (πY , ρY ) is a submersion, where πY : TY → Y is the
canonical retraction and ρY : TY → [0, 1) the canonical distance function (see
Theorem 4.2.9).

In comparison, (c) says that there exists some C1 function ρ vanishing on
Y (not necessarily associated to a tubular neighbourhood: ρ can be degenerate,
e.g. weighted homogeneous, or even flat on Y ) such that for every C1 tubular
neighbourhood TY of Y the restriction to neighbouring strata of the map (πY , ρ)

is a submersion [4].
One can prove easily that (b) implies (c) while there are examples showing

that the converse is false [4]. See [6] for real algebraic examples. There are
complex algebraic examples due to Briançon and Speder [14]: these consist of 1-
parameter families of complex hypersurfaces with isolated singularities defined by
F : C3 × C, 0 × C → C, 0 such that (F−1(0), 0 × C) is (c)-regular (because
weighted homogeneous) but not (b)-regular. It is unknown whether topologically
trivial complex analytic stratifications are always (c)-regular, or even whether they
are (a)-regular (a question of Thom).

Several authors have used (c)-regularity as a means of providing sufficient
conditions for the existence of a real Milnor fibration associated to a real analytic
map [108, for example].

A recent theorem of Murolo, du Plessis and Trotman [89] states that for Whitney
(b)-regular or Bekka (c)-regular stratified sets the Thom-Mather isotopy theorem
can be improved so as to provide a smooth form of the Whitney fibering conjecture.
One can ensure that the fibres of the trivialising homeomorphism h in the Thom-
Mather isotopy Theorem 4.2.17 (or Theorem 4.5.4) for fixed points of c(L) have
continuously varying tangent spaces as one goes to the base stratum X, or changes
stratum in the star of X. Moreover the associated wings obtained by fixing a point
on the link L can be made (c)-regular.

Sandwiched between Whitney (b)-regularity and Bekka’s (c)-regularity there is
a condition known as weak Whitney regularity. For a pair of adjacent strata (X, Y )

we assume that for some choice of local coordinates at a point y0 ∈ Y the angle θ

between secant lines and the tangent space to X is bounded away from π/2 : ∃δ > 0
such that

θ(xy, TxX) < π/2− δ

for all x ∈ X in some neighbourhood U of y0.
We call this condition (δ) and the combined condition (a + δ) (when both (a)

and (δ) hold) is known as weak Whitney regularity . The proof that weak Whitney
regularity implies (c) (for a standard tubular function ρY associated to a tubular
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neighbourhood) is in [6]. Real algebraic examples exist showing that the converse
is not true. No complex examples are known.

It is a curious fact that weak Whitney regularity for a family of complex
hypersurfaces with isolated singularities implies equimultiplicity [136], generalising
Hironaka’s theorem in this case [54]. It is unknown whether topologically trivial
families are equimultiple (a parametrised version of the famous Zariski problem
[150] concerning topological invariance of the multiplicity of an isolated complex
hypersurface singularity). The examples of Briançon and Speder [14] of μ-constant
families of hypersurfaces which are not Whitney regular turn out to be weakly
Whitney regular—see [8] and the correction [9]. One can then ask whether μ-
constant families of hypersurfaces are always weakly Whitney regular. This would
imply topological triviality via (c)-regularity and Bekka’s Theorem 4.8.2 [4] that (c)

implies topological triviality, and thus extend the Lê-Ramanujam theorem (which
uses the h-cobordism theorem) to the missing surface case [75].

We note that weakly Whitney stratified sets in general have similar metric
properties to Whitney stratified sets - they are of finite geodesic diameter if compact
for example [7]. Also weakly Whitney stratified sets with a smooth singular set of
codimension 1 have finite volume. This is not true in general if the singular set has
codimension 2 or if the depth is at least 2 [29].

4.9 Condition (tk)

We return to the first example of Whitney, Z = {y2 = t2x2 + x3}. Slice the surface
by a plane S transverse to the t-axis at 0. Then the topological type of the germ at 0
of the intersection Z ∩ S is constant, i.e. independent of S. Remember that Whitney
(a) holds. Thom noticed this and mentioned it to Kuo, who proved the following
theorem [68].

Theorem 4.9.1 (Kuo 1978) If (X, Y ) is (a)-regular at y ∈ Y then (h∞) holds, i.e.
the germs at y of intersections S ∩ X, where S is a C∞ submanifold transverse to
Y at y ∈ S ∩ Y and dimS + dimY = dimM , are homeomorphic.

It later turned out [132] that one can replace (h∞) by (h1), meaning one considers
all C1 transversals S, and weaken (a) to (t1), defined as follows.

Definition 4.9.2 A pair of strata (X, Y ) is (tk)-regular at y ∈ Y if for every Ck

submanifold S transverse to Y at y ∈ Y ∩ S, there is a neighbourhood U of y such
that S is transverse to X on U ∩X (1 ≤ k ≤ ∞).

Clearly (a) implies (t1). The converse does not hold as first shown in [127, 129].
The converse does hold in the subanalytic case if we allow transversals of arbitrary
dimension [132]. In the case of transversals of complementary dimension there are
semialgebraic examples with (t1) but not (a) [132], and there are even complex
algebraic examples [34].
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Theorem 4.9.3 (Trotman [132]) If we restrict to transversals of complementary
dimension to Y , (t1) is equivalent to (h1).

Theorem 4.9.4 (Trotman-Wilson [137]) For subanalytic strata, (tk) is equivalent
to the finiteness of the number of topological types of germs at y of S ∩ X for S a
Ck transversal to Y (k ≥ 2) of complementary dimension.

The proofs that I developed with Kuo and with Wilson use the “Grassmann
blowup” introduced by Kuo and myself [71]. Let

En,d = {(L, x)|x ∈ L} ⊂ Gn,d × Rn

for d < n, with projection to Gn,d , denote the canonical d-plane bundle. Let β =
βn,d denote projection to Rn. When d = 1 this is the usual blowup of Rn with
centre 0.

Suppose X, Y ⊂ Rn and 0 ∈ Y with d = codim Y .
Let X̃ = β−1(X) and let Ỹ = {(L, 0)|L is transverse to Y at 0}. The following

striking theorem results from work by Kuo and myself [71], completed by work
with Wilson [137].

Theorem 4.9.5 (X, Y ) is (tk)-regular at 0 ∈ Y if and only if (X̃, Ỹ ) is (tk−1)-
regular at every point of Ỹ (k ≥ 1).

When k = 1, (t0) is equated with (w), the Kuo-Verdier condition of Defini-
tion 4.3.1. So in particular, (w)-regularity is the first in an infinite sequence of
(tk)-regularity conditions !

Now we can see how to prove that (t1) implies (h1) by using the Verdier isotopy
Theorem 4.3.6 for (w)-regular stratifications in the Grassmann blowup, although
this was not the original proof.

The (tk) conditions were used to characterise jet sufficiency by Trotman and
Wilson, generalising theorems of Bochnak, Kuo, Lu and others, and realising part of
the early programme of Thom (1964). See [137] for details. Work with Gaffney and
Wilson [34] developed an algebraic approach to the (tk) conditions, using integral
closure of modules.

To illustrate the difference between (t2) and (t1), and the previous theorem, look
at the Koike-Kucharz example [65] given by Z = {x3 − 3xy5 + ty6 = 0} ⊂ R3

stratified as usual by (X, Y ) with Y the t-axis and X its complement Z − Y . Then
(X, Y ) is (t2) but not (t1) at 0. It is easy to check that there are 2 topological types
of germs at 0 of intersections S ∩ X where S is a C2 submanifold transverse to
Y at 0. However the number of topological types of such germs for S of class C1

is infinite, even uncountable. It is easy to construct similar examples showing (tk)

does not imply (tk−1).
This example arose from the discovery independently by S. Koike and W.

Kucharz that the 6-jet x3 − 3xy5 has infinitely many topological types among
its representatives of class C7, but only finitely many (in fact two) among its
representatives of class C8. Such an example contradicts a conjecture of Thom
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from [123]. The relation of these properties of jets with stratification theory and
the conditions (t1) and (t2) was pointed out by Kuo and Lu [69].

On a historical note, condition (t) with no specification on the differentiability of
the transversals was first introduced by Thom in 1964 [121], before the appearance
of Whitney’s conditions (a) and (b). Thom claimed that (t) implies the openness
of the set of maps transverse to a stratification [121, 123]. This is true in the
semialgebraic case because then (t) implies (a) and one can use Theorem 4.2.12,
but is false for C∞ stratified sets, again using Theorem 4.2.12 and examples with
(t) but not (a) [127].

4.10 Density and Normal Cones

We saw above Hironaka’s Theorem 4.5.9 (from [54]) that complex analytic Whitney
stratifications are equimultiple along strata. What is a real version of this statement
?

The multiplicity m(V, p) at a point p of a complex analytic variety V is the
number of points near p in the intersection of V with a generic plane L missing
p, of complementary dimension to that of V . This positive integer is equal to
the Lelong number, or density θ(V, p) of V at p defined as the limit as ε tends
to 0 of the quotient vol(V∩Bε(p))

vol(P∩Bε(p))
where P is a plane containing p of the same

dimension as V . Kurdyka and Raby showed that the density is well-defined for
subanalytic sets, as a positive real number [72]. It is thus natural to conjecture
(I did so in 1988) that the density of a subanalytic set is continuous along strata
of a subanalytic Whitney stratification, as a generalisation of Hironaka’s theorem
to the real case. This was partially proved by G. Comte in his thesis (1998) for
subanalytic (w)-regular stratifications [17], and more generally for subanalytic (b∗)-
regular stratifications. The general conjecture was proved for subanalytic (b)-regular
stratifications by G. Valette in 2008 [141]. Valette also showed that the density is a
Lipschitz function along strata of a subanalytic (w)-regular stratification. Analogous
theorems for the continuity (resp. Lipschitz variation) of Lipschitz-Killing invariants
along strata of a definable Whitney (resp. (w)-regular) stratification were proved by
Nguyen and Valette in 2018 [94].

For a long time it was thought that Whitney regularity might impose restrictions
on the space of limits of tangents to a stratified set. In the case of an isolated
singularity this was shown not to be the case by a construction of Kwiecinski and
Trotman proving that any continuum (compact connected set) can be realised as
the tangent cone or Nash fibre of a Whitney (b)-regular stratified set at an isolated
singular point [73].

In the paper [54] about equimultiplicity, Hironaka proved results about the
normal cones of complex analytic Whitney stratifications that one can generalise
to the subanalytic case as follows. Suppose Z is a stratified subset of Rn and let
Y be a stratum. Let πY be the projection of a tubular neighbourhood of Y and let
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μ(v) = v
‖v‖ . The normal cone is defined to be:

CY Z = {(x, μ(xπY (x)))|x ∈ Z − Y }|Y ⊂ Rn × Sn−1.

Let p : CY Z → Y be the canonical projection.

Theorem 4.10.1 A (b)-regular subanalytic stratification of a subanalytic set is

(npf) normally pseudo-flat, i.e. p is an open map, and
(n) for each stratum Y and each point y of Y , the fibre (CY Z)y of the normal cone

at y is equal to the tangent cone Cy(Zy) at y to the special fibre πY
−1(y).

The proofs are by integration of vector fields [52, 54, 98].
The result is not true for definable sets in non-polynomially bounded o-minimal

structures, as shown by the following examples, together with Miller’s dichotomy
that an o-minimal structure is polynomially bounded if and only if it does not contain
the exponential function as a definable function [84].

Example 4.10.2 Take Z in R3 to be the graph of the function f : [0,∞)×R→ R
defined by

z = f (x, y) = x − x

ln(x)
ln(y + (x2 + y2)

1
2 ).

Stratify Z by Z1 = {0y} ⊂ Z. One checks easily that (CY Z)0 is an arc, while
C0(Z0) is a point so that the criterion (n) above fails. Moreover the example is not
normally pseudoflat, nor (b∗)-regular, but it is Whitney (b)-regular (see [138] and
[135]).

Example 4.10.3 Consider the closure of the graph in R3 of the function

g(x, y) = yx2+1

defined on R× (0,∞]. This is an example of Pawłucki of a definable stratified set
which is (b)-regular but not a C1 manifold with boundary [103]. It is not normally
pseudoflat. Also the three dimensional stratified set defined by the span of this graph
and the plane {z = 0} provides the first example of a definable Whitney stratified
set for which the density is not continuous along a stratum. For details see [135].

In [98] real algebraic (a)-regular examples are given showing that (n) does not
imply (npf ) and conversely.

Example 4.10.4 First let (0z) = Z1 ⊂ Z = {x(x2+y2)z2−(x2+y2)2+xy2 = 0}.
Then (a) and (n) hold but (npf ) fails.

Example 4.10.5 Finally look again at {y2 = t2x2 + x3}, stratified by the t-axis and
its complement. Here (n) fails, because (CY Z)0 consists of 2 points while C0(Z0)

consists of 1 point, but it is normally pseudoflat.
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4.11 Algebraic Topology of Stratified Spaces

Because stratified sets are a generalisation of smooth manifolds to singular spaces
it is natural to study the analogues of the highly developed theories concerning the
algebraic and differential topology of manifolds.

For example Morse theory has been generalised to stratified Morse theory by
Goresky and MacPherson [41]. Not all Whitney stratified sets admit Morse func-
tions in their sense, however Morse functions (exist and) are dense on subanalytic
sets. See the contribution of Mark Goresky to this handbook for an account of
the current state of stratified Morse theory. Also Poincaré duality is a fundamental
property of compact smooth manifolds. To provide a suitable generalisation of this
duality Goresky and MacPherson developed intersection homology for stratified
spaces in 1980 [40].

In his 1976 thesis Goresky developed a geometric theory for homology and
cohomology carried by Whitney stratified chains and cochains [39]. He proved
that the homology of a compact smooth manifold can be represented by Whitney
stratified cycles, and that the cohomology of a compact Whitney stratified set can
be represented by Whitney stratified cocycles. Murolo [87] showed how to obtain
an isomorphism between the homologies and cohomologies.

A basic theorem in smooth manifold theory is the Poincaré-Hopf theorem
equating the Euler characteristic of a compact manifold, possibly with boundary,
with the total index of a vector field with isolated zeros. For stratified vector fields
on a Whitney stratified set one has to impose restrictions on the vector field, for
example to be radial, i.e. exiting from a family of tubes around each stratum, as
first defined by M.-H. Schwartz [110]. She used in fact the stronger (w)-regular
stratifications in the case of real analytic manifolds with boundary. More general
theorems are due to Simon [116] for radial vector fields on (c)-regular stratified
sets and to King and Trotman [64] who allow more general stratified sets (including
closure orderable subanalytic partitions of a given subanalytic set) and more general
vector fields : semi-radial vector fields (which never point orthogonally into a tube)
and even arbitrary (generic) vector fields by introducing a notion of virtual index.
The very large quantity of results concerning index theorems and Chern classes
for singular real and complex analytic varieties up to 2009, almost always using
Whitney stratifications, is described by Brasselet, Seade and Suwa in their book
[13].

There are versions of the De Rham theorem for stratified spaces and intersection
cohomology due to several authors, including Brasselet, Hector and Saralegui [11],
also Brasselet and Legrand [12]. Extensive work on the signature of compact
stratified pseudomanifolds is due to Albin, Leichtnam, Mazzeo and Piazza [1],
related to Melrose’s iterated fibration construction. These references are mere
examples in a large body of literature.

The study of the topology of Whitney stratified sets is very much alive. Recent
work includes a study of their combinatorial properties by Ehrenborg, Goresky
and Readdy [27], and a stratum-sensitive approach to homotopy theory in Woolf’s
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transversal homotopy theory [149]. The precise relation of Whitney stratified sets
and Thom maps to the deep work of Ayala, Francis, Tanaka and Rozenblyum on
local properties of a new class of conically smooth stratified spaces is currently
conjectural [2, 3].

4.12 Real World Applications

In so far as (a)-regular stratification is essential in the proof that the space
of smooth functions corresponding to the elementary catastrophes is an open
set (by Theorem 4.2.12 [126, 130]), so that the properties of the functions are
stable, there are hundreds of very varied applications of Whitney stratifications in
papers on applications of catastrophe theory to physics (e.g. gravitational lensing),
engineering, ship design, economics, urban geography, paleontology, psychology,
biology, etc.

Canny used Whitney stratifications to define roadmaps (curves connecting two
points in a semialgebraic set) in his prize-winning work on finding simple expo-
nential algorithms for the generalised piano-mover’s problem [16] in theoretical
robotics. He uses a general position trick to avoid using the doubly exponential
algorithm constructing a Whitney stratification of a given algebraic set [86].

More recently Damon, Giblin and Haslinger and Damon with Gasparovic have
used extensively Whitney stratifications in their work on the mathematics of natural
images and on skeletal structures [20, 21].
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73. Kwieciński, M., Trotman, D.: Scribbling continua in Rn and constructing singularities with

prescribed Nash fibre and tangent cone, Topology and its Applications 64 (1995), 177–189.
264

74. Laudenbach, F.: Transversalité, courants et théorie de Morse, Éditions de l’École Polytech-
nique, Palaiseau, 2012. 247

75. Lê D. T., Ramanujam, C. P.: The invariance of Milnor’s number implies the invariance of the
topological type, Amer. J. Math. 98 (1976), no. 1, 67–78. 262

76. Lê D. T., Saito, K.: La constance du nombre de Milnor donne des bonnes stratifications, C. R.
Acad. Sci. Paris 277 (1973), 793–795. 254

77. Lê D.T., Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney II, in
Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc.,
Providence, RI. (1983), 65–103. 258

78. Loi, T. L.: Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42
(1998), 347–356. 247, 251, and 252

79. Łojasiewicz, S.: Ensembles semi-analytiques, I.H.E.S. notes, 1965. 247
80. Łojasiewicz, S., Stasica, J., Wachta, K.: Stratifications sous-analytiques. Condition de Verdier,

Bull. Polish Acad. Sci. Math. 34 (1986), no. 9–10, 531–539. 252
81. Mather, J.: Notes on topological stability, Harvard University, 1970 and Bull. Amer. Math.

Soc. N.S. 49 (2012), no. 4, 475–506. 244, 250, 251, 253, 254, 259, and 260
82. Mather, J. N.: Stratifications and mappings, in Dynamical Systems (M. M. Peixoto, ed.),

Academic Press, N. Y. (1973), 195–232. 251 and 254
83. Mather, J. N.: How to stratify mappings and jet spaces, in Singularités d’Applications

Différentiables, Plans-sur-Bex 1975, Lecture Notes in Mathematics 535, Sprenger-Verlag,
Berlin (1976), 128–176. 251 and 254

84. Miller, C.: Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257–259. 265
85. Mostowski, T.: Lipschitz equisingularity, Dissertationes Math. (Rozprawy Mat.) 243 (1985),

46 pp. 254 and 256
86. Mostowski, T., Rannou, E.: Complexity of the computation of the canonical Whitney

stratification of an algebraic set in Cn, in Applied algebra, algebraic algorithms and error-
correcting codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., 539, Springer,
Berlin, (1991), 281–291, 267



4 Stratification Theory 271

87. Murolo, C.: Whitney homology, cohomology and Steenrod squares, Ricerche di Matematica
43 (1994), 175–204. 266

88. Murolo, C.: Stratified submersions and condition (D), J. Singul. 13 (2015), 179–204. 254
89. Murolo, C., du Plessis, A. A., Trotman, D. J. A.: On the smooth Whitney fibering conjecture,

preprint, 2017. 251 and 261
90. Nakai, I.: Elementary topology of stratified mappings, in Singularities - Sapporo 1998,

Advanced Studies in Pure Mathematics 29 (2000), 221–243. 254
91. Natsume, H.: The realization of abstract stratified sets, Kodai Math. J. 3 (1980), no. 1, 1–7.

259
92. Navarro Aznar, V., Trotman, D. J. A.: Whitney regularity and generic wings, Annales Inst.

Fourier, Grenoble 31 (1981), 87–111. 257
93. Nguyen, N., Valette, G.: Lipschitz stratifications in o-minimal structures, Ann. Sci. Ecole

Norm. Sup. (4) 49 (2016), no. 2, 399–421. 256
94. Nguyen, N., Valette, G.: Whitney stratifications and the continuity of local Lipschitz-Killing

curvatures, Ann. Inst. Fourier Grenoble 68 (2018), no. 5, 2253–2276. 264
95. Nguyen, N., Trivedi, S., Trotman, D.: A geometric proof of the existence of definable Whitney

stratifications, Illinois J. of Math. 58 (2014), 381–389. 247
96. Nicolaescu, L.: An Invitation to Morse Theory, Universitext, Springer, 2011. 247
97. Noirel, L.: Plongements sous-analytiques d’espaces stratifiés de Thom-Mather, University of

Provence thesis, 1996. 252 and 259
98. Orro, P., Trotman, D.: Cône normal et régularités de Kuo-Verdier, Bull. Soc. Math. France

130 (2002), 71–85. 249 and 265
99. Orro, P., Trotman, D.: Regularity of the transverse intersection of two regular stratifications,

in Real and complex singularities, London Math. Soc. Lecture Note Ser., 380, Cambridge
Univ. Press, Cambridge (2010), 298-304. 249
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Abstract After the local topological structure of stratified spaces was determined
by R. Thom (Bull. Amer. Math. Soc., 75 (1969), 240–284) and J. Mather (Notes on
topological stability, lecture notes, Harvard University, 1970) it became possible
(see Kashiwara and Schapira, Sheaves on Manifolds, Grundlehren der math. Wiss.
292, Springer Verlag Berlin, Heidelberg, 1990; Goresky and MacPherson, Stratified
Morse Theory, Ergebnisse Math. 14, Springer Verlag, Berlin, Heidelberg, 1988;
Schürmann, Topology of Singular Spaces and Constructible Sheaves, Mono-
grafie Matematyczne 63, Birkhäuser Verlag, Basel, 2003) to analyze constructible
sheaves on a stratified space using Morse theory. Although the detailed proofs are
formidable, the statements and main ideas are simple and intuitive. This article is a
survey of the constructions and results surrounding this circle of ideas.

5.1 Introduction

The stratified Morse theory of [29, 31] and the theory of constructible sheaves in [44]
are two sides of the same coin. These books contain many parallel and overlapping
results of a body of material that was developed in the 1980s. A brief outline
applying Morse theory to constructible sheaves appears in Appendix 6.A of [31]
and a complete and parallel development of the two theories is presented in [70]. In
this article we provide a rapid and hopefully intuitive view of this circle of ideas.
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In many situations the “nondegeneracy” conditions of Morse theory may be
relaxed, which leads to a rich theory involving the topology of singular spaces,
sheaves and maps, some of which we describe in Sects. 5.3.2, 5.11.1, 5.11.2, 5.12
below.

The author is grateful to Vidit Nanda and to an anonymous referee for many
helpful corrections and suggestions on an earlier version of this paper. Some of the
diagrams in this paper were typeset using Paul Taylor’s diagrams.sty package.

5.2 Preliminaries

A pair of topological spaces (A, B) means that B ⊂ A. A product of pairs (A, B)×
(X, Y ) is the pair (A×X, A×Y ∪B×X). If Z = X∪B A is obtained by attaching a
space A along a subspace B using two inclusions B → A and B → X, by abuse of
notation we write simply Z = X ∪ (A, B). If f : X → R is a continuous mapping
and a ∈ R define

X≤a = {x ∈ X| f (x) ≤ a}
and similarly for X<a, X>a , etc. For a < b ∈ R, Morse theory addresses the
question of how to obtain X≤b from X≤a by attaching a topological space A along
a subspace B ⊂ A using an embedding B → X≤a . In this case the pair (A, B) is
said to be Morse data for f over the interval [a, b] and the excision isomorphism
implies that Hi(X≤b, X≤a) ∼= Hi(A, B). One possible answer, of course, is the pair

(X[ab], Xb) = (f−1([a, b]), f−1(b))

which we refer to as coarse Morse data. One objective in Morse theory is to find
explicit Morse data (A, B) that is as simple as possible.

5.3 Review of Smooth Morse theory

5.3.1 Manifolds

Let M be a smooth n-dimensional manifold and f : M → R a smooth proper Morse
function, that is, a function with isolated critical points (meaning df (p) = 0) and
nondegenerate Hessian matrix (in local coordinates)

H(f )(p) =
(

∂2f (p)

∂xi∂xj

)

at each critical point p. The Morse index λ at such a critical point p is the dimension
of the greatest subspace on which H(f )(p) is negative definite. The zeroth theorem
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in Morse theory says: if [a, b] ⊂ R contains no critical values then M≤a is
diffeomorphic (as a manifold with boundary) to M≤b. The first fundamental theorem
of Morse theory says that (Dλ, ∂Dλ)×Dn−λ is Morse data for f at p:

Theorem 5.3.1 If p ∈ M is a nondegenerate critical point with isolated critical
value v = f (p) (meaning that no other critical points have critical value v) then
for any ε > 0 sufficiently small, the smooth manifold with boundary M≤v+ε is
homeomorphic to the adjunction space

M≤v−ε

⋃
(Dλ ×Dn−λ, ∂Dλ ×Dn−λ) (5.1)

where λ is the Morse index of f at the critical point p, and where Dλ denotes the
(unit) disk of dimension λ and boundary sphere ∂Dλ.

An immediate consequence is that for any local coefficient system E → M (see
Sect. 5.6.1) of finitely generated abelian groups,

Hi(M≤v+ε, M≤v−ε;E) ∼=
{

Ep i = λ

0 otherwise

where Ep denotes the stalk of E at the critical point p. There are two additional
facts:

• The adjunction is local near the critical point p. Thus, if there are several
critical points with the same critical value v and various but possibly different
Morse indices λ1, λ2, · · · then by choosing ε sufficiently small the various
embeddings ∂Dλi can be chosen disjoint and the pairs (Dλi , ∂Dλi ) may be
adjoined independently.

• By “straightening the angle” [59] p. 34, [71] where the attaching occurs, the
homeomorphism (5.1) may be realized as a diffeomorphism of manifolds with
boundary.

5.3.2 Perfect Morse-Bott Functions

Morse theory may also be applied to smooth functions f : M → R with minimally
degenerate critical points. A nondegenerate critical submanifold V ⊂ M is a
submanifold such that df (x)|TxV = 0 for all x ∈ V , and the HessianH(f )(x) is
nondegenerate on the normal space TV,xM = TxM/TxV . A choice of Riemannian
metric yields a decomposition TV M = E+⊕E− into positive/negative eigenbun-
dles. The rank of E− is the Morse index of the restriction f |W to a normal slice W

through V so it is referred to as the Morse index of f on V .
A Morse-Bott function is one whose critical points consist of nondegenerate

critical submanifolds. Bott’s extension of Morse’s theorem is:
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Theorem 5.3.2 With f : M → R smooth and proper as above, if the critical value
v is isolated and corresponds to a single connected critical submanifold V then
for sufficiently small ε > 0 the space M≤v+ε is homotopy equivalent to the space
obtained from M≤v−ε by attaching the disk bundle D(E−) of E− along its boundary
sphere bundle S(E−) = ∂D(E−).

If S1 = {eiθ } acts by Hamiltonian diffeomorphisms on a symplectic manifold
(M, ω) with resulting vector field Y corresponding to ∂/∂θ , then the moment map1

μ : M → R is a Morse-Bott function [4].
Let R be a commutative (coefficient) ring. A Morse-Bott function f : M → R

is perfect (for R) if the connecting homomorphisms for the long exact sequences
involving Hi(M≤v+ε, M≤v−ε;R) vanish. If f is R-perfect and if the negative
bundles E− of the critical submanifolds are also R-orientable then the Thom
isomorphism gives a non-canonical decomposition

H i(M;R) ∼=⊕V H i−λV (V ;R) (5.2)

where the sum is taken over all critical submanifolds V and where λV is the
corresponding Morse index of f on V .

This exceptional situation of a perfect Morse function, as described in [10], arises
when R = Q and M ⊂ CP

N is a nonsingular complex projective variety that is
preserved by an algebraic action of C

∗, in which case the action of S1 ⊂ C
∗ is

Hamiltonian with respect to the canonical symplectic form2 on M . Then the vector
bundles E± → V arise geometrically: let V ⊂ M be a connected component of the
fixed point set and let

V − =
{
x ∈ M| lim

t→∞ t .x ∈ V
}

V + =
{

x ∈ M| lim
t→0

t .x ∈ V

}

.

(5.3)

Theorem 5.3.3 ([10]) The projection V + → V (resp. V− → V ) has the natural
structure of an algebraic bundle of affine spaces that is diffeomorphic to the bundle
E+ → V (resp. E− → V ) and the moment map μ : M → R is a perfect Morse-
Bott function.

Equation (5.2) (equivalent to the perfection of the Morse function) then follows
from the Bialynicki-Birula decomposition M = ∐V V− and the Weil conjectures
(proved by Grothendieck and Deligne) which describe cohomology by counting
points of these varieties mod p. See also Sect. 5.11.1 below.

1Characterized up to an additive constant by the condition that dμ = ιY ω (interior product).
2The imaginary part of the Fubini-Study metric.
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5.4 Stratified Spaces

A stratification of a closed subset W ⊂ M is a locally finite decomposition into
(disjoint) smooth locally closed submanifolds, called strata, W = ∐Xi such that
the closure of each stratum is a union of strata of smaller dimension. A stratified
mapping W → W ′ between stratified spaces is a continuous mapping that takes
strata to strata and is smooth on each stratum. It is a stratified homeomorphism if it
has an inverse that is also a stratified mapping.

Write X < Y if X = Y are strata of W with X ⊂ Y . The pair X < Y is said to
satisfy Whitney’s conditions at a point x ∈ X if the following holds:

suppose yi ∈ Y and xi ∈ X are sequences that converge to the same point
x ∈ X; suppose the secant lines xi, yi converge to some limiting line � ⊂ TxM

and suppose the tangent planes Tyi Y converge to some limiting plane τ ⊂ TxM .
Then (A) TxX ⊂ τ and (B) � ⊂ τ .

Convergence of these lines and planes may be taken in the appropriate bundle of
Grassmannians over M or equivalently, they may be taken with respect to some,
and hence any, local coordinate system on M containing x. Condition (B) implies
condition (A). A stratification of a space W is said to be a Whitney stratification
if Whitney’s conditions hold at every point x with respect to every pair of strata
X < Y .

If M is a (real) analytic manifold and W1, · · · , Wr are analytic, semi-analytic
or sub-analytic subsets then there exists a Whitney stratification of M so that each
Wj and each multi-intersection of the {Wj } are unions of strata, cf. [20, 25, 35–
37, 51, 57].

The Whitney conditions are a sort of “no-wiggle” condition as points in Y

approach points in X but they imply the fundamental structure theorem of the
Thom-Mather theory of Whitney stratified spaces: the space W is topologically
locally trivial along each stratum X of W and each point in X has a basis of basic
neighborhoods, all of which are stratified-homeomorphic. We make this statement
precise in Sects. 5.4.1, 5.4.2.

5.4.1 Normal Slice and Link

Recall that submanifolds S, N ⊂ M of a smooth manifold M are transverse if
TpS + TpN = TpM for each point p ∈ S ∩ N , in which case the intersection is
a smooth submanifold P = S ∩ N and we write P = S � N . If W, W ′ ⊂ M are
Whitney stratified subsets, and if each stratum of W is transverse to each stratum
of W ′ then the intersection W � W ′ is Whitney stratified with strata of the form
S � S′ where S (resp. S′) run through the strata of W (resp. W ′).

Let S be a stratum of dimension s in a Whitney stratified (closed) subset W ⊂ M

of some smooth n dimensional manifold M . Fix p ∈ S and let T ⊂ M be a smooth



5 Morse Theory, Stratifications and Sheaves 281

submanifold (or germ of a submanifold) such that S � T = {p}. This implies, by
Whitney’s condition B that for every stratum R > S, the transversality condition
R � T also holds at points in R that are sufficiently close to p ∈ S.

Let Bε(p) be the (closed) ball of radius ε > 0 (with respect to some Riemannian
metric on M) centered at p ∈ S. Whitney’s condition B implies that for sufficiently
small ε > 0,

(*) the boundary sphere ∂Bε(p) is transverse to every stratum of W and of T ∩W

and the same holds for all 0 < ε′ ≤ ε.

Define the normal slice,

(Nε(p), ∂Nε(p)) = T ∩W ∩ (Bε(p), ∂Bε(p)) (5.4)

with its induced stratification. Its boundary

LS(p) = ∂Nε(p) = T ∩W ∩ ∂Bε(p) (5.5)

is called the link of the stratum S at p. These objects are related by a local statement
(Theorem 5.4.1) and a global statement (Sect. 5.4.4) below.

Theorem 5.4.1 ([31, §7]) The normal slice is stratified-homeomorphic to the cone
over the link, that is, there exists a stratum preserving homeomorphism, smooth on
each stratum,

Nε(p) ∼= c (∂Nε(p))

which takes the cone point to the point p. Suppose p, p′ ∈ S lie in the same
connected component of the stratum S ⊂ W . Suppose Nε(p) and N ′

ε′(p
′) are

normal slices at p, p′ taken with respect to different choices of submanifold T , T ′,
different Riemannian metrics on M and different values ε, ε′. If ε, ε′ > 0 satisfy (*)
above then there is a stratified homeomorphism

(Nε(p), ∂Nε(p)) ∼= (N ′
ε′(p

′), ∂N ′
ε′(p

′)).

Moveover, there is a stratum preserving homeomorphism of pairs

(Up, ∂Up) = (Bε(p), ∂Bε(p)) ∩W

∼= (Bε(p) ∩ S, ∂Bε(p) ∩ S)× (Nε(p), ∂Nε(p)) (5.6)

∼= (Ds, ∂Ds)× (c(∂Nε(p)), ∂Nε(p)).

where s = dim(S) and Ds denotes the closed unit disk.
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5.4.2 Basic Neighborhood

The homeomorphism (5.6) implies that the intersection Lp = ∂Bε(p)∩W (the link
of p in W ) is homeomorphic to the s-fold suspension of LS(p) = ∂Nε(p) and that
the whole closed neighborhood Up = Bε(p) ∩W is homeomorphic to the product
Up

∼= Ds × Nε(p) ∼= Ds × c(LS(p)).

5.4.3 Deformation Arguments

Theorems 5.4.1, 5.5.1, 5.5.2, 5.5.3, 5.8.1, 5.9.1 (below) and many others like these
are proven in [31]. The proofs involve deforming, in a smooth stratum preserving
way, one subset, for example S0 = Nε(p), into another subset, say, S1 = N ′

ε′(p
′).

Although these sets are complicated, they arise from very simple pictures Y0, Y1
respectively, usually in R

2. Theorem 5.4.2 [31, Theorems 4.3, 4.4] below says that a
deformation {Yt } of the simple “picture” gives rise to a corresponding deformation
{St } of the (more complicated) set. For example, Theorem 5.5.2 below corresponds
to moving the point (ε, δ) into the point (ε′, δ′) within the set of allowable possible
choices.

Theorem 5.4.2 (Moving the wall) Let W ⊂ M be a Whitney stratified set and
let φ : M → R

2 be a smooth mapping so that φ|W is proper. Let Y ⊂ R
2 × R

be a closed Whitney stratified subset so that the projection π : Y → R to the
second factor is a submersion (everywhere surjective differential) on each stratum.
Considering the second factor R to be a parameter space, let Yt = π−1(t).

W ⊂ M

R
2

φ

⊃ Yt

Suppose the restriction f |S to each stratum S of W is transverse to each stratum of
Yt , for all t ∈ R. Then there is a stratified homeomorphism

W ∩ φ−1(Y0) ∼= W ∩ φ−1(Y1)

This is little more than a restatement of Thom’s first isotopy lemma (see Theo-
rem 5.5.1 below) and in fact the target space R

2 may be replaced by an arbitrary
smooth manifold. A similar result holds for pairs of spaces [31, §4.4]. A illustrative
example in [31, §4.5] shows that Morse data for a Morse function on a smooth
manifold is a product of cells. Cohomological (rather than homeomorphism)
deformation arguments, applicable to a wide range of sheaves and spaces, are proven
in [44, Theorem 2.7.2], [43, Theorem 1.4.3].
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5.4.4 Control Data and Canonical Retraction

Let W ⊂ M be a closed Whitney stratified subset. The local structure of W near
a point in a stratum S, as described in Theorem 5.4.1, is actually a consequence
of the existence (due to R. Thom [77] and J. Mather [56]) of a global system of
control data: a collection {(πS, ρS) : TS(ε) → S × [0, ε)} of data for each stratum
S, where TS(ε) is a tubular neighborhood of S in M , ρS is a tubular “distance”
function vanishing exactly on S, where (πS, ρS) is a submersion when restricted to
each stratum R > S and where πSπR = πS and ρSπR = ρS whenever both sides of
these equations are defined.

It follows (after much work, see [56, 77]) that each fiber π−1
S (x) is stratified-

homeomorphic to the normal slice Nε(p) ∼= c(∂Nε(p)) and the whole tubular
neighborhood is stratified-homeomorphic to the mapping cylinder,

TS
∼= cyl ∂TS

πS
S

by homeomorphisms which (by a choice of a family of lines [26]) may be chosen to
be compatible among strata.

Suppose Z ⊂ W is a closed union of strata and let TZ(2ε) = ⋃S TS(2ε) be the
union of the tubular neighborhoods of strata S ⊂ Z and similarly for TZ(ε). Then
the projections and mapping cylinder structures may be assembled into a stratum
preserving deformation retraction [27, §7], unique up to stratum preserving isotopy,
TZ(2ε) → TZ(2ε) whose restriction

rZ : TZ(ε) → Z (5.7)

retracts TZ(ε) to Z and agrees with the tubular projections: if x ∈ TS(ε) −
∪R<STR(2ε) then rZ(x) = πS(x) ∈ S. If a point x is in the region

TS(ε) ∩ (TR(2ε)− TR(ε))

then rZ(x) = rZ(πS(x)) and rZ |S shrinks towards R along the mapping cylinder
lines (Fig. 5.1). So, for all y ∈ S there exists y ′ ∈ S with rZ(y ′) = y and

r−1
Z (y) ∼= π−1

S (y ′) ∼= π−1
S (y)
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TR (2² )

TR (²)

TS (²)

TS (² )

Fig. 5.1 Tubular neighborhoods and retraction for R < S
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5.5 Stratified Morse Theory

5.5.1 Conormal Vectors

Let M be a smooth manifold and let W ⊂ M be a Whitney stratified (closed) subset.
Let X be a stratum of W and let p ∈ X.

A cotangent vector ξ ∈ T ∗p M is said to be conormal to X if its restriction
vanishes: ξ |TpX = 0. The collection of all conormal vectors to X in M is denoted
T ∗XM . It is a smooth conical Lagrangian locally closed submanifold of T ∗M .

If f : M → R is smooth, its restriction f |X to X is a Morse function if and only
if the graph of df is transverse to T ∗XM in T ∗M (see, for example, [44, p. 311], [70,
p. 286]).

A subspace τ ⊂ TpM will be said to be a limit of tangent spaces from W if
there is a stratum Y > X (Y = X) and a sequence of points yi ∈ Y , yi → p such
that the tangent spaces Tyi Y converge to τ . A conormal vector ξ ∈ T ∗XM at p is
nondegenerate if ξ(τ ) = 0 for every limit τ ⊂ TpM of tangent spaces from larger
strata Y > X. The set of nondegenerate conormal vectors is denoted �X. Evidently,

�X = T ∗XM −
⋃

Y>X

T ∗Y M

where the union is over all strata Y > X (including the case Y = M −W because
T ∗MM is the zero section, and elements of �X are necessarily nonzero).

5.5.2 Morse Functions

Let f : M → R be a smooth function and let λ = df (p) ∈ T ∗p M . A critical point
of f |W is a point p ∈ X in some stratum X such that df (p)|TpX = 0, that is,
λ ∈ T ∗XM . (In particular, every zero dimensional stratum is a critical point.) The
value v = f (p) is said to be an isolated critical value of f |W if no other critical
point q ∈ W of f |W has v = f (q). We say that f is a Morse function for W

(cf. [50]) if

• its restriction to W is proper
• f |X has isolated nondegenerate critical points for each stratum X,
• at each critical point p ∈ X the covector λ = df (p) ∈ �X is nondegenerate, that

is, df (p)(τ ) = 0 for every limit of tangent spaces τ ⊂ TpM from larger strata
Y > X.

In the case of a 1-dimensional target, Thom’s First Isotopy Lemma [56, 77],
becomes the zeroth theorem of SMT, which says:

Theorem 5.5.1 Let f : M → R be a smooth proper function, let W ⊂ M be a
Whitney stratified closed subset and suppose that [a, b] ⊂ R contains no critical
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values of the restriction of f to any stratum of W . Then W≤a is homeomorphic to
W≤b by a stratum preserving homeomorphism that is smooth on each stratum.

5.5.3 Normal Morse Data

Suppose that f : M → R is a smooth proper mapping that is Morse on W ⊂ M

as above. Suppose S is a stratum of W of dimension s and p is a (nondegenerate)
critical point of f |S. Let (Nε(p), ∂Nε(p)) be a normal slice (5.4) to the stratum at p

with ε > 0 chosen sufficiently small so as to satisfy (*) in Sect. 5.4.1. Set v = f (p).
The nondegeneracy of the conormal vector ξ = df (p) implies there exists δ > 0 so
that

(**) f |Nε(p) has no critical points on any stratum of Nε(p) ∩ f−1[v − δ, v + δ]
other than {p}, and the same holds for all δ′ ≤ δ.

In this case we write 0 < δ 1 ε. The set of possible choices for ε, δ will be an open
region in the (ε, δ) plane as in Fig. 5.2:

The normal Morse data for f at p is defined to be the coarse Morse data of the
normal slice, that is, the pair

(
Nε(p)[v−δ,v+δ], Nε(p)v−δ

) = Nε(p) ∩
(
f−1[v − δ, v + δ], f−1(v − δ)

)

Theorem 5.5.2 ([31, Theorem 3.6.2]) Suppose the stratum S is connected, p′ ∈ S

is a nondegenerate critical point of a second function f ′ : M → R with ξ ′ =
df ′(p′) ∈ �S and suppose that ξ, ξ ′ are in the same connected component of �S .
Then there is a stratified homeomorphism between the normal Morse data for f at
p and normal Morse data for f ′ at p′.

Fig. 5.2 δ 1 ε region

δ

e
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5.5.4 Main Theorem

With p ∈ S ⊂ W ⊂ M → R as in Sect. 5.5.2 above, let λ denote the Morse
index of f |S at the critical point p. Define the tangential Morse data to be the
pair (Dλ, ∂Dλ) × Ds−λ, see Eq. (5.1). The main theorem [31, Theorem 3.7] in
stratified Morse theory says that Morse data at an isolated critical point is the
product of the tangential Morse data with the normal Morse data. The proof involves
repeated application of Theorem 5.4.2 to provide a sequence of stratum preserving
deformations.

Theorem 5.5.3 Suppose [a, b] ⊂ R contains a single (isolated) critical value v ∈
(a, b) of f |W corresponding to a nondegenerate critical point p ∈ S. Suppose
0 ≤ δ 1 ε are chosen as in (*) Sect. 5.4.1 and (**) Sect. 5.5.3 above so that the
normal Morse data is well defined. Then there is a homeomorphism between the
space W≤b and the space obtained from W≤a by attaching the pair

(
Dλ, ∂Dλ

)×Ds−λ × (Nε(p)[v−δ,v+δ], Nε(p)v−δ

)
.

Hence Hi(W≤b, W≤a) ∼= Hi−λ(Nε(p)[v−δ,v+δ], Nε(p)≤v−δ) for all i.

5.5.5 Illustration

Figure 5.3 illustrates Theorem 5.5.3. The stratified space W is like three pages of a
book glued along the spine with two “pages” going up and one “page” going down.
The critical value is v = 0. The Morse function is the height function and the height
−δ cuts the stratified space W along the red horizontal slice. The normal slice is a
“Y”. The tangential and normal Morse data and their product is shown in the second
row of the diagram with the red region marking the subspace.

To obtain W≤δ from W≤−δ , attach the Morse data long the red subspace. In
order to do this, it is necessary to deform the Morse data, stretching it so that the
red vertical “ends” of the Morse data become horizontal, so they can be lined up
with f−1(−δ). This simple example illustrates the complexity of the deformation
arguments, which take about 50 pages in [31].

5.5.6 Existence of Morse Functions

If M is an analytic manifold and W ⊂ M is a subanalytically Whitney stratified
subanalytic set then the collection of Morse functions is open and dense in the space
of smooth mappings M → R that are proper on W , in the Whitney C∞ topology,
cf. [64, 67].
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−δ
0

f

� =

Fig. 5.3 Normal Morse data × Tangential Morse data = Total Morse data. Glue along the red
subspace

5.6 Recollections on Sheaves

5.6.1 Presheaves and Sheaves

A presheaf S of abelian groups on a topological space X is a contravariant functor
from the category of open subsets of X (and inclusions) to the category of abelian
groups (and homomorphisms). Elements of S(U) are called “sections” over the open
set U ⊂ X.

A presheaf S is a sheaf if it is “locally defined”, that is, if the following condition
holds. Let {Uα}α∈I be a (possibly infinite) collection of open subsets of X and set
U = ∪α∈I Uα. Suppose that sα ∈ S(Uα) are sections such that sα|Uα ∩ Uβ =
sβ |Uα ∩ Uβ for all α, β ∈ I . Then there is a unique section s ∈ S(U) so that
s|Uα = sα for all α ∈ I .

For any presheaf S the stalk at x ∈ X is the direct limit Sx = lim
x∈U

S(U). There

is a unique topology on the leaf space LS = ⋃x∈U Sx so that each stalk has the
discrete topology and so that the projection π : LS → X is locally (near each point
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in LS) a homeomorphism. If U ⊂ X is open define the group of sections

�(U, LS) = {s : U → LS| s is continuous and π ◦ s = Id} .

The restriction homomorphisms S(U) → Sx (x ∈ U ) determine a canonical
homomorphism

φU : S(U) → �(U, LS).

The presheaf S is a sheaf if and only if φU is an isomorphism for all open sets
U ⊂ X, in which case the group of sections is commonly denoted

�(U, S) = S(U) = �(U, LS)

If S is a presheaf then the functor U %→ �(U, LS) is a sheaf and so this gives a
canonical sheafification operation which identifies the category of sheaves as a full
subcategory of the category of presheaves. A local coefficient system is a locally
trivial sheaf LS → X.

5.6.2 Čech Cohomology

Let U = {Uα}α∈I be a collection of open sets that cover X. A Čech q-cochain
σ assigns to each ordered collection {U0, U1, · · · , Uq } of elements of U with
nonempty intersection, an element

σ(U0, U1, · · · , Uq) ∈ �(U0 ∩ U1 ∩ · · · ∩ Uq, S)

that is antisymmetric: for any permutation π ,

σ(Uπ(0), Uπ(1), · · · , Uπ(q)) = sign(π)σ (U0, · · · , Uq).

(The sign corresponds to a choice of orientation of the associated simplex in the
nerve of the covering U). The group of Čech q-cochains for the cover U is denoted
Č

q

U(X; S). The coboundary operator dq : Č
q

U → Č
q+1
U is defined as follows.

Let (U0, U1, · · · , Uq+1) be an ordered collection of elements of U and set V =
U0 ∩ U1 ∩ · · · ∩ Uq+1. Then

(dqσ )(U0, U1, · · · , Uq+1) =
q+1∑

j=0

(−1)jσ (U0, · · · , Ûj , · · · , Uq+1)|V
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(where |V denotes the restriction to V and Ûj means “omit Uj ”). Then dq+1 ◦dq =
0. Define

Ȟ
q

U(X; S) = ker(dq)/Im(dq−1).

Note that Ȟ 0
U(X; S) = �(X, S). The Čech cohomology Ȟ q(X; S) is defined to be

the limit over all open coverings of Ȟ
q

U(X; S) but typically fewer open sets suffice:

Theorem 5.6.1 Suppose the open cover U has the property that H q(UJ ; S) = 0
for all q > 0 and for every J ⊂ I , where UJ = ∩j∈J Uj . Then for all q ≥ 0 the
natural homomorphism is an isomorphism:

Ȟ
q

U(X; S)
∼=

Ȟ q(X; S).

5.6.3 Resolutions

The second way to construct the cohomology of a sheaf is with a resolution. Recall
that a sheaf I on X is flabby if �(X, I) → �(U, I) is surjective for every open set
U ⊂ X. It is soft if �(X, I) → �(K, I) is surjective for every closed set K ⊂ X.
It is injective if: for every morphism f : S → I and for every injection g : S → T

there exists a morphism h : T → I so that f = h ◦ g. An injective (resp. flabby,
resp. soft) resolution of S is an exact sequence

0 → S → I 0 → I 1 → I 2 → · · · (5.8)

where I j are injective (resp. flabby, resp. soft) sheaves.3 (A sequence of sheaves is
exact if and only if it is exact on the stalks.) For the following see, for example, [7,
§4].

Theorem 5.6.2 Suppose S is a sheaf on a locally compact, paracompact Hausdorff
topological space X. Let (5.8) be an injective (resp. flabby, resp. soft) resolution
of S. Then the Čech cohomology Ȟ ∗(X; S) coincides with the cohomology of the
complex of global sections,

�(X, I 0) → �(X, I 1) → �(X, I 2) → · · ·

and is therefore independent of the choice of resolution I •.

3Injectivity is an algebraic as well as a topological condition. The constant sheaf Z on a point is
flabby and soft but not injective. It has an injective resolution Z→ Q→ Q/Z.
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5.6.4 Chains and Cochains

In many cases the central object of study is the resolution itself. For example, if M

is a smooth manifold then the complex of differential forms is a fine (hence flabby)
resolution of the constant sheaf R:

0 → R→ �0 → �1 → �2 → · · ·

because the Poincaré lemma says that it is exact on stalks. Therefore H i(X;R) is
isomorphic to the cohomology of the complex �(X, �•) = �(X, �•) of global
sections, a theorem of G. deRham. More generally let X be a topological space
and let R be a commutative ring. If U ⊂ X is an open set then the complex of
singular chains (Cr(U ;R), ∂r ) consists of finite formal sums (with coefficients in
R) of singular simplices whose image is contained in U . Its dual is the complex
of singular cochains (Cr(U ;R) = Hom(Cr(U ;R), R), dr = ∂∗r ) which evidently
form a complex of sheaves C• on X by allowing U to vary over all open subsets of
X. It is a flabby resolution of the constant sheaf and the cohomology of the complex
of global sections is the singular cohomology of X.

Unfortunately the singular chains Cr(U ;R) do not form a sheaf because
restriction maps are not defined for V ⊂ U . Borel and Moore [11] solved this
problem by dualizing again. If R is a field define

ω−r
BM = ωBM

r (U ;R) = HomR(�c(U,Cr ), R)

where �c denotes sections with compact support.4

Theorem 5.6.3 ([11]) The Borel-Moore complex of chains ω−r
BM(U) form an

injective complex (see Sect. 5.6.6) of sheaves ω•BMwhose stalk cohomology (see
Sect. 5.6.6) is the local homology: H−r

x (ω•BM) ∼= Hr(X, X − x;R).

5.6.5 PL Chains

A more concrete description (see [30]) of the Borel-Moore sheaf of chains exists
if the space X has a piecewise linear (or subanalytic or o-minimal) structure. Let
R be a commutative ring. Suppose X is a simplicial complex, U ⊂ X is an open
subset and T is a locally finite triangulation of U . Define CT

i (U ;R) to be the group
of T -simplicial chains in U , that is, finite sums ξ = ∑ ajσj where aj ∈ R and
σj ⊂ U is a (closed) i dimensional simplex, with the usual boundary operator. If T ′
refines T there is a canonical inclusion CT

i (U ;R) → CT ′
i (U ;R). Set CPL

i (U ;R) =

4For more general rings it is necessary to replace R by an injective resolution, in which case the
Hom above becomes a double complex and ω−r

BM is defined to be the associated single complex.
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lim−→CT
i (U ;R). If V ⊂ U are open and if T is a locally finite triangulation of U there

exists a locally finite triangulation T ′ of V so that every simplex of T ′ is contained
in a single simplex of T so we obtain restriction maps CPL

i (U ;R) → CPL
i (V : R)

and therefore a soft sheaf CPL
i on X of “locally finite chains” or “infinite chains” on

X. The complex of soft sheaves ω•PL with ω−i
PL = CPL

i and d = ∂ (the differential
increases degree) is quasi-isomorphic to the Borel-Moore complex.

5.6.6 Complexes of Sheaves

A (bounded below) complex of sheaves (of abelian groups)

· · · S0 d0
S1 d1

S2 d2
· · ·

on a topological space X is a collection {Si} (i ∈ Z) which vanish for i sufficiently
small, and satisfy d ◦ d = 0. For each x ∈ X there is a resulting complex of
stalks, · · · → S0

x → S1
x → · · · whose cohomology H i(S•x ) is called the stalk

cohomology of the complex S•. Since sheaves form an abelian category we may
form the cohomology of the sequence S• in the category of sheaves. Thus, the i-th
cohomology sheaf of S• is

Hi(S•) = ker(di)/Im(di−1)

and its stalk coincides with the stalk cohomology, that is, Hi
x(S•) = H i(S•x ). A

morphism S• → T • of complexes of sheaves is a collection of sheaf morphisms
Sr toT r that commute with the differentials. It is said to be a quasi-isomorphism if
it induces isomorphisms Hr (S•) → Hr (T •) for all r , which is the same as saying
that it induces an isomorphism on stalk cohomology Hr

x(S•) ∼= Hr
x(T •) for all r

and for all x ∈ X. If each T r is injective (resp. flabby, resp. soft) then such a quasi-
isomorphism is said to be an injective (resp. flabby, resp. soft) resolution of S•.

To find such a resolution, first choose injective (resp. flabby, resp. soft) resolu-
tions of each Sj so that these fit together into a commuting double complex with
horizontal and vertical differentials dh, dv respectively,

S2 I 02 I 12 I 22 · · ·

S1

dS

I 01 I 11 I 21 · · ·

S0

dS

I 00

dv

dh
I 10 I 20 · · ·
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Define the associated single complex J • by adding along diagonals,

J r =
⊕

p+q=r

Ipq with d(cpq) = (dh + (−1)pdv)cpq

for cpq ∈ Ipq . Then d ◦ d = 0 and the homomorphism S• → J • is a quasi-
isomorphism, hence an injective (resp. flabby, resp. soft) resolution of S•.

5.6.7 Cohomology

Let S• be a complex of sheaves on a topological space X. The total cohomology

H r(X; S•) = H r(�(X, J •))

is defined to be the cohomology of the complex of global sections of any injective,
flabby or soft resolution J • of S•. It is independent of the resolution and, more
generally, the following fact from homological algebra is messy but straight forward.
It is the main technical tool for establishing cohomology isomorphisms because it
reduces such questions to isomorphisms on stalk cohomology.

Theorem 5.6.4 Let S• be a complex of sheaves and let Ipq be a double complex
of injective resolutions as above. Then this double complex determines a spectral
sequence with

E
pq

2 = H p(X;Hq(S•)) ,⇒ H p+q(X; S•).

Consequently a quasi-isomorphism S• → T • induces an isomorphism

H r(U ; S•) → H r(U ; T •)

for any open subset U ⊂ X and for all r .

5.7 Derived Category and Constructible Sheaves

5.7.1 Construction of the Derived Category

Good general references for derived categories are [23, 24]; a quick summary is in
[30]. Grothendieck recognized (see Theorem 5.6.4) that for most purposes, quasi-
isomorphic (complexes of) sheaves behave alike, so there should be a category in
which such sheaves become isomorphic. This dream was realized by Jean-Louis
Verdier ([79, 80], who added enough morphisms to the category of sheaves so that
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every quasi-isomorphism acquired an inverse. An object in the (bounded) derived
category

Db(X) = Db(ShX)

of sheaves on X is a complex of sheaves A•, bounded from below (Aj = 0 for
j 1 0), whose cohomology sheaves are also bounded from above Hj (A•) = 0 for
j ( 0). A morphism A• → B• is an equivalence class of diagrams

C•

A• B•
qi

where C
• → A• is a quasi-isomorphism, and where two such morphisms A• ←

C•
1 → B• and A• ← C•

2 → B• are considered to be equivalent if there exists a
diagram that is commutative up to chain homotopy:

C•
1

A• qi
C•
3 B•

C•
2

5.7.2 Derived Functor

If A• → B• is a quasi-isomorphism of complexes of sheaves and if each Bj

is injective then there exists an inverse up to homotopy, B• → A•. In fact, the
homotopy category of (bounded below) complexes of injective sheaves is equivalent
to the derived category (see [24, §III.5]). Moreover, there is a canonical functorial
construction of an injective resolution of any complex of sheaves, due to Godement.
Accordingly, if T is a left exact functor from the category of sheaves ShX to some
abelian category A, Verdier defines its right derived functor RT (S•) = T (J •)
where S• → J • is the Godement injective resolution. This procedure passes to
the derived category producing a right derived functor

RT : Db(ShX) → Db(A).

It is possible to replace the injective resolution J • with any T -acyclic or T -adapted
resolution, see [23, §4.3] or [24, §III.6.3]. For the functor T = � of global sections,
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and for the functors T = f∗, f! (push forward, push forward with proper support,
see below), fine sheaves and soft sheaves are T -acyclic.

5.7.3 Derived Push Forward

If f : X → Y is a continuous map and S is a sheaf on X then its push forward is
denoted f∗(S). If A• is a complex of sheaves on X the derived functor is Rf∗(A•) =
f∗(J •) where A• → J • is an injective, flabby or soft resolution of A• and there is
a canonical isomorphism

H i(X;A•) ∼= H i(Y ;Rf∗(A•)) (5.9)

for all i, which is to say that the cohomology of X may be computed locally on Y . In
many applications this isomorphism replaces arguments involving the Leray-Serre
spectral sequence, illustrating the power and convenience of the derived category.

If f is proper, the stalk cohomology of the derived push forward is
H i

y(Rf∗(A•)) = H i(f−1(y);A•) and the cohomology sheaf Hi (Rf∗(A•)) is

classically denoted Rif∗(A•). The push forward with proper support and its derived
functor are denoted f! and Rf! respectively.

5.7.4 Mapping Cone

The following construction works in any Abelian category A but we are mostly
concerned with the category of sheaves on some space. The mapping!cone C• =
C•(φ) of a morphism φ : A• → B• of complexes is the complex Cr = Ar+1⊕Br

with differential dC(a, b) = (dA(a), (−1)deg(a)φ(a)+dB(b)). It is the total complex
of the double complex

A2
d

φ
B2

d

A1
d

φ
B1

d

A0

d
φ

B0

d
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with morphisms β : B• → C• and γ : C• → A[1]• where A[1]j = Aj+1. Denote
this by:

A• φ
B•

C•(φ)
[1]

Lemma 5.7.1 If φ is injective then there is a natural quasi-isomorphism

coker(φ) ∼= C•(φ).

If φ is surjective then there is a natural quasi-isomorphism

C•(φ) ∼= ker(φ)[1].

There are natural quasi-isomorphisms A•[1] ∼= C•(β) and B•[1] ∼= C•(γ ) so that
any side of this triangle determines the third element up to quasi-isomorphism. This
triangle determines a long exact sequence on cohomology

· · · → Hr−1(B•) → Hr−1(C•) → Hr (A•) → Hr (B•) → Hr (C•) → · · · .

A triangle of morphisms of complexes

X• Y •

Z•[1]

is said to be a distinguished triangle if it is homotopy equivalent to a triangle

A• φ
B•

C•(φ)
[1]

5.7.5 Restriction to Subspaces

There are two ways to restrict a sheaf S on a topological space X to a closed
subspace iZ : Z → X. The ordinary restriction S|Z = i∗ZS is the sheaf whose
leaf space (Sect. 5.6.1) is π−1(Z) where π : LS → X is the leaf space of S. Let
j : U = X − Z → X be the inclusion. Then there is a distinguished triangle:
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Rj!j∗(A•) A•

RiZ∗i∗Z(A•)
[1]

The long exact cohomology sequence is that of the pair

H r(X, Z;A•) = H r(X;Rj!j∗A•).

The second type of restriction, denoted i !ZS, is the restriction to Z of the presheaf
with sections supported in Z, that is

i !Z(S) = i∗Z(SZ) where �(V, SZ) = {s ∈ �(V, S)| supp(s) ⊂ Z} .

The group of global sections is

�(Z, i !Z(S)) = lim−−−→
V⊃Z

�Z(V, S)

(the limit is over open sets V ⊂ X containing Z). The functor i !Z is a right adjoint
to the pushforward with compact support (iZ)!. For any A• ∈ Db(X) there is a
distinguished triangle,

RiZ∗i !Z(A•) A•

Rj∗j∗(A•)
[1]

(5.10)

which gives the long exact sequence for the pair:

H r(X, X − Z;A•) ∼= H r(X;RiZ∗i !ZA•).

The object i !ZA• is denoted R�ZA• in [44].

5.7.6 Constructible Sheaves

Let X be a Whitney stratified space. A complex of sheaves A• on X is said to
be (cohomologically) constructible with respect to this stratification if each of the
cohomology sheaves Hr (A•) is locally constant on each stratum of X and its
stalk is finite dimensional at each point. The constant sheaf, the sheaf of singular
cochains, and the Borel-Moore sheaf of chains are constructible. If we do not
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specify a stratification, a complex of sheaves on X is said to be constructible if it is
(cohomologically) constructible with respect to some Whitney stratification. If X is
real or complex algebraic, analytic, or subanalytic then the relevant stratification is
assumed to be algebraic, analytic, etc. The constructible derived category Db

c (X) is
the corresponding full subcategory of the derived category.

Lemma 5.7.2 Suppose A• is a complex of sheaves, constructible with respect to
some Whitney stratification of X. Let x ∈ X and let Ux be a basic neighborhood as
described in Sect. 5.4.2. Then there is a canonical isomorphism

H r(Ux;A•) ∼= Hr
x(A•)

between the sheaf cohomology of Ux and the stalk cohomology of A•.

The stratified homeomorphism Ux
∼= Ds×Nε(x) of Eq. (5.6) and the constructibil-

ity hypothesis imply that H r(Ux;A•) ∼= H r(Nε(x);A•). But the normal slice is
a cone and the cohomology sheaves Hr (A•) are locally constant along the cone
lines. So there is a one parameter family of shrinking maps θt : Nε(x) → Nε(x)

(with θ1 the identity and θ0 the map to the cone point) inducing quasi-isomorphisms
θ∗t (A•) → A• for all t > 0. Therefore its cohomology H r(Nε(x)) coincides with
Hr

x(A•). The local topological triviality of a stratification gives the following fact,
crucial for many arguments involving constructible sheaves because it produces a
constructible sheaf on a larger set than it started with:

Lemma 5.7.3 Suppose X is Whitney stratified and � ⊂ X is a closed union of
strata with complement U = X − � and inclusion j : U → X. Let A• be
a complexes of sheaves on U that is constructible with respect to the (induced)
stratification of U . Then the complexes Rj∗(A•) and Rj!(A•) on X are constructible
with respect to the given stratification of X.

5.7.7 Verdier Duality

Let X be a Whitney stratified space as above. The sheaf ω•X of Borel-Moore chains
is a dualizing complex and the dual of a complex of sheaves A• ∈ Db

c (X) is defined
to be the sheaf

DX(A•) = RHom•(A•, ω•X).

(See [11, 23, 79, 80, §5.16], [39, §6], [44, §3], [21, §3].) The operation RHom may
be replaced by Hom if an injective model5 is used for ω•X. The dual of the constant
sheaf is ω•X. There is a canonical double duality isomorphism DX(DX(A•)) ∼= A•

5If the coefficient ring is a field then a flabby or soft model of ωX suffices, see footnote 3.
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in Db
c (X). If f : X → Y then duality switches Rf∗ and Rf!. It also switches f ∗

with f ! which may be taken to give a definition of f !, that is,

f !(A•) = DX(f ∗(DY (A•))

which agrees with the operation i ! of Sect. 5.7.5 for closed embeddings i : Z → W

and agrees with j∗ = j ! for open embeddings j : U → W .

5.8 Morse Theory of Constructible Sheaves

5.8.1 Basic Result

Throughout this section we fix a Whitney stratified closed subset W ⊂ M

and a complex of sheaves A• on W that is (cohomologically) constructible with
respect to this stratification. Since the homeomorphism in Theorem 5.5.3 is stratum
preserving, the same deformation argument as in Lemma 5.7.2 gives the following.

Theorem 5.8.1 Let f : M → R be a smooth function and suppose f |W is proper.
Suppose X ⊂ W is a stratum and that x0 ∈ X is a nondegenerate critical point
of f with isolated critical value v = f (x0) ∈ (a, b) and Morse index λ. Suppose
there are no more critical values of f |W in the interval [a, b]. Choose 0 < δ 1 ε

as in (*) and (**) and let N = Nε(x0) be the normal slice. Then there is a natural
isomorphism of Morse groups

H r(W≤b, W≤a;A•) ∼= H r−λ
(
N[v−δ,v+δ], Nv−δ;A•|N

)
.

5.8.2 Sheaf Theoretic Expression

Kashiwara and Schapira [44, §5.1, §5.4] and Schürmann [70] prefer a sheaf-
theoretic expression for the Morse group. Let

x0 ∈ X ⊂ W ⊂ M
f−→ R

as in Theorem 5.8.1 above and suppose f (x0) = 0 is an isolated critical value of
f |W . Let A• ∈ Db

c (W) be a constructible complex of sheaves. Set

Z = {x ∈ W |f (x) ≥ 0}
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with inclusion i : Z → W and let S•Z = i !ZA• = R�ZA• denote the sheaf obtained
from A• with sections supported in Z, cf. Sect. 5.7.5. Let U = Bε(x0)∩W be a basic
neighborhood of the critical point x0. If a < 0 < b and [a, b] contains no critical
values other than 0 then for 0 < δ 1 ε Thom’s first isotopy lemma (Theorem 5.5.1
above) gives isomorphisms of the Morse groups:

H r(W≤b, W≤a;A•) ∼= H r(U≤δ, U≤−δ;A•)
∼= H r(U≤δ, U<0;A•)
∼= H r(U≤δ; i !ZA•)
∼= Hr

x0
(i !ZA•) = Hr

x0
(R�ZA•)

since the stalk cohomology is the limit as ε, δ → 0, but changing ε, δ does not
change the cohomology provided 0 < δ 1 ε remain in the region shown in Fig. 5.2,
that is, they satisfy (*) Sect. 5.4.1 and (**) of Sect. 5.5.3. If we apply the main
theorem in stratified Morse theory, this Morse group is identified with

Hr−λ
x0

(i !Z∩N(A•|N))

where N = T ∩W ∩ Bε(p) denotes the normal slice to the stratum X. Except for
the shift λ (which comes from the tangential Morse data), this expression depends
only on the (nondegenerate) covector ξ = df (x0) ∈ �X, cf. Theorem 5.5.2. In
Sect. 5.8.3 we arrange that λ = 0.

5.8.3 Characteristic Cycle

Let A• be a constructible complex of sheaves on a Whitney stratified subset W ⊂ M .
From the preceding paragraph, for each stratum X of W , for each point x0 ∈ X and
for each nondegenerate conormal vector ξ ∈ �X at x0 there is a collection of Morse
groups

H r(ξ;A•) := H r(N≤δ, N<0;A•|N) ∼= H r
x0

(i !Z∩N(A•|N)) ∼= H r
x0

(i !Z(A•))

that measures the local change in cohomology for any smooth function φ : M → R

chosen so that

• φ(x0) = 0
• dφ(x0)|Tx0X = 0,
• dφ(x0) = ξ ∈ �X is nondegenerate
• φ|X has a local nondegenerate minimum at x0
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If ξ varies within a single connected component �α of �X the Morse group
H r(ξ, A•) does not change, nor does the Euler characteristic

χ(ξ;A•) =
∑

r≥0

(−1)r rank(H r(ξ;A•)⊗ Q). (5.11)

Kashiwara’s idea [42] is to use these coefficients to create a Lagrangian cycle. (cf.
[44, §IX], [70, §5.2].)

Each T ∗XM is a smooth Langrangian submanifold of T ∗M and the union
⋃

X T ∗XM is closed by Whitney’s condition A. However, the closure T ∗XM could be
wild unless we assume, as we do for the rest of this article, that W is a subanalytic
subset of an orientable real analytic manifold M Then an orientation of M induces
an orientation on T ∗XM (cf. [69, §2]) and the set of nondegenerate conormal vectors
�X ⊂ T ∗XM breaks into finitely many connected components �α. Define the
characteristic cycle

CC(A•) =
∑

X

∑

α

mα

[
�α

]
(5.12)

where the first sum is over strata X, the second sum is over connected components
�α of �X, where mα = χ(ξ;A•) ∈ Z for any ξ ∈ �α , and where �α is oriented as
above.

Theorem 5.8.2 ([42]) If A• is cohomologically constructible then CC(A•) is well
defined and is a Borel-Moore Lagrangian cycle in H BM

n (T ∗M) supported on
T ∗W M =⋃X T ∗XM .

For any triangulation of CC(A•) the interior of each n-dimensional simplex will
be contained in a connected component �α of the nondegenerate covectors of some
stratum X, and so the above prescription will define a simplicial chain (with infinite
support) in T ∗M . Kashiwara’s theorem is that its homological boundary vanishes,
cf. the discussion [70, §5.0.1].

The characteristic cycle construction is natural with respect to push forward,
pullback and Verdier duality [44, §9.4]. The characteristic cycle has many appli-
cations in the theory of D-modules [55], the Gauss-Manin connection [46] and
representation theory [69, 75].

5.8.4 Euler Characteristic

Let A• be a complex of sheaves of k-vector spaces (where k is a field) that is
constructible with respect to a Whitney stratification (with connected strata) of a
closed subanalytic subset W ⊂ M . The Euler characteristic of the stalk cohomology
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at a point x ∈ W is

χx(A•) =
∑

j≥0

(−1)j dim H
j
x (A•). (5.13)

It is independent of the point x as it varies within a single connected component of
a single stratum, which is to say that it is a constructible function.

The Euler characteristic with compact support is additive. Therefore, if the
cohomology with compact support H r

c (W ;A•) is finite dimensional for all r then
the Euler characteristic with compact support

χc(W ;A•) =
∑

r≥0

(−1)r dim H r
c (W ;A•) =

∑

X

χc(X)χx(A•) (5.14)

is defined and finite, where the sum is over the strata of W and x ∈ X. Kashiwara’s
index theorem [41] says that if W is compact then the Euler characteristic is the
intersection product of the zero section with the characteristic cycle:

χ(W ;A•) = χc(W ;A•) = T ∗MM ∩ CC(A•).

5.9 Complex Stratified Morse Theory

5.9.1 Levi Form

Let M be a complex n dimensional manifold and let f : M → R be a smooth
function. The E. E. Levi form at x ∈ M is the Hermitian form

Lf (x) = ∂∂̄f (x) =
(

∂2f (x)

∂zi∂z̄j

)

defined on the tangent space TxM . The associated quadratic form satisfies

Lf (x)(v) =
∑

i,j

∂2f

∂zi∂z̄j

vi v̄j = 1

4
(Hf (x)(v)+Hf (x)(iv))

where

Hf (x)(v) =
∑

i,j

∂2f (x)

∂xi∂xj

vivj
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is the quadratic form associated to the Hessian of f at x by forgetting the complex
structure on M . If N ⊂ M is a complex submanifold containing x then Lf (x)|N =
Lf |N(x) but the same does not hold for Hf unless df (x) = 0.

Now suppose that df (x) = 0 and that Hf (x) is nondegenerate. Let λx(f ) be the
Morse index of f at x, that is, the (real) dimension of the largest (real) subspace
of TxM on which Hf is negative definite. Let σx(f ) the complex dimension of the
largest complex subspace on which Lf is negative definite and let νx(f ) be the
nullity of Lf . An exercise (see [31, §4.A.2], [5, p. 311]) gives:

λx(f ) ≥ σx(f )+ νx(f )

λx(−f ) ≥ σx(−f )+ νx(f ).

If f : CN → R is the distance from a codimension r linear subspace of CN and
M ⊂ C

N is a submanifold of complex dimension n and if f |M has a nondegenerate
critical point at x ∈ M then the Morse index λ of f |M at x satisfies n ≥ λ ≥ n− r .

5.9.2 Local Structure of Complex Varieties

Throughout this chapter, W ⊂ M denotes a complex analytic subvariety of
a complex analytic variety, together with a complex analytic stratification with
connected strata of W . If X is a stratum of W and p ∈ X then there is a canonical
isomorphism of real vector spaces

T ∗p (X) = HomR(TpX,R) ∼= HomC(TpX,C). (5.15)

In this case, a theorem of B. Teissier [76] states that the set of degenerate covectors
(that is, ξ ∈ T ∗XM such that ξ(τ ) = 0 for some limit τ of tangent spaces from some
larger stratum Y > X) form a proper complex analytic (conical) subvariety of the
conormal space T ∗X,pM of complex codimension ≥ 1. So its complement �X,p is
connected and the normal Morse data (Sect. 5.5.3) is independent (up to stratum
preserving homeomorphism) of the choice of covector ξ ∈ �X.

By choosing local coordinates near p ∈ M , replacing M by C
m, any ξ ∈ T ∗p (M)

may be realized as the differential of a complex linear function π : Cm → C, or
equivalently, using (5.15) as the differential of a real linear function φ = Re(π) :
C

m → R. By choosing an analytic submanifold T transversal to X with T � X =
{p} we may also arrange (locally) that the normal slice N = T � W to the stratum
X is a closed complex analytic subvariety of Cm, Whitney stratified with strata T ∩Y

where Y ≥ X runs through strata of W . It has a zero dimensional stratum T ∩X =
{p} = {0}, and we may assume that π(0) = 0.



304 M. Goresky

5.9.3 Complex Link

Assume as above that N ⊂ C
m, {p} = {0} ⊂ N is a zero dimensional stratum, that

π : Cm → C is linear and ξ = dπ(0) ∈ �X is a nondegenerate covector. Let r(z)

denote the square of the distance in C
m from the origin. As in Sect. 5.5.3 there is

an open region 0 < δ 1 ε ⊂ R
2 such that for any pair (δ, ε) in this region the

following holds:

• ∂Bε(0) is transverse to each stratum of N

• for each stratum Y ∩ T of N (where Y > X) the restriction π |(Y ∩ T ) has no
critial points with critical values in the disk Dδ(0) except for the case {0} = X∩T

• for each stratum Y ∩ T of N and for any point z ∈ Y ∩ T ∩ ∂Bε(0) such that
|π(z)| ≤ δ, the complex linear map

(dr(z), dπ(z)) : Tz(Y ∩ T ) → C
2

has rank 2. (Such points z do not exist if dim(Y ∩ T ) < 2.)

With this data, identify δ = δ + 0i ∈ C and define the complex link

L = π−1(δ) ∩N ∩ Bε(0), ∂L = π−1(δ) ∩N ∩ ∂Bε(0). (5.16)

It is a single fiber of the (stratified) fiber bundle over the circle S1 = ∂Dδ ,

E = π−1(δeiθ ) ∩N ∩ Bε(0), ∂E = π−1(δeiθ ) ∩N ∩ ∂Bε(0)

(E, ∂E) → S1 = ∂Dδ = {δeiθ | 0 ≤ θ ≤ 2π}

and the boundary ∂E is a trivial bundle over S1 = ∂Dδ . See Fig. 5.4.

Theorem 5.9.1 ([31]) The bundle E is stratified-homeomorphic to the mapping
cylinder of a (stratified) monodromy homeomorphism

μ : (L, ∂L) → (L, ∂L)

that is the identity on ∂L and is well defined up to stratum preserving isotopy. The
link LX(p) (Eq. (5.5)) is homeomorphic to the “cylinder with caps”,

LX(p) ∼= E ∪∂E (∂L×Dδ) . (5.17)
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δ + 0i
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B ² (p ) ∪ N

D δ (0)

p

π

Fig. 5.4 Normal slice with complex link, ε-ball and δ-disk

5.9.4 First Consequences

Let f : W → R be a Morse function with a nondegenerate critical point p ∈ X ⊂
W . Let L be the complex link of the stratum X. Since the set �X of nondegenerate
covectors is connected, the complex link is independent (up to stratum preserving
homeomorphism) of the covector ξ ∈ �X that is used in its definition and we may
take ξ = df (p). Let A• ∈ Db

c (W) be a constructible complex of sheaves.

Theorem 5.9.2 The normal Morse data for f at the critical point p ∈ X ⊂ W has
the homotopy type of the pair

(cone(L),L) .



306 M. Goresky

The Morse group H r(ξ, A•) at p is:

H r(N, N<0;A•) ∼= H r(Nε(p),L;A•) = Hr
p(R�ZA•)

where Z = {z ∈ N | f (z) ≥ 0}, cf. Sect. 5.8.2 and Nε(p) = N ∩ Bε(p).

5.10 Complex Morse Theory of Sheaves

5.10.1 The Braid Diagram

Throughout this section we fix a constructible complex of sheaves A• ∈ Db
c (W)

and x ∈ X. The homeomorphisms described in the preceding section are stratum
preserving so they induce isomorphisms on cohomology with coefficients in A• and
they allow us to interpret these cohomology groups,

H r(N − x;A•) ∼= H r(LX(x);A•) H r(N, N − x;A•) ∼= H r(i !xA•)

H r(N;A•) ∼= H r(i∗xA•) H r(N, N<0;A•) ∼= H r(ξ;A•)
H r(N<0;A•) ∼= H r(L;A•) H r+1(N − x, N<0;A•) ∼= H r(L, ∂L;A•)

By (5.17) the “variation” map I − μ : H r(L;A•) → H r(L, ∂L;A•) may be
identified with the connecting homomorphism in the third row of this display, that
is, the long exact sequence for the pair (N −x, N<0), cf. [28]. As in [31, p. 215] the
long exact sequences for the triple of spaces

N<0 ⊂ N − {x} ⊂ N

may be assembled into a braid diagram with exact sinusoidal rows (Fig. 5.5). (cf.
[70, §6.1] where the same sequences are considered separately):

Fig. 5.5 Braid diagram
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5.10.2 Euler Characteristics and the Characteristic Cycle

The results in Sects. 5.8.3 and 5.8.4 become simpler in the presence of a complex
structure. Let W be a complex analytic variety with a fixed analytic Whitney
stratification with connected strata. Let A• ∈ Db

c (W). The Euler characteristics
of the normal Morse data (5.11), of the complex link (5.16), and of the stalk
cohomology (5.13) are constructible functions (that is, constant on strata). For a
stratum X of W we denote these values by

mX(A•), χ(L, A•), χx(A•) = mX(A•)+ χ(L, A•)

respectively (where x ∈ X). Equation (5.14) becomes6 the sum over strata,

χ(W ;A•) =
∑

X

χ(X)χx(A•) = χc(W ;A•)

(where x ∈ X) assuming the cohomology H ∗(W ;A•) is finite dimensional.
The characteristic cycle (5.12) of A• is the sum over all strata X ⊂ W :

CC(A•) =
∑

X

mX(A•)
[
T ∗XM

]
.

Euler characteristics of the normal Morse data and of the stalk cohomology at a
point p ∈ W are related by a formula of [15], the sum over strata X such that
X 3 p:

χx(A•) =
∑

X

(−1)dimC XmX(A•)Eup(X).

Here, Eup(X) is MacPherson’s local Euler obstruction [53] and the sign (−1)dimC X

arises due to choice of orientations, cf. [70, §5.0.3].
When A• = Q this formula can be inverted, so as to express Eup(W) as a linear

combination of the various mX(Q) by considering EuY (X) = Euy(X) (where y ∈
Y ) to be a square matrix of integers indexed by strata Y < X (say, with respect to a
total ordering of the strata that respects the natural ordering). It is lower triangular,
of determinant 1, so it has an inverse that is also a lower triangular matrix of integers
with 1s on the diagonal.

6By the universal coefficient theorem, the Euler characteristic may be computed with coefficients
in any field. If X is a smooth n-dimensional manifold then Hi

c(X;Z/(2)) ∼= Hn−i (X;Z/(2)) by
Poincaré duality hence χc(X) = (−1)nχ(X).



308 M. Goresky

5.10.3 Vanishing Conditions

The braid diagram, together with induction and the estimates in Sect. 5.9.1, may
be used to prove many vanishing theorems and Lefschetz-type theorems in sheaf
cohomology, see [28, 31, 34, 42, 70]. The following serve as illustrations. To avoid
issues of torsion and injective resolutions of R-modules, from now on we assume
that all sheaves are sheaves of vector spaces over a field k (usually k = Q). Using
the convex function distance2 from the point {x} below, and induction, one finds the
following two results (cf. [3]) which may be proven together (since the statement
for one becomes the inductive step for the other):

Theorem 5.10.1 Suppose A• ∈ Db
c (W) is a complex of sheaves of k-vector spaces

on a complex analytic set W such that for each stratum X and for each point x ∈ X,
with ix : {x} → W , the stalk cohomology vanishes:

H r(i∗xA•) = 0 whenever r > codimC(X). (5.18)

Then H r(L;A•) = 0 for all r > � = dimC(L). If the Verdier dual DW (A•)
satisfies (5.18), or equivalently, (if W has pure (complex) dimension n and)

H r(i !xA•) = 0 whenever r < n+ dimC(X), (5.19)

then H r(L, ∂L;A•) = 0 for all r < �.

Theorem 5.10.2 Let W be a Stein space or an affine complex algebraic variety of
dimension n and let A• ∈ Db

c (W) be a complex of sheaves on W that satisfies (5.18).
Then H r(W ;A•) = 0 for all r > n. Let W be a projective variety and let H be
a hyperplane that is transverse to each stratum of some Whitney stratification of
W . Let A• be a complex of sheaves on W that satisfies (5.19). Then H r(W, W ∩
H ;A•) = 0 for all r < n.

5.10.4 Homotopy Version

Homotopy versions of these statements follow from the same induction, by replac-
ing Theorem 5.10.1 with Theorem 5.10.3 below, see [31].

Theorem 5.10.3 The complex link L of a point x in a stratum X of a complex
analytically stratified complex analytic set W ⊂ M has the homotopy type of a CW
complex of dimension ≤ � = dimC(L) = codimW (X) − 1. Moreover L may be
obtained from ∂L by attaching cells of dimension ≥ �.

Consequently, a Stein space or affine complex algebraic variety of dimension n

has the homotopy type of a CW complex with cells of dimension ≤ n. Partially
weakening the hypotheses in Theorems 5.10.1, 5.10.2, or 5.10.3 will result in
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a partial weakening of the conclusions, so Grothendieck’s conjectures [33] on
rectifiable homotopical depth and their homological analogues may be proven this
way, see [34] and [70, §6.0].

5.10.5 Perverse Sheaves

The standard reference for this section is [8] but a great survey is [16]. See also
[44, 48]. Suppose W ⊂ M is an algebraic variety of pure dimension n. A complex of
sheaves A• on W is said to be (middle) perverse if it satisfies both (5.18) and (5.19)
with respect to some7 algebraic stratification of W . It is an intersection complex (IC)
if it satisfies the stronger conditions, obtained by replacing > with ≥ and < with ≤
in (5.18) and (5.19). An IC sheaf on W is determined by its restriction E to the top
stratum, which is (isomorphic to) a local coefficient system [30] so we may denote
it unambiguously by ICW (E).

The category P(W) of perverse sheaves is the full subcategory of Db
c (W) whose

objects are perverse. It is an Abelian, Artinian and Noetherian subcategory and is
preserved under Verdier duality. The simple perverse sheaves are the shifted IC
sheaves, ICV (EV )[dim(V )] of irreducible subvarieties V ⊂ W and irreducible
local systems EV defined on the nonsingular part of V . Using the braid diagram
and induction it is easy to show [44, Thm. 10.3.12] that:

Theorem 5.10.4 A constructible complex A• on W is perverse if and only if for
every stratum X of W , for every x ∈ W and for every nondegenerate covector
ξ ∈ T ∗XM at x, the Morse groups H r(ξ, A•) = 0 vanish unless r = codim(X).

Consequently, Morse theory applied to perverse sheaves reduces to the familiar
situation in which the nonzero Morse groups live in a single degree.

The Abelian category of perverse sheaves was first discovered in conjunction
with the Kazhdan-Lusztig conjecture [47, Conj. 1.5] whose proof (cf. [9, 14])
involved the Riemann-Hilbert correspondence which we state here without explain-
ing the terms, cf. [12]. Let M be a complex analytic manifold and DM its sheaf of
differential operators. Let Db

rh(DM) be the derived category of (coherent sheaves
of) modules over DM whose cohomology sheaves are holonomic with regular
singularities. Then the de Rham functor defines an equivalence [40, 58] of derived
categories Db

rh(DM) → Db
c (M) which commutes with direct images, inverse

images and duality, and it restricts to an equivalence between the abelian category of
holonomic modules with regular singularities and the abelian category of perverse
sheaves on M .

7In some situations, such as when a variety is stratified by the orbits of an algebraic group action,
it is convenient to consider the category of perverse sheaves constructible with respect to a fixed
stratification.
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5.10.6 Further Properties

In this section W is a complex projective algebraic variety and “sheaf” means
sheaf of Q-vector spaces or C-vector spaces, but the theory extends to Q�-sheaves
on schemes over any field. Properties of perverse sheaves are most conveniently
expressed by introducing Deligne’s degree shift which is assumed throughout [8]
and which we shall use in this paragraph, replacing ICW with ICW [dim(W)] so
that Verdier duality is symmetric about degree 0. Hence, if i : V ⊂ W is a (closed)
subvariety and L is a local system on the nonsingular part of V then Ri∗ICV (L)

is perverse on W and more generally (using this degree shift), i∗, i ! and Ri∗ = Ri!
take perverse sheaves to perverse sheaves. The conditions (5.18) and (5.19) that A•
should be a perverse sheaf are that for all x ∈ W (with ix : {x} → W ) and for all
r ∈ Z the following holds:

dim{x ∈ W | H r(i∗xA•) = 0} ≤ −r

dim{x ∈ W | H r(i !xA•) = 0} ≤ r.

The perverse cohomology functors pHj : Db
c (W) → P(W) take distinguished

triangles to long exact sequences (of perverse sheaves), commute with Verdier
duality, and identify perverse sheaves8 as those complexes A• ∈ Db

c (W) such that
pHr (A•) = 0 for all r = 0.

If f : W → Y is a proper algebraic map, the decomposition theorem with
coefficients in Q [8, §5.4] says:

Theorem 5.10.5 There is a decomposition in Db
c (Y ),

Rf∗(ICW ) ∼=
⊕

i∈Z
pHi (Rf∗(ICW )[−i], (5.20)

and a hard Lefschetz morphism η : pHi (Rf∗(ICW )) → pHi+2(Rf∗(ICW )) which
induces isomorphisms of perverse sheaves,

ηr : pH−r (Rf∗(ICW )) → pHr (Rf∗(ICW ))

for all r ≥ 1. There is a stratification Y = ∐β Yβ with local systems Eβ on Yβ and
a further decomposition

pHi (Rf∗(ICW )) ∼=⊕βIC(Yβ ;Eβ)

of each factor in (5.20) into a direct sum of IC sheaves of subvarieties.

8Similarly the Abelian category of sheaves is equivalent to the full subcategory of Db
c (W) whose

objects A• satisfy: Hr (A•) = 0 for r = 0.
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This is one of the deepest and most useful results in mathematics, with many
applications to algebraic geometry, representation theory, combinatorics, number
theory, automorphic forms and other areas of mathematics. See, for example,
[16, 38, 52, 60, 61, 63, 72].

5.11 Perfect Morse Functions and Fixed Point Theorems

5.11.1 Torus Actions

The Morse-Bott theory (Sect. 5.3.2) of critical points for smooth manifolds also has
various extensions to singular spaces. Suppose the torus T = C

∗ acts algebraically
on a (possibly singular) normal projective algebraic variety W with resulting
moment map μ : W → R as in Sect. 5.3.2. Let WT = ∐r Vr denote the fixed
point components of the torus action and define V ±

r as in (5.3) with inclusions

Vr

jr
V ±

r

h±
r

W (5.21)

On each Vr there is a complex of sheaves,

IC!∗
r = (j+r )!(h+r )∗(ICW ) ∼= (j−r )∗(h−r )!(ICW )

representing cohomology with closed supports in the directions flowing into Vr and
with compact supports in the directions flowing away from Vr . (The isomorphism
is proven in [6] and [32]). In [49] F. Kirwan uses the decomposition theorem
(Theorem 5.10.5) to prove the following.

Theorem 5.11.1 ([49]) The moment map μ is a perfect Morse Bott function and it
induces a decomposition for all i, expressing the intersection cohomology of W as
a sum of locally defined cohomology groups of the fixed point components:

IH i(W) ∼=
⊕

r

H i(Vr; IC!∗
r ). (5.22)

The result also generalizes to actions of a torus T = (C∗)m. In [6] the sheaf IC!∗
r is

shown to be a direct sum of IC sheaves of subvarieties of Vr .

5.11.2 Hyperbolic Lefschetz Numbers

The time t = 1 ∈ C
∗ map of a C

∗ action (see Sects. 5.11.1, 5.3.2 above) is an
example of a map with hyperbolic fixed points. For general hyperbolic maps the full
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Fig. 5.6 Behavior near a
hyperbolic fixed point
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decomposition (5.22) may fail but the Lefschetz number can still be expressed as a
sum of explicit local contributions.

Let f : W → W be a subanalytic self map defined on a subanalytically stratified
subanalytic set W . A connected component V of the fixed point set of f is said to
be hyperbolic9 if there is a neighborhood U ⊂ W of V and a subanalytic mapping
r = (r1, r2) : U → R≥0×R≥0 so that r−1(0) = V and so that r1(f (x)) ≥ r1(x) and
r2(f (x)) ≤ r2(x) for all x ∈ U . Hyperbolic behavior of f : W → W is illustrated
in Fig. 5.6. (Flow lines connecting r(x) and r(f (x)) do not exist in general).

Let V + = r−1(Y ) and V − = r−1(X) where X, Y denote the X and Y axes in
R≥0 × R≥0 with inclusions j±, h± as in (5.21). If A• ∈ Db

c (W) define

A!∗ = (j+)!(h+)∗A• and A∗! = (j−)∗(h−)!A•.

A morphism � : f ∗(A•) → A• is called a lift of f to A• ∈ Db
c (W). Such

a lift induces a homomorphism �∗ : H i(W ;A•) → H i(W ;A•) and defines the
Lefschetz number

Lef(f, A•) =
∑

i∈Z
(−1)i Trace

(
�∗ : H i → H i

)
.

9Examples of non-hyperbolic fixed points include the point at infinity of the extension to CP
1 of

the map z %→ z+ 1, for z ∈ C.
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If V ⊂ W is a hyperbolic component of the fixed point set then � also induces
self maps �!∗

V on H i(V ;A!∗) and �∗!
V on H i(V ;A∗!) and in [32] it is proven that

associated local Lefschetz numbers Lef(�!∗
V ;A!∗) and Lef(�∗!

V ;A∗!) are equal.

Theorem 5.11.2 ([32]) Given f : W → W , A• ∈ Db
c (W) and � : f ∗(A•) → A•

as above. Suppose that W is compact and that all connected components of the
fixed point set are hyperbolic. Then the global Lef(f, A•) is the sum over connected
components of the fixed point set of the local Lefschetz numbers:

Lef(f, A•) =
∑

V

Lef(�!∗
V ;A!∗) =

∑

V

Lef(�∗!
V ;A∗!).

Moreover, each local Lefschetz number Lef(�!∗
V ) is the Euler characteristic of

a constructible function Lef(�x, A!∗) for x ∈ V (see Sect. 5.8.4 above). Let
V = ∐

Vr be a stratification of the fixed point component V so that the
pointwise Lefschetz number Lef(�x, A!∗) is constant on each stratum Vr , and call
it Lr(�;A!∗). If V is compact then (cf. [32, §11.1]),

Lef(�!∗
V ;A!∗) =

∑

r

χc(Vr)Lr(�;A!∗).

5.12 Specialization

5.12.1 Specialization by Retraction

The geometry described in Sect. 5.9.3 and Fig. 5.4, associated to a nondegenerate
covector ξ = dπ(0) extends with very few modifications to much more general
situations. Let X ⊂ M be a complex (n + 1) dimensional analytic subvariety of
some complex analytic manifold M and let f : X → C be a proper complex
analytic mapping. Such a mapping can be stratified with complex analytic strata,
which in the target space C consists of discrete points. We wish to understand the
local behavior of f near one such stratum which we may take to be 0 ∈ C. The
central fiber X0 = f−1(0) is a closed union of strata and Xt = f−1(t) is called
“the” nearby fiber if t = 0 is sufficiently small (see below). Let

r0 : TX0(ε) → X0

denote the canonical retraction (Sect. 5.4.4) of a neighborhood TX0 of X0, whose
fiber at x ∈ X0 is stratified-homeomorphic to the normal slice Nε(x) at x through
the stratum S ⊂ X0 containing x.

As in Sect. 5.9.3 there is an open region, 0 < δ 1 ε in the (δ, ε) plane so that if
(δ, ε) lies in this region and if t ∈ C

∗, 0 < |t| ≤ δ then the pre-image Xt = f−1(t)

is contained in TX0(ε) and is transverse to ∂TS(ε) for each stratum S ⊂ X0. The
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specialization map ψ : Xt → X0 is the restriction ψ = r0|Xt . The fiber ψ−1(x)

of the specialization map is therefore the Milnor fiber of f , that is, the intersection
of the normal slice N(x) with a ball Bε(x) and with the nearby fiber Xt . Its (real)
dimension is 2c where c denotes the complex codimension in X0 of the stratum S

containing x. (So the codimension of S in X is c + 1. If the differential df (x) is
a nondegenerate covector then the fiber ψ−1(x) is the complex link L in X of the
stratum S, cf. Sect. 5.9.3). The monodromy μ : Xt → Xt is a stratum preserving
homeomorphism and ψ ◦ μ = ψ .

5.12.2 Nearby Cycles

With f : X → C and t ∈ C
∗ as above, and it : Xt → X, let A• ∈ Db

c (X). The
sheaf

ψf (A•) = Rψ∗i∗t A• = Rψ∗(A•|Xt) ∈ Db(X0)

is called the sheaf of nearby cycles on X0. Its isomorphism class in Db
c (X0) is

independent of the choice of t (provided |t| < δ as above). Its cohomology
is H r(X0;ψf (A•)) ∼= H r(Xt ;A•|Xt), cf. Eq. (5.9). The stalk cohomology of
ψf (A•) at a point x ∈ X0 is the cohomology of the Milnor fiber, as described
above. The monodromy passes to a morphism μ : ψf (A•) → ψf (A•). This sheaf
may also be constructed [19] without choosing t ∈ C

∗: let

Ũ = U ×f,e C→ U = X −X0 = f−1(C− {0})

be the infinite cyclic cover obtained by pulling back U → C
∗ under the map e :

C→ C
∗, e(z) = exp(2πiz) as in the following diagram,

U
π

U
i

X
j

X0

C
e

C
∗

f

C 0

Then ψf (A•) = j∗Ri∗Rπ∗π∗(A•|U).
As in Sect. 5.9.1 the index estimates for (a Morse perturbation of the) distance

from x and induction show that ψ−1(x) has the homotopy type of a CW complex
of dimension ≤ c, where c denotes the codimension (in X0) of the stratum
containing x. Moreover, if A• is a complex of sheaves on X that satisfies (5.18)
of Sect. 5.10.3 then the same argument implies that ψf (A•) also satisfies (5.18).
Since the pushforward under a proper mapping commutes with Verdier duality, this
proves (see [28, 31, §6.A], [44, §10], [8, §4.4], [13, Thm. 1.2]) that specialization
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takes constructible sheaves to constructible sheaves and preserves perverse sheaves
(using Deligne’s degree shift):

Theorem 5.12.1 Suppose f : X → C is a proper complex algebraic map to a
curve C. Let p ∈ C be a point and Xp = f−1(p) be the “central fiber”. Let
ψ : Xt → Xp be the specialization map, for t ∈ C sufficiently close to p. Let A• be
a perverse sheaf on X. Then A•|Xt is perverse on Xt and Rψ∗(A•|Xt) = ψf (A•)
is perverse on Xp .

If Dδ ⊂ C is a sufficiently small disk about 0 ∈ C then for all i,

H i(f−1(Dδ);A•) ∼= H i(X0;A•)

for any A• ∈ Db
c (X). The local invariant cycle theorem [8, §6.2.9], a corollary of

Theorem 5.10.5, says that every monodromy-invariant class in IH i(Xt) extends to
a class in IH i(f−1(Dδ)):

Theorem 5.12.2 The natural homomorphism to the invariant classes

H i(X0; ICX|X0) → IH i(Xt)
π1 = H i(X0;ψf (ICX))π1

is surjective, where π1 ∼= Z is the monodromy action.

5.12.3 Vanishing Cycles

There is a canonical morphism A•|X0 → ψ∗(A•) that arises from the restriction of
sheaves for the inclusion Xt ⊂ TX0(ε). The sheaf of vanishing cycles φf (A•) is the
third term in the resulting distinguished triangle:

A•|X0 ψf (A•)

φf (A•)
[1]

(5.23)

Let Z = {x ∈ X| Re(f (x)) ≥ 0} with inclusion iZ : Z → X and j : X0 → Z. The
sheaf of vanishing cycles is φf (A•) ∼= j∗i !ZA• and its stalk cohomologyHr

x(i !ZA•)
at x ∈ X0 is the local Morse group (with degree shift of 1) for the function Re(f ) :
X → R, even though the covector ξ = df (x) may be degenerate. (If x0 ∈ X0
is a 0-dimensional stratum and if df (x0) is a nondegenerate covector then this is
exactly the Morse group for Re(f ) at x0 and the exact sequence on cohomology
from (5.23) may be found in the braid diagram Sect. 5.10.1.) The action of the
monodromy μ : Xt → Xt extends to a morphism μ : φf (A•) → φf (A•) and the
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variation map I − μ extends naturally to a morphism

var : φf (A•) → ψf (A•).

If A• is a perverse sheaf then so are ψf (A•) and φf (A•).
In particular if X = C is stratified with a single stratum at 0 ∈ C and if A•

is constructible and perverse with respect to this stratification then V = ψf (A•)
and W = φf (A•) are (quasi-isomorphic to) vector spaces in degree zero with the
following result (cf. [54, §6], [22, 81, §4]):

Theorem 5.12.3 The category of perverse sheaves on (C, {0}) is equivalent to the
category of diagrams

V
α

β
W

where I + αβ and I + βα are invertible.

Vanishing cycles may be used to give quiver-like descriptions of the category of
perverse sheaves in many other situations [54]. Oscillatory integrals and exponential
sums may be estimated using vanishing cycles [1, 2, 17, 18, 45, 66, 68, 78]. The
Fourier transform has a sheaf theoretic analog, the geometric Fourier transform
[13, 44, 48] that is constructed using vanishing cycles and has many applications
to representation theory and symplectic geometry (see for example [61, 62]).
Mixed Hodge structures are constructed on the cohomology of vanishing cycles
[65, 73, 74]. Morse theory and structure of the singularities plays a key role in the
analysis of each of these fascinating applications.
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Abstract The fibration theorem for analytic maps near a critical point published
by John Milnor in 1968 is a cornerstone in singularity theory. It has opened several
research fields and given rise to a vast literature. We review in this work some
of the foundational results about this subject, and give proofs of several basic
“folklore theorems” which either are not in the literature, or are difficult to find.
Examples of these are that if two holomorphic map-germs are isomorphic, then their
Milnor fibrations are equivalent, or that the Milnor number of a complex isolated
hypersurface or complete intersection singularity (X, 0) does not depend on the
choice of functions that define it. We glance at the use of polar varieties to studying
the topology of singularities, which springs from ideas by René Thom. We give an
elementary proof of a fundamental “attaching-handles” theorem, which is key for
describing the topology of the Milnor fibers. This is also related to the so-called
“carousel”, that allows a deeper understanding of the topology of plane curves and
has several applications in various settings. Finally we speak about Lê’s conjecture
concerning map-germs C

2 → C
3, and about the Lê-Ramanujam theorem, which

still is open in dimension 2.

6.1 Introduction

Milnor’s fibration theorem in [65] concerns the geometry and topology of analytic

maps near their critical points. Consider a holomorphic map (Cn+1, 0)
f→ (C, 0)

taking the origin to 0, and for simplicity assume for a moment that f has an isolated
critical point at 0. Since f is analytic, there exists r > 0 sufficiently small so that
0 ∈ C is the only critical value of the restriction f |̊

Br
, where B̊r is the open ball of

radius r and center at 0. Set

V := f−1(0) ∩ B̊r and V ∗ := V − {0} .

So V ∗ is an n-dimensional complex manifold. We know from [65] that V ∗ meets
transversally every sufficiently small sphere Sε in C

n+1 centered at 0 and contained
in B̊r . The variety LV := V ∩ Sε is called the link of the singularity 0 of f−1(0)

and its homeomorphism type does not depend on the choice of the sphere (by [65,
Theorem 2.10] or [11]). Then Milnor’s theorem in [65] (Corollary 4.5) says that for
every such sphere Sε we have a smooth fiber bundle

ϕ := f

|f | : Sε − LV −→ S
1 . (6.1)

This is known as the first version of Milnor fibration theorem, or also as the spherical
Milnor fibration. There is a second version of this theorem, the “tube fibration”,
in which the fibers Ff are diffeomorphic to the complex manifolds obtained by
considering a regular value t sufficiently near 0 ∈ C and looking at the piece of
f−1(t) contained within the open ball B̊ε bounded by Sε. Each of these two versions
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of the fibration theorem has its own importance and interest, and this has led to a
vast literature (see for instance [71] for a survey on the topic).

The purpose of this work is to discuss several results which concern the
foundations of these fibrations. These are all well-known results, but difficult to find
in the literature and splitted into many papers. Here we present these foundational
results in a unified, coherent way.

We begin this article by discussing the existence of local “Milnor balls” and
“Milnor spheres”. This holds for arbitrary real analytic map-germs f : (X, 0) →
(Rk, 0), where X is a real analytic variety of dimension > k, and it means a
sufficiently small sphere Sε (or a ball Bε bounded by Sε) centered at the critical
point 0 ∈ X ⊂ R

N such that every sphere in R
N centered at 0 and contained in Bε

intersects the zero locus V = f−1(0) ∩X transversally in the stratified sense. That
means that the germ (X, 0) is equipped with a Whitney stratification (see [17] or
Sect. 6.11 below) for which V is a union of strata, and every stratum that has 0 in
its closure intersects transversally all the spheres as above. This proves that V has a
local conical structure. The set LV := V ∩ Sε is called the link of the singularity.

For simplicity we restrict the discussion in Sect. 6.2 to the case where X is
complex analytic with an isolated singularity at 0 and f is holomorphic. We show
in an elementary way the existence of Milnor spheres and balls whenever f has an
isolated critical point. In that section we also show the existence of a tube fibration
as mentioned above. This is called the local Milnor fibration of f at 0. The fibers
Ft = f−1(t) ∩ B̊ε are the Milnor fibers of f at 0. This is based on a Bertini-
Sard type observation by René Thom for complex analytic maps, and a version of
Ehresmann’s fibration lemma for manifolds with boundary. We give here a proof
of that lemma. Next we define the geometric monodromy of the tube fibration and
show that two locally smooth fibrations E1 → S

1 and E2 → S
1 are isomorphic if

they have diffeomorphic fibers and isomorphic geometric monodromies. The rest of
Sect. 6.2 is devoted to proving (Proposition 6.2.12) that if f1 : (X1, 01) → (C, 0)

and f2 : (X2, 02) → (C, 0) are two isomorphic germs of holomorphic functions,
then the local Milnor fibrations are diffeomorphic.

The next Section discusses explicit examples where it is easy to describe the
topology of the Milnor fiber and see a difference between the isolated and the non-
isolated singularity case. We also introduce the Pham join J for the polynomials:

(z0, . . . , zn)
f−→ z

a0
0 + . . .+ zan

n , ai ≥ 2 .

One has that J is a deformation retract of the Milnor fiber, and J has the homotopy
type of a bouquet of spheres of middle dimension. This is the birth of Milnor’s
theorem discussed later, that, in the isolated singularity case, the Milnor fiber has
the homotopy type of a bouquet of spheres of middle dimension.

In the case the singularities of f are not isolated, there is a similar Milnor
fibration; we envisage this in Sect. 6.4. We still assume that X is a complex analytic

space with an isolated singularity at 0, but now (X, 0)
f→ (C, 0) may have a non-

isolated singularity at 0. We show (Theorem 6.4.1) that one has in this case a Milnor
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tube fibration. This uses Thom’s Af condition, that we explain in the text, and a
remarkable result of Hironaka stating that every complex analytic map f : X → Y

to a complex analytic space of dim Y = 1 can be stratified so that f satisfies the Af

condition. Furthermore, the Af stratification of f can be obtained from refining a
given stratification of f . One has, even in this general setting, that the Milnor fiber is
a Stein manifold, and therefore it has the homotopy type of a CW-complex of middle
dimension, by Andreotti-Frankel’s theorem in [2]. This theorem uses elementary
complex analysis to show that up to a small perturbation, the function distance to
the origin restricted to a Stein n-manifold is a plurisubharmonic Morse function (see
for instance [19, Def. 1 Chapter IX, Section C]) and the Morse index at each critical
point is ≤ n.

In Sect. 6.5 we return to Milnor’s original formulation of the spherical fibration

theorem, similar to (6.1) above, for functions (X, 0)
f→ (C, 0) where X has an

isolated singularity at 0, and we sketch the proof of this fibration property using the
previous tube fibration.

Section 6.6 focuses on the case where f defines an isolated complete intersection
singularity germ (an ICIS). We recall in this section Hamm’s fibration theorem
for ICIS, and the definition of the Milnor number of f as the rank of the middle
homology of the Milnor fiber. We prove that if f, g : (Cn+k, 0) → (Ck, 0) define
the same ICIS of dimension n, V = f−1(0) = g−1(0) (as complex spaces), then
the Milnor fibres of f and g are diffeomorphic. Hence, if f : (Cn+k, 0) → (Ck, 0)

defines an ICIS V = f−1(0) of dimension n, then we may define the Milnor
number of (V , 0) as μ(V, 0) := μ(f ) and this is independent of the choice of
the representative f .

We also recall in Sect. 6.6 a general fibration theorem where we consider a
complex analytic space X of pure dimension n + k, a holomorphic map germ
f := (f1, . . . , fk) : (X, 0) → (Ck, 0) and let V = f−1(0). We assume that f

defines an isolated singularity in the sense that at each point of V − {0} sufficiently
near to 0 the space X is not singular and the mapping f is a submersion. The case
k = 1 is specially interesting and that is the subject of Sect. 6.11, where we prove

a general fibration theorem for map-germs (X, 0)
f→ (C, 0) where X may have

arbitrary singular locus.
Section 6.7 is a turning point in this presentation, since we begin here the use

of polar varieties to study the topology of singularities. This springs from ideas of
René Thom [77] and was introduced by B. Teissier and D. T. Lê (see for instance
[32, 36, 37, 74, 75]). The idea is to study the topology of the germ in question by
looking at the slices by a linear form; the points of non-transversality determine the
corresponding polar variety. This is somehow a reminiscent of Morse theory where
one studies the topology of manifolds by slicing them with the level surfaces of a
Morse function. Here we replace Morse functions by linear forms.

We conclude Sect. 6.7 with Lê’s attaching theorem, stating that if (Cn+1, 0)
f→

(C, 0) is the germ of a holomorphic function with a possibly non-isolated critical
point at 0, Ft is a local Milnor fiber at 0 and H is a sufficiently general hyperplane
near 0, then Ft is obtained from the Milnor fiber of the slice Ft ∩ H by attaching a
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certain number of n-handles. The number of such handles is the intersection number(
�f,� · V (f )

)
, where �f,� is the polar curve of f relative to a general linear form

�. Furthermore, if f has an isolated critical point, then this number equals the sum
of Milnor numbers μ(f )+ μ(f, �).

An immediate consequence of Lê’s attaching theorem is that in the isolated
singularity case, the Milnor fiber Ff is diffeomorphic to a 2n-ball to which one
attaches μ handles of middle dimension, where μ is the Milnor number. This
was conjectured by Milnor and proved in [50]. When the map f has non-isolated
critical points, the Milnor fiber Ff has more complicated topology. In fact the ideas
described in Sect. 6.7 naturally lead to the concept of Lê cycles and Lê numbers,
introduced by D. Massey in [56, 57, 59]. The Lê cycles are local analytic cycles
associated to the germ of f at 0, defined by means of polar varieties; the Lê numbers
are the multiplicities of those cycles. There is a Lê number in each (complex)
dimension, from 0 to that of the singular set of f . Then Lê-Perron’s theorem

generalizes to saying that the Milnor fiber of a map germ (Cn+1, 0)
f→ (C, 0)

is diffeomorphic to a 2n-ball to which one attaches handles of various Morse
indices, and this is dictated by the corresponding Lê numbers. This is the content of
Sect. 6.10 where we briefly discuss the topology of the Milnor fiber of map-germs
C

n → C.
In Sect. 6.8 we briefly describe the carousel associated to a map-germ C

2 →
C. This was introduced by D. T. Lê (see for instance [38, 41]) and it springs also
from the ideas described in Sect. 6.7. Given a map-germ f : (C2, 0) → (C, 0),
say irreducible, then we know that its link is an iterated torus knot determined by
the Puiseux pairs of f . The point is that the Puiseux expansions actually give an
additional structure near the singular point and this gives rise to what Lê called the
carousel associated to the singularity. This is obtained by considering an auxiliary
linear form �, general enough for f , and looking at the distribution of points {zj }
in the intersection {� = t} ∩ {g(x, y) = 0}. Then the carousel arises by a careful
study of how the Puiseux pairs describing the points where the line {� = t} meets
the Milnor fiber, which are distributed regularly around each point {zj } and their
distribution is determined iteratively by the Puiseux pairs.

In the following Sect. 6.9 we describe some results where carousels are used.
The first of these is a theorem from [38] stating that if f :U→ C is a non-constant
reduced analytic function defined in a neighborhood of 0 in C

n+1 with a critical
point at 0 (not necessarily isolated), then there is a geometric monodromy of the
Milnor fibration of f at 0 which does not have a fixed point. As a corollary one gets
A’Campo’s theorem in [1] that the Lefschetz number of the monodromy of f at 0 is
zero.

Finally, in Sect. 6.12 we look at two open problems. The first of these is a long
standing open problem that comes from the Problems Section in [81], and according
to the first named author, was originally stated by M. Oka as follows: let (X, 0) be
a surface in (C3, 0); if its link LX is homeomorphic to a sphere, then (X, 0) is
the total space of a Whitney equisingular family of irreducible plane curves. This
question was reformulated by the first named author in terms of the injectivity of a
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holomorphic map germ from (C2, 0) to (C3, 0) and it is known as Lê’s Conjecture:
if f : (C2, 0) → (C3, 0) is holomorphic and injective, then f has rank≥ 1 at 0. We
prove in Sect. 6.12 that these two conjectures are actually equivalent.

6.2 Background on Milnor Fibrations

Let (X, 0) be the germ at the origin 0 in some complex space C
N of an irreducible

complex analytic variety X of dimension n+ 1.
First we consider the case where the analytic space X has an isolated singular

point at 0. Let (X, 0)
f→ (C, 0) be a non-constant holomorphic function. We

first assume that the function f has no critical points in U − 0, where U is a
neighborhood of 0 in X. If a function f of X satisfies this property, we shall say
that the holomorphic function f has an isolated singularity at the point 0.

Let ε > 0 be small enough so that the ball B̊ε ⊂ C
N with center at 0 and radius ε

is a Milnor ball for the germs of X at 0 with respect to the given stratification. That
is, every sphere contained in B̊ε centered at 0 meets transversally X. The existence
of Milnor balls is given by the following lemma attributed to Whitney (see [83,
Theorem 22.1]):

Lemma 6.2.1 Let (zn) be a sequence of non-singular points of X which tends to
0. Consider (Tzn(X)) the sequence of tangent spaces of X at zn. Assume that this
sequence of tangent spaces has a limit T and the sequence of lines (l0,zn) has a limit
�, then we have:

� ⊂ T .

Proof Since the space P
N−1 of lines through 0 and the Grassmann space

G(dim X, N) of dim X-linear subspaces of C
N are compact, we may choose a

sub-sequence of (zn) such the sequences of lines (0zn) and tangent spaces Tzn(X)

have limits � and T .
In fact, let U be an open neighborhood of 0 in X and consider the mapping:

U ∩X − 0
�−→ P

n−1 ×G(dim X, N)

defined by �(z) = (0z, Tz(X)). The graph of � in U∩X×P
n−1×G(dim X, N) has

a closure which is an analytic subspace (see e.g. Theorem 16.4 of [83]). Therefore,
by the Curve Selection Lemma [65, Lemma 3.1], the limit (�, T ) is also the limit
along a complex analytic arc p : (C, 0) → (X, 0) where p(0) = 0 and p(t) ∈ X−0
for t = 0. Now, for t = 0 the tangent vector:

d p(t)

dt
= ṗ(t)
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of the analytic arc at the point p(t) is also a tangent vector in Tp(t)(X). We are going
to prove that when t tends to zero the line 0p(t) and the line defined by ṗ(t) have
the same limit. We have:

p(t) = ait
i + ai+1t i+1 + . . .

where i ≥ 1 and ai = 0. Let [c] be the class in P
N−1 of c ∈ C

N − {0}. Then,

[p(t)] = [ait
i + ai+1t i+1 + . . .] = [ai + ai+1t + . . .] → [ai]

when t → 0. Analogously,

[ṗ(t)] = [iait
i−1+ (i+1)ai+1t

i + . . .] = [iai+ (i+1)ai+1t+ . . .] → [iai] = [ai]

when t → 0.
Since the tangent vector ṗ(t) is contained in Tp(t)(X), this proves Lemma 6.2.1

in the case X is irreducible at the point 0. When X is not irreducible at 0, we may
assume that the sequence (zn) belongs to an irreducible component of X at 0 by
eventually extracting a subsequence. This completes the proof of Lemma 6.2.1. ��
Remark 6.2.2 We notice that Lemma 6.2.1 is proving that if we equip a small
neighborhood U of 0 with a stratification (X ∩U \ {0}), {0}), then this stratification
satisfies Whitney’s b-condition and therefore it is Whitney regular, see Sect. 6.11.

A consequence of Lemma 6.2.1 is:

Lemma 6.2.3 Let X be an equidimensional complex analytic space with an
isolated singularity at 0. There is ε1 such that the ball B̊ε1 is a Milnor ball of X

at 0. In this case, the differentiable structure of X ∩ Sε does not depend on ε, for
ε1 > ε > 0, where Sε is the sphere bounding the Milnor ball B̊ε .

Proof Let us suppose that for all ε > 0 the ball B̊ε is not a Milnor ball. Let us
choose a corresponding sequence εn of positive numbers which tends to 0. For each
n there is a point zn ∈ X where the sphere S‖zn‖ is not transverse to X at zn. By
choosing a subsequence we may suppose that the sequence (zn) is chosen such (0zn)

has a limit �, the sequence of tangent spaces (TznX) has a limit T and the limit of
(TznS‖zn‖) is T. Since at the point zn the space X is not transverse to S‖zn‖, we have:

TznX ⊂ TznS‖zn‖ .

Then, at the limit limn 0zn = � is orthogonal to T ⊃ T = limn TznX, which
contradicts Lemma 6.2.1. Therefore, there is an ε1 > 0 such that B̊ε1 is a Milnor
ball of X at 0.

Since we assume that the function f has an isolated singularity at 0, the subspace
V (f ) = {f = 0} of X has an isolated singularity at 0 and we can choose ε1 such
that the ball B̊ε1 of CN is also a Milnor ball of V (f ) at 0.
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Therefore, for ε1 > ε > 0, the intersection X ∩ Sε , where Sε is the sphere
boundary of Bε , is a real analytic manifold. Similarly since the holomorphic
function f : (X, 0) → (C, 0) has an isolated singularity at the point 0, for
ε1 > ε > 0, the intersection V (f ) ∩ Sε is a real analytic manifold.

We claim that the differentiable structures of X ∩ Sε and V (f ) ∩ Sε do not
depend on ε, for ε1 > ε > 0. We prove this assertion below for X; the case of V (f )

is proved in the same way.
Consider a Milnor ball Bε1 for X at 0. Let ϕ be the restriction to X ∩ B̊ε1 − 0 of

the distance function to the point 0 ∈ C
N . It defines a smooth function:

ϕ : X ∩ B̊ε1 − 0 −→ (0, ε1).

The function ϕ is clearly proper and, by definition of a Milnor ball, it is sub-
mersive and surjective. Ehresmann Lemma, whose statement is given below in
Lemma 6.2.10, (in this case a basic Lemma of Morse theory is enough) implies
that X ∩ Sε′ and X ∩ Sε′′ are diffeomorphic for any ε′ and ε′′ in (0, ε1). ��

This is why we may define:

Definition 6.2.4 When ε is small enough, one calls X ∩ Sε the link of X at 0. One
defines similarly the link of V (f ) at the point 0.

Example 6.2.5

1. Let X = C
2. Assume that the holomorphic function f : (C2, 0) → (C, 0) has

an isolated critical point at 0. Then V (f ) defines the germ of a reduced plane
curve (V (f ), 0) at 0. The link of C2 at 0 is a 3-sphere S3

ε and the link V (f )∩ S
3
ε

of V (f ) at 0 defines a link in the 3-sphere S
3
ε . These links, when they have one

component and then are called knots, have been studied by K. Brauner in [3] (see
also [33]) and in the case of several components have been studied in [49].

2. Let X = C
5. Consider the polynomials f = z3

1 + z6r−1
2 + z2

3 + z2
4 + z2

5. If one
varies r from 1 to 28, the link of V (f ) gives the 28 classes of oriented manifolds
which are homeomorphic to S

7 [5]. The smooth manifolds homeomorphic to a
sphere, but not diffeomorphic, are called exotic spheres (see e.g. [65] Chap. 8
and 9).

Let X be a complex analytic space with an isolated singularity at 0. Assume that
(X, 0) is embedded in (CN, 0). Then, a general linear form of CN restricted to X

defines a holomorphic function on X with an isolated singularity at 0. Now, we have
a local Bertini-Sard type result due to R. Thom:

Lemma 6.2.6 Let f : (X, 0) → (C, 0) be a germ of holomorphic function on an
equidimensional complex analytic space X with an isolated singularity at 0. Then,
on a sufficiently small representative X of (X, 0), there exists δ > 0 small enough
such that for all t , δ > |t| > 0, the space {f = t} ∩X is non-singular.

Proof Let �(f ) be the set of critical points of f . It is defined by the points where
the matrices (df1, . . . , dfk, df ) have rank ≤ N − dim X, where the functions
f1, . . . , fk define X at 0 in C

N . Hence, �(f ) is an analytic subspace of X. We
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can find locally finite connected complex analytic manifolds (�k) such that �(f ) is
the disjoint union of the �k:

�(f ) =
∐

k

�k.

Since the partition (�k) is locally finite, in a neighborhood X0 of 0 in X, there is
only a finite number �1, . . . , �n which contain 0 in their closures.

The restriction of f to �i − {0} is critical, so it is constant for i = 1, . . . , n. Its
value is the same value as f (0) = 0 because �1, . . . , �n are connected and 0 is
in the closures of �1, . . . , �n. Therefore for δ > 0 small enough, X ∩ f−1(t) is
non-singular for all t such that δ > |t| > 0. ��
Remark 6.2.7 If X is not equidimensional, but with an isolated singularity at 0, the
space {f = t} for t small and = 0, splits locally at 0 into non-singular pieces in
each analytic component of (X, 0).

Remark 6.2.8 Notice that the proof of Lemma 6.2.6 actually proves more than is
stated: it shows that taking the representative of X small enough, we can assume
that 0 ∈ C is the only critical value of f .

We have a local fibration theorem. This is the tube fibration mentioned in the
introduction:

Proposition 6.2.9 Let X be an analytic space with an isolated singularity at 0 and
let f : (X, 0) → (C, 0) be a holomorphic function with an isolated singularity at
the point 0. Let B̊ε1 be a Milnor ball of X and V (f ) at 0. Let ε, 0 < ε < ε1 , then
there is δ > 0 small enough such that, for all t with δ ≥ |t|, the fiber {f = t}
intersects Sε ∩X transversally in X. We have a local differentiable fibration:

Bε ∩X ∩ f−1(D̊δ)− V (f ) −→ D̊δ − {0}

induced by f on Bε ∩X − V (f ) where Bε is now the closed ball.

The proof of Proposition 6.2.9 uses Ehresmann Lemma in the case where the
source manifold has a boundary. When M has no boundary, which is the original
statement of Ehresmann, there are several proofs in the literature, see e.g. [7, 8.12].
For completeness let us recall and prove Ehresmann Lemma in the more general
setting we need here.

Lemma 6.2.10 Let ϕ : M → N be a differentiable map from a smooth manifold
M with boundary ∂M to a smooth manifold N . We assume:

1. the map ϕ is proper;
2. the restriction of ϕ to M − ∂M is surjective and submersive;
3. if the boundary ∂M is not empty, the restriction of ϕ to the boundary ∂M is also

surjective and submersive.

Then ϕ is a locally trivial smooth fibration on N .



330 D. T. Lê et al.

Proof To show that ϕ is a locally trivial fibration we have to find that, for any point
p ∈ N , there exists a neighborhood U such that we have the following commutative
diagram:

U × ϕ−1(p)
ψ

π

ϕ−1(U)

ϕ|
U

with a diffeomorphism ψ , where π is the projection on the first factor and ϕ| is
induced by ϕ.

Let us construct a vector field whose flow will give us the isomorphism ψ . We
may consider an open neighborhood U0 of the point p in N which is diffeomorphic
to an open set of Rn, where n is the dimension of N at the point p and we have local
coordinates x1, . . . , xn.

Consider a point q ∈ ϕ−1(p). If q is a point of the interior M − ∂M , since
ϕ is submersive there are an open neighborhood V (q) of q in M − ∂M , an open
neighborhood U(p) of p in N and an open neighbourhood U ′(q) of q in ϕ−1(p),
such that U(p)×U ′(q) is diffeomorphic to V (q) and the first projection of U(p)×
U ′(q) onto U(p) is isomorphic to the map induced by ϕ on V (q) into U(p). We
can always assume U(p) ⊂ U0.

If q ∈ ϕ−1(p) is a point on the boundary ∂M of M , there is an open
neighborhood V0(q) of q in M which has a boundary ∂V0(q). Since the restriction
ϕ|∂M of ϕ to ∂M is submersive at q , we can choose the neighborhood V0(q) such
that there exists an open neighborhood U(p) of p in N and an open neighborhood
U ′

0(q) of q in ϕ−1(p) for which the product U(p)×U ′
0(q) is diffeomorphic to V0(q)

and the projection of U(p)×U ′
0(q) onto U(p) is isomorphic to the map induced by

ϕ on V0(q) into U(p). Again we may assume U(p) ⊂ U0.
Since ϕ is proper, the fiber ϕ−1(p) is compact. We can choose a finite number

of points q1, . . . , qk such that the corresponding neighborhoods V (qi) or V0(qj )

cover the fiber ϕ−1(p). Therefore we have a closed ball B centered at p in the local
coordinates of N fixed above, such that:

B ⊂ ∩iϕ(V (qi)) ∩j ϕ(V0(qj )).

We denote by B̊ the interior of B. We are going to construct a vector field in ϕ−1(B).
Let us call ∂/∂xi the vector field associated to the coordinate xi of N . So if

q ∈ M − ∂M , the vector field ∂/∂xi defines a vector field in U(p) which extends
trivially to U(p) × U ′(q) and, using the diffeomorphism onto V (q), it defines a
vector field vi

q in V (q). The image by ϕ of this vector field vi
q is ∂/∂xi .

Similarly if q ∈ ∂M , by trivial extension of ∂/∂xi we have a vector field on
U(p) × U ′

0(q) which is tangent to the boundary U(p) × ∂U ′
0(q) and its image by

the diffeomorphism obtained above is a vector field vi
q of V0(q) which is tangent to

the boundary V0(q) ∩ ∂M . The image of vi
q by ϕ is ∂/∂xi in U(p).
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Consider as above q1, . . . , qk such that the associated open neighborhoods V (q)

or V0(q) cover ϕ−1(p). Let (ρ1, . . . , ρk) be a partition of unity associated to these
open neighborhoods. The sums

∑k
1 ρ�v

i
� define vector fields Wi , for i = 1, . . . , n,

on this union of open neighborhoods. Since:

B ⊂ ∩iϕ(V (qi)) ∩j ϕ(V0(qj ),

the vector fields Wi define vector fields θ1, . . . , θn on ϕ−1(B). By construction the
vector fields θ1, . . . , θn are tangent to the boundary of M .

The image of θi by ϕ at a point z of ϕ−1(B̊) is equal to:

dzϕ(

k∑

�=1

ρ�v
i
�) = (

k∑

�=1

ρ�(z))∂/∂xi = ∂/∂xi

because (ρ1, . . . , ρk) is a partition of unity. Therefore the vector field image of θi

by ϕ is the vector field ∂/∂xi of B̊. Let us choose the open set U to be the open ball
B̊. Now, we define the diffeomorphism ψ : B̊× ϕ−1(p) → ϕ−1(B̊).

Let �i be the flow defined by θi , i.e. the mapping:

�i : (−ε,+ε)× ϕ−1(B̊) → ϕ−1(B̊)

such that �i(0, q) = q and �i(t, q) defines the integral path γ tangent to θi for
which γ (0) = q . Then define ψ : B̊× ϕ−1(p) → ϕ−1(B̊) by:

ψ(u1, . . . , un, q) = �1(u1, �2(. . . , �n(un, q)))

where (u1, . . . , un) ∈ B̊ and q ∈ ϕ−1(p). The flow �i(ui, q) is defined as long as
the point it defines lies in ϕ−1(B̊). In fact the space ϕ−1(B) is compact because ϕ

is proper and the flow curves lie in ϕ−1(B̊), therefore all the flows are defined in
ϕ−1(B̊).

We have:

u = f (ψ(u, q))

because, since the image of θi by ϕ is ∂/∂xi , we have

f (�j (uj , q)) = f (�j (0, q))+ ujej = p + ujej

as the flow of ∂/∂xj is φ(uj , p) = p+ uj ej , where ej is the unit vector field of the
j -th coordinate of B̊.

It remains to prove that ψ is a diffeomorphism. The inverse diffeomorphism:

ψ−1 : ϕ−1(B̊) → B̊× ϕ−1(p)
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is given by:

ψ−1(z) = �1(−u1, �2(. . . , �(−un, y)))

where ϕ(z) = (u1, . . . , un). This proves Ehresmann Lemma. ��
Remark 6.2.11 We notice that in the statement of Ehresmann Lemma, the mani-
folds might not be connected.

Let us apply Ehresmann Lemma to prove Proposition 6.2.9. Let Bε0 be a ball
centered at 0 with radius ε0 small enough such that it is a Milnor ball. Consider ε,
0 < ε < ε0, and set M0 := Bε ∩ X. One notices that for δ > 0 small enough,
by Remark 6.2.8, any t = 0, |t| < δ, is not a critical value of f restricted to
a neighborhood of 0 in X. If X has one analytic component at 0, we just apply
Lemma 6.2.6 to conclude that for X and |t| small enough, the fibers f−1(t) with
t = 0 are smooth manifolds. If X has more than one analytic component, since X

has an isolated singularity at 0, these components at 0 only meet at 0, so one can
apply Lemma 6.2.6 to each analytic component of X at 0 (see Remark 6.2.7).

On the other hand, the sphere Sε is transverse to V (f ) = f−1(0) in C
N , therefore

for δ > 0 small enough, the fibers f−1(t), for |t| < δ, are transverse to Sε in C
N ,

by continuity of the transversality.
Let us choose δ > 0 such that, for any t = 0, |t| < δ, the fiber f−1(t) ∩ Bε does

not contain critical points of f and f−1(t) intersects Sε transversally in C
N . Now

consider:

M = Bε ∩M ∩ (f−1(D̊δ)− V (f ))
f|−→ D̊

∗
δ

where D∗δ = Dδ−{0} and f| is induced by f . This map is obviously proper because
the closed ball Bε is compact. The second condition of Ehresmann Lemma means
that f| has no critical point in the intersection B̊ε∩X∩f −1(D̊δ). The third condition
means that the restriction of f to the boundary Sε∩X∩f−1(D̊δ) of M has maximal
rank. So we can apply Ehresmann Lemma which proves Proposition 6.2.9.

The fibration of Proposition 6.2.9 only depends on the germ f : (X, 0) → (C, 0)

as stated in the following Proposition:

Proposition 6.2.12 Let f1 : (X1, 01) → (C, 0) and f2 : (X2, 02) → (C, 0) be
two isomorphic germs of holomorphic functions, then the local fibrations as in
Proposition 6.2.9 are diffeomorphic.

Recall that f1 and f2 are isomorphic if we have a commutative diagram:

(1) (X1, 01)
h

f1

(X2, 02)

f2

(C, 0)
k

(C, 0)

where h and k are isomorphism of complex analytic germs.
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Proof Our proof is based on an observation of J. Milnor in [65], at the end of the
proof of Lemma 8.3, on the isomorphism class of a fibration on the circle S1: ��
Definition 6.2.13 Let ϕ : E → S

1 be a locally trivial smooth fibration over the
circle S

1. Suppose that ϕ is proper. The integration of a vector field obtained as
a lifting by ϕ of the unit vector field of S

1 defines, by the first return map, a
diffeomorphism of a fiber to itself, called a geometric monodromy of the fibration ϕ.

Since the lifting of the unit vector field of S
1 is not unique, the geometric

monodromy is not unique. However its isotopy class is uniquely determined by ϕ.
Let us set Fθ := ϕ−1(eiθ ) where i = √−1. The fibration ϕ : E → S

1 defines a
commutative diagram:

F0 × R
h

p

E

ϕ

R
π

S
1

where p is the projection on the second factor and π is the universal covering
π(θ) = eiθ of S1.

By using the lifting of the unit vector field on S
1, we obtain a smooth

diffeomorphism from F0 into Fθ for 0 ≤ θ ≤ 2π . This gives a one parameter
family of smooth diffeomorphism from F0 into Fθ .

One has a trivial fibration F0 × [0, 2π] onto [0, 2π] which gives our fibration
E → S

1 by glueing F0 × {0} with F0 × {2π} using a geometrical monodromy, i.e.
the point (z, 0) is identified with (H(z), 2π) where H is a geometric monodromy.

Exercise 6.2.14

1. Prove that the preceding construction gives a locally trivial smooth fibration
isomorphic to E → S

1.
2. Prove that all geometric monodromies belong to the same isotopy class of

diffeomorphism of F0 into itself.

The preceding description of a locally smooth fibration E → S
1 shows that:

Lemma 6.2.15 Two locally smooth fibrations E1 → S
1 and E2 → S

1 are isomor-
phic if they have diffeomorphic fibers and isomorphic geometric monodromies.

The locally trivial fibrations that we have associated to an isolated singularity of
a function on a space with isolated singularity are fibrations ϕ : E → D̊

∗
over an

open punctured disc D̊
∗
.

Considering the diffeomorphism δ : D̊∗ → S
1 × (0, 1) of D̊

∗
with a product

S
1 × (0, 1) given by δ(reiθ ) = (eiθ , r/R) where R is the radius of D, the fiber

Fθ := (δ ◦ϕ)−1(eiθ , 1/2) and the morphism δ ◦ ϕ induces a trivial smooth fibration
on Eθ � (δ ◦ ϕ)−1({eiθ }× (0, 1)) over the interval (0, 1) with fiber Fθ , because any
smooth fibration over an interval is trivial.
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In fact the projection of E onto the interval (0, 1) obtained as the composition of
δ ◦ ϕ with the second projection p2 of S1 × (0, 1) is a trivial fibration:

p2 ◦ δ ◦ ϕ : E→ (0, 1).

The fibers of this trivial fibration are Er := ϕ−1(∂Dr ) where ∂Dr is the circle
boundary of the disc Dr centered at 0 of radius r , i.e. the fibration is:

p2 ◦ δ ◦ ϕ : E =
∐

0<r<R

Er → (0, 1)

where p2 ◦ δ ◦ ϕ(z) = r/R if z ∈ Er .
We shall show a stronger result: the maps Er → ∂Dr are isomorphic locally

trivial fibrations when 0 < r < R. To prove this assertion consider the radial vector
field w in the punctured disc D̊

∗
R which is tangent to the radii, aiming to the origin 0

and with norm at a point x ∈ D̊
∗
R equal to the distance of x to 0. Since ϕ is proper,

we do as above, in the proof of Ehresmann Lemma (Lemma 6.2.10), and one can
lift this vector field as a vector field W on E which is tangent to the boundary of E
and so that its projection on D̊R gives the flow whose integration give radii of D̊R .

For any z ∈ Er , let �(t, z) be the flow associated to W such that �(0, z) = z

and the projection by ϕ of �(t, z) in D̊
∗

is a point on the circle of radius passing by
ϕ(z) at a distance re−t from ϕ(z).

Therefore the flow �(t, z) for a fixed t defines a diffeomorphism from E1/2R to
E1/2Re−t . The projection of this flow gives a mapping along the radii which sends
∂D1/2R to ∂D1/2Re−t . Actually we have a diffeomorphism:

� : (− ln 2,+∞)× E1/2R → E.

We can do this reasoning for any r, R > r > 0, in which case the flow is �r so that
�r(0, z) = z for any point z ∈ Er . In this case the flow gives a diffeomorphism

�r : (− ln R + ln r,+∞)× Er → E.

By integration of the vector fields W and w, on one the hand we have a
diffeomorphism between the Er , and on the other hand a diffeomorphism along
the radii between the circles ∂Dr . This gives that the fibrations Er → ∂Dr are
isomorphic fibrations and also that the integration of the vector fields gives an
isomorphism between E→ D̊R and E1/2R × (0, R) → ∂D1/2R × (0, R).

We have proved:

Lemma 6.2.16 A proper locally trivial fibration ϕ : E → D̊R is isomorphic to the
local trivial fibration

ϕ| × Id : Er × (0, R) → ∂Dr × (0, R)

where r is a real number such that R > r > 0, ϕ| is induced by ϕ and Id is the
identity of the interval (0, R).
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That is, the fibration ϕ is determined by the locally trivial fibration ϕ| : Er →
∂Dr .

Now consider a non-negative real analytic function θ defined in an open
neighborhood of an isolated singularity 0 in an analytic set X. We suppose that
θ−1(0) = {0}. Then:

Lemma 6.2.17 The value 0 is not an accumulation point of critical values of θ .

Proof We give a proof analogous to the one by E. Looijenga in [54, Lemma (2.2)].
In a small neighborhood of 0, we may assume that X is defined by complex

equations f1, . . . , fk in C
N and since X − {0} is non singular, the matrix of the

complex differentials of f1, . . . , fk has rank N − dim X for any point of X− {0} in
a small neighborhood of 0. The set of critical points of the real function θ on X−{0}
is contained in the set Y where the matrix of the differentials of the real equations
which define X and the differential of θ is ≤ 2(N − dim X). It is clear that Y is real
analytic. It suffices to prove that the point 0 is isolated in Y . If it was not, the Curve
Selection Lemma (see [54] (2.10) or in the semi-algebraic case [65] Lemma 3.1)
would give us a curve γ : (−ε, ε) → X such that γ (0) = 0 and γ (t) ∈ Y − {0} for
t = 0. Then:

dθ ◦ γ

dt
(t) = 0

by definition of Y − {0}. Then θ ◦ γ would be constant and equal to 0 contradicting
the hypothesis γ (t) ∈ Y − {0} for t = 0. ��
Remark 6.2.18 In fact Lemma 6.2.17 has a more general statement:

Lemma 6.2.19 Let 0 be a point in the closure Z of a non-singular semi-analytic
set Z and let ϕ : Z → R be a real analytic function. There is a neighborhood U
of 0 in Z and δ > 0 such that for any t , 0 < |t| < δ, the space ϕ−1(t) ∩ Z ∩U is
non-singular.

In the case we consider here, with Z = X, Z = X − {0} and ϕ = θ , this lemma
gives Lemma 6.2.17. The proof is similar to the one of Lemma 6.2.6 and is left to
the reader. In the case of semi-algebraic sets, one can find this type of results in [65],
Corollary 2.8.

Suppose that we have another non-negative real analytic function r defined on
a neighborhood of 0 in X such that r−1(0) = {0}. Then, we have the following
Lemma (cf. [65, Corollary 3.4]):

Lemma 6.2.20 There is a neighborhood of 0 in X such that in no point of this
neighborhood the differentials of θ and r are collinear, i.e. dθ = λdr , with a factor
of collinearity < 0.

Proof The proof uses again the Curve Selection Lemma. Consider the real analytic
set of X where dθ and dr are collinear. In a neighborhood in X of 0 the space X has
local complex analytic equations f1. . . . , fk in C

N . The set of points z ∈ X − {0}
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where dθ and dr are collinear is the set where the differentials of real analytic
equations of X, dθ and dr make a matrix of rank≤ 2N − 2 dim X+ 1. This defines
a real analytic set �.

The point 0 is in the closure of �. Assume that arbitrarily near to 0, there are
points where dθ = λdr with λ < 0. This subset of � is semi-analytic. By the
Curve Selection Lemma there is a curve γ : [0 + ε) → � such that γ (0) = 0 and
γ (t) ∈ X − {0} for t > 0. For any t > 0, we have:

dθ(γ (t)) = λ(t)dr(γ (t)) = 0

with λ(t) < 0, which means that one of the two functions is decreasing and the other
one is increasing along γ , which is obviously impossible. This proves the Lemma.

��
A consequence of the preceding theorem is the following:

Proposition 6.2.21 Let r1 and r2 be two non-negative real analytic functions
defined on a neighborhood of 0 in a complex analytic set X. We assume that 0
is an isolated singularity of X and that r−1

1 (0) = r−1
2 (0) = {0}. For εi > 0 small

enough, the set ri ≤ εi is compact for i = 1, 2. If ε1 > 0 and ε2 > 0 are small
enough and they are such that {r1 ≤ ε1} ⊂ {r2 ≤ ε2}, then there is a diffeomorphism
from r1 = ε1 onto r2 = ε2.

Proof Because of Lemma 6.2.17 we can suppose that there is a neighborhood U
where both functions r1 and r2 have no critical point in U− {0}. Then consider the
function φ(λ) := λ(r1 − ε1) + (1 − λ)(r2 − ε2), where λ ∈ R. Consider the unit
vector field v0 on an open neighborhood U of the interval [0, 1].

Since r1 and r2 have no critical point in U − {0} and one can choose U so
that the differentials dr1 and dr2, when collinear, have the same direction, because
of Lemma 6.2.20, the function φ has maximal rank on a neighborhood of {r2 ≤
ε2} − {r1 < ε1}. One can lift by φ the restriction of v0 to [0, 1] as a non-zero vector
field V0. One does as usually: the lifting is done locally, because φ has maximal rank,
and by using a partition of unity one obtains a vector field on {r2 ≤ ε2}− {r1 < ε1}.
Since {r2 ≤ ε2} − {r1 < ε1} is compact, one can use a finite partition of unity.

Then integrating the vector field V0, one obtains the desired diffeomorphism. If
� is the flow �(t, z) of V0 such that �(0, z) = z ∈ {r1 = ε1}, then �(1, z) is in
{r2 = ε2}. ��

Now, let us come back to the proof of Proposition 6.2.12. To prove that the
Milnor fibration of isomorphic germs are isomorphic, according to Lemma 6.2.16,
we only need to show that over a small circle centered at 0 the local fibrations of
Propositions 6.2.9 associated to f1 and f2 are isomorphic.

If f1 and f2 are isomorphic germs we have a commutative diagram as in (6.1).
Since we have an isomorphism of analytic germs h : (X1, 01) → (X2, 02), there
exist open neighborhoods U1 of 01 and U2 of 02 in X2 such that h induces an
isomorphism from U1 onto U2 that we shall still denote h. We can assume that
Ui ⊂ C

Ni , for i = 1 or 2.
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Let ri :=∑Ni

1 |zj |2 be the square of the distance to 0i in C
Ni . Then, the ball B(i)

ε

is the subset {ri ≤ ε2}. Let ρi be the restriction of ri to Ui ∩ Xi . The pre-image

of B̊
(2)

ε ∩ X2 by the isomorphism h : (X1, 0) ∩U1 → (X2, 0) ∩ U2 is the set
{ρ2 ◦ h < ε2}.

The functions ρi are real analytic respectively in the neighborhoodUi of 0i in Xi .
Notice we can assume that in an open set U small enough, the functions ρ1 and

ρ2 ◦ h have no critical points in U ∩X1 − 01, because of Lemma 6.2.17.

Lemma 6.2.22 Let ε2 > 0 be such that the set {ρ2 ◦ h ≤ ε2
2} is compact and

lies inside U. Set ε1 > 0 such that the compact neighborhood B
(1)
ε1 ∩ X1 of 0 in

X1 is contained in {ρ2 ◦ h < ε2
2}. Then there is a smooth vector field v defined on a

neighborhood of {ρ2◦h ≤ ε2
2}−B̊

(1)

ε1
∩X1 whose integration defines an isomorphism

of the fibration of f1 = k−1 ◦ f2 ◦ h induced on {ρ2 ◦ h ≤ ε2
2} with the fibration of

f1 induced on B
(1)
ε1 ∩X1.

Proof Since ρ1 and ρ2 ◦ h are real analytic functions which define 01 in the sense
that ρ−1

i (0) = 01 and (ρ2 ◦ h)−1(0) = 01, we can apply Lemma 6.2.21 or more
precisely adapt its proof to prove Lemma 6.2.22. In fact, we will consider a vector
field which is going to give us more than the conclusions of Lemma 6.2.22.

For any point z of {ρ2 ◦ h ≤ ε2} − B̊
(1)

ε1
∩ X1, there is a smooth vector field vz

defined in an open neighborhood Uz of z which satisfies the following conditions:

1. for any z′ ∈ Uz, dz′(ρ1)(vz′) = −1 and dz′(ρ2 ◦ h)(vz′) < 0;
2. there is τ small enough such that, for any z′ ∈ Uz ∩ {f1 = t} with τ > |t|, the

vector field vz′ is tangent to Uz ∩ {f1 = t}.
If at z the differentials dz(ρ1) and dz(ρ2 ◦ h) are linearly independent, then the

condition (1) is obvious in a small open neighborhood Uz of z in X1, since, for every
z′ ∈ Uz we have that dz′(ρ1) and dz′(ρ2 ◦h) are also linearly independent. If at z the
differentials dzρ1 and dz(ρ2 ◦ h) are not linearly independent, we have just proved
in Lemma 6.2.20 that they necessarily point in the same direction, so we can find
vz so that dzρ1(vz) = −1 and dz(vz) < 0 and it extends into a smooth vector field
which satisfies (1).

To obtain condition (2) it is enough to notice that in the compact set:

Aε1,ε2 := {ρ2 ◦ h ≤ ε2
2} − B̊

(1)

ε1
∩X1,

if t is small enough, the levels ρ2 ◦ h = ε2 and ρ1 = ε2 are transverse to the fibers
f1 = t . For any point of Aε1,ε2 ∩ {f1 = 0} we can repeat what we have done above
on Aε1,ε2 ∩X1. For each point z ∈ Aε1,ε2 ∩ {f1 = 0} there is a neighborhood of z in
Aε1,ε2 ∩{f1 = 0} in which there is a smooth vector field vz′ such that dz′(ρ1)(vz′) =
−1 and dz′(ρ2 ◦ h)(vz′) < 0. Since in a neighborhood of each point z of Aε1,ε2 ∩
{f1 = 0} the fibers {f = t} for small t are fibers of a locally trivial fibration, one



338 D. T. Lê et al.

can extend that vector field as a smooth vector field on a small neighborhood Vz of
z ∈ Aε1,ε2 ∩ {f1 = 0}.

Let us consider the open set V of X1 defined by:

V := ∪z∈Aε1,ε2∩{f1=0}Vz.

Since Aε1,ε2 ∩ {f1 = 0} is compact, there is δ > 0 small enough such that:

Aε1,ε2 ∩ {|f1| ≤ δ} ⊂ V.

Assume that, for z /∈ Aε1,ε2 ∩ {|f1| ≤ δ} the open subsets Uz defined above can be
chosen to be open subset of in Aε1,ε2 − {|f1| ≤ δ}. Then:

(∪z∈Aε1,ε2−{|f1|≤δ}Uz) ∪ (∪z∈Aε1,ε2∩{f1=0}Vz)

is an open covering of Aε1,ε2 . Consider a partition of unity associated to this
covering and glue the local vector fields vz and Vz with this partition of unity to
get a smooth vector field W on an open neighborhood of Aε1,ε2 . By integrating this
vector field W we retract ρ2 ◦ h ≤ ε2

2 into ρ1 ≤ ε2
1 (see [54, p. 23 and 24]) and we

retract {ρ2 ◦h ≤ ε2
2}∩{f1 < δ} into {ρ1 ≤ ε2

1}∩{f1 < δ} along the fibers of f1. ��
Actually the vector field W that we just constructed gives a isomorphism between

the fibration:

B
(1)
ε1
∩ f−1

1 (D̊
∗
δ ) → D̊

∗
δ

and the fibration {ρ2 ◦ h ≤ ε2} ∩ f−1
1 (D̊

∗
δ ) → D̊

∗
δ .

According to Lemma 6.2.16, the fibration B
(1)
ε1 ∩ f−1

1 (D̊
∗
δ ) → D̊

∗
δ is given by the

fibration B
(1)
ε1 ∩ f−1

1 (∂Dδ/2) → ∂Dδ/2.

Similarly the fibration {ρ2 ◦ h ≤ ε2} ∩ f−1
1 (D̊

∗
δ ) → D̊

∗
δ is given by:

{ρ2 ◦ h ≤ ε2} ∩ f−1
1 (∂Dδ/2) → ∂Dδ/2.

Therefore the fibrations B
(1)
ε1 ∩ f−1

1 (∂Dδ/2) → ∂Dδ/2 and {ρ2 ◦ h ≤ ε2} ∩
f−1

1 (∂Dδ/2) → ∂Dδ/2. are isomorphic.
To prove Proposition 6.2.12 we are left to prove that the fibration:

{ρ2 ◦ h ≤ ε2} ∩ f−1
1 (∂Dδ/2) → ∂Dδ/2

is isomorphic to B
(2)
ε2 ∩ f−1

2 (∂Dδ/2) → ∂Dδ/2.

However, the inverse image by h of B
(2)
ε2 ∩ f−1

2 (∂Dδ/2) is {ρ2 ◦ h ≤ ε2} ∩
f−1

1 (∂Dδ/2) and the inverse image of Dδ/2 by the isomorphism k is {r ◦k = (δ/2)2},
where r(z) = |z|2.
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We can choose β > 0 small enough such that:

Dβ = {r ≤ β2} ⊂ {r ◦ k ≤ (δ/2)2}.

By applying Proposition 6.2.21 we have that {r = β2} is diffeomorphic to {r◦k =
(δ/2)2}. Therefore the fibration {ρ2 ◦ h ≤ ε2} ∩ f−1

1 (∂Dβ) → ∂Dβ is isomorphic
to the fibration {ρ2 ◦ h ≤ ε2} ∩ f−1

1 (∂{r ◦ k ≤ (δ/2)2}) → ∂{r ◦ k ≤ (δ/2)2}.
This shows that the following fibrations are isomorphic:

1. B(1)
ε1 ∩ f−1

1 (∂Dδ/2) → ∂Dδ/2 ;
2. {ρ2 ◦ h ≤ ε2} ∩ f−1

1 (∂Dδ/2) → ∂Dδ/2 ;
3. {ρ2 ◦ h ≤ ε2} ∩ f−1

1 (∂Dβ) → ∂Dβ ;
4. {ρ2 ◦ h ≤ ε2} ∩ f−1

1 (∂{r ◦ k ≤ (δ/2)2}) → ∂{r ◦ k ≤ (δ/2)2} .

In fact, the fibrations (1) and (2) are isomorphic because of the integration of the
vector field V constructed above. The fibrations (2) and (3) are isomorphic because
of Lemma 6.2.16. The fibrations (3) and (4) are isomorphic because of the reasoning
above using Proposition 6.2.21.

The fibration (1) gives the fibration of Proposition 6.2.9 for f1 and the fibration
(4) gives the fibration of Proposition 6.2.9 for f2, thus proving Proposition 6.2.12.

Definition 6.2.23 The fibration obtained in Proposition 6.2.9 is called the local
Milnor fibration of f at 0. The fibers Ft = f−1(t) ∩ B̊ε are the Milnor fibers of f

at 0; these are the interior of the fibers in the compact fibration of Proposition 6.2.9.

Remark 6.2.24 Since we have assumed that the singularity of X and f at 0 is
isolated, the fibers F̄t := f−1(t) ∩ Bε, t ∈ Dδ − {0}, are compact manifolds
with boundary, embedded in X with trivial normal bundle (since the gradient of
f trivializes the normal bundle). It follows from [30] that if the tangent bundle of
X − {0} is trivial (as a C∞ real vector bundle), then the tangent bundle of the fiber
F̄t is trivial too.

6.3 Examples

Consider the homogeneous map f : C2 → C defined by (x, y) %→ xy; this has a
unique critical point at x = 0 = y. Its zero locus V (f ) consists of the two axes {x =
0} ∪ {y = 0} with the origin as an isolated singularity. So its link Lf := V (f ) ∩ S

3

is the Hopf link. By [65, Lemma 9.4], the Milnor fiber Ff is diffeomorphic to the
whole fiber f−1(1), which consists of the points where x = 0 and y = 1/x. Hence
Ff is diffeomorphic to a copy of C∗; in fact it is an open cylinder S1 × R, and it
can be regarded as being the tangent bundle of the circle. In particular Ff has the
homotopy type of S1.
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We extend these considerations to higher dimensions in two different ways. First
notice that we can make the change of coordinates (x, y) %→ (z1, z2) with z1 =
(x+iy) and z2 = (x−iy), where (x, y) denote here complex variables. In these new
coordinates the above map becomes z2

1 + z2
2 and we may consider, more generally,

the homogeneous polynomial:

f (z0, · · · , zn) = z2
0 + · · · + z2

n .

The link Lf consists of the points where one has:

Re(z2
0+ · · · + z2

n) = 0 , Im(z2
0+ · · · + z2

n) = 0 and |z0|2+ · · · + |zn|2 = 1 .

Hence Lf is diffeomorphic to the unit sphere bundle of the n-sphere Sn. By Milnor’s
Lemma 9.4 in [65], the Milnor fiber Ff is diffeomorphic to the set of points where
z2

0 + · · · + z2
n = 1, i.e.,

Re(z2
0 + · · · + z2

n) = 1 and Im(z2
0 + · · · + z2

n) = 0 .

This describes the tangent bundle of the n-sphere S
n, and Ff actually is the

corresponding open unit disc bundle. In particular Ff has the sphere S
n as a

deformation retract and therefore Ff has non-trivial homology only in dimensions
0 and n; in these dimensions its integral homology is isomorphic to Z.

Starting again with the initial example, consider now the map f : C
3 → C

defined by (x, y, z) %→ xyz. Its zero set V (f ) consists of the coordinate planes
{x = 0} ∪ {y = 0} ∪ {z = 0}, with the three axes as singular set. The singularities
of V (f ) := f−1(0) are non-isolated. However we shall see in the next section that
one can define a Milnor fibration and a Milnor fiber.

The Milnor fiber Ff is diffeomorphic to {xyz = 1}, i.e., x = 0, y = 0 and
z = 1/xy. Therefore Ff is diffeomorphic to C

∗ ×C
∗ and it has the torus S1× S

1 as
a deformation retract. So Ff now has non-trivial homology in dimensions 0, 1, 2.

We know from [65] that the Milnor fiber Ff of an arbitrary holomorphic map-
germ (Cn+1, 0) → (C, 0) has the homotopy type of a finite CW-complex of middle-
dimension n. This follows too from [2] since Ff is a Stein manifold and, perhaps
moving the origin 0 slightly if necessary, the square of the function distance to 0 is
a strictly plurisubharmonic Morse function on Ff , so one has severe restrictions on
the possible Morse indices.

If we further assume that f has an isolated critical point at 0, then Milnor in [65,
Lemma 6.4] used Morse theory to show that Ff is (n − 1)-connected. Lefschetz
duality, together with the above observations about the homology of F , implies that
in this setting the fiber Ff has the homotopy type of a bouquet of n-spheres. The
number μ = μ(f ) of such spheres is now called the Milnor number of f .

This will be discussed in the sequel, and it can be seen explicitly for the Pham-
Brieskorn singularities, as noticed by Pham in [69] and explained below.
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Consider a Pham-Brieskorn polynomial f : Cn+1 → C,

(z0, . . . , zn)
f%→ z

a0
0 + . . .+ zan

n , ai ≥ 2 .

The origin 0 ∈ C
n+1 is its only critical point, so V := f−1(0) is a complex

hypersurface with an isolated singularity at 0. Let d be the lowest common multiple
of the ai and for each i = 0, · · · , n set di = d/ai . Then for every non-zero complex
number λ ∈ C

∗ one has a C
∗-action on C

n+1 determined by

λ · (z0, · · · , zn) %→ (λd0z0, · · · , λdnzn) .

Observe that one has:

f (λd0z0, · · · , λdnzn) = λdf (z0, · · · , zn) ,

so f is weighted homogeneous.
In his pioneer article [69], F. Pham studied the topology of the complex manifold

V(a0,··· ,an) ⊂ C
n+1 defined by:

z
a0
0 + · · · + zan

n = 1 ,

where n > 0 and the ai are integers ≥ 2. It is easy to see that this manifold is
diffeomorphic to the Milnor fibre of the complex singularity defined by f (z) = 0,
where f is the Pham-Brieskorn polynomial f (z) = z

a0
0 + · · · + z

an
n . To explain

Pham’s results, let Ga denote the finite cyclic group of ath roots of unity. Given the
integers {a0, · · · , an}, denote by J = J(a0,··· ,an) the join:

J = Ga0 ∗Ga1 ∗ · · · ∗Gan ⊂ C
n+1 ,

which consists of all linear combinations

(t0 ω0, · · · , tn ωn)

with real numbers ti ≥ 0 such that t0 + · · · + tn = 1 and ωj ∈ Gaj . Note that J can
be identified with the subset P = P(a0,··· ,an) defined by:

P = {z ∈ V(a0,··· ,an) | z
aj

j ∈ R and z
aj

j ≥ 0 , for all j = 0, · · ·n} .

To see this notice that P can also be described by the conditions:

t0 + · · · + tn = 1 , and zj = uj |zj | , uj ∈ Gaj , tj = |zj |aj , for all j = 0, · · · , n

Hence P is contained in the manifold V(a0,··· ,an). The set P is known as the Pham
join of the polynomial f . It is not hard to see that V(a0,··· ,an) has P as a deformation
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retract and therefore its homotopy type is that of P. In fact, given a point z ∈
V(a0,··· ,an), first deform each coordinate zj along a path in C chosen so that the
trajectory described by z

aj

j is the straight line to the nearest point on the real axis,

that we denote by ẑj . This carries z into a vector ẑ = (ẑ0, · · · , ẑn) satisfying ẑ
aj

j ∈ R

for each j , and it is clear that this deformation leaves V(a0,··· ,an) invariant. Now,
whenever one has that ẑ

aj

j < 0, move ẑj along a straight line to 0 ∈ C as follows,
and we deform simultaneously the other coordinates, keeping them ≥ 0, so that
we remain in V(a0,··· ,an). Hence the point ẑ = (ẑ0, · · · , ẑn) moves along a straight
line towards a point ž = (ž0, · · · , žn) ∈ V(a0,··· ,an) whose coordinates are all ≥
0 and one has that each coordinate žj is necessarily of the form tj ωj for some
tj ≥ 0 and some ωj ∈ Gaj . This gives a deformation of V(a0,··· ,an) into P that
leaves this set invariant, so the join P is a deformation retract of V(a0,··· ,an). It is
now an exercise to show that P has the homotopy type of a wedge (or bouquet)
of spheres of real dimension n. Moreover, the number of spheres in this wedge is
(a0 − 1) · (a1 − 1) · · · (an − 1). Thus we have obtained:

Theorem 6.3.1 (Pham) The variety

V(a0,··· ,an) := {z ∈ C
n+1 | z

a0
0 + · · · + zan

n = 1 } ,

has the set P as a deformation retract. Since P is homeomorphic to the join J =
Ga0∗Ga1∗· · ·∗Gan ⊂ C

n+1, where Ga is the finite cyclic group of ath-roots of unity,
then V(a0,··· ,an) has the homotopy type of a bouquet

∨
S

n of spheres of dimension
n, the number of spheres in this wedge being [(a0 − 1) · (a1 − 1) · · · (an − 1)].

6.4 Non-isolated Critical Points

In the case where the singularities of f are not isolated, there is a fibration theorem
similar to Proposition 6.2.9. We still assume that X is a complex analytic space with
an isolated singularity at 0 and that f : (X, 0) → (C, 0) is a holomorphic function
with a possibly non-isolated singularity at 0. Notice that X−f−1(0) is non-singular
(see Lemma 6.2.6). We have the following fibration theorem:

Theorem 6.4.1 Let X be a complex analytic space in C
N with an isolated

singularity at 0 and let f : (X, 0) → (C, 0) be a holomorphic function. Then
there exist ε > 0 small enough and δ > 0 sufficiently small with respect to ε, such
that (X ∩ Bε)− f−1(0) is non-singular and

X ∩ Bε ∩ f−1(D∗δ ) → D
∗
δ

is a locally trivial smooth fibration, where D
∗
δ is the punctured disc in C centered at

0 and with radius δ.
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Proof That with the above conditions (X ∩ Bε) − f−1(0) is non-singular follows
immediately from Remark 6.2.8. The proof that we have a fibration as stated is
essentially like the proof of Proposition 6.2.9. We are going to apply Ehresmann
Lemma (Lemma 6.2.10).

We are choosing ε such that the sphere Sε of radius ε in C
N ⊃ X is a Milnor ball

for X. This can be done because we have assumed that X has an isolated singularity
at 0. However we have to choose Sε such that it is a Milnor sphere for f−1(0). To
explain this, we stratify the set |f−1(0)| by a Whitney stratification S = (Sα)α∈A

(see Sect. 6.11 below or [83, Theorem 19.2, p. 540]). Since a Whitney stratification
is locally finite, only a finite number of strata Sα contain 0 in their closure. ��
Definition 6.4.2 A Milnor sphere for f−1(0) is a sphere Sε transverse to all the
strata of a Whitney stratification S = (Sα)α∈A and such that every other sphere of
smaller radius and centered at 0 also meets transversally all the strata.

The following is a special case of the general Theorem 6.11.1, see [6]:

Lemma 6.4.3 There exist Milnor spheres for f−1(0) and if Sε is a Milnor sphere
of f−1(0), the topology of Sε ∩ f−1(0) does not depend on ε.

The main result is given by a theorem of H. Hironaka which states that
every holomorphic function f can be stratified with a stratification satisfying Af -
condition. Let us explain what the Af condition is. This notion is due to R. Thom
(see [77], Morphismes sans éclatement, p. 257).

Definition 6.4.4

1. An analytic map F : X → Y between analytic sets X and Y stratified by Whitney
stratifications S = (Xi)i∈I and T = (Yj )j∈J is called a stratified map, if for any
i, there exists j such that F(Xi) = Yj and F| : Xi → Yj induced by F is a
submersion.

2. We say that the stratified map F satisfies Af condition if for any y ∈ Y , for any
x ∈ Xi∩f−1(y) and any sequence (xn) of X, which belongs to Xk and converges
to x whose sequence of tangent spaces Txn(Xk ∩ F−1(F (xn)) converges to T ,
we have T ⊃ Tx(Xi ∩ F−1(y)).

The (remarkable) result of Hironaka [24] is:

Theorem 6.4.5 A complex analytic map f : X → Y into a complex analytic space
of dim Y = 1 can be stratified such that f satisfies the Af condition. The Af

stratification of f can be obtained from refining a given stratification of f .

Let us apply Hironaka Theorem to the case where f is a germ of holomorphic
function:

f : (X, 0) → (C, 0)

such that X − f−1(0) is non-singular.
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We may assume that a representative of f is X → D̊ where D̊ is a sufficiently
small open disc of C centered at 0, so a Whitney stratification of this representative
is given by X − f−1(0) (which is non-singular) and a Whitney stratification of
f−1(0) for X and D− {0} and {0} for D.

By Hironaka Theorem, we may refine the Whitney stratification of f such that it
satisfies the Af condition. Let ε small enough such that the sphere Sε is transverse
in C

N to the strata of the Af stratification contained in f−1(0), and choose ε such
that for all 0 < ε1 ≤ ε the sphere Sε1 is transverse to the strata of f−1(0). Then,
there is δ > 0, such that for all |t|, 0 < |t| < δ, the non-singular space {f = t} (see
Remark 6.2.7) is transverse to the sphere Sε in C

N . If not, there is a sequence (xn)

of points of (X − f−1(0)) ∩ Sε which tends to a point x0 of f−1(0) ∩ Sε such that
the fiber f−1(f (xn)) is not transversal in C

N to Sε at xn. This would imply:

Txnf
−1(f (xn)) ⊂ TxnSε.

We can assume that xn is in the stratum Xk ⊂ X − f−1(f (0))) of the Af

stratification of f and x0 ∈ X� ⊂ f−1(0). Therefore:

Txn(Xk ∩ f−1(f (xn))) ⊂ Txnf−1(f (xn)) ⊂ TxnSε.

At the limit, since the Grassmannians are compact, we can suppose that the sequence
of tangent spaces Txn(Xk ∩ f−1(f (xn)) has a limit T we have:

Tx0X� ⊂ limnTxn(Xk ∩ f−1(f (xn)) = T ⊂ Tx0(Sε).

This would contradict that Sε and the strata of f−1(f (xn)) are transverse in C
N .

Therefore, there is δ > 0 such that for t , 0 < |t| < δ, {f = t} is transverse to the
sphere Sε in C

N .

Remark 6.4.6 In Théorème 4.2.1 of [4], it is shown that stratifications with the
Whitney condition (see definition in Sect. 6.11) for f are Thom Af stratifications.
This gives another proof of the existence of stratifications with Af conditions for f .

Now, we can apply Ehresmann Lemma (Lemma 6.2.10) to:

f| : Bε ∩ f−1(D̊δ − {0}) → D̊δ − {0}

when 1 ( ε ( δ > 0 as we did in the proof of Proposition 6.2.9. This proves
Theorem 6.4.1.

Recall that a Stein manifold is a complex manifold M which is holomorphically
convex and holomorphically separable, i.e., given any two distinct points there
exists a holomorphic function on M which takes distinct values on those points.
For instance, the standard complex space C

N is a Stein manifold, and so is every
domain of holomorphy in C

N and every closed complex submanifold of a Stein
manifold. It follows that Milnor fibers Ft are Stein manifolds. One has:
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Theorem 6.4.7 Let X be an equidimensional complex analytic space of dimension

n, let (X, 0)
f→ (C, 0) be a non-constant holomorphic map and assume X is non-

singular away from f−1(0). Let Ft be its Milnor fiber, associated to the fibration in
Theorem 6.4.1 (defined as in Definition 6.2.23). Then:

1. Ft is a compact manifold with boundary f−1(t)∩Sε , and its interior is a complex
manifold of (complex) dimension n.

2. If the tangent bundle of X − {0} is (topologically) trivial as a real or complex
bundle, then the tangent bundle of Ft is trivial as a real or complex bundle,
respectively.

3. The fiber Ft has the homotopy type of a CW-complex of real dimension at most
n.

The third statement above is a special case of a deep theorem in [2] for Stein
manifolds in general, largely due R. Thom (cf. [65, Chapter 5]). The proof consists
in using complex geometry and analysis to show that up to a small perturbation,
the function distance to the origin restricted to the fiber Ft , which is Stein, is a
plurisubharmonic Morse function and the Morse index at each critical point is ≤ n.

Milnor in [65] also studies the topology of the link LV when the ambient space
X is Cn+1. He proves [65, Theorem 5.2]:

Theorem 6.4.8 Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic map-
germ. Let V := f−1(0) and let LV := V ∩ Sε be its link. Then the space LV is
(n− 2)-connected.

Notice that LV := V ∩ Sε is a real analytic variety of real dimension (2n − 1)

if f has an isolated singularity at 0 and it is singular if the critical point at 0 is
non-isolated.

As Milnor says in [65, p. 45–46], the proof depends on a study of the Morse
theory associated with the smooth real valued function |f | on the complement of
LV in the sphere Sε, showing that the Morse index of the restriction of |f | to Sε −
U(LV ), where U(LV ) is a small open neighborhood of LV in Sε , at any critical
point is ≥ n.

6.5 Fibration on the Sphere

We have seen in the introduction that, for a germ of holomorphic function

f : (Cn+1, 0) → (C, 0),

J. Milnor has proved that, for ε > 0 small enough, the map:

f

|f | : S
2n+1
ε − LV −→ S

1,



346 D. T. Lê et al.

where LV = f−1(0) ∩ Sε is the link of f at 0, is a smooth fibration (see [65]). In
fact in [65] J. Milnor proves that the fiber in this fibration is diffeomorphic to the
one in the fibration given in Theorem 6.4.1 when X = C

n+1 (see Theorem 5.11 p.
53 of [65]) and we restrict Theorem 6.4.1 to the interior of the ball. This suggests
that those two fibrations are isomorphic, and indeed they are, even in a more general
setting that we shall discuss in Sect. 6.11.

In this section we shall prove that the result is true under the hypotheses of
Theorem 6.4.1.

Theorem 6.5.1 Let f : (X, 0) → (C, 0) be a germ of holomorphic function, set
V = f−1(0) and assume X − V is non-singular. We may assume that (X, 0) ⊂
(CN, 0). Let ε > 0 be small enough so that if Sε is the sphere centered at 0 in C

N

with radius ε, then LX := Sε ∩X is the link of X at 0 and LV := f−10 ∩ Sε is the
link of V . Then

φ := f

|f | : LX − LV −→ S
1,

is a smooth locally trivial fibration. Furthermore, this fibration is isomorphic to
the fibration of Theorem 6.4.1 followed by the projection π : D∗δ → S

1 given by
π(z) = z/|z|.
Proof The original proof by Milnor in [65] is easily adapted to this more general
setting. The first step uses the Curve Selection Lemma to show that the map φ

has no critical points at all. This implies that the fibers φ−1(eiθ ) are all smooth
submanifolds of LX. The next and harder step makes a sharper use of the Curve
Selection Lemma to control the behavior of φ as the fibers approach the link LV ,
and show that every fiber of φ has a neighborhood which is a product.

Nowadays the simplest way to prove Milnor’s fibration theorem on the spheres,
and more generally Theorem 6.5.1, is by proving first Theorem 6.4.1 and then
carrying that fibration by a smooth flow, into the fibration in Theorem 6.5.1. This
proves at once both statements in Theorem 6.5.1: that φ is the projection map of a
C∞ fiber bundle, and that this bundle is isomorphic to the one in Theorem 6.4.1.
This is done by constructing an appropriate vector field.

For this, choose a local C∞ vector field in a neighborhood of 0 in C which has
an isolated singularity at 0 and everywhere else it is pointing outwards. Then the
Curve Selection Lemma yields that for ε > 0 small enough, one can lift this to a
C∞ vector field ξ in (X − V ) ∩ Bε, where Bε is the ball bounded by the Milnor
sphere Sε , such that:

1. ξ is everywhere transversal to the intersection of X with every sphere in C
N

centered at 0 and contained in Bε; and
2. ξ is everywhere transversal to every tube f−1(Cδ) contained in X ∩ Bε, where

Cδ is the circle in C centered at 0 and with radius δ.

The existence of the above vector field ξ is an immediate application of Milnor’s
Corollary 3.4 in [65], stating that if we have two real analytic non-negative functions
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which vanish at a given point xo, then their differentials cannot point in exactly
opposite directions at any point in a neighborhood of xo (see Lemma 6.2.20).

Once we have such a vector field, consider a Milnor sphere Sε′ for some ε >

ε′ > 0 and consider the locally trivial fibration in Theorem 6.4.1:

X ∩ Bε′ ∩ f−1(D∗δ ) → D
∗
δ .

where we assume that δ > 0 is small enough also with respect to ε′. Restrict this
fibration to the tube Nf (ε′, δ) := X ∩ Bε′ ∩ f−1(∂(D∗δ )) .

Now, for each x ∈ Nf (ε′, δ), take the integral line γξ (x) of ξ passing through x

and follow it until γξ hits the sphere Sε′ . This gives a diffeomorphism

hξ : Nf (ε′, δ) −→ X ∩ (Sε′ − f−1(D̊δ))

which is the identity over Nf (ε′, δ) ∩ Sε′ . We may now define a projection:

ψ : LX − LV −→ S
1

by ψ = f/|f | in LX ∩ f−1(D∗δ ) and by ψ = π ◦ f ◦ h−1
ξ elsewhere, where π is the

radial projection D
∗
δ → S

1 defined by x %→ x/|x|. This gives a fiber bundle

ψ : LX − LV −→ S
1,

and by construction this is isomorphic to the bundle in Theorem 6.4.1.
So far, the discussion actually holds in the real analytic category, i.e. for X real

analytic and f a real analytic map into R
2. We refer to [9, 71] for a thorough

discussion of that setting.
Yet, we are still missing something important to reach Theorem 6.5.1. So far,

we can assure that ψ can be taken to be φ := f/|f | only near LV . Away from a
neighborhood of LV we have no control of the projection ψ , which depends upon
the choice of the vector field ξ . To finish the proof of Theorem 6.5.1 we need to
show that there exists a vector field ζ which has the same properties (1) and (2) as
ξ , and satisfies also a third property:

(3) For each integral line γ (t) of ζ in (X − V ) ∩ Bε , one has that the argument
of the complex number f (x) is constant for all x ∈ γ (t). That is, if x1, x2 ∈ (X −
V ) ∩ Bε are contained in the same integral curve of ζ , then:

f (x1)

|f (x1)| =
f (x2)

|f (x2)| .

This last property is always satisfied for holomorphic mappings X → C, but it
may not be so for real analytic functions. That is the d-regularity condition discussed
in [9, 71]. The proof that it is satisfied for holomorphic functions uses elementary
complex linear algebra, as in the proof of [65, Lemma 4.6]. ��
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Exercise 6.5.2 Prove the existence of the vector field ζ satisfying the condition (3)

using the proof of Lemma 4.6 of [65].

6.6 Milnor Open-Books and the Milnor Number

Let us consider again an equidimensional complex analytic germ (X, 0) in C
N of

dimension n. Now we assume X − {0} is non-singular, and consider a holomorphic
map f : (X ∩ B̊r , 0) → (C, 0) , where B̊r is a sufficiently small open ball in C

N

centered at the origin 0, with a unique singular point at 0 ∈ X. We set V = f−1(0)

and let LX = X ∩ Sε and LV = V ∩ Sε be the links of X and V . Then we know
from the previous section that the spherical Milnor fibration (Theorem 4.8 of [65])
extends to this setting and we have a smooth locally trivial fibration:

φ := f

|f | : LX − LV −→ S
1, (6.2)

This fibration gives rise to what is known today as the Milnor open-book of the
map-germ f .

Recall that the concept of open-books was introduced by E. Winkelnkemper and
we refer to his appendix in [70] for a clear account of the subject. An open-book
decomposition of a smooth n-manifold M consists of a codimension 2 submanifold
N , called the binding, embedded in M with trivial normal bundle, together with a
fiber bundle decomposition of its complement:

θ : M −N → S
1 ,

satisfying that on a tubular neighborhood of N , diffeomorphic to N × D
2, the

restriction of θ to the punctured tubular neighborhood N × (D2 − {0}) is the map
(x, y) %→ y/‖y‖. The fibers of θ are called the pages of the open-book. These are
all diffeomorphic and each page F can be compactified by attaching the binding N

as its boundary, thus getting a compact manifold with boundary.
Milnor’s fibration theorem grants that in the isolated singularity case, we get

open-book decompositions where the manifold M is LX, the binding N is the link
LV , the pages of the open-book are the Milnor fibers and the projection map is
φ := f

|f | .
We now turn our attention to the topology of the fibers. One has the following

theorem due to H. Hamm in [20], which generalizes Milnor’s Theorem 6.5 in [65]:

Theorem 6.6.1 Let the isolated singularity germ (X, 0) be a complete intersection
and consider the locally trivial fibration

φ := f

|f | : LX − LV −→ S
1 .
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Then the fibers have the homotopy type of a bouquet of spheres of middle
dimension n.

Definition 6.6.2 The number μ(f ) of spheres in this bouquet is known as the
Milnor number of the singularity.

Theorem 6.6.3 If X = C
n+1 and f has an isolated critical point at 0, then μ(f )

equals the intersection number

μ(f ) = dimC

On+1,0

Jac(f )
, (6.3)

where Jac(f ) is the Jacobian ideal, generated by the partial derivatives of f in
On+1,0.

A consequence of this formula is that the Milnor number is in fact an invariant
of (V , 0), where V = f−1(0). That is, it is independent of the choice of the
holomorphic function f which defines (V , 0):

Lemma 6.6.4 Let f, g : (Cn+1, 0) → (C, 0) be holomorphic functions with iso-
lated singularity such that f−1(0) = g−1(0). Then μ(f ) = μ(g).

Proof Since f, g have isolated singularity, they are both reduced and f−1(0) =
g−1(0) implies that g = uf for some unit u in On+1,0, by the analytic Nullstellen-
satz. We have u(0) = 0 and hence we can assume, without loss of generality, that
u(0) = 1. Let F : (Cn+1, 0) × C → (C, 0) be the family of function germs given
by

F(x, t) := Ft (x) := (1+ t (u(x)− 1))f (x).

For each t0 ∈ C, there exist open neighbourhoods U of 0 in C
n+1 and T of t0 in C

such that 0 is the only singular point of Ft in U , for all t ∈ T . By the principle of
conservation of the intersection number (see for instance [28, 6.4.5]),

μ(Ft) = dimC

On+1,0

Jac(Ft )
= dimC

On+1,0

Jac(Ft0)
= μ(Ft0),

for all t ∈ T . But C is connected and thus, μ(Ft ) is not only locally constant, but
globally constant on t ∈ C. In particular, μ(f ) = μ(F0) = μ(F1) = μ(g). ��
Definition 6.6.5 Let (V , 0) be a hypersurface with isolated singularity in (Cn+1, 0).
The Milnor number of (V , 0) is defined as μ(V, 0) := μ(f ), where f :
(Cn+1, 0) → (C, 0) is any reduced holomorphic function such that f−1(0) = V .

Remark 6.6.6 Recall that a knot consists of a pair (M, N) of connected, oriented
manifolds, where N is a codimension 2 submanifold of M; if N is not connected,
then it is called a link in M . Notice that if we are given a holomorphic map-germ
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f : (Cn+1, 0) → (C, 0) with an isolated critical point at 0, and Lf := f−1(0)∩Sε is
the link of f , then the pair (Sε, Lf ) is a knot when n ≥ 2 because of Theorem 6.4.8
(or a link when n = 1 and f has several branches). These are called algebraic
knots (or links), a concept introduced in [33]. We remark that Lemma 6.6.4 is
obviously false in general if we relax the condition f−1(0) = g−1(0) asking just for
a homeomorphism Lf

∼= Lg . Yet, B. Teissier proved in [74] that if the equivalence
is as knots, i.e., the knots (Sε, Lf ) and (Sε, Lg) are homeomorphic, then f and
g have the same Milnor number. More generally if the functions f and g have
the same topology at 0, in the sense that there are open sets U and V of 0 and a
homeomorphism of U onto V such that f−1(0)∩U is homeomorphic to g−1(0)∩V ,
the Milnor fibrations of f and g at 0 are isomorphic. In particular if the critical point
of f and g at 0 is also isolated, then their Milnor number at 0 is equal (see [32,
Proposition in the introduction]).

Notice that if V has an isolated complete intersection singularity (an ICIS) at 0,
say defined by a germ,

g := (g1, · · · , gk) : (Cn+k, 0) → (Ck, 0) ,

then H. Hamm in [20] observed that one has a fibration in the vein of Theorem 6.4.7,
but now this is over the complement of the discriminant of g. In fact one has the
following lemma by Greuel (see [18] or [54, Lemma 5.9]).

Lemma 6.6.7 Let g = (g1, . . . , gk) : (Cn+k, 0) → (Ck, 0) be a holomorphic map
germ which defines an ICIS (V , 0) of dimension n. Then after a linear change
of coordinates in C

k , we can assume that g′ = (g1, . . . , gk−1) : (Cn+k, 0) →
(Ck−1, 0) defines an ICIS (V ′, 0) of dimension n+ 1, and the zero set of gk exhibits
V as a hypersurface in V ′ with an isolated singularity 0 ∈ V ′.

Hence the above fibration for ICIS is a special case of Theorem 6.4.7. The
remarkable point proved by Hamm is Theorem 6.6.1, concerning the topology of
the fibers. Recall that the number of such spheres is called the Milnor number of the
ICIS.

One has the Lê-Greuel formula for the Milnor number of an ICIS, which
generalizes Theorem 6.6.3:

Theorem 6.6.8 If g1, · · · , gk and f are holomorphic map germs (Cn+k+1, 0) →
(C, 0) such that h = (g1, · · · , gk) and (h, f ) define isolated complete intersection
germs, then their Milnor numbers are related by:

μ(h)+ μ(h, f ) = dimC

On+k,0

(h, Jack+1(h, f ))
, (6.4)

where Jack+1(h, f ) denotes the ideal generated by the determinants of all (k +
1) minors of the Jacobian matrix whose rows are the partial derivatives of
g1, . . . , gk, f .
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This formula was proved by Lê [35] and G.-M. Greuel [18]. At about the same
time Teissier proved [74, Proposition II.1.2] a “formule de restriction”, which is the
same theorem in the case where one of the two functions is linear; this is known as
“Teissier’s Lemma”.

Example 6.6.9 Let g = (g1, g2) : (C3, 0) → (C2, 0) be the map germ given by:

g1(x, y, z) = x2 + y2 and g2(x, y, z) = z2 + xy.

Then V = g−1(0) is a 1-dimensional ICIS, but g1 has not isolated singularity. The
coordinate change (y1, y2) %→ (y1 + y2, y2) transforms g1 into g1 + g2 which has
now isolated singularity. This illustrates how a linear change of coordinates yields
to a set of good representatives of an ICIS.

The fact that the Milnor number of an ICIS (V , 0) is also independent of the
choice of the equations is not so easy to prove as in the hypersurface case. In order to
prove it, we need another construction of the fibration similar to the Milnor fibration
of Proposition 6.2.9. We follow here the formulation of Looijenga’s book [54].

Consider a complex analytic space X of pure dimension n+k and a holomorphic
map germ f := (f1, . . . , fk) : (X, 0) → (Ck, 0) and let V = f−1(0). We assume
that f defines an isolated singularity in the sense that at each point of V − {0}
sufficiently near to 0 the space X is not singular and the mapping f is a submersion.
We choose ε > 0 a Milnor radius for V (see Lemma 6.2.3), which means that V is
transverse to Sε′ for all 0 < ε′ ≤ ε. This implies that V ∩Bε is homeomorphic to the
cone over its boundary V ∩Sε. Since V ∩Sε is compact, there is a contractible open
neighborhood U of 0 in C

k such that f |X∩Sε is a submersion along f−1(U) ∩ Sε .
We denote:

X := f−1(U) ∩ Bε, X := f−1(U) ∩ B̊ε, ∂X := f−1(U) ∩ Sε,

When ε and U are small enough, we call the restriction f : X → U (resp. f : X →
U) a good representative of f (resp. a proper good representative of f ).

When k = 1 and U = D̊δ we obtain the Milnor tubes of Proposition 6.2.9; we
study this case in detail in Sect. 6.11. We set the following additional notation:

• Xsing is the singular locus of X and Xreg = X −Xsing ;
• C is the set of points of X which are in Xsing or f is not a submersion.
• For each A ⊂ U , XA := f−1(A) ∩X and XA := f−1(A) ∩X.

Theorem 6.6.10 With the above notations, when ε > 0 and U are sufficiently small
we have:

1. f : X → U is proper and f : ∂X → U is a C∞-trivial fibration.
2. C is analytic in X and closed in X. Moreover, f |C is finite (i.e., proper with finite

fibres).
3. C −Xsing is of pure dimension k − 1.
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4. the image D of C by f is a hypersurface in U if C −Xsing is dense in C. In this
case we call D the discriminant of f .

5. Let us suppose that C −Xsing is dense in C, the mapping:

f : (XU−D, ∂XU−D) → U −D

is a C∞-trivial fibration of which each fibre pair (Xs, ∂Xs) is a complex analytic
manifold with boundary.

6. f defines an ICIS at every point of Xreg.
7. For k = 1, if the point 0 is isolated in Xsing, the fibration of item (5) is isomorphic

to the fibration of Theorem 6.6.1.
8. If X = C

n+k , then every fibre Xs has the homotopy type of a bouquet of n-
spheres.

Proof The reader can look at [54, Theorem 2.8] for items (1) to (6), The statement
(7) can be found in [20, Theorem 2.6] and (8) is from [54, Corollary 5.10]. For the
reader’s convenience we give here a short and sketchy proof of Theorem 6.6.10.

The condition (1) is the consequence of the hypotheses by applying Ehresmann
Lemma (Lemma 6.2.10), if ε > 0 and U are small enough, since we have assumed
0 to be an isolated singular point of V = f−1(0).

Since V = f−1(0) has an isolated singularity at 0, the intersection f−1(0) ∩ C

is the point 0, if ε > 0 is sufficiently small. Then, the restriction of f to (C, 0)

is finite, i.e. a representative of f with ε and U small enough is proper with finite
fibers, by a geometric version of Weierstrass Theorem (see [27]). A Theorem of
Remmert shows that, since the restriction of f to C is finite, the image D = f (C)

is analytic and it is called the discriminant of f . This shows (2) and the fact that D

is analytic.
Since the restriction of f to C is finite, the dimensions of C and D are equal. In

particular dim C ≤ k. Now let z ∈ C a point of X which is not singular. In a small
open neighborhood Uz of z in X the image of Uz ∩ C cannot be of dimension k

because of Sard’s Theorem, Therefore dimz C ≤ k−1. To prove that dimz C ≥ k−1,
choose Uz small enough so that we have local coordinates to define f and consider
the Jacobian matrix defined on Uz. It gives a map:

�z : Uz → Hom(Cn+k,Ck).

In Uz the analytic subset C is the inverse image of the subset C of matrices of rank
< k. We have a general result (see e.g. [26, Theorem 1]):

Lemma 6.6.11 The matrices of rank ≤ r in Hom(CN,Ck) are an algebraic
subvariety of codimension (N − r)(k − r).



6 The Topology of the Milnor Fibration 353

Applying this lemma to our situation we find that the space of matrices of rank < k

in Hom(Cn+k,Ck) is a subvariety of codimension n+ 1, therefore the codimension
of C at z is ≤ n− 1 which gives dimz C ≥ k − 1, so:

dimz C = k − 1.

Moreover, at a point z of Xreg , C is defined by the minors of order k of a matrix of
size (n + k) × k. So X is determinantal and hence Cohen-Macaulay at z (again by
[26]). In particular, C has pure dimension at z. This proves (3).

To prove (4) it is enough to prove that D has pure dimension k − 1. By (3) we
have obtained that C −Xsing has pure dimension k − 1. If C −Xsing is dense in C,
the space C is also of pure dimension k − 1. Since D is the image of C by a finite
map, it has also pure dimension k − 1, so D is a hypersurface.

Assertion (5) is a straightforward application of Ehresmann Lemma (Lemma
6.2.10).

If z is a point of C − Xsing the germ of (X, z) is non-singular so up to a local
choice of coordinates that germ is isomorphic to (Cn+k, 0) and the germ of f at z

is isomorphic to a germ (Cn+k, z) → (C, f (z)). Therefore the fiber f−1(f (z)) has
dimension n and the singularity z is isolated, since f restricted to C ∩ Uz is finite
and f (z) is a point of f (C ∩ Uz), so the point z ∈ C ∩ Uz is locally isolated in
f−1(f (z) ∩ C) ∩ Uz which means that z is an isolated singularity of the complete
intersection f−1(f (z)) ∩ Uz. This answers to (6).

As stated above, we refer to [54, Corollary 5.10] for a proof of (8). ��
Proposition 6.6.12 Assume that f, g : (Cn+k, 0) → (Ck, 0) define the same ICIS
of dimension n, V = f−1(0) = g−1(0) (as complex spaces). Then the Milnor fibres
of f and g are diffeomorphic.

Proof Since f−1(0) = g−1(0) as complex spaces, the ideals generated by the
components of f and g are the same, so gi = ∑k

j=1 aijfj , for some k × k-
matrix A = (aij ) with entries in On+k,0 such that det A(0) = 0. After a linear
change of coordinates in C

k , we can assume that A(0) = I , the identity matrix. Let
F : (Cn+k, 0) × C → (Ck, 0) × C be the map germ given by F(x, t) := (ft (x), t)

where

ft := (I + t (A− I))f.

Let f : X → U be a proper good representative of f , where X = f−1(U) ∩ Bε .
For each t0 ∈ C, there exists a contractible open neighbourhood T of t0 in C such
that for each t ∈ T , with Xt = f−1

t (U) ∩ Bε , ft : Xt → U is also a proper
good representative of the germ ft . Consider now F : X → U × T , where X :=
F−1(U ×T )∩ (Bε×T ). By using the arguments of Theorem 6.6.10, it follows that

F|U×T−DF : XU×T−DF → U × T −DF

is a C∞-trivial fibration, where DF is the discriminant of F . If s ∈ U − Dft , then
(s, t) ∈ U × T −DF and (Xt)s × {t} = X(s,t) where (Xt )s is the fiber of ft over s.
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It follows that all the germs ft with t ∈ T , have diffeomorphic Milnor fibres (Xt)s .
Since C is connected, all the germs ft , with t ∈ C, have also diffeomorphic Milnor
fibres. In particular, f = f0 and g = f1 have diffeomorphic Milnor fibres. ��
Definition 6.6.13 Let f : (Cn+k, 0) → (Ck, 0) be a map germ which defines an
ICIS V = f−1(0) of dimension n. The Milnor number of (V , 0) is defined as
μ(V, 0) := μ(f ).

6.7 Polar Curves and Attaching Handles

The study of the topology of complex analytic functions using polar curves relative
to a linear form � springs from ideas of René Thom [77] and was introduced by B.
Teissier in [74] and D. T. Lê in [32]. This was extended in [36, 37], to germs of
holomorphic functions f : (X, x) → (C, 0) relatively to a Whitney stratification
S = {Sα}α∈A of a reduced equidimensional complex analytic space X. The theory
of “polar varieties” was developed more generally by Bernard Teissier and Lê Dũng
Tráng in the 1970s in various papers, see for instance [32, 37, 39, 74, 75].

Let f : (Cn+1, 0) → (C, 0) be a holomorphic function with isolated singularity.
For each a ∈ C

n+1 we consider the germ of map �a := (f, �a) : (Cn+1, 0) →
(C2, 0), where �a(z) = ∑n

i=0 ziai . We denote by (�a, 0) the critical locus of �a ,
that is, the germ at 0 of the closure of the set of points in C

n+1 where �a is not
submersive, with the analytic structure given by the 2 × 2-minors of its Jacobian
matrix.

Theorem 6.7.1 ([21]) There exists a non-empty Zariski open subset W ⊂ C
n+1

such that for any a ∈ W , the map �a satisfies the following conditions:

1. �a is a reduced curve,
2. The restriction �a : (�a, 0) → (C2, 0) is one-to-one.
3. There exists a neighbourhood U of 0 in C

n+1 and a representative of �a defined
on U such that for all p ∈ U∩�a−{0}, �a has an ordinary quadratic singularity
at p. That is, the germ of �a at p is equivalent by coordinate changes in the
source and target to the Whitney fold singularity (Cn+1, 0) → (C2, 0) given by
z %→ (z2

1 + · · · + z2
n, z0).

Proof Let us prove the first point (1). Consider the map:

F : (Cn+1 × C
n+1, 0) → C

n+1 × C
n+1

given by F(z, a) = (∇f (z), a) and for each a ∈ C
n+1, Fa(z) = F(z, a). The

differential of F at (z, a) is

dF(z,a) =
(

Hf (z) 0
0 In+1

)

,

where Hf (z) is the Hessian matrix of f at z.
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A critical point z of �a outside 0 is a point where ∇f (z) and a are collinear, i.e.
∇f (z) ∧ a = 0. It follows that �a = F−1

a (�), where � is the closure of the subset
of C∗n+1 × C

∗n+1 of pairs (b, a) such that b ∧ a = 0. As before C∗ := C− {0}.
It is known that � is reduced of codimension n, determinantal (so, Cohen-

Macaulay [26]) and its singular subset Sing(�) is {(0, 0)}.
At a pair (b, a) ∈ � with b = 0, the algebraic set � is parametrized by the map

K : (Cn+1 − {0}) × C → C
n+1 × C

n+1 given by K(b, t) = (b, tb), which has
differential:

dK(b,t) =
(

In+1 0
tIn+1 b

)

.

Thus, the tangent space to �∗ = � − {0} at (b, tb) is T(b,tb)�
∗ = Im dK(b,t).

Moreover, if b = ∇f (z) = 0 and a = tb then:

Im dF(z,a) + T(b,tb)�
∗ = C

n+1 × C
n+1.

Let U be a neighbourhood of 0 in C
n+1 such that ∇f (z) = 0, for all z ∈ U∗ =

U − {0}. We deduce that F is transverse to �∗ in C
n+1 × C

n+1 at any point of
U∗ × C

n+1. By the Basic Transversality Lemma [16, Lemma 4.3 p. 53] there exists
a non-empty Zariski open subset W1 ⊂ C

n+1 such that for any a ∈ W1, Fa is
transverse to �∗ on U∗. In particular, �a ∩U∗ is smooth of dimension 1. By adding
the origin, the germ of �a in (Cn+1, 0) has also dimension 1 and is reduced.

(2) For the second point we proceed in a similar way as above. We consider:

G : (Cn+1 × C
n+1 × C

n+1, 0) → C
n+1 × C

n+1 × C
n+1 × C

4

given by:

G(z, z′, a) = (∇f (z),∇f (z′), a, f (z), f (z′), �a(z), �a(z′)),

and the map Ga(z, z′) = G(z, z′, a). The differential of G at (z, z′, a) is

dG(z,z′,a) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Hf (z) 0 0
0 Hf (z′) 0
0 0 In+1

∇f (z) 0 0
0 ∇f (z′) 0
a 0 z

0 a z′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We consider the set G−1
a (�′) where now �′ is the closure in C

n+1 × C
n+1 ×

C
n+1 × C

4 of the subset of (Cn+1)∗ × (Cn+1)∗ × C
n+1 × (C4)∗ of points
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(b, c, a, s) such that

b ∧ a = 0, c ∧ a = 0, s1 = s2, s3 = s4.

Again �′ is Cohen-Macaulay of codimension 2(n + 1) and Sing(�′) is the
subset of points where a = b = c = 0. At a point where a, b = 0, �′ is
parametrized by the map L : Cn+1 × C

4 → C
n+1 × C

n+1 × C
n+1 × C

4 given
by

L(b, t, u, s1, s3) = (b, tb, ub, s1, s1, s3, s3),

whose differential is

dL(b,t,u,s1,s3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In+1 0 0 0 0
tIn+1 b 0 0 0
uIn+1 0 b 0 0

0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We observe that if G(z, z′, a) = L(b, t, u, s1, s3), with b = 0 and z = z′, then:

Im dG(z,z′,a) + Im dL(b,t,u,s1,s3) = C
n+1 × C

n+1 × C
n+1 × C

4.

This can be checked for each factor separately. It is obvious for the first three
factors and for the last one, we can extract a non-zero 4× 4-minor as follows:

∣
∣
∣
∣
∣
∣
∣
∣
∣

bi 0 1 0
0 0 1 0

tbi zj 0 1
0 z′j 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= bi(z
′
j − zj ) = 0,

if bi = 0 and zj = z′j . We deduce that G is transverse to �′ on (U∗)(2) ×
(Cn+1)∗, where U∗ := U − {0}, (Cn+1)∗ := C

n+1 − {0}, (U∗)(2) is the set of
pairs (z, z′) ∈ U∗ × U∗ such that z = z′.
Again by the Basic Transversality Lemma [16, Lemma 4.3 p. 53], there exists
a non-empty Zariski open subset W2 ⊂ C

n+1 such that for any a ∈ W2, Ga

is transverse to �′ on (U∗)(2). The set G−1
a (�′) has codimension 2(n + 1) in

(U∗)(2) and hence, it has dimension 0. After shrinking the neighbourhood U if
necessary, the restriction �a : �a ∩ U → C

2 is one-to-one.
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(3) Take a ∈ W := W1 ∩W2 and p ∈ �a ∩U∗. By items (1) and (2), �a is smooth
at p = 0 and the restriction �a : (�a, p) → C

2 is an embedding. By taking
translations, we can assume that p = 0 and �a(p) = (0, 0).
Moreover, we also choose the coordinates in C

n+1 in an open neighborhood of
0 in such a way that �a(z) = (f (z), z0) and �a is the axis z0. By definition, �a

is defined by the vanishing of ∂f/∂z1, . . . , ∂f/∂zn and hence,

∂f

∂zi

=
n∑

j=1

αij zj ,

for some functions αij ∈ On+1,0 such that det(αij ) = 0, with 1 ≤ i, j ≤ n.
In particular, we must have det

(
∂f 2/∂zi∂zj

) = 0, with 1 ≤ i, j ≤ n at any
point (z0, 0, . . . , 0). By the Splitting Lemma [15, (4.3) p. 125] after a coordinate
change in (Cn+1, 0) we may assume that f (z) = z2

1+· · ·+z2
n+g(z0), for some

function g : (C, 0) → (C, 0). Finally, to arrive to the Whitney fold singularity,
just take the coordinate change in (C2, 0) given by (s, t) %→ (s − g(t), t). ��

Remark 6.7.2 If a ∈ W , the restriction of �a to (�a, 0) is finite, because in a
neighbourhoodU of 0 in C

n+1 we have:

�−1
a (0, 0) ∩ �a ∩U = {0}.

The geometric version of Weierstrass preparation theorem given in [27] implies the
local finiteness of �a at 0. Therefore there exist neighborhoods U of 0 in C

n+1 and
V of (0, 0) in C

2, such that �a induce a finite morphism of U ∩ �a into V whose
image is a curve �

In fact, there is a more general theorem, than Theorem 6.7.1. We do not assume
any longer that the singularity of f at 0 is isolated:

Theorem 6.7.3 Let f : (Cn+1, 0) → (C, 0) be a non-constant holomorphic
function. There is an open dense set of linear forms !, such that, for any � ∈ !,
in an open neighborhood U� of 0, the critical locus �∗ of the restriction of (f, �)

to U� − f−1(0) has dimension 1 or is empty for � ∈ !. If �∗ has dimension 1, the
closure �� of �∗ in U� is a reduced curve and the restriction of �� to �� ∩ U� is
injective. Furthermore, for any point z ∈ �� − {0} the germ of �� is equivalent
up to translation to the germ (Cn+1, 0) → (C, 0) given by (z0, z1, . . . , zn) %→
(z2

1 + . . .+ z2
n, z0).

One can prove that, for � ∈ !, the restriction of �� to �� ∩U� is finite. So, when
the germ (��, 0) is not empty one can define its image (��, (0, 0)) by ��.

We are not giving a proof of this Theorem 6.7.3 (see [48, paragraph 3]). Just
notice that �� can be empty, for instance when V = f−1(0) is a product of an
isolated singularity by a line C.
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Definition 6.7.4 A linear form �a ∈ ! as in Theorem 6.7.3 is called generic for f .
The curve �� is called the polar curve of f with respect to the direction defined by
�. The image (��, (0, 0)) of (��, 0) by �� is also called the polar discriminant or
Cerf diagram of f with respect to �.

In general we have:

Proposition 6.7.5 Let � be a generic linear form for f . If f has a critical point at
0, then, if �� is not empty, the tangent cone of �� at the origin is {0} × C.

Proof We may assume that � = z0, then the polar curve with respect to the direction
z0 can be seen in the following way. Consider the algebraic set defined by:

∂f/∂z1 = . . . = ∂f/∂zn = 0.

It obviously contains the singular locus of V = f−1(0) and when z0 is generic it
also contains �z0 , if it is not empty. We assume �z0 is not empty. Let p : D̊δ → �z0

be a parametrization of �z0 . We have to compare f (p(t)) and z0(p(t)) when t tends
to 0:

f (p(t))

z0(p(t))

By de l’Hôpital rule to obtain the limit, it is enough to compare the derivatives in t

of the numerator and of the denominator:

df (p(t))

dt
= (∂f/∂z0)(p(t))

dp0(t)

dt
+ . . .+ (∂f/∂zn)(p(t))

dpn(t)

dt

where p0(t), p1(t), . . . , pn(t) are the components of p(t). The quotient:

df (p(t))/dt

dz0(p(t))/dt
= (∂f/∂z0)(p(t))

because the polar curve lies in the algebraic set with the equation above. If f is
singular at 0, the partial derivative (∂f/∂z0)(p(t)) tends to 0 when t tends to 0. ��

In the situation that we consider in the first paragraph, we have a complex analytic
space with an isolated singularity at the point 0 ∈ X and a germ of holomorphic
function f : (X, 0) → (C, 0). We may assume that X has locally at 0 an embedding
into C

N , i.e., we have an open neighborhood U of 0 in X such that the representative
of the germ (X, 0) is embedded in the open subsetU ofCN and U is closed in U. We
may assume that U has only one isolated singular point 0 and f has a representative
defined on U .

In this situation we can still define the polar curve of f with respect to a linear
form. Let:

λ : CN → C
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be a linear form. Denote � the restriction of λ to U . One has the analytic morphism:

�� : U → C
2

defined by ��(z) = (f (z), �(z)) for every z ∈ U . We have the following theorem:

Theorem 6.7.6 With the notations above, there is an open dense subset ! of the
space of linear forms on C

N , such that there is an open neighborhood Uλ of 0 in X

which is contained in U and the restriction � of λ to Uλ defines a restriction (��)|Uλ

whose critical locus outside V = f−1(0)∩Uλ is either always empty for all λ ∈ !

or non-singular of dimension 1. Moreover:

1. The closure �λ in Uλ of this critical locus, when it is not empty, is a reduced
curve called the polar curve of f with respect to λ.

2. If �λ is not empty, the restriction of (��)|Uλ to �λ is finite and injective. The
image �λ of �λ by �� is a curve called the polar discriminant with respect to λ

or also called the Cerf diagram of f with respect to �.
3. At each point z ∈ �λ −{0} the fiber of �� has an ordinary quadratic singularity.

Notice that in this case we do not have a result like Proposition 6.7.5. For
instance, when f is given by a generic linear form, the behavior of f and a generic
section will be comparable so the tangent cone of �λ would be a line u = v if u and
v are the coordinates of (C2, (0, 0)).

We do not give here a proof of Theorem 6.7.6. The reader can refer to [48,
Paragraph 3] for a proof of this theorem.

From now on, in the rest of this section, we assume that X is Cn+1 and consider
a holomorphic map-germ f with a critical point at 0 ∈ C.

Given f and a generic linear form � as above in Theorem 6.7.3, we can define
the polar curve �f,� as the union of those components in the critical set of (f, �)

which are not in �f , the critical points of f . In other words, assume we have
coordinates (z0, · · · , zn) so that the linear function � = z0 is “sufficiently general”.
Then the critical locus of �� = (f, �) is V (∂f /∂z1, · · · , ∂f /∂zn), the set of points
where ∂f /∂zi = 0 for all i = 1, · · · , n. In the critical points of �� there is
the set of singular points of V (f ) and the set of non-critical points z of f where
the hyperplane �−1(�(z)) is tangent to the hypersurface f−1(f (z)). As we said in
Theorem 6.7.3 the contact between �−1(�(z)) and f−1(f (z)) is ordinary quadratic,
since we have assume � ∈ !.

There is a notion a bit less general than our notion of genericity which is called
prepolar and was introduced by D. Massey (see [59] p. 26).

Definition 6.7.7 A hyperplane H ⊂ C
n+1 through the origin is called a prepolar

slice for a function f : (Cn+1, 0) → (C, 0) at 0 if it intersects transversally all the
strata (of a good stratification of f ) except perhaps the stratum {0} itself.

We are going to show how polar curves are used to understand the geometry of
hypersurface singularities.
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Let us recall S. Smale’s classical process of “attaching handles”. To attach a p-
handle to an m-manifold M we assume one has a smooth embedding ι of Sp−1 ×
Dm−p into the boundary ∂M . Set H p = Dp ×Dm−p and define a manifold M ∪f

H P by taking the disjoint union of M and H p and identify Sp−1 × Dm−p with
its image by ι. We think of M ∪f H P as being obtained from M by attaching a
p-handle; the integer p is the index of the handle.

One uses the process of attaching handles in connection with Morse theory. By
Morse theory if one has a real smooth function ϕ which is proper and Morse (see
[64]) on a manifold M and if ϕ− t0 is a critical level with one Morse point of index
p, when ε > 0 is small enough {ϕ ≤ t0 + ε} is obtained from {ϕ ≤ t0 − ε} by
attaching p-handles.

We may now state Lê’s attaching theorem:

Theorem 6.7.8 Let f : (Cn+1, 0) → (C, 0) be a germ of holomorphic function,
with a possibly non-isolated critical point at 0, consider its local Milnor fiber Ft at
0. If H is a prepolar slice for f at 0, then Ft is obtained from the Milnor fiber of
the slice Ft ∩ H by attaching a certain number of n-handles. The number of such

handles is the intersection number
(
�f,� · V (f )

)
, where � is the linear form which

defines H . If f has an isolated critical point, this number equals the sum of Milnor
numbers μ(f )+ μ(f, �).

Proof We only give a hint of the proof of this Theorem which is rather technical.
��

Let us consider the Milnor fibration associated to this germ of function f , i.e. let
1 ( ε ( δ > 0, the Milnor function f defines the locally trivial smooth fibration
(see Theorem 6.4.1):

ϕε : Bε ∩ f−1(D̊
∗
δ ) → D̊

∗
δ

where Bε is the closed ball of Cn1 centered at 0 with radius ε and D̊
∗
δ is the punctured

open disc of C centered at 0 with radius δ.
The hypothesis that the hyperplane H is a prepolar slice for f at the point 0

means that the linear form � which defines H is prepolar for f at 0. This implies
that the critical space of (�, f ) : (Cn+1, 0) → (C2, 0) outside f−1(0) is a curve
�(f,�). In the case H is a general hyperplane, this curve is reduced or empty. In this
case for any z ∈ �(f,�) − {0} near to 0 the hyperplane �−1(�(z)) has an ordinary
tangency with the hypersurface f−1(f (z)).

If we only assume that H is prepolar for f at 0, the critical points of the restriction
of � to f−1(f (z)) are isolated critical points, but these critical points are in general
not ordinary quadratic.

Another property which is corollary of the fact that H is a prepolar slice for f at
0 is that, for 1 ( ε > 0, the fibers of (f, �) over a sufficiently small neighborhood
U of (0, 0) outside the line {0} × C are transverse to the sphere Sε .

Now we can apply Morse theory to the manifold with boundary Ft ∩ Bε ∩
�−1(D̊

∗
δ ). We use the function |�|. Our starting situation is the space |�| ≤ u such
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that � induces a trivial fibration above the disk {t} × Du. This is possible because
H is prepolar for f at 0, because by definition H intersects the strata of a good
stratification, i.e. a stratification which satisfies Af -condition (see Definition 6.4.4),
of V = f−1(f (0)) transversally in C

n+1 in a neighborhood U of 0 in C
n+1, which

implies that H ∩Ft is a manifold in a neighborhood of 0 in C
n+1 as we show in the

following lemma:

Lemma 6.7.9 Let H be a prepolar hyperplane for f at 0, defined by the linear
form �. Let �f,� be the map:

�f,� : U → U0 ⊂ C
2

defined on a sufficiently small neighborhood U of 0 in C
n+1 by �f,�(z) =

(f (z), �(z)). The components of the critical locus of �f,� which are not contained
in V = f−1(0) ∩ U are either empty or a curve �f,�, which might not be reduced.
When �f,� is not empty, the restriction of �f,� to �f,� is finite and its image by �f,�

is a curve �f,� in U0. With 1 ( ε ( δ > 0 the map �f,� induces a locally trivial
fibration

(�f,�)| : (�−1
f,�(B

2
δ − (�f,� ∪ {0} × C)) ∩ Bε → B

2
δ − (�f,� ∪ {0} × C).

Furthermore, the fibers of �f,� over the points of B2
δ −{0}×C are transverse to the

sphere Sε , boundary of the ball Bε.

Proof The hyperplane is prepolar for f at 0 with respect to a good stratification S.
Let us refine the good stratification S of U ∩ f−1(0) into a regular stratification

(see Theorem (19.2) p. 540 of [82]) adapted to H ∩f−1(0)∩U . In Lemma 6.4.3 we
saw that for ε1 > 0 small enough the spheres Sε, for ε1 > ε > 0, are transverse to
the strata of f−1(0)∩U whose closures contain 0, and the strata of H ∩f−1(0)∩U

whose closures also contain 0.
To obtain this former assertion, one applies a Lemma similar to Lemma 6.2.6 but

in the case of real analytic functions.

Exercise 6.7.10 Prove the Lemma 6.2.6 for real analytic functions.

Now, to prove the last assertion of the Lemma we are going to use an argument
similar to one used in the proof of Theorem 6.4.1.

Assume that the last assertion of the Lemma 6.7.9 is not true. For each rn > 0 of

a sequence (rn) tending to 0 in R+ we would find zn ∈ Sε ∩ �−1
f,�(B̊

2
rn

) for which
the Lemma is false. Then we would have a sequence of points zn of Sε which tends
to z ∈ V ∩H ∩ Sε and either f−1(f (zn)) and �−1(�(zn)) are tangent to each other
at zn and �−1

f,�(f (zn), �(zn)) is singular at zn or f−1(f (zn)) ∩ �−1((�(zn)) is not
transverse to Sε at zn.

However for n big enough f−1(f (zn)) and �−1(�(zn)) are not tangent at zn:
because of the compactness of the space of linear subspaces of given dimen-
sion in C

n+1, we can always choose a subsequence so that the tangent space
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Tzn(f−1(f (zn)) has a limit T and the limit of �−1(�(zn)) is H . Let S be the stratum
of the good stratification which contains z. By hypothesis on H , H is transverse to
S at z in C

n+1 and the hypothesis on good stratification is that Tz(S) ⊂ T. Hence, at
the limit the sequences of tangent spaces are transverse, so they must be transverse
when n is big enough. Therefore we assume that f−1(f (zn)) and �−1(�(zn)) are
not tangent at zn.

As above we may assume the sequence of tangent spaces (Tzn(f−1(f (zn))) has
a limit T. We saw that the hypothesis implies that the limit T contains Tz(S) where
S is the strata of the good stratification S which contains z. Furthermore, we also
may assume that the sequence (Tzn(f−1(f (zn)) ∩ �−1(�(zn))) has a limit, which is
T ∩ H , because of the transversality at the limit. If S′ is the stratum of the regular
stratification of V ∩H ∩U which is a refinement of the good stratification and which
contains z, we have Tz(S

′) ⊂ Tz(S).
Notice that if V ∩H ∩ Sε is not empty, i.e. n ≥ 2, dim S′ ≥ 1, and then we have:

Tz(S
′) ⊂ Tz(S) ⊂ T

and Tz(S
′) ⊂ H because the stratum S′ is contained in H . Since Sε is transverse to

S′ in C
n+1, we have that the limit T ∩H is transverse to Tz(Sε).

This conclusion contradicts that, for any n ∈ N, the tangent of space
f−1(f (zn)) ∩ �−1(�(zn)) at zn is contained in Tzn(Sε).

It implies the existence of δ > 0 such that, for any (t, u) ∈ B̊
2
δ − {0} × C, the

space {f = t} ∩ {� = u} intersects the sphere Sε transversally in C
n+1.

In the case n = 1, V ∩H ∩Bε = {0}. The last assertion deals with an empty set.
This proves the last assertion of Lemma 6.7.9.

Our reasoning above shows that the intersection of Sε and the set of singular

points �f,� − V of the fibers �−1
f,�(t, u), for any (t, u) ∈ B̊

2
δ − {0} × C is empty. It

implies that either �f,�∩�f,�(D̊δ) is empty or it is a curve and the restriction of �f,�

to this curve is finite using again the geometric version of Weierstrass preparation
Theorem in [27]. Therefore the image �f.� of �f,� by �f,� is a curve.

The fibers of �f,� over B̊
2
δ−(�f,�∪{0}×C) are not singular and the last assertion

of our Lemma 6.7.9 shows that they are transverse to Se. The Ehresmann Lemma
(see Lemma 6.2.10) shows that �f,� induces a locally trivial fibration:

(�f,�)| : (�−1
f,�(B

2
δ − (�f,� ∪ {0} × C)) ∩ Bε → B

2
δ − (�f,� ∪ {0} × C).

This ends the proof of Lemma 6.7.9. ��
Let us resume the proof of Theorem 6.7.8.
Consider t = 0 small enough. The image of the Milnor fiber of Ft = {f =

t} ∩Bε under � lies in the line {t} ×C in C
2. This line intersects �(f,�) at the points

y1, . . . , yk which tend to (0, 0) when t tends to 0. Let R be the radius of a disc
{t} × D contained in the line {t} × C and such that the only points of �(f,�) that it
contains are {y1, . . . , yk}.
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The center of {t} × D is (t, α). We assume that (t, α) is not one of the points
y1. . . . , yk. In case it is, we can always slightly change the center of {t} × D.

We are going to apply Morse theory on the Milnor fiber Ft ∩Bε with the smooth
function |� − α| in the range {r ≤ |� − α| ≤ R}, where r is chosen such there are
not any of the points y1, . . . , yk in the closed disc centered at (t, α) with radius r

and the closed disc centered at (t, α) with radius R contains all the points y1, . . . , yk

and is contained in the interior {t} × D̊.
The ending situation Ft ∩Bε ∩ {|�− α| ≤ R} is a manifold with corners (see for

instance [61]) which is diffeomorphic (with corners) to the Milnor fiber Ft ∩ Bε .
However we cannot in general apply Morse theory in this situation. In the case �

is sufficiently general, the singularities of � restricted to the Milnor fiber Ft ∩Bε are
ordinary quadratic as we saw in Theorem 6.7.3 in which case the function |�− α| is
a Morse function when restricted to Ft in the domain where {r ≤ |�− α| ≤ R}.

In general one has to modify the function |�| near the critical points of the
restriction of � to the space Ft ∩ {r ≤ |�| ≤ R}. Let z1, . . . , zm be these critical
points. Consider small spheres Bi and B ′

i of C
n+! centered at the points zi such

that B ′
i ⊂ B̊i , the spheres Bi are contained in B̊ε and are mutually disjoint. We

also require that the union of spheres ∪r
1Bi lies inside the interior of the subspace

{r ≤ |�− α| ≤ R} of Cn+1.
There is a smooth function φ : Cn+1 → [0, 1] such that φ is 0 on C

n+1 − ∪r
1Bi

and has value 1 in ∪r
1B̊ ′

i . It is known that for a general linear form λ sufficiently
small the restriction of �+ τλ to Ft ∩Bε has only ordinary singularities. We choose
this linear form λ such that this property is true for all τ = 0 in a disc of radius at
least, say 2.

Furthermore, we choose the linear form λ small enough such that the functions

ψτ = (1− φ)�+ φ(�+ τλ)

restricted to Ft ∩ Bε have no critical point in ∪r
i (Bi − B̊ ′

i ) for |τ | < 2|. This is
possible because ∪r

i (Bi − B̊ ′
i ) is compact. The smooth functions ψτ coincide with

� in (Cn+1 − ∪m
1 Bi) ∩ Ft ∩ Bε and with �+ τλ in the space ∪m

1 B̊ ′
i ∩ Ft ∩ Bε .

Consider now the smooth unfolding:

(ψτ , τ ) : (Ft ∩ {r ≤ |�− α| ≤ R} ∩ Bε)× D̊2 → ({t} × DR − {t} × D̊r )×D2.

Notice that the center of the open disc D̊2 is the origin of C and its radius is 2.
Since ψτ coincide with � in Ft∩Bε−(∪m

1 Bi), the fibers of the unfolding intersect
the boundary Ft∩Sε∩{r ≤ |�−α| ≤ R} of Ft∩Bε∩{r ≤ |�−α| ≤ R} transversally.

Using Ehresmann Lemma, one can prove that the general fiber of this unfolding
(ψτ , τ ) is diffeomorphic to Ft ∩H ∩ Bε.

We apply Morse theory to the manifold with boundary to the manifold

Ft ∩ Bε ∩ {r ≤ |�− α| ≤ R}



364 D. T. Lê et al.

with the function |ψ1− α| restricted to Ft ∩Bε ∩ {r ≤ |�− α| ≤ R}. Since we have
required that ∪m

1 Bi lies in the interior of {r ≤ |�− α| ≤ R}, we have:

Ft ∩ Bε ∩ {|ψ1 − α| ≤ r} = Ft ∩ Bε ∩ {|�− α| ≤ r}

and:

Ft ∩ Bε ∩ {|ψ1 − α| ≤ R} = Ft ∩ Bε ∩ {|�− α| ≤ R}

Since � restricted to the Ft ∩ Bε is a trivial fibration over the disk Dr , we have:

Ft ∩ Bε ∩ {|ψ1 − α| ≤ r} = Ft ∩ Bε ∩ {|�− α| ≤ r} = (Ft ∩H ∩ Bε)×Dr .

We consider the restriction of ψ1 to Ft ∩Bε ∩ {r ≤ |�− α| ≤ R}. All the critical
points of this restriction are ordinary quadratic and there are μi ordinary quadratic
points for each critical point zi of the restriction of �, where μi is the Milnor number
at zi of the restriction of � to Ft . Now applying Morse theory to the restriction of
the function |ψ1 − α| to Ft ∩ Bε ∩ {r ≤ |� − α| ≤ R}, each critical point of ψ1
contributes to a Morse point of index dim Ft = n.

Computing the total number of critical points of the restriction of ψ1 to

Ft ∩ Bε ∩ {r ≤ |�− α| ≤ R},

we obtain that the total number is precisely the intersection number:
(
�f,� · V (f )

)
.

We have proved that Ft ∩Bε ∩{|�−α| ≤ R is obtained from (Ft ∩H ∩Bε)×Du

by attaching
(
�f,� · V (f )

)
n-handles.

It remains to prove that the manifold with corners Ft ∩ Bε ∩ {� ≤ R} is
diffeomorphic to Ft ∩ Bε . We leave this last assertion as an exercise to the reader.

6.8 The Carousel

In this section we focus on holomorphic functions (C2, 0) → (C, 0) and denote by
(X, Y ) the variables in C

2.

6.8.1 Carousel of One Branch

Suppose that the complex analytic function f ∈ C{X, Y } is an irreducible element
of the ring C{X, Y }. In this case recall that the germ of a complex plane curve (C, 0)

at the point 0 defined by f = 0 is called a complex branch.
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Suppose that f (0, Y ) = 0. Since we assume that (0, 0) is a singular point, there
is a convergent series (Puiseux series in X of the curve {f = 0} at the point (0, 0)):

ϕ(X1/n) ∈ C{X1/n}

with n > 1, such that f (X, ϕ(X1/n)) ≡ 0 and it is known that:

∏

ζ,ζn=1

(Y − ϕ(ζX1/n)) = αf (X, Y ),

where α is a function which does not vanish at (0, 0), i.e. α(0, 0) = 0.
We have the Puiseux exponents of f with respect to the variables X and Y , as

described in the following:

ϕ(X1/n) = P0(X)+ a1X
m1/n1 +P1(X1/n1)+ . . .+ ahXmh/n1...nh +Ph(X1/n1...nh )

where:

1. m1, n1 are relatively prime, . . ., mk, nk are relatively prime, and we have
n1 . . . nh = n;

2. P0 . . . Ph−1 are polynomials and Ph a series;
3. when k < h and Pk = 0 the degree of Pk divided by n1 . . . nk is less than

mk+1/n1 . . . nk+1 which is less than the valuation, i.e. the smallest degree, of
Pk+1 divided by n1 . . . nk+1, for 0 ≤ k ≤ h− 1, when Pk+1 = 0;

4. The quotient m1
n1

, . . . , mh

n1...nh
are called the Puiseux exponents of the Puiseux

series ϕ(X1/n);
5. The last Puiseux exponent mh/n1 . . . nh is less than the valuation of Ph divided

by n1 . . . nh, when Ph = 0.

Puiseux expansions give another structure near the singular point that we shall
call the carousel associated to the singularity.

Consider the line X = t where t = 0 and t is small enough.
The distribution of points in the intersection {X = t} ∩ {f (X, Y ) = 0} is the

following:

1. Let v0 be the degree of the term of lowest degree of ϕ(X1/n).
2. Consider α0Xv0 the term of ϕ(X1/n) of degree v0.
3. Let r0 be the radius 5|α0||t|v0 of the closed disk D0 in the line X = t centered

at the point (t, 0).
4. • If v0 is an integer, P0 is = 0 and the equation Y = P0 gives a non-singular

curve and D0 contains only one point of the curve Y = P0(X);
• otherwise v0 is the first Puiseux exponent m1/n1 of the series ϕ(X1/n) with

respect to the variables X and Y . In this case α0 = a1 and D0 contains n1
points of the curve with Puiseux expansion Y = a1X

m1/n1 .
5. Let us call D0 the disk which is, in the first case, centered at the unique point of

the curve Y = P0(x) contained in D0 with radius 2|α0||t|v0 , and in the second



366 D. T. Lê et al.

case the disk D0 is centered at (t, 0) with radius 2|a1||t|m1/n1 . Notice that in
both cases (D0 − D̊0)∩ {f (X, Y ) = 0} is empty and D0 − D̊0 is diffeomorphic
to an annulus.

6. Assume the number of Puiseux pairs h ≥ 1. In the second case, in the disk D0

we consider n1 disks D
j

1 , j = 1, . . . , n1, centered regularly on a circle centered

at the center of D0 with radius |a1||t|m1/n1 ; each disk D
j

1 has:

• radius r1 = 5|α1||t|v1 , where v1 is the lowest degree of P1 and α1tv1 is the
term of degree v1, when P1 = 0 ;

• radius r1 = 5|a2||tv1 , when there are h ≥ 2 Puiseux exponents, and P1 = 0,
so v1 = m2/n1n2 and α1 = a2;

• any small radius r1 > 0 if P2 = 0 and there is only 1 Puiseux exponent. We
assume that r1 is chosen so that the disks D

j

1 do not overlap.

7. Then, we define the disks Dj

1, 1 ≤ j ≤ n1:

• as the disks of radius r1/2 with the same center as D
j

1 for 1 ≤ j ≤ n1, when
P1 = 0 and there is only 1 Puiseux exponent;

• as the disks centered at the points of C1 ∩ {X = t}, where C1 is the curve
having Puiseux expansion ϕ1 = P0(X)+a1X

m1/n1 +P1(X
1/n1), with radius

2|α1||t|v1 if P1 = 0;
• as the disks centered at the points of C1 ∩ {X = t}, where C1 is the

curve given by the Puiseux expansion ϕ1 = P0(X) + a1X
m1/n1 , with radius

2|α1||t|m2/n1n2 , if P1 = 0 and h ≥ 2.

8. Let us suppose that h > k ≥ 1 and we have defined the disks D
i1,...,ik
k , with

1 ≤ ik ≤ nk , centered at the intersections of the disk D
i1,...,ik−1
k−1 with the curve

having Puiseux expansion:

Y = P0(X)+ a1X
m1/n1 + . . .+ Pk−1(Xmk−1/n1...nk−1)+ akX

mk/n1...nk =: ϕk

and with radii equal to 5|ak||t|mk/n1...nk .
9. Now let Di1,...,ik

k be the circle inside D
i1,...,ik
k with radius 2|ak||t|mk/n1...nk and

having as center the only point of the intersection of disk D
i1,...,ik
k with the curve

with Puiseux expansion:

Y = ϕk + Pk(Xmk/n1...nk ) (C)k

if Pk = 0. If Pk = 0, Di1,...,ik
k has the same center as the disk D

i1,...,ik
k with half

the radius.
10. Since h > k, the curve Ck+1 has k + 1 Puiseux pairs. Inside the disk D

i1,...,ik
k

we have nk+1 disks D
i1,...,ik+1
k contained in D

i1,...,ik
k and centered regularly on a
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circle having the same center as the disk D
i1,...,ik
k at the points of intersection of

the disk D
i1,...,ik
k with the following curve with k + 1 Puiseux pairs:

Y = P0(X)+ a1X
m1/n1 + . . .+ Pk(Xmk/n1...nk )+ ak+1Xmk+1/n1...nk+1 .

The radii are 5|αk+1|t|vk+1 where αk+1Xvk+1 is the term of:

Pk(Xmk/n1...nk )+ ak+1X
mk+1/n1...nk+1 .

of degree equal to the valuation of this sum.
11. We do the preceding construction until k = h − 1. Then we have nk disks

D
i1,...,ih
h inside Di1,...,ih−1

k of radius 5|αh||t|vh where αhXvh is the term of lowest
degree of the Puiseux expansion:

Ph−1(X1/n1...n+h−1)+ ahXmh/n1...nh .

Then the original curve f (X, Y ) = 0 intersects each of disks D
i1,...,ih
h in one

point which will be the center of the disk D
i1,...,ih
h such that D

i1,...,ih
h − D̊

i1,...,ih
h

is diffeomorphic to an annulus.

The preceding construction gives a special configuration of the points of

{f (X, Y ) = 0} ∩ {X = t}

which are contained in ∪k,1≤i1≤n1,...,1≤ih≤nhD
i1,...,ih
h .

Definition 6.8.1 The carousel of the branch {f (X, Y ) = 0} relatively to the
coordinate function X at the point 0 has the isotopy class of a geometric monodromy
of the locally trivial smooth fibration of {X = |t|} × D0 over the circle X = |t|
relatively to the intersection of the curve {f (X, Y ) = 0} with {X = |t|} ×D0.

In the case of a branch f (X, Y ) = 0 we can describe a geometric monodromy �

as follows:

1. Inside D0 − ∪1≤i1≤n1(D
i1
1 ), it is a rotation of angle 2πm1/n1.

2. Then, if h ≥ 2 the monodromy sends D
i1
1 − ∪1≤i2≤n2(D

i1.i2
2 ) to �(D

i1
1 −

∪1≤i2≤n2(D
i1.i2
2 )) and is given by a rotation of angle 2πm2/n2.

3. Finally the monodromy sendsDi1,...,ih−1
h−1 −∪1≤ih≤nh(D

i1,...,ih
h ) into �(D

i1,...,ih−1
h−1 −

∪1≤ih≤nh(D
i1,...,ih
h ) and is given by a rotation 2πmh/nh.

4. In the zones D
i1,...,ik
k − D̊

i1,...,ik
k which are annulus-like, one constructs � to fit

with the preceding construction.

We may call the map of D0 into itself obtained in this way an iterated rotation.
Then, the Carousel of the branch {f (X, Y ) = 0} relatively to the coordinate

function X at the point 0 is given by the isotopy class of an iterated rotation.
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6.8.2 Carousel of Curves with Several Branches

In the case of several branches the construction is a bit more complicated and
involves different levels of monodromy “speed”.

Let us consider (C1, 0), . . . , (Cr , 0) several complex analytic branches whose
reduced equations are respectively f1(X, Y ) = 0, . . . , fr (X, Y ) = 0.

We suppose that f1(0, 0) = . . . = fr (0, 0) = 0 and f1(0, Y ), . . . , fr (0, Y ) are
all complex analytic series = 0. We can apply simultaneously Puiseux theorem to
all the functions f1, . . . , fr with respect to the variables X and Y :

ϕ1(X
1/n(1)) = P0,1(X)+a1,1X

m1,1/n1,1+P1,1(X1/n1,1)+. . .+ah(1)X
mh(1)/n1,1...nh(1)

+Ph(1)(X
1/n1,1...nh(1) ) (P1)

. . .

ϕr(X
1/n(r)) = P0,r (X)+a1,rX

m1,r /n1,r +P1,r (X
1/n1,r )+ . . .+ah(r)X

mh(r)/n1,r ...nh(r)

+Ph(r)(X
1/n1,r ...nh(r) ) (Pr)

We order the Puiseux series by the degree of their term of lowest degree vi , i =
1, . . . , i = r . We assume that the ordering is:

v1 ≤ v2 ≤ . . . ≤ vr .

Then, among the series having the same degree v for the term of lowest degree,
consider the term of lowest degree aXv . Then we order the series so that the term
of lowest degree is bigger or smaller in absolute value.

The Puiseux series P1, . . . , Pr are ordered in such a way that if vi is the degree
of their term of lowest degree and aiX

v
i their term of smallest degree:

|a1||X|v1 = . . . = |aj1 ||X|v1 ≥ |aj1+1||X|v1 = . . .

≥ . . . = |ajk ||X|v1 > |ajk+1||X|v2 = . . .

with v1 > v2 > . . .. Then, proceeding by induction we have the following
description of the repartition of points of the intersection {X = t} ∩ {f1(X, Y ) =
0} ∩ . . . ∩ {fr(X, Y ) = 0} when t is sufficiently small.

1. Consider an annulus A1 which contains all the points of the intersection {X =
t} and the curves C1, . . . , Ci1 for which the terms of lowest degree of Puiseux
expansions have degree v1.
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By having t small enough all the points of the intersection of the annulus and
the curves C1, . . . , Ci1 are in a neighbourhood contained in A1 of the points
(t, a1tv1), . . . , (t, aik t

v1).
2. We define in this way a sequence of annuli A1, . . . , As bounded outside by circles

of radii Ri and inside by circles of radii ri and:

R1 > r1 > . . . > Rs > rs .

3. Now, the points of {X = t} ∩ Cj are distributed differently in the corresponding
Ai according to the fact the valuation vj of the Puiseux expansion of Cj is an
integer nj or a rational number rj

In the case vj is an integer, (t, aj tv) is a point in the line {X = t}.
In the case vj is a rational number rj = pj /qj we have qj points in the
corresponding Ai regularly distributed on the circle of radius |aj ||t|vj inside Ai .

Then:

Definition 6.8.2 The carousel of the complex analytic plane curve C1 ∪ . . . ∪ Cr

with respect to the coordinates X and Y at 0 has the isotopy class of a geometric
monodromy of the local trivial smooth fibration of {X = |t|} × D0 over the circle
X = |t| relatively to intersection of the curve C1 ∪ Cr with {X = |t|} ×D0 when t

is = 0 and small enough.

6.8.3 The General Concept of Carousel

In this section we shall give a general definition of carousel.
Let D be a disc and a smaller disc D0 with the same centre 0 and disjoint annuli

A1, . . . , Ak concentric with D and D0 and contained in the interior of D, such
that the outer radii r0, r1, . . . , rk of D0, A1, . . . , Ak and the inner radii of r ′i of Ai ,
1 ≤ i ≤ k, satisfy:

r0 < r ′1 < r1 < . . . < r ′i < ri < . . . < r ′k < rk.

Inside D0 and the annuli Ai , 1 ≤ i ≤ k, we consider �i points, 0 ≤ i ≤ k on a circle
Si centred at 0 inside the open disc D0 or the open annulus Ai . We suppose that
these �i points are regularly distributed on these circles Si . We assume that these
points are centres of discs Di,j inside D0 and Ai , 1 ≤ i ≤ k. For each i, 0 ≤ i ≤ k

these discs have the same radius and do not overlap.
We call elementary configuration this configuration of a punctured disc and

punctured annuli concentric with a disc containing them.
An elementary carousel is a map � from D−∪0≤i≤k,1≤j≤�iDi,j into itself such

that the restrictions of � to D0 − ∪�0
j=1D0,j and Ai − ∪�i

j=1Di,j , for 1 ≤ i ≤ k, are
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rotations by an angle 2π(ki/�i) where the integers ki and �i are relatively prime, for
0 ≤ i ≤ k, and the restriction to D − (D0 ∪k

i=1 Ai) is any map so that � is smooth.
By abuse of language we shall also call elementary carousel a map defined in an

obvious way from a punctured disc D − ∪0≤i≤k,1≤j≤�iDi,j into another punctured
disc D′ − ∪0≤i≤k,1≤j≤�iD

′
i,j with an isometric elementary configuration.

Examples The identity D → D is an elementary carousel. In this case k = 0 and
the discs Di,j are empty. This elementary carousel is called the trivial carousel.

The rotation D → D of angle 2πk0/�0 is also an elementary carousel with k = 0
and the discs Di,j empty.

Definition 6.8.3 One defines a carousel by induction. A 1-carousel is an elemen-
tary carousel where the discs Di,j are empty.

A 2-carousel �2 is given by an elementary carousel �1, discs D′
i,1 contained in

Di,1 and an elementary carousel defined on D′
i,1. The discs D′

i,1 generate a family
of discs (D′

i,j ) of the same size: the disc D′
i,2 is contained in the image Di,2 of Di,1

by the rotation of angle 2πki/�i and so on, D′
i,�i

is in D1,�i . The 2-carousel is given
by �1 on D − ∪0≤i≤k,1≤j≤�iDi,j , on D′

i,1 it is given by an elementary carousel
D′

i,1 → D′
i,2 which is the same for all the discs D′

i,j → D′
i,j+1, for 1 ≤ j ≤ �i − 1,

and D′
i,�i

→ D′
i,1. On Di,j − D′

i,j the 2-carousel is just an extension of the map
already defined such that the extension is smooth.

Suppose that we have defined a k-carousel �k. Then, �k is defined on:

D − ∪i1,...,ik ,jDi1,...,ik,j

and each disc Di1,...,ik,j is contained in an annulus Ai1,...,ik of some elementary
carousel, with the convention that Ai1,...,ik−1,0 is a disc of that elementary carousel.
In each disc Di1,...,ik,1 there is a disc D′

i1,...,ik ,1. In each of the images Di1,...,ik ,j of
Di1,...,ik,1 by the iterations of the rotation 2πki1,...,ik /�i1,...,ik of the annulus Ai1,...,ik ,
we have a disc D′

i1,...,ik ,j isometric to D′
i1,...,ik,1. Then, all the maps of D′

i1,...,ik,j →
D′

i1,...,ik,j+1, for 1 ≤ j ≤ �i1,...,ik − 1, and D′
i1,...,ik,�i1,...,ik

→ D′
i1,...,ik ,1 are the same

elementary carousel.
The process stops when the last elementary carousel added is the trivial one.

Then, we have a carousel.

Examples

1) Consider the elementary carousel given by a disc D containing a concentric disc
D0 and the identity on D − D0. Inside D0 consider a disc D′ and on D′ the
elementary carousel given by the rotation 2πk/�, where k and � are relatively
prime, which permutes the discs D1, . . . , D�.
This defines on D − ∪1≤i≤�Di a 2-carousel. Now, inside D1 consider a disc D′

1
and in each of the images D2, . . ., D� of D1 by iterating the rotation 2πk/�,
we suppose that we have discs D′

2, , . . . , D′
� isometric to D′

1. Then, we consider
the trivial carousel on the D′

i into D′
i+1, for i ≤ i ≤ � − 1, and the trivial
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carousel from D′
� into D′

1. In this way we have define a 3-carousel. Since the last
elementary carousel added is the trivial one, we have defined a carousel.
This carousel is the carousel of a curve of one Puiseux pair (k, �).

2) Let us do the same construction as in the first example before, however, instead
of considering the trivial carousel in D′

i , we consider the elementary carousel
defined by the rotation of 2πk′/�′ where k′ and �′ are relatively prime:

D′
i − ∪1≤j≤�′Dij → D′

i+1 − ∪1≤j≤�′Di+1,j ,

for 1 ≤ i ≤ �−1. Then, in each Dij we consider discs D′
ij isometric to the other

D′
l.k’s, for 1 ≤ l ≤ � and 1 ≤ k ≤ �′, and the trivial carousel on the D′

ij ’s, for
1 ≤ i ≤ � and 1 ≤ j ≤ �′.
This carousel is the carousel of a curve with two Puiseux pairs.

6.9 Some Theorems Where Carousels Are Used

6.9.1 The Geometric Monodromy of a Hypersurface

Let f : C
n+1 → C be a non-constant germ of a reduced analytic function.

In Proposition 6.2.16 we have shown that, for 1 ( ε ( δ > 0, we have a
fibration ϕ : Bε ∩ f−1(∂Dδ) → ∂Dδ . Since ∂Dδ is a circle S1, this fibration is
given by a diffeomorphism h : F := f−1(δ) → F that we called a geometric
monodromy. As we have mentioned, this diffeomorphism is not unique, but its
isotopy class is unique. However, any diffeomorphism in the isotopy class of a
geometry monodromy of ϕ allows to reconstruct ϕ.

In [38] the following theorem is proved using the carousel of the polar discrimi-
nant:

Theorem 6.9.1 Let f : U → C be a non-constant reduced analytic function
defined in a neighborhood U of 0 in C

n+1. Suppose that f has a critical point at 0
(not necessarily isolated). There is a geometric monodromy of the Milnor fibration
of f at 0 which does not have fixed point.

As a corollary we have a theorem of N. A’Campo from [1]:

Corollary 6.9.2 Let f : U → C be a non-constant reduced analytic function
defined in a neighborhood U of 0 in C

n+1 with a critical point at 0. Then the
Lefschetz number of the monodromy of f at 0 is zero.

Proof of the Corollary One knows that the Lefschetz number of a diffeomorphism
h of X into X is

∑
k(−1)kT race(hk) where T race(hk) is the trace of the linear

endomorphism induced by h on the k-th homology of X. Then there is a known
Theorem due to Lefschetz that if the diffeomorphism h has no fixed point, then its
Lefschetz number is 0 (see e.g. [23] p. 179). ��
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Proof of the Theorem The proof of the theorem uses in an essential way the polar
curve and the polar discriminant introduced above (see Theorem 6.7.3). For the sake
of understanding we repeat here what is needed for our proof. ��

Consider the germ of holomorphic map (f, �) : (Cn+1, 0) → (C2, 0) where � is
a general linear form. Then, the critical space of the germ of (f, �) is the germ union
of the critical locus of f and maybe a curve germ (�, 0) which is called the polar
curve when it is not empty.

In the case � is not empty the restriction of the germ (f, �) to � is finite at 0,
so by a Theorem of Remmert (see for instance, [53, S5, Chapter V]), the image is a
germ (�, 0) of curve in (C2, 0). The main observation is that, when df (0) = 0, the
curve � is tangent to the line C× {0} (see Proposition 6.7.5).

Now we proceed to proving Theorem 6.9.1. We make an induction on n. If n = 0,
the function f is locally at 0 isomorphic to zk , then f is singular at the point 0 if
and only if k ≥ 2. The Theorem is obvious in this case.

Now let n ≥ 1. We may make the induction hypothesis that, for any q ≤ n − 1,
there is a geometric monodromy of g : (Cq+1, 0) → (C, 0) at 0 having no fix point
if 0 is a critical point of g. Let us consider a general linear form � of Cn+1 and the
corresponding germ:

(f, �) : (Cn+1, 0) → (C2, 0).

Let us assume that the corresponding polar curve � is not empty. According to what
we prove above the polar discriminant � is tangent at 0 to the line C× {0}.

Since the components of � are tangent to C × {0}, by denoting (t, u) the
coordinates of C2 the rotations inside the annuli of the carousel of � with respect
to the coordinates (t, u) (see Definition 6.8.2) have angles < 2π and between the
annuli the mapping is going increasingly from an angle to another one. Therefore,
the only possible fixed point of a geometric monodromy of f−1(t) ∩ Bε would lie
in f−1(t)∩ {� = 0} (see [40]). By induction in the generic hyperplane section there
is a geometric monodromy which has no fixed point.

When the polar curve � is empty a geometric monodromy of the fibration ϕ is a
product of a geometric monodromy of the restriction of ϕ to a general hyperplane
section by the identity of a disc centered at 0. Then, by induction we know that there
is a geometric monodromy of the restriction of ϕ to a general hyperplane section
which has no fixed point if 0 is a critical point.

6.9.2 The Monodromy Theorem

There is an important theorem concerning the monodromy of the Milnor fibration
of a complex analytic function near a critical point.
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Theorem 6.9.3 Let f : (Cn, 0) → (C.0) be a germ of complex analytic function at
a point 0. Then the eigenvalues of the monodromy of the local Milnor fibration of f

at 0 are roots of unity.

In fact this theorem is true for any germ of function f : (X, 0) → (C, 0) and the
proof uses the notion of carousels (see [44]).

6.10 Diffeomorphism Type of the Milnor Fiber

Milnor noticed in [65, Theorem 6.6] that in the isolated singularity case, the fact that
the fiber Ff has the homotopy type of a bouquet of n-spheres, together with Smale’s
h-cobordism theorem, actually imply that in high dimensions Ff is diffeomorphic
to a 2n-ball with μ n-handles attached, where μ is the Milnor number of f which
is equal to the intersection number:

μ = dimC

On+1,0

Jac f
,

where On+1,0 is the local ring of germs of holomorphic functions on C
n+1 at 0;

Jac f is the Jacobian ideal, generated by the derivatives
(
∂f /∂z0, . . . , ∂f /∂zn

)
.

This claim also holds easily for n = 1. Milnor conjectured that the same
statement held for n = 2 [65, last phrase of p.58]. This was proved by Lê and
Perron in [50] by a different method that works in all dimensions, in the vein of
Sect. 6.7. That is the first statement in the theorem below, and it is now an immediate
consequence of the above Theorem 6.7.8:

Theorem 6.10.1 Let f : (Cn+1, 0) → (C, 0) be a holomorphic map-germ and let
Ff = f−1(0) ∩ Bε be its Milnor fiber. If f has an isolated critical point, then:

• Ff has the homotopy type of a bouquet
∨

S
n of spheres of middle dimension, and

it is actually diffeomorphic to a closed ball B2n to which we attach μ handles of
index n.

• There is in Ff a polyhedron P of middle dimension which is a deformation
retract of Ff and, setting V := (f−1(0)∩Bε), there is a continuous (collapsing)
map Ff → V that carries P into 0 and is a homeomorphism in the complement
of P . Hence the collapsing map exhibits the Milnor fiber as being a topological
resolution of the singularity of V .

Recall that Theorem 6.3.1 says that for the Pham-Brieskorn polynomials, the
Pham join is a deformation retract of the Milnor fiber. The second statement in the
Theorem above extends that construction to all isolated hypersurface germs. Here,
by a polyhedron P we mean a compact topological space that is triangulable.

Proof The second statement of Theorem of 6.10.1 is given in [43] with a sketch
of its proof. A complete proof is given in [48]. It is worth saying that the same
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construction of a vanishing polyhedron works for certain families of complex line
singularities (see [63]) and also for certain families of real analytic singularities (see
[8]).

The proof of the first statement is very technical. So we shall only give here a
hint of the proof which make use of the polar curve and polar discriminant.

Since (Cn+1, 0) is non-singular, Theorem 6.7.1 shows that the polar curve �� of
f with respect to the linear form �, when � is generic, is reduced and �� coincides
with set of the points of U) where (f, �) is not submersive and where U is a small
neighborhood of 0 in C

n+1. Moreover, if the neighborhood U0 of (0, 0) in C
2 is

small enough, (f, �) induces a locally trivial fibration:

(f, �)−1(U0 −��) ∩ U → U0 −��

where (��, 0) is the image of (��, 0) by (f, �).
From Theorem 6.7.8 we know that, if ε > 0 is small enough, with t , such that

ε ( |t| > 0, the Milnor fiber {f = t} ∩Bε is obtained from a tubular neighborhood
of {f = t} ∩ {� = 0} by attaching μ(f )+ μ(f, �) n-handles.

We are going to prove here that in this case of a hypersurface with isolated
singularity at 0, the Milnor fiber is obtained from a ball Bn by attaching μ(f ) n-
handles.

The idea of the proof is quite simple. Let us choose U0 to be the open ball B̊
2
δ

with δ > 0 small enough. Let us choose u0 = 0 small enough such that the number

of points {� = u0} ∩ �� ∩ (f, �)−1(B̊
2
δ ) equals the multiplicity m(0,0)(��) of �� at

(0, 0), since (f, �) induces an injective map of �� ∩ (f, �)−1(B̊
2
δ ) ∩ Bε into B̊

2
δ and

according to Proposition 6.7.5 the line {u = u0}, where u is the second coordinate of

C
2 is transverse to ��, furthermore all the points of {� = u0}∩�� lie in (f, �)−1(B̊

2
δ ).

Now, the Milnor fiber {� = u0} ∩ Bε of � at 0 is diffeomorphic to an n-ball Bn.

Consider in B̊
2
δ the intersection of the line {u = u0}. Choose a disc D× {u0} in this

line which contains all the intersection points {u = u0} ∩�� ∩ B̊
2
0. It is possible if

u0 = 0 is small enough and the disc D× {u0} lies in B̊
2
δ (Fig. 6.1).

Then, one notices that (f, �)−1(D×{u0})∩Bε is diffeomorphic to a Milnor fiber
of � at 0, i.e., to a ball Bn.

We apply the swing to the disc D×{u0} (see Sect. 4 of [47]) into the line {τ = t}
where t is small enough. It gives a dislike domain {t}×D′ which intersects ��∩ B̊2

δ

in m(0,0)(��) points.To simplify we shall assume that the point (t, u0) belongs to
{t} × D̊′

Then choose a disc {t} × D0 centered at (t, 0) and contained in {τ = t} ∩ B̊
2
δ

such that the cardinality of ({t} × D0) ∩ �� is equal to the intersection number
({τ = 0}.��)(0,0).

We proceed like in the proof of Theorem 6.7.8. First we must find a Morse
function between (f, �)−1({t} ×D′) ∩ Bε and (f.�)−1({t} × D0) ∩ Bε .
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Fig. 6.1 The arrows show
the swinging of a point on
u = u0 into a point on τ = t .
This is realized by a vector
field whose lifting gives the
swinging of the attached cells
or the attached handles

u
0

t

u

(t,u )0

We notice that D0 − D̊′ is diffeomorphic to Db − D̊a where Da and Db are discs
centered at 0 with radii a and b, b > a > 0:

ϕ : D0 − D̊′ �→ Db − D̊a

On the annulus Db − D̊a we have a natural function which is the distance ρ to the
origin. The composition ρ ◦ ϕ defines a smooth function on D0 − D̊′.

The composition ρ ◦ ϕ ◦ (f, �) induces on (f, �)−1({t} × D0) ∩ Bε a Morse
function θ :

Lemma 6.10.2

1. θ−1(a) = (f, �)−1({t} ×D′) ∩ Bε and θ−1(b) = (f, �)−1({t} ×D0) ∩ Bε;
2. the critical values ≤ b of θ are the images of the critical points of (f, �) in

(f, �)−1({t} × D0) by ρ ◦ ϕ ◦ (f, �);
3. Since the critical points of (f.�) in Bε − f−1(0) are ordinary quadratic, all the

critical points of θ are Morse points of indices n; ��
Exercise 6.10.3 Prove Lemma 6.10.2. ��

From Lemma 6.10.2, by using Morse theory we obtain that {θ ≤ b} =
(f, �)−1({t} × D0) ∩ Bε is obtained from {θ ≤ a} = (f, �)−1({t} × D′) ∩ Bε

by attaching n-handles.
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The number of handles is the number of critical points of θ in {θ ≤ b}−{θ ≤ a}.
This number is the difference between the intersection number (V (f ).��)(0,0) and
the number of critical points of the restriction of (f, �) to {f = t} ∩ (f, �)−1({t} ×
D′)∩Bε . By the swing this last number is the multiplicity m(0,0)(��). An algebraic
computation gives:

(V (f ).��)(0,0) = μ(f )+ μ(f, �)

(see Theorem 6.7.8) and m(0,0)(��) = μ(f, �). This gives a hint of the proof of
Theorem 6.10.1. ��

Theorem 6.7.8 also leads naturally to the definition of the Lê numbers, introduced
by Massey in [56, 59].

We know from [65, Theorem 5.1] that the Milnor fiber Ff of an arbitrary
holomorphic map-germ (Cn+1, 0) → (C, 0) has the homotopy type of a finite CW-
complex of middle-dimension n. This also follows from [2] since Ff is a Stein
manifold and, perhaps moving the origin 0 slightly if necessary, the square of the
function distance to 0 is a strictly plurisubharmonic Morse function on Ff , so one
has severe restrictions on the possible Morse indices (see Theorem 6.4.7 above).

If we further assume that f has an isolated critical point at 0, then we already
know, from Theorem 6.10.1, that the Milnor fiber Ff is diffeomorphic to a 2n-
ball with μ n-handles attached where μ = μ(f ) is the Milnor number of f (cf.
Sect. 6.10). As we said before, this was proved by Milnor for n = 2 and by
Lê-Perron in general using the technique discussed previously, in Sect. 6.7, i.e.,
considering an auxiliary linear function � : C

n+1 → C, which is “sufficiently
general” with respect to f . The two maps together determine a map-germ

ϕ = (f, �) : (Cn+1, 0) → (C2, 0) ,

and the Milnor fiber of f corresponds to the inverse image of an appropriate line in
C

2. This allows us to reconstruct Ft by looking at the slices determined by the level
hyperplanes of � as described in Theorem 6.7.8.

This brings us to the theory of “polar varieties” developed by Bernard Teissier
and Lê Dũng Tráng in the 1970s and briefly discussed in Sect. 6.7.

Recall one has the first the relative polar curve of f with respect to a linear form,
�1

f,� (see for instance [32, 37, 39, 74–76]). Given f and � as above, as a set the curve

�1
f,� is the union of those components in the critical set of (f, �) which are not in �f ,

the critical points of f . In other words, assume we have coordinates (z0, · · · , zn)

so that the linear function is � = z0 is “sufficiently general”. Then the critical locus
of (f, �) is V (∂f /∂z1, · · · , ∂f /∂zn), the set of points where ∂f /∂zi = 0 for all
i = 1, · · · , n. Now write the cycle represented by V (∂f /∂z1, · · · , ∂f /∂zn) as a
formal sum over the irreducible components:

[
V
( ∂f

∂z1
, · · · ,

∂f

∂zn

)] =
∑

ni [Vi]
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Then �1
f,�, as a cycle, is defined by:

�1
f,� =

∑

Vi��f

ni [Vi] .

More generally we may consider a linear functional Cn+1 → C
r . This gives rise

to a polar variety relative to f , determined by the points of non-transversality of the
fibers of � and f . Massey showed that this gives rise to certain local analytic cycles,
that he called the Lê cycles, that depend on the choice of the linear functional �,
but they are all equivalent when the form is “general enough”. These cycles encode
deep topological properties of the Milnor fibration. Let us be more precise.

Let U be an open subset of Cn+1 containing the origin, f : (U, 0) → (C, 0) the
germ of a complex analytic function, z = (z0, · · · , zn) a choice of linear coordinates

in C
n+1 and �(f ) = V

(
∂f
∂z0

, . . . ,
∂f
∂zn

)
the critical set of f. To define the Lê cycles

we first need to define the relative polar cycles, which are associated to the relative
polar varieties: For each k with 0 < k < n, the polar variety �k

f,z is the analytic

space V
(

∂f
∂zk

, . . . ,
∂f
∂zn

)
/ �(f ), where X/Y means the analytic closure of X − Y

in the sense of [13, p. 41]). Hence the analytic structure of �k
f,z does not depend on

the structure of �(f ) as a scheme, but only as an analytic set. At the level of ideals,

�k
f,z consists of those components of V

(
∂f
∂zk

, . . . ,
∂f
∂zn

)
which are not contained in

the set �(f ). Massey denotes by [�k
f,z] the cycle associated with the space �k

f,z (see
[59, p. 9]).

Then, for each 0 < k < n , Massey defines the k-th Lê cycle �k
f,z of f with

respect to the coordinate system z as the cycle:

�k
f,z :=

[

�k+1
f,z ∩ V

(
∂f

∂zk

) ]

− [ �k
f,z ].

If a point p = (p0, · · · , pn) ∈ U is an isolated point of the intersection of �k
f,z

with the cycle of V (z0 − p0, · · · , zk−1 − pk−1), then the Lê number λk
f,z(p) is the

intersection number at p:

λk
f,z(p) := (�k

f,z · V (z0 − p0, . . . , zk−1 − pk−1) )p .

It is proved in [58, Theorem 7.5] (see also [59, Theorem 10.18]) that for a
generic choice of coordinates, all the Lê numbers of f at p are defined and they
are independent of the choice of coordinates. Hence these are called the (generic)
Lê numbers of f at p.

We consider now a holomorphic map-germ f : (Cn+1, 0) → (C, 0). We denote
the generic Lê cycles by �k

f,�(0).
If the singularity is isolated, then there is only one generic Lê number and it

coincides with the Milnor number. Massey’s theorem (see [59, Theorem 3.3] or [60,
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Theorem 3.1]) tells us how to build up the Milnor fiber by successively attaching
handles of various dimensions. This is the described in the theorem below.

Theorem 6.10.4 Let f : (Cn+1, 0) → (C, 0) be a holomorphic map-germ and let
Ff be its Milnor fiber.

• If the complex dimension s of its critical set is s ≤ n− 2, then Ff is obtained up
to diffeomorphism, from a 2n-ball by successively attaching λn−k

f,� (0) k-handles,

where n− s ≤ k ≤ n and λn−k
f,� (0) is the (n− k)th Lê number.

• If the complex dimension of its critical set is s = n−1, then Ff is obtained up to
diffeomorphism, from a real 2n-manifold with the homotopy type of a bouquet of
λn−1

f,� (0) circles, by successively attaching λn−k
f,� (0) k-handles, where 2 ≤ k ≤ n.

The proof of this remarkable theorem is based on Massey’s papers [56, 57].

6.11 A General Fibration Theorem

We now let X be an arbitrary complex analytic subset of an open neighbourhood U

of the origin 0 in C
N . Let f : (X, 0) → (C, 0) be holomorphic and set V = f−1(0).

We have seen in Proposition 6.2.9 and Theorem 6.4.1 that under the hypothesis
X − f−1(0) is non-singular we can define a local smooth fibration associated to f .

In this section we do not make any assumption on X nor on the holomorphic
function germ f : (X, 0) → (C, 0). A general fibration theorem will be given.

Let us recall first well-known material about stratified analytic spaces (see e.g
[83] sections 18 and 19).

Let X be a subset of a smooth manifold M . A stratification of X of is a locally
finite partition {Sα} of X into smooth, connected submanifolds of M (called strata)
which satisfy that if Sα and Sβ are strata with Sα ∩ S̄β = ∅, then Sα ⊂ S̄β . When M

is a real analytic manifold, the stratification {Sα} is real analytic if all the strata are
real analytic submanifolds whose closure is semianalytic. Analogously, when M is
a complex manifold, the stratification {Sα} is complex analytic if all the strata are
complex submanifolds whose closure is complex analytic. Along this chapter, we
will assume that all the stratifications are analytic (either real or complex, depending
on the context), unless otherwise specified.

Now consider a triple (y, Sα, Sβ), where Sα and Sβ are strata of X with y ∈ Sα ⊂
S̄β . We say that the triple (y, Sα, Sβ) is Whitney regular if it satisfies the Whitney
(b) condition: every limit of secants is contained in the limit of tangent spaces. More
precisely, we may assume that the germ (S̄β , y) is embedded in (CN, y), then for
every sequence {xn} ⊂ Sβ converging in C

N to y ∈ Sα such that the sequence
of tangent spaces TxnSβ converges to a subspace T ⊂ C

N , and every sequence
{yn} ⊂ Sα converging to y ∈ Sα such that the sequence of lines (secants) lxiyi from
xi to yi converges to a line l, one has:

l ⊂ T .
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The stratification {Sα} of X is Whitney regular (also called a Whitney stratifi-
cation) if every triple (y, Sα, Sβ) as above, is Whitney regular. The existence of
Whitney stratifications for every analytic space X was proved by Whitney in [83,
Theorem 19.2] for complex varieties, and by Hironaka [25] for real and complex
analytic spaces. In fact, every stratification can be refined to become Whitney
regular.

In Sect. 6.2 we proved the existence of Milnor balls when X has an isolated
singularity. This actually holds in full generality (see [6]):

Theorem 6.11.1 Let X be a real analytic space in some R
N , 0 a point in X and

S := {Sα} a Whitney stratification of X. Assume for simplicity that {0} is a point-
stratum. Then there exists ε > 0 sufficiently small, such that:

1. For each ε′ such that ε ≥ ε′ > 0 one has that the sphere Sε′ in R
N centered at 0

with radius ε′ intersects transversally every stratum Sα that has 0 in its closure;
and

2. For each ε′ as above, there are homeomorphisms of pairs (Sε, X ∩ Sε) ∼=
(Sε′, X∩Sε′) and (Bε, X∩Sε) ∼= Cone(Sε, X∩Sε), where Bε is the ball bounded
by Sε.

Hence one has that the topology of the pair (Sε, X ∩ Sε) does not depend on the
choice of ε provided this is small enough.

Definition 6.11.2 Every sphere Sε (or ball Bε) as above is called a Milnor sphere
(or ball) for X at 0, and the intersection LX,0 := X∩Sε is the link of X at the given
point 0.

When it is clear what the point 0 is, for simplicity we denote the link just by LX.
The proof of Theorem 6.11.1 mimics what we did in the isolated complex

singularity case, now using Whitney regularity. However notice that we obtain a
continuous vector field which is integrable.

In fact Whitney’s condition (b) implies that if (zn) is a sequence of points in a
Whitney stratumSα of X which tends to 0, and we consider a sequence (Tzn(X)) of
tangent spaces of X at zn, which has a limit T and the sequence of lines l0,zn has a
limit �, then we have:

� ⊂ T .

This allows us construct on Sα a vector field vα with no singularities, and such
that:

i) At each point z ∈ Sα it is tangent to Sα , transverse to the sphere centered at 0
and passing through z, pointing outwards; and

ii) it extends to a continuous vector field in the ambient space, with a unique
singular point at 0.

We now observe that, as shown by Mather in [62], the Whitney condition (b)
implies Whitney’s condition (a): given a sequence (zn) of points in a Whitney
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stratum Sα of X which tends to a given point x1 in some stratum Sβ , and such that
the sequence (Tzn(X)) of tangent spaces of X at zn has a limit T , then T contains
the tangent space of Sβ at x1.

This implies that the vector field vα that we constructed on Sα , extends to a
continuous vector field in a neighbourhood of Sα in R

N in such a way that it is
transversal to every sufficiently small sphere centered at 0 and it is a stratified vector
field, i.e., at each point it is tangent to the corresponding stratum.

We may now use a partition of unity to glue these vector fields on the various
strata that contain xo in their closure, to obtain a continuous vector field ξ on a
neighborhood of 0 in R

N , such that it is stratified, with an isolated zero at 0 and it
is radial, i.e., it is transversal to every sufficiently small sphere around xo, pointing
outwards.

Doing this with more care (see for instance [80]) we can furthermore assume
that the vector field ξ actually is integrable. Then the integral lines of ξ yield the
homeomorphisms stated in Theorem 6.11.1.

In the case the singularities of f are not isolated, there is a fibration theorem
similar to Proposition 6.2.9.

From now on we assume again that X is complex analytic space with a singularity
at, say, 0 and f : (X, 0) → (C, 0) is a holomorphic function with a possibly non-
isolated singularity at 0.

We have the following general fibration theorem from [40]:

Theorem 6.11.3 Let X be a complex analytic space with a possibly non-isolated
singularity at 0 and f : (X, 0) → (C, 0) a non-constant holomorphic function.
Then there is ε > 0 small enough and δ > 0 such that ε ( δ > 0, so that:

X ∩ Bε ∩ f−1(D∗δ ) → D
∗
δ

is a locally trivial topological fibration.

The proof of this theorem is essentially like the proof of Theorem 6.4.1 but we
now use Hironaka’s Theorem 6.4.5 combined with the first Thom-Mather Isotopy
Lemma, as we explain below.

In fact, on the one hand, given X and f as above, we know from the theorem
above that there is ε > 0 small enough and δ > 0 small enough with respect to
ε0 > 0, so that Bε0 is a Milnor ball for both X and V := f−1(0). Then, let (Tβ)

be a Whitney regular stratification of X ∩ B̊ε0 . By Hironaka’s theorem 6.4.5 one
can refine this stratification into a stratification of the mapping induced by f from
X ∩ B̊ε0 ∩ f−1(D̊δ0) into D̊δ0 , where the strata of D̊δ0 are D̊δ0 − {0} and {0} such
that the stratification (Sα) of X ∩ B̊ε0 ∩ f−1(D̊δ0) is Whitney regular and satisfies
Af condition (see Definition 6.4.4). Considering the Milnor ball Sε , ε0 > ε > 0,
transverse to all the strata Sα which contain 0 and its closure, the restriction of every
fiber f−1(t) to each of these strata Sα , with δ ≥ |t| > 0 intersects transversally the
boundary sphere Sε = ∂Bε .
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We leave as an exercise a generalization of Lemma 6.2.6 to the case of a
restriction of f to an analytic stratum Sα .

The first and second Thom-Mather isotopy lemmas were conjectured by Thom
and proved by Mather. These are stated in [62, Section 11], where the first of these
was proved. This can be stated as follows:

Theorem 6.11.4 (First Thom-Mather Isotopy Lemma) Let A be a locally closed
subset in a smooth manifold M which is equipped with a Whitney stratification S for
which A is a union of strata. Let B be a manifold and f : M → B a differentiable
function such that for each stratum Sα in A satisfies that the restriction f |Sα is a
submersion and its restriction to Sα ∩ A is proper. Then:

f |A : A −→ B ,

is a topologically locally trivial fibration in the stratified sense. That is, for each
b ∈ B, there exist a neighbourhood U of b in B and a homeomorphism ((f−1(b)∩
A)× U) ∼= (f−1(U) ∩ A) that carries strata into strata.

Theorem 6.11.4 can be regarded as an extension of Ehresmann’s fibration lemma
to the case of singular varieties. Using Theorem 6.11.4 similarly to the way we used
Ehresmann Lemma in Sect. 6.4, we arrive at Theorem 6.11.3.

Remark 6.11.5 Just as in the isolated singularity case described in Sect. 6.4, one
has also two types of fibrations in the general setting envisaged here: one as in
Theorem 6.11.3 and another on the link of LX (minus the link of f ) with projection
map f/|f |. That these two fibrations are equivalent is outlined in [40] and a
complete proof is given in [9] (see also [71]). In fact one has from [9, Theorem
2] and its proof, that given X and f as in Theorem 6.11.3, and a Milnor ball Bε ,
there is a locally trivial fibration � : Bε−f−1(0) → S

1 which has the two previous
fibrations as sub-fibrations, and one can deform the fibers of one of these into the
fibers of the other fibration along the fibers of �.

It is of course interesting to look at the topology of the Milnor fiber Ff of a
holomorphic map germ f as in Theorem 6.11.3. The first step in that direction was
Theorem 6.6.1 by H. Hamm in [20] (see also the paper of Lê in [42]), proving that
if (X, 0) is an complex analytic isolated complete intersection singularity germ and
f has an isolated singularity at 0, then Ff has the homotopy type of a bouquet of
spheres of middle dimension. Hamm’s theorem was improved by Lê in [45] relaxing
the conditions on X: its germ at 0 needs to be a local complete intersection but it
may have a possibly non-isolated singularity at 0. If f has an isolated singularity at
0 with respect to some Whitney stratification, then Ff has the homotopy type of a
bouquet of spheres of middle dimension. The proof uses the techniques introduced
in Sect. 6.7.

The next step is also due to Lê in [46], allowing the ambient space X to be
more general, not necessarily a complete intersection. He proved that if (X, x) is an
equidimensional analytic germ and its rectified homotopical depth rhd(X, 0) (see
[22, Definition 1.1 and Theorem 1.4]) equals its dimension and if f has isolated
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singularity in the stratified sense, then the fiber Ff has the homotopy type of a
bouquet of spheres of middle dimension.

Later, D. Siersma in [72] proved that if the germ (X, 0) is an isolated singularity
(no condition on the rhd(X, 0)), but the singularity is isolated), its dimension is
n = 3 and f has an isolated singularity at 0, then Ff has the homotopy type of the
wedge of the complex link Fl with a bouquet of spheres of middle dimension:

Ff

ht� Fl ∨
∨

S
n−1 ,

where Fl is the intersection of X with a general hyperplane section in an ambient
C

N passing near 0.
In the same paper [72], Siersma conjectured a general bouquet theorem, which

was proved by M. Tibăr in [78]:

Theorem 6.11.6 Let f : (X, 0) → (C, 0) be a holomorphic function on a reduced
complex analytic germ (X, 0) with dim(X, 0) = n, n > 2. Let S = {Sα}α∈A be a
Whitney stratification of (X, x) for which f has an isolated singularity at 0. Then
the Milnor fiber Ff has the homotopy type of a bouquet of repeated suspensions of
complex links of strata.

We refer to Tibar’s paper for the precise statement of this theorem and its proof,
which uses the carousel method explained previously.

6.12 Two Open Problems

6.12.1 Lê’s Conjecture

In the Problems Section of [81], it appears a long standing open problem, which,
according to the first named author, was originally stated by M. Oka as follows:

Conjecture 6.12.1 Let (X, 0) be a surface in (C3, 0). If the link of (X, 0) is
homeomorphic to a sphere, then (X, 0) is the total space of a Whitney equisingular
family of irreducible plane curves.

This question was reformulated by the first named author in terms of the
injectivity of a holomorphic map germ from (C2, 0) to (C3, 0). The following is
known as Lê’s Conjecture:

Conjecture 6.12.2 If f : (C2, 0) → (C3, 0) is holomorphic and injective, then f

has rank ≥ 1 at 0.

Though Lê’s conjecture has been intensively studied for the last 30 years, at the
moment there are no general proof nor counterexample. An attempt to prove the
conjecture in a more general version for maps (Cn, 0) → (Cn+1, 0) but with some
genericity restrictions was made by Nemethi in [67]. But Keilen and Mond found a
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gap in the proof which cannot be repaired (see [29]). A proof of Lê’s Conjecture for
a particular case of surfaces in (C3, 0) is due to Luengo and Pichon [55] and also
Bobadilla has given a reformulation of the conjecture in terms of families of plane
curves [12].

We prove here that Conjectures 6.12.1 and 6.12.2 are in fact equivalent, which is
not obvious at all. Assume first that Conjecture 6.12.1 is true and let f : (C2, 0) →
(C3, 0) be holomorphic and injective. We first observe that f is a finite map and
hence, its image (X, 0) is an irreducible surface in (C3, 0) by the finite mapping
theorem. Moreover, the real analytic function ρ = ‖f ‖2 satisfies that ρ−1(0) = {0},
so ρ−1(ε) = f−1(Sε) is homeomorphic to S

3, for ε > 0 small enough. Since f is
injective, f (f−1(Sε)) = X∩Sε is also homeomorphic to S

3. By Conjecture 6.12.1,
(X, 0) is the total space of a Whitney equisingular family of irreducible plane curves.
That is, we can choose coordinates in (C3, 0) such that for each t ∈ C, Yt = (C2 ×
{t}) ∩ X is a reduced curve and μ(Yt , 0) is independent of t (when considered as a
plane curve in C

2 × {t}).
This also implies that (X, 0) is a δ-constant family of plane curves. By a theorem

of Lê, Lejeune and Teisser [52], the family (X, 0) admits a normalization in family,
that is, there exists a normalization map n : (C2, 0) → (X, 0) such that such that for
each t ∈ C, nt (s) := n(s, t) is the normalization map of Yt . In particular, n is written
as n(s, t) = (n1(s, t), n2(s, t), t) and it has rank≥ 1 at the origin. On the other hand,
the restriction f : (C2, 0) → (X, 0) is also a normalization map. By the uniqueness
of the normalization, there exists a biholomorphism ϕ : (C2, 0) → (C2, 0) such that
n ◦ ϕ = f . By the chain rule, f also has rank ≥ 1 at the origin.

Conversely, assume now that Conjecture 6.12.2 is true and let (X, 0) be a surface
in (C3, 0) whose link is homeomorphic to S

3. Since the link of (X, 0) is connected,
(X, 0) is irreducible and it has a normalization map n : (X, 0) → (X, 0). By
definition, the normalization map is generically injective, but we will prove that
in this case, it is in fact injective. If not, we would find analytic arcs x(t) and y(t) in
X with x(0) = y(0) = 0 and z(t) in X with z(0) = 0 such that n(x(t)) = n(y(t)) =
z(t) for all t and x(t) = y(t) for all t = 0. On one hand, the hypothesis on (X, 0)

implies that X is a topological manifold in a neighbourhood of z(t) and thus X is
irreducible at z(t). On the other hand, the map-germs n : (X, x(t)) → (X, z(t)) and
n : (X, y(t)) → (X, z(t)) are both finite, so they must be both surjective. But this
would imply that n is not generically injective, giving a contradiction. It follows that
n : (X, 0) → (X, 0) is injective and hence, a homeomorphism.

The real analytic function r = ‖n‖2 : (X, 0) → (R, 0) defines 0 in X in the sense
of [54, (2.3)] and hence r−1(ε) = n−1(Sε ∩X) is diffeomorphic, for a small enough
ε > 0, to the link of X at 0 with respect to the Euclidean distance, by [54, (2.5)]. In
particular, the link of (X, 0) is also homeomorphic to S

3. By Mumford’s Theorem
[66], (X, 0) is smooth and there exists a biholomorphism ϕ : (X, 0) → (C2, 0).
Let f : (C2, 0) → (C3, 0) be the map f = i ◦ n ◦ ϕ−1, where i is the inclusion
map of (X, 0) into (C3, 0). This map is injective, so f has rank ≥ 1 at the origin,
by Conjecture 6.12.2. We choose coordinates in (C2, 0) and (C3, 0) such that f is
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written in the form f (s, t) = (f1(s, t), f2(s, t), t). If f has rank 2, then (X, 0) is
smooth. So we can assume that f has rank 1 and that f1, f2 ∈ m2

2.
The restriction f : (C2, 0) → (X, 0) is the normalization map and for each

t ∈ C, ft (s) := f (s, t) is also the normalization of the reduced plane curve
Yt = (C2 × {t}) ∩ X. That is, we have a normalization in family and hence, the
family is δ-constant, by the theorem of Lê, Lejeune and Teisser [52]. Therefore,
δ(Yt ) is independent of t , where

δ(Yt ) :=
∑

x∈S(Yt )

δ(Yt , x),

and S(Yt ) is the singular set of Yt . Moreover, all the curves Yt are irreducible at any
point. By Milnor formula,

μ(Yt ) :=
∑

x∈S(Yt )

μ(Yt , x) =
∑

x∈S(Yt )

2δ(Yt , x) = 2δ(Yt ).

Hence, μ(Yt ) is also constant and we denote this number by μ0.
Let H = 0 be the reduced equation of (X, 0) and let ht (z1, z2) := H(z1, z2, t),

so that ht = 0 is the reduced equation of Yt . Let S(ht ) be the singular set of ht . For
t = 0, μ(h0, 0) = μ(Y0, 0) = μ(Y0) = μ0 and for t = 0,

umx∈S(ht)μ(ht , x) = μ0 = μ(Yt ) =
∑

x∈S(ht )∩Yt

μ(ht , x).

Thus, for all x ∈ S(ht ), ht (x) = 0. By a result of Gabrielov [14] and Lê [34],
this implies that ht has only one singularity, that is, S(ht ) = S(Yt ) = {0}, with
μ(Yt , 0) = μ0. Therefore, the family is Whitney equisingular.

6.12.2 Lê-Ramanujam

In the 1960s Zariski introduced the concept of equisingularity. This refers to a
relation of equivalence which formalizes the intuitive idea of singularities of “the
same type” in some sense. Lê-Ramanujam’s theorem in [51] fits within that general
framework. This states that for families of hypersurfaces of dimension = 2 and with
isolated critical point, the invariance of the Milnor number implies (and therefore is
equivalent to) the invariance of the topological type. To be precise:

Theorem 6.12.3 (Lê-Ramanujam) Consider an analytic family {ft } : (Cn+1, 0)

→ (C, 0) of germs of holomorphic functions with t in the unit disc d in C, each
having an isolated critical point at 0. If n = 2 and the {ft } have constant Milnor
number at 0, then, for any t , there is a Milnor ball Bεt for ft = 0 at 0, such that all
the pairs (Bεt , f−1

t (0) ∩ Bεt ) are homeomorphic.
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The proof of this theorem shows that under the above conditions, the links Lt

of the ft are all h-cobordant. Then we know from Smale’s theorem in [73] that for
n > 2 the links actually are diffeomorphic, and this leads to the stated theorem. The
case n = 1 has to be considered separately and was proved in [31].

The Lê-Ramanujam Theorem 6.12.3 is known to be true also for n = 2 in some
particular cases:

1. When the map-germ f0 is weighted homogeneous. In this case, a theorem of
Varchenko [79] says that the family {ft } must be a deformation of non-negative
weight in the sense of Damon [10]: this means that all the monomials in ft must
have weighted degree greater than or equal to that of f0. Then we can apply a
general theorem due to Damon [10] to conclude that the family is topologically
trivial.

2. When the family is linear in the parameter t , that is, when ft = f0+ th, for some
fixed function h. This was proved by Parusinski in [68].

It is still an open problem whether the Lê-Ramanujam Theorem holds for n = 2.
It also remains an open problem to know whether there exists a uniform radius for
the Milnor balls Bεt in Theorem 6.12.3 for n = 1. For n = 1, Zariski proved [84,
Theorem 8.1] that an analytic family of plane curves is equisingular if and only
if it is equimultiple along the singular locus which is non-singular and we have
the Whitney condition. On the other hand, in this dimension μ constant implies
constant multiplicity and equisingularity (by [31]), and the Whitney condition (by
[84, Theorem 8.1]). Hence for n = 1 using the Whitney condition, one does have
Milnor balls of uniform radii for families with constant Milnor number.
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Abstract We give a survey on some aspects of deformations of isolated singulari-
ties. In addition to the presentation of the general theory, we report on the question
of the smoothability of a singularity and on relations between different invariants,
such as the Milnor number, the Tjurina number, and the dimension of a smoothing
component.

7.1 Introduction

This is a survey on some aspects of deformations of isolated singularities. We
present first the most important general constructions and results of deformation
theory. Then we report on the question of smoothability of a singularity and on
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relations between different invariants, such as e.g. the Milnor number, the Tjurina
number, and the dimension of a smoothing component.

In the first chapter we give an overview on the theory of deformations of complex
space germs. Although we use the language of functors for precise statements, we
provide also explicit descriptions in terms of the defining equations. We give almost
no proofs but for every statement we give precise references to sources that contain
more details, including proofs, for further reading. Since we confine ourselves to
the deformation theory of isolated singularities we avoid the almost unmanageable
field of far-reaching generalizations. Thus we give a compact presentation that
nevertheless contains all essential fundamental results.

The second chapter is devoted to the study of the nearby fiber, also called Milnor
fibre, of a small deformation and provides a short overview of the historically
most relevant results on rigidity and smoothability. Moreover, we discuss known
results and conjectures about the relationship between the dimension of a smoothing
component and the topology of the Milnor fibre over this component. An important
question is which invariants of a smoothing are independent of this and depend
only on the singularity. The main results concern complete intersections, as well as
curve and surface singularities, which we treat separately in different subsections.
In addition to known results, we also discuss open problems and conjectures. As a
rule, we give no proofs, but we sketch them in cases where the method is particularly
interesting. For all results we give precise references.

7.2 Deformation Theory

7.2.1 Deformations of Complex Germs

We give an overview of the deformation theory of isolated singularities of complex
space germs. The concepts and theorems for this case may serve as a prototype
for deformations of other objects, such as deformations of mappings or, more
general, of deformations of diagrams. For the theory of complex spaces and their
morphisms, also called holomorphic or analytic maps, we refer to [27] and to [35].
Good references for deformations of algebraic schemes are the books [44] and [85].

A pointed complex space is a pair (X, x) consisting of a complex space X and
a point x ∈ X. A morphism f : (X, x) → (Y, y) of pointed complex spaces is
a morphism f : X → Y of complex spaces such that f (x) = y. The structure
sheaf of X is denoted by OX, the (analytic) local ring by OX,x with maximal ideal
m, and the induced map of local rings by f $ : OY,y → OX,x . Two morphisms
of pointed complex spaces, f resp. g from (X, x) to (Y, y) defined in some
open neighbourhood U resp. V of x, are called equivalent if they coincide on a
neighbourhood W ⊂ U ∩ V of x. A complex (space) germ is a pointed complex
spaces with morphisms being equivalence classes of morphisms of pointed complex
spaces. In particular, a complex germ (X, x) is identified with an arbitrary small
open neighbourhood of x. A singularity is nothing but a complex space germ.
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If U ⊂ X is an open subset of the complex space X, then �(U,OX) denotes
the C-algebra of holomorphic functions on X. If I = 〈f1, . . . , fk〉 is an ideal
in �(U,OX), generated by f1, . . . , fk , we denote by V (I) = V (f1, . . . , fk) the
(closed) complex subspace of U , being as topological space {x ∈ U |f1(x) = . . . =
fk = 0} with structure sheaf OU /IOU .

Definition 7.2.1 Let (X, x) and (S, s) be complex space germs. A deformation of
(X, x) over (S, s) consists of a flat morphism φ : (X , x) → (S, s) of complex

germs together with an isomorphism (X, x)
∼=−→ (Xs , x). (X , x) is called the total

space, (S, s) the base space, and (Xs , x) := (φ−1(s), x) or (X, x) the special fibre
of the deformation.

We can write a deformation as a Cartesian diagram

(X, x)
i

( , x)

φ flat

{pt} (S, s) ,

where i is a closed embedding mapping (X, x) isomorphically onto (Xs , x) and
{pt} the reduced point considered as a complex space germ with local ring C. We
denote a deformation by

(i, φ) : (X, x)
i

↪→ (X , x)
φ→ (S, s) ,

or simply by φ : (X , x) → (S, s) in order to shorten notation. Note that the closed
embedding i is part of the data and identifies (Xs , x) and (X, x). Thus, if (X ′, x) →
(S, s) is another deformation of (X, x), we get a unique isomorphism of germs
(Xs , x) ∼= (X, x) ∼= (X ′

s , x).
The essential point here is that φ is flat at x, that is, OX ,x is a flat OS,s-module

via the induced morphism φ
$
x : OS,s → OX ,x . A well known theorem of Frisch (cf.

[21]) says that for a morphism φ : X → S of complex spaces the set of points in
X where φ is flat is analytically open. Hence, a sufficiently small representative φ :
X → S of the germ φ is everywhere flat and, since flatness implies dim(Xs , x) =
dim(X , x) − dim(S, s), we have dim(Xt , y) = dim(Xs , x) for all t ∈ S and all
y ∈ Xt if X and S are pure dimensional. Another important theorem is due to
Douady [13], saying that every flat morphism φ : X → S of complex spaces
is open, that is, it maps open sets in X to open sets in S. An important example
of flat morphisms are projections: If X, T are complex spaces then the projection
X × T → T is flat (c.f. [35, Corollary I.1.88]).

A typical example of a non-flat morphism is the projection (C2, 0) ⊃ V (xy) →
(C, 0), (x, y) %→ x, since the fibre-dimension jumps (the dimension of the special
fibre is 1 and of the other fibres is 0).

The following theoretically and computationally useful criterion for flatness is
due to Grothendieck (for a proof see e.g. [35, Proposition I.1.91]).
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Proposition 7.2.2 (Flatness by Relations) Let I = 〈f1, . . . , fk〉 ⊂ OC
n,0 be an

ideal, (S, s) a complex space germ and Ĩ = 〈F1, . . . , Fk〉 ⊂ OC
n×S,(0,s) a lifting of

I , i.e., Fi is a preimage of fi under the surjection

OC
n×S,(0,s) � OC

n×S,(0,s) ⊗OS,s
C = OC

n,0 .

Then the following are equivalent:

(a) OC
n×S,(0,s)/Ĩ is OS,s-flat;

(b) any relation (r1, . . . , rk) among f1, . . . , fk lifts to a relation (R1, . . . , Rk)

among F1, . . . , Fk . That is, for each (r1, . . . , rk) satisfying

k∑

i=1

rifi = 0 , ri ∈ OC
n,0 ,

there exists (R1, . . . , Rk) such that

k∑

i=1

RiFi = 0 , with Ri ∈ OC
n×S,(0,s)

and the image of Ri in OC
n,0 is ri;

(c) any free resolution of OC
n,0/I

. . . → Op2
C

n,0 → Op1
C

n,0 → OC
n,0 → OC

n,0/I → 0

lifts to a free resolution of OC
n×S,(0,s)/Ĩ ,

. . . → Op2
C

n×S,(0,s)
→ Op1

C
n×S,(0,s)

→ OC
n×S,(0,s) → OC

n×S,(0,s)/Ĩ → 0 .

That is, the latter sequence tensored with ⊗OS,s
C yields the first sequence.

Remark 7.2.3 Let us recall some geometric consequences of flatness, for an
algebraic proof see e.g. [35, Theorem B.8.11 and B.8.13] and [65, Theorem 15.1].

1. φ = (φ1, . . . , φk) : (X , x) → (Ck, 0) is flat iff φ1, . . . , φk is a regular sequence.
2. If (X , x) is Cohen-Macaulay, then φ1, . . . , φk ∈ m ⊂ OX ,x is a regular

sequence iff dimOX ,x/〈φ1, . . . , φk〉 = dim(X , x)− k.
3. In particular, φ : (Cm, 0) → (Ck, 0) is flat iff dim

(
φ−1(0), 0

) = m− k.

If (3) holds, then (X, 0) := (φ−1(0), 0) is called a complete intersection and
(i, φ) : (X, 0) ⊂ (Cm, 0) → (Ck, 0) is a deformation of (X, 0) over (Ck, 0). If k = 1
then (X, 0) is called a hypersurface singularity.
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Note that smooth germs, hypersurface and complete intersection singularities,1

reduced curve singularities, and normal surface singularities are Cohen-Macaulay.

Definition 7.2.4 Given two deformations (i, φ) : (X, x) ↪→ (X , x) → (S, s)

and (i ′, φ′) : (X, x) ↪→ (X ′, x ′) → (S′, s′), of (X, x) over (S, s) and (S′, s′),
respectively. A morphism of deformations from (i, φ) to (i ′, φ′) is a morphism of
the diagram after Definition 7.2.1 being the identity on (X, x) → {pt}. Hence, it
consists of two morphisms (ψ, ϕ) such that the following diagram commutes

(X, x)
i i

( , x )
ψ

φ

( , x)

φ

(S , s )
ϕ

(S, s) .

Two deformations over the same base space (S, s) are isomorphic if there exists a
morphism (ψ, ϕ) with ψ an isomorphism and ϕ the identity map.

It is easy to see that deformations of (X, x) form a category. Usually one
considers the (non-full) subcategory of deformations of (X, x) over a fixed base
space (S, s) and morphisms (ψ, ϕ) with ϕ = id(S,s). The following lemma implies
that this category is a groupoid, i.e., all morphisms are automatically isomorphims
(see e.g. [35, Lemma I.1.86] for a proof).

Lemma 7.2.5 Let

(X, x)
f

φ

(Y, y)

ψ

(S, s)

be a commutative diagram of complex germs with φ flat. Then f is an isomor-

phism iff f induces an isomorphism of the special fibres, f : (φ−1(s), x)
∼=−→

(ψ−1(s), y) .

We introduce now the concept of induced deformations, which give rise, in a natural
way, to morphisms between deformations over different base spaces.

Let (X, x) ↪→ (X , x)
φ→ (S, s) be a deformation of the complex space germ

(X, x) and ϕ : (T , t) → (S, s) a morphism of germs. Then the fibre product is the

1(X, x) ⊂ (CN, x) is a complete intersection if the minimal number of generators of its ideal
I (X, x) ⊂ O

C
N ,x is N − dim(X, x). (X, x) is a hypersurface singularity if dim(X, x) = N − 1.
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following commutative diagram of germs

(X, x)
ϕ∗i i

ϕ∗φ φ

(T , t)
ϕ

(S, s)

ϕ
( , x)×(S,s) (T , t) ( , x)

where ϕ∗φ, resp. ϕ̃, are induced by the second, resp. first projection, and ϕ∗i =
(
ϕ̃
∣
∣
(ϕ∗φ)−1(t)

)−1 ◦ i .

Definition 7.2.6 We denote (X , x)×(S,s) (T , t) by ϕ∗(X , x) and call

ϕ∗(i, φ) := (ϕ∗i, ϕ∗φ) : (X, x)
ϕ∗i
↪→ ϕ∗(X , x)

ϕ∗φ−→ (T , t)

the deformation induced by ϕ from (i, φ), or just the induced deformation or pull-
back; ϕ is called the base change map.

Since flatness is preserved under base change (c.f. [35, Proposition I.187]), ϕ∗φ
is flat. Hence, ϕ∗(i, φ) is indeed a deformation of (X, x) over (T , t), and (ϕ̃, ϕ) is a
morphism from (i, φ) to (ϕ∗i, ϕ∗φ), and ϕ∗ is a functor from deformations of (X, x)

over (S, s) to deformations of (X, x) over (T , t). A typical example of an induced
deformation is the restriction to a subspace in the parameter space (S, s).

We introduce the following notations.

Definition 7.2.7 Let (X, x) be a complex space germ.

(1) Def(X,x) denotes the category of deformations of (X, x), with morphisms as
defined in Definition 7.2.4.

(2) Def(X,x)(S, s) denotes the category of deformations of (X, x) over (S, s),
whose morphisms satisfy ϕ = id(S,s).

(3) Def
(X,x)

(S, s) denotes the set of isomorphism classes of deformations (i, φ) of

(X, x) over (S, s).
For a morphism of complex germs ϕ : (T , t) → (S, s), the pull-back ϕ∗(i, φ)

is a deformation of (X, x) over (T , t), inducing a map Def
(X,x)

(S, s) →
Def

(X,x)
(T , t). It follows that

Def
(X,x)

: (complex germs) −→ Sets ,

(S, s) %→ Def
(X,x)

(S, s), is a functor, the deformation functor or the functor

of isomorphism classes of deformations of (X, x).
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7.2.2 Embedded Deformations and Unfoldings

This section has the goal, to describe the somewhat abstract definitions of the
preceding section in more concrete terms, that is, in terms of defining equations
and relations.

Let us first recall the notion of unfoldings of a hypersurface singularities and
explain its relation to deformations. Given f ∈ C{x1, . . . , xn}, f (0) = 0, an
unfolding of f is a power series F ∈ C{x1, . . . , xn, t1, . . . , tk} with F(x, 0) =
f (x), that is,

F(x, t) = f (x)+
∑

|ν|≥1

gν(x)tν .

We identify the power series f and F with the holomorphic map germs

f : (Cn, 0) → (C, 0) , F : (Cn× C
k, 0) → (C, 0) .

Then F induces a deformation of the hypersurface singularity (X, 0) = (f−1(0), 0)

over Ck in the following way

(X, 0) i
( , 0)

φ=pr2|( ,0)

:= (F−1(0), 0) ⊂ (Cn× C
k, 0)

{0} (Ck, 0)

where i is the inclusion and φ the restriction of the second projection. By
Remark 7.2.3 (i, φ) is a deformation of (X, 0). In fact, each deformation of a
hypersurface singularity (X, 0) over some (Ck, 0) is induced in this way by an
unfolding of f (even for complete intersections, see Proposition 7.2.11 below).

More generally, we have the following important result.

Proposition 7.2.8 (Embedding of a Morphism) Given a Cartesian diagram of
complex space germs

(X0, x)

f0

(X, x)

f

(S0, s) (S, s) ,

where the horizontal maps are closed embeddings. Assume that f0 factors as

(X0, x)
i0

↪→ (Cn, 0)× (S0, s)
p0→ (S0, s)
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with i0 a closed embedding and p0 the second projection.2 Then there exists a
Cartesian diagram

(X0, x)

i0

f0

(X, x)

i

f(Cn, 0)×(S0, s)

p0

(Cn, 0)×(S, s)

p

(S0, s) (S, s) (7.1)

with i a closed embedding and p the second projection. That is, the embedding of
f0 over (S0, s) extends to an embedding of f over (S, s).

Note that we do not require that f0 or f are flat. The proof is not difficult, see [35,
Proposition II.1.5].

Applying Proposition 7.2.8 to a deformation of (X, x) we get

Corollary 7.2.9 (Embedding of a Deformation) Let (X, 0) ⊂ (Cn, 0) be a closed
subgerm. Then any deformation of (X, 0),

(i, φ) : (X, 0)↪→(X , x)→(S, s),

can be embedded. That is, there exists a Cartesian diagram

(X, 0) i
( , x)

J

φ(Cn, 0)
j

(Cn, 0) × (S, s)

p

{s} (S, s)

where J is a closed embedding, p is the second projection and j the first inclusion.
In particular, the embedding dimension is semicontinuous under deformations,

that is, edim
(
φ−1(φ(y)), y

) ≤ edim(X, 0), for all y in X sufficiently close to x.

Remark 7.2.10 We get the following explicit description of a deformation:

2In this situation, we call f0 an embedding over (S0, s).
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Any deformation (i, φ) : (X, 0) ↪→ (X , x) → (S, s) of (X, 0) can be assumed
to be given as follows: Let IX,0 = 〈f1, . . . , fk〉 ⊂ OC

n,0 be the ideal of (X, 0) ⊂
(Cn, 0). The embedding of the total space of the deformation of (X, 0) is given as

(X , x) = V (F1, . . . , Fk)
J

↪−→ C
n× S, (0, s)) ,

with OX ,x = OC
n×S,(0,s)/IX ,x, IX ,x = 〈F1, . . . , Fk〉 ⊂ OC

n×S,(0,s) and fi being

the image of Fi in OC
n×S,(0,s)/mS,s = OC

n,0. Then (X, 0) = V (f1, . . . , fk)
i′

↪−→
(X , x) and setting φ′ = p ◦ J, p the second projection, we get the deformation
(i ′, φ′), which coincides with (i, φ) up to isomorphism.

Furthermore, let (S, s) ⊂ (Cr, 0) and denote the coordinates of C
n by x =

(x1, . . . , xn) and those of Cr by t = (t1, . . . , tr ). Then fi = Fi |(Cn,0) and, hence, Fi

is of the form3

Fi(x, t) = fi(x)+
r∑

j=1

tj gij (x, t) , gij ∈ OC
n×Cr ,0 ,

that is, Fi is an unfolding of fi .

In general, Fi as above with gij arbitrary do not define a deformation, since
the flatness condition is not fulfilled. However, if (X, 0) is an (n − k)-dimensional
complete intersection, flatness is automatic.

Proposition 7.2.11 Let (X, 0) ⊂ (Cn, 0) be a complete intersection, and let
f1, . . . , fk be a minimal set of generators of the ideal of (X, 0) in OC

n,0. Then,
for any complex germ (S, s) and any lifting Fi ∈ OC

n×S,(0,s) of fi, i = 1, . . . , k

(i.e., Fi is of the form as in Remark 7.2.10), the diagram

(X, 0) ↪→ (X , x)
p→ (S, s)

with (X , x) = V (F1, . . . , Fk) ⊂ (Cn× S, (0, s)) and p the second projection, is a
deformation of (X, 0) over (S, s).

Proof Since f1, . . . , fk is a regular sequence, any relation among the fi can be
generated by the trivial relations (also called the Koszul relations)

(0, . . . , 0,−fj , 0, . . . , 0, fi , 0 . . . , 0)

with −fj at place i and fi at place j . This can be easily shown by induction on k.
Another way to see this is to use the Koszul complex of f = (f1, . . . , fk): we have

H1(f,OC
n,0) = {relations between f1, . . . , fk}/{trivial relations} ,

3That a system of generators for IX ,x can be written in this form follows from the fact that
mS,sIX ,x = mS,sOC

n×S,(0,s) ∩ IX ,x , which is a consequence of flatness.
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and H1(f,OC
n,0) = 0 if f1, . . . , fk is a regular sequence [35, Theorem B.6.3]. Since

the trivial relations can obviously be lifted, the result follows from Proposition 7.2.2.
��

Let us finish this section with a concrete example.

Example 7.2.12 f1 = xy, f2 = xz, f3 = yz. We define two unfoldings of
(f1, f2, f3), the first does not induce a deformation of (X, 0) while the second does.

(1) Consider the unfolding of (f1, f2, f3) over (C, 0) given by F1 = xy− t , F2 =
xz , F3 = yz. It is not difficult to check that the sequence

0 ←− OX,0 ←− O
C

3,0
(xy,xz,yz)←−−−−−− O3

C
3,0

(
0 −z−y y
x 0

)

←−−−−−− O2
C

3,0
←− 0 ,

is exact and, hence, a free resolution of OX,0 = O
C

3,0/〈f1, f2, f3〉. That
is, (0,−y, x) and (−z, y, 0) generate the O

C
3,0-module of relations between

xy, xz, yz.
Similarly, we find that (0,−y, x), (yz,−y2, t), (xz, t − xy, 0) generate

the O
C

3,0-module of relations of F1, F2, F3. The liftable relations for f1, f2, f3
are obtained from the latter by setting t = 0, which shows that the relation
(−z, y, 0) cannot be lifted. Hence, O

C
3×C,0/〈F1, F2, F3〉 is not OC,0-flat and,

therefore, the above unfolding does not define a deformation of (X, 0). We
check this in the following SINGULAR session:

ring R = 0,(x,y,z,t),ds;
ideal f = xy,xz,yz;
ideal F = xy-t,xz,yz;
module Sf = syz(f); // the module of relations of f
print(Sf); // shows the matrix of Sf
//-> 0, -z,
//-> -y,y,
//-> x, 0
syz(Sf); // is 0 iff the matrix of Sf injective
//-> _[1]=0
module SF = syz(F);
print(SF);
//-> 0, yz, xz,
//-> -y,-y2,t-xy,
//-> x, t, 0

To show that the relation (−z, y, 0) in Sf cannot be lifted to SF, we check that
Sf is not contained in the module obtained by substituting t by zero in SF
(reduce(Sf,std(subst(SF,t,0))); does not produce zero).

(2) However, if we consider the unfolding F1 = xy − tx , F2 = xz , F3 = yz of
(f1, f2, f3), we obtain (−z,−t, x), (−z, y− t, 0) as generators of the relations
among F1, F2, F3.
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Since (0,−y, x) = (−z, 0, x) − (−z, y, 0), it follows that any relation among
f1, f2, f3 can be lifted. Hence, O

C
3×C,0/〈F1, F2, F3〉 is OC,0-flat and the diagram

(X, 0) V (F1, F2, F3) ⊂ (C3× C, (0, 0))

{0} (C, 0)

.

defines a deformation of (X, 0).

7.2.3 Versal Deformations

A versal deformation of a complex space germ is a deformation which contains
basically all information about any possible deformation of this germ. A semiuni-
versal deformation is a minimal versal deformation. It is one of the fundamental
facts of singularity theory that any isolated singularity (X, x) has a semiuniversal
deformation.

In a little less informal way we say that a deformation (i, φ) of (X, x) over
(S, s) is versal if any other deformation of (X, x) over some base space (T , t) can
be induced from (i, φ) by some base change ϕ : (T , t) → (S, s). Moreover, if a
deformation of (X, x) over some subgerm (T ′, t) ⊂ (T , t) is given and induced by
some base change ϕ′ : (T ′, t) → (S, s), then ϕ can be chosen in such a way that
it extends ϕ′. This fact is important, though technical, as it allows us to construct
versal deformations by successively extending over bigger and bigger spaces in a
formal manner (see [35], Appendix C for general fundamental facts about formal
deformations, in particular, Theorem C.1.6, and the sketch of its proof).

The formal definition of a (semiuni-)versal deformation is as follows.

Definition 7.2.13

(1) A deformation (X, x)
i

↪→ (X , x)
φ→ (S, s) of (X, x) is called complete if,

for any deformation (j, ψ) : (X, x) ↪→ (Y , y) → (T , t) of (X, x), there exists
a morphism ϕ : (T , t) → (S, s) such that (j, ψ) is isomorphic to the induced
deformation (ϕ∗i, ϕ∗φ).

(2) The deformation (i, φ) is called versal (respectively formally versal) if, for
a given deformation (j, ψ) as above the following holds: for any closed
embedding k : (T ′, t) ↪→ (T , t) of complex germs (respectively of Artinian
complex germs4) and any morphism ϕ′ : (T ′, t) → (S, s) such that (ϕ′ ∗i, ϕ′ ∗φ)

is isomorphic to (k∗j, k∗ψ) there exists a morphism ϕ : (T , t) → (S, s)

satisfying

4A complex germ consisting of one point with local ring an Artinian local ring. It is also called a
fat point.
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(i) ϕ ◦ k = ϕ′, and
(ii) (j, ψ) ∼= (ϕ∗i, ϕ∗φ).

That is, there exists a commutative diagram with Cartesian squares

(X, x)

k∗j
j

i

k∗( , y)

k∗ψ

( , y)

ψ

( , x)

φ

(T , t)

ϕ

k
(T , t) ϕ (S, s) .

(3) A (formally) versal deformation is called semiuniversal if, with the notations
of (2), the Zariski tangent map T(T ,t) → T(S,s) of ϕ is uniquely determined by
(i, φ) and (j, ψ).

A semiuniversal deformation is also called miniversal because the Zariski tangent
space of its base space has the smallest possible dimension among all versal
deformations. Note that we do not consider universal deformations (i.e., ϕ in (3)
itself is uniquely determined) as this would be too restrictive.

A versal deformation is complete (take as (T ′, t) the reduced point {s}), but the
converse is not true in general. In the literature the distinction between complete and
versal deformations is not always sharp, some authors call complete deformations
(in our sense) versal. However, the full strength of versal (and, hence, semiuniversal)
deformations comes from the property requested in (2).

If we know a versal deformation of (X, x), we know, at least in principle, all
other deformations (up to the knowledge of the base change map ϕ). In particular,
we know all nearby fibres and, hence, all nearby singularities which can appear for
an arbitrary deformation of (X, x).

An arbitrary complex space germ may not have a versal deformation. It is a
fundamental theorem of Grauert [26] that for isolated singularities a semiuniversal
deformation exists.

Recall that (X, x) has an isolated singularity, if there exists a representative X

with X \ {x} nonsingular. A point y of X is called nonsingular or smooth if X is
a complex manifold in a neighbourhood of y (equivalently, the local ring OX,y is
regular), otherwise y is called a singular point of X. For a proof of the following
theorem see [26].
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Theorem 7.2.14 (Grauert) Any complex space germ (X, x) with isolated singu-
larity5 has a semiuniversal deformation

(X, x)
i

↪→ (X , x)
φ→ (S, s) .

In Theorem 7.2.22 we describe the semiuniversal deformation explicitly if
(X, x) is an isolated complete intersection. For the procedure to construct a formal
semiuniversal deformation in general by induction, see the beginning of Sect. 7.2.5.
For an equivariant weighted homogeneous version see Theorem 7.3.5 and its proof.

Even knowing that a semiuniversal deformation of an isolated singularity (X, x)

exists, in general we cannot say anything in advance about its structure. For instance,
we can say nothing about the dimension of the base space of the semiuniversal
deformation, which we shortly call the semiuniversal base space. It is unknown
(but believed), if any complex space germ can occur as a semiuniversal base of an
isolated singularity. Further questions are whether (X, x) is smoothable, i.e., if there
are nearby fibres that are smooth, or if (X, x) is rigid, i.e., if it cannot be deformed
at all (cf. Sect. 7.3.1 for details).

The following Lemma is an easy consequence of the inverse function theorem.

Lemma 7.2.15 If a semiuniversal deformation of a complex space germ (X, x)

exists, then it is uniquely determined up to (non unique) isomorphism.

We mention some important properties of versal deformations. They hold in a
much more general deformation theoretic context (see Remark [35, C.1.5.1]).

Theorem 7.2.16 (Flenner) If a versal deformation of (X, x) exists then there exists
also a semiuniversal deformation, and every deformation of (X, x) which is formally
versal is also versal.

For the proof see [19, Satz 5.2]. It is based on the following useful result (c.f.
[35, Proposition I.1.14]):

Proposition 7.2.17 Every versal deformation of (X, x) differs from the semiuniver-
sal deformation by a smooth factor.

More precisely, let φ : (X , x) → (S, s) be the semiuniversal deformation and
ψ : (Y , y) → (T , t) a versal deformation of (X, x). Then there exists a p ≥ 0 and
an isomorphism

ϕ : (T , t)
∼=−→ (S, s) × (Cp, 0)

such that ψ ∼= (π ◦ ϕ)∗φ where π : (S, s) × (Cp, 0) → (S, s) is the projection on
the first factor.

5More generally, a semiuniversal deformation exists if dimC T 1
(X,x)

< ∞ (see Definition 7.2.26).
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Remark 7.2.18

(1) A formula for the extra smooth factor (Cp, 0) in Proposition 7.2.17 is given in
Corollary 7.3.42.

(2) The statements of 7.2.14–7.2.17 hold also for multigerms (X, x) =∐r
�=1(X�, x�) , that is, for the disjoint union of finitely many germs

(the existence as in Theorem 7.2.14 is assured if all germs (X�, x�) are
isolated singularities). A versal, resp. semiuniversal, deformation of the
multigerm (X, x) is a multigerm (i, φ) = ∐r

�=1(i�, φ�) such that, for each
� = 1, . . . , r, (i�, φ�) is a versal, resp. semiuniversal, deformation of (X�, x�)

over (S�, s�), and the base space of (i, φ) is the cartesian product of base spaces
(S�, s�).

A semiuniversal deformation has the minimal dimension among all versal
deformations (by Proposition 7.2.17). It has also another minimality property, the
“economy of the semiuniversal deformation” due to Teissier [95, Theorem 4.8.4].

Theorem 7.2.19 (Teissier) Let φ : (X , x) → (S, s) be the semiuniversal
deformation of an isolated singularity (X, x). Then, for any y = x sufficiently close
to x no fibre (Xφ(y), y) is isomorphic to (X, x).

This theorem can easily be deduced from the following general result about the
trivial locus of a morphism due to Hauser and Müller [46], with special cases proved
before in [33, Lemma 1.4] and [20, Corollary 0.2]. Recall that a morphism f :
(X, x) → (S, s) of complex germs is called trivial if (X, x) ∼= (f−1(s), x)× (S, s)

over (S, s). f is called smooth if it is trivial with (f−1(s), x) smooth. Let Zred

denote the reduction of the complex space Z.

Theorem 7.2.20 (Hauser, Müller) For any morphism f : (X, x) → (S, s) of
complex germs there exist complex germs (Y, x) ⊂ (X, x) and (T , s) ⊂ (S, s)

with the following property for sufficiently small representatives.

(1) Yred = {y ∈ X | (X, y) ∼= (X, x)} and Tred = f (Y ).

(2) The restriction fY : Y → T is a smooth morphism.
(3) f−1(s) ∼= f−1

Y (s)× Z for some complex space Z.
(4) If ϕ : S′ → S is a morphism (of germs), then ϕ∗(f ) : X ×S S′ → S′ is trivial

iff ϕ factors through T .

The universal property (7.2.20) implies that (T , s) is uniquely determined, while
(Y, x) is only determined up to isomorphism over (T , s).

Denote by Sing(f ) the singular locus of f , i.e., set of points in X where f is not
smooth. For the proof of the following “openness of versality” theorem, we refer to
[3] in the algebraic category, [73] for isolated singularities and [18, 19] in general.

Theorem 7.2.21 (Artin; Pourcin) Let f : X → S be a flat morphism of complex
spaces such that Sing(f ) is finite over S. Then the set of points s ∈ S such that
f induces a versal deformation of the multigerm

(
X, Sing(f−1(s))

)
is analytically

open in S.
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Hence, if φ : (X , x) → (S, s) is a versal deformation of
(
φ−1(s), x

)

then, for a sufficiently small representative φ : X → S, the multigerm φ :∐
x ′∈φ−1(t)(X , x ′) → (S, t), t ∈ S, is a versal deformation of its fibre, the multi-

germ
∐

x ′∈φ−1(t)

(
φ−1(t), x ′

)
. The nearby fibres have only isolated singularities,

since Sing(f ) ∩ f−1(s) = Sing(f−1(s)) is a finite set by assumption. Note that
an analogous statement does not hold for “semiuniversal” in place of “versal”.

Although we cannot say anything specific about the semiuniversal deformation of
an arbitrary singularity, the situation is different for special classes of singularities.
For example, hypersurface singularities or, more generally, complete intersection
singularities are never rigid and we can compute explicitly the semiuniversal
deformation as in the following theorem (for a proof see [52, 96] or [35, Theorem
I.1.16]).

Theorem 7.2.22 (Tjurina; Kas, Schlessinger) Let (X, 0) ⊂ (Cn, 0) be an isolated
complete intersection singularity, and let f := (f1, . . . , fk) be a minimal set of
generators for the ideal of (X, 0). Let g1, . . . , gτ ∈ Ok

C
n,0, gi = (g1

i , . . . , gk
i ),

represent a basis (respectively a system of generators) for the finite dimensional
C-vector space6

T 1
(X,0) := Ok

C
n,0

/(
Df · On

C
n,0 + 〈f1, . . . , fk〉Ok

C
n,0

)
,

and set F = (F1, . . . , Fk),

F1(x, t) = f1(x)+
τ∑

j=1

tj g1
j (x) ,

...
...

Fk(x, t) = fk(x)+
τ∑

j=1

tj gk
j (x) ,

(X , 0) := V (F1, . . . , Fk) ⊂ (Cn× C
τ , 0) .

Then (X, 0)
i

↪→ (X , 0)
φ→ (Cτ , 0) with i, φ being induced by the inclusion

(Cn, 0) ⊂ (Cn × C
τ , 0), resp. the projection (Cn × C

τ , 0) → (Cτ , 0), is a
semiuniversal (respectively versal) deformation of (X, 0).

Here, Df denotes the Jacobian matrix of f ,

(Df ) =
( ∂fi

∂xj

)
: On

C
n,0 −→ Ok

C
n,0 ,

6The vector space T 1
(X,x)

will be defined for arbitrary complex space germs (X, x) in Defini-

tion 7.2.26. For a definition of T 1 in a general deformation theoretic context see [35, Appendix
C].
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that is, (Df ) · On
C

n,0 is the submodule of Ok
C

n,0 spanned by the columns of the
Jacobian matrix of f .

Note that T 1
(X,0) is an OX,0-module, called the Tjurina module of the complete

intersection (X, 0). If (X, 0) is a hypersurface, then T 1
(X,0) is an algebra and called

the Tjurina algebra of (X, 0). The number

τ (X, x) := dimC T 1
(X,0)

is called the Tjurina number of (X, x).
Since the hypersurface case is of special importance we state it explicitly.

Corollary 7.2.23 Let (X, 0) ⊂ (Cn, 0) be an isolated singularity defined by f ∈
OC

n,0 and g1, . . . , gτ ∈ OC
n,0 a C-basis of the Tjurina algebra

T 1
(X,0) = OC

n,0/
〈
f,

∂f
∂x1

, . . . ,
∂f
∂xn

〉
.

If we set

F(x, t) := f (x)+
τ∑

j=1

tj gj (x) , (X , 0) := V (F) ⊂ (Cn× C
τ , 0) ,

then (X, 0) ↪→ (X , 0)
φ−→ (Cτ, 0), with φ the second projection, is a semiuniversal

deformation of (X, 0).

Remark 7.2.24 Using the notation of Theorem 7.2.22, we can choose the basis
g1, . . . , gτ ∈ Ok

C
n,0 of T 1

(X,0) such that gi = −ei, ei = (0, . . . , 1, . . . , 0) the i-

th canonical generator of Ok
C

n,0, for i = 1, . . . , k (assuming that fi ∈ m2
C

n,0). Then

Fi = fi − ti +
τ∑

j=k+1

tj gi
j ,

and we can eliminate t1, . . . , tk from F1 = . . . = Fk = 0. Hence, the semiuniversal
deformation of (X, 0) is given by

ψ : (Cn× C
τ−k, 0) → (Ck × C

τ−k, 0) = (Cτ, 0)

with ψ(x, tk+1, . . . , tτ ) = (G1(x, t), . . . , Gk(x, t), tk+1, . . . , tτ ),

Gi(x, t) = fi(x)+
τ∑

j=k+1

tj gj (x) ,
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where gj = (g1
j , . . . , gk

j ), j = k + 1, . . . , τ , is a basis of the C-vector space

(
m · Ok

C
n,0

)/(
(Df ) · On

C
n,0 + 〈f1, . . . , fk〉Ok

C
n,0

)
,

assuming f1, . . . , fk ∈ m2
C

n,0.

In particular, if f ∈ m2
C

n,0 and if 1, h1, . . . , hτ−1 is a basis of the Tjurina algebra
Tf , then (setting t := (t1, . . . tτ−1)

F : (Cn× C
τ−1, 0) −→ (Cτ , 0) , (x, t) %→

(
f (x)+

τ−1∑

i=1
tihi , t

)

is a semiuniversal deformation of the hypersurface singularity (f−1(0), 0).

Example 7.2.25 (1) Let (X, 0) ⊂ (C3, 0) be the isolated complete intersection
curve singularity defined by f1(x) = x2

1 + x3
2 and f2(x) = x2

3 + x3
2 . Then

the Tjurina module is T 1
(X,0) = C{x}2/M , where M ⊂ C{x}2 is generated by

(
x1
0

)
,
(x2

2
x2

2

)
,
( 0
x3

)
,
(
f1
0

)
,
( 0
f1

)
,
(
f2
0

)
,
( 0
f2

)
. We have τ = 9 and a C-basis for T 1

(X,0) is given

by
(1

0

)
,
(0

1

)
,
(
x2
0

)
,
(
x3
0

)
,
(
x2x3

0

)
,
(x2

2
0

)
,
( 0
x1

)
,
( 0
x2

)
,
( 0
x1x2

)
. By Remark 7.2.24, it follows

that a semiuniversal deformation of (X, 0) is given by ψ : (C10, 0) → (C9, 0),

(x, t) %−→ (
f1(x)+ t1x2+ t2x3+ t3x2x3+ t4x

2
2 , f2(x)+ t5x1+ t6x2+ t7x1x2, t

)
.

This can easily verified by a computation in SINGULAR.

7.2.4 Infinitesimal Deformations

In this section we develop the infinitesimal deformation theory for arbitrary
singularities. In particular, we introduce in this generality the vector spaces T 1

(X,x) of
first order deformations that is, the linearization of the semiuniversal deformation
of (X, x) and show how it can be computed. In the next section we describe the
obstructions for lifting an infinitesimal deformation of a given order to higher order.
This and the next section can be considered as a concrete special case of the general
theory as described e.g. in [35, Appendix C].

Infinitesimal deformations of first order are deformations over the complex space
Tε, a “point with one tangent direction”.

Definition 7.2.26

(1) The complex space germ Tε = ({pt},C[ε]) consists of one point with local ring
C[ε] = C[t]/〈t2〉.

(2) For any complex space germ (X, x) we set

T 1
(X,x) := Def

(X,x)
(Tε) ,
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the set of isomorphism classes of deformations of (X, x) over Tε . Objects of
Def(X,x)(Tε) are called infinitesimal or first order deformations of (X, x).

(3) We shall see in Proposition 7.2.33 that T 1
(X,x) carries the structure of a complex

vector space. We call T 1
(X,x)

the Tjurina module, and

τ (X, x) := dimC T 1
(X,x)

the Tjurina number of (X, x).

Any singularity (X, x) with τ (X, x) < ∞ has a semiuniversal deformation
(see [26, 93]); it is not difficult to see that isolated singularities have finite Tjurina
number.

The following lemma shows that T 1
(X,x) can be identified with the Zariski tangent

space to the semiuniversal base of (X, x) (if it exists).

Lemma 7.2.27 Let (X, x) be a complex space germ and φ : (X , x) → (S, s) a
deformation of (X, x). Then there exists a linear map7

TS,s −→ T 1
(X,x) ,

called the Kodaira-Spencer map, which is surjective if φ is versal and bijective if φ

is semiuniversal.
Moreover, if (X, x) admits a semiuniversal deformation with smooth base space,

then φ is semiuniversal iff (S, s) is smooth and the Kodaira-Spencer map is an
isomorphism.

Proof For any complex space germ (S, s) we have TS,s = Mor
(
Tε, (S, s)

)
. Define

a map

α : Mor
(
Tε, (S, s)

) −→ T 1
(X,x) ,

ϕ %→ [
ϕ∗φ
]
.

Let us see that α is surjective if φ is versal: given a class [ψ] ∈ T 1
(X,x) represented by

ψ : (Y , x) → Tε, the versality of φ implies the existence of a map ϕ : Tε → (S, s)

such that ϕ∗φ ∼= ψ . Hence, [ψ] = α(ϕ), and α is surjective.
If φ is semiuniversal, the tangent map T ϕ of ϕ : Tε → (S, s) is uniquely

determined by ψ . Since ϕ is uniquely determined by its algebra map ϕ$ : OS,s →
OTε = C[t]/〈t2〉 and, since ϕ$ is local, we obtain ϕ$(m2

S,s) = 0. That is, ϕ is

uniquely determined by ϕ$ : mS,s/m
2
S,s −→ 〈t〉/〈t2〉 and hence by the dual map

(
ϕ$
)∗ = T ϕ. Thus, α is bijective. We leave the linearity of α as an exercise.
If (T , t) is the smooth base space of a semiuniversal deformation of (X, x) then

there is a morphism ϕ : (S, s) → (T , t) inducing the map α : TS,s → TT,t
∼= T 1

(X,x)

7TS,s denotes the Zariski tangent space to S at s.
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constructed above. Since (S, s) is smooth, ϕ is an isomorphism iff α is (by the
inverse function theorem). ��
Remark 7.2.28 Lemma 7.2.27 shows that dimC T 1

(X,x) < ∞ if (X, x) admits a semi-

universal deformation. Together with Theorem 7.2.14 this shows that dimC T 1
(X,x) <

∞ is necessary and sufficient for the existence of a semiuniversal deformation
of (X, x). If (X, x) has an isolated singularity, then dimC T 1

(X,x) < ∞ by
Corollary 7.2.34 but the converse does not hold (see Example 7.3.4, below).

We want to describe now T 1
(X,x) in terms of the defining ideal of (X, x) if (X, x) is

embedded in some (Cn, 0), without knowing a semiuniversal deformation of (X, x).
To do this, we need embedded deformations, that is, deformations of the inclusion
map (X, x) ↪→ (Cn, 0).

Slightly more general, we define deformations of a morphism, not necessarily an
embedding.

Definition 7.2.29 Let f : (X, x) → (S, s) be a morphism of complex germs.

(1) A deformation of f , or a deformation of (X, x) → (S, s), over a germ (T , t) is
a Cartesian diagram

(X, x)

f

i
( , x)

F

φ(S, s)
j

( , s)

p

{pt} (T , t)

such that i and j are closed embeddings, and p and φ are flat, hence
deformations of (X, x) and of (S, s) over (T , t) (but F is not supposed to be
flat). We denote such a deformation by (i, j, F, p) or just by (F, p).
A morphism between two deformations (i, j, F, p) and (i ′, j ′, F ′, p′) of f is a
morphism of diagrams, denoted by (ψ1, ψ2, ϕ):

(X,x)
i i

( , x)
ψ1

F

( , x )

F(S,s)
j j

( , s)
ψ2

p

( , s )

p{pt}

(T , t)
ϕ

(T , t )
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If ψ1, ψ2, ϕ are isomorphisms, then (ψ1, ψ2, ϕ) is an isomorphism of deforma-
tions of f .
We denote by Deff = Def(X,x)→(S,s) the category of deformations of f , by
Deff (T , t) = Def(X,x)→(S,s)(T , t) the (non-full) subcategory of deformations
of f over (T , t) with morphisms as in the diagram above and ϕ the identity on
(T , t). Furthermore, we write

Def
f
(T , t) = Def

(X,x)→(S,s)
(T , t)

for the set of isomorphism classes of such deformations.
(2) A deformation (i, j, F, p) of (X, x) → (S, s) inducing the trivial deformation

of (S, s) is called a deformation of (X, x)/(S, s) over (T , t) and denoted
by (i, F ) or just by F . A morphism is a morphism as in (1) of the form
(ψ, idS,s×ϕ, ϕ); it is denoted by (ψ, ϕ).
Def(X,x)/(S,s) denotes the category of deformations of (X, x)/(S, s),
Def(X,x)/(S,s)(T , t) the subcategory of deformations of (X, x)/(S, s) over
(T , t) with morphisms being the identity on (T , t).
Def

(X,x)/(S,s)
(T , t) denotes the set of isomorphism classes of such deforma-

tions.

The difference between (1) and (2) is that in (1) we deform (X, x), (S, s) and f ,
while in (2) we only deform (X, x) and f but not (S, s). Note that Def(X,x)/pt =
Def(X,x).

The following easy lemma shows that embedded deformations (as in Corol-
lary 7.2.9) are a special case of Definition 7.2.29 (2).

Lemma 7.2.30 Let f : (X, x) → (S, s) be a closed embedding of complex space

germs and let (X , x)
F−→ (S , s)

p−→ (T , t) be a deformation of f . Then
F : (X , x) → (S , s) is a closed embedding, too.

Definition 7.2.31

(1) Let (X, x) ↪→ (S, s) be a closed embedding. The objects of Def(X,x)/(S,s) are
called embedded deformations of (X, x) (in (S, s)).

(2) For an arbitrary morphism f : (X, x) → (S, s) we define

T 1
(X,x)→(S,s) := Def

(X,x)→(S,s)
(Tε) ,

respectively

T 1
(X,x)/(S,s) := Def

(X,x)/(S,s)
(Tε) ,

and call its elements the isomorphism classes of (first order) infinitesimal
deformations of (X, x) → (S, s), respectively of (X, x)/(S, s).
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The vector space structure on T 1
(X,0)/(Cn,0) and T 1

(X,0) is given by the isomorphisms in

Proposition 7.2.33 below. We are going to describe T 1
(X,0)/(Cn,0) and T 1

(X,0) in terms
of the equations defining (X, 0) ⊂ (Cn, 0). First, we need some preparations.

Definition 7.2.32 Let S be a smooth n-dimensional complex manifold and X ⊂ S

a complex subspace given by the coherent ideal sheaf I ⊂ OS .

(1) The sheaf (I/I2)
∣
∣
X

is called the conormal sheaf and its dual

NX/S :=H omOX

(
(I/I2)

∣
∣
X

,OX

)

is called the normal sheaf of the embedding X ⊂ S.
(2) Let !1

X =
(
!1

S/(I ·!1
S + dI ·OS)

)∣
∣
X

be the sheaf of holomorphic 1-forms on
X. The dual sheaf

�X :=H omOX
(!1

X,OX)

is called the sheaf of holomorphic vector fields on X.

Recall that, for each coherent OX-sheaf M, there is a canonical isomorphism of
OX-modules

H omOX
(!1

X,M)
∼=−→ Der C(OX,M) , ϕ %−→ ϕ ◦ d ,

where d : OX → !1
X is the exterior derivation and where Der C(OX,M) is the

sheaf of C-derivations of OX with values in M. In particular, we have

�X
∼= Der C(OX,OX) .

Moreover, since S is smooth the sheaf !1
S is locally free with !1

S,s =
⊕n

i=1 OS,sdxi

(where x1, . . . , xn are local coordinates of S with center s). As a consequence we
have that �S is locally free of rank n and

�S,s =
n⊕

i=1

OS,s · ∂

∂xi

where ∂
∂x1

, . . . , ∂
∂xn

is the dual basis of dx1, . . . , dxn.

Let f ∈ OS then, in local coordinates, we have df =∑n
i=1

∂f
∂xi

dxi . In particular,

we can define an OS-linear map α : I → !1
S, f %→ df . Due to the Leibniz rule, α

induces a map α : I/I2 → !1
S⊗OS

OX yielding the following exact Zariski-Jacobi
sequence

I/I2 α−→ !1
S ⊗OS

OX −→ !1
X −→ 0 ,
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α([f ]) = df . By OX-dualizing, we obtain the exact sequence

0 −→ �X −→ �S ⊗OS
OX

β−→ NX/S =H omOX
(I/I2,OX) ,

where β is the dual of α. In local coordinates, we have for each x ∈ X

�S,s ⊗OS,s
OX,x =

n⊕

i=1

OX,x · ∂
∂xi

and the image β
(

∂
∂xi

) ∈ HomOX,x
(Ix/I2

x,OX,x) = HomOX,x
(Ix,OX,x) is the map

β
(

∂
∂xi

) : Ix/I2
x → OX,x, [h] %→ [

∂h
∂xi

]
.

with [h] the residue class of h in Ix/I2
x .

Using these notations we can describe the vector space structure of T 1
(X,0)/(Cn,0)

and of T 1
(X,0):

Proposition 7.2.33 Let (X, 0) ⊂ (Cn, 0) be a complex space germ and let OX,0 =
OC

n,0/I . Then

1. T 1
(X,0)/(Cn,0)

∼= NX/Cn,0
∼= HomOCn,0

(I,OX,0) .

2. T 1
(X,0)

∼= coker(β), that is, we have an exact sequence

0 −→ �X,0 −→ �C
n,0 ⊗OCn,0

OX,0
β−→ NX/Cn,0 −→ T 1

(X,0) −→ 0 ,

where β
(

∂
∂xi

) ∈ Hom(I,OX,0) sends h ∈ I to the class of ∂h
∂xi

in OX,0.

3. If (X, 0) is reduced then T 1
(X,0)

∼= Ext1OX,x
(!1

X,x,OX,x).8

For the proof of (1) and (2) we refer to [35, Proposition I.1.25] or [93]. To see (3)

note that I/I2 is free on the regular locus of X and hence ker(α) is concentrated
on the singular locus of X and hence torsion since X is reduced. It follows that the
dual of I/I2 coincides with the dual of (I/I2)/ker(α), which implies the claim.

Corollary 7.2.34 dimC T 1
(X,x) < ∞ if (X, x) is an isolated singularity.

Remark 7.2.35 The proof of Proposition 7.2.33 shows the following:

8This formula is due to Tjurina [96], who introduced Ext1OX,x
(!1

X,x,OX,x) as vector space of

infinitesimal deformations in her proof of the existence of a semiuniversal deformation of a normal
isolated singularity with Ext2OX,x

(!1
X,x,OX,x) = 0. The notation T i , in particular T 1 resp. T 2

as spaces of infinitesimal deformations resp. obstructions, was used in the paper by Lichtenbaum
and Schlessinger on the cotangent complex [64]. The name “Tjurina number” for dimC T 1

(X,x)
was

introduced in [29].
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(1) If OX,0 = OC
n,0/I, I = 〈f1, . . . , fk〉, then any embedded deformation of

(X, 0) ⊂ (Cn, 0) over Tε is given by fi + εgi, i = 1, . . . , k, gi ∈ OC
n,0, hence

determined by (g1, . . . , gk). We define a map

γ : T 1
(X,0)/(Cn,0) −→ NX/Cn,0

∼= HomOCn,0
(I,OX,0) ,

(g1, . . . , gk) %−→
(
ϕ :

k∑

i=1
aifi %→

k∑

i=1

[
aigi

])
,

which is well-defined, since any relation
∑k

i=1 rifi = 0 lifts to a relation
∑k

i=1(ri + εsi)(fi + εgi) = 0 (by flatness, cf. Proposition 7.2.2) and hence∑
i rigi ∈ I .

(2) Let F = (F1, . . . , Fk) be an embedded deformation of (X, 0) over Tε given by
Fi = fi + εgi, i = 1, . . . , k, as in (1) such that

∑
i rigi ∈ I for each relation

(r1, . . . , rk) among f1, . . . , fk . Then F and F ′ = (F ′
1, . . . , F ′

k), F ′
i = fi+εg′i ,

define isomorphic embedded deformations over Tε iff gi − g′i ∈ I . The vector
space structure on the space of embedded deformations is given by

F + F ′ = (f1 + ε(g1 + g′1), . . . , fk + ε(gk + g′k)
)
,

λF = (f1 + ελg1, . . . , fk + ελgk) , λ ∈ C .

(3) The embedded deformation defined by F as above is trivial as abstract
deformation iff there is a vector field ∂ =∑n

j=1 δj
∂

∂xj
∈ �C

n,0 such that

gi = ∂(fi) mod I , i = 1, . . . , k .

In particular, if I = 〈f 〉 defines a hypersurface singularity, then f +εg is trivial
as abstract deformation iff g ∈ 〈f,

∂f
∂xj

| j = 1, . . . , n〉.
(4) By (2) and (3) the map γ of (1) is an isomorphism. Using γ−1, the

morphism β from Proposition 7.2.33(2) maps ∂
∂xj

to (
∂f1
∂xj

, . . . ,
∂fk

∂xj
) since

β( ∂
∂xj

)(
∑k

i=1 aifi) =∑k
i=1

[
ai

∂fi

∂xj

]
.

Proposition 7.2.33 provides an algorithm for computing T 1
(X,0). This algorithm

is implemented in the SINGULAR library sing.lib. The SINGULAR procedure
T_1 computes all relevant information about first order deformations. For details
we refer to [35, Section I.1.4].

Infinitesimal deformations are the first step in formal deformation theory as
developed by Schlessinger in a very general context (see [35, Appendix C] for a
short overview). Schlessinger introduced what is nowadays called the Schlessinger
conditions (H0) – (H4) in [81]. One can verify that Def

(X,x)
satisfies conditions

(H0) – (H3) and, therefore, has a formal versal deformation. Moreover, for every
deformation functor satisfying the Schlessinger conditions, the corresponding
infinitesimal deformations carry a natural vector space structure. For T 1

(X,x) this
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structure coincides with the one defined above. Schlessinger’s theory was general-
ized to groupoids by Rim [77], who studied infinitesimal deformation theory in the
presence of automorphisms. A survey of deformations of complex spaces is given
in [69], some aspects of deformations of singularities are covered by [93].

7.2.5 Obstructions

We have seen in Remark 7.2.28 that dimC T 1
(X,x) < ∞ is a necessary and sufficient

condition for (X, x) to admit a semiuniversal deformation. However, the existence
says nothing about the semiuniversal base space. Some information is contained in
the vector space T 2

(X,x), which we describe below. This vector space contains the
obstructions to extend a given deformation of (X, x) over a fat point to a bigger one.
The construction of a semiuniversal deformation for a complex germ (X, x) with
dimC T 1

(X,x) < ∞ can be carried out as follows (for a C∗-equivariant version see the
proof of Theorem 7.3.5):

• We start with first order deformations and try to lift these to second order defor-
mations. In other words, we are looking for possible liftings of a deformation
(i, φ), [(i, φ)] ∈ Def

(X,x)
(Tε) = T 1

(X,x), to a deformation over the fat point

(T ′, 0) containing Tε , for example to the fat point with local ring C[η]/〈η3〉. Or,
if we assume the deformations to be embedded (Corollary 7.2.9), this means that
we are looking for a lifting of the first order deformation fi + εgi, ε2 = 0, to a
second order deformation fi + ηgi + η2g′i , η3 = 0, i = 1, . . . , k.

• This is exactly what we did when we constructed the semiuniversal deformation
of a complete intersection singularity. By induction we showed the existence of
a lifting to arbitrarily high order. In general, however, this is not always possible,
there are obstructions against lifting. Indeed, there is an OX,x-module T 2

(X,x) and,
for each small extension of Tε, an obstruction map

ob : T 1
(X,x) −→ T 2

(X,x)

such that the vanishing of ob
([(i, φ)]) is equivalent to the existence of a lifting of

(i, φ) to the small extension, e.g. to second order as above.
• Assuming that the obstruction is zero, we choose a lifting to second order (which

is, in general, not unique) and try to lift this to third order, that is, to a deformation
over the fat point with local ring C[t]/〈t4〉. Again, there is an obstruction map,
and the lifting is possible iff it maps the deformation class to zero.

• Continuing in this manner, in each step, the preimage of 0 under the obstruction
map defines homogeneous relations in terms of the elements t1, . . . , tτ of a basis
of (T 1

(X,x))
∗, of a given order, which in the limit yield formal power series in

C[[t]] = C[[t1, . . . , tτ ]]. If J denotes the ideal in C[[t]] defined by these power
series, the quotient C[[t]]/J is the local ring of the base space of the (formal)
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versal deformation. Then T 1
(X,x) = (〈t〉/〈t〉2)∗ is the Zariski tangent space to this

base space.

This method works for very general deformation functors having an obstruction
theory. A collection of methods and results from general obstruction theory can be
found in [35, Appendix C.2].

We give now a concrete description of the module T 2
(X,x), containing the

obstructions to lift a deformation from a fat point (T , 0) to an infinitesimally bigger
one (T ′, 0).

Let OX,x = OC
n,0/I , with I = 〈f1, . . . , fk〉. Consider a presentation of I ,

0 ←− I
α←− Ok

C
n,0

β←− O�
C

n,0 , α(ei) = fi .

Ker(α) = Im(β) is the module of relations for f1, . . . , fk , which contains the OC
n,0-

module of Koszul relations

Kos := 〈fiej − fjei | 1 ≤ i < j ≤ k〉 ,

e1, . . . , ek denoting the standard unit vectors in Ok
C

n,0. We set Rel := Ker(α) and
note that Rel/Kos is an OX,x-module: let

∑
i riei ∈ Rel, then

fj ·
k∑

i=1

riei = fj ·
k∑

i=1

riei −
k∑

i=1

rifiej =
k∑

i=1

ri · (fj ei − fiej ) ∈ Kos .

Since Kos ⊂ IOk
C

n,0, the inclusion Rel ⊂ Ok
C

n,0 induces an OX,x-linear map

Rel/Kos −→ Ok
C

n,0/IOk
C

n,0 = Ok
X,x .

Definition 7.2.36 We define T 2
(X,x) to be the cokernel of �, the OX,x-dual of the

latter map, that is, we have a defining exact sequence for T 2
(X,x)

:

HomOX,x
(Ok

X,x,OX,x)
�−→ HomOX,x

(Rel/Kos,OX,x) → T 2
(X,x) → 0 .

The following proposition is proved in [35, Proposition II.1.29] and [93, Chapter
3].

Proposition 7.2.37 Let (X, x) be a complex space germ.

(1) Let j : (T , 0) ↪→ (T ′, 0) be an inclusion of fat points, and let J be the kernel of
the corresponding map of local rings OT ′,0 � OT ,0. Then there is a map, called
the obstruction map,

ob : Def
(X,x)

(T , 0) −→ T 2
(X,x) ⊗C J ,
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satisfying: a deformation (i, φ) : (X, x) ↪→ (X , x) → (T , 0) admits a
lifting (i ′, φ′) : (X, x) ↪→ (X ′, x) → (T ′, 0) (i.e., j∗(i ′, φ′) = (i, φ)) iff
ob
([(i, φ)]) = 0.

(2) If T 1
(X,x) is a finite dimensional C-vector space and if T 2

(X,x) = 0, then the
semiuniversal deformation of (X, x) exists and has a smooth base space (of
dimension dimC T 1

(X,x)).

Note that the obstruction map ob is a map between sets (without further structure)
as Def

(X,x)
(T , 0) is just a set.

Definition 7.2.38 We call (X, x) unobstructed if it has a semiuniversal deformation
with smooth base space.

Hence an isolated singularity is unobstructed if T 2
(X,x)

= 0, but (X, x) may be

unobstructed even if T 2
(X,x) = 0.

If (X, x) is a hypersurface or, more generally, a complete intersection, then the
Koszul relations are the only existing relations. Hence, in this case Rel = Kos
and T 2

(X,x) = 0. In particular, isolated complete intersection singularities are
unobstructed.

Statement (2) of Proposition 7.2.37 can be generalized by applying Laudal’s
theorem [53, Theorem 4.2], which relates the base of a formal semiuniversal
deformation of (X, x) with the fibre of a formal power series map:

Theorem 7.2.39 (Laudal) Let (X, x) be a complex space germ such that T 1
(X,x),

T 2
(X,x) are finite dimensional complex vector spaces. Then there exists a formal

power series map

� : T 1
(X,x) −→ T 2

(X,x)

such that the fibre �−1(0) is the base of a formal semiuniversal deformation of
(X, x).

Corollary 7.2.40 Let (X, x) be a complex space germ such that T 1
(X,x) and T 2

(X,x)

are finite dimensional complex vector spaces, and let (S, s) be the base space of the
semiuniversal deformation. Then

dimC T 1
(X,x) ≥ dim(S, s) ≥ dimC T 1

(X,x) − dimC T 2
(X,x) ,

and dim(S, s) = dimC T 1
(X,x) iff (S, s) is smooth.

This corollary holds in a general deformation theoretic context (see [35, Proposition
C.2.3]).

The OX,x-module T 2
(X,x)

contains the obstructions against smoothness of the base
space of the semiuniversal deformation (if it exists), but it may be strictly bigger.
That is, in Corollary 7.2.40, the dimension of (S, s) may be strictly larger than the
difference dimC T 1

(X,x)
− dimC T 2

(X,x)
, as in the following example.
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Example 7.2.41 Let us compute the full semiuniversal deformation of the cone
(X, 0) ⊂ (C5, 0) over the rational normal curve of degree 4, using SINGULAR.
We get dimC T 1

(X,0) = 4 and dimC T 2
(X,0) = 3 and that the semiuniversal base

space has dimension 3. The total space of the semiuniversal deformation has 4
additional variables A, B, C, D (in the ring Px), the unfolding of the 6 defining
equations of (X, 0) is given by the ideal Fs and the base space, which is given by
the ideal Js in C{A, B, C, D}, is the union of the 3-plane {D = 0} and the line
{B = C = D − A = 0} in (C4, 0):9

LIB "deform.lib";
ring R = 0,(x,y,z,u,v),ds;
matrix M[2][4] = x,y,z,u,y,z,u,v;
ideal I = minor(M,2); // rational normal curve in P^4
vdim(T_1(I));
//-> 4
vdim(T_2(I));
//-> 3

list L = versal(I); // compute semiuniversal deformation
//-> // ready: T_1 and T_2
//-> // start computation in degree 2.
//-> .... (further output skipped) .....

def Px=L[1];
show(Px);
//-> // ring: (0),(A,B,C,D,x,y,z,u,v),(ds(4),ds(5),C);
//-> // minpoly = 0
//-> // objects belonging to this ring:
//-> // Rs [0] matrix 6 x 8
//-> // Fs [0] matrix 1 x 6
//-> // Js [0] matrix 1 x 3

setring Px;
Fs; // equations of total space
//-> Fs[1,1]=-u2+zv+Bu+Dv
//-> Fs[1,2]=-zu+yv-Au+Du
//-> Fs[1,3]=-yu+xv+Cu+Dz
//-> Fs[1,4]=z2-yu+Az+By
//-> Fs[1,5]=yz-xu+Bx-Cz
//-> Fs[1,6]=-y2+xz+Ax+Cy
Js; // equations of base space
//-> Js[1,1]=BD
//-> Js[1,2]=-AD+D2
//-> Js[1,3]=-CD

9This example is due to Pinkham [70]. It played an important role at the beginning of deformation
theory as the first example of a semiuniversal base space with several components. At that time
there had been practically no examples of singularities with obstructed deformations.
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Hence, the semiuniversal deformation of (X, 0) is given by (X , 0) → (S, 0),
induced by the projection onto the first factor of (C4, 0)× (C5, 0),

(C4, 0)× (C5, 0) ⊃ V (Fs) = (X , 0) → (S, 0) = V (Js) ⊂ (C4, 0) .

Note that the procedure versal proceeds by lifting infinitesimal deformations to
higher and higher order (as described in the proof of Proposition 7.2.37). In general,
this process may be infinite (but versal stops at a predefined order). However, in
many examples, it is finite (as in the example above).

We can further analyse the base space of the semiuniversal deformation by
decomposing it into its irreducible components.

ring P = 0,(A,B,C,D),dp;
ideal Js = imap(Px,Js);
minAssGTZ(Js);
//-> [1]:
//-> _[1]=D
//-> [2]:
//-> _[1]=C
//-> _[2]=B
//-> _[3]=A-D

The output shows that the base space is reduced (the primary and prime components
coincide) and that it has two components: a hyperplane and a transversal line.

Further developments: Abstract deformation theory, basically governed by the
Schlessinger’s conditions, has been further developed towards “Derived Deforma-
tion Theory” (cf.[63]) following the general trend in algebra and algebraic geometry
to make everything “derived”. While derived algebraic geometry has already
become part of the mainstream, this does not yet apply to “Derived Singularity
Theory”.

7.3 Smoothing of Singularities

7.3.1 Rigidity and Smoothability

We give a brief review of some well-known results on the question of the
smoothability and rigidity of singularities. Recall that a complex space germ (X, x)

with isolated singularity is not obstructed iff the semiuniversal deformation base
space is smooth.

Definition 7.3.1

(1) A singularity (X, x) is called rigid if any deformation of (X, x) over some base
space (S, s) is trivial, that is, isomorphic to the product deformation

(X, x)
i

↪→ (X, x)× (S, s)
p→ (S, s)

with i the canonical inclusion and p the second projection.
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(2) (X, x) is called smoothable if there exists a 1-parametric deformation φ :
(X , x) → (C, 0) of (X, x) such that for t ∈ C \ {0} sufficiently close to 0
the fibre Xt = φ−1(t) is smooth.

Rigid singularities are unobstructed. Smooth germs are rigid (by the implicit
function theorem) and smoothable. For non-smooth singularities the notions are
opposite to each other. If (X, x) has an isolated singularity then (X, x) is rigid
iff the semiuniversal base is a reduced point while (X, x) is smoothable iff the
semiuniversal base has a positive dimensional irreducible component over which
the generic fibre is smooth. Such a component is called a smoothing component.10

Proposition 7.3.2 A complex space germ is rigid iff T 1
(X,x) = 0.

Proof (X, x) is rigid iff the semiuniversal deformation exists and consists of
a single, reduced point. By Lemma 7.2.27, together with the existence of a
semiuniversal deformation for germs with dimC T 1

(X,x)
< ∞, this is equivalent to

T 1
(X,x) = 0. ��

The existence of rigid singularities in small dimension is still an open problem.
Assuming that the singularities are not smooth one may conjecture:

Conjecture 7.3.3 There exist no rigid fat points, no rigid reduced curve singularities
and no rigid normal surface singularities.

Example 7.3.4

(1) The simplest known example of an equidimensional (non-smooth) rigid singu-
larity (X, 0) is the union of two planes in (C4, 0), meeting in one point and
defined by 〈x, y〉 ∩ 〈z, w〉 (given by the ideal I in the ring R below).

(2) The product (X, 0) × (C, 0) ⊂ (C5, 0) (given by the ideal I in the ring
R1 below) has a non-isolated singularity but is also rigid (hence, has a
semiuniversal deformation). We prove these statements using SINGULAR [9]:

LIB "deform.lib";
ring R = 0,(x,y,u,v),ds;
ideal I = intersect(ideal(x,y),ideal(u,v));
vdim(T_1(I)); // result is 0 iff V(I) is rigid
//-> 0
ring R1 = 0,(x,y,u,v,w),ds;
ideal I = imap(R,I);
dim_slocus(I); // dimension of singular locus of V(I)
//-> 1
vdim(T_1(I));
//-> 0

(3) An even simpler (but not equidimensional) rigid singularity is the union of the
plane {x = 0} and the line {y = z = 0} in (C3, 0). This can be checked either
by using SINGULAR as above, or, without computer, by showing that the map
β in Proposition 7.2.33 is surjective.

10The term “smoothing component” was coined by Wahl in [99].
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Let us first recall some known results on rigidity. In 1964 Grauert and Kerner [25]
generalized Thom’s example (see below) and showed that the Segre cone over Pr ×
P

1 in P
2r+1(r ≥ 2) is rigid and gave thus the first example of a (non-smooth) rigid

singularity. Further examples of rigid singularities are due to Schlessinger (isolated
quotient singularities of dimension ≥ 3 [82], and to Rim (e.g. the one-point union
of two copies of (Cn, 0) in (C2n, 0) for n ≥ 2, [76]). Examples of singularities that
are not deformable into rigid singularities (so-called “generic singularities”) are due
to Schlessinger [83] (dim ≥ 3) and Mumford [67] (dim ≥ 2) (c.f. also [70]). By
Herzog [45] one-dimensional, almost-complete intersections are not rigid. It is also
known that monomial (i.e., irreducible, quasihomogenous) curves are not rigid [78,
5.12], [7, 3.1.2]. To date, no examples of rigid curve singularities are known; it is
conjectured that they do not exist. A detailed discussion of rigid and smoothable
singularities together with references up to 1973 can be found in Hartshorne [43],
where also topological conditions for smoothability are derived.

The question whether a singularity (X, x) is smoothable is among others
interesting because the smooth nearby fibre is an important topological object
associated to the singularity that has been (and still is) a continuous subject of
research (see Sect. 7.3.3). Classically, it was even suspected that all singularities
are smoothable. In 1909 Severi postulated that each algebraic variety with arbitrary
singularities should be the limit of a family of nonsingular algebraic manifolds ([86,
p.45] and in [87, p.355] for curves). In fact he conjectured that an irreducible curve
can be smoothed in a family of curves with constant degree and arithmetic genus,
i.e., in a flat family. It was a guiding principle of Severi in [87] to obtain statements
about singular curves from their smoothing.

Of course, hypersurfaces (e.g. plane curves) are smoothable but Severi’s general
postulate turned out to be wrong. The first example of a non-smoothable singularity,
the cone apex of the Segre embedding of P2 × P

1 in P
5, was found by R. Thom

in 1957. Thom gave topological reasons for non-smoothability; his argument was
reproduced and worked out in 1974 in [43] (for a strengthening see Theorem 7.3.16).
The first rigorous and pure algebraic proof was published anonymously in [105]
in 1957 (according to Thom, the author is A. Weil). The author shows that the
projective closure of Thom’s example in P

6 can not be smoothed in P
6 (which is

however weaker than abstract non-smoothability, cf. [71, 2.12]). Rees and Thomas
[74, 75] developed Thom’s idea further and found refined cobordism invariants
of the neighborhood boundary of an isolated singularity (X, x) as a necessary
condition for smoothability. They gave also further examples of non-smoothable
singularities. Other conditions have been found by Sommese [89].

For a long time the conjecture of Severi that every reduced projective curve
is smoothable had not been doubted (cf. [76] and [10, Conjecture 2.30]), until
Mumford’s, and later Pinkham’s examples appeared in 1973. Mumford showed in
[68] by an indirect argument that non-smoothable irreducible curve singularities
exist. Reducible examples, related to r straight lines in C

n through 0 in general
position, were first found by Pinkham [70]. We consider these examples and
generalizations in Sect. 7.3.6.
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Further results on smoothability:

1. Complete intersections are smoothable (by Sard’s theorem) and non-obstructed
[96].

2. A determinantal singularity (X, x) is given by the t × t minors of an r × s

matrix with entries holomorphic functions in an open subset U ⊂ C
N , such that

(X, x) has codimension (r − t + 1)(s − t + 1) in C
N . If (X, x) is an isolated

determinantal singularity and 2 ≤ t ≤ r ≤ s, then (X, x) is smoothable if
dim(X, x) < s + r − 2t + 3 [100, 6.2].

3. In particular, if (X, x) is Cohen-Macaulay of codimension11 2 (and hence
determinantal) then (X, x) is smoothable provided dim(X, x) ≤ 3 (Schaps [80]).
Note that the semiuniversal base is smooth for Cohen-Macaulay singularities in
codimension 2 without any restriction on the dimension (Schlessinger, thesis, and
[80]).

4. Moreover, an isolated Pfaffian singularity (X, x), defined by the 2m × 2m

Pfaffians of a skew-symmetric (2n + 1) × (2n + 1) matrix of holomorphic
functions is smoothable if dim(X, x) < 4(n−m)+ 7 [100, 6.3].

5. An irreducible isolated Gorenstein singularity of codim(X, x) ≤ 3 (which
is Pfaffian) has a smooth semiuniversal base and is moreover smoothable if
dim(X, x) ≤ 6 (Waldi [104]).

Let us look at dimensions ≤ 2:

1. The first proof for the existence of nonsmoothable normal surface singularities
was given by Mumford and later by Pinkham, see Sect. 7.3.2, where the case of
surface singularities is treated in more detail.

2. For curves the following is known. In 1975 Mumford showed that non-
smoothable curve singularities exist, using similar ideas as Iarrobino for his
proof of the existence of non-smoothable fat points.

3. Since reduced curve singularities are Cohen-Macaulay, we get that reduced
curves in (Cn, 0), n ≤ 3, and, moreover, reduced, irreducible Gorenstein
curves in (Cn, 0), n ≤ 4, are smoothable and not obstructed. In [78] it is
shown that negatively graded monomial curves are smoothable. For reduced
quasihomogeneous curves this is not true by Pinkham’s examples. Explicit
examples of non-smoothable monomial curves were first found by Buchweitz
in [7].

It is interesting to note that the curves of Mumford and Pinkham are not
smoothable, since the dimension of the base space of the semiuniversal deforma-
tion is “too large”. There is no curve singularity known whose semiuniversal base
has a smaller dimension than it would have by Deligne’s formula (see Sect. 7.3.6)
if it were smoothable.

4. Fat points in C
2 are smoothable (c.f. [4]).

11The codimension of (X, x) is codim(X, x) = edim(X, x) − dim(X, x) with edim(X, x) =
dimCm/m2 the embedding dimension.
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5. Iarrobino [48] was the first to show (by a dimension count) the existence of non-
smoothable points in C

n, n ≥ 3. In fact, it seems that up to today no one has
found an explicit example of a non-smoothable fat point in C

3. For an overview
on the Hilbert scheme of points, i.e. the deformation theory of a collection of fat
points in some projective space (until 1987), see [49].

6. Since then quite some work concerning smoothability of Artin algebras was
done, in particular more examples and methods that show non-smoothability
have been found, see e.g. Shafarevich [88], Erman [16], Huibregtse [47], and
Jelisiejew [50]. All known examples up to 2018 are summarized in the recent
paper [50, Remark 6.10].

7.3.2 Smoothing of Surface Singularities

Smoothability has been an important part of the deformation theory of normal
surface singularities. For any smoothing one has a smooth Milnor fibre, a key
topological object that has been intensively studied. The first to study systematically
the topology of smoothings of normal surface singularities apart from complete
intersections was Jonathan Wahl, who discovered in [100] in particular the topo-
logical difference of the Milnor fibres of two different types of smoothings.

Before, Mumford [67] and Pinkham [70, 71] had shown the existence of
non-smoothable singularities by studying deformations of weighted homogeneous
normal surface singularities. This approach was continued by Wahl in [100] and
[101].

An arbitrary singularity (X, x) is weighted homogeneous if OX,x is a graded alge-
bra OX,x = C{x1, . . . , xn}/I , where the xi have positive weights, wt(xi) = ai > 0,
and I is a graded ideal, which is generated by (weighted) homogeneous polynomials
fi . Then (X, x) admits a good C

∗-action λ · (x1, . . . , xn) = (λa1x1, . . . , λanxn).
We call (X, x) quasihomogeneous if it is analytically isomorphic to a weighted
homogeneous singularity.

The following result, a complement to Grauert’s Theorem 7.2.14, was proved by
Pinkham in [70, 71].

Theorem 7.3.5 (Pinkham)

1. A weighted homogeneous isolated singularity (X, x) admits a semiuniversal
deformation φ : (X , x) → (S, s) such that the C

∗-action extends to (X , x)

and (S, s) with φ equivariant.
2. Any equivariant deformation (Y , y) → (T , t) of (X, x) can be induced from

(X , x) → (S, s) via an equivariant base change morphism ϕ : (T , t) → (S, s).
3. For any equivariant deformation (Y , y) → (T , t) choose homogeneous genera-

tors tj of the maximal ideal of OT ,t and set (T −, t) = V {tj |wt(tj ) < 0} (resp.
(T 0, t) = V {tj |wt(tj ) = 0}, resp. (T +, t) = V {tj |wt(tj ) > 0}).

Then the equivariant morphism ϕ : (T , t) → (S, s) of (2) restricts to ϕ− :
(T −, t) → (S−, s) (resp. ϕ0 : (T 0, t) → (S0, s), resp. ϕ+ : (T +, t) → (S+, s)).
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Proof We sketch only the proof of (1) following [70, 71], who proves the statement
in the setting of formal deformation theory. The analytic version for complex germs
follows from an appropriate modification of [22, Proposition 1] taking care of the
C
∗-action.

Choose homogeneous generators f1, . . . , fk of I of (weighted) degree di . We
use the exact sequence

�C
n,0 ⊗OCn,0

OX,0
β−→ Hom(I/I 2,OX,0) = T 1

X,0/Cn,0 −→ T 1
X,0 −→ 0 ,

from Proposition 7.2.33, where the first module is graded by setting wt( ∂
∂xj

) = −ai .

By Remark 7.2.35 every element in T 1
X,0/Cn,0 is given by fi+εgi, i = 1, . . . , k, i.e.,

given by a tupel G = (g1, . . . , gk) with gi ∈ OC
n,0. We define G to be homogeneous

of degree ν if gi is homogeneous of degree ν + di , thus imposing a grading
on T 1

X,0/Cn,0. It follows that β is homogeneous since β( ∂
∂xj

) = (
∂f1
∂xj

, . . . ,
∂fk

∂xj
).

Therefore coker(β) = T 1
X,0 is graded and T 1

X,0 decomposes into graded pieces

T 1
X,0 =

∑

ν∈Z
T 1

X,0(ν).

We choose homogeneous elements Gj = (g
j
1 , . . . , g

j
k ) ∈ T 1

X,0/Cn,0 with deg(Gj ) =
νj , mapping to a homogeneous basis of T 1

X,0, j = 1, . . . , τ . Choose new variables
t = (ti , . . . , tτ ) and set

(f ′1, . . . , f ′k) = (f1, . . . , fk)+
∑

j=1,...,τ

tj (g
j
1 , . . . , g

j
k ) (mod m2),

m the maximal ideal of C{t1, . . . , tτ }. Then (f ′1, . . . , f ′k) defines a first order
deformation of (X, 0) with total space (X ′, 0) ⊂ (Cn × C

τ , 0) defined by
〈f ′1, . . . , f ′k〉 ⊂ C{x, t} over (S′, 0) = V (m2) ⊂ (Cτ , 0) as base space. Giving
tj the weight −νj then f ′j is homogeneous of degree dj and (X ′, 0) → (S′, 0) is
an equivariant deformation of first order.

Now we continue as in Sect. 7.2.5 and lift the first order deformation to
second order but in an equivariant way. Continuing by induction, we get finally
an equivariant semiuniversal deformation of (X, 0).

If the Gj are a system of generators of T 1
X,0, we get an equivariant versal

deformation. The equivariant base change property is proved in a similar way by
induction. ��
Remark 7.3.6

(1) It follows from the proof, that the base space of the semiuniversal deformation
is given by a subgerm (S, 0) ⊂ (Cτ , 0), τ = dimC T 1

X,0, defined by some



422 G.-M. Greuel

homogeneous ideal in C{t1, . . . , tτ }, wt (tj ) ∈ Z (note that the signs of the
weights of the variables tj are opposite to signs of the weights of the tangent
vectors). The total space of the semiuniversal deformation is then a subgerm
(X , 0) ⊂ (Cn, 0)×(S, 0) and φ : (X , 0) → (S, 0) is the projection. (X , 0) is
defined by a homogeneous ideal J ⊂ O(Cn,0)×(S,0) generated by homogeneous
power series

Fj (x, t) = fj (x)+ gj (x, t) ∈ C{x1, . . . , xn, t1, . . . , tτ }, gj (x, 0) = 0.

(2) The restriction φ− : (X −, 0) → (S−, 0) of φ is defined by fj (x) + gj (x, t)

with deg(gj ) ≥ deg(fj ) and any deformation which is induced from a map
to (S−, 0) is called a deformation of non-positive weight; if it is induced form
a map to (S−, 0) ∩ (S0, 0) (i.e. deg gj > deg(fj)) we call it a deformation of
negative weight. Similarly we consider the restriction φ+ : (X +, 0) → (S+, 0)

and speak of deformations of non-negative resp. of positive weight.
(3) It is easy to see that (X, x) cannot have smoothings of non-positive weight

(consider the Jacobian of (F1, . . . , Fk and use that the total space of a 1-
parametric smoothing has an isolated singularity). (X, x) may have smoothings
of positive weight, but these are rare as we shall see.

Let us now recall the main results about smoothability for a normal surface
singularity (X, x). Besides complete intersections the following is known:

1. Rational singularities and especially quotient singularities are always smooth-
able over the Artin component, i.e. the component of the semiuniversal base
corresponding to deformations of (X, x), induced by blow down, from deforma-
tions of the resolution of (X, x) (cf. Artin [3]; see also [71, Proposition 6.10]).

2. A normal surface singularity in (C4, 0) is smoothable with a smooth semiuniver-
sal base space since it is Cohen-Macaulay in codimension 2.

3. Let (X, x) be a simple elliptic singularity, i.e. the exceptional divisor of the
minimal resolution consists of one elliptic curve with selfintersection number
−d . Note that d is the multiplicity m of (X, x), except for d = 1 where m = 2.
Then (X, x) is smoothable if and only if m ≤ 9 (Pinkham [70]).

4. Let (X, x) be a cusp singularity where the exceptional curve of the minimal
resolution consists of a cycle of r rational curves meeting transversally. Let m

denote again the multiplicity. Then (X, x) is smoothable if m2 − m < r and is
not smoothable if m > r + 9 (Wahl [100, 5.6], [99, 5.12]).

5. Looijenga proved in [58] that whenever a cusp singularity is smoothable, the
minimal resolution of the dual cusp is an anticanonical divisor of some smooth
rational surface. He conjectured the converse. The conjecture was proved by
Gross, Hacking, and Keel [38] using methods from mirror symmetry. For an
alternative proof see [15].

6. If (X, x) is a Dolgachev (or triangular) singularity, then (X, x) is not smoothable
if the multiplicity is ≥ 14 ([101]; see also [59]).
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7. Note that the last three classes are minimally elliptic singularities in the sense of
Laufer (i.e. Gorenstein and h1(X̃,OX̃) = 1 for any resolution X̃ of X). Karras
proved in [51] that each minimally elliptic singularity (X, x) can be deformed
into a simple elliptic singularity with the same multiplicity m. Hence a minimally
elliptic singularity can be smoothed if m ≤ 9.

Important obstructions against smoothability of an isolated singularity come
from globalizing the smoothing. A smoothing of the globalized singularity (a
projective variety) provides a smooth projective variety in some projective space
with properties (coming from the singularity) that cannot exist. The following
theorem uses this method and is due to Pinkham [70, Theorem 7.5].

Theorem 7.3.7 (Pinkham) Let C ⊂ P
n be a smooth projectively normal curve of

genus g ≥ 1 and degree d ≥ 10 if g = 1 or d ≥ 4g + 5 if g ≥ 2. Let X ⊂ C
n+1

denote the affine cone over C. Then the singularity (X, 0) is not smoothable.

The proof makes use of the following theorem of [70, Theorem 4.2] that proves
globalization for cones.

Theorem 7.3.8 (Pinkham) Let Y ⊂ P
n be a nonsingular, projectively normal

subvariety of dimension ≥ 1. Let X be the affine cone over Y in C
n+1 and let X be

its projective closure in P
n+1. Assume that the homogeneous singularity (X, 0) has

negative grading (i.e., T 1
X,0(ν) = 0 for all ν > 0). Then any deformation of (X, 0)

lifts to an embedded deformation of X ⊂ P
n+1. More precisely, the morphism of

deformation functors Def
X/Pn+1 → Def

(X,0)
is smooth.

Remark 7.3.9 Pinkham proves the theorem only for infinitesimal deformations,
i.e., for deformations over fat points. Let us see how this implies the theorem for
deformations over arbitrary complex space germs: X ⊂ P

n+1 and (X, 0) have both
a convergent semiuniversal deformation. Pinkham’s result implies that the induced
morphism of the completion of the local rings of their base spaces is smooth, i.e.
flat with smooth fibre. This implies that the morphism of their analytic local rings is
smooth since completion is faithfully flat.

For a detailed study of deformations of cones over curves see also [93, Ch. 15].
The following theorem is due to Pinkham [71, 6.14] and Wahl [101, 3.9].

Theorem 7.3.10 (Pinkham; Wahl) Let (X, x) be a normal Gorenstein surface
singularity with weighted dual graph of the minimal resolution being star-shaped
with n arms and a central rational curve of self-intersection −(n − 2), where the
end-vertex of the i-th arm corresponds to a smooth rational curve of self-intersection
−bi (n ≥ 3, bi ≥ 2). If (X, x) is smoothable, then

∑

1≤i≤n

(bi − 1) ≤ 19.

Such a singularity is weighted homogeneous and Pinkham proved the theorem
for deformations of negative weight, where the negativity assumption is used to
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globalize the smoothing. Then he used hyperplane sections to find obstructions for
smoothings.

It would follow right away from [100] that none of these singularities (with
opposite inequality) could be smoothed for any deformation if his conjecture on
globalization (Theorem 7.3.11) had already been proved. So Wahl used in [101, 3.8]
an ad hoc argument for globalization, that under the assumptions of the theorem
any deformation of (X, x), in particular any smoothing, can be globalized in the
following sense:

Since (X, x) is weighted homogeneous with isolated singularity, it has an affine
representative X ⊂ C

n with x as its only singularity. Let X be the projective
closure in the corresponding weighted projective space. Then any deformation of the
projective variety X induces a deformation of X and Wahl shows that the induced
functor of deformation classes Def

X
→ Def

X
is smooth.

Later Looijenga proved [60, Appendix] that any smoothing of an arbitrary
isolated singularity (X, x) can be globalized:

Theorem 7.3.11 (Looijenga) Let f : (X , x) → (C, 0) be a smoothing over (C, 0)

of an isolated singularity. Then there is a flat projective morphism F : Y → C, a
point y ∈ Y = F−1(0) and an isomorphism h : (X , x) → (Y , y) such that
F ◦ h = f and F is smooth along Y \ {y}.

Wahl’s paper [100] contains several conjectures which have all been proved
shortly after. The above globalization property implies that Wahl’s Theorem 3.13
holds for any smoothing of a normal surface singularity. The same is true for
his Corollary 4.6 due to the results of Looijenga and the author in [34], while
Theorem 4.10 is valid for any smoothing of a Gorenstein surface singularity. The
other conjectures made in [100] follow from the results of Steenbrink in [91] and
Steenbrink and the author in [37]. See Sects. 7.3.3 and 7.3.5 for a treatment of these
conjectures.

Since the 1990s many further examples of smoothable and non-smoothable
singularities were found (a search for “smoothable” in zbMATH (Zentralblatt)
or Mathematical Reviews lists about 300 articles), often in the global setting for
projective varieties and as a result of research on other questions. Moreover, the
smoothability assumption is often used in proofs. For a treatment of (formal)
smoothing of singularities in the deformation theoretic setting of schemes see [44,
Section 29].

7.3.3 Topology of the Milnor Fibre

The main object of research for smoothable surface singularities (X, x) is the
topology of the Milnor fiber. For the classical theory of the Milnor fibration and
related topics we refer to the textbooks by Milnor [66] (hypersurfaces), Looijenga
[61] (complete intersections), Seade [84] (real singularities and index theorems),
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and Ebeling’s article [14] (Milnor lattice, distinguished bases and monodromy). For
a computational approach to topological invariants of hypersurfaces we refer to [11].

In general one calls the generic fibre of any 1-parametric deformation the Milnor
fibre of the deformation. To speak about the topology we need to choose special
neighbourhoods.

Let (X, x) ⊂ (CN, x) be an arbitrary singularity. We consider a morphism φ :
(X , x) → (S, s) with (S, s) ⊂ (Ck, s) and (X, x) = (φ−1(s), x). We may assume
that φ is embedded, i.e., (X , x) is a closed subgerm of (CN, x)× (S, s) and φ the
projection to the second factor. Let U ⊂ C

N × C
k be an open neighbouhood of

(x, s), X̃ ⊂ U a closed representative of (X , x) and φ : X̃ → S a representative
of the germ φ. We choose now a special representative:

Definition 7.3.12 Let Bε be an open ball of radius ε around x in C
N and Bε the

closed ball. Let Sδ be the intersection of S with an open ball Dδ of radius δ around
s in C

k with Bε ×Dδ ⊂ U and 0 < δ 1 ε sufficiently small. Then

φ :X := X̃ ∩ Bε × Sδ → Sδ =: S

is called a good representative of φ. The fibres Xt = φ−1(t), t ∈ S, are contained
in a fixed small ball B = Bε , also called a Milnor ball. Moreover,

∂Xt := X̃t ∩ ∂B, t ∈ S,

is the boundary of the closed fibre X t = X̃t ∩ B and ∂X = ∂X0 is called the
neighbourhood boundary of (X, x).

If (S, s) = (C, 0) we always write φ : X → D for the good representative and
call

F :=Xt , t ∈ D \ {0},

the Milnor fibre of the 1-parametric deformation φ and X =X0 the special fibre.

X and all fibres Xt are Stein complex spaces while ∂Xt is a compact real
algebraic subvariety of the sphere ∂Bε . The Milnor fibre depends of course in
general on φ but for a given 1-parametric deformation its topological type is
independent of t = 0 (cf. Theorem 7.3.15 below).

The following lemma is certainly well known to specialists, but because of
missing an explicit reference, I like to sketch a proof (thanks to H. Hamm).

Lemma 7.3.13 If (X, x) is an isolated singularity then there are only finitely many
topologically different Milnor fibres for all deformations φ :X → D of (X, x) .
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Proof Let φ : X → S be a good representative of the semiuniversal deformation
of (X, x). Since (X, x) has an isolated singularity, the singular or critical locus of φ,

C(φ) := {y ∈ X |Xφ(y) is singular at y}

is finite over S and the discriminant of φ,

�(φ) := φ(C(φ))

is an analytic subset of S. Consider now a proper representative

φ :X := X̃ ∩ Bε × S → S.

The fibres X t of φ meet ∂Bε transversally such that all boundaries ∂Xt are
differentiable manifolds.

Choose a Whitney stratification of S such that � is a union of strata. The
restriction φ : C → � has a Whitney stratification that refines this stratification
of � (see [24, I.1.7 Theorem, p. 43]). If one adds to the stratification of C the
strata φ −1(T ) \ C, T a stratum of S, one gets a stratification of X . With this
stratification and that of S one obtains a Whitney stratification of the proper map
φ with finitely many strata. For every stratum T of S the restriction φ −1(T ) → T

is a proper stratified submersion. According to Thom’s isotopy theorem [24, I.1.5
Theorem, p. 41] the latter defines a topological fiber bundle and the topological type
of φ −1(t), t ∈ T , is therefore independent of t . ��

We are mainly interested in isolated singularities but let us first recall the
following general result from [31].

Theorem 7.3.14 (Bobadilla, Greuel, Hamm) Let φ : (X , x) → (C, 0) be a
morphism of complex germs and φ : X → D a good representative with special
fibre X and Milnor fibre F .

1. If (X , x) is irreducible and X generically reduced then F is irreducible.
2. Let (X , x) be reducible with irreducible components (Xi , x), i = 1, . . . , r, and

assume that the intersection graph G(φ) is connected. Then F is connected.
3. In particular, if (X, x) is reduced then F is connected.

Here G(φ) is the graph with vertices i = 1, . . . r , and we join i = j by an edge iff
there exist points y ∈ X∩Xi ∩Xj arbitrary close to x (y = x being allowed) such
that (X, y) is reduced.

In (1) we need in fact only that at least one irreducible component of X is
generically reduced. We do not assume that φ is flat, but this is practically irrelevant.
Since flatness means that no irreducible component of (X , x) is mapped to 0, the
irreducible components which are mapped to 0 do not contribute to the Milnor fibre
and F is the same as the restriction of φ to the other components, which is flat.
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The proof of Theorem 7.3.14 is somewhat involved and uses the monodromy and
the following general fibration theorem of Lê Dũng Tráng (cf. [56], and [55] for a
detailed account).

Theorem 7.3.15 (Lê) Let φ :X → D be a good representative of φ : (X , x) →
(C, 0). Then

φ :X \X0 → D \ {0}

is a topological fibre bundle with fibre F .

This theorem has been known before in many special cases, all generalizing
Milnor’s famous fibration theorem [66] for smoothings of an isolated hypersurface
singularity.

If (X, x) has an isolated singularity, then ∂X is a real manifold diffeomorphic
to ∂Xt for all t ∈ S (by the Ehresmann fibration theorem, see e.g. [84]). Hence
∂F is independent of the deformation φ. If moreover φ is a smoothing then F is a
Stein manifold, and ∂X can be filled by a complex Stein manifold. This imposes
the following topological condition on the smoothability of (X, x) (cf. [37, 2.2
Corollary]), which is a strengthening of [43], who proved an analogous result for
cohomology instead of homotopy.

Theorem 7.3.16 (Greuel, Steenbrink) Let (X, x) be an isolated singularity of
pure dimension n. If (X, x) is smoothable, then

πi(X \ {x}) = 0

for 0 ≤ i ≤ min{n− 2, n− codim(X, x)}.
This result and a local Lefschetz-Barth theorem of Hamm [40] is used in the

proof of the following result about the homotopy groups of the Milnor fibre (cf. [37,
Theorem 1]). Since F is Stein, πi(F ) = 0 for i > dim(X, x), and for the other
homotopy groups we have:

Theorem 7.3.17 (Greuel, Steenbrink) Let F be the Milnor fiber of a smoothing
of a pure n-dimensional isolated singularity (X, x). Then

πi(F ) = 0 for 0 ≤ i ≤ n− codim(X, x).

The following theorem [37, Theorem 2] is the main result in [37]. It was
conjectured by J. Wahl, who proved it when (X, x) is weighted homogeneous and
the smoothing has negative weight (cf. [101]).

Theorem 7.3.18 (Greuel, Steenbrink) Let F be the Milnor fiber of a smooth-
ing of a normal isolated singularity. Then the first Betti number b1(F ) :=
dimC H 1(F,C) = 0.
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The proof considers a good representative φ : X → D of the smoothing
of (X, x) and uses a resolution π : X̃ → X of singularities of X , such that
E = φ̃−1(x), φ̃ = φ ◦ π , is a divisor with normal crossings. Using the normality
of X, it is proved that H 1(E,Z) = H 1(X̃ ,Z) = H 1(X̃ ,OX̃ ) = 0. The
hypercohomology sheaves Rpφ̃∗K•, K• = !•̃

X /D
(log E), of relative logarithmic

differential forms are coherent (by [8]) and locally free (by [90]) and satisfy
b1(F ) = b1(X̃t ) = dimC H1(E, K• ⊗ OE). A careful study of the 2nd spectral
sequence of hypercohomology, and using H 1(E,C) = 0, leads to the required
result.

The following corollary is immediate:

Corollary 7.3.19 Let X be any compact complex space with at most isolated
normal singularities and let φ : (X , X) → (C, 0), be any smoothing of X. Then
b1(Xt ) is constant for any sufficiently small t ∈ C \ {0}.

The example of Pinkham (Example 7.2.41) shows that π1(F ) need not be zero in
Theorem 7.3.18. It is shown in [37] that the assumption “normal” is necessary with
the following example. Take a smooth n-dimensional projective variety E ⊂ P

N−1

and let X ⊂ C
N be the affine cone over E. Let F0 ⊂ P

N−1 be any smooth connected
hypersurface of degree d , which intersects E in a smooth variety E0 = E ∩ F0 and
let G0 be the affine cone over F0. Consider in C

N the smoothing of the hypersurface
section X0 = X∩G0 through the origin by “sweeping out” the hypersurface section
away from the origin with Xt the nearby (Milnor) fibre. It is shown that b1(Xt ) ≥
b1(E) and hence X0 cannot be normal if b1(E) = 0 (plenty of such E exist).

In general the following holds by [37, 4.2 Proposition].

Proposition 7.3.20 A normal connected projective variety E with dim(E) ≥ 2
admits a projective embedding with projectively normal hypersurface section iff
b1(E) = 0.

Theorem 7.3.18 was generalized by van Straten in [94] using the same method.

Theorem 7.3.21 (van Straten) Let φ : X → D be a good representative of
a smoothing of a reduced equidimensional singularity (X, x) and F its Milnor
fibre. Let X[0] denote the disjoint union of the irreducible components of X and
γ : H 0(X[0]) → Cl(X , x) be the map that associates to a divisor supported on X

its class in the local class group. Then b1(F ) ≥ rankKer(γ )− 1, with equality if
X is weakly normal.

For further results on the Milnor fibre of a normal surface singularity, in particular
about its diffeomorphism type (up to 2016), see also the survey by Popescu-Pampu
[72, Section 6.2].



7 Deformation and Smoothing of Singularities 429

7.3.4 Milnor Number Versus Tjurina Number

We will now review some results about the Milnor number μ(X, x), an important
topological invariant of the singularity, and in particular its (in some sense mysteri-
ous) relation to the Tjurina number τ (X, x) (Definition 7.2.26), which is an analytic
invariant. The Milnor number is defined as follows.

Definition 7.3.22 Let (X, x) be an n-dimensional isolated singularity and φ :
X → D a good representative of a 1-parametric deformation of (X, x). The middle
Bettti number of the Milnor fibre F of φ,

μφ := bn(F ) = dimC H n(F,C),

is called the Milnor number of φ. If μφ is independent of the deformation and
depends only on (X, x), we denote it by μ(X, x).

By Lemma 7.3.13 there are only finitely many Milnor numbers of (X, x). The
fact that different smoothings of a normal surface singularity can lead to Milnor
fibres with different Milnor numbers was first detected by Wahl in [100], where he
gave also examples with non-vanishing H 2(F ) and H 3(F ).

In this section we consider only singularities (e.g. complete intersections) with
a unique Milnor number. If (X, x) is a complete intersection or a normal isolated
singularity then there are only two non-vanishing Betti numbers (b0(F ) = 1 and
bn(F )) (see Theorem 7.3.18 for the normal surface case). In general there are more
non-vanishing Betti numbers.

Consider first a hypersurface singularity (X, x) = (V (f ), x) with isolated
singularity, f : (Cn+1, x) → (C, 0) a holomorphic map germ. Then the Milnor fibre
F = f−1(t) is an n-dimensional complex manifold, which is homotopy equivalent
to a bouquet of n-dimensional real spheres (Milnor [66]). Therefore the homology
groups H i(F,Z) do all vanish except for i = 1, n. The middle Betti number (F has
real dimension 2n)

μ(X, x) = bn(F ) = dimC H n(F,C)

is the number of these spheres, is the Milnor number of (X, x) or of f . Milnor
proved the algebraic formula

μ(X, x) = dimC O
C

n+1,x/
〈 ∂f
∂x0

, . . . ,
∂f
∂xn

〉
.

If (X, x) is an n-dimensional isolated complete intersection singularity (ICIS),
then the homotopy type of the Milnor fibre is also a bouquet of n-spheres (Hamm
[39, Satz 1.7]) and the number of these spheres is again the Milnor number of (X, x)

and denoted by μ(X, x).

Since the base space of the semiuniversal deformation φ : (X , x) → (S, s)

of an ICIS is smooth (cf. Theorem 7.2.22) there is only one Milnor fibre (up to
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diffeomorphism). In fact, the semiuniversal deformation is given by a flat morphism
φ : (Cn+k, x) → (Ck, 0) such that for a good representative φ : X → S the
restriction φ : X \ φ−1(�(φ)) → S \ �(φ) is a C∞− fibre bundle (by [66] for a
hypersurface, and [39, Satz 1.6] for an ICIS). Here C(φ) denotes the critical locus
and �(φ) = φ(C(φ)) the discriminant of φ.

Milnor’s algebraic formula for μ(X, x) has been generalized to complete
intersections independently by the author [28] (announced 1973 in [5]) and Lê Dũng
Tráng [54]. The following result (cf. [28, Lemma 5.3]) is an important step in the
proof and of independent interest in itself.

Proposition 7.3.23 Let (X, x) be an n-dimensional ICIS, n ≥ 0, and φ :
(X , x) → (C, 0) a deformation of (X, x) with (X , x) an ICIS. Then

μ(X , x)+ μ(X, x) = dimC OC(φ),x,

with OC(φ),x the local ring of the singular locus of φ at x.

If (X, x) ⊂ (Cn+k, x) is defined by f1, . . . , fk and (X , x) by f1, . . . , fk−1 (i.e.
φ = fk|(X , x)), then

OC(φ),x := O
C

n+k ,x/〈f1, . . . , fk−1, k-minors of Jac(f1, . . . , fk−1, fk)〉,

where Jac denotes the Jacobian matrix. We can choose the fi such that (Xi, x) =
V (f1, . . . , fi−1), i = 1, . . . , k, is an ICIS. Applying Proposition 7.3.23 to fi :
(Xi, x) → (C, 0) we get

Theorem 7.3.24 (Greuel, Lê)

μ(X, x) =
k∑

i=1

(−1)k−i dimC OC(fi),x.

The proofs in [54] and [28] are very different. While the first is topological the
second is algebraic and uses the Poincaré complex !•

X,x of holomorphic differential
forms and an index theorem of Malgrange. An important result in [28, Proposition
5.1], from which Theorem 7.3.24 is deduced and which has been extended to
Gorenstein curves, is the following.

Theorem 7.3.25 (Greuel) Let (X, x) be an n-dimensional ICIS. Then

μ(X, x) =
{

dimC !n
X,x/d!n−1

X,x if n > 0
dimC OX,x − 1 if n = 0.

If (X, x) is quasihomogeneous, then μ(X, x) can be expressed purely in terms
of the weights and degrees of the defining weighted homogeneous polynomials (c.f.
[32]).
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For a hypersurface defined by f ∈ O
C

n+1,0 we have obviously the inequality
μ(f ) ≤ τ (f ), which follows from the formulas for μ and τ . By a theorem of
Saito [79] we have μ(f ) = τ (f ) iff f is analytically equivalent to a weighted
homogeneous polynomial. The same result was conjectured in [29] for complete
intersections although the relationship is not at all obvious (τ is the dimension of
a vector space while μ is an alternating sum). After proofs in special cases in [29,
30, 36, 97, 102] the final proof follows from results by the author [28, Korollar 5.8],
[29, 3.1 Satz], by Looijenga-Steenbrink [62] and by Vosegaard [98].

Theorem 7.3.26 Let (X, x) ⊂ (Cm, x) be an ICIS of positive dimension, defined
by f1, . . . , fk .

1. (Looijenga-Steenbrink) μ(X, x) ≥ τ (X, x).

2. (Greuel) If (X, x) is quasihomogeneous, then
μ(X, x) = τ (X, x) = τ ′(X, x) := dimC OC(X),x, with
OC(X),x = dimC OC

m,x/〈f1, . . . , fk, k-minors of Jac(f1, . . . , fk)〉.
3. (Vosegaard) If μ(X, x) = τ (X, x) then (X, x) is quasihomogenous.

Each item is hard to prove. (1) was proved for dim(X, x) = 1 or if ∂X is
a rational homology sphere in [29]. (3) was also proved before in special cases:
for dim(X, x) = 1 by Greuel-Martin-Pfister in [36], see also Corollary 7.3.55 (for
Gorenstein curves, in the irreducible case already in [30]), for dim(X, x) = 2 by
Wahl in [102] and for a purely elliptic ICIS of dimension≥ 2 by Vosegaard in [97].

Proposition 7.3.27 (Greuel) Let (X, x) be an n-dimensional ICIS, n ≥ 1.

1. Let !•
X,x be the Poincaré complex and H 0{x} local cohomology (in this case

H 0{x}(!•
X,x) is the torsion submodule T !•

X,x), then

τ ′(X, x) = τ ′′(X, x) := dimC H 0{x}(!n
X,x),

by [28, Proposition 1.11].
2. By [28, Proposition 5.7] we have

μ(X, x) = τ ′′(X, x)+ dimC H n(!•
X,x/T !•

X,x).

In particular τ ′(X, x) ≤ μ(X, x) with equality if (X, x) is quasihomogeneous
(there are however non-quasihomogeneous examples with μ = τ ′ for n ≥ 2).

3. Moreover,

τ (X, x) = dimC Ext1OX,x
(!1

X,x,OX,x) = dimC H n−1
{x} (!1

X,x),

where the first equality is due to Tjurina [96] and the second follows from local
duality, see [29, 1.2 Satz]. In particular τ (X, x) = τ ′(X, x) if n = 1.
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In general no relation between τ (X, x) and τ ′(X, x) is known. Based on
computations with SINGULAR we conjecture:

Conjecture 7.3.28 τ (X, x) ≤ τ ′(X, x).

If (X, x) is not an ICIS, the base space of the semiuniversal deformation may
have several irreducible components and the topology of a nearby generic fibre
depends in general on the component over which the fibre lives. This situation is
studied in detail in the next section.

However, there are classes of singularities other than ICIS which have a
smooth semiuniversal base space, like Cohen-Macaulay singularities in codim 2 or
Gorenstein in codim 3. For these there is a unique (up to homeomorphism) Milnor
fiber (the generic fibre over the semiuniversal base) and a unique Milnor number,
defined as the middle Betti number of the Milnor fibre (c.f. Definition 7.3.30). A
special case are normal surface singularities in (C4, 0). They are smoothable, with
a smooth semiuniversal base space and, if they are Gorenstein then they are already
a complete intersection. For these Wahl offered in [103] the following conjecture:

Conjecture 7.3.29 (Wahl) Let (X, x) be a normal surface singularity in (C4, 0), not
a complete intersection. Then

μ(X, x) ≥ τ (X, x)− 1,

with equality if and only if (X, x) is quasihomogeneous.

7.3.5 Smoothing Components

For an isolated singularity (X, x), which is not a complete intersection, the
semiuniversal base space may have several irreducible components (see Pinkham’s
Example 7.2.41) and the Milnor fibre depends in general on the smoothing. It is
interesting to know, which properties are independent of the smoothing and depend
only on (X, x). Let

� : (Y , y) → (S, s)

be the semiuniversal deformation of (X, x). Recall that an irreducible component
(S′, s) of (S, s) is called a smoothing component, if the generic fibre F over S′ is
smooth. The diffeomorphism type of F depends only on (S′, s) and F is the Milnor
fibre of this component.

Definition 7.3.30 Let (S′, s) be a smoothing component of the isolated singularity
(X, x) and φ : (X , x) → (C, 0) a smoothing induced by a morphism j : (C, 0) →
(S′, s). We denote the dimension of the smoothing component by

eφ := dim(S′, s).
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If (S, s) is smooth (e.g. for (X, x) a complete intersection), then eφ is indepen-
dent of φ and equal to τ (X, x).

The first to study systematically different smoothings and the corresponding
Milnor fibres was Wahl in [100]. It was already mentioned after Theorem 7.3.11 that
his conjectures there have all been proved and that several of his statements are now
valid in greater generality. Wahl considered in [100] normal surface singularities
that are not complete intersections and compares the Milnor number of a smoothing
with the dimension of the smoothing component over which the smoothing occurs.
In [100, Conjecture 4.2] Wahl made the following interesting conjecture about eφ ,
which he proved in special cases and which was fully proved by the author and
Looijenga in [34].

Theorem 7.3.31 (Greuel, Looijenga) With the assumptions of Definition 7.3.30
we have

dim(S′, s) = dimC coker(�X /C,x → �X,x),

with �X /C the sheaf of relative derivations.

We will comment on the proof at the end of this section.
The more recent paper [103] is partly an updated survey on old results, but it

contains also new results and conjectures on normal surface singularities, which
we like to recall. Let φ : (X , x) → (C, 0) be a smoothing of a normal surface
singularity (X, x). Then Wahl introduced another invariant,

αφ := dimC coker(ω∗X /C,x ⊗ OX,x → ω∗X,x),

with ω∗X /C
the OX -dual of the relative dualizing sheaf.

Using Theorems 7.3.18 and 7.3.31 Wahl relates μφ, eφ and αφ with resolution
invariants of (X, x) and proves ([100, Theorem 3.13] and [103, Theorem 1.1] where
Wahl denotes our eφ by τφ

12 ):

Theorem 7.3.32 (Wahl) Let φ : (X , x) → (C, 0) be a smoothing of a normal
surface singularity (X, x) and let (Y, E) → (X, x) be a good resolution. Then
(with χT the topological Euler characteristic)

1. 1+ μφ = αφ + 13h1(OY )+ χT (E)− h1(−KY ).

2. eφ = 2αφ + 12h1(OY )+ h1(�Y )− 2h1(−KY ).

If (X, x) is Gorenstein, then αφ = 0, so μ and e are independent of the smoothing.

12Wahl calls the dimension of a smoothing component Tjurina number of the smoothing. We stay
however with the widely accepted terminology, and denote the dimension of T 1 as the Tjurina
number for an arbitrary singularity (Definition 7.2.26, see also the footnote to Proposition 7.2.33).
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For (X, x) Gorenstein (but not necessary smoothable) denote by μ̃(X, x) resp.
ẽ(X, x) the expressions for μφ resp. eφ given by the above theorem (these are
independent of φ since α = 0 and hence invariants of (X, x) that may be negative
if (X, x) is not smoothable). Then Wahl proves in [100, Theorem 3.13] and [103,
Theorem 1.2]:

Theorem 7.3.33 (Wahl) If (X, x) is a Gorenstein surface singularity, then
μ̃(X, x)− ẽ(X, x) ≥ 0, with equality if and only if (X, x) is quasihomogeneous.

Wahl’s new main conjecture in [103] uses the sheaf of logarithmic derivations
SY := (!1

Y (log(E))∗ on the resolution.

Conjecture 7.3.34 (Wahl) For (Y, E) → (X, x) the minimal good resolution of a
non-Gorenstein normal surface singularity (X, x)one has

h1(OY )− h1(SY )+ h1(�2SY ) ≥ 0,

with equality if and only if (X, x) is quasi-homogeneous.

The quasihomogeneous case is settled by Wahl himself [103, Theorem 3.3].

Theorem 7.3.35 (Wahl) If (X, x) is quasihomogeneous and not Gorenstein, then
h1(OY )− h1(SY )+ h1(�2SY ) = 0.

For further conjectures and results concerning smoothings of (special classes of)
normal surface singularities, in particular for different formulas for μφ and eφ , we
refer to [103].

At the end of this section, let us sketch the main steps in the proof of
Theorem 7.3.31 because the method is valid in a very general deformation theoretic
setting [34, Section 3] and some aspects in our special situation are interesting in
itself. For details of what follows we refer to [34, Section 1 and 2].

Let φ : (X , x) → (C, 0) be a deformation of an isolated singularity (X, x).
Deformations of a morphism were considered in Definition 7.2.29 and we consider
now deformations of φ. In particular we have (Definition 7.2.31)

T 1
(X ,x)/(C,0) = Def

(X ,x)/(C,0)
(Tε).

Let us give an explicit description of T 1
(X ,x)/(C,0)

. We may assume that φ is

embedded (Corollary 7.2.9), i.e. (X , x) ⊂ (CN × C, 0) is an embedding such that
its composite with the projection on (C, 0) yields φ. Choose a good representative
φ : X ⊂ B ×D → D and let I ⊂ OB×D be the ideal sheaf defining X . Then we
have an exact sequence of OX -modules

I/I2 α−→ !1
B×D/D ⊗OB×D

OX −→ !1
X /D −→ 0 ,



7 Deformation and Smoothing of Singularities 435

and dualizing with H omOX
(−,OX ) we get the exact sequence

0 −→ �X /D −→ �B×D/D ⊗OB×D
OX

β−→H omOX
(I/I2,OX ),

with �X /D = H omOX
(!1

X /D
,OX ) the sheaf of relative holomorphic vector

fields of X /D.

Lemma 7.3.36 Setting T 1
X /D

:= coker(β), we have an exact sequence of sheaves

0 → �X /D → �B×D/D ⊗ OX
β→H omOX

(I/I2,OX ) → T 1
X /D → 0.

Moreover, T 1
X /D,x

= T 1
(X ,x)/(C,0)

, i.e. an element of T 1
X /D,x

may be regarded as a
deformation � : (Y , x) → (D, 0) × Tε → Tε of φ, which induces φ : (X , x) →
(D, 0) → {0} by restricting to {0} ⊂ Tε (up to isomorphism).

By Theorem 7.3.31 we have to consider the cokernel of the map �X /D,x →
�X,x , which appears in the following exact sequence.

Lemma 7.3.37 For any deformation of an isolated singularity as above there is an
exact sequence of OX -modules,

0 → �X /D

φ→ �X /D → �X → T 1
X /D

φ→ T 1
X /D → T 1

X,

with φ the multiplication by φ ∈ OX ,x .

Now let (S, s) be a complex germ and j : (C, 0) → (S, s) a morphism. We set

�(j) := DerC(OS,s,O) with O := OC,0 = C{t}.
For ζ ∈ �(j) define j∗ζ : OS,s → OC,0[ε]/ε2 by j∗ζ = j∗ + εζ . This ring map

defines a morphism of complex germs jζ : (C, 0)× Tε → (S, s), which extends j .
Hence jζ is a deformation of j . Applying the left-exact functor DerC(OS,s,−) to

0 → O t→ O→ C→ 0, we have an exact sequence

0 → �(j)
t→ �(j) → DerC(OS,s,C) ∼= TS,s → 0,

where TS,s is the Zariski tangent space of (S, s). Hence �(j) is a free OC,0 module
of rank dimC(�(j)/t�(j)) and �(j)/t�(j) = �(j)⊗ C maps injectively onto a
subspace V of TS,s . Since �(j) is free, it follows

Lemma 7.3.38

dimC V = dimC �(j)⊗ C = rkO�(j)

= dim of the Zariski tangent space of S
at the generic point of the image of j.
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Remark 7.3.39 The following geometric interpretation of V may be helpful. Embed
(S, s) in some (Ck, 0). The Zariski tangent spaces TS,j (t) ⊂ C

k fit together to form
an analytic vector bundle over the punctured disk Dδ \ {0} ⊂ C for sufficiently
small δ. Then V is limit of the Zariski tangent spaces TS,j (t) for t → 0, taken in the
Grassmannian of subspaces in C

k .

Now let (S, s) be the base space of the semiuniversal deformation of (X, x).
ζ ∈ �(j) determines a morphism jζ : (C, 0) × Tε → (S, s) extending j as above
and hence by pullback a deformation of (X, x) over (C, 0)×Tε extending φ. Thus we
get an element of T 1

X /C,x
and the corresponding map �(j) → T 1

X /C,x
is surjective

by versality (Definition 7.2.13). We get

Lemma 7.3.40 Let (S, s) be the base space of the semiuniversal deformation of
(X, x).

1. The natural O-homomorphism �(j) → T 1
X /C,x

is onto.

2. The image of T 1
X /C,x

→ T 1
X,x coincides with the image of �(j)⊗ C → TS,s

under the identification T 1
X,x

∼= TS,s .

Now we can derive easily the main result from [34], which implies Wahl’s
conjecture (Theorem 7.3.31).

Theorem 7.3.41 (Greuel, Looijenga) Let � : (Y , y) → (S, s) be the semiuniver-
sal deformation of (X, x) and φ : (X , x) → (C, 0) induced by j : (C, 0) → (S, s).
Then the dimension of the Zariski tangent space of (S, s) at the generic point of the
image of j equals

rkOT 1
X /C,x + dimC coker(�X /C,x → �X,x).

In particular, if the generic point of the image of j is nonsingular (e.g. if the
fibre over the generic point is smooth or rigid), then this is the dimension of the
irreducible component of (S, s) to which j maps.

By openness of versality (Theorem 7.2.21) � : Y → S is a joint versal
deformation of (Xt , z) for any point t ∈ S close to s and any z ∈ Sing(Xt ).
Therefore the germ (S, t) is isomorphic to the cartesian product of the germs of
the semiuniversal base spaces of (Xt , z), which we denote by (SXt

, t), and an extra
smooth factor (Proposition 7.2.17) which we denote by (T , t). Since φ∗T 1

X /C
is free

at a generic point t in the image of j , we see that

rkOT 1
X /C,x =

∑

z∈Sing(Xt )

dimC T 1
Xt ,z

.

Which is equal to the embedding dimension of (SXt
, t) and differs from the

embedding dimension of (S, s) by dim(T , t). Theorem 7.3.41 implies therefore

Corollary 7.3.42 If t is a generic point of the image of j then

dim(S, t) = dim(SXt
, t)+ dimC coker(�X /C,x → �X,x).
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The first general formula for the dimension of a smoothing component was
obtained by Deligne [10] in the case of reduced curve singularities. Although
his formula is local, Deligne’s proof uses global methods. As an application of
Corollary 7.3.42 a purely local proof of Deligne’s formula was given in [34].

Let (X, x) be a reduced curve singularity and (X, x) its normalization. Since any
derivation on (X, x) lifts uniquely (in characteristic 0) to (X, x) (cf. [10]), we get
natural inclusions �X,x ⊂ �X,x .

Theorem 7.3.43 (Deligne) Any smoothing component of a reduced curve singular-
ity (X, x) has dimension

3δ(X, x)− dimC �X,x/�X,x,

with δ(X, x) = dimC OX,x/OX,x.

Note that Deligne’s formula depends only on (X, x), and hence all smoothing
components of a reduced curve singularity have the same dimension. First examples
of reduced curve singularities with more than one smoothing component were found
by Stevens (c.f. [93, Ch. 13]).

A normal surface singularity (X, x) may have smoothing components of different
dimensions. If (X, x) is rational, the dimension of the Artin component is maximal
among all components by [100, Corollay 3.18]. For more details on smoothings of
surface singularities and many examples see [93, Ch. 14 and Ch. 15].

Smoothing questions for curve singularities will be treated in the next section.

7.3.6 Curve Singularities

This section is about smoothing components of reduced curve singularities, their
smoothability, and the topology of the Milnor fibre.

At first glance the situation is different from that for singularities of bigger
dimension. There are no topological obstructions to smoothability: a small per-
turbation of the parameterization of the curve singularity (X, x) by linear terms
parametrizes a smooth curve. However, the particular fiber of a family defined by
“deformation of the parametrization” has in general embedded components and only
the reduction of the special fiber agrees with (X, x) (cf. [43, 1.2]).

A point of interest is Deligne’s formula (Theorem 7.3.43) for the dimension
of the smoothing component of a reduced curve singularity. In the following we
reformulate it by using more common invariants of (X, x), and relate it to the
Milnor number. Through our reformulation this formula is effectively computable
and provides a useful criterion for non-smoothability of a curve singularity. This is
shown by applying it to examples of Pinkham.
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Let us first fix the notations for the most common invariants of a reduced curve
singularity (X, x) ⊂ (Cn, 0). Let O = OX,x be the local ring, m the maximal ideal
of O and

n : (X, x) → (X, x)

the normalization with semilocal ring O = n∗OX,x and its Jacobson radical m.
Moreover, we set

C = AnnO(O/O) = conductor ideal,

! = !1
X,x = holomorphic (Kähler) 1-forms on (X, x),

T ! = H 0{x}(!) = torsion submodule of !,

! = n∗!1
X,x

= holomorphic 1-forms on (X, x),

ω = ωX,x = dualizing module of (X, x),

� = HomO(!,O) = module of derivations on (X, x),

� = HomO(!,O) = module of derivations on (X, x).

Recall that ω = Extn−1
OCn,0

(O, !n
C

n,0) can be identified with ω = {γ ∈ ! ⊗
K| res(γ ) = 0}, with K the total ring of fractions of O. Let d : O → ω be defined
as the composition

O d−→ !
j−→ ! ↪→ ω,

with d : O → ! the exterior derivation. We use the following classical numerical
invariants (and μ from [8]) of (X, x):

δ = δ(X, x) = dimC O/O = delta-invariant,
μ = μ(X, x) = dimC ω/dO = Milnor number,
λ = λ(X, x) = dimC ω/j! = lambda-invariant,
τ ′ = τ ′(X, x) = dimC T ! = length of the torsion,

τ = τ (X, x) = dimC T 1
X,x = Tjurina number,

m = m(X, x) = dimC O/mO = multiplicity of O,

r = r(X, x) = dimC O/m = number of branches,
t = t (X, x) = dimC ω/mω = Cohen-Macaulay type,
c = c(X, x) = dimC O/C = multiplicity of conductor.

Note that j! ∼= !/T ! and τ ′ = τ by Proposition 7.2.33 (3) and duality (see [29,
1.2 Satz]). Moreover, (X, x) is Gorenstein iff t = 1.

We introduce

m1 = m1(X, x) := dimC �/�,

e = e(X, x) := 3δ −m1,
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and call e the Deligne number of (X, x). Recall two important relations among these
invariants from [8] and [10].

Theorem 7.3.44 Let (X, x) be a reduced curve singularity.

1. (Buchweitz, Greuel) μ = 2δ − r + 1.
2. (Deligne) dim E = e for every smoothing component E of (X, x).

Before we consider the smoothing problem for curve singularities, let us recall
the main properties of μ from [8, Theorem 4.2.2, 4.2.4].

Theorem 7.3.45 (Buchweitz, Greuel) Let φ : X → D be a good representative
of a deformation of the reduced curve singularity (X, x) with Milnor fibre F =
Xt , t = 0.

1. μ(X, x)− μ(F) = b1(F ),
2. μ(X, x)− μ(F) ≥ δ(X, x)− δ(F ) ≥ 0.

Here

μ(F) :=
∑

y∈Sing(F )

μ(F, y)

and similar for δ. Note that μ(X, x) = 0 iff (X, x) is smooth.

This and the following corollary show in particular the topological meaning of
μ.

Corollary 7.3.46

1. If F is smooth, then μ(X, x) = b1(F ).
2. The following are equivalent:

(i) μ(Xt ) is constant for all t ∈ D,
(ii) δ(Xt ) and

∑
y∈Sing(Xt )

(r(Xt , y)− 1) are constant for t ∈ D,
(iii) b1(Xt ) = 0 for all t ∈ D,
(iv) Xt is contractible for all t ∈ D.

Note that the constancy of μ(Xt ) in a flat family as above does not imply that Xt

has only one singularity if the embedding dimension of (X, x) is ≥ 3 (in contrast to
the case of plane curves). However, if we assume that Xt has only one singularity
then μ(Xt ) = constant implies topological equisingularity [8, Theorem 5.2.2]:

Theorem 7.3.47 (Buchweitz, Greuel) In addition to the assumptions of Theo-
rem 7.3.45 let σ : D → X be a section of φ such that Xt \ σ(t) is smooth for
each t ∈ D. The following conditions are equivalent.

1. μ(Xt , σ (t)) is constant for t ∈ D,
2. δ(Xt , σ (t)) and r(Xt , σ (t)) are constant for t ∈ D,
3. φ : X → D is topologically trivial, i.e., there is a homeomorphism h : X ∼−→

X ×D such that φ = π ◦ h where π : X ×D → D is the projection.
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The Milnor number and the delta-invariant have been generalized to non-reduced
curve singularities (X, x) with an embedded component at x in [6] with similar
topological properties (however, the Milnor fibre need not be connected in this case).
See also a generalization to singularities of arbitrary dimension with X \ {x} normal
in the survey article on equisingularity and equinormalizability [31].

Equisingularity has been and still is an important research topic in singularity
theory, see Chaps. 5 and 6 of this volume. Let us just mention a famous result by Lê
and Ramanujam [57].

Theorem 7.3.48 (Lê, Ramanujam) In a μ-constant family of hypersurface singu-
larities ft : (Cn+1, 0) → (C, 0), t ∈ C, of dimension n the homotopy type of the
Milnor fibration of ft is constant (for sufficiently small t). If further n = 2, these
fibrations are diffeomorphic and the topological types of the singularities are the
same.

Different aspects of equisingularity are treated in [17] (with emphasis on
Zariski’s multiplicity conjecture and non-isolated singularities) and in [41, 42].

In order to get criteria for smoothability of reduced curve singularities we need
further relations among the above invariants. It is convenient to work with fractional
ideals, i.e. O-ideals in K . O is the integral closure of O in K and choosing an O-
generator α of ! we get an isomorphism

φα : !⊗K
∼=−→ K,

with φα(!) = O ⊂ K . We denote the image of ω in K under φα again by ω.
It is shown in [30, 2.3 Lemma] that there exists an O-generator f of C such that
ω̃ := f ω satisfies

O ⊂ ω̃ ⊂ O, C = ω̃ : O = {h ∈ K| hO ⊂ ω̃},

with O = ω̃ iff (X, x) is Gorenstein. Moreover, if t̄ is an O-generator of m we set
!̃ := t̄ · φα(j!). Obviously !̃ ∼= !/T !. For the proof of the following lemma see
[30, Section 2.4, 2.5].

Lemma 7.3.49

1. dimC ω/! = δ,

2. dimC O/ω̃ = c − δ,

3. dimC ω̃/O = 2δ − c,

4. dimC ω̃m/m = 2δ − c − t + 1,

These formulas are used to prove the following relation between the Deligne
number e and the other invariants [30, 2.5 Theorem].

Theorem 7.3.50 (Greuel) Let (X, x) be a reduced curve singularity.

1. e = μ+ t − 1+ dimC O/ω̃ · !̃− dimC O/ω̃ ·m.
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2. δ ≤ δ + t − 1 + m − r ≤ 3δ − c + m − r ≤ e ≤ μ + 2δ − c ≤ 3δ − r + 1,

μ+ 2δ − c ≤ 3δ − r < 3δ if (X, x) is singular.
3. If (X, x) is quasihomogeneous then e = μ+ t − 1.
4. Let (X, x) be smoothable. If (X, x) is quasihomogeneous then τ ≥ μ+ t−1 and

equality holds iff (X, x) is unobstructed.

Note that (4) gives a useful criterion to decide whether a smoothable curve is
obstructed. The inequalities in (2) imply the following estimates for e.

Corollary 7.3.51 Any smoothing component E of a non-smooth reduced curve
singularity (X, x) satisfies

μ+ 2δ − c ≥ dim E = e >
1

2
μ.

In particular, μ ≥ e > 1
2 μ for (X, x) Gorenstein.

Proof Since 2δ ≥ c we get

e ≥ 3δ−c+m−r ≥ δ+m−r = μ+ r − 1

2
+m−r = μ

2
+m− r

2
+m− 1

2
>

μ

2

if (X, x) is singular. ��
This implies that the generic fibre over an irreducible component of the semiuni-

versal base space of (X, x) is not smoothable, if the dimension of the component is
not in the range of Corollary 7.3.51.

By the above formulas we get an easy proof of the following theorem by Dimca
and the author in [12].

Theorem 7.3.52 (Dimca, Greuel) Let (X, x) be a reduced complete intersection
curve singularity. Then the following hold.

1. τ = τ ′ = λ ≥ δ +m− r,

2. τ − δ = dimC(!̄/!). In particular, one has the equality

dimC(!̄/!) = δ − r + 1

if and only if the singularity (X, x) is weighted homogeneous.
3. τ > 1

2 μ if (X, x) is not smooth.

Moreover in [12] the authors pose the following question.

Question 7.3.53 Is it true that

τ (X, x) >
3

4
μ(X, x)

for any isolated singular plane curve singularity (X, x)?
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The answer to this question is positive for semi-quasihomogeneous singularities
(X, x) (see [2]) and for curves with one branch (see [1] and [23]). Examples in [12]
show that the inequality is sharp.

For Gorenstein curves Theorem 7.3.50 was complemented in [36], giving a
numerical characterization of quasi homogeneity for Gorenstein curves.

Theorem 7.3.54 (Greuel, Martin, Pfister) If (X, x) is Gorenstein, then e ≤ μ

with equality if and only if (X, x) is quasihomogeneous.

The following corollary generalizes Theorem 7.3.26 in dimension 1.

Corollary 7.3.55 If (X, x) is Gorenstein and unobstructed, then τ ≤ μ with
equality if and only if (X, x) is quasihomogeneous.

In [36] there is an example of a complete intersection with several branches,
satisfying (a): τ = e < μ, (b): all branches are non-Gorenstein and non-
quasihomogeneous and (c): τ = e = μ for each branch. This shows that
the assumption “Gorenstein” in Theorem 7.3.54 is necessary and that we cannot
conclude from the branches to their union.

Some problems remain however open.

Problem 7.3.56 Is the converse of Theorem 7.3.50(3) also true, i.e. does e = μ +
t − 1 imply that (X, x) is quasihomogeneous?

Problem 7.3.57 Does the inequality e ≤ μ+ t−1 always hold? We conjecture this
at least for (X, x) smoothable.

The answer to both problems is “yes” in the following cases: (a): (X, x) is
Gorenstein and (b): (X, x) is irreducible and the monomial curve of (X, x) has
Cohen-Macaulay type ≤ 2.

Note the obvious similarity between the Problems 7.3.56 and 7.3.57, and
Conjecture 7.3.34 in the surface case.

We turn now to non-smoothable curves. We want to apply the following criterion
[30, 3.1 Proposition] for non smoothability.

Proposition 7.3.58 Let φ : X → T a sufficiently small representative of a
deformation with section σ : T → X of a reduced curve singularity (X, x).
Assume:

(i) (Xt , σ (t)) is singular and not isomorphic to (X, x) for t = 0,
(ii) T is irreducible and dim T ≥ e(X, x).

Then there is an analytic open dense subset T0 ⊂ T , such that (Xt , σ (t)) is not
smoothable if t ∈ T0.

The proof is easy: φ can be induced from the semiuniversal deformation with base
(S, 0) by a map ϕ : (T , 0) → (S, 0). By (i) ϕ is finite and ϕ(T ) has dimension
≥ e = dim E for every smoothing component E of S. ϕ cannot map T to any E

since there are no smooth fibres over T . (X, x) may be smoothable but the generic
point of the image of φ cannot be smoothable by openness of versality.
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Let us finish with proving non-smoothability for the curve singularity Ln
r

consisting of r lines through the origin in C
n in generic position. The following

was proved in [30, 3.4 Theorem], generalizing Pinkham [70, Theorem 11.10], who
proved it for the range n < r < 2n by global methods.

Theorem 7.3.59 (Pinkham; Greuel) The curve singularity Ln
r is not smoothable

in the following ranges:

1. n < r ≤ (n+1
2

)
and (r − n− 2)(n− 5) ≥ 7,

2.
(
n+d−1

d

)
< r ≤ (n+d

d+1

)
, d ≥ 2 and r(n− 3− 3d)+ 3

(
n+d

d

) ≥ n2 − 1.

E.g., Ln
r is not smoothable if r is in the following intervals:

n 6 7 8 9 10
r [15, 21] [13, 30] [13, 72] [13, 193] [14, 419]

The intervals for the case n < r ≤ (n+1
2

)
have been slightly enlarged by Stevens

in [92]. For n = 2 and 3 arbitrary many lines are smoothable. It is also known
that n, n + 1 and n + 2 lines in (Cn, 0) are always smoothable, but Ln

n+3 not if
n ≥ 12 by the theorem. Note that for fixed n, the theorem shows the existence
of non-smoothable curves of lines only for r within some finite interval (which is
growing with n). Also, we obtain nothing for n = 4, 5.

Problem 7.3.60 Do there exist for fixed n ≥ 4 non-smoothable curves Ln
r if r goes

to infinity? It seems unlikely that this is not the case.

The formula of Deligne cannot only be used to show that certain curve singular-
ities are not smoothable but also that the semiuniversal base for a smoothable curve
is not smooth, namely if e < τ . Examples are n (resp. n+1) general lines in (Cn, 0),
which are obstructed if n ≥ 4 (resp. n ≥ 5), cf. [30].

Note Added in Proof
Question 7.3.53 has meanwhile been answered positively by Patricio Alm-
iron: On the Quotient of Milnor and Tjurina Numbers for Two-Dimensional
Isolated Hypersurface Singularities, arXiv:1910.12843.
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Abstract We give a survey on some aspects of the topological investigation
of isolated singularities of complex hypersurfaces by means of Picard-Lefschetz
theory. We focus on the concept of distinguished bases of vanishing cycles and the
concept of monodromy.

8.1 Introduction

The pioneering fibration theorem of J. Milnor [118] opened the way to study the
topology of isolated complex hypersurface singularities. To study the topology of
real smooth manifolds one can use Morse theory. The idea of Morse theory is that
the topological type of the level set of a real function changes when passing through
a critical value. In order to study the topology of the singularity defined by a complex
analytic function one can investigate the level sets of this function. The complex
analogue of Morse theory is Picard-Lefschetz theory. It is older than Morse theory
and goes back to E. Picard and S. Simart [122] and to S. Lefschetz [104].
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Around 1967–1969, the Picard-Lefschetz theory experienced a revival when it
was brought into an algebraic form by A. Grothendieck, P. Deligne, and N. Katz in
[45]. On a more modest scale, the theory was applied in the late 1960s and early
1970s to the analysis of isolated singularities of complex hypersurfaces. The first
fundamental contributions were made by F. Pham [121], Lê Dũng Tráng [101, 102],
E. Brieskorn [28, Appendix], K. Lamotke [97], and A. M. Gabrielov [65–68].
Gabrielov coined the notion of “distinguished bases”. Instead of passing through a
critical value, the fundamental principle of Picard-Lefschetz theory is going around
a critical value in the complex plane. Roughly speaking, to the critical values there
corresponds a distinguished basis of vanishing cycles and the change of the topology
of the level set is given by the “monodromy”. This article is a survey of these
fundamental concepts and the further developments.

Nowadays, there are good references for this subject. There is a survey article by
S. M. Gusein-Zade [73] and a later one by Brieskorn [34]. A very good reference
is the second volume of the book of V. I. Arnold, Gusein-Zade, and A. Varchenko
[13]. The book of E. Looijenga [113] is devoted to isolated complete intersection
singularities, but it also contains relevant information about hypersurface singular-
ities which are a special case. Moreover, there are also textbooks by D. Bättig and
H. Knörrer [16] (in German) and by the author [58]. The author has already written
a survey on the classical monodromy [57]. We keep the intersection with this survey
to a minimum. We give almost no proofs, but provide precise references to these
books as well as to the original articles for details, including proofs.

Let me outline the contents of this article. In the first section, we introduce
the notion of a distinguished basis of vanishing cycles. More precisely, we define
distinguished and weakly distinguished bases. In the second section, we consider
the intersection form, the classical monodromy, and the Seifert form and we show
how matrices of these invariants with respect to distinguished bases are related
to one another. Moreover, we define the concept of Coxeter-Dynkin diagram. In
Sect. 8.4, we consider the change of basis and introduce the action of the braid
group on the set of distinguished bases. In Sect. 8.5, we collect together results
about the computation of intersection matrices and Seifert matrices with respect
to distinguished bases. In Sect. 8.6, we discuss the implication of the irreducibility
of the discriminant to properties of the invariants and we introduce the Lyashko-
Looijenga map. In Sect. 8.7, we review Arnold’s classification of singularities
and compile explicit results for the simple, unimodal, and bimodal singularities.
Sect. 8.8 is devoted to an algebraic description of the monodromy group. Finally,
in Sect. 8.9, we consider the question to which extent the invariants determine the
topological type of the singularities. We conclude with some open problems.

The notion of distinguished bases can also be generalized to isolated complete
intersection singularities, see [55]. We shall not discuss this case in this survey, we
restrict ourselves to isolated complex hypersurface singularities.

There are many further generalizations and applications of the theory, even
outside of singularity theory. We mention some of the results, but mainly indicate
references to the corresponding articles. We do not claim to be complete.
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8.2 Distinguished Bases of Vanishing Cycles

Let f : (Cn+1, 0) → (C, 0) be the germ of a holomorphic function with an isolated
singularity at the origin. This means that

gradf (a) =
(

∂f

∂z0
(a), . . . ,

∂f

∂zn

(a)

)

= 0

for all points a = 0 in a small neighborhood of the origin, (z0, . . . , zn) denote the
coordinates of Cn+1. For short, we call f a singularity.

One has the famous result of Milnor [118]: Let ε > 0 be small enough such that
the closed ball Bε ⊂ C

n+1 of radius ε around the origin in C
n+1 intersects the fiber

f−1(0) transversely. Let 0 < η 1 ε be such that for t in the closed disc � ⊂ C of
radius η around the origin, the fiber f−1(t) intersects the ball Bε transversely. Let

Xt := f−1(t) ∩ Bε for t ∈ �,

X := f−1(�) ∩ Bε,

X∗ := X \X0,

�∗ := � \ {0}.

By a result of J. Milnor [118], the mapping f |X∗ : X∗ → �∗ is the projection of a
(locally trivial) (C∞)-differentiable fiber bundle. The fiber Xη over the point η ∈ �∗
is a 2n-dimensional differentiable manifold with boundary which has the homotopy
type of a bouquet of μ n-spheres where μ is the Milnor number of the singularity.
This differentiable fiber bundle (X∗, f |X∗, �∗, Xη) is called the Milnor fibration
and the typical fiber Xη is called the Milnor fiber. The only non-trivial reduced
homology group is the group H̃n(Xη;Z). It is equipped with the intersection form
〈 , 〉. This bilinear form is symmetric if n is even and skew-symmetric if n is odd. We
shall only consider homology with integral coefficients and we shall write H̃n(Xη)

for H̃n(Xη;Z) in the sequel.

Definition 8.2.1 The group H̃n(Xη) together with the intersection form 〈 , 〉 is
called the Milnor lattice of f and denoted by M .

The Milnor lattice M is a lattice, i.e., a free Z-module of finite rank equipped
with a symmetric or skew-symmetric bilinear form 〈 , 〉. The rank of the Milnor
lattice is the Milnor number μ.

Let ω be the loop

ω : [0, 1] → C

t %→ ηe2π
√−1t .

Then parallel translation along this path induces a diffeomorphism h = hω : Xη →
Xη which is called the geometric monodromy of the singularity f .
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Definition 8.2.2 The induced homomorphism h∗ : M → M on the Milnor lattice
M is called the (classical) monodromy (or the (classical) monodromy operator) of
the singularity f .

Our aim is to study the Milnor fibration, the Milnor lattice M , and the mon-
odromy.

For this purpose, we shall consider a morsification of the function f . This
is defined as follows. An unfolding of f is a holomorphic function germ F :
(Cn+1 × C

k, 0) → (C, 0) with F(z, 0) = f (z) (see [70, 1.2]). A morsification
is a representative F : V × U → C of an unfolding

F : (Cn+1 × C, 0) → (C, 0)

(z, λ) %→ fλ(z)

of f such that for almost all λ ∈ U \ {0} (everywhere except from a Lebesgue null
set) the function fλ : V → C is a Morse function, i.e., has only non-degenerate
critical points with distinct critical values. The Morse function fλ is itself often
called a morsification of f . One can show that f has a morsification (see, e.g., [58,
Proposition 3.18]).

Let λ be chosen so that fλ is a Morse function. Let Y := f−1
λ (�) ∩ Bε and

Yt := f−1
λ (t) ∩ Bε for t ∈ �. Assume that λ = 0 is chosen so small that all the

critical points are contained in the interior of Y and the fiber f−1
λ (t) for t ∈ �

intersects the ball Bε transversely. Denote the critical points by p1, . . . , pμ and the
critical values by s1, . . . , sμ. Assume that η ∈ ∂� is a non-critical value of fλ. Let
�′ := � \ {s1, . . . , sμ} and Y ′ := Y ∩f −1

λ (�′). Then the mapping fλ|Y ′ : Y ′ → �′
is the projection of a differentiable fiber bundle. The fiber Yt for t ∈ �′ ∩ �∗ is
diffeomorphic to Xt . In particular, Yη is diffeomorphic to Xη. We therefore identify
these fibers.

For a fixed si let γ : I = [0, 1] → � be a piecewise differentiable path which
connects the critical value si with η and does not pass through any other critical
value, i.e. γ (0) = si, γ (1) = η and γ ((0, 1]) ⊂ �′. By the complex Morse lemma
there exists a neighborhood Bi of the non-degenerate critical point pi over si and
local coordinates (z0, . . . , zn) centered at the point pi such that fλ can be written in
Bi in the form

fλ(z0, . . . , zn) = si + z2
0 + . . .+ z2

n

and Bi is a ball of radius ε centered at 0 in these coordinates. For sufficiently small
t > 0 the fiber Xγ (t) contains an n-sphere

S(t) := √γ (t)− si Sn

where Sn is the n-dimensional unit sphere

Sn = {(z0, . . . , zn) ∈ C
n+1 | Im zi = 0,

∑
z2
i = 1}.
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Fig. 8.1 Vanishing cycle

0 t 1

pi

S (t )
S (1)

By parallel translation along γ one obtains an n-sphere S(t) ⊂ Xγ (t) for each t ∈
(0, 1]. For t = 0 the sphere S(t) shrinks to the critical point pi (cf. Fig. 8.1). We now
choose an orientation of S(1). Then S(1) is an n-cycle and represents a homology
class δ in the Milnor lattice M = H̃n(Xη).

Definition 8.2.3 The homology class δ ∈ M is called a vanishing cycle of fλ (along
γ ). Denote by �∗ ⊂ M the set of vanishing cycles of f (for all possible choices of
a morsification, a critical point, a path γ , and an orientation).

A vanishing cycle is well defined up to orientation.
For the self-intersection number of the vanishing cycle δ in the Milnor fiber Xη

one has the following result (see also [13, Lemma 1.4], [58, Proposition 5.3]).

Proposition 8.2.4 The vanishing cycle δ ∈ M has the self-intersection number

〈δ, δ〉 = (−1)n(n−1)/2(1+ (−1)n) =
⎧
⎨

⎩

0 for n odd,
2 for n ≡ 0 (mod 4),

−2 for n ≡ 2 (mod 4).

Proof In order to compute the self-intersection number 〈δ, δ〉 of the vanishing cycle
δ, it suffices to compute the self-intersection number of the sphere Sn in the complex
manifold

Z = {(z0, . . . , zn) ∈ C
n+1 | z2

0 + · · · + z2
n = 1}.

It is easy to see that the manifold Z is diffeomorphic to the total space T Sn of the
tangent bundle of the sphere Sn which can be described as follows:

T Sn =
{
u+√−1v ∈ C

n+1
∣
∣
∣
∑

u2
i = 1,

∑
uivi = 0

}
.
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A diffeomorphism from the manifold Z to T Sn can be defined by

zi = xi +
√−1yi %→ ui +

√−1vi = xi

|x| +
√−1yi

where |x| =
√∑

x2
i . This diffeomorphism sends the unit sphere Sn ⊂ Z to the zero

section of the tangent bundle T Sn. The self-intersection number of the zero section
Sn in the total space of the tangent bundle T Sn is equal to the Euler characteristic
χ(Sn) = 1 + (−1)n. However, the natural orientations of the manifolds Z (as a
complex analytic manifold) and T Sn (as the total space of a tangent bundle) differ
by the sign (−1)n(n−1)/2. ��

The path γ : I → � from si to η defines a closed path around the critical value si

in the following way: Let �i be a disc of sufficiently small radius ηi around si such
that γ (I) intersects the boundary ∂�i of �i exactly once, namely at time t = θ

at the point si + ui . Let τ : I → �i, t %→ si + uie
2π
√−1t , be the path starting

at si + ui which goes once around si on the boundary of �i in counterclockwise
direction. Moreover, set γ̃ := γ |[θ,1]. A suitable small deformation ω (avoiding
self-intersections) of the closed path γ̃−1τ γ̃ with starting and end point η is called
the simple loop associated to γ (cf. Fig. 8.2). The monodromy

hδ := hω∗ : M −→ M

corresponding to the simple loop ω associated to γ is called the Picard-Lefschetz
transformation corresponding to the vanishing cycle δ.

The following theorem is the basic result of the Picard-Lefschetz theory. It
goes back to Picard and Simart [122, p. 95ff.] and Lefschetz [104, Théorème
fondamental, p. 23 & p. 92]. For a proof see [97, §5], [113, Chapter 3], and [13,
1.3]. A proof following the proof in Looijenga’s book [113, Chapter 3] is also given
in [58, §5.3]. For a modern account of Picard-Lefschetz theory see also the article
of Lamotke [98].

Theorem 8.2.5 (Picard-Lefschetz Formula) For α ∈ M we have

hδ(α) = α − (−1)
n(n−1)

2 〈α, δ〉δ.

si

τ
si + ui

γ

/

ω

η

Fig. 8.2 Simple loop ω associated to γ
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When n is even, the intersection form 〈 , 〉 is a symmetric bilinear form and we
can combine the formulas from Proposition 8.2.4 and Theorem 8.2.5 together as

hδ(α) = α − 2〈α, δ〉
〈δ, δ〉 δ.

This means that the operator hδ : M → M is a reflection in the hyperplane of M

orthogonal to δ. Such a reflection is also denoted by sδ , so in this case hδ = sδ .
When n is odd, the intersection form 〈 , 〉 is skew symmetric and Theorem 8.2.5
means that hδ is a symplectic transvection.

We now assume that ε and η are chosen so small that all the balls Bi and all the
discs �i are disjoint. We consider an ordered system (γ1, . . . , γμ) of paths γi : I →
� with γi(0) = si , γi(1) = η and γi((0, 1]) ⊂ �′.

Definition 8.2.6 The system (γ1, . . . , γμ) of paths is called distinguished if the
following conditions are satisfied:

(i) The paths γi are non-selfintersecting.
(ii) The only common point of γi and γj for i = j is η.

(iii) The paths are numbered in the order in which they arrive at η where one has to
count clockwise from the boundary of the disc (cf. Fig. 8.3).

A system (δ1, . . . , δμ) of vanishing cycles δi ∈ �∗ is called distinguished, if
there exists a distinguished system (γ1, . . . , γμ) of paths such that δi is a cycle
vanishing along γi .

η

γ μ

γ 2

γ 1

Fig. 8.3 Distinguished system of paths
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Since �′ is a disc from which μ points have been deleted, its fundamental group
π1(�

′, η) is the free group on μ generators. If (γ1, . . . , γμ) is a distinguished system
of paths, then π1(�

′, η) is the free group on the generators ω1, . . . , ωμ, where ωi is
the simple loop associated to γi .

Definition 8.2.7 The system (γ1, . . . , γμ) of paths is called weakly distinguished
if π1(�

′, η) is the free group on the generators (ω1, . . . , ωμ), where ωi is the simple
loop belonging to γi .

A system (δ1, . . . , δμ) of vanishing cycles δi ∈ �∗ is called weakly distinguished
if δi is a vanishing cycle along a path γi of a weakly distinguished system
(γ1, . . . , γμ) of paths.

Note that the numbering is important for a distinguished system of paths, but of
no significance for a weakly distinguished system of paths. A distinguished system
of paths is of course also weakly distinguished.

Brieskorn proved the following theorem [28, Appendix] (see also [13, Theo-
rem 2.1], [58, Proposition 5.5]).

Theorem 8.2.8 (Brieskorn) A distinguished system (δ1, . . . , δμ) of vanishing
cycles is a basis of the lattice M , i.e., 〈δ1, . . . , δμ〉Z = M , where 〈δ1, . . . , δμ〉Z
denotes the Z-span of (δ1, . . . , δμ).

From this theorem, one can derive the following corollary (see [13, Theorem 2.8],
[58, Proposition 5.6]).

Corollary 8.2.9 A weakly distinguished system (δ1, . . . , δμ) of vanishing cycles
also forms a basis of M .

Definition 8.2.10 A basis (δ1, . . . , δμ) of M is called distinguished (resp. weakly
distinguished) if (δ1, . . . , δμ) is a distinguished (resp. weakly distinguished)
system of vanishing cycles.

By Theorem 8.2.8 and Corollary 8.2.9 every distinguished or weakly distin-
guished system of vanishing cycles forms a basis.

The concepts “distinguished” and “weakly distinguished” are due to Gabrielov.
In order to distinguish both concepts better, one sometimes says, following a
suggestion of Brieskorn, “strongly distinguished” instead of “distinguished”. The
term “geometric basis” is also used for a distinguished basis.

The group of all automorphisms of a lattice M , i.e., isomorphisms M → M

which respect the bilinear form, will be denoted by Aut(M).

Definition 8.2.11 The image � of the homomorphism

ρ : π1(�′, η) −→ Aut(M)

[γ ] %−→ hγ ∗

is called the monodromy group of the singularity f .
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If (δ1, . . . , δμ) is a weakly distinguished basis, then the monodromy group of
f is generated by the Picard-Lefschetz transformations hδi corresponding to the
vanishing cycles δi . Therefore the monodromy group of f is a group with μ

generators. Indeed, the monodromy group is independent of the morsification of
f , see Theorem 8.6.2 below.

Example 8.2.12 (For this example see also [13, 2.9] and [58, Example 5.4].) We
consider the function f : C→ C with f (z) = zk+1. (This is the singularity Ak, see
Sect. 8.7.) The Milnor fiber Xη consists of k+ 1 points, namely the (k+ 1)-th roots
of η. As a morsification of f we consider the function fλ(z) = zk+1−λz for λ = 0.
Fix λ ∈ R, λ > 0. The critical points of the function fλ are given by the equation

f ′λ(z) = (k + 1)zk − λ = 0.

Therefore they are the points

pi = k

√
λ

k + 1
ξi , ξi = e−

2πi
√−1
k ,

with the critical values

si = − λk

k + 1
k

√
λ

k + 1
ξi , i = 1, . . . , k.

As a noncritical value we choose−η, where η ∈ R, η > 0 and

η ( λk

k + 1
k

√
λ

k + 1
.

Let γi : [0, 1] → �̄, t %→ (1 − t)si , and let τ be a path from 0 to −η which runs
along the real axis and goes once around the critical value

sk = − λk

k + 1
k

√
λ

k + 1
ξk ∈ R

in the positive direction.
We consider the path system (γ1τ, . . . , γkτ ). This system is homotopic to a

distinguished path system. (For the notion of homotopy of path systems see Sect. 8.4
below.) Let (δ1, . . . , δk) be a corresponding distinguished system of vanishing
cycles in H̃0(X−η).

In order to compute the intersection numbers 〈δi , δj 〉 of the vanishing cycles in
H̃0(X−η) we transport the system (δ1, . . . , δk) by parallel transport along the path
τ−1 to H̃0(X0). We thus consider a system of vanishing cycles in H̃0(X0), which we
again denote by (δ1, . . . , δk), and which is defined by the path system (γ1, . . . , γk).
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The fiber X0 consists of the k + 1 points

x0 = 0, x1 = k
√

λξ1, . . . , xk = k
√

λξk.

Then up to orientation δi is represented by the cycle xi − x0. It is easy to calculate
that xi − x0 vanishes along γi , i.e., that the points xi and x0 fall together along γi .
Let

δi = [xi − x0], i = 1, . . . , k.

Then

〈δi, δj 〉 =
{

2 for i = j,

1 for i = j.

In this case, the Milnor lattice M , the set of vanishing cycles �∗, and the
monodromy group � can be described as follows. Let e1, . . . , ek+1 be the standard
basis of Rk+1 and 〈 , 〉 the Euclidean scalar product on R

k+1. Denote by Sk+1 the
symmetric group in k + 1 symbols. Then

M = {(v1, . . . , vk+1) ∈ Z
k+1 | v1 + · · · + vk+1 = 0},

�∗ = {ei − ej | 1 ≤ i, j ≤ k + 1, i = j } = {v ∈ M | 〈v, v〉 = 2},
� = Sk+1.

8.3 Coxeter-Dynkin Diagram and Seifert Form

Definition 8.3.1 Let (δ1, . . . , δμ) be a weakly distinguished basis of M . The matrix

S := (〈δi, δj 〉)i=1,...,μ
j=1,...,μ

is called the intersection matrix of f with respect to (δ1, . . . , δμ).

By Proposition 8.2.4, the diagonal entries of the intersection matrix satisfy

〈δi, δi〉 = (−1)
n(n−1)

2 (1+ (−1)n) for all i.

It is usual to represent the intersection matrix by a graph called the Coxeter-
Dynkin diagram.
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Definition 8.3.2 Let (δ1, . . . , δμ) be a weakly distinguished basis of M . The
Coxeter-Dynkin diagram of the singularity f with respect to (δ1, . . . , δμ) is the
graph D defined as follows:

(i) The vertices of D are in one-to-one correspondence with the elements
δ1, . . . , δμ.

(ii) For i < j with 〈δi , δj 〉 = 0 the i-th and the j -th vertex are connected by
|〈δi, δj 〉| edges, weighted with the sign +1 or −1 of 〈δi, δj 〉 ∈ Z. We indicate
the weight

w =
{

(−1)
n
2 for n even,

(−1)
n+1

2 for n odd

by a dashed line, the weight −w by a solid line.

These diagrams are usually called Dynkin diagrams. However, according to
A. J. Coleman [40, p. 450], they first appeared in mimeographed notes written by
H. S. M. Coxeter (around 1935). Therefore we call them Coxeter-Dynkin diagrams.

Example 8.3.3 We continue Example 8.2.12. The Coxeter-Dynkin diagram with
respect to (δ1, . . . , δk) is a complete graph with only dashed edges (i.e., each two
vertices are joined by a dashed edge).

If (δ1, . . . , δμ) is a distinguished basis then the classical monodromy operator of
f can be expressed as follows:

h∗ = hδ1 · · · hδμ .

We call this product the Coxeter element corresponding to the distinguished basis.
This follows from the fact that the loop ω corresponding to h∗ is homotopic to the
combination ωμωμ−1 · · ·ω1 of the simple loops associated to hδμ, hδμ−1 , . . . , hδ1 .

We have the following algebraic proposition (cf. [26, Ch. V, §6, Exercice 3]).

Proposition 8.3.4 Let M be a free Z-module of rank � with a basis (e1, . . . , e�)

and A = (aij ) an � × �-matrix with integral coefficients. Consider the operator
si : M → M defined by

si (ej ) = ej − aij ei

and let c = s1 · · · s�. Let C be the matrix of c with respect to the basis (e1, . . . , e�), I

the �× � unit matrix, and let U = (uij ) and V = (vij ) be the matrices defined by

uij =
{

aij if i < j,

0 otherwise,
vij =

{
0 if i < j,

aij otherwise.
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Then

C = (I + U)−1(I − V ).

Let S2n+1
ε be the boundary of the ball Bε . The set K = f−1(0)∩ S2n+1

ε is called
the link of the singularity f . Let T be an (open) tubular neighborhood of K in S2n+1

ε .
Milnor [118] has shown that the map

� : S2n+1
ε \ T −→ S1 ⊂ C

z %−→ f (z)
|f (z)|

is the projection of a differentiable fiber bundle. Moreover, this fibration is equiv-
alent to the restriction of the fibration f |X∗ : X∗ → �∗ to the boundary S1

η of �

[118, §5]. In particular, the fiber Zw/|w| := �−1(w/|w|) is diffeomorphic to Xw for
w ∈ S1

η . Let gt : Z1 → Ze2πit be the parallel transport along ω(t) = e2πit . For the
definition of the linking number see [13, 2.3], [58, 4.7].

Definition 8.3.5 The Seifert form of f is the bilinear form L on H̃n(Z1) ∼= H̃n(Xη)

defined by L(a, b) = l(a, g1/2∗(b)) where l( , ) is the linking number.

Let (δ1, . . . , δμ) be a distinguished basis of f and let

• S := (〈δi, δj 〉)i=1,...,μ
j=1,...,μ be the intersection matrix,

• L := (L(δi , δj ))
i=1,...,μ
j=1,...,μ be the matrix of the Seifert form, and

• H be the matrix of the monodromy h∗ with respect to the basis (δ1, . . . , δμ).

Then one has the following theorem.

Theorem 8.3.6 The following holds:

(i) The matrix L is a lower triangular matrix with−(−1)n(n−1)/2 on the diagonal.
(ii) S = −L− (−1)nLt .

(iii) H = (−1)n+1(Lt )−1L.

Proof (i) This is [13, Lemma 2.5]. (Note that, according to [13, Remark in 2.5], the
matrix of the bilinear form in [13] is written down as the matrix of the corresponding
operator and hence corresponds to the transpose matrix in our convention. See also
[58, Corollary 5.3 (i)], where, unfortunately, there is a misprint: “upper” should be
“lower”.)

For the proof of (ii) see [13, Theorem 2.4] (see also [58, Corollary 5.3 (ii)]).
(iii) follows from (i) and (ii) by applying Proposition 8.3.4. (Note that the formula

of [58, Proposition 5.9] has to be modified correspondingly.) ��
It follows from Theorem 8.3.6 that each of these matrices determines the other

two. It is clear that S and L determine the matrix H . That the matrix H of the
classical monodromy operator with respect to a distinguished basis determines
the intersection matrix S was first proved by F. Lazzeri [100] and follows from
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Theorem 8.3.6 and a simple fact in linear algebra [13, Lemma 2.6] (see also [58,
Lemma 5.5]).

A. B. Givental [69] introduced q-analogues of the invariants and formulas above.
He considered a Picard-Lefschetz theory with “twisted” coefficients. As an upshot,
he obtained a bilinear form on the free module Mq := M ⊗ Z[q, q−1] defined by
the matrix Sq := −L − qLt with respect to a distinguished basis of f , where q

is a variable, which can take non-zero complex values, and Z[q, q−1] denotes the
ring of Laurent polynomials in q . Proposition 8.3.4 (with the ring Z replaced by
Z[q, q−1]) yields a matrix Hq = −q(Lt)−1L = qH . This interpolates between the
symmetric (q = 1) and the skew symmetric (q = −1) versions of these invariants.
The q-analogue of the monodromy group was studied by G. G. Il’yuta [86].

8.4 Change of Basis

A distinguished or weakly distinguished system (γ1, . . . , γμ) of paths can be chosen
in many various ways. Next we consider elementary operations on path systems
which preserve the property of being distinguished or weakly distinguished.

Let (γ1, . . . , γμ) be a distinguished system of paths from the critical values
s1, . . . , sμ to the non-critical value η and let (δ1, . . . , δμ) be a corresponding
distinguished system of vanishing cycles. Furthermore, let (ω1, . . . , ωμ) be a
corresponding system of simple loops.

Definition 8.4.1 The operation αj for 1 ≤ j < μ is defined as

αj : (γ1, . . . , γμ) %→ (γ1, . . . , γj−1, γ̃j , γ̃j+1, γj+2, . . . , γμ),

where γ̃j+1 = γj and γ̃j is a small homotopic deformation of γj+1ωj such that γ̃j

has no self-intersection points and intersects the other paths only at η, for t = 1 (see
Fig. 8.4).

Then (γ̃1, . . . , γ̃μ) is again a distinguished system of paths.

Fig. 8.4 The operation αj

γ j

γ j = γ j +1

γ j +1
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This induces the following operation on the corresponding system (δ1, . . . , δμ)

of vanishing cycles which will be denoted by the same symbol:

αj : (δ1, . . . , δμ) %→ (δ1, . . . , δj−1, hδj (δj+1), δj , δj+2, . . . , δμ)

where

hδj (δj+1) = δj+1 − (−1)n(n−1)/2〈δj+1, δj 〉δj .

Definition 8.4.2 The operation βj+1 for 1 ≤ j < μ is defined as

βj+1 : (γ1, . . . , γμ) %→ (γ1, . . . , γj−1, γ ′j , γ ′j+1, γj+2, . . . , γμ)

where γ ′j = γj+1 and γ ′j+1 is a small homotopic deformation of γjω−1
j+1 with the

properties above (see Fig. 8.5). Then (γ ′1, . . . , γ ′μ) is again a distinguished system
of paths.

This induces the following operation on the corresponding system (δ1, . . . , δμ)

of vanishing cycles which will also be denoted by the same symbol:

βj+1 : (δ1, . . . , δμ) %→ (δ1, . . . , δj−1, δj+1, h−1
δj+1

(δj ), δj+2, . . . , δμ)

where

h−1
δj+1

(δj ) = δj − (−1)n(n−1)/2〈δj+1, δj 〉δj+1

is the inverse Picard-Lefschetz transformation.

Two distinguished systems (γ1, . . . , γμ) and (τ1, . . . , τμ) of paths are called
homotopic if there are homotopies φi : I ×I → �̄ between γi and τi , i = 1, . . . , μ,
such that for all u ∈ I and paths φu

i : I → �̄, t %→ φi(u, t), i = 1, . . . , μ, the
following properties are satisfied:

(i) φu
i (0) = si , φu

i (1) = η.
(ii) The paths φu

i are double point free.
(iii) Each two paths φu

i and φu
j have, for i = j , only the end point η in common.

Fig. 8.5 The operation βj+1
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One can easily show (see [58, Lemma 6]):

Lemma 8.4.3 The operations αj and βj+1 are mutually inverse, i.e., the applica-
tion of αj βj+1 and βj+1αj to a distinguished path system (γ1, . . . , γμ) yields a
homotopic distinguished path system.

Up to homotopy of distinguished path systems we have

(i) αiαj = αjαi for i, j with |i − j | ≥ 2,
(ii) αjαj+1αj = αj+1αj αj+1 for 1 ≤ j < μ− 1.

These are the relations of Artin’s braid group [14, 15] (see also [25]). Therefore
we have an action of the braid group Brμ on μ strings on the set of the homotopy
classes of distinguished path systems and so also on the set of all distinguished
systems of vanishing cycles. One can show the following result ([73], see also [58,
Proposition 5.15]).

Proposition 8.4.4 The braid group Brμ acts transitively on the set of all homotopy
classes of distinguished path systems, i.e., any two distinguished path systems can
be transformed one to the other by iteration of the operations αj and βj+1 and a
succeeding homotopy.

Definition 8.4.5 Let

• B be the set of all distinguished bases of vanishing cycles of f ,
• D be the set of Coxeter-Dynkin diagrams of distinguished bases of f .

One also has a braid group action on the sets B and D. Moreover, one can change
the orientation of a cycle. Let Hμ be the direct product of μ cyclic groups of order
two with generators κ1, . . . , κμ, where κi acts on B by

κi : (δ1, . . . , δi, . . . , δμ) %→ (δ1, . . . ,−δi, . . . , δμ).

The braid group Brμ acts on Hμ by permutation of the generators κ1, . . . , κμ: αj

corresponds to the transposition of κj and κj+1. Let Br�μ = Hμ � Brμ be the semi-
direct product. It follows from Proposition 8.4.4 that the action of the group Br�μ on
B is transitive.

The set B depends on the chosen morsification. In order to get an invariant of the
singularity, Brieskorn [33] proposed a more general notion of distinguished bases.
Namely, he considered the natural action of the monodromy group � on the set B:
An element h ∈ � acts as follows:

h : (δ1, . . . , δμ) %→ (h(δ1), . . . , h(δμ)).

Brieskorn called a basis B of M geometric if it is obtained by any choice of
a distinguished path system, of orientations, and of h ∈ �. He introduced the
notions

• B∗ for the set of all geometric bases of f ,
• D∗ for the set of Coxeter-Dynkin diagrams of geometric bases of f .
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The sets B∗ and D∗ are invariants of the singularity. In fact, the set D∗ coincides
with D. The action of � commutes with the action of the group Br�μ . It follows from
Proposition 8.4.4 that the action of the group � × Br�μ on B∗ is transitive. One can
derive from this that the invariants B∗ and D∗ determine each other, see [33].

Note that, unfortunately, in [60] the set B was considered but denoted by B∗.
The braid group action above first appeared in a paper of A. Hurwitz [80] from

1891 where he describes a braid group action on certain sets of Riemann surfaces
(cf. [94]). It was also studied by Brieskorn and his students, see [34]. In [34],
Brieskorn introduced a simple unifying concept, the notion of an automorphic set.

Definition 8.4.6 An automorphic set is a set � with a product ∗ : �×� → � such
that all left translations are automorphisms, i.e., one has the following properties:

(i) For all a, c ∈ � there is a unique b ∈ � such that a ∗ b = c.
(ii) For all a, b, c ∈ � one has (a ∗ b) ∗ (a ∗ c) = a ∗ (b ∗ c).

The set �∗ of vanishing cycles of f is an automorphic set with the product a ∗
b := ha(b) for a, b ∈ �∗.

If � is an automorphic set, then one has a canonical braid group action on the
n-fold cartesian product �n of �:

αi : (x1, . . . , xn) %→ (x1, . . . , xi−1, xi ∗ xi+1, xi, xi+2, . . . , xn).

The concept of an automorphic set is a basic concept which is also studied under the
following names: left self-distributive system, self-distributive groupoid, quandle,
wrack, and rack, see, e.g., the book of P. Dehornoy [42].

This braid group action is also considered in the representation theory of
algebras, see, e.g., [41, 92, 124]. It has also been applied in mathematical physics,
see, e.g., [37, 63, 64].

Example 8.4.7 We continue Example 8.3.3. By the transformations

αk−1, αk−2, . . . , α1; αk−1, αk−2, . . . , α2; . . . ; αk−1, αk−2; αk−1,

the distinguished basis (δ1, . . . , δk) is transformed to a distinguished basis with the
Coxeter-Dynkin diagram depicted in Fig. 8.6. This is the classical Coxeter-Dynkin
diagram of type Ak .

Finally, we consider operations that transform weakly distinguished path systems
again into weakly distinguished path systems.

Fig. 8.6 Standard
Coxeter-Dynkin diagram Ak 1 2

· · ·
k −1 k
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Let (γ1, . . . , γμ) now be a weakly distinguished path system from the points
s1, . . . , sμ to η, let (ω1, . . . , ωμ) be a corresponding system of simple loops and let
(δ1, . . . , δμ) be a corresponding weakly distinguished system of vanishing cycles.

Definition 8.4.8 We define operations αi(j) and βi(j) for i, j ∈ {1, . . . , μ}, i = j ,
as follows:

αi(j) : (γ1, . . . , γμ) %→ (γ1, . . . , γj−1, γjωi, γj+1, . . . , γμ) ,

βi(j) : (γ1, . . . , γμ) %→ (γ1, . . . , γj−1, γjω−1
i , γj+1, . . . , γμ).

These operations induce the following operations on the corresponding systems
of simple loops, and we denote them by the same symbols:

αi(j) : (ω1, . . . , ωμ) %→ (ω1, . . . , ωj−1, ω−1
i ωjωi, ωj+1, . . . , ωμ) ,

βi(j) : (ω1, . . . , ωμ) %→ (ω1, . . . , ωj−1, ωiωj ω−1
i , ωj+1, . . . , ωμ).

If ω1, . . . , ωμ forms a generating system for π1(�′, η), then π1(�
′, η) is also

generated by the new simple loops that arise from application of the operations
αi(j) and βi(j). Hence αi(j) and βi(j) transfer weakly distinguished path systems
again to weakly distinguished path systems.

These operations thus induce operations on the corresponding weakly distin-
guished systems of vanishing cycles too, which we denote by the same symbols,
and they appear as follows:

αi(j) : (δ1, . . . , δμ) %→ (δ1, . . . , δj−1, hδi (δj ), δj+1, . . . , δμ),

βi(j) : (δ1, . . . , δμ) %→ (δ1, . . . , δj−1, h−1
δi

(δj ), δj+1, . . . , δμ).

The operations αi(j) and βi(j) are again mutually inverse in the sense above.
For even n they even agree.

If (γ1, . . . , γμ) is a distinguished path system and if τj,j+1 ∈ Sμ denotes the
transposition of j and j + 1, then, up to homotopy,

αj = τj,j+1 ◦ αj (j + 1),

βj+1 = τj,j+1 ◦ βj+1(j).

We now also have the following proposition:

Proposition 8.4.9 Let (ω1, . . . , ωμ) and (ω′1, . . . , ω′μ) be two free generating
systems of the free group π1(�′, η) such that ωi and ω′i are conjugate to one another
for i = 1, . . . , μ. Then one can obtain (ω′1, . . . , ω′μ) from (ω1, . . . , ωμ) by the
application of a sequence of operations of type αi(j) or βi(j).

This proposition was conjectured by Gusein-Zade [73] and proved by
S. P. Humphries [79] in 1985. It also follows, as remarked by R. Pellikaan, from an
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old result of J. H. C. Whitehead from the year 1936 (cf. [116, Proposition 4.20]).
We refer to [79].

It follows from Proposition 8.4.9 that any two weakly distinguished systems of
vanishing cycles can be transformed one to the other by iteration of the operations
αi(j) and βi(j) and a succeeding change of orientation of some of the cycles.

J. McCool [117] found a presentation of the subgroup of the automorphism group
of a free group generated by the operations αi(j) and βi(j).

8.5 Computation of Intersection Matrices

The Sebastiani-Thom sum of the singularities f : (Cn+1, 0) → (C, 0) and g :
(Cm, 0) → (C, 0) is the singularity of the function germ f ⊕ g : (Cn+m+1, 0) →
(C, 0) defined by the formula

(f ⊕ g)(x, y) = f (x)+ g(y)

(x ∈ C
n+1, y ∈ C

m, (x, y) ∈ C
n+m+1 ∼= C

n+1 ⊕ C
m).

M. Sebastiani and R. Thom [130] proved that the monodromy operator of the
singularity f ⊕ g is equal to the tensor product of the monodromy operators of the
singularities f and g. If Lf , Lg, and Lf⊕g denote the Seifert form of f, g, and
f⊕g respectively, then by a result of Deligne (see [46], see also [13, Theorem 2.10])

Lf⊕g = (−1)(n+1)mLf ⊗ Lg.

Gabrielov [65] showed how to calculate an intersection matrix of f ⊕ g from
the intersection matrices of f and g with respect to distinguished bases (see also
[13, Theorem 2.11]). As a corollary, he obtained certain intersection matrices for
singularities of the form

f (x) = z
a0
0 + · · · + zan

n , for ai ∈ Z, ai ≥ 2, i = 0, . . . , n.

These singularities are called Brieskorn-Pham singularities. They were considered
by Brieskorn [27] and Pham [121] (see also [77]). For such a singularity, already
Pham [121] had found a basis and calculated the intersection matrix with respect to
this basis. Gabrielov showed that Pham’s basis can be deformed to a distinguished
basis and the intersection matrix is given by the same formulas which Gabrielov
obtained. Independently, these intersection matrices with respect to distinguished
bases were also calculated by A. Hefez and Lazzeri [75].

A special case of the Sebastiani-Thom sum of f and g is the case when g(y) =
y2

1+· · ·+y2
m. This is called a stabilization of f . The following theorem is a special

case of Gabrielov’s result (see also [13, Theorem 2.14]).
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Theorem 8.5.1 Let fλ be a morsification of the singularity f , let (γ1, . . . , γμ)

be a distinguished path system for fλ, and let (δ1, . . . , δμ) be a corresponding
distinguished basis.

Then fλ(x) + y2
1 + . . . + y2

m is a morsification of the singularity f (x) + y2
1 +

. . . + y2
m, with the same critical values, (γ1, . . . , γμ) is also a distinguished path

system for this singularity, and for a corresponding distinguished basis (̃δ1, . . . , δ̃μ)

we have

〈̃δi, δ̃j 〉 = [sign(j − i)]m(−1)(n+1)m+m(m−1)
2 〈δi, δj 〉 for i = j.

It follows from Theorem 8.5.1 that, by taking a suitable stabilization, one
can assume that n ≡ 2 mod 4. In this case, the intersection form is symmetric
and the vanishing cycles have self intersection number −2. The Picard-Lefschetz
transformation hδi acts on M by the formula

hδi (α) = sδi (α) = α + 〈α, δi〉δi .

This is a reflection in the hyperplane orthogonal to the vanishing cycle δi . In
accordance with the definition in Sect. 8.3, in the Coxeter-Dynkin diagram, edges
of weight +1 are depicted by solid lines and edges of weight −1 are depicted by
dashed lines. Note that the definition of a Coxeter-Dynkin diagram in [13, 2.8] is
slightly different: It encodes the intersection matrix in the case n ≡ 2 mod 4, and
the i-th and j -th vertices are joined by an edge of multiplicity 〈δi, δj 〉.
Example 8.5.2 Consider the germ of the function f : C

2 → C defined by
f (x, y) = x5 + y3. (This is the singularity E8, see Sect. 8.7.) By Example 8.4.7
and the result of Gabrielov [65] there is a distinguished basis of f with a Coxeter-
Dynkin diagram of the shape of Fig. 8.7. By the transformations

α7, α6, α5, α4, α3, α2, α1; β5, β4; β7, β6, β5; β7, β6, β5; β8, β7, β6; κ2, κ7, κ8,

the Coxeter-Dynkin diagram is transformed to the classical Coxeter-Dynkin dia-
gram of type E8, see Fig. 8.8. It follows from Theorem 8.7.1 below that the
numbering can be changed by braid group transformations to an arbitrary number-
ing.

Fig. 8.7 Gabrielov diagram
of E8

2 4 6 8

1 3 5 7
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Fig. 8.8 Standard
Coxeter-Dynkin diagram E8

7 6 5 4 3 2 1

8

Another method to compute an intersection matrix with respect to a distinguished
basis of f is the polar curve method of Gabrielov [68].

If n = 1, so f : (C2, 0) → (C, 0) defines a curve singularity, there is
an especially nice method to compute an intersection matrix with respect to a
distinguished basis using a real morsification of the singularity. This method is
independently due to N. A’Campo [2] and Gusein-Zade [71, 72].

P. Orlik and R. Randell [120] computed the classical monodromy operator for
weighted homogeneous polynomials of the form

f (z0, . . . , zn) = z
a0
0 + z0z

a1
1 + . . .+ zn−1zan

n , n ≥ 1.

Moreover, they formulated the following conjecture. Let rk = a0a1 · · · ak for k =
0, 1, . . . , n, r−1 = 1, and define integers c0, c1, . . . , cμ by

n∏

i=−1

(tri − 1)(−1)n−i = cμtμ + · · · + c1t + c0.

Conjecture 8.5.3 (Orlik-Randell) There exists a distinguished basis of f such that
the Seifert matrix L of f is given by

L = −(−1)n(n+1)/2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c0 0 · · · · · · 0 0 0
c1 c0 0 · · · · · · 0 0
c2 c1 c0 0 · · · · · · 0
...

...
...

. . .
. . .

...
...

cμ−3 cμ−4 cμ−5 · · · c0 0 0
cμ−2 cμ−3 cμ−4 · · · c1 c0 0
cμ−1 cμ−2 cμ−3 · · · c2 c1 c0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This conjecture is still open. However, recently D. Aramaki and A. Takahashi
[7] proved an algebraic analogue of this conjecture. Namely, they considered the so
called Berglund-Hübsch transpose ([20], see also [59])

f̃ (z0, . . . , zn) = z
a0
0 z1 + z

a1
1 z2 + . . .+ z

an−1
n−1 zn + zan

n
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of the polynomial f . They showed that the triangulated category of maximally-
graded matrix factorizations for f̃ admits a full exceptional collection with this
matrix.

8.6 The Discriminant and the Lyashko-Looijenga Map

Let f : (Cn+1, 0) → (C, 0) be a holomorphic function germ with an isolated
singularity at 0, grad f (0) = 0. Then one obtains a universal unfolding F of f

as follows (see [70, 1.3] or [58, Proposition 3.17]): Let g0 = −1, g1, . . . , gμ−1 be
representatives of a basis of the C-vector space

On+1

/(
∂f

∂z0
, . . . ,

∂f

∂zn

)

On+1,

which has dimension μ. Then put

F : (Cn+1 × C
μ, 0) −→ (C, 0)

(z, u) %−→ f (z)+
μ−1∑

j=0
gj (z)uj .

Let

F : V × U → C

be a representative of the unfolding F , where V is an open neighborhood of 0 in
C

n+1 and U is an open neighborhood of 0 in C
μ. We put

Y := {(z, u) ∈ V × U |F(z, u) = 0},
Yu := {z ∈ V | F(z, u) = 0}.

Since F(z, 0) = f (z), there is an ε > 0 such that every sphere Sρ ⊂ V around 0 of
radius ρ ≤ ε intersects the set Y0 transversally. Let ε > 0 be so chosen. Then there
is also an θ > 0 such that for |u| ≤ θ the set {u ∈ C

μ | |u| ≤ θ} lies entirely in U

and Yu intersects the sphere Sε transversally. Let θ be so chosen. We put

X◦ := {(z, u) ∈ Y
∣
∣ |z| < ε, |u| < θ},

X := {(z, u) ∈ Y
∣
∣ |z| ≤ ε, |u| < θ},

∂X := {(z, u) ∈ Y
∣
∣ |z| = ε, |u| < θ},

S := {u ∈ U
∣
∣ |u| < θ},
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p : X −→ S

(z, u) %−→ u.

Let C be the set of critical points and D = p(C) ⊂ S the discriminant of p. We
have the following result (see, e.g., [58, Proposition 3.21]).

Theorem 8.6.1 For a suitable θ > 0 we have:

(i) The map p : X→ S is proper.
(ii) C is a nonsingular analytic subset of X◦ and is closed in X.

(iii) The restriction p|C : C → S is finite (i.e., proper with finite fibers).
(iv) The discriminant D is an irreducible hypersurface in S.

By the Ehresmann fibration theorem the map

p′ := p|X\p−1(D) : X \ p−1(D) −→ S \D

is then the projection of a differentiable fiber bundle, and the fibers of p′ are
diffeomorphic to a Milnor fiber Xη of f .

Let s ∈ S \D and Xs := p−1(s) = (p′)−1(s). Then p′ defines a representation

ρ : π1(S \D, s) −→ Aut(H̃n(Xs)).

One has the following theorem (see [13, Theorem 3.1] or [58, Proposition 5.17]).

Theorem 8.6.2 The image � of the homomorphism

ρ : π1(S \D, s) −→ Aut(H̃n(Xs))

coincides with the monodromy group of the singularity.

In particular, Theorem 8.6.2 implies that the monodromy group is independent
of the chosen morsification.

As a corollary of the irreducibility of the discriminant (Theorem 8.6.1(iv)) and
Theorem 8.6.2 we obtain the following result which was first proved by Gabrielov
[66] and independently by Lazzeri [99, 100].

Corollary 8.6.3 (Gabrielov, Lazzeri) The Coxeter-Dynkin diagram with respect
to a weakly distinguished system (δ1, . . . , δμ) of vanishing cycles is a connected
graph.

One can show that if 0 is neither a regular nor a non-degenerate critical point
of f , then there are two vanishing cycles δ, δ′ of f with 〈δ, δ′〉 = 1. This follows
from the following result due to G. N. Tyurina [136, Theorem 1] and D. Siersma
[133, Proposition (8.9)] (see also [13, Theorem 3.23], [58, 5.9]) and the fact that, if
0 is neither a regular nor a non-degenerate critical point of f , then f deforms to the
singularity g with g(z) = z3

0 + z2
1 + · · · + z2

n.
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Theorem 8.6.4 (Tyurina, Siersma) Let ft : (Cn+1, 0) → (C, 0), t ∈ [0, 1], be a
continuous deformation of the singularity f0 = f with μ(f0) = μ, μ(ft ) = μ′ for
0 < t ≤ 1. Then one has μ ≥ μ′, one has a natural inclusion of the Milnor lattice
Mft of ft in the Milnor lattice Mf0 of f0, and a distinguished basis of ft can be
extended to a distinguished basis of f0.

From these results one obtains another corollary of the irreducibility of the
discriminant (cf. [13, Theorem 3.4], [58, Proposition 5.20]):

Corollary 8.6.5 If not both (i) n is odd and (ii) 0 is a non-degenerate critical point
of f , then the set of vanishing cycles �∗ is the only �-orbit, i.e., the monodromy
group � acts transitively on �∗.

Using these results, K. Saito [128] showed that the monodromy group �

determines the Milnor lattice M .
We can also deduce from these results that the classical monodromy operator

acts irreducibly (cf. [13, Theorem 3.5]). (An earlier result for curves was obtained
by C. H. Bey [23, 24].)

Corollary 8.6.6 Let (δ1, . . . , δμ) be a distinguished basis of f and let I be a subset
of the set of indices I0 = {1, . . . , μ} such that the linear span of the basis elements
δi with i ∈ I is invariant under the classical monodromy operator h∗. Then either
I = ∅ or I = I0.

Corollary 8.6.7 If the classical monodromy operator of a singularity is the multi-
plication by ±1, then the singularity is non-degenerate.

This was first proved by A’Campo [1, Théorème 2] as an answer to a question of
Sebastiani. It was deduced from the following result.

Theorem 8.6.8 (A’Campo) The trace of the classical monodromy operator of f is

tr h∗ = (−1)n.

The corank of a singularity f is the corank of the Hesse matrix of f . Using a
result of Deligne (see [4]), the author proved the following result [56, Proposition 5].

Proposition 8.6.9 Let n ≡ 2 mod 4 and let c(f ) denote the corank of f . Then

tr h2∗ = (−1)c(f ).

A very important result on the classical monodromy is the following theorem.

Theorem 8.6.10 (Monodromy Theorem) The classical monodromy of f is quasi-
unipotent, i.e., its eigenvalues are roots of unity.

For the history of this theorem and further properties of the classical monodromy
see the survey article [57]. The usual proofs of Theorem 8.6.10 use a resolution of
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the singularity, see e.g. [61] for an instructive one. For a proof which does not use a
resolution see [102].

The bifurcation variety Bif is the set of all λ ∈ S such that fλ does not have
μ distinct critical values. Looijenga [109] in 1974 and independently Lyashko (in
the same year, but his work was only published later in [114, 115]) introduced the
following mapping: The Lyashko-Looijenga mapping LL sends a point λ ∈ S to the
unordered collection of critical values of the function fλ or, what amounts to the
same thing but is sometimes more convenient, to the polynomial which has these
critical values as roots. If Pμ denotes the set of monic polynomials of degree μ,
then this is the mapping

LL : S −→ Pμ

λ %−→ ∏μ
i=1(t − si )

where s1, . . . , sμ are the critical values of the function fλ. Let � ⊂ Pμ denote the
discriminant variety in Pμ. Then there exists a neighborhood U ⊂ S of 0 ∈ S such
that LL|U\Bif : U \ Bif → Pμ \� is locally biholomorphic [109, Theorem (1.4)].

8.7 Special Singularities

We shall now consider what is known about these invariants for special classes of
singularities.

Let f, g : (Cn+1, 0) → (C, 0) be holomorphic function germs with an isolated
singularity at 0. The germs f and g are called right equivalent if f is taken to g

under (the germ of) a biholomorphic mapping of the domain space which leaves
the origin invariant. The modality (or module number) of f is the smallest number
m for which there exists a representative p : X → S of the universal unfolding
F : (Cn+1 × C

μ, 0) → (C, 0) of f such that for all (z, u) ∈ X the function germs
Fu : (Cn+1, z) → (C, F (z, u)) given by Fu(z′) = F(z′, u) fall into finitely many
families of right equivalence classes depending on at most m (complex) parameters.
Singularities of modality 0,1 and 2 are called simple, unimodal (or unimodular),
and bimodal (or bimodular), respectively.

V. I. Arnold classified the singularities up to modality 2 [10]. He listed certain
normal forms. A normal form determines a class of singularities. This class
corresponds to a μ=const stratum: Any two singularities of a μ=const stratum are μ-
equivalent, see Sect. 8.9 below. By Proposition 8.9.7 below, the class D is the same
for all singularities of a μ=const stratum. Gabrielov [66] proved that the dimension
of the μ=const stratum is equal to the modality of the singularity. Arnold found that
in the lists of classes, all the classes are split into series which are now called the
Arnold series. However, as Arnold writes in [10], “although the series undoubtedly
exist, it is not at all clear what a series is”. Let us look at Arnold’s classification.
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Table 8.1 Simple
singularities

Notation Function Notation Function

Ak xk+1, k ≥ 1 Dk x2y + yk−1, k ≥ 4

E6 x3 + y4 E7 x3 + xy3

E8 x3 + y5

Let us first assume that f : (Cn+1, 0) → (C, 0) defines a simple singularity. Up
to stabilization, the simple singularities are given by the germs of the functions of
Table 8.1. There are many characterizations of simple singularities, see [49]. They
are the only singularities where, for n ≡ 2 mod 4, the intersection form is negative
definite [49, Characterization B5]. They are also the only singularities where the set
D contains a tree [49, Characterization B7], [3, 5]. Moreover, this is also the only
case where the monodromy group � is finite [49, Characterization B8]. The author
[60] has recently shown that they are the only singularities where the set B is finite.

Let f : (Cn+1, 0) → (C, 0) define a simple singularity and n ≡ 2 mod 4. Then
�∗ is a root system of type Ak, Dk, Ek . (Note that the usual bilinear form of [26]
has to be multiplied by −1.) The Milnor lattice M is the corresponding root lattice,
the group � is the corresponding Weyl group, and the classical monodromy operator
h∗ is a Coxeter element of the corresponding root system. Let c ∈ � be a Coxeter
element. Define

%c := {(s1, . . . , sk) | si ∈ � reflection, s1 · · · sk = c}.

Deligne [44] in a letter to Looijenga (with the help of J. Tits and D. Zagier) showed
the following theorem.

Theorem 8.7.1 (Deligne) The braid group Brk acts transitively on %c.

From this we obtain the following result.

Corollary 8.7.2 One has

B = {(δ1, . . . , δk) ∈ (�∗)k | 〈δ1, . . . , δk〉Z = M, sδ1 · · · sδk = h∗}.

The sets %c, B, and D are finite sets. The cardinality of these sets was calculated
in the letter of Deligne (see also [95, 139]).

Example 8.7.3 For E8 one has |DE8 | = 283456 = 324 000 000.

The first published proof of Theorem 8.7.1 is due to D. Bessis and can be found
in [21]. This theorem has been generalized and it has also applications outside
of singularity theory, see [17]. K. Igusa and R. Schiffler generalized this result
to arbitrary Coxeter groups of finite rank [82, Theorem 1.4] (see also [17, 18]).
Recently, B. Baumeister, P. Wegener, and S. Yahiatene [19] generalized it to certain
extended Weyl groups (see below). The theorem has applications in the theory
of Artin groups, see [21, 47], and in the representation theory of algebras, see
[78, 81, 82].
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Let Rk be a vector space on which the Weyl group W = � acts in a canonical
way and let C

k = R
k ⊗R C be its complexification. The action of W on R

k

extends in a natural way to an action of W on C
k. Let H be the union of the

complexifications of the reflection hyperplanes of W . Let S be the base space and
D the discriminant of the universal unfolding of the simple singularity f . Then the
pair (S, D) is analytically isomorphic (in a neighborhood of the origin) to the pair
(Ck/W, H/W) [8]. Brieskorn [29] proved that the fundamental group of the space
C

k/W \ H/W is the generalized Brieskorn braid group π [30, 35] of the Weyl
group W . He conjectured [30] and Deligne [43] proved that this space is in fact
a K(π, 1)-space. (A K(π, 1)-space is a topological space with fundamental group
π and trivial higher homotopy groups.) From this it follows that the complement
S \D is a K(π, 1)-space as well (see also [13, Theorem 3.9]). Brieskorn asked [31,
Problème 15] whether this is true in general.

Now we consider the Lyashko-Looijenga map in the case of the simple singular-
ities. Looijenga [109] and Lyashko [114, 115] showed that the mapping LL|U\Bif :
U \ Bif → Pk \� is a covering of degree

d = k!Nk

|�|
where N is the Coxeter number of the corresponding root system. I. S. Livshits
[106] determined the Galois group of this covering (see also [142]). Let p ∈ Pk \�.
It is well known that

π1(Pk \�, p) ∼= Brk.

Therefore the complement of the bifurcation variety of a simple singularity is a
K(π, 1), where π is a subgroup of index d in the braid group Brk .

Similar questions were also answered for complex reflection groups, see [22,
125, 126].

Looijenga already proved Theorem 8.7.1 in the case Ak [109, Corollary (3.8)].
Moreover, in this case, he established a correspondence between generic polyno-
mial coverings of the complex sphere and trees with totally ordered edges. By
considering a generalized version of the Lyashko-Looijenga mapping, more general
combinatorial results were obtained by Arnold [11], D. Zvonkine and S. K. Lando
[143], and B. S. Bychkov [36].

By studying the Lyashko-Looijenga mapping, Jianming Yu [141] determined
the number of Seifert matrices with respect to distinguished bases of a simple
singularity.

Gusein-Zade [74] gave a characterization of distinguished bases for simple
singularities. Let f : (Cn+1, 0) → (C, 0) define a simple singularity of Milnor
number μ. He showed that, if (δ1, . . . , δμ) is an integral basis of the homology group
M in which the matrix of the Seifert form is lower triangular, then (δ1, . . . , δμ) is a
distinguished basis of vanishing cycles. The proof is based on the following result:
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Table 8.2 Simple elliptic
singularities

Notation Function Restrictions

Ẽ6 x3 + y3 + z3 + axyz a3 + 27 = 0

Ẽ7 x2 + y4 + z4 + ay2z2 a2 = 4

Ẽ8 x2 + y3 + z6 + ay2z2 4a3 + 27 = 0

Let n be even. For any vanishing cycle δ and any distinguished basis (δ1, . . . , δμ)

for f , there exists a distinguished basis (δ′1, . . . , δ′μ) with the first element δ′1 = ±δ.
H. Serizawa [131] showed that the latter result is false for a non-simple singularity.

The next case are the simple elliptic singularities (see also [127]). These are
the singularities Ẽ6, Ẽ7, and Ẽ8. Up to stabilization, they are given by the one-
parameter families of Table 8.2. These singularities can be characterized as follows:
For n ≡ 2 mod 4, the intersection form is not negative definite but negative semi-
definite [49, Characterization C5]. Therefore, the simple elliptic singularities are
also called the parabolic singularities. The monodromy group is not finite but has
polynomial growth [49, Characterization C6]. (For the notions of polynomial and
exponential growth, see e.g. [119]. See also Remark 8.8.7 below.) The set B is
infinite but the set D is finite [60].

Let f : (Cn+1, 0) → (C, 0) define a simple elliptic singularity of type Ẽk, k =
6, 7, 8, and let n ≡ 2 mod 4. If M is a lattice, denote by M# = Hom(M,Z) the dual
module and by

j : M −→ M#

v %−→ lv with lv(x) = 〈v, x〉, x ∈ M,

the canonical homomorphism. The Milnor lattice M is the orthogonal direct sum
of the root lattice Ek and the radical ker j which is two-dimensional. The set �∗ of
vanishing cycles is an extended affine root system of type E

(1,1)
k in the sense of Saito

[129]. The monodromy group � is the semi-direct product of the group ker j⊗j (M)

and the Weyl group W(Ek) of Ek, where the group ker j ⊗ j (M) acts on M by
(v ⊗ w#)(x) = x + w#(x)v and the action of W(Ek) on ker j ⊗ j (M) is trivial
on the first factor and canonical on the second one, see [110, Proposition (6.7)]. It
follows from this description that the monodromy group has polynomial growth.

P. Kluitmann extended Corollary 8.7.2 to the simple elliptic singularities [93].
He also calculated the cardinality of D for Ẽ6 and Ẽ7. In [90, 91], P. Jaworski
considered the Lyashko-Looijenga map for the simple elliptic singularities and
showed that the complement of the bifurcation variety of a simple elliptic singularity
is again a K(π, 1) for a certain subgroup of the braid group Brμ [90, Corollary 2].
Recently, C. Hertling and C. Roucairol [76] used a different approach to study the
Lyashko-Looijenga map for the simple and simple elliptic singularities and refined
and extended the results of Kluitmann and Jaworski.

For the remaining singularities, the sets B and D are infinite [60]. Let f :
(Cn+1, 0) → (C, 0) be such a singularity. We assume n ≡ 2 mod 4. The only
singularities with a hyperbolic intersection form, i.e., an indefinite form with only
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one positive eigenvalue, are the singularities of the series Tp,q,r with 2 ≤ p ≤ q ≤ r

and 1
p
+ 1

q
+ 1

r
< 1 [9]. Up to stable equivalence, they are given by the one parameter

families

Tp,q,r : xp + yq + zr + axyz, a = 0.

They are also called the hyperbolic singularities. The simple elliptic and hyperbolic
singularities are unimodal singularities. Gabrielov [67] calculated Coxeter-Dynkin
diagrams with respect to distinguished bases for the unimodal singularities. Accord-
ing to [67], the simple elliptic and hyperbolic singularities have Coxeter-Dynkin
diagrams with respect to distinguished bases in the form of Fig. 8.9. Here (p, q, r) =
(3, 3, 3), (2, 4, 4), (2, 3, 6) for Ẽ6, Ẽ7, and Ẽ8 respectively. The Milnor lattice M

of a hyperbolic singularity has a one-dimensional radical ker j generated by the
vector δ2 − δ1. By [67], the monodromy group � is the semi-direct product of the
group ker j ⊗ j (M) and the Coxeter group corresponding to the graph of Fig. 8.9
with the vertex δ2 removed. It can also be described as the extended Weyl group of
a generalized root system as defined by Looijenga [111].

As an application of [19], one obtains an extension of Corollary 8.7.2 to the
hyperbolic singularities.

Looijenga ([111], [112, Chapter III.3]) gave a description of the complement of
the discriminant of a simple elliptic or hyperbolic singularity as an orbit space Y/�.
Using this, H. van der Lek [105] gave a presentation of the fundamental group of

δ2

δ 2
1

· · ·

δ 2
q −1 δ1 δ 3

r −1

· · ·

δ 3
1

δ 1
p −1

· · ·

δ 1
1

Fig. 8.9 The graph Tp,q,r
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1

· · ·

δ 2
q −1 δ1 δ 3

r −1

· · ·

δ 3
1

δ 1
p −1

· · ·

δ 1
1

Fig. 8.10 The graph Sp,q,r

the discriminant complement for such singularities generalizing the results for the
simple singularities.

Besides these singularities, there are 14 exceptional unimodal singularities.
Equations of these singularities can be found in [10, 12]. Coxeter-Dynkin diagrams
for these singularities were also calculated by Gabrielov [67]. He claimed that
by change-of-basis transformations αi(j) and βi(j), the Coxeter-Dynkin diagrams
can be reduced to the “normal form” depicted in Fig. 8.10 for certain triples
(p, q, r). The author showed in his PhD thesis [50] that these diagrams are in
fact Coxeter-Dynkin diagrams with respect to distinguished bases. The necessary
braid group transformations are indicated in the appendix of the thesis which is not
published in [51]. However, they can be found in the paper [56]. Arnold observed a
strange duality between the 14 exceptional unimodal singularities [10]. The relation
to homological mirror symmetry is explained in the survey article [59]. For a
description of the monodromy groups see Sect. 8.8.

V. I. Arnold also classified the bimodal singularities [10, 12]. Gabrielov com-
puted Coxeter-Dynkin diagrams with respect to distinguished bases for the sin-
gularities of all the series of Arnold, including the bimodal singularities [68].
The author suggested a “normal form” for the Coxeter-Dynkin diagrams with
respect to distinguished bases for the bimodal singularities [51, 53]. Jointly with
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D. Ploog [62], he gave a geometric construction of these diagrams. Moreover, he
suggested a “normal form” for the Coxeter-Dynkin diagrams with respect to weakly
distinguished bases of all the singularities of Arnold’s series and calculated their
intersection forms [51].

Il’yuta [83] formulated two conjectures relating the shape of Coxeter-Dynkin
diagrams to the modality of the singularity. He used the definition of the Coxeter-
Dynkin diagram of [13, 2.8]: It is a graph with simple edges where the edge between
δi and δj has the weight 〈δi, δj 〉. (We assume n ≡ 2 mod 4.) A monotone cycle in
a Coxeter-Dynkin diagram is a sequence of vertices (δi1, . . . , δik ) where i1 < i2 <

. . . < ik and δij is connected to δij+1 for j = 1, . . . , k and j + 1 taken modulo k.
The weight of a monotone cycle is the product

∏〈δij , δij+1 〉 where the product is
over j = 1, . . . , k and j + 1 taken modulo k. Now Il’yuta conjectured:

Conjecture 8.7.4 (Il’yuta) The minimum over all D ∈ D of the smallest number of
edges that have to be deleted in order that D does not contain monotone cycles is
equal to the modality of the singularity.

Conjecture 8.7.5 (Il’yuta) The minimum over all D ∈ D of the number of edges of
D of negative weight is equal to the modality of the singularity.

Il’yuta showed that these conjectures hold for the unimodal singularities. The
author [56] showed that both conjectures are even true for the unimodal singularities
if one counts an edge of weight 〈δi , δj 〉 as |〈δi, δj 〉| edges as in the definition of the
Coxeter-Dynkin diagram in Sect. 8.3. However, he gave counterexamples to both
conjectures for the bimodal singularities. Il’yuta also found other characterizations
of Coxeter-Dynkin diagrams of the simple singularities [84, 85, 87].

Using the Lyashko-Looijenga mapping, M. Lönne [107, 108] gave a presentation
of the fundamental group of the discriminant complement for Brieskorn-Pham sin-
gularities which is related to the intersection matrix with respect to a distinguished
basis considered in Sect. 8.5.

V. A. Vassiliev listed some problems about the Lyashko-Looijenga mapping for
non-simple singularities in [137].

8.8 The Monodromy Group

In this section we give a description of the monodromy group in the general case.
Let M be a lattice which is either symmetric and even or skew symmetric. Let

ε ∈ {+1,−1} and let � be a subset of M . If M is symmetric we demand that
〈δ, δ〉 = 2ε for all δ ∈ �. We define an automorphism sδ ∈ Aut(M) by

sδ(v) := v − ε〈v, δ〉δ
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for all v ∈ M . Then sδ is a reflection in the symmetric case and a symplectic
transvection in the skew symmetric case. Let �� ⊂ Aut(M) be the subgroup of
Aut(M) generated by the transformations sδ, δ ∈ �.

Definition 8.8.1 The pair (M, �) is called a vanishing lattice, if it satisfies the
following conditions:

(i) � generates M .
(ii) � is an orbit of �� in M .

(iii) If rank M > 1, then there exist δ, δ′ ∈ � such that 〈δ, δ′〉 = 1.

It follows from Corollary 8.6.5 that, if it is not true that both n is odd and 0 is a
non-degenerate critical point of f , then the pair (H̃n(Xs), �∗) is a vanishing lattice
with ε = (−1)n(n−1)/2 and � is the corresponding monodromy group.

We introduce some more algebraic notions. Let M# = Hom(M,Z) be the dual
module and j : M → M# be the canonical homomorphism. A homomorphism
h : M → M induces a homomorphism ht : M# → M# of the dual modules. If h

leaves the bilinear form 〈 , 〉 invariant, then ht (j (M)) ⊂ j (M). An automorphism
h ∈ Aut(M) thus induces a homomorphism ht : M#/j (M) → M#/j (M). Let
Aut#(M) ⊂ Aut(M) be the subgroup of those automorphisms h ∈ Aut(M) with
ht = idM#/j (M).

Now let M be a skew symmetric lattice. It has a basis

(e1, f1, . . . , em, fm, g1, . . . , gk)

such that

〈ei, fi〉 = −〈fi, ei〉 = di for di ∈ Z, di ≥ 1, i = 1, . . .m,

all other inner products are equal to zero, and di+1 is divisible by di for i =
1, . . . , m− 1. Such a basis is called a symplectic basis.

Let (e1, f1, . . . , em, fm, g1, . . . , gk) be a symplectic basis of M . Let η2 be the
exponent of 2 in the prime factor decomposition of dm. Let μ = 2m + k. We
identify M with Z

μ through the symplectic basis (e1, f1, . . . , em, fm, g1, . . . , gk).
A subgroup G ⊂ Aut#(M) then corresponds to a subgroup ρ(G) ⊂ Sp#(μ,Z),
where Sp#(μ,Z) is the corresponding subgroup of the symplectic group

Sp(μ,Z) = {A ∈ GL(μ,Z) |AtJA = J }.

Let r ∈ N\{0}. A subgroup G ⊂ Aut#(M) is called a congruence subgroup modulo
r if

ρ(G) = {A ∈ Sp#(μ,Z) | A ≡ E mod r}.

Here E is the unit matrix and A ≡ E mod r means that aij ≡ δij mod r for all
1 ≤ i, j ≤ μ, where A = (aij ).
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A congruence subgroup is obviously of finite index in the group Aut#(M) =
Sp#(M).

The following theorem was proved by W. A. M. Janssen [88] based on previous
work of A’Campo [6], B. Wajnryb [140], and S. V. Chmutov [38, 39]. The notation
〈v, M〉 = Z means that there is a y ∈ M with 〈v, y〉 = 1. We write a ∈ � mod 2 if
there is an element b ∈ M with a − 2b ∈ �.

Theorem 8.8.2 (Janssen) Let (M, �) be a skew symmetric vanishing lattice.
Then

(i) �� contains the congruence subgroup modulo 2η2+1 of Sp#(M),
(ii) � = {v ∈ M | 〈v, M〉 = Z and v ∈ � mod 2}.

As a corollary, we get the following result:

Corollary 8.8.3 Let f : (Cn+1, 0) → (C, 0) be a holomorphic function germ with
an isolated singularity at 0 and let n be odd. Then

(i) � contains the congruence subgroup modulo 2η2+1 of Sp#(M),
(ii) �∗ = {v ∈ M | 〈v, M〉 = Z and v ∈ �∗ mod 2}.
In (ii) it is assumed that 0 is not a non-degenerate critical point of f .

Janssen also proved a version of Theorem 8.8.2 for skew symmetric vanishing
lattices over the field F2 and classified skew symmetric vanishing lattices over F2
[88] and over Z [89]. B. Shapiro, M. Shapiro, and A. Vainshtein [132] applied these
results to certain enumeration problems.

Now let M be symmetric and let ε ∈ {−1,+1}. We put

M := M/ ker j, MR := M ⊗ R.

Then MR is a finite-dimensional real vector space with a nondegenerate symmetric
bilinear form. Let h ∈ Aut(M) and h̄ the induced element in O(MR). The
transformation h̄ can be written as a product of reflections

h̄ = sv1 ◦ . . . ◦ svr

with vi ∈ MR, 〈vi , vi〉 = 0, i = 1, . . . , r . We define

νε(h) :=
{+1 if ε〈vi, vi〉 < 0 for an even number of indices,
−1 otherwise.

The homomorphism νε : Aut(M) → {−1,+1} is called the real ε-spinor norm.

Definition 8.8.4 We define a subgroup O∗
ε (M) ⊂ O(M) as follows:

O∗
ε (M) := Aut#(M) ∩ ker νε.
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If M is non-degenerate, then M#/j (M) is a finite group and hence O#(M) =
Aut#(M) is a subgroup of finite index in O(M) = Aut(M). The subgroup ker νε ⊂
O(M) is of index ≤ 2 in O(M). Thus if M is non-degenerate, then O∗

ε (M) is a
subgroup of finite index in O(M).

Using a result of M. Kneser [96], the author proved the following theorem [54].
A unimodular hyperbolic plane is a two-dimensional lattice with the bilinear form
given by

(
0 1
1 0

)

.

Theorem 8.8.5 (Ebeling) Let (M, �) be an even symmetric vanishing lattice.
Assume that M contains a six-dimensional sublattice K ⊂ M which is the
orthogonal direct sum of two unimodular hyperbolic planes and a lattice of type
εA2. Assume moreover {v ∈ K | 〈v, v〉 = 2ε} ⊂ �. Then

(i) �� = O∗
ε (M),

(ii) � = {v ∈ M | 〈v, v〉 = 2ε and 〈v, M〉 = Z}.
From Theorem 8.8.5 one can derive the following theorem [54]. The statement

for the exceptional unimodal singularities was already proven by H. Pinkham [123]
(see also [52] for the history of the problem and previous results). It was noticed by
Looijenga that (ii) is a consequence of (i).

Theorem 8.8.6 (Ebeling) Let f : (Cn+1, 0) → (C, 0) be a holomorphic function
germ with an isolated singularity at 0 and let n be even, ε = (−1)n(n−1)/2.
Suppose that f is not of type Tp,q,r with 1

p
+ 1

q
+ 1

r
< 1 and (p, q, r) =

(2, 3, 7), (2, 4, 5), (3, 3, 4). Then

(i) � = O∗
ε (M),

(ii) �∗ = {v ∈ M | 〈v, v〉 = 2ε and 〈v, M〉 = Z}.
In (ii) it is assumed that 0 is not a non-degenerate critical point of f .

Remark 8.8.7 Theorem 8.8.6 follows for the simple and simple elliptic singularities
by the results stated in Sect. 8.7. It is false for the singularities of type Tp,q,r with
1
p
+ 1

q
+ 1

r
< 1 and (p, q, r) = (2, 3, 7), (2, 4, 5), (3, 3, 4), see [51, §3]. This

follows from the fact that the graph of Fig. 8.9 with the vertex δ2 removed and with
1
p
+ 1

q
+ 1

r
< 1 defines a Coxeter system of hyperbolic type if and only if (p, q, r) =

(2, 3, 7), (2, 4, 5), (3, 3, 4) [26, Ch. V, § 4, Exercice 12]. The three singularities
Tp,q,r with these values of (p, q, r) are the minimal hyperbolic singularities .
Theorem 8.8.6 was proved for these singularities by Brieskorn ([32, Theorem 2],
but no proof is given). A proof following Brieskorn’s proof can be found in [55,
5.5]. A’Campo (unpublished) and Looijenga showed that the monodromy groups of
these singularities have exponential growth. Looijenga’s proof is published in [49,
Appendix II].
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8.9 Topological Equivalence

We shall now consider the question to which extent the invariants determine the
topological type of the singularity.

The topological type of a singularity f : (Cn+1, 0) → (C, 0) is described by
the (local) embedding of the variety f−1(0) in a neighborhood of the singular point
0 ∈ C

n+1.

Definition 8.9.1 Two singularities f, g : (Cn+1, 0) → (C, 0) are topologically
equivalent if there is a homeomorphism of neighborhoods U and V of the origin
which maps f−1(0) ∩ U to g−1(0) ∩ V .

By [118, Theorem 2.10], the variety f−1(0) is locally the cone over its link K .
By [118], the link is a fibered knot. A. Durfee [48] proved the following theorem.

Theorem 8.9.2 (Durfee) Let n ≥ 3. There is a one-to-one correspondence of
isotopy classes of fibered knots in S2n+1 and equivalence classes of integral
unimodular bilinear forms given by associating to each fibered knot its Seifert form.

In view of the preceding remarks and Theorem 8.3.6 we obtain the following
corollary.

Corollary 8.9.3 For n = 2 the set D of f : (Cn+1, 0) → (C, 0) determines f up
to topological equivalence.

This corollary was also proved by S. Szczepanski [134]. Moreover, she showed
in [135] the following theorem.

Theorem 8.9.4 (Szczepanski) Two singularities f, g : (C3, 0) → (C, 0) are
topologically equivalent if

(i) the singularities have a common Coxeter-Dynkin diagram with respect to
distinguished bases, and

(ii) the Milnor fibers have homeomorphic boundaries and the algebraic isomor-
phism of the Milnor lattices induced by the common Coxeter-Dynkin diagram
is realized geometrically by either an inclusion of one Milnor fiber into
the other or a homotopy equivalence of the Milnor fibers which induces a
homeomorphism of the boundaries.

There is also the notion of μ-homotopy or μ-equivalence (see [34]).

Definition 8.9.5 Two singularities f0, f1 : (Cn+1, 0) → (C, 0) are μ-equivalent if
there is a family ft : (Cn+1, 0) → (C, 0) of analytic function germs with isolated
singularities at the origin continuously depending on the parameter t ∈ [0, 1] with
constant Milnor number μ(ft ).

Lê Dũng Tráng and C. P. Ramanujam [103] proved the following theorem.
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Theorem 8.9.6 (Lê-Ramanujam) If n = 2, then μ-equivalent singularities are
topologically equivalent.

The following proposition was proved by Gabrielov [67, Proposition 1].

Proposition 8.9.7 (Gabrielov) For two μ-equivalent singularities there exist dis-
tinguished bases whose Coxeter-Dynkin diagrams coincide.

Using this proposition, one obtains the Lê-Ramanujam theorem as a consequence
of Corollary 8.9.3. Moreover, one can derive from Theorem 8.9.4 a Lê-Ramanujam
theorem for n = 2, see [135].

Now let f : (Cn+1, 0) → (C, 0) be an isolated singularity satisfying the
conditions of Theorem 8.8.6. It follows from Theorem 8.8.6 that the invariants � and
�∗ are completely determined by M . The author [51] has found examples of pairs of
singularities (e.g. the bimodal singularities Z17 and Q17 in Arnold’s notation) which
have the same Coxeter-Dynkin diagrams with respect to weakly distinguished bases
and the invariants M, �, and �∗ are the same, but the invariants B∗ and D∗ are
different, the classical monodromy operators are not conjugate to each other, and
the singularities are not topologically equivalent.

We conclude the article with some open questions which were posed to the author
by late Brieskorn (around 1982?). We keep the condition that f : (Cn+1, 0) →
(C, 0) is a singularity satisfying the conditions of Theorem 8.8.6. Let n ≡ 2 mod 4
and let μ be the Milnor number of f .

Question 1 (Brieskorn) Let M be the Milnor lattice (of rank μ) and � be
the monodromy group of f . Let

� := {v ∈ M | 〈v, v〉 = −2}.

Then � acts on �. Are there only finitely many orbits?

Question 2 (Brieskorn) Let

B0 := {(e1, . . . , eμ) ∈ �μ | 〈e1, . . . , eμ〉Z = M}.

Then the group Br�μ acts on B0. Are there only finitely many orbits?
Alternatively, one can consider the set

B̃0 := {(e1, . . . , eμ) ∈ (�∗)μ | 〈e1, . . . , eμ〉Z = M}.
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Question 3 (Brieskorn) The group � acts on B0 (or B̃0) by

γ (e1, . . . , eμ) = (γ e1, . . . , γ eμ).

This action commutes with the action of Br�μ . Are there only finitely many
�-equivalence classes of Br�μ -orbits?

Very little is known about these questions. The answers to these questions are
trivially yes for the simple singularities, since the sets �, B0, and B̃0 are finite in
this case. We have � = �∗ (and hence there is only one �-orbit) for the simple,
simple elliptic, and minimal hyperbolic singularities (for the latter ones see [55,
Proposition 5.5.1]).

An element c ∈ � for which there exists a basis (e1, . . . , eμ) ∈ B0 such that
c = se1 · · · seμ is called a quasi Coxeter element.

Question 4 (Brieskorn) Let c ∈ � be a quasi Coxeter element and let

B0,c := {(e1, . . . , eμ) ∈ B0 | se1 · · · seμ = c}.

The set B0,c is invariant under the action of the group Br�μ . What is the
relation between the orbits of Br�μ on B0 and the sets B0,c?

For the simple singularities, the quasi Coxeter elements were determined up to
conjugacy by E. Voigt [138, 139] and he showed that the group Br�μ acts transitively
on B0,c for each quasi Coxeter element c. For c being the classical monodromy
operator, it is known for the simple (Corollary 8.7.2), the simple elliptic [93],
and the hyperbolic singularities [19] that the group Br�μ acts transitively on B0,c

(see Sect. 8.7 above). To the author’s knowledge, this is all what is known about
Question 4.
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Abstract In these notes we consider different theorems of the Lefschetz type. We
start with the classical Lefschetz Theorem for hyperplane sections on a non-singular
projective variety. We show that this extends to the cases of a non-singular quasi-
projective variety and to singular varieties. We also consider local forms of theorems
of the Lefschetz type.

9.1 Introduction

One of the basic problems of algebraic geometry is to extract topological informa-
tion from the equations which define an algebraic variety. The theorem of Lefschetz
for hyperplane sections shows that to some extent one can compare the topology of a
given projective variety and the one of a hyperplane section of this variety, when the
base field is the field of complex numbers and the projective variety is non-singular.

The theorem of Lefschetz for hyperplane sections appears in the memoir of
Lefschetz [33] which received the Bordin Prize of the French Academy of Sciences
in 1919 and the Bôcher memorial prize by the American Mathematical Society
in 1924. This memoir was written in French and translated into English with
some minor modifications and published in the Trans. Amer. Math. Soc. 22
(1921). It appears also in his famous book, “L’Analysis Situs et la Géométrie
Algébrique”, published in the collection of E. Borel, “Monographies sur la Théorie
des Fonctions”, in 1924 (facsimile in 1950, cf. [34]). In his memoir, Lefschetz
mentioned that his theorem was known for cycles of dimension one by Castelnuovo,
Enriques [5] and E. Picard. The case of dimension 2, which Lefschetz actually
generalizes to higher dimension, was already treated by H. Poincaré in a paper
published in Journal Math. Pures et Appliquées 6 (1906).

The proofs by S. Lefschetz of his theorem on hyperplane sections in [33] and [34]
are very sketchy and not easy to understand. A first complete proof was proposed by
A. Wallace in his book [50]. Then, following an idea of R. Thom to use the theory
of Morse, A. Andreotti and T. Frankel gave a very elegant proof in [1] and R. Bott
had a homotopy version in [3]. A very clean account of these proofs using Morse
theory was given by J. Milnor in [37].

Several generalizations of the Lefschetz theorem were given. Algebraic gener-
alizations were mainly obtained by A. Grothendieck in [13] and Michèle Raynaud
(see [13] Chapitre XIV). Their interest lies in the use of geometric methods over a
field of positive characteristic.

Here in these notes we are mainly interested in the topology of complex varieties
and the generalizations obtained by the authors, and also by M. Goresky and R.
MacPherson on the topology of complex algebraic varieties.
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In particular one finds out that the classical theorem of Bertini and a theorem
stated by O. Zariski on the fundamental group of the complement of a projective
hypersurface are in fact particular cases of topological generalizations of the
Lefschetz theorem.

The aim of these notes is to give a quick survey of the known topological general-
izations of the Lefschetz theorem and to extend the original theorem of Lefschetz to
the case of singular quasi-projective varieties. We shall use transcendental methods
and, though some results might be true on a field of any characteristic (or at least
on an algebraically closed field of characteristic zero), we shall assume in all these
notes that the base field is the field C of complex numbers.

Beware that we will not speak about the so-called Hard Lefschetz theorem.
Often, we shall not give any proof but refer to the original paper where the reader

can have a proof of the given theorems.
In the first chapter we shall comment on the original theorem of Lefschetz and

indicate a topological proof. Then we prove the theorem of O. Zariski mentioned
above and we show how it can be understood as a generalization of the Lefschetz
theorem. It leads us naturally to several generalizations of the Lefschetz theorem
which are related to the local study of singularities.

In the third chapter we define the notion of homotopical depth introduced by
Grothendieck. We show that indications and conjectures of A. Grothendieck in
[13], Exposé XIII, are mostly true and lead to the generalization of the theorem
of Lefschetz for hyperplane sections that we have in mind.

We shall see that different local topological data about the singularities can be
used to calculate the homotopical depth.These data are related to a Morse type
theory for stratified spaces due to M. Goresky and R. MacPherson [12]. We end
these notes with a characterization of spaces with maximal homotopical depth and
we show that on these spaces a natural generalization of the Theorem of Milnor on
the Milnor fibre of an isolated critical point of a complex analytic function is true.
These lectures present and follow the works of the authors [19, 20, 22, 31].

We assume that the reader is accustomed to the language of singularity theory.
We can refer to the article contained in this book by Lê D.T., J.J. Nuño Ballesteros
and J. Seade, The topology of Milnor fibration.

9.2 The Classical Theorem of Lefschetz for Hyperplane
Sections

9.2.1 Original Statement

Let us state the theorem of Lefschetz for hyperplane sections. First let us introduce
the notations.
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Let PN be the complex projective space of dimension N . Let V be a non-singular
complex projective subvariety of PN . Recall that a family (Lt ) of complex projective
hyperplanes is a pencil if it is the (1-dimensional) family of all hyperplanes
containing a given projective subspace A of codimension 2, called the axis of the
pencil. Thus the space P of pencils of hyperplanes of PN can be identified with the
Grassmann space of projective spaces of codimension 2 in P

N .
Since we can index the hyperplanes of the pencil (Lt ) by their intersections with

a projective line P
1 of PN which does not meet the axis A, a pencil of hyperplanes

also defines a projective line in the space P̌
N

of projective hyperplanes of PN .

Definition 9.2.1 A pencil of hyperplanes is said to be a Lefschetz pencil for V if:

1. the axis of the pencil intersects V transversally;
2. all the hyperplanes of the pencil, but a finite number, intersect the non-singular

variety V transversally;
3. the hyperplanes which do not intersect V transversally are tangent to V only at

one unique point and the tangency at this point is simple (or equivalently ordinary
quadratic).

One can prove that general pencils are Lefschetz’s pencils of V (see [25, 2.3 of p.
216 and 2.5.2 of Theorem 2.5 p. 217]):

Lemma 9.2.2 There is a non-empty Zariski open subset of the space P of pencils
of hyperplanes of PN which are Lefschetz pencils for the variety V .

The idea of the proof is quite simple. In the space P̌
N

of projective hyperplanes of
P

N , let us consider the subspace of projective hyperplanes tangent to the variety V .

One can show that this subspace is a projective subvariety V̌ of P̌
N

, which is called
the dual variety of V .

In fact in P
N × P̌

N
, we consider the set V of pairs (x, L) of a non-singular point

x of V and a projective hyperplane L tangent to V at x, i.e. which contains the
projective tangent space Tx(V ). Of course, when V is a hypersurface of PN there is
only one tangent hyperplane at x, but the situation can be different when V is not a
hypersurface. Remember that we only consider a non-singular V .

This set V is an algebraic subset V of PN × P̌
N

. Actually the space V is the
critical subspace of the map:

p : I (V ) → P̌
N

defined on the incidence variety I (V ) of V , i.e. the subvariety of PN×P̌N
of the pairs

(x, L) of points x of V and hyperplanes L of P̌
N

such that x ∈ L. The projection

onto P
N maps V onto V and the projection onto P̌

N
maps V onto V̌ which is
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algebraic, because the projection is proper. It is clear that, since V is a non-singular
variety, the incidence variety I (V ) is non-singular, so that dimV = N − 1 or the
space V is empty. Therefore dim V̌ ≤ N − 1. It is known (cf. [25, Corollaire 3.2.4
p. 219]) that the set of hyperplanes in V̌ which do not intersect V with one and only

one ordinary quadratic singularity has codimension at least 2 in P̌
N

.
In fact, this is obvious if dim V̌ ≤ N − 2 and, if dim V̌ = N − 1, it means that

the dual variety V̌ is reduced in the following sense that a non-singular point of
this variety represents a projective hyperplane of PN which is tangent at only one
point of V and at this point the tangency is ordinary. Thus a general projective line

in P̌
N

, i.e. a pencil of hyperplanes in P
N , is intersecting this dual variety V̌ at m̌

non-singular points, where m̌ is the degree of the dual variety V̌ of V (which is 0
if dim V̌ ≤ N − 2). Therefore such a pencil is a Lefschetz pencil for V if its axis
intersects V transversally.

This shows that the space of Lefschetz’s pencils for the variety V , i.e. the

intersection of the space of projective lines in P̌
N

which define pencils whose axis

intersects V transversally and of the space of projective lines in P̌
N

which intersect
the dual variety V̌ transversally at m̌ non-singular points, is a non-empty Zariski
open subset of the space P of pencils of hyperplanes of PN .

Let us suppose that (Lt ) is a Lefschetz pencil for V and that the dimension of the
variety V is d . We give the Lefschetz Theorem for hyperplane sections not quite in
the same form as it is found in [34] (Chapitre IV, p. 89). The original terminology
is somehow heavy. We propose the following statement which closely follows the
original version:

Theorem 9.2.3 Suppose that V is a non-singular complex projective variety. Let
(Lt ) be a Lefschetz pencil of hyperplanes of V . Then we have, whenever Lt

intersects V transversally:

1. Any k-dimensional cycle �k of V ∩ Lt (k < d − 1) is invariant;
2. Any k-dimensional cycle �k of V (k < d) is homologous to a cycle in V ∩ Lt ;
3. For k ≤ d − 2, a k-dimensional cycle �k of V and a cycle of V ∩ Lt to which it

is homologous are simultaneously boundaries in their respective varieties;
4. For k ≤ d − 2 the k-th Betti number of V and V ∩ Lt are equal.

Moreover in [34] (Chapter 1, §1, 2 (b)) S. Lefschetz quotes another assertion about
the d-dimensional cycles. Namely:

Proposition 9.2.4 Any d-dimensional cycle of V is the sum of two others of which
one is wholly within an Lt and the other is composed of a d-dimensional manifold
contained in L0 plus the loci of certain (d − 1) dimensional cycles of Lt ∩ V when
t describes the lines from 0 to the critical values ti .
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9.2.2 Recent Statements

One can notice that Lefschetz’ formulation of his theorem speaks about cycles.
Nowadays we formulate his theorem in terms of singular homology with integer
coefficients (see [50]). If we do so, the assertion (2) of the Lefschetz theorem says
that the inclusion of V ∩Lt into V induces a surjection of the k-th homology groups,
for k ≤ d − 1, and assertion (3) says that the same inclusion induces an injection of
the k-th homology groups, for k ≤ d − 2. This automatically gives the assertion (4).
By using the exact sequence of the homology of the pair (V , V ∩Lt ), we can replace
assertions (2), (3), (4) by the vanishing of the k-th relative homology of (V , V ∩Lt )

for k < d:

(∗) if 0 ≤ k < d : Hk(V, V ∩ Lt) = 0

It remains to understand the assertion (1) in the Lefschetz theorem. We shall see that
assertion (1) means that, for any k ≤ d − 2, the inclusion of V ∩A in V , where A is
the axis of the pencil, induces an isomorphism of the k-th homology. If so, assertion
(1) is a consequence of the vanishing of Hk(V, V ∩Lt) and Hk(V ∩Lt , V ∩A) for
any k ≤ d − 2, which is consequence of the assertion (∗) itself and the assertion (∗)
applied to V ∩ Lt , when V ∩ Lt is non-singular.

As in the Lefschetz theorem we suppose that (Lt ) is a Lefschetz pencil. In
particular this implies that the axis A of the pencil intersects the non-singular variety
V transversally. We shall show that there is a fibration on the complement of a finite
number of points in the projective line associated to this situation.

Namely, let z be a point of the ambient projective space P
N outside the axis A.

Evidently there is a unique hyperplane Lt of the pencil containing both the point z

and the axis A. Therefore this defines a mapping θ of PN −A to P
1 which associates

the index t of Lt to the point z. The map θ is algebraic. The graph of θ is a subset
of PN × P

1 which is not closed. The closure Z of this graph can be shown to be
an algebraic subvariety of PN × P

1 (use the Remmert-Stein Theorem [44] and the
Theorem of Chow [41, Corollary (4.6)], or the fact that the graph is not only analytic
but even algebraic). The projection onto P

N induces an algebraic map eA from Z

onto P
N . This map eA is the blowing-up of the subspace A in P

N :

eA : Z → P
N

The definition of the map eA shows that it induces an isomorphism of Z − e−1
A (A),

which is the graph of θ , onto P
N − A.

The inverse image e−1
A (A) is called the exceptional divisor of the blowing-up eA.

On the other hand one can check that the restriction to Z of the projection onto P
1

defines a map θ̃ : Z → P
1 which is a locally trivial fibration of Z on P

1 with a fibre
isomorphic to P

N−1. The projection of e−1
A (A) onto P

1 is a trivial fibration.
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Now one can consider the inverse image e−1
A (V − A). As we notice above, eA

induces an algebraic isomorphism of e−1
A (V−A) onto V−A. Using e.g. the theorem

of Remmert-Stein, one can prove that the topological closure Ṽ of e−1
A (V − A) in

Z is an algebraic subvariety of Z.
Because the axis A intersects the variety V transversally (and V is non-singular),

the variety Ṽ is non-singular. The mapping eA induces a mapping π : Ṽ → V which
is called the blowing-up of V along V ∩ A (or the blowing-up of V ∩ A in V ).

On the other hand the map θ̃ : Z → P
1 induces a map

θ̃V : Ṽ → P
1

this map is a locally trivial fibration on neighbourhoods of points of P
1 which

correspond to hyperplanes of the considered Lefschetz pencil and which intersect
the variety V transversally , i.e. θ̃V is a locally trivial fibration over P1−{t1, . . . , tk}.
Since we have assumed that the pencil with axis A is a Lefschetz pencil, fibres
over the points ti are singular at exactly one point. This fibration induced by θ̃V

over P1 − {t1, . . . , tk} is smooth and locally trivial, but it is not a trivial fibration.
Considering a loop around one of the points ti , 1 ≤ i ≤ k, and a point t on this loop,
one can define a diffeomorphism of V ∩Lt onto itself, which is not the identity, and
we shall call it a geometric monodromy of the local trivial fibration induced by θ̃V

around the point ti .
The restriction of the map θ̃V to e−1

A (A) ∩ Ṽ is a trivial fibration, so that the
monodromy around any ti , 1 ≤ i ≤ k, of the locally trivial fibration of θ̃V onto
P

1 − {t1, . . . , tk} is the identity when restricted to e−1
A (A) ∩ Ṽ . Therefore cycles of

V in V ∩A or homologous to cycles in V ∩A are called invariant, because lifted into
Ṽ they are invariant by these monodromies. The assertion (1) of Lefschetz theorem
is actually a consequence of the fact that cycles of V of dimension k ≤ d − 2 are
homologous to cycles contained in V ∩ A.

The theorem of Lefschetz can now be summarized by:

Theorem 9.2.5 Let V be a complex non-singular projective variety of dimension
d in P

N and let (Lt ) be a Lefschetz pencil of hyperplanes of V . Then we have a
vanishing of relative homologies:

Hk(V, V ∩ Lt) = 0 for any k ≤ d − 1

where Lt is a general hyperplane of the Lefschetz pencil (Lt ) which intersects V

transversally.

Actually A. Andreotti and T. Frankel [1] proved a stronger theorem (see [37]
Theorem 7.1):
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Theorem 9.2.6 Let V be a projective non-singular variety in P
N and let L be any

hyperplane of PN . Then:

Hk(V, V ∩ L) = 0 for any k ≤ d − 1.

Note that the hyperplane L in this theorem might not belong to a Lefschetz pencil.
Following an idea of R. Thom the proof of this theorem uses Morse theory.
By the Lefschetz duality one sees that the integral homology Hk(V, V ∩ L) is

isomorphic to the integral cohomology H 2d−k(V − L). Now V − L is an affine
variety and we have:

Lemma 9.2.7 A complex non-singular affine subvariety of complex dimension d of
C

N has the homology type of a CW-complex of (real) dimension d .

Then, by the universal coefficient theorem for cohomology (see [23, Theorem
3.2 p. 195]), we have:

H 2d−k(V − L) = 0 for k ≤ d − 1,

which implies Theorem 9.2.5.
In fact the preceding lemma is consequence of a more general statement about Stein
manifolds. Any complex affine non-singular variety is a Stein manifold because any
closed complex analytic submanifold of some C

N is a Stein manifold. We have:

Lemma 9.2.8 A Stein submanifold V of complex dimension d of C
N has the

homotopy type of a CW-complex of (real) dimension d .

Proof We can assume that V is closed in C
N . The proof of this lemma uses the

following observation on the distance function:
Assume that the distance function δx in C

N to a point x restricted to V has only
non-degenerate critical points. Then, the indices of these critical points are ≤ d .

In [37, Chapter 1] J. Milnor gives a way to compute the indices of these critical
points.

Consider a smooth manifold M embedded in R
n. Let a point x ∈ R

n. The
function δx is the restriction to M of the distance function to x. There is a relation
between the critical points of δx and the geometry of M embedded in R

n.
Let us define N as the subspace of M × R

n which is the set of pairs (y, v),
where y is a point of M and v is a vector of Rn orthogonal to M at y. Notice that
dim N = n. We have a map E : N → R

n defined by E(y, v) = y + v.

Definition 9.2.9 A point c of Rn is called a focal point of (M, y) with multiplicity
ν, if it is a critical value of E and if c = y + v and the nullity of the Jacobian of E

at (y, v) is ν. A point c is called a focal point of M , if it is the focal point of (M, y)

for some y ∈ M .
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Since by the Baire Theorem (see e.g. [38]) critical values form a set of measure
0 of the target space, we have:

Proposition 9.2.10 For all points x of Rn but a subset of measure 0, x is not a
focal point of M .

Then, we have (see [37, Lemma 6.5 Chapter 1]):

Lemma 9.2.11 A point y of M is a degenerate critical point of δx if and only if x

is a focal point of (M, y).

This shows that for almost all x ∈ R
n the function δx : M → R is a Morse

function.
There is a result which allows to compute the index of the non-degenerate points

of δx (see [37, Lemma 6.9 of Chapter 1]):

Lemma 9.2.12 The index of δx at a non-degenerate point y ∈ M is the sum of the
multiplicities of the focal points on the segment from x to y.

It remains to show that the indices of δx when δx is a non-degenerate function are
≤ d = dimC V when V is a complex submanifold of CN . Before considering the
complex situation, we give another characterization of focal points of (M, y) given
by Differential Geometry.

Let k be the dimension of M . Consider a unit vector v orthogonal to M at y. Let
u1, . . . , uk be local coordinates of M at the point y. The embedding of M into R

n

is given locally at y by the vector function:

x(u1, . . . , uk) = (x1(u1, . . . , uk), . . . , xn(u1, . . . , uk))

with smooth entries. The vector ∂2x/∂ui∂uj is the sum of a tangent vector to M at
y and a normal vector ni,j to M at y.

The k×k matrix of scalar products (v.ni,j ) is symmetric, since we have assumed
that M is a smooth manifold. This matrix is called the second fundamental form of
M at y in the direction of v.

One defines the principal curvatures K1, . . . , Kk of M at y in the direction v as
the eigenvalues of this matrix (see [37, §6 of Chapter 1]). Then, we have (see [37,
Lemma 6.3 of Chapter 1]):

Proposition 9.2.13 The focal points of (M, y) on the line � = {y+ λv, λ ∈ R} are
the points y +K−1

i v where Ki = 0. So on the line � there are at most k focal points
each counted with its multiplicity.

In the case of a complex submanifold V of dimension d analytically embedded
in C

N we have the remarkable result (see [37, Assertion 7.4 of Chapter 1]):

Lemma 9.2.14 The focal points of (V , y) on any normal line to V at y are
distributed symmetrically about y and symmetric focal points have the same
multiplicity ν.
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On the whole line from x to y there are at most 2d focal points counted with their
multiplicity. Therefore, because of the symmetry, on the segment form x to y there
are at most d focal points counted with their multiplicity, so Lemma 9.2.12 shows
that the index of δx at y ∈ V is at most d .

Now we can apply Morse Theory (see [40] or [37]) using the Morse function δx ,
since {δx ≤ α} is compact for any α ∈ R. The indices of δx at every non-degenerate
point are ≤ d , which shows that V has the homotopy type of a CW-complex of
dimension ≤ d and proves Lemma 9.2.8.

In [3], R. Bott shows that Morse theory provides a homotopy statement. Namely
if x ∈ V ∩Ht , we have:

πk(V, V ∩Ht, x) = 0 for any k ≤ d − 1.

Using Morse theory as given in [37], we already obtain this result.
We will see in Chap. 3 that the Lefschetz theorem cannot be, in a straightforward

way, transferred to the case of a singular space. The situation is simpler for the
homotopy type of Stein manifolds. In fact, H.A.Hamm has shown that Lemma 9.2.8
goes over to the singular case, see [15, Satz 1], the proof being corrected in [17]:

Theorem 9.2.15 Let X be a Stein space of dimension n. Then X has the homotopy
type of a CW complex of dimension ≤ n.

As for the Lefschetz theorem, the problem is that the Lefschetz duality does not
extend to the singular case.

9.3 Generalizations of the Lefschetz Theorem

As above PN is the complex projective space of dimension N . We want to generalize
the Lefschetz theorem to the cases

1. the variety V is quasi-projective;
2. the variety V is singular.

First, the classical theorem of Bertini can be understood as a consequence of
a Lefschetz type theorem for quasi-projective non-singular varieties, when one
considers the 0-th homology groups. Then, a theorem of Zariski [52] can be
viewed as a consequence of a similar Lefschetz type theorem, by comparing the
fundamental groups.
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9.3.1 Bertini’s Theorem

We can formulate Bertini’s theorem in the following way:

Theorem 9.3.1 Let V be a complex projective variety in P
N of dimension d . If d ≥

2, there is a non-empty open Zariski subset ! of the space of projective hyperplanes
of PN such that, for any L ∈ !, the intersection V ∩ L is irreducible.

This theorem is a consequence of the following ones:

1. From [41, Corollary (4.16) p. 68] one can obtain the following result:

Theorem 9.3.2 A complex projective algebraic set E is irreducible if and only
if the subset E0 of non-singular points of E is connected.

2. the following generalization of the Lefschetz theorem, consequence of Theorem
1.1.1 and 1.1.3 of [20]:

Theorem 9.3.3 Let V be a complex quasi-projective variety in P
N . There is a

non-empty open Zariski subset !1 of the space of projective hyperplanes of PN

such that, for any L ∈ !1,

Hk(V, V ∩ L) = 0 for any k < d − 1

3. and finally the following lemma which can be proved as an easy consequence of
stratification theory:

Lemma 9.3.4 Let E be a complex projective algebraic subset of PN . There is
a non-empty open Zariski subset !2 of the space of projective hyperplanes of
P

N such that, for any L ∈ !2, the subset of non-singular points of E ∩ L is
the intersection E0 ∩ L of the subset E0 of non-singular points of E and the
hyperplane L.

Obviously the Zariski open set ! mentioned in Bertini’s theorem is !1 ∩!2.

Proof of (3) Since E is an algebraic subset of P
N , there is a finite algebraic

stratification which satisfies Whitney regular condition and in which the open subset
E0 of non-singular points of E is a stratum.

Now, the Zariski open set of hyperplanes of the space of hyperplanes of PN that
we consider is the Zariski open set of hyperplanes L which are transverse to the
strata of the Whitney stratification of E.

In particular E0 ∩ L is non-singular.
Since E0 = E − �, where � is the subset of singular points of E, E0 is a

quasi-projective subspace of PN . So we can apply Theorems 1.1.1 or 1.1.3 of [20].
If V is irreducible, the subset of non-singular points of V 0 is connected and

with L ∈ !, L ∩ V 0 is connected because of Theorem 9.3.3. The space L ∩ V 0

being the subset of non-singular points of L ∩ V, L ∩ V is irreducible because of
Theorem 9.3.2.
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9.3.2 The Zariski-Lefschetz Theorem

In [52] O. Zariski wanted to calculate the fundamental group of the complement of
a projective complex hypersurface. He stated the following theorem:

Theorem 9.3.1 Let X be a complex hypersurface in P
N . If N ≥ 3, there is a non-

empty open Zariski subset ! of the space of projective hyperplanes of PN such that,
for any L ∈ !, the fundamental group of the complement of X ∩ L in L equals the
fundamental group of the complement of X in P

N .

By induction the theorem of Zariski reduces the calculation of the fundamental
group of the complement of a hypersurface in P

N to the calculation of the
complement of a plane curve in a general plane section.

Unfortunately the original proof of O. Zariski relies on an isotopy theorem which
could not be completely proved in those days. This isotopy theorem and therefore
Zariski’s theorem were proved by A. N. Varchenko in [49]. D. Cheniot in [6] gave
another proof using an isotopy theorem consequence of the first isotopy theorem of
Thom and Mather. In [19] the authors showed that in fact Zariski’s theorem can be
understood as a generalization of the Lefschetz theorem. Namely they proved:

Theorem 9.3.2 Let X be a complex hypersurface in P
N . Denote V := P

N − X.
If N ≥ 3, there is a non-empty open Zariski subset ! of the space of projective
hyperplanes of PN such that, for any L ∈ ! and x ∈ V ∩L, the inclusion V ∩L ⊂ V

induces mappings:

πk(V ∩ L, x) → πk(V, x) which are isomorphisms, for any k < N − 1

and a surjective map for k = N − 1.

In the preceding theorem it is often more convenient to say that the relative
homotopy groups

πk(V, V ∩ L, x)

vanish for k < N or to say that the pair of spaces (V , V ∩L) is (N − 1)-connected.
Note that this is by abuse of language: πk(V, V ∩ L, x) is a group for k ≥ 2,
the vanishing of π1(V , V ∩ L, x) means that this set consists of one element, and
π0(V , V ∩L, x) is not defined, but π0(V , V ∩L, x) = 0 means that π0(V ∩L, x) →
π0(V , x) is surjective.
Notice that Theorem 9.3.2 is a corollary of a theorem similar to Theorem 9.3.3,
but involving homotopy groups, instead of homology groups. This theorem is also
proved in [19].
We now give another proof of Theorem 9.3.2 which uses a local version of the
Lefschetz theorem. Consider the canonical map:

λ : CN+1 − {0} → P
N
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If L is a projective hyperplane in P
N , we denote the corresponding hyperplane in

C
N+1 by L̃. Let f = 0 be an equation of X. Then f is a homogeneous polynomial.

Let t be a non-zero complex number. The affine hypersurface Ft := {f = t} is
non-singular and contained in C

N+1 − {0}. The map λ restricted to Ft induces a
cyclic covering of V := P

N −X of degree m which is the degree of the polynomial
f . Therefore we have:

Lemma 9.3.3 We have:

πk(V, V ∩ L, x) = 0 for any k < N

if and only if, for y ∈ Ft ∩ λ−1(x), we have:

πk(Ft , Ft ∩ L̃, y) = 0 for any k < N

To prove this lemma we compare the homotopy exact sequences of the pairs:

(Ft , Ft ∩ L̃) and (V , V ∩ L).

As λ induces a cyclic covering of Ft and Ft ∩ L̃ onto V and V ∩L respectively, we
have the isomorphisms of the homotopy groups:

πk(Ft ∩ L̃, y)
�→ πk(V ∩ L, y)

and

πk(Ft , y)
�→ πk(V, y)

for k = 1 and for k = 1 we have the exact sequences of groups:

0 → π1(Ft ∩ L̃, y) → π1(V ∩ L, y) → Z/mZ→ 0

0 → π1(Ft , y) → π1(V , y) → Z/mZ→ 0

Now a diagram chasing and the Five Lemma give the answer.

Theorem 9.3.2 is proved if one can prove that

πk(Ft , Ft ∩ L̃, y) = 0 for any k < N

This result can be obtained directly, by considering on Ft the function distance to the
hyperplane L̃. Then one shows that, if L is general enough, this function is a locally
trivial fibration on Ft − L̃ near infinity and its critical points on Ft − L̃ are Morse
critical points, i.e. non-degenerate, of index N because Ft is a complex manifold
of dimension N and the restriction to Ft of the linear form which defines L̃ has
only ordinary quadratic singularities. Another way to obtain this result is through



504 H. A. Hamm and D. T. Lê

a reduction to a local theorem and again the use of Morse theory as we do in the
following results:

Lemma 9.3.4 For any hyperplane L̃ through the origin 0 and any ε > 0, there is
τ > 0, such that, for any t, τ ≥ |t| > 0, the pair (Ft , Ft ∩ L̃) is diffeomorphic to
(Ft ∩ B̊ε, Ft ∩ L̃ ∩ B̊ε), where B̊ε is the open ball centered at 0 with radius ε.

This lemma is a consequence of the homogeneity of f .
Now Theorem 9.3.2 is a consequence of the following local result proved by one of
the authors in [26]:

Theorem 9.3.5 Let f : U → C be a complex analytic function defined on an open
neighbourhood of 0 in C

N+1 such that f (0) = 0. Let Ft be the hypersurface f = t .
There is a non-empty open Zariski subset !0 of the space of hyperplanes of CN+1

through the origin 0, such that, for any hyperplane L̃ ∈ !0, there is ε0, such that
for any ε, ε0 ≥ ε > 0, there is τ > 0, such that, for any t, τ ≥ |t| > 0, the pair of
spaces

(Ft ∩ B̊ε, Ft ∩ L̃ ∩ B̊ε)

is (N − 1)-connected.

This theorem can be understood as a Lefschetz theorem on an open analytic set.
This proves Theorem 9.3.2 and consequently Theorem 9.3.1.

9.3.3 Quasi-projective Theorem of Lefschetz Type

In the preceding section we saw that the Theorem of Zariski can be understood as a
theorem of Lefschetz type.

More generally let V be a subvariety of the projective space P
N . Let W be a

Zariski closed subspace of V . Then V −W is a quasi-projective variety.
We have the following theorem (see [20, Theorem 1.1.3]):

Theorem 9.3.1 We assume that V −W is a non-singular quasi-projective variety of
dimension d . There is a non-empty open Zariski subset ! of the space of hyperplanes
of PN , such that, for any L ∈ !, the pair (V−W, (V −W)∩L) is (d−1)-connected.

If one wants to avoid to consider generic sections by hyperplane, one can
consider good neighbourhoods V(L) of L with respect to W (see Definition 9.4.5).
This idea was introduced by P. Deligne in [7]. Then. we have:

Theorem 9.3.2 We assume that V −W is a non-singular quasi-projective variety
of dimension d . Let L be a hyperplane of PN . Then for any good neighbourhood
V(L) of L in P

N with respect to W , we have that the pair of spaces (V −W, (V −
W) ∩V(L)) is (d − 1)-connected.
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Remark 9.3.3

1. In the case W is empty, i.e. in the case one considers a non-singular projective
variety, one does not need to choose a generic hyperplane (compare with
Theorem 9.2.6).

2. In the case W is not empty, the statement of the Lefschetz Theorem is nearly the
same as the classical one, except that one intersects the quasi-projective variety
with a generic hyperplane or with the good neighbourhood of a hyperplane with
respect to W .

There are local versions of Theorems 9.3.1 and 9.3.2:

Theorem 9.3.4 Let X be an equidimensional locally closed complex analytic
subspace of CN of dimension d . Assume that x is a point of X and Y is a closed
complex analytic subspace of X which contains x and that X−Y is non-singular. Let
Bε be a ball centered at x with radius ε. There is a non-empty open Zariski subset
! of affine hyperplanes containing x such that, for ε small enough and L ∈ !, the
pair (Bε ∩ (X − Y ),Bε ∩ (X − Y ) ∩ L) is (d − 2)-connected.

See a more general statement as Theorem 1.6 in [22].

Theorem 9.3.5 Let X be an equidimensional locally closed complex analytic
subspace of CN of dimension d . Assume that x is a point of X and Y is a closed
complex analytic subspace of X which contains x and that X − Y is non-singular.
Let Bε be a ball centered at x with radius ε. For ε small enough and any sufficiently
small good neighbourhood V(L) of a hyperplane L which contains x, the pair
(Bε ∩ (X − Y ),Bε ∩ (X − Y ) ∩V(L)) is (d − 2)-connected..

See Theorem I.1.1 of [21] or Lemma 1.7 of [22] for a more general result.

9.3.4 Local Lefschetz Theorems

In fact we have several local theorems that we can call local Lefschetz theorems.
First notice that locally the situation is conelike as the following lemma teaches us:

Lemma 9.3.1 Let the notations be the ones of Theorem 9.3.5. There is ε0, such that
for any ε, ε0 ≥ ε > 0, the pair of spaces (Bε − {0}, Bε − F0) is homeomorphic to
the pair (Sε× (0, 1], (Sε−F0)× (0, 1]) and furthermore the homeomorphism class
of this pair does not depend on ε, ε0 ≥ ε > 0.

This lemma is a consequence of results proved in [4]. In the case 0 is an isolated
singularity, this lemma has been proved by Milnor in [39].

When ε > 0 is small enough, in [39, Theorem 5.11 p. 53] J. Milnor shows that
the space Sε − F0 fibres onto the circle S

1 by a map induced by f/|f | and the
general fibre is diffeomorphic to the space Ft ∩ B̊ε , when t is small enough and = 0.
Namely:



506 H. A. Hamm and D. T. Lê

Theorem 9.3.2 Let f : U → C be a complex analytic function defined on an open
neighbourhood of 0 in C

N+1 such that f (0) = 0. Let Ft be the hypersurface f = t .
There is ε0, such that for any ε, ε0 ≥ ε > 0, the map f/|f | induces a locally trivial
smooth fibration ϕε of Sε − F0 onto the circle S

1 and there is τ > 0, such that, for
any t, τ ≥ |t| > 0, the fibre of the fibration ϕε is diffeomorphic to Ft ∩ B̊ε .

Using the exact homotopy sequence of the fibration ϕε , we obtain the following
local Lefschetz type theorem in [19, Part (a) of Théorème (0.2.1)]:

Theorem 9.3.3 Let f : U → C be a complex analytic function defined on an open
neighbourhood of 0 in C

N+1 such that f (0) = 0. Let Ft be the hypersurface f = t .
There is a non-empty open Zariski subset !1 of the space of hyperplanes of CN+1

through the origin 0, such that, for any hyperplane L̃ ∈ !1, there is ε0, such that
for any ε, ε0 ≥ ε > 0, the pair of spaces

(Bε − F0, (Bε − F0) ∩ L̃)

is (N − 1)-connected.

Just notice that we may have expected that the pair of spaces in Theorem 9.3.3 is
N-connected, as we are embedded in an (N + 1)-dimensional space. There is a
result in this direction, but instead of considering a general hyperplane through the
origin 0, we have to consider a general hyperplane near the origin but not passing
through it. However this type of result also proved in [19] is more difficult to obtain.
To distinguish these two situations we call Theorem 9.3.3 a weak local Lefschetz
type theorem and the other one a strong local Lefschetz type theorem .

Warning This notion has nothing to do with the one of “hard” Lefschetz theorem
which is not at all subject of the present notes!

The strong version of Theorem 9.3.3 (see (b) of Theorem (0.2.1) of [19]) is:

Theorem 9.3.4 If f : U → C is a complex analytic function defined on an open
neighbourhood of 0 in C

N+1 such that f (0) = 0. Let Ft be the hypersurface f = t .
There is a non-empty open Zariski subset !1 of the space of hyperplanes of CN+1

through the origin 0, such that, for any hyperplane L̃ ∈ !1 defined by the equation
� = 0, there is ε0, such that for any ε, ε0 ≥ ε > 0, there is υ, such that, for any
u, υ ≥ |u| > 0, the pair of spaces

(Bε − F0, (Bε − F0) ∩ L̃u)

where L̃u is the hyperplane � = u, is N-connected.

As for Theorem 9.3.3 indicating that Theorem 9.3.4 is true, we have the following
theorem:

Theorem 9.3.5 Let X be an equidimensional reduced complex analytic space.
Assume that x is a point of X and Y is a closed complex analytic subspace of X

which contains x. Let Bε be a ball centered at x with radius ε. There is a non-empty
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open Zariski subset ! of affine hyperplanes containing x such that, for ε small
enough and L ∈ ! defined by � = 0, the pair (Bε ∩ (X − Y ),Bε ∩ (X − Y ) ∩ Lu)

is (d − 1)-connected, where {� = u} = Lu with u = 0 small enough.

This was proved by [21, Main Theorem II.1.4] or by [22, Theorem 2.12] in a
more general setting.

9.3.5 Other Local Lefschetz Theorems

There are other local generalizations of Lefschetz theorem. In [39], J. Milnor gives
a connectivity theorem for the local link Sε ∩ F0 of the hypersurface F0 at the point
0:

Theorem 9.3.1 Let f : U → C be a complex analytic function defined on an open
neighbourhood of 0 in C

N+1 such that f (0) = 0. Let Ft be the hypersurface f = t .
There is ε0, such that for any ε, ε0 ≥ ε > 0, the local link Kε := Sε ∩ F0 of F0 at
0 is (N − 2)-connected.

This theorem can be understood as a local version of Lefschetz theorem. In [14] and
in [27], the authors proved:

Theorem 9.3.2 Let f : U → C be a complex analytic function defined on an open
neighbourhood of 0 in a complex analytic subspace X of C

N+1 and such that
f (0) = 0. Let Y be {f = 0} ∩ X. Assume that X − Y is non-singular. There is
ε0, such that for any ε, ε0 ≥ ε > 0, the pair of spaces

(Sε ∩X, Sε ∩ Y )

is (dim X − 2)-connected.

Considering the cone on a projective variety, the local link of the cone at its vertex is
a locally trivial smooth fibration over the projective variety with fibre diffeomorphic
to S

1. Another diagram chasing shows that Theorem 9.3.2 implies Theorem 9.2.5
and its homotopy version. Notice that in Theorem 9.3.2 the important fact is that X−
Y is non-singular. As J. Milnor already noticed in [37] Corollary 7.5 and Theorem
7.6, in the original version of Lefschetz’ theorem, it is enough to assume that all
possible singularities lie inside the hyperplane section.

9.4 Homotopical Depth

When a variety contains singularities which are not contained in the hyperplane sec-
tion, a defect in the Lefschetz theorems comes from the nature of the singularities.
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In [13] A. Grothendieck, in analogy with the notion of depth in Commutative
algebra, introduced the notion of homotopical depth.Using this notion of depth, we
shall give below theorems of Lefschetz type.

9.4.1 Good Neighbourhoods

In what follows it is very convenient to introduce the concept of good neighbour-
hoods in the sense of D. Prill [43, Section B].
Let X be a topological space and let Y be a topological subspace. Consider a point
x ∈ X.

Definition 9.4.1 A neighbourhood U of x in X is called a good neighbourhood of
x with respect to Y , if there is a family (Uα)α ∈ A of neighbourhoods of x in X

such that:

1. The family (Uα)α∈A is a neighbourhood basis of the point x in X;
2. Each set Uα − Y (α ∈ A) is a deformation retract of U − Y .

The interest of good neighbourhoods lies in the following:

Lemma 9.4.2 Let U and V be good neighbourhoods of x in X with respect to Y ,
then U − Y and V − Y have the same homotopy type.

In the case of simplicial complexes, if Y is a subcomplex, the star of a point is a
natural good neighbourhood of x in X with respect to Y . In the case of real analytic
spaces (or more generally subanalytic sets) the following result gives us natural
good neighbourhoods:

Proposition 9.4.3 Let X be a subanalytic set and x be a point of X. Consider a
subanalytic subset Y of X. Suppose that X is embedded in R

N . There is ε0 > 0,
such that, for any ε, ε0 ≥ ε > 0, the intersection X∩Bε(x) of X with the open ball
Bε(x) of RN centered at x with radius ε > 0, is a good neighbourhood of x in X

with respect to Y .

Look at the paper of [4] for a proof.

Remark 9.4.4 A subanalytic set can always be locally embedded in an affine
space R

N . Therefore the preceding proposition provides us with many good
neighbourhoods which are easy to find. When we consider the local homotopy type
of X−Y at a point x of X, we mean the homotopy type of U−Y , where U is a good
neighbourhood of x in X with respect to Y . Therefore we can in particular consider
the homotopy type of X ∩ Bε(x)− Y , where Bε(x) is a sufficiently small open ball
of an affine space RN in which X is locally embedded in a neighbourhood of x.

Similarly if Z is a topological subspace of X, we can define:
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Definition 9.4.5 A neighbourhood U of Z in X is called a good neighbourhood
of Z with respect to Y , if there are subsets (Uα)α∈A which satisfy the following
conditions:

1. The family (Uα)α∈A is a neighbourhood basis of the Z in X;
2. Each set Uα − Y (α ∈ A) is a deformation retract of U − Y .

In this case a similar result as Lemma 9.4.2 holds.
One has the existence of good neighbourhoods of a subanalytic subset Z of

a subanalytic set X with respect to a subanalytic set Y ⊂ X by using the
triangulability of subanalytic sets [24].

9.4.2 Rectified Homotopical Depth

Let X be a complex analytic space. Let Y be a non-empty closed analytic subset of
X. First we give the following definition of A. Grothendieck (cf. [13], see also [22])

Definition 9.4.1 The space X has homotopical depth hdY (X) ≥ n along Y if,
for any y ∈ Y , there is a fundamental system (Uα) of neighbourhoods of y in X

such that the pairs (Uα, Uα − Y ) are (n − 1)-connected. The integer hdY (X) is the
maximum of the set of integers as in the definition above.

As it is defined in [Sw], a pair of topological spaces (B, A), such that A ⊂ B, is
0-connected if the path connected components of B meet all the path components
of A. For k ≥ 1, the pair (A, B) is k-connected if it is 0-connected and πi(B, A, a)

vanishes for 1 ≤ i ≤ k and any point a ∈ A. In particular if B = ∅ and A = ∅, the
pair (B,∅) is not 0-connected, but it is, if B = ∅.

Remark 9.4.2 The definition given by Grothendieck in Exp. XIII, p. 26 p. 197 of
[13] is more general. For instance, it applies to the case when the topological space
X is locally triangulable along a subspace Y , i.e. for any point y of Y there is a
fundamental system of neighbourhoods Uα of y in X such that the pair (Uα, Uα∩Y )

is triangulable.

Of course, a complex analytic space is triangulable along any closed analytic
subspace, because of the result of S. Łojasiewicz [35] about the triangulability of
analytic spaces.

Note that, if X is locally triangulable along a subspace Y , for any point y of Y ,
there is a good neighbourhood V of y in X with respect to Y in the sense of Prill
[43]. In practice we shall often use the following lemma:

Lemma 9.4.3 Let V be a good neighbourhood of y in X with respect to Y . There is
a fundamental system of neighbourhoods Uα of y in X such that the pairs (Uα, Uα−
Y ) are (n− 1)-connected, if and only if the pair (V , V − Y ) is (n− 1)-connected.

It is convenient to introduce the local definition of the homotopical depth:
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Definition 9.4.4 Let X be a complex analytic space and x be a point of X. Let Y

be a complex analytic subspace of X. Assume that x is in Y . We say that the space
X (or the germ (X, x)) has homotopical depth hdY (X, x) ≥ n along Y at the point
x if there is an open neighbourhood U of x in X, such that the homotopical depth
hdY∩U (X ∩ U) of X ∩ U along Y ∩U is ≥ n.

We have the following lemma which will be useful:

Lemma 9.4.5 Let S = (Xi)i∈I be an analytic Whitney stratification of the complex
analytic space X, then the function hdXi (X, x) is constant along a stratum Xi of S.

Remember that a Whitney stratification (or regular stratification) of an analytic
space is analytic if the strata and their closures are complex analytic subspaces (see
[51, p. 536 and §19])

The proof of this Lemma is left to the reader. It is consequence of the
topological triviality along the strata of the Whitney stratification [36, Consequence
of Proposition 11.1].
Along a Whitney stratum it is often more convenient to consider the normal slice of
the stratum (cf. [12]) to calculate the homotopical depth. Namely let Xi be a stratum
of the Whitney stratification S of X. Consider y ∈ Xi . Embed X in C

M locally at
y. Consider an affine space N of codimension dim Xi of CM transverse to Xi at y.
Let B̊ε(y) be the open ball of CM . We call the intersection X ∩ B̊ε(y)∩N a normal
slice of the stratum Xi in X at y.

We have the following general result which is also consequence of the topological
triviality along the strata of the Whitney stratification:

Lemma 9.4.6 Let N be a normal slice of the stratum Xi in X at y and V be a
good neighbourhood of y in X with respect to Xi . Then the pairs (V , V − Xi) and
(N,N− {y}) have the same homotopy type.

Therefore it is often convenient to use normal slices to calculate the homotopical
depth along a Whitney stratum.

In general if the dimension of the subspace Y of X is big, the connectivity of the
pairs (Uα, Uα − Y ) is low. In connection with this fact A. Grothendieck introduced
the notion of rectified homotopical depth:

Definition 9.4.7 We say that the rectified homotopical depth rhd(X, x) of X at the
point x is ≥ n, if, for any locally closed analytic subspace Y of X with x ∈ Y , there
is an open neighbourhood U of x in X, such that the homotopical depth of X ∩ U

along Y ∩ U is ≥ n− dim Y .

Of course, the integer rhd(X, x) is the maximum of the set of integers n as in the
definition above.

Remark 9.4.8 We always have rhd(X, x) ≤ dim(X, x). In fact if Y = X the pair
(U, U −X) is not 0-connected as it has been noticed above, because U − X = ∅.
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Definition 9.4.9 The rectified homotopical depth of X is:

rhd(X) := inf
x∈X

rhd(X, x).

9.4.3 Comments

Why can one hope that the hypothesis that rhd ≥ n is a good substitute for the
condition that dim ≥ n when extending the Lefschetz theorems to the singular
case?

First let us suppose that (X, x) is a complete intersection of dimension n in
(CN, x).

Let L be an affine subspace of CN of codimension i such that dim X ∩ L =
n − i. Then, at least when L is chosen in an adequate Zariski open subset of affine
subspaces of codimension i through x, the pair (Bε(x)∩X−{x}, Bε(x)∩X ∩L−
{x}) is (n − i − 1)-connected (see [29]), without smoothness assumption, because
(Bε(x)−{x}, Bε(x)∩X∩L−{x}) in (n−i−1)-connected and (Bε(x)−{x}, Bε(x)∩
X − {x}) is (n− 1)-connected by Satz 1.2 of [14].

Since the result concerns homotopy groups we want to replace the hypothesis that
X is a complete intersection by a hypothesis about homotopy groups. Fix a Whitney
stratification (Xi)i∈I of X. Let N be a normal slice at y to Xi in X. Then N is a
complete intersection of dimension n−dim Xi , so (N,N−{y}) is (n−dim Xi−1)-
connected, hence (V , V −Xi), too, where V is a good neighbourhood of y in X with
respect to Xi . As we will see in the following theorem, this implies that rhd(X) = n.

It was shown by Hamm in [16] that the notion of rectified homotopical depth
enables Lefschetz theorems. This paper is very concise. Here we will follow our
detailed and comprehensive paper [22] which deals with Grothendieck’s conjec-
tures.

9.4.4 The Main Result

In the following theorem we assume that all the Whitney stratifications are analytic.
In [22] Theorem 1.4 we give the following theorem which allows us to compute the
rectified homotopical depth:

Theorem 9.4.1 Let X be a reduced complex analytic space and x be a point of
X. Let S = (Xi)i∈I be a Whitney stratification of X. The following conditions are
equivalent:

1. rhd(X, x) ≥ n;
2. for any locally closed irreducible complex analytic subspace Y of dimension i

in X, there is an open neighbourhood U of the point x in X and an open dense
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analytic subset Y0 of Y such that, for any point y in Y0∩U , there is a fundamental
system of neighbourhoods Uα of y in U such that the pair (Uα, Uα − Y ) is (n−
1− i)-connected;

3. for any i ∈ I , such that the point x belongs to the closure of the stratum Xi , the
homotopical depth hdXi (X) is ≥ n− dim Xi .

This theorem shows that one can compute the rectified homotopical depth with a
given analytic Whitney stratification of X.

The main difficulty in the proof lies in the equivalence of the conditions (1) and
(3).

Proof The implications (1) ⇒ (2) ⇒ (3) are obvious. The inverse implications
will be shown in the following two subsections.

9.4.5 Proof of (3) ⇒ (2)

It is sufficient to show that, if (3) holds for the given Whitney stratification, it holds
for any other as well. For then we may pass to a stratification such that if y ∈
Y \ Y0, Y coincides with some Xi near y. Take Y0 to be the union of all maximal
strata of Y , maximal with respect to the relation: Xi ≤ Xj if Xi ⊂ Xj . The rest is
obvious.

So we have to show:

Lemma 9.4.1 Let S = (Xi)i∈I be an analytic Whitney stratification of X such that,
for any stratum Xi , the homotopical depth hdXi (X) is ≥ n− dim Xi . Then, for any
other Whitney stratification T = (Yj )j∈J of X, the homotopical depth hdYj (X) is
≥ n− dim Yj , for any stratum Yj .

First notice that the assertion of the lemma is true for any analytic Whitney
stratification S′ of X finer than S.

Let X′
k be a stratum of S′. Let y be a point of X′

k . This point is contained in a
unique stratum Xi of S. As S′ is finer than S, we have that X′

k ⊂ Xi . Therefore there
are good neighbourhoods V of y in X homeomorphic to N×U1×U2 where N is the
normal slice of Xi in X (see Lemma 9.4.6), U1 is a good neighbourhood of y in X′

k

and U2 is the normal slice of X′
k in Xi . In this homeomorphism the image of V ∩X′

k

is {y}×U1×{y} and the image of a normal slice of X′
k in X is N×{y}×U2. We have

to estimate the connectivity of the pair (N×U1×U2,N×U1×U2−{y}×U1×{y}).
It is the same as the one of (N× U2,N× U2 − {(y, y)}).

We know that U2 is homeomorphic to a ball of real dimension 2 dim Xi −
2 dim X′

k and that the pair (N,N − {y}) is (n − dim Xi − 1)-connected by
Lemma 9.4.6 and the hypothesis. We shall conclude by using the following lemma
(Lemma 1.8 of [22]):

Lemma 9.4.2 Let (E, E′) be a pair of locally trivial topological fibrations over
a connected CW-complex B, let π : E → B be the corresponding projection. Let
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(N, N ′) be a pair of fibres of these fibrations. Consider a subcomplex B ′ of B.
Assume that the pair (B, B ′) is (r−1)-connected, r ≥ 1, the space N is contractible
and Hi(N, N ′;Z) = 0, for i ≤ m−r−1, then the pair (E, E′∪π−1(B ′)) is (m−1)-
connected.

We apply Lemma 9.4.2 to the proof of Lemma 9.4.1 with E := N × U2, E′ :=
(N− {y})×U2, B := U2 and B ′ := U2 − {y}. Therefore π is the projection of the
product N×U2 onto U2, N = N, N ′ = N−{y}, r = 2 dim Xi − 2 dim X′

k, m =
n+ (2 dim Xi − 2 dim X′

k) and Lemma 9.4.2 implies that the pair:

(N× U2,N× U2 − {(y, y)}

is (n− dim Xi + (2 dim Xi − 2 dim X′
k)− 1)-connected, because:

E′ ∪ π−1(B ′) = ((N− {y})× U2) ∪ (N× (U2 − {y})) = N× U2 − {(y, y)}.

As n− dim Xi + (2 dim Xi − 2 dim X′
k)− 1 ≥ n− dim X′

k − 1, we obtain:

hdX′
k
(X) ≥ n− dim X′

k.

To end the proof of Lemma 9.4.1 it remains to prove that for any Whitney
stratification T = (Yj )j∈J of X, the homotopical depth hdYj (X) is ≥ n − dim Yj .
We can always find a Whitney stratification S′ which is finer than both S and T.
For any stratum Yj of T there is a stratum X′

k which is dense in Yj . Therefore
dim Yj = dim X′

k and, for any point y of X′
k , there is a good neighbourhood V of y

in X with respect to X′
k such that (V , V −X′

k) is (n− dim X′
k − 1)-connected. But

if V is small enough, we have V − X′
k = V − Yj . Lemmas 9.4.3 and 9.4.5 imply

that hdYj (X) ≥ n− dim Yj .
We still have to prove Lemma 9.4.2: We may assume that B is obtained from B ′

by adding cells of dimension ≥ r , because of 6.13 in [48]. Therefore it is enough
to consider the case (B, B ′) = (Dj , Sj−1) with j ≥ r; then E and E′ are trivial
fibrations,i.e. E = Dj × N and E′ = Dj × N ′. As E is contractible, we have to
show that E′ ∪ π−1(B ′) is (m− 2)-connected. Using the Mayer-Vietoris sequence,
Künneth formula and Hurewicz isomorphism, it is enough to show that E′∪π−1(B ′)
is simply connected if m ≥ 3. To prove this fact we use the homotopy excision
theorem Blakers and Massey (see 6.21 of [48]), namely:

Theorem 9.4.3 Let U and V be subspaces of W and u be a point of U ∩ V , such
that W = U ∪ V , the pair (U, U ∩ V ) is a k-connected relative CW -complex,
k ≥ 1, and (V , U ∩V ) is a l-connected relative CW -complex. Then the inclusion of
(U, U ∩V ) into (W, V ) induces isomorphisms of πi(U, U ∩V, u) and πi(W, V, u)

for 1 ≤ i < k + l and an epimorphism for i = k + l.

In our case we consider W = E′ ∪ π−1(B ′), V = E′ and U = π−1(B ′). So
U ∩ V = Sj−1 × N ′. We have isomorphisms of πi(π

−1(B ′), Sj−1 × N ′, u) and
πi(E

′ ∪ π−1(B ′), E′, u) for any point u in Sj−1 × N ′ and 1 ≤ i < m− (r − 1)+
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(j − 1), and an epimorphism for i = m − (r − 1) + (j − 1). As j ≥ r , we have
isomorphisms for i ≤ 2, if m ≥ 3. We consider now the following commutative
diagram where vertical arrows are induced by inclusions and horizontal lines are
the homotopy exact sequences of the corresponding pairs (choosing always the same
base point u for the homotopy groups):

πi+1(Nb, N ′
b) → πi(N

′
b) → πi(Nb) → πi(Nb, N ′

b)

↓ ↓ ↓ ↓
πi+1(E′ ∪ π−1(B ′), E′) → πi(E

′) → πi(E
′ ∪ π−1(B ′)) → πi(E

′ ∪ π−1(B ′), E′)

where Nb = {b} ×N, N ′
b = {b} ×N ′, b = π(u). The homotopy excision theorem

tells that the vertical arrows on the right and on the left are isomorphisms for i =
0, 1, because πj (Nb, N ′

b, u) = πj (B ′ × N, B ′ × N ′, u), for any integer j ≥ 0, and
any point u ∈ B ′ × N ′. As E′ = Dj × N ′ and j ≥ 1, we have that πi(N

′
b, u) =

πi(E
′, u), for any integer i ≥ 0.

Therefore the comparison between the two lines of the diagram, when i = 1,
gives that E′ ∪ π−1(B ′) is simply connected, if m ≥ 3. We can compare this
argument with the one that H. Hamm already used in [16] (p. 552). This ends the
proof of Lemma 9.4.2.

9.4.6 Proof of (2) ⇒ (1)

Note that this implication is trivial if the subspace Y to be considered is of
dimension 0, we reduce to this case by intersecting with an affine subspace L of
codimension dimx Y . This means that we use a local theorem of Lefschetz type
which is interesting in itself.

Let Y be an closed analytic subspace of X. We can assume that X is embedded
in C

N . For ε small enough, we saw that Bε(x)∩X is a good neighbourhood of x in
X with respect to Y (Proposition 9.4.3).

We have to prove that, assuming (2) or (3), for ε > 0 small enough, the pair:

(Bε(x) ∩X, Bε(x) ∩X − Y )

is (n− dimx Y − 1)-connected.
We first show that this fact is consequence of a local theorem of Lefschetz type.

Precisely, let L be a general affine subspace of CN of codimension dimx Y passing
through x. In particular we have L ∩ Y ∩ Bε = {x}.

Then, we notice that the pair:

(Bε(x) ∩X, Bε(x) ∩X − Y )
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is (n− dimx Y − 1)-connected, if the pairs:

(Bε(x) ∩X − Y, (Bε(x) ∩X − Y ) ∩ L)

and:

(Bε(x) ∩X − {x}, (Bε(x) ∩X − {x}) ∩ L)

are (n− dimx Y − 1)-connected.
In fact the space Bε(x) ∩ X is contractible, because of the local conic structure

theorem ([4], or see Lemma 9.3.1). So we only have to prove that:

Bε(x) ∩X − Y

is (n − dimx Y − 2)-connected. This is a consequence of the (n − dimx Y − 1)-
connectivity of the pair

(Bε(x) ∩X − Y, (Bε(x) ∩X − Y ) ∩ L)

and the (n− dimx Y − 2)-connectivity of the space (Bε(x)∩X− Y ) ∩L. This last
assertion comes from the equality:

(Bε(x) ∩X − Y ) ∩ L = (Bε(x) ∩X − {x}) ∩ L,

the (n− dimx Y − 1)-connectivity of the pair of spaces:

(Bε(x) ∩X − {x}, (Bε(x) ∩X − {x}) ∩ L)

and the (n− 2)-connectivity of the space Bε(x) ∩ X − {x} which is a consequence
of the assumption rhd(X, x) ≥ n, as we shall see below.

Therefore to end the proof of Theorem 9.4.1 it remains to prove that for a general
affine subspace L of C

N of codimension dimx Y passing through x the pair of
spaces:

(Bε(x) ∩X − Y, (Bε(x) ∩X − Y ) ∩ L)

and:

(Bε(x) ∩X − {x}, (Bε(x) ∩X − {x}) ∩ L)

are (n − dimx Y − 1)-connected and that the space Bε(x) ∩ X − {x} is (n − 2)-
connected because rhd(X, x) ≥ n.

The first assertions are consequences of a local theorem of Lefschetz type.
Namely (see [22, Theorem 1.6]):
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Theorem 9.4.1 Let X be a reduced complex analytic space embedded in C
N .

Consider a closed complex analytic subspace Z of X. Fix an analytic Whitney
stratification (Xi)i∈I of X such that Z is a union of strata. Suppose that for all
i such that Xi ⊂ X − Z, hdXi X ≥ n− dim Xi . Then for any point x in Z, for any
general affine space L through x of codimension i, and for any ε > 0 small enough,
the pair:

(Bε(x) ∩X − Z, Bε(x) ∩X ∩ L− Z)

is (n− 1− i)-connected.

We shall prove this theorem below. First, we show the second assertion above, i.e.
that rhd(X, x) ≥ n implies that the space Bε(x)∩X−{x} is (n−2)-connected. We
observe that we can always refine the Whitney stratification S of X in such a way
that {x} is a stratum.
By Lemma 9.4.1, the homotopical depth hd{x}(X) is≥ n and therefore by definition
the space Bε(x) ∩ X − {x} is (n − 2)-connected, because Bε(x) is a good
neighbourhood of the stratum {x} in X. This ends the proof of (2) ⇒ (1) and
therefore of Theorem 9.4.1.
It remains to prove Theorem 9.4.1.

9.4.7 Proof of Theorem 9.4.1

Instead of proving Theorem 9.4.1 directly, we prove a more general statement which
is a generalization of a local Lefschetz theorem.

The local conic structure theorem ([B-V]; see Lemma 9.3.1) implies that, for
any ε > 0 small enough, the spaces Bε(x) ∩ X − Z and Bε(x) ∩ L ∩ X − Z are
homeomorphic to the products of the spaces Sε(x)∩X−Z and Sε(x)∩L∩X−Z

by the interval (0, 1]. Therefore Theorem 9.4.1 is proved if we show that the pair:

(Sε(x) ∩X − Z, Sε(x) ∩ L ∩X − Z)

is (n − 1 − i)-connected. Instead of considering L, following an original idea of
P. Deligne (cf. [7]), we shall consider good neighbourhoods of L defined in the
following way. Let g1 = . . . = gi = 0 be i affine equations which define the affine
subspace L in C

N . Define:

ψ(x) =
∑

|gj (x)|2

and:

Vα(L) := {x ∈ C
N |ψ(x)| ≤ α}

when α > 0. Then we shall actually prove:
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Theorem 9.4.1 Let X be a reduced complex analytic space embedded in C
N and x

be a point of X. Consider a closed complex analytic subspace Z of X containing x.
Assume that rhd(X−Z) ≥ n. For any affine subspace L of CN containing x and of
codimension i ≥ dimx Z, there is ε0 > 0 such that for any ε, ε0 > ε > 0, there is
αε such that for any α, αε > α > 0, the space Sε(x)∩X−Z has the homotopy type
of a space obtained from Sε(x) ∩X ∩ Vα(L) by adding cells of dimension ≥ n− i.

Now, we show how Theorem 9.4.1 implies Theorem 9.4.1.
First, notice that if α is small enough, the space Vα(L) ∩ Sε ∩ X is a good
neighbourhood of Sε ∩X ∩ L in Sε ∩X with respect to Sε ∩ Z.
Theorem 9.4.1 is clearly a consequence of Theorem 9.4.1 and the following lemma:

Lemma 9.4.2 Let X be a reduced complex analytic space embedded in C
N and x

be a point of X. Consider a closed complex analytic subspace Z of X containing
x. There is a Zariski open dense subset ! of the space of affine subspaces L of
codimension � in C

N containing x, such that, for any affine subspace L in !, there
is ε0 > 0 such that for any ε, ε0 > ε > 0, there is αε such that for any α,
αε > α > 0, the space Sε(x)∩ (X−Z)∩Vα(L) retracts onto Sε(x)∩ (X−Z)∩L.

Note that in this lemma there is no condition on the codimension � of L.
In what follows we are giving a proof of Theorem 9.4.1 and Lemma 9.4.2.

9.4.8 Proof of Theorem 9.4.1

This part is technically much involved, so the reader may skip the proof at first
reading.

We assume that the case when X−Z is non-singular is proved (cf [20] Theorem
I.1.1.) However here we give a local version of the same theorem. Namely:

Theorem 9.4.1 Let X be a reduced complex analytic space embedded in C
N and

x be a point of X. Consider a closed complex analytic subspace Z of X containing
x. Assume that X − Z is non-singular and purely n-dimensional. For any affine
subspace L of CN of codimension i containing x, there is ε0 > 0 such that for any
ε, ε0 > ε > 0, there is αε such that for any α, αε > α > 0, the space Sε(x)∩X−Z

has the homotopy type of a space obtained from Sε(x)∩ (X−Z)∩Vα(L) by adding
cells of dimension ≥ n− i.

We shall not prove here this theorem (See [21, Theorem I.1.1] for a proof).
We are proceeding by decreasing induction on the dimension of the strata.
Now, as above, we stratify the space X with an analytic Whitney stratification S

adapted to Z. We call Zk the union of Z and the strata of X of dimension ≤ k.
We shall prove that the space

M := Sε(x) ∩ [(X − Zk) ∪ ((X − Z) ∩ Vα(L))]
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has the homotopy type of a space obtained from

N := Sε(x) ∩ [(X − Zk+1) ∪ ((X − Z) ∩ Vα(L))]

by adding cells of dimension ≥ n− i.
The case of highest dimension dim X of the strata is supposed to be solved

because of Theorem 9.4.1.
Since the spaces are CW-complexes, Theorem 6.13 of [48] tells us that it will be

enough to prove that the pair (M, N) is (n− i− 1)-connected. Then Theorem 9.4.1
is obtained by comparing the spaces for the cases k = 0 and k = dimx X.

Now let us fix an integer k, dimx X − 1 ≥ k ≥ 0.
Consider equations f1 = . . . = fr = 0 of Zk+1 and h1 = . . . = hs = 0 of Zk in a

neighbourhood U of x in CN . Writing φ(x) =∑ |fj (x)|2 and χ(x) =∑ |hj (x)|2,
we define

Tβ(Zk+1) := {x ∈ X ∩ U |φ(x) < β}

and

Tγ (Zk) := {x ∈ X ∩ U |χ(x) < γ }.

We denote

∂Tβ(Zk+1) := {x ∈ X ∩ U |φ(x) = β}

and

∂Tγ (Zk) := {x ∈ X ∩ U |χ(x) = γ }

Now fix ε > 0 and α > 0 small enough, so that Theorem 9.4.1 is true for
Zk+1 − Zk , i.e. the space Sε(x) ∩ (Zk+1 − Zk) has the homotopy type of a space
obtained from Sε(x)∩(Zk+1−Zk)∩Vα(L) by adding cells of dimension≥ k+1−i.

We have the lemma:

Lemma 9.4.2 Let ε and α fixed as before. There are β0 and γ0 such that, for any
β, β0 ≥ β > 0 and any γ, γ0 ≥ γ > 0, the space

Mγ := Sε(x) ∩ [(X − Tγ (Zk)) ∪ {(X − Z) ∩ Vα(L)}]

is a deformation retract of M and the space

Nβ := Sε(x) ∩ [(X − Tβ(Zk+1)) ∪ {(X − Z) ∩ Vα(L)}]
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is a deformation retract of N . Furthermore if β, β0 ≥ β > 0, there is γ1 such that,
for any γ, γ1 ≥ γ > 0 the space

Nγ,β := Sε(x) ∩ [(X − Tγ (Zk) ∩ Tβ(Zk+1)) ∪ (X − Z) ∩ Vα(L)]

is a deformation retract of M .

Proof First notice that the analytic Whitney stratification S of X induces a
subanalytic (actually real analytic) Whitney stratification Sε of Sε(x) ∩ X which
is adapted to Sε(x) ∩ Z, Sε(x) ∩X ∩ V̊α(L), Sε(x) ∩X ∩ ∂Vα(L), where

∂Vα(L) := Vα(L)− V̊α(L).

Because ε > 0 has been chosen small enough so that the sphere Sε(x) intersects
the strata of S transversally, the stratification Tε induced by S on Sε(x) ∩ X is a
Whitney stratification and is evidently adapted to Sε(x) ∩ Z.

Then, the function ψ which defines the closed neighbourhoods of L (see the
beginning of Sect. 9.4.7), is real analytic, therefore the restrictions of this function
to the strata of Tε have no critical values in intervals (0, α), with α > 0 small
enough. Therefore, there is α0 such that, for any α, α0 ≥ α > 0 the stratification
Tε can be refined to a Whitney stratification Sε adapted to Sε(x) ∩X ∩ V̊α(L) and
Sε(x) ∩X ∩ ∂Vα(L).

Remember that for relative CW complexes, the notions: weak deformation
retract, deformation retract, and strong deformation retract coincide, see [47, Cor.
1.4.10, Theorem 1.4.11].

Since χ is real analytic, there is γ0 such that any γ > 0, γ1 ≥ γ > 0 is not a
critical value of the restrictions of χ to the strata of Sε . Therefore a positive non-
zero vector field v of the interval (0, γ ] can be lifted to a continuous and integrable
vector field w of:

Sε(x) ∩ (X − Zk)− V̊α(L)

tangent to the strata of Sε which gives a retraction onto:

Sε(x) ∩ (X − Tγ (Zk))− V̊α(L)

Considering only the restriction of the vector field w on Sε(x)∩(X−Zk)∩∂Vα(L),
we obtain that:

Sε(x) ∩ (X − Tγ (Zk)) ∩ ∂Vα(L)

is a deformation retract of:

Sε(x) ∩ (X − Zk) ∩ ∂Vα(L).
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Therefore the space:

Sε(x) ∩ (X − Tγ (Zk))− V̊α(L)

is a deformation retract of

Sε(x) ∩ [{(X − Zk) ∩ ∂Vα(L)} ∪ (X − Tγ (Zk))] − V̊α(L)

as well as of

Sε(x) ∩ (X − Zk)− V̊α(L)

see above. So

Sε(x) ∩ [{(X − Zk) ∩ ∂Vα(L)} ∪ (X − Tγ (Zk))] − V̊α(L)

is a (strong) deformation retract of

Sε ∩ (X − Zk)− V̊α(L).

This implies that Mγ is a deformation retract of M .

Using the real analytic function φ, we prove in the same way that there is β0 such
that, for any β, β0 ≥ β > 0 the space Nβ is a deformation retract of N .

Finally, we repeat the proof that Mγ is a deformation retract of M with Tγ (Zk)∩
Tβ(Zk+1) instead of Tγ (Zk) in order to show that Nγ,β is a deformation retract of
M . We start with a vector field w on Sε ∩ (X \ Zk) such that near Zk , on each
stratum S, dχ(w|S) > 0 and - if S ⊂ X \ Zk+1 - dψ(w|S) > 0; this is possible
because d(χ |S)x, d(ψ|S)x cannot be R-collinear with a negative ratio, by the Curve
Selection Lemma; cf. [14, Lemma 2.13].

In fact we have also proved that:
For any k, 0 ≤ k ≤ dimxX, and, for any γ > 0 small enough, the space

Sε(x) ∩ (X − Zk)− V̊α(L)

retracts onto the space

Sε(x) ∩ (X − Tγ (Zk))− V̊α(L).

In particular Lemma 9.4.2 tells us that the pair (M, N) is (n−i−1)-connected if and
only if the pair (Nγ,β), Nβ) is (n − i − 1)-connected. An immediate consequence
of Blakers-Massey homotopy excision theorem (see Theorem 9.4.3) gives:
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Lemma 9.4.3 For 0 < β ≤ β0 and 0 < γ ≤ γ1, the pair (Nγ,β, Nβ) is (n− i−1)-
connected if the pair of spaces

(Nγ,β − V̊α(L), Nβ − V̊α(L))

is (n− i − 1)-connected.

Proof of Lemma 9.4.3 Using the notation of Theorem 9.4.3, we consider:

U := Nγ,β − V̊α(L)

V := Nβ

W = U ∪ V = Nγ,β

therefore we have:

U ∩ V = Nβ − V̊α(L)

and we can apply Blakers-Massey homotopy excision theorem.

Now we observe that:

Nγ,β − V̊α(L) = (Nβ − V̊α(L)) ∪ E

with E := Sε(x) ∩X ∩ {T β(Zk+1)− (Tγ (Zk) ∪ V̊α(L))} where:

T β(Zk+1) = Tβ(Zk+1) ∪ ∂Tβ(Zk+1)

On the other hand, we have:

(Nγ,β − V̊α(L)) ∩ E

= [Sε(x) ∩X ∩ {∂Tβ(Zk+1)− (Tγ (Zk) ∪ V̊α(L))}]

∪[Sε(x) ∩X ∩ {T β(Zk+1)− Tγ (Zk)} ∩ ∂Vα(L))]

Therefore the Blakers-Massey theorem again with:

U := E

V := Nγ,β − V̊α(L)

W := U ∪ V = Mγ − V̊α(L)
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gives that the pair:

(Nγ,β − V̊α(L), Nβ − V̊α(L))

is (n− i − 1)-connected if the pair

(E, (Nβ − V̊α(L)) ∩ E)

is (n− i − 1)-connected.
To end the proof of Theorem 9.4.1, it remains to prove that:

Lemma 9.4.4 The pair

(E, (Nβ − V̊α(L)) ∩ E)

is (n− i − 1)-connected.

Proof of Lemma 9.4.4 We first observe that, because the stratification induced on
E by the analytic stratification of X is a subanalytic Whitney stratification, the space
E fibres topologically over:

B := Sε(x) ∩ [Zk+1 − (Tγ (Zk) ∪ V̊α(L))]

with fibres which are normal slices N of Zk+1 in X and, therefore, contractible. See
the Appendix of [22]. Let us call π : E → B this locally trivial topological fibration.
This fibration induces a subfibration of:

E′ := Sε(x) ∩X ∩ {∂Tβ(Zk+1)− (Tγ (Zk) ∪ V̊α(L))}

over B. The fibres of this subfibration are the spaces ∂N := N ∩ ∂Tβ(Zk+1).
The hypothesis about the rectified homotopical depth, rhd(X−Z) ≥ n, implies

that the pairs (N, ∂N), are (n− (k + 1)− 1)-connected (see Lemma 9.4.6).
Define:

B ′ := Sε(x) ∩ (Zk+1 − Tγ (Zk)) ∩ ∂Vα(L)

Now the pair:

(B, B ′) = (Sε(x)∩[Zk+1−(Tγ (Zk)∪V̊α(L))], Sε(x)∩(Zk+1−Tγ (Zk))∩∂Vα(L))

is ((k + 1)− i − 1)-connected, when k ≥ i, because it has the same homotopy type
as the pair:

(Sε(x) ∩ [Zk+1 − (Zk ∪ V̊α(L))], Sε(x) ∩ (Zk+1 − Zk) ∩ ∂Vα(L))
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as γ is small enough (compare to Lemma 9.4.2), and this latter pair is ((k + 1) −
i − 1)-connected, because of the local Lefschetz type Theorem 9.4.1 applied to
Zk+1−Zk which is non-singular of dimension k+1. Theorem 9.4.1 gives the result
in our case because, if the space Sε(x) ∩ (Zk+1 − Zk) has the homotopy type of a
space obtained from Sε(x) ∩ (Zk+1 − Zk) ∩ Vα(L) by adding cells of dimension
≥ (k + 1) − i, then Sε(x) ∩ [Zk+1 − (Zk ∪ V̊α(L))] has the homotopy type of a
space obtained from Sε(x) ∩ (Zk+1 − Zk) ∩ ∂Vα(L) by adding cells of dimension
≥ (k + 1)− i.

Now we apply Lemma 9.4.2.
The inverse image of B ′ by π is precisely:

Sε(x) ∩X ∩ {T β(Zk+1)− Tγ (Zk)} ∩ ∂Vα(L))

which implies that:

(Nγ,β − V̊α(L)) ∩ E = E′ ∪ π−1(B ′).

Thus the pair:

(E, (Nβ − V̊α(L)) ∩ E)

is (n − i − 1)-connected, when k ≥ i, because our data satisfy the conditions of
Lemma 9.4.2.

If k < i, then either, the space B ′ = Sε(x)∩ (Zk+1 − Tγ (Zk)) ∩ ∂Vα(L) is non-
empty and the pair (B, B ′) is 0-connected, because the components of B ′ evidently
meet the components of B, or it is empty and the space:

π−1(B ′) = Sε(x) ∩X ∩ {T β(Zk+1)− Tγ (Zk)} ∩ ∂Vα(L))

is empty, so that the pair (E, Nγ,β − V̊α(L)) ∩ E) = (E, E′) is (n − (k + 1)− 1)-
connected, because (N, ∂N) is (n− (k + 1)− 1)-connected and we have n− (k +
1)− 1 ≥ n− i − 1. This ends the proof of Lemma 9.4.4 and therefore the proof of
Theorem 9.4.1.
Now we have to prove Lemma 9.4.2.

9.4.9 Proof of Lemma 9.4.2

Let S be an analytic Whitney stratification of X adapted to Z. Consider a sufficiently
small neighbourhood U of x in C

N such that only the strata X1, . . . , Xk of S
are meeting U and x belongs to the closure of these strata. Now consider the
Zariski open dense subset ! of the space of affine subspaces L of CN containing
x which consists of affine subspaces L which intersect all the Xi (1 ≤ i ≤ k)
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in a neighbourhood V ⊂ U transversally except possibly at the point x. The
stratification S induces a Whitney stratification SL on V ∩ L ∩ X − {x}. There
is ε0 > 0, such that, for any ε0 ≥ ε > 0, the sphere Sε(x) is contained in
the neighbourhood V and intersects the strata of S and SL transversally in C

N .
Therefore for such ε, the Whitney stratification S induces a Whitney stratification
Sε on Sε(x) ∩X.

Now let g1 = . . . = g� = 0 be � affine equations which define the affine
subspace L in C

N . The map G := (g1, . . . , g�) restricted to Sε(x) ∩ X defines a
map G0 from Sε(x) ∩ X into C

�. The fibre of G over 0 intersects the strata of Sε

transversally in C
N , because L belongs to the open set ! and Sε intersects the strata

of S transversally. By continuity there is a neighbourhood U of 0 in C
�, such that

all the fibres of G over points of U intersect the strata of Sε transversally in C
N .

The first isotopy theorem of Thom-Mather (see e.g. [36, Proposition 11.1]) implies
that G0 induces a trivial topological fibration of:

Sε(x) ∩X ∩G−1(Dβ(0))

onto an open ball Dβ(0) in C
� of radius β centered at 0 and contained in U,

because it is proper and its restrictions to the strata of Sε have maximal rank. As the
stratification is adapted to Z, this fibration induces on:

Sε(x) ∩ (X − Z) ∩G−1(Dβ(0))

a trivial subfibration over the same ball. Therefore we have a trivial fibration:

Sε(x) ∩ (X − Z) ∩G−1(Dα(0)) → Dα(0)

induced by G on any closed ball Dα(0), such that 0 < α < β. It means that, for
such α, the space Sε(x) ∩ (X − Z) ∩ Vα(L) is homeomorphic to the product of
Sε(x) ∩ (X − Z) ∩ L by Dα(0). Then choose αε := β.

This proves Lemma 9.4.2, hence the proof of Theorem 9.4.1 is completed.

9.4.10 Application to a Lefschetz Type Theorem

Let V be a complex subvariety of PN of dimension d . Let Z be a subvariety of V .
We assume that L is a hyperplane in P

N , then:

Proposition 9.4.1 Assume that the rectified homotopical depth of V − Z is ≥ n.
Let V(L) be a good neighbourhood of L ∩ V in X relatively to Z. Then the pair

(V − Z, (V − Z) ∩V(L))

is (n− 1)-connected.
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This proposition is an immediate consequence of Theorem 3.4.1 of [22] that we are
stating here:

Theorem 9.4.2 Let X be a compact reduced complex analytic space, Y and Z be
closed complex analytic subspaces of X such that X − Y is the union of c + 1
open Stein subsets. Assume that the rectified homotopical depth rhd(X− Y ∪Z) is
≥ n. Let V (Y ) be a good neighbourhood of Y in X relatively to Z. Then, the pair
(X − Z, V (Y )− Z) is (n− c − 1)-connected.

Notice that V − L is a Stein open subset of V .
Let S = (Sα) be an analytic Whitney stratification of V adapted to Z. In the

case that L is transverse to the strata of S, by using Thom-Mather first isotopy
theorem (see [36, Proposition 11.1]), one can prove using Lemma 9.4.2 that the
subset (V − Z) ∩V(L) retracts by deformation onto (V − Z) ∩ L (compare with
Lemma 9.4.2).

One can try to weaken the hypothesis of transversality. For the case of a Lefschetz
theorem for π0, see [18].

Note that a local Lefschetz theorem has been already proved above, namely
Theorem 9.4.1! The hypothesis about homotopical depth there just says that
rhd(X − Z) ≥ n.

Remark 9.4.3

1. In [9] K.-H. Fieseler and L. Kaup consider theorems of Lefschetz type for
intersection homology.

2. In [8] C. Eyral uses the notion of homotopical depth to solve one of the
conjectures of A. Grothendieck in [13, Exposé 13]. It would be interesting to
compare it with the rectified homotopical depth defined above.

3. In [45] J. Schürmann considers rectified homological depth instead of rectified
homotopical depth.

4. There are many generalizations of the Lefschetz theorem for hyperplane sections.
The reader who is interested in knowing them might look to the bibliography of
[10]. For example, one can consult the papers of [46] and [42]. W. Barth obtained
other generalizations of the Lefschetz Theorem by different techniques from the
ones we use here (see [2], for instance).

5. Many results concern questions of connectivity as we did here when we consider
the theorem of Bertini (see Sect. 9.3.1).

6. Of course, there are many other mathematicians who have considered generaliza-
tions of the Lefschetz Theorem for hyperplane sections. In these notes we have
only considered a topological viewpoint.
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9.5 Spaces with Maximal Depth

9.5.1 Definition

We saw that the rectified homotopical depth rhd(X, x) of a complex analytic space
X at a point x is bounded by the complex dimension dimx X (see the Remark 9.4.8).
From Theorem 9.4.1 we obtain evidently:

Lemma 9.5.1 If the complex analytic space X is non-singular at the point x, we
have:

rhd(X, x) = dimx X

Proof It suffices to consider locally the trivial stratification of X with the one
stratum X.

In this chapter we are going to characterize complex analytic spaces X for which
the rectified homotopical depth is maximal, i.e. at each point x of X, we have
rhd(X, x) = dimx X.

Notice that this hypothesis implies that each connected component of the space X

is equidimensional since by definition the dimension of X is the biggest dimension
of the irreducible components, so x %→ dim(X, x) is upper semicontinuous, whereas
x %→ rhd(X, x) is lower continuous, so x %→ dim(X, x) is continuous in our case.

The key result which leads us to a nice topological characterization of complex
analytic spaces X with maximal rectified homotopical depth is a theorem of [22]
(Theorem 4.1.2) which expresses the rectified homotopical depth in terms of
connectivity of normal Morse data that M. Goresky and R. MacPherson introduce
to give a stratified Morse theory (cf. [12]).

9.5.2 Stratified Morse Data

Let X be a complex analytic space. We consider an analytic Whitney stratification
S = (Xi)i∈I of X. In Sect. 9.4.2 (see Lemma 9.4.6) we have associated a normal
slice in X to each stratum of such a stratification S.

Following M. Goresky and R. MacPherson [12, §1.5 Chap.1 p.15] we shall define
the complex link in X of a stratum of S.

Consider a stratum Xi of S, a point x in Xi and a local embedding of an open
neighbourhood of x in X in C

N . Let di be the complex dimension of the stratum Xi .
We have (compare with (2.3.5) of [32]):

Theorem 9.5.1 In the space of linear projections of CN onto C
di+1, there is an

open dense set !, such that, for any p ∈ !, there is ε0 > 0, such that, for any
ε, ε0 > ε > 0, there is αε , such that, for any α, α0 > α > 0, the projection p

induces a map p0 of U := Bε(x) ∩ X ∩ p−1(Dα(p(x))) into the open ball V :=
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Dα(p(x)) and p0 is a locally trivial fibration over V − p0(Xi ∩ U). Furthermore
the homotopy type of the general fibre L of this fibration is an analytic invariant of
the germ (X, x).

Then Theorem 9.5.1 leads to the following definition:

Definition 9.5.2 A general fibre L as defined in Theorem 9.5.1 is called a complex
link of the stratum Xi in X.

Notice that, for a general projection p of C
N onto C

di+1, the inverse image
p−1(D) by p of a general affine line D through p(x) transverse to p(Xi) contained
in C

di+1 is transverse to the stratum Xi . Therefore we can always find normal slices
of a stratum Xi in X (cf 3.2.5) which contain a complex link of Xi in X. We define
(compare with [12] §2.4 chap.2, Corollary 1 p.166):

Definition 9.5.3 The pair (N,L) of a normal slice N of a Whitney stratum Xi in
X and of a complex link L of Xi in X which is contained in N is called a normal
Morse data of the stratum Xi in X.

One can show (see [12] Part II, Chap.2 §2.3; compare to [32] §3) that the
homotopy type of a complex link of a Whitney stratum is the same along the stratum
and Theorem 9.5.1 tells us that it is an analytic invariant of the germ of X at any
point of the stratum.

We can now state a theorem which tells us how to get the rectified homotopical
depth in terms of connectivity of normal Morse data of M. Goresky and R.
MacPherson.

Theorem 9.5.4 Let X be a complex analytic space and x be a point in X. Let S be
an analytic Whitney stratification of X. The following conditions are equivalent:

1. rhd(X, x) ≥ n;
2. for any stratum S which contains x in its closure, the normal Morse data (N,L)

of S in X is (n− dim S − 1)-connected.

Proof We first show the implication (2) ⇒ (1). It is proved by induction on dimx X.
If dimx X = 0, there is nothing to be proved. So suppose that dimx X ≥ 1, and
that the theorem is true for any germ of a complex analytic space of dimension
< dimx X. Let Xi be the union of strata of X of dimension ≤ i which contain the
point x in their closures. Consider an open neighbourhood U of x in X which meets
only these strata adherent to x. If N is a normal slice of a stratum Sj of Xi at a
point xi in U ∩ Xi , we prove that (N,N − {xi}) is (n − i − 1)-connected and, by
Lemma 9.4.6, it will imply rhd(X, x) ≥ n.

First, notice that the normal slice N has a Whitney stratification induced by S,
one can prove that complex links in N of induced strata Xj ∩ N by S in N are
complex links of Xj in X.

Therefore, if i ≥ 1, we have rhd(N, xi) ≥ n − i, by the induction hypothesis
applied to the germ (N, xi). This implies that, for i ≥ 1, the pair (N,N − {xi}) is
(n− i − 1)-connected and this shows that rhd(X −X0) ≥ n.
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It remains to consider the slice and the complex link at x ∈ X0. Embed locally
X into C

N , the assertion (2) implies that, for any ε small enough, the pair:

(Bε(x) ∩X,L)

is (n−1)-connected. We have the following strong local Theorem of Lefschetz type,
proved by the authors in [22] (Theorem 2.12):

Theorem 9.5.5 (Strong Local Lefschetz Type Theorem) Let X be a complex
analytic space embedded in C

N . Consider a closed complex analytic subspace Z

of X and a point z of X and suppose that rhd(X − Z) ≥ n. Then there is a Zariski
open dense subset ! in the projective space of linear hyperplanes of CN , such that,
for any H ∈ ! and any affine function g such that Ker dgz = H , there is ε0 > 0
such that, for any ε, ε0 > ε > 0, there is ηε , such that, for and any t, 0 < |t| < ηε ,
the pair

(Bε(z) ∩ (X − Z), Bε(z) ∩ (X − Z) ∩Ht),

with Ht := {g = t}, is (n− 1)-connected.

As the complex link L of {x} in X is given by a general linear form, we can apply
this theorem with Z := {x}. As rhd(X − X0) ≥ n, it gives that the pair (Bε(x) ∩
X − {x},L) is (n− 1)-connected.

As Bε(x) ∩ X is contractible, together with the hypothesis (2), it implies that
the pair (Bε(x) ∩ X, Bε(x) ∩ X − {x}) is (n − 1)-connected. Thus we obtained
rhd(X, x) ≥ n.

Now let us prove the implication (1) ⇒ (2). Consider S a stratum of S. The
rectified homotopy depth of a normal slice N of S in X at a point s is ≥ n− dim S,
becauseN is obviously defined by dim S holomorphic equations in a neighbourhood
of s in X and we can apply the following Purity Theorem, conjectured by A.
Grothendieck and proved in [22] (Theorem 3.2.1):

Theorem 9.5.6 Let X be a reduced complex analytic space, such that rhd(X) ≥ n,
and let Y be a complex analytic subspace locally defined on X by i complex analytic
equations. Then rhd(Y ) ≥ n− i.

Now it suffices to apply Theorem 9.5.5 to obtain the desired result, because
a complex link of {s} in N is a complex link of S in X. This ends the proof of
Theorem 9.5.4.

9.5.3 Characterization of Maximal Rectified Depth

Now we can give the main result of this chapter which is a consequence of
Theorem 9.5.4:
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Theorem 9.5.1 Let X be a complex analytic space and x be a point in X. Let S be
an analytic Whitney stratification of X. The following conditions are equivalent:

1. rhd(X, x) = dimx X = n;
2. for any stratum S which contains x in its closure, a complex link L of S in X has

the homotopy type of a bouquet of spheres of real dimension n− dim S − 1.

Proof Theorem 9.5.4 gives the equivalence of rhd(X, x) = dimx X and, for each
integer k, 0 ≤ k ≤ dimx X, the (dimx X− k− 2)-connectivity of the complex links
in X of the strata of dimension k in S. These complex links have the homotopy type
of closed analytic subspaces of euclidian balls, therefore they are Stein spaces and
have the homotopy type of a CW-complex of real dimension≤ dimx X− k− 1 (see
[15]).

Then, Theorem 9.5.1 is a consequence of the following Lemma (compare with
[39] Proof of Theorem 6.5):

Lemma 9.5.2 A (d − 1)-connected CW-complex E of dimension d has the homo-
topy type of a bouquet of spheres of (real) dimension d .

Proof of Lemma 9.5.2 The integral homology groups Hd(E,Z) must be free
abelian, since any torsion elements would contribute to non-zero cohomology
classes in dimension d + 1 which would contradict the hypothesis that E is a
CW-complex of dimension d . If d ≥ 2, the space E is simply connected, therefore
the Hurewicz Theorem shows that the homotopy group πd(E, e) is isomorphic to
Hd(E,Z). We can choose finitely many maps

(Sd , e0) → (E, e)

which represent a basis of the free abelian homotopy group πd(E, e). These maps
define a map

S
d ∨ . . . ∨ S

d → E

which induces an isomorphism of integral homology groups. By a theorem of
Whitehead it is a homotopy equivalence. This proves Lemma 9.5.2 when d ≥ 2.
The cases d ≤ 1 are elementary and left to the reader.

In [32, §3] we give the definition of the local vanishing homotopy type of a
complex analytic germ (X, x) which is the finite family of homotopy types of
vanishing fibres of (X, x). We can translate Theorem 9.5.1 in terms of the homotopy
type of these vanishing fibres:

Corollary 9.5.3 Let X be a complex analytic space and x be a point in X. The
following conditions are equivalent:

1. rhd(X, x) = dimx X;
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2. there is an open neighbourhood U of x in X, such that, for any y ∈ U , vanishing
fibres of (X, y) have the homotopy type of bouquets of spheres of (real) dimension
equal to the complex dimension of the corresponding fibre.

Proof Let us fix a Whitney stratification S of X. Let S1, . . . , Sk be the strata of S
which contain the point x in their closure. Consider an open neighbourhood V of x

in X, such that a stratum of S meets V if and only if it contains x in its closure.
First we prove the implication (2) ⇒ (1). According to Theorem 9.5.1, we have

to prove that, for any i, 1 ≤ i ≤ k, the complex links of Si in X are bouquets of
spheres of dimension dimx X − dimx Si − 1. Let xi be a point of the stratum Si .
By definition a vanishing fibre of (X, xi) of codimension dim Si + 1 is a complex
link of Si in X. Therefore, by hypothesis, it is a bouquet of spheres of dimension
dim X − dim Si − 1.

Now let us prove (1) ⇒ (2). So assume (1). According to Theorem 9.5.1, for any
i, 1 ≤ i ≤ k, the complex links of Si in X are bouquets of spheres of dimension
dimx X−dimx Si −1. Let y be a point of V . There is a unique Sj , 1 ≤ j ≤ k, such
that y ∈ Sj . Vanishing fibres of X at y of codimension ≤ dim Sj are contractible,
because they are homeomorphic to the product of a vanishing fibre of X at y of
codimension dim Sj by an euclidean ball of adequate dimension and, when y ∈ Sj ,
a vanishing fibre of (X, y) of codimension dim Sj is contractible. By Theorem 9.5.1,
a vanishing fibre of X at y of codimension dim Sj + 1, which is a complex link of
Sj in X, is a bouquet of spheres of (real) dimension dim X − dim Sj − 1.

Recall that a vanishing fibre of (X, x) of codimension r (1 ≤ r ≤ dim X) is
obtained by considering a general linear projection p from C

N onto C
r and its

restriction to X.
Let S = (S1, . . . , Sk) be a Whitney stratification of X. We assume that each

stratum Si of S contains x in its closure. If ε is small enough, the restriction of p

to Si ∩ Bε(x) has a critical space �i which is either empty or reduced of dimension
inf(r − 1, dim Xi) and the restriction of p to �i is finite. Call �i its image by p.
Then there is η > 0 small enough, such that p induces a topological fibration:

ϕr : X ∩ Bε(x) ∩ p−1(Dη(p(x))− ∪1≤i≤k�i) → Dη(p(x))− ∪1≤i≤k�i,

where Dη(p(x)) is the open ball of Cr centered at the point p(x) and of radius η.
The general fibre of ϕr is a vanishing fibre of codimension r .

One can obtain from this description the vanishing fibre of codimension r − 1, if
2 ≤ r ≤ dim X. Precisely let

q : Cr → C
r−1

a general projection. There is θ > 0 small enough and a hypersurface � of the open
ball D′

θ (q(p(x))), such that, for any point u in D′
θ (q(p(x)))−�, the space

X ∩ Bε(x) ∩ (q ◦ p)−1(u)
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is a vanishing fibre of codimension r − 1. The following lemma allows us to do an
induction:

Lemma 9.5.4 Suppose that rhd(X, x) = dimx X. Let r be an integer, 2 ≤ r ≤
dimx X. The vanishing fibre of codimension r − 1 of (X, x) has the homotopy type
of a space obtained from the vanishing fibre of codimension r by adding cells of
dimension dim X − r + 1.

First let us show how the lemma gives us (2). We operate by descending induction
on the integer r . For r = 1, either {x} is a stratum of dimension 0, and the complex
link of {x} in X is a bouquet of spheres of dimension dimx X−1 by Theorem 9.5.1,
or x belongs to a stratum of dimension ≥ 1 and the vanishing fibre of (X, x) of
codimension 1 is contractible, according to what we have observed above. In both
cases a vanishing fibre of codimension 1 is (dimx X − 2)-connected.

By descending induction on the integer r ≥ 2, a vanishing fibre F (r−1) of (X, x)

of codimension r − 1 being (dimx X − r)-connected, Lemma 9.5.4 says that the
pair (F (r−1), F (r)) is (dim X − r)-connected which implies that a vanishing fibre
F (r) of (X, x) of codimension r is (dim X − r − 1)-connected. As F (r) is a Stein
space, Theorem 9.2.15 tells us that F (r) has the homotopy type of a CW-complex
of dimension dim X − r . Lemma 9.5.2 shows that F (r) has the homotopy type of a
bouquet of spheres of dimension dim X − r . To end the proof of Corollary 9.5.3, it
remains to prove Lemma 9.5.4.

9.5.4 Proof of Lemma 9.5.4

We consider the description of vanishing fibres of codimension r and r − 1 that we
did before the statement of Lemma 9.5.4. The inverse image by q of the point u is
an affine line Lu in C

r . We have:

X ∩ Bε(x) ∩ (q ◦ p)−1(u) = X ∩ Bε(x) ∩ p−1(Lu)

Let L be the affine line q−1(q(p(x))). Because it is a general line of Cr , if the point
p(x) belongs to the intersection of L and the space ∪1≤i≤k�i , it is isolated in this
intersection. Let us first suppose that the point p(x) belongs to the intersection of L

and the space ∪1≤i≤k�i . Then there is an open disk D centered at p(x), contained
in the line L, which does not contain other intersection points of L and the space
∪1≤i≤k�i but p(x). Let us fix a linear section s of q which contains p(x), i.e.
s(q(p(x))) = p(x). Then, if u is sufficiently near to q(p(x)), the translated disk
D+ s(u) is contained in Lu and contains all the points of the intersection of Lu and
∪1≤i≤k�i which specialize to p(x). One can prove the following Lemma:

Lemma 9.5.1 The inclusion

X ∩ Bε(x) ∩ p−1(D + s(u)) ⊂ X ∩ Bε(x) ∩ p−1(Lu)
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is a homotopy equivalence.

The proof of this lemma proceeds as for the proof of (2.3.10) in [32].
Now let us end the proof of Lemma 9.5.4. If u is sufficiently general, the

intersection points of the affine line Lu and ∪1≤i≤k�i are non-singular points of
the reduced hypersurface components of ∪1≤i≤k�i . Therefore above a non-singular
point of Lu ∩ �i , there is a non-singular point of �i , which is the critical space of
the restriction of p to the stratum Xi . This means that the projection p induces a
function p1 from X ∩Bε(x)∩ p−1(D + s(u)) onto D + s(u), whose restrictions to
the strata of X∩Bε(x)∩p−1(D+ s(u)) induced by S have maximal rank except at
the points of �i which project onto the points of Lu ∩�i . By the choice made on ε

the fibres of p1 are transverse to the strata induced on X ∩ Sε(x) ∩ p−1(D + s(u)).
Now let t in (D + s(u))− ∪1≤i≤k�i . The fibre of ϕr above the point t , i.e.

X ∩ Bε(x) ∩ p−1(t)

is a vanishing fibre of codimension r of (X, x). Let t be chosen in such a way that
the affine segments Ej which join t and the points of Lu ∩ (∪1≤i≤k�i) have only
the point t in common.

Let us call E the union ∪Ej of these segments. The Thom-Mather first isotopy
theorem gives that the space X ∩ Bε(x) ∩ p−1

1 (D + s(u)) which has the same
homotopy type as a vanishing fibre of codimension r − 1 retracts by deformation
onto the space X ∩ Bε(x) ∩ p−1

1 (E). To prove Lemma 9.5.4 it is enough to prove
that for each segment Ej in E the pair of spaces

(X ∩ Bε(x) ∩ p−1
1 (Ej ), X ∩ Bε(x) ∩ p−1

1 (t))

is (dim X − r)-connected. To prove this fact we use the Stratified Morse Theory
of M. Goresky and R. MacPherson and this result is actually an immediate
consequence of Theorem 3.2 of Part II, Chapter 3 of [G-M], which states that the
local Morse data (J, K) of p1 at a singular point on the stratum Si is homeomorphic
to the product of (Bλ,Sλ−1), where λ = dim Si − r , and (cone(L),L), where L is
the complex link of Si in X.

Theorem 9.5.1 tells us that if rhd(X, x) = dimx X, the complex links of a
Whitney stratifications have the homotopy type of bouquets of spheres of middle
dimension. As dimL = dim X − dim Si − 1, the pair (cone(L),L) is (dim X −
dim Si−1)-connected. The pair (Bλ,Sλ−1) is obviously (λ−1)-connected, therefore
Lemma 9.4.2 implies that the local Morse data (J, K) is (dim X−r−1)-connected.
This ends the proof of Lemma 9.5.4 and the proof of Corollary 9.5.3.
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9.6 Spaces with Milnor Property

In this chapter we follow [31] and give a generalization of Milnor’s result on the
fibres of holomorphic functions with isolated singularities. First we define functions
with isolated singularities as in [30].

9.6.1 Basic Results

Let X be a complex analytic space and x be a point of X.

Definition 9.6.1 We say that a complex analytic function f defined on X has an
isolated singularity at the point x ∈ X if there is a Whitney stratification S of X and
an open neighbourhood U of x, such that the restriction of f to the intersection of
U with the strata of S has rank 1 at every point of U − {x}.

Of course this definition generalizes the definition of an isolated critical point for
a function defined on a non-singular space. In [39], J. Milnor shows that near an
isolated critical point x of a complex analytic function f defined on a non-singular
complex analytic space of dimension n, one can define the general fibre of f at the
point x, which we call the Milnor fibre of f at x, and this fibre has the homotopy
type of a bouquet of spheres of real dimension n− 1. The main result of this section
is to generalize this result of Milnor to complex analytic functions defined on an
arbitrary complex analytic space.

The first problem is to show the existence of a general fibre for a complex
analytic function. In fact the hypothesis of isolated singularity is not needed to
define this general fibre. In [28] D. T. Lê (see the Chap. 6 “The Topology of the
Milnor Fibration” by Lê D. T., J. J. Nuño Ballesteros and J. Seade in this book)
proved:

Theorem 9.6.2 Let X be a complex analytic space embedded in C
N and x be a

point of X. Consider a complex analytic function f defined on X. There is ε0, such
that, for any ε, 0 < ε < ε0, there is ηε , such that for any η, 0 < η < ηε , the
function f induces a map:

ψε,η : X ∩ Bε(x) ∩ f−1(Dη(f (x))) → Dη(f (x))

which is a locally trivial topological fibration above the punctured disc:

D∗
η(f (x)) := Dη(f (x))− {f (x)}.

Furthermore in [32, (2.3.3)] we notice that these fibrations are isomorphic for any
(ε, η) ∈ A, where A is a semi-analytic subset of R2+ of non-empty interior which
contains [0, ε0] × {0} in its closure. As we prove in [32, (2.3.2)], the homotopy type



534 H. A. Hamm and D. T. Lê

of the fibre of the fibration described in the Theorem 9.6.2 is an analytic invariant
of the germ of f at x.

Definition 9.6.3 For any (ε, η) ∈ A, we call general fibre of f at x the fibre of ψε,η

over a point of the punctured disk D∗
η(f (x)).

A general fibre of a complex analytic function f : X → C is the Milnor fibre of
f at x, when X is non-singular at x. By definition we call general fibre of a germ of
a complex analytic function at x a general fibre at this point of a representative of
this germ.

In general there is no reason to hope that the general fibre of the germ of a
complex analytic function has the homotopy type of a bouquet of spheres. But on
a space with maximal depth, general fibres of germs of complex analytic functions
with isolated singularity have the homotopy type of a bouquet of spheres of middle
dimension. Precisely we have:

Theorem 9.6.4 Let X be a complex analytic space and x be a point of X. Consider
a complex analytic function f defined on X and suppose that it has an isolated
singularity at x. Then if rhd(X, x) = dimx X, a general fibre of f at x has the
homotopy type of a bouquet of spheres of real dimension dimx X − 1.

Proof The proof of this theorem is similar to the proof of the result announced in
[29] for local complete intersections. Assume that the function f has an isolated
singularity at x relatively to a Whitney stratification S of X. First, notice, as it
has been done in [30], that the function f has an isolated singularity at a point x

relatively to the Whitney stratification S if and only if there are a local embedding
of X in C

N , a complex analytic function F defined on an open neighbourhood V of
x in C

N whose restriction to V ∩ X equals the restriction of f to V ∩ X and such
that the image Im(dF) of the differential dF in the cotangent space T∗(CN) of CN

intersects the union of conormal spaces T∗Xi
(CN) of the strata Xi of S at an isolated

point (x, �) above x:

(∪iT
∗
Xi

(CN)) ∩ Im(dF) = {(x, �)}
In [30], we show that, if l is a general linear form of CN , in a neighbourhood U of
the point (x, �) in the cotangent space T

∗(CN), for any τ = 0 small enough, the
image of the differential Im(dF + τ l) is transverse to the union of conormal spaces
∪iT

∗
Xi

(CN).
Precisely, if ε > 0 and η > 0 are chosen as in Corollary 9.5.3 for the fibration

ϕr , there is τ 0 > 0, such that, for any τ ∈ C, τ 0 > |τ | > 0, the fibres of the
restriction of the function F + τ l to X over the points of Dη(f (x)) are transverse
to the Whitney strata induced on X ∩ Sε(x) by S and, using Thom-Mather’s first
isotopy theorem, it can be shown that, with τ small enough, the spaces X∩Bε(x)∩
F−1(u) and X ∩Bε(x)∩ (F + τ l)−1(t), with t and u general in the disk Dη(f (x)),
are homeomorphic and the spaces:

X ∩ Bε(x) ∩ F−1(Dη(f (x))
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and:

X ∩ Bε(x) ∩ (F + τ l)−1(Dη(f (x))

are homeomorphic and in fact contractible. On another hand the isolated singular
points of the restriction of the function F + τ l to X are points of the Whitney strata
where the restrictions of F + τ l to these strata have ordinary quadratic points. This
last assertion translates the transversality in U of Im(dF + τ l) and the conormal
spaces ∪iT

∗
Xi

(CN)). Let

U ∩ Im(dF + τ l) ∩ (∪iT
∗
Xi

(CN)) = {(x1, �1), . . . , (xν, �ν)}.

Now the function F + τ l induces a map:

ψτ : X ∩ Bε(x) ∩ (F + τ l)−1(Dη(f (x)) → Dη(f (x))

This map has isolated singularities at x1, . . . , xν . As in the proof of Lemma 9.5.4,
let t be a general point of Dη(f (x)), such that the segments Ei which join the point
t to the points yi := (F + τ l)(xi) (1 ≤ i ≤ ν) have only the point t in common.
Call E the union of these segments. The space

X ∩ Bε(x) ∩ (F + τ l)−1(Dη(f (x)))

retracts by deformation onto X ∩ Bε(x) ∩ (F + τ l)−1(E). As in the proof of
Lemma 9.5.4, the pair

(X ∩ Bε(x) ∩ (F + τ l)−1(E), X ∩ Bε(x) ∩ (F + τ l)−1(t))

is (dim X − 1)-connected if the pairs

(X ∩ Bε(x) ∩ (F + τ l)−1(Ei), X ∩ Bε(x) ∩ (F + τ l)−1(t))

are (dim X − 1)-connected for 1 ≤ i ≤ ν.
This again reduces to the local study near each isolated singular point xi of the

restriction to X of the function F + τ l, the hypothesis about the transversality of
the image of the differential d(F + τ l) with the union of conormal spaces at (xi, �i)

means that the restriction of the function F + τ l to the stratum containing xi has a
Morse point at xi .

We make again use of the Stratified Morse Theory of M. Goresky and R.
MacPherson and apply Theorem 3.2 of Part II, Chapter 3 of [12] to prove that the
general fibre at xi of the restriction to X of the function F + τ l is (dim X − 2)-
connected. It is enough to check that at each point xi the local Morse data is
(dim X − 1)-connected.
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There is a locally trivial fibration π of a neighbourhood U of xi in X onto U ∩Sj ,
where Sj is the stratum which contains xi , with slices of Sj in X as fibres and a
subfibration ∂U onto U ∩ Sj with complex links of Sj in X as fibres.

The local Morse data at xi is a pair (E, E′ ∩ π−1(S)), where E is the inverse
image by π of a closed ball B in Sj centered at xi and of real dimension dim Sj , E′
is the intersection of E with ∂U and S is the boundary of B.

Lemma 9.4.2 shows that, complex links of Sj in X being (dim X− dim Sj − 2)-
connected, and (B,S) being (dim Sj − 1)-connected, if dim Sj ≥ 1, we have that
(E, E′ ∩ π−1(S)) is (dim X − 1)-connected. If dim Sj = 0, i.e. Sj = {x}, the pair
(E, E′ ∩ π−1(S)) = (E, E′) is (dim X − 1)-connected, as the complex link of {x}
in X is (dim X − 2)-connected. This implies that the pair:

(X ∩ Bε(x) ∩ (F + τ l)−1(Ei), X ∩ Bε(x) ∩ (F + τ l)−1(t))

is (dim X − 1)-connected. Therefore the pair:

(X ∩ Bε(x) ∩ (F + τ l)−1(E), X ∩ Bε(x) ∩ (F + τ l)−1(t))

is also (dim X − 1)-connected as well as the pair:

(X ∩ Bε(x) ∩ (F + τ l)−1(Dη(f (x))), X ∩ Bε(x) ∩ (F + τ l)−1(t))

With what we have observed above, this implies that, with u ∈ Dη(f (x)) general,
the pair:

(X ∩ Bε(x) ∩ F−1(Dη(f (x)), X ∩ Bε(x) ∩ F−1(u))

is (dim X−1)-connected. The contractibility of X∩Bε(x)∩F−1(Dη(f (x)) and the
fact that the space X∩Bε(x)∩F−1(u) is a CW-complex of dimension≤ dim X−1,
because of Theorem 9.2.15, imply that X∩Bε(x)∩F−1(u) is (dim X−2)-connected,
so that it has the homotopy type of a bouquet of spheres of dimension dim X− 1 by
Lemma 9.5.2. This ends the proof of Theorem 9.6.4.

9.6.2 Main Result

To be complete, it remains to understand on which spaces a theorem similar to the
one of Milnor is true. We end this chapter by defining the spaces on which we have
a theorem similar to Theorem 9.6.4.

In the proof of Theorem 9.6.4 the main point is to consider the connectivity of
the local Morse data (E, E′ ∩ π−1(S)). We obtain:

Theorem 9.6.1 Let X be a complex analytic space and x be a point of X. There
is an open neighbourhood U of x in X such that, for any y in U , a general fibre
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of a complex analytic function f defined in a neighbourhood of y having at y an
isolated singularity has the homotopy type of a bouquet of spheres of real dimension
dimx X − 1 if and only if the complex link of {x} in X has the homotopy type of
a bouquet of spheres of middle dimension and the complex links of the strata of
dimension ≥ 1 of a Whitney stratification of X which contain x in their closures
have the homology type of a bouquet of spheres of middle dimension.

Proof The condition is sufficient as we apply Lemma 9.4.2 to estimate the
connectivity of the local Morse data and, from Lemma 9.4.2, it is only needed that
the complex links are homologically like bouquets of spheres.

The condition is necessary, because the local Morse data (E, E′ ∩ π−1(S))

coming from strata of dimension ≥ 1 are (dim X − 1)-connected if and only if
the complex links of these strata in X have the homology of a bouquet of spheres
of middle dimension, because, in the case dim X ≥ 3, the first non-zero relative
homotopy group is isomorphic to the first non-zero relative homology group which
is obtain by tensor product, by the Künneth formula. If dim X ≤ 2, the argument is
left to the reader.

In the case that we are interested in the rectified homological depth instead of the
rectified homotopical depth, we have the following nice formulation:

Corollary 9.6.2 Let X be a complex analytic space and x be a point of X. There is
an open neighbourhood U of x in X such that, for any y in U , a general fibre of a
complex analytic function f defined in a neighbourhood of y having at y an isolated
singularity has the homology of a bouquet of spheres of real dimension dimx X − 1
if and only if the rectified homological depth X at x equals the complex dimension
of X at x.

Proof This is an immediate consequence of Theorem 9.6.1 and the version of
Theorem 9.5.1 for rectified homological depth.

9.6.3 Remarks and Problems

When there is an analytic Whitney stratification of the space X and a stratum of this
Whitney stratification which has dimension≥ 1 which contains x, the complex link
of {x} in X is contractible. In this case the conditions in Theorem 9.6.1 are only
homological. For instance, this is the case, when a space X has maximal rectified
homological depth, for the product of X with an open subset of the complex line.

For a hypersurface in C
n+2 with one dimensional singular locus which is a

family of hypersurfaces of Cn+1 with Milnor number constant, but for which the
stratification by the non-singular part and the singular locus is not a Whitney
stratification, the complex link in the hypersurface of any point of the singular locus
is contractible.

Let X be a reduced complex analytic space with maximal rectified homotopical
(resp. homological) depth. Suppose that x is singular and is an isolated singular
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point in X, is it true that the complex link in X of x is never contractible? This is
true if X is a local complete intersection or X is a normal surface at x according
to a theorem of Gonzalez-Sprinberg [11]. How can one calculate algebraically the
number of spheres in the different bouquets which appear when the rectified depth
is maximal?

In view of theorems of Lefschetz type, spaces with maximal rectified homotopi-
cal depth or maximal rectified homological depth, have the best level of comparison
for the homotopy and the homology between the space and its hyperplane sections.
It is remarkable that on these spaces a theorem of Milnor type for functions
with isolated singularity holds. If one searches theorems of Lefschetz type for
the cohomology of a constructible sheaf or complex, the condition of maximal
depth in this case means that the constructible complex satisfies a certain cosupport
condition. For instance, one has a theorem of Lefschetz type up to the maximal
level for perverse sheaves with respect to middle perversity. This generalizes
the Lefschetz type Theorem for Intersection Homology of M. Goresky and R.
MacPherson in [G-M] (Part II, Chapter 6, §6.11). On the other hand we have seen
in [22] (Corollary 1.10) that a complex analytic space has maximal rectified rational
homological depth if and only if the constant sheaf Q is perverse. For instance, on
spaces with maximal rectified homotopical or homological depth, the constant sheaf
Q is perverse.
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Abstract Complex simple Lie algebras with simply laced root systems are clas-
sified by Dynkin diagrams of type An, Dn, E6, E7, and E8. Also the dual
graphs of the minimal resolution of Kleinian singularities are precisely the same
aforementioned Dynkin diagrams. In this work, we recall the basic definitions and
some results of the theory of complex Lie algebras and of Kleinian singularities, in
order to present a relation between finite dimensional complex simple Lie algebras
and the Kleinian singularities, given by a theorem by Brieskorn. We also present the
extension of Brieskorn’s theorem to the simple elliptic singularity D̃5.

10.1 Introduction

Let us start by the first phrase in [16] by E. B. Dynkin “Both in algebra and in
geometry, the study of [. . . ] semi-simple Lie algebras [. . . ] is important”. Indeed,
the theory of Lie algebras has contact with other areas of mathematics such as group
theory, differential geometry, differential equations and topology, and applications
on physics, in particular in quantum mechanics and particle physics. Thus, it is not
surprising that they are also related to singularity theory.

In his research on the solutions of algebraic equations of degree five, Klein in his
book [35] classified the finite subgroups � of SL(2,C), these groups act naturally
in C

2 with the origin as its unique fixed point. Klein showed that the quotients
C

2/� can be seen as complex hypersurfaces in C
3 with an isolated singularity cor-

responding to the origin. Such hypersurfaces are now called Kleinian singularities.
After the work [12–14] by Du Val, Kleinian singularities are characterized as the
isolated singularities of surfaces which do not affect the condition of adjunction;
then these singularities are also known as Du Val singularities. Du Val described
the minimal resolution of Kleinian singularities in the following way: the preimage
of the singularity, called the exceptional set of the resolution, is a connected union
of projective lines, they meet transversely, not three of them meet at a point, the
pairwise intersection of them is a single point or empty and their self-intersection
is −2. One encodes this information associating to the exceptional set a graph,
called the dual graph of the minimal resolution. It turns out that the dual graphs
of the minimal resolution of Kleinian singularities are the Dynkin diagrams of type
An, Dn, E6, E7 and E8 which classify complex simple Lie algebras with simply
laced root systems. This was the first relation found between Kleinian singularities
and simple Lie algebras of type ADE. This relation may look as a coincidence and,
a natural question is to ask if there is a direct relation between them.

Brieskorn proved in [4, 6] the existence of simultaneous resolutions for Kleinian
singularities. After reading Brieskorn’s work, Grothendieck conjectured that
Kleinian singularities can be obtained from the corresponding complex simple
Lie algebra of type A, D or E intersecting its nilpotent variety with a transverse
slice to the orbit of a subregular element, or analogously, from the corresponding
complex simple Lie group of type A, D or E but using the unipotent variety instead
of the nilpotent variety. Brieskorn announced a proof of Grothendieck’s conjecture
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at the International Congress of Mathematicians at Nice in 1970 and sketched it in
its Proceedings [7]. Following a geometric idea by Grothendieck, H. Esnault gave
a proof in her thesis [17], and later, the details of Brieskorn’s proof were given by
P. Slodowy in [65]. See [23] for more details on this historical achievement.

The aim of this chapter is to present the relation between the finite dimensional
complex simple Lie algebras and Kleinian singularities given by Brieskorn’s
theorem, and its generalization in [48] to simple elliptic singularities which are non-
hypersurface complete intersections. The hypersurface simple elliptic singularities
have been studied by many authors [24, 42, 43, 56] but, until now, no result
extending Brieskorn’s theorem to this type of singularities, using finite dimensional
Lie algebras, have been found.

10.2 Lie Algebras

In this section we define complex Lie algebras and we give some examples, we
describe its relation with complex Lie groups, we define simple complex Lie
algebras and we briefly describe their classification.

A vector space g over C is called a (complex) Lie algebra if there is an C-bilinear
map [ , ] : g× g −→ g, called the bracket, which satisfies the following:

1. Anti-commutativity: For all x ∈ g we have [x, x] = 0 and,
2. Jacobi identity: For all x, y, z ∈ g, we have

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A linear map ϕ : g1 −→ g2 between two Lie algebras that preserves the Lie
bracket is called a Lie algebra homomorphism. If, in addition, it is bijective, ϕ

is a Lie algebra isomorphism. An isomorphism of a Lie algebra with itself is an
automorphism.

Example 10.2.1 Any complex vector space V becomes a complex Lie algebra by
setting [x, y] = 0 for every x, y ∈ V . Such a Lie algebra is called abelian.

Example 10.2.2 The set gl(n,C) of n × n matrices with coefficients in C is a
complex Lie algebra by defining [X, Y ] = XY − YX for all X, Y ∈ gl(n,C); it
is of complex dimension n2.

Example 10.2.3 Let M be a complex manifold and let p ∈ M . Denote by FM(p)

the C-algebra of germs of analytic functions at p. Recall that the tangent space
to M at p, denoted by TpM , can be identified with the complex vector space of
derivations of FG(g) into C, that is, C-linear maps X : FG(g) → C such that for
any f1, f2 ∈ FG(g)

X(f1f2) = X(f1)f2(g)+ f1(g)X(f2).
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A vector field X on a complex manifold M is a map which assigns to each point p ∈
M a tangent vector Xp ∈ TpM . Let U be an open subset of M and letf : U → C be
a complex analytic function. For p ∈ M we define X(f )(p) := Xp(f ), then p %→
X(f )(p) defines a function X(f ) : U → C. A vector field X is complex analytic if,
for each complex analytic function f (on some open subset U ), the function X(f )

is also complex analytic on U . The vector space of all complex analytic vector
fields on a complex manifold M forms a complex Lie algebra under the Lie bracket
operation on vector fields: Let X and Y be complex analytic vector fields and f a
smooth function on M . Define the (complex analytic) vector field [X, Y ], called the
Lie bracket of X and Y by setting

[X, Y ]p(f ) = Xp(Y (f ))− Yp(X(f )).

Let g be a finite dimensional complex Lie algebra. A subset h of g is a subalgebra
of g if, for all x, y ∈ h, we have [x, y] ∈ h.

Example 10.2.4 The set of matrices of trace zero sl(n,C) is a subalgebra of gl(n,C)

of dimension n2 − 1. The set of diagonal matrices in sl(n,C) is a subalgebra of
sl(n,C) of dimension n− 1.

Example 10.2.5 There are two important subalgebras of a Lie algebra g associated
to a subset S ⊂ g: the normalizer and centralizer of S, analogous to the homonymous
notions in group theory. Let S be a subset of a Lie algebra g. The set

Ng(S) = {x ∈ g | [x, y] ∈ S for all y ∈ S} (10.1)

is called the normalizer of S in g; the set

Zg(S) = {x ∈ g | [x, y] = 0 for all y ∈ S} (10.2)

is called the centralizer of S in g. By the Jacobi identity, we have [y, [x, z]] =
−[x, [z, y]] − [z, [y, x]] for x, z ∈ g; so Ng(S) and Zg(S) are subalgebras of g.

10.2.1 Lie Algebras and Lie Groups

A Lie algebra is an algebraic structure that can be studied in its own right and
that has many applications. But most of its power comes from its relation with Lie
groups, which are a very important class of differentiable manifolds which play a
major role in modern geometry. For further details on this subsection see for instance
[40, 63].
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A complex Lie group G is a complex manifold with a group structure such that
the map μ : G×G → G defined by (g1, g2) %→ g1g

−1
2 is holomorphic.

A map φ : G → H between two complex Lie groups is a (complex Lie group)
homomorphism if it is both holomorphic and a homomorphism of the abstract
groups. Moreover, if φ is a biholomorphism, we call it an isomorphism.

Example 10.2.6 The set GL(n,C) of all n× n invertible matrices with coefficients
in C is an open complex submanifold of Cn2

which is a complex Lie group under
matrix multiplication. It is called the complex general linear group.

A complex Lie subgroup H of a complex Lie group G is a subgroup of G which is
also a complex submanifold of G, and H is a Lie group with respect to its complex
structure.

Let h ∈ G. The left translation by h and the right translation by h are
respectively, the biholomorphisms Lh and Rh of G given by

Lh(g) = hg, Rh(g) = gh for all g ∈ G.

A vector field X on G is called left invariant if it satisfies

DLh ◦X = X ◦ Lh for all h ∈ G.

Any left invariant vector field on a complex Lie group is complex analytic [40,
Lemma 1.6]. The set of left invariant vector fields on a complex Lie group G is
usually denoted by the corresponding lowercase Fraktur letter g. It is a complex
vector space and the map

α : g→ TeG,

α(X) %→ Xe

(10.3)

is a linear isomorphism of g with the tangent space TeG to G at the identity element
e. Hence dimC g = dimC TeG = dimC G. The Lie bracket of two invariant vector
fields is again an invariant vector field, so g is a Lie algebra with the Lie bracket of
vector fields.

Definition 10.2.7 We define the Lie algebra of the complex Lie group G to be
the complex Lie algebra g of left invariant vector fields on G, or alternatively, the
tangent space TeG at the identity with Lie algebra structure induced by requiring
the vector space isomorphism (10.3) to be a Lie algebra isomorphism.
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Example 10.2.8 The following are the examples of complex Lie groups and their
corresponding Lie algebras, that we will use in relation with singularities.

1. The Lie algebra gl(n,C) of Example 10.2.2 is the Lie algebra of the Lie group
GL(n,C) of Example 10.2.6.

2. The complex special linear group

SL(n,C) = {A ∈ GL(n,C) | det A = 1},

has as Lie algebra the matrices of trace 0 given in Example 10.2.4

sl(n,C) = {X ∈ gl(n,C) | tr X = 0},

3. The complex special orthogonal group

SO(n,C) = {A ∈ GL(n,C) |A−1 = At, det A = 1},

where Xt denotes the transpose of X, has as Lie algebra the skew-symmetric
matrices of trace 0

so(n,C) = {X ∈ gl(n,C) |X +Xt = 0, tr X = 0}.

4. Let V be a complex vector space of dimension n. Denote by End(V ) the set
of all complex linear transformations on V (endomorphisms) and let Aut(V ) ⊂
End(V ) denote the subset of non-singular complex transformations (automor-
phisms). End(V ) is a complex vector space of dimension n2 and becomes a Lie
algebra setting [l1, l2] = l1 ◦ l2 − l2 ◦ l1 for every l1, l2 ∈ End(V ). A basis of
V gives a diffeomorphism between End(V ) and gl(n,C) which maps Aut(V )

onto GL(n,C). Hence Aut(V ) inherits a manifold structure as an open subset of
End(V ), and it is a Lie group under the composition, with Lie algebra End(V ).

Note that the complex Lie groups (respectively Lie algebras) in items (2) and (3)
of Example 10.2.8 are contained in GL(n,C) (respectively in gl(n,C)), they are in
fact complex Lie subgroups (respectively Lie subalgebras).

Let G be a complex Lie group and let H be a complex Lie subgroup, then the
Lie algebra h ∼= TeH of H is a subspace of the Lie algebra g ∼= TeG of G. It is not
difficult to prove that h is actually a Lie subalgebra.

The following theorem says that any abstract Lie algebra can be seen concretely
as a Lie algebra of matrices (see for instance [30, Chapter VI 2.]):

Theorem 10.2.9 (Ado’s Theorem) Every finite dimensional complex Lie algebra
g is isomorphic to a subalgebra of gl(n,C).
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To every complex Lie group we associate a Lie algebra. Ado’s theorem can be
used to prove the converse (see for instance [63, II.V.8 Theorem 3]):

Theorem 10.2.10 (Lie’s Third Theorem) For any finite dimensional complex Lie
algebra g, there exists a complex Lie group G with Lie algebra g.

Remark 10.2.11 Let φ : G → H be a homomorphism of complex Lie groups. Since
φ sends the identity element of G to the identity element of H , its differential at the
identity dφe : TeG ∼= g → TeH ∼= h is a linear map between the corresponding
complex Lie algebras which turns out to be also a Lie algebra homomorphism [40,
Theorem 1.8].

Given a connected complex Lie group G its universal covering space G̃ (its
simply connected covering space) can be endowed with a complex structure and
a group structure which makes it a complex Lie group, such that the covering map
is a homomorphism of complex Lie groups [40, Corollary 1.14], and the Lie algebra
homomorphism induced by the covering map is an isomorphism. Hence G and G̃

have isomorphic Lie algebras.
If two simply connected complex Lie groups G and H have isomorphic Lie

algebras g ∼= h, then they are isomorphic, thus, there is a one-to-one correspondence
between isomorphism classes of simply connected complex Lie groups and iso-
morphism classes of complex Lie algebras [63, II.V.8 Theorem 2]. Hence, one can
classify simply connected Lie groups classifying the corresponding Lie algebras.

10.2.2 Simple Lie Algebras and Simple Lie Groups

We are interested in complex simple Lie algebras, a particular type of complex Lie
algebras which are some of the building blocks that make up all (finite-dimensional)
complex Lie algebras.

Let g be a complex Lie algebra. A subspace I of g is called an ideal of g if x ∈ g
and y ∈ I imply that [x, y] ∈ I .

A complex Lie algebra g is called simple if it is non-abelian and has no non-trivial
ideals.

A complex simple Lie group is a connected non-abelian complex Lie group G

which does not have non-trivial connected normal subgroups.

Proposition 10.2.12 A connected complex Lie group is simple if and only if its Lie
algebra is simple.

Example 10.2.13 The Lie algebra g = sl(n,C) of Example 10.2.8 (2) is a complex
simple Lie algebra [57, §2.14 Theorem A].
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Table 10.1 Dynkin diagrams
of simple complex Lie
algebras

Name Dynkin diagram Complex Lie algebra

An sl(n+ 1,C)

Bn so(2n+ 1,C)

Cn sp(2n,C)

Dn so(2n,C)

E6

E7

E8

F4

G2

Hence, isomorphism classes of simply connected simple complex Lie groups
correspond to isomorphism classes of simple complex Lie algebras. These are
classified by their fundamental root systems, and the root systems are described
by their Dynkin diagrams (see Sect. 10.4.3). The classification of Dynkin diagrams
coming from complex simple Lie algebras give four infinite series An (n ≥ 1), Bn

(n ≥ 2), Cn (n ≥ 3), Dn (k ≥ 4) which correspond to matrix Lie algebras and five
exceptional cases E6, E7, E8, F4 and G2, they are showed in Table 10.1. Among
these diagrams, we are interested in the ones which have simply laced root systems
(with roots of equal length), which are An, Dn, E6, E7, E8.

10.3 Kleinian Singularities

In this section we present an important class of surface singularities embedded
in C

3, depending on the context that they have been studied, they have received
several names: Kleinian Singularities, Du Val singularities, rational double point
singularities or simple singularities. In [15] one can find fifteen characterizations of
this class of singularities. See also [66] for further references on the material in this
section.

Let U be a neighbourhood of the origin in C
2 and let G be a properly

discontinuous group of holomorphic automorphisms of U fixing 0. H. Cartan
proved in [8] that the quotient space U/G is a normal analytic surface with an
isolated singularity and the quotient map U → U/G is analytic. A quotient surface
singularity is a singularity which is isomorphic to a singularity of a quotient U/G

for some U and G as before. By a linearization argument [8, p. 97] (see also [5,
Lemma 2.2]) every two-dimensional quotient singularity is isomorphic to C

2/G for
some finite subgroup of GL(2,C). In [53] Prill call a subgroup G of GL(2,C)
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small if no g ∈ G has 1 as an eigenvalue of multiplicity precisely (n − 1)), in
other words, no element of G is a pseudo-reflexion (leaves a hyperplane fixed). He
proved that every two-dimensional quotient singularity is isomorphic to C

2/G for
a small finite subgroup of GL(2,C). If G and G′ are two small finite subgroups of
GL(2,C) then C

2/G and C
2/G′ are analytically isomorphic if and only if G and

G′ are conjugate. By a theorem of Chevalley [9, Theorem A], if a finite subgroup
G ≤ GL(2,C) is generated by pseudo-reflexions then C

2/G is biholomorphic to
C

2, so it does not have singularities, this rules out the dihedral groups. The list of
finite small subgroups of GL(2,C) is given in [5, Satz 2.9] (see also [51]). If G is a
small finite subgroup of GL(2,C), then G ≤ SL(2,C) if and only if C2/G embeds
in C

3 [15, Corollary 5.3]. Moreover, all finite subgroups of SL(2,C) are small.
The finite subgroups of SL(2,C) (which are conjugated to the finite subgroups of

SU(2)) were classified (up to conjugation) by F. Klein in his book [35] as follows.
Let SO(3) be the group of rotations of R

3, there is a surjective homomorphism
ρ : SU(2) → SO(3) with kernel of order 2. The finite subgroups of SO(3) are very
well known, they are the cyclic groups Ck of order k (k ≥ 2), the dihedral groups Dk

of order 2k (k ≥ 2), and the rotation groups of the Platonic solids: the tetrahedral
group T of order 12, the octahedral group O of order 24 and the icosahedral group
I of order 60. If G′ is a finite subgroup of SO(3), then G = ρ−1(G′) is a finite
subgroup of SU(2), we say that G is the binary group of G′ since its order is twice
the order of G′. Hence, the finite subgroups of SU(2) are the cyclic groups Ck of
order k (k ≥ 2), the binary dihedral groups Dk of order 4k (k ≥ 2), the binary
tetrahedral group T of order 24, the binary octahedral group O of order 48 and the
binary icosahedral group I of order 120.

Let � be a finite subgroup of SL(2,C). The group � acts naturally on C
2 by

matrix multiplication; the action is free on C
2 \ {0} and the origin 0 is a fixed

point. Klein proved that the quotient C2/� is a complex surface with an isolated
singularity corresponding to 0 as follows.

The group � acts on the C-algebra C[z1, z2] of polynomials by

(Pg)(z) = P(g · z), for P ∈ C[z1, z2], g ∈ � and z ∈ C
2.

The �-invariant polynomials C[z1, z2]� form a subalgebra, Klein proved that this
subalgebra is generated by three invariant polynomials X, Y and Z which satisfy
only one non-trivial polynomial relation f (X, Y, Z) = 0. In Table 10.2 we show
such relation for each of the finite subgroups � of SL(2,C).

Table 10.2 Relation
f (X, Y, Z) = 0 of the
generators of C[z1, z2]�

Group � Relation f (X, Y, Z)

Ck Xk + YZ

Dk Xk+1 +XY 2 + Z2

T X4 + Y 3 + Z2

O X3Y + Y 3 + Z2

I X5 + Y 3 + Z2
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(a) (b)

Fig. 10.1 Some Kleinian singularities. (a) Singularity X2 + XY = 0. (b) Singularity −X3 +
XY 2 + Z2 = 0

Using the invariant polynomials X, Y and Z one defines the following map

F : C2 → C
3

F(z1, z2) = (X(z1, z2), Y (z1, z2), Z(z1, z2)).

It is invariant under the action of � on C
2, so it factors over the quotient

C
2

C
3

C
2

F

F̃

thus F̃ embeds C2/� in C
3 and its image is precisely the zero-set of the polynomial

f , since X, Y and Z satisfy the relation f (X, Y, Z) = 0.

Definition 10.3.1 The Kleinian singularities are the surfaces in C
3 given as the

zero-locus of the polynomials listed in Table 10.2.

Figure 10.1 shows the real surfaces1 of some of the polynomials of Table 10.2.
Recall that the link L of an isolated singularity p of an analytic space V is the

intersection L := V ∩ Sε of V with a sphere Sε centered at p of sufficiently small
radius, such that it is transverse to the manifold V \ {p}. Thus, L is a differentiable
manifold. Notice that by Klein’s result, the link of the Kleinian singularities are

1Figures created with SURFER.

https://imaginary.org/program/surfer
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diffeomorphic to the quotients S
3/�, where, as before, � is a finite subgroup of

SU(2) ∼= S
3.

In [45] Milnor gives analogous results proving that the links of the singularities
of Brieskorn-Pham varieties V (p, q, r) = {zp

1 + z
q

2 + zr
3 = 0} are diffeomorphic

to homogeneous spaces G/�, where G is one of the following 3-dimensional Lie

groups: SU(2), ˜SL(2,R), the universal cover of SL(2,R), and N , the Heisenberg
group; and � is a discrete subgroup. In fact, for the case of SU(2), Milnor’s result
is a refinement of Klein’s theorem.

More generally, let G be one of the groups SU(2), ˜SL(2,R) or N . Given
a quasi-homogeneous Gorenstein surface singularity, its link is diffeomorphic to
an homogeneous space of the form G/�, where � is a discrete subgroup of G.
Conversely, given a discrete subgroup � of G with compact quotient G/�, then this
quotient is diffeomorphic to the link of a normal, Gorenstein quasi-homogeneous
surface singularity, see [59, Chapter 3] for details and related results. Expressing the
links as the quotients G/� endow them with a geometric structure in the sense of
Thurston [58]. By [49] such links can only have six of Thurston’s eight geometries
and the deformations of the geometric structures correspond to the deformations of
the complex structures on the corresponding singularity.

10.3.1 Resolution of Kleinian Singularities

Kleinian singularities can also be characterized by their minimal resolutions. For a
survey on the problem of resolution of singularities see [67]. Let S be a complex
surface with exactly one singular point at p ∈ S. A resolution of S is a surjective
proper morphism π : S̃ → S (in the category of algebraic or analytic varieties) from
a smooth variety S̃ to S, such that its restriction π |S̃\π−1(p) : S̃ \ π−1(p) → S \ {p}
is an isomorphism. The set E = π−1(p) is called the exceptional set. A resolution
π : S̃ → S is called minimal if any other resolution π ′ : S̃′ → S factors through π ,
that is, there exists a unique map ρ : S̃′ → S̃ such that π ′ = π ◦ ρ.

A resolution can be seen as a finite sequence of blowing-ups and normalizations.
Let B = {(x, �) ∈ C

3 × CP
2 | x ∈ �}, the blowing-up of C3 at the origin 0 ∈ C

3 is
the natural projection β : B → C

3. We have that β−1(0) is isomorphic to CP
1 and

the restriction β| : B \β−1(0) → C
3 \ {0} is an isomorphism. Let X be a subvariety

of C3 with an isolated singularity at 0 and X̃ the closure of β−1(X) in B, then X̃ is
the blowing-up of X at 0. This construction does not depend on the embedding of
X in C

3 and can be applied again to points of X̃. Kleinian singularities are the only
surface singularities of multiplicity two that can be resolved by performing a finite
number of blowing-ups of points, without normalizations [34, 41, 71]. Figure 10.2
shows the minimal resolutions of the real surfaces given in Fig. 10.1.

Let π : S̃ → S be the minimal resolution of a Kleinian singularity S. The
exceptional set E = π−1(0) consists of a union of finitely many components Ei
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π

(a)

π

(b)

Fig. 10.2 Minimal resolution of some Kleinian singularities, with red exceptional set. (a) Minimal
resolution of the singularity X2+YZ = 0. (b) Minimal resolution of the singularity−X3+XY 2+
Z2 = 0

isomorphic to projective lines Ei
∼= CP

1 with

E = π−1(0) = E1 ∪ · · · ∪ Er,

where each Ei has self-intersection −2, i.e., the normal bundle of each Ei in
S̃ is isomorphic to the cotangent bundle T ∗CP1 of the projective line CP

1.The
intersection of Ei and Ej is empty or one point, and if they intersect, they intersect
transversely. We can assign to π a graph �(S), called the dual graph of the
resolution, in the following way: to each Ei we associate a vertex, and two vertices
are connected by an edge if the corresponding components intersect. The dual
graphs of the minimal resolution of Kleinian singularities are showed in Table 10.3
and we can see that they exactly correspond to the Dynkin diagrams of the simple
Lie algebras of type A, D, E given in Table 10.1. This property also characterizes
Kleinian singularities and for this reason they are also called ADE-singularities.

The real resolutions of Fig. 10.2 illustrate what happens in the complex situation.
In Fig. 10.2a the exceptional set is the red circle (isomorphic to RP

1), thus its dual
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Table 10.3 Dual graph of the minimal resolution of Kleinian singularities

Group Singularity Dual graph Dynkin diagram

Ck Xk + YZ Ak−1

Dk Xk+1 +XY 2 + Z2 Dk+2

T X4 + Y 3 + Z2 E6

O X3Y + Y 3 + Z2 E7

I X5 + Y 3 + Z2 E8

graph is of type A1. In Fig. 10.2b the exceptional set consists of the four red circles,
the central one, and the other three intersecting it in different points, its dual graph
is of type D4.

So far, this relation looks as a coincidence, a natural question is to ask if there
is a direct relation between the simple Lie algebras of type ADE and Kleinian
singularities. Our aim for the following sections is to explain one of this direct
relations.

In [44] McKay obtained the Dynkin diagrams of type ADE from the irre-
ducible representations of the corresponding finite subgroups of SL(2,C) given
in Table 10.3. This gives a one-to-one correspondence between (non-trivial) irre-
ducible representations of the group and the components of the exceptional set of the
minimal resolution of the corresponding Kleinian singularity. This correspondence
is now called the McKay correspondence which we briefly explain in Sect. 10.8.

10.3.2 Deformation of Kleinian Singularities

One way to study resolution of singularities is through their deformations. Here
we define semi-universal deformations and give the example of a semi-universal
deformation of a Kleinian singularity which we shall later construct using Lie
algebras. For an introduction to deformation of singularities see [22, 50].

A holomorphic map φ : X → B of complex spaces is called flat at x ∈ X if the
structure sheaf OX,x is flat as an OB,b-module, with b = φ(x). It is called flat, if it
is flat at every x ∈ X. If (X, x) and (B, b) are singularities, flatness refers to flatness
at x of a representing map between representatives of the two germs.

Let (S, x) be the germ of an analytic variety at x. In our case S is a Kleinian
singularity in C

3. A deformation (φ, i) of (S, x) is a flat morphism of germs of
analytic spaces φ : (X, x) → (B, b) together with an isomorphism i : (S, x) →
(φ−1(b), x). The space (B, b) is called the base or the parameter space of the
deformation (φ, i).

An isomorphism χ : (φ, i) → (φ′, i ′) of two deformations φ : (X, x) → (B, b)

and φ′ : (X′, x) → (B, b) over (B, b) is an isomorphism χ : (X, x) → (X′, x) such
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that the following diagram commutes

(S, x)

(X, x) (X , x)

(B, b)

i i

φ

χ

φ

If φ : (X, x) → (B, b) is a deformation of (S, x) and ψ : (A, a) → (B, b) is
a morphism, then the pull-back φA : (A, a) ×(B,b) (X, x) → (A, a) given in the
following diagram

(A, a) ×(B,b) (X, x) (X, x)

(A, a) (B, b)

φA φ

ψ

is again flat, and therefore a deformation of (S, x) over (A, a), which it is called the
deformation induced by ψ from φ.

Definition 10.3.2 A deformation φ : (X, x) → (B, b) of (S, x) is called a semi-
universal deformation if and only if

(i) Any other deformation φ′ : (X′, x) −→ (A, a) of (S, x) is isomorphic to a
deformation induced from φ by a base change ψ : (A, a) → (B, b).

(ii) The differential dψ at a is uniquely determined.

It follows that the semi-universal deformations are unique up to isomorphism.

Theorem 10.3.3 ([33]) A semi-universal deformation of any isolated singularity
exists.

For the case of isolated hypersurface singularities (or more generally
isolated complete intersection singularities) by [72] it is possible to compute
explicitly a semi-universal deformation as follows (see [22, Corollary 7.2.23 and
Remark 7.2.24]).

Let (S, 0) ⊂ (Cn, 0) be an isolated singularity defined by f ∈ OC
n,0. The Tjurina

algebra of (S, 0) is given by

T 1
(S,0) := OC

n,0

/ 〈
f,

∂f

∂z1
,

∂f

∂z2
, . . . ,

∂f

∂zn

〉
.
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Proposition 10.3.4 Let (S, 0) ⊂ (Cn, 0) be an isolated singularity defined by f ∈
OC

n,0 and g1, . . . , gτ ∈ OC
n,0 a C-basis of the Tjurina algebra T 1

(S,0). If we set

F(x, t) := f (x)+
τ∑

j=1

tj gj (x), and (X, 0) := V (F) ⊂ (Cn × C
τ , 0),

then (S, 0) ↪→ (X, 0)
φ−→ (Cτ , 0), with φ the second projection, is a semi-universal

deformation of (S, 0).

Remark 10.3.5 If f ∈ m2
C

n,0, on the basis g1, . . . , gτ ∈ OC
n,0 of the Tjurina algebra

T 1
(S,0) one can choose g1 = −1 and we can eliminate t1 from F(x, t) = 0. Then

setting t = (t1, . . . , tτ−1)

(Cn × C
τ , 0) → (Cτ , 0)

(x, t) %→ (f (x)+
τ−1∑

j=1

tj gj (x), t)

is a semi-universal deformation of the hypersurface singularity
(
f−1(0), 0

)
.

Example 10.3.6 Let (S, 0) be the A2-singularity, that is, the surface defined by
f (x, y, z) = x3 + yz = 0 in C

3 (see Table 10.3) . The Tjurina algebra

T 1 := C{x, y, z}
/ 〈

f,
∂f

∂x
,

∂f

∂y
,

∂f

∂z

〉

is generated by {−1, x}. The map

C
3 × C→ C

2

(x, y, z, t) %→ (x3 + yz+ tx, t).
(10.4)

is a semi-universal deformation of (S, 0).

In [11] Crawley-Boevey and Holland construct deformations of Kleininan
singularities in terms of skew group algebras and deformed preprojective algebras.

10.4 More on Lie Algebras

In this section we give the necessary definitions and results of Lie algebras that we
will need later. We only consider complex Lie algebras even when we do not say it
explicitly. The reader can see all the details about the results announced below in a
basic textbook of Lie algebras, for instance [26, 30, 57].
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One way to construct new Lie algebras from given ones is via the direct sum
of Lie algebras. Let g1 and g2 be two Lie algebras. Their direct sum g1 ⊕ g2 is
defined as g1 ⊕ g2 = {(x, y) | x ∈ g1, y ∈ g2} and the Lie bracket on it is given by
[(x, y), (x ′, y ′)] := ([x, x ′], [y, y ′]).
Example 10.4.1 It is easy to see that sl(2,C)⊕ sl(2,C) ∼= so(4,C).

On the other hand, given a Lie algebra g we would like to decompose it in
“canonical” pieces which we can classify later. In the following subsection we will
see such a decomposition called a Levi decomposition of g.

10.4.1 Levi Decomposition

Let g be a Lie algebra. For two subspaces A, B of g the symbol [A, B] denotes the
linear span of the set of all [x, y] with x ∈ A and y ∈ B. Occasionally this notation
is also used for arbitrary subsets A, B of g. Given two ideals I and J of g, then the
set [I, J ] is again an ideal of g.

An important example of an ideal of a Lie algebra g is its derived (sub)algebra
g′ defined by the ideal g′ = [g, g].
Remark 10.4.2 The quotient g/g′ is abelian, and g′ is the unique minimal ideal of g
with abelian quotient.

Let us define two sequences of ideals of a Lie algebra g which will allow us to
define two special types of Lie algebras.

The derived series is the sequence of ideals: g, g′, g′′ = [g′, g′],. . . ,g(r) :=
[g(r−1), g(r−1)],. . . . We have g ⊃ g′ ⊃ · · · ⊃ g(n) ⊃ . . .. We say that g is a solvable
Lie algebra if there exists a positive integer n such that g(n) = 0.

Example 10.4.3 The Lie algebra of upper-triangular matrices (aij = 0 for i > j ) is
solvable.

The lower central series is the sequence of ideals given by: g0 := g, g1 :=
[g, g0], g2 := [g, g1], . . . , gn := [g, g(n−1)],. . . . We have g0 ⊃ g1 ⊃ . . . ⊃ gn ⊃
. . .. We say that g is a nilpotent Lie algebra if there exists a positive integer n such
that gn = 0.

Notice that the derived and lower central series of an ideal of g consists of ideals
of g.

Example 10.4.4 Any abelian Lie algebra is nilpotent.

Example 10.4.5 The Lie algebra of triangular nilpotent matrices, that is, the
triangular matrices with 0’s in the diagonal, is nilpotent.

Remark 10.4.6 Nilpotency implies solvability. Using induction it is easy to see that
g(r) ⊂ gr . Also a subalgebra of a solvable (respectively nilpotent) Lie algebra is
itself solvable (respectively nilpotent), and similar for quotients.
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A Lie algebra contains a maximal solvable ideal r, i.e., an ideal which contains
all solvable ideals, called the radical of g. A Lie algebra g is called semisimple, if
its radical is 0 and its dimension is positive.

Remark 10.4.7 By Remark 10.4.2 the last term of the derived series is an abelian
ideal, thus the radical is zero if and only if there is no non-zero abelian ideals in g.

Remark 10.4.8 If g is a simple Lie algebra, then it is semisimple: if dim g > 1, it is
not abelian (otherwise it would have non-trivial ideals). If it is not abelian, it is not
solvable (the absence of non-trivial ideals would make it abelian); thus the radical
is a proper ideal and so equal to 0, making g semisimple.

Theorem 10.4.9 Let g be a Lie algebra and let r be its radical. Then we have:

1. The quotient g/r is semisimple.
2. There is a subalgebra s ∼= g/r of g which is a complement for r.

Hence, g is the semidirect sum (see [57, §1.6] for the definition) of a semisimple Lie
algebra s and a solvable Lie algebra r. This is called a Levi decomposition of g.

10.4.2 The Cartan-Killing Criteria

There is a useful characterization of solvable and semisimple Lie algebras in terms
of a symmetric bilinear form called the Killing form. In order to define it we need
first to define the adjoint representation of a Lie algebra g. This can be defined using
the Lie bracket of g, but it can also be defined via the adjoint representation of a
complex Lie group G with Lie algebra g. Since we are also going to use the latter
in the sequel we define both representations now.

Let V be a finite-dimensional complex vector space and let G be a complex Lie
group (respectively g a complex Lie algebra). A homomorphism of complex Lie
groups G → Aut(V ) (respectively a homomorphism of complex Lie algebras g→
End(V )) is called a representation of the Lie group G (respectively, a representation
of the Lie algebra g).

Let G be a complex Lie group. Its Lie algebra g is a complex vector space
and there is a special representation Ad : G → Aut(g) of G, called the adjoint
representation or the adjoint action of G on g, defined as follows. Let g ∈ G,
conjugation by g in G defines the inner automorphism

cg : G → G

h %→ ghg−1.
(10.5)
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Since cg(e) = e, its differential gives a linear automorphism of the Lie algebra g
of G

d(cg)e : TeG ∼= g→ TeG ∼= g, d(cg)e ∈ Aut(g),

and we get the holomorphic map

Ad : G → Aut(g)

g %→ d(cg)e.
(10.6)

Since cg1g2 = cg1 ◦ cg2 for every g1, g2 ∈ G, Ad is a representation of G. Let us
denote by ad = d(Ad)e the differential of the adjoint representation of G at e. By
Remark 10.2.11 ade is a homomorphism of Lie algebras

ad = d(Ad)e : g ∼= TeG → End(g) ∼= TId Aut(g), (10.7)

thus we get a representation called the adjoint representation of the Lie algebra g.
We denote Ad(g) by Adg and ad(x) by adx .

Proposition 10.4.10 Let G be a Lie group with Lie algebra g. Let x, y ∈ g. Then

adx y = [x, y]. (10.8)

Remark 10.4.11 Notice that given a Lie algebra g one can define the adjoint
representation ad : g→ End(g) by (10.8) without referring to the Lie group.

Using the adjoint representation a symmetric bilinear form can be defined.

Definition 10.4.12 The symmetric bilinear form

K : g× g −→ C

(x, y) %→ tr(adx ◦ ady)

is called the Killing form of g, where tr denotes the trace.

Example 10.4.13 The Killing forms of some matrix Lie algebras are the follow-
ing:

1. On gl(n,C), we have K(X, Y ) = 2n tr(XY )− 2 tr(X) tr(Y ).
2. On sl(n,C), K(X, Y ) = 2n tr(XY ).
3. On so(n), K(X, Y ) = (n− 2) tr(XY ).
4. On sp(2n,C), K(X, Y ) = (2n+ 2) tr(XY ).

A crucial property of the Killing form is the following identity:

K([x, y], z) = K(x, [y, z]), (10.9)
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for every x, y, z ∈ g. Using the Killing form, we can check whether g is solvable
[57, §1.9 Theorem A]:

Theorem 10.4.14 (Cartan’s 1st Criterion) A Lie algebra g is solvable if and only
if its Killing form K vanishes identically on the derived Lie algebra g′.

There is also another criterion using the Killing form to determine whether g is
semisimple [57, §1.10 Theorem A]:

Proposition 10.4.15 (Cartan’s 2nd Criterion) A Lie algebra g is semisimple if
and only if its dimension is positive and its Killing form K is non-degenerate.

Corollary 10.4.16 A Lie algebra g is semisimple if and only if it can be written as

g = g1 ⊕ g1 ⊕ . . . gr

such that gi is simple for each i = 1, . . . , r .

Proof Suppose g is semisimple. For any ideal h of g the annihilator

h⊥ = {x ∈ g |K(x, y) = 0, for all y ∈ h}

is an ideal by (10.9). By Cartan’s first criterion h ∩ h⊥ is solvable, hence zero, so
g = h⊕ h⊥. The decomposition follows by induction on the dimension of g.

Conversely, semisimplicity is preserved by direct sum and by Remark 10.4.8
simple implies semisimple. ��
Example 10.4.17 The Lie algebra sl(n,C) is semisimple since its Killing form K
is non-degenerate. This also follows from Example 10.2.13 and Remark 10.4.8.

10.4.3 Classification of Complex Semisimple Lie Algebras

In this subsection, g denotes a finite dimensional complex semisimple Lie algebra
and its goal is to sketch their classification.

A subalgebra h of g is self-normalizing if it is equal to its own normalizer (10.1),
i.e., h = Ng(h). A subalgebra h of g is called a Cartan subalgebra if h is nilpotent
and self-normalizing.

Proposition 10.4.18 ([62, III Theorem 1]) Every Lie algebra admits a Cartan
subalgebra.

Proposition 10.4.19 ([62, III Theorem 2]) For any two Cartan subalgebras h, h′
of g, there exits an automorphism σ : g −→ g such that σ(h) = h′.

Definition 10.4.20 The (common) dimension of Cartan subalgebras is called the
rank of g and it is denoted by rk(g).
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Example 10.4.21 Let g := sl(n + 1,C). Since we have [X, Y ] := XY − YX on g
a Cartan subalgebra h is given by the set of diagonal matrices

h =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

h1 0 . . .

0 h2 . . .

. . .

0 . . . hn+1

⎞

⎟
⎟
⎠ ∈ sl(n,C)

∣
∣
∣
∣
∣
∣
∣
∣

n+1∑

i=1

hi = 0

⎫
⎪⎪⎬

⎪⎪⎭

.

We have that dim h = n = rk(g).

Cartan subalgebras have the following important properties (see [62, III Theo-
rem 3]):

Theorem 10.4.22 Let h be a Cartan subalgebra of a complex semisimple Lie
algebra g. Then:

(a) h is abelian,
(b) adh is diagonalizable for every h ∈ h,
(c) the centralizer of h is h itself,
(d) the restriction of the Killing form of g to h is non-degenerate.

Let h be a Cartan subalgebra of g and let h∗ := HomC(h,C) be its dual
vector space. By Theorem 10.4.22-(a)–(b), {adh}h∈h is a commuting family of
diagonalizable endomorphisms of g, and by a standard result in linear algebra,
{adh}h∈h is simultaneously diagonalizable, i.e., g is the direct sum of the subspaces

gα := {x ∈ g | adh x = [h, x] = α(h)x for all h ∈ h},

where α ranges over h∗. Since C is algebraically closed α(H) ∈ C exists. In
particular, g0 is the set of elements x ∈ g commuting with h, by Theorem 10.4.22-
(c) we have that g0 = H.

Proposition 10.4.23 One has the following direct sum decomposition:

g = h⊕
⊕

α∈�

gα .

Definition 10.4.24 Any element α ∈ h∗ is called a root of g (relative to h) if gα = 0
and α = 0. We denote by � the set of roots of g.

Given a non-zero element α in h∗ a symmetry with vector α is an automorphism
s̃ of h∗ satisfying the following conditions:

1. s̃(α) = −α.
2. The set U of elements of h∗ fixed by s̃ is a hyperplane of h∗.
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Let (h∗)∗ ∼= h be the dual space of h∗, and let α∗ be the unique element in (h∗)∗
which vanishes on U and α∗(α) = 2. We have

s̃(x) = λ− α∗(λ)α, for all λ ∈ h∗.

Identifying End(h∗) and (h∗)∗ ⊗h∗ we can write s̃ as s̃ = 1−α∗⊗α. Conversely, if
α ∈ h∗ and α∗ ∈ (h∗)∗ are such that α∗(α) = 2, then s̃ = 1− α∗ ⊗α is a symmetry
with vector α.

Theorem 10.4.25 ([62, VI Theorem 2]) The set � of roots of g relative to the
Cartan subalgebra h is a (reduced) complex root system in h∗, that is, it satisfies:

1. � is finite, spans h∗ and 0 /∈ �.
2. For each α ∈ � there is a symmetry s̃α = 1− α∗ ⊗ α with vector α on h∗ which

leaves � invariant.
3. If α, β ∈ � we have that s̃α(β)− β is an integer multiple of α.
4. For any α ∈ �, α and −α are the only roots proportional to α (reduced root

system).

The dimension of h∗ is called the rank of the root system, which in this case is
equal to the rank of g. Proposition 10.4.19 shows that the root system of a complex
semisimple Lie algebra is independent (up to isomorphism) of the chosen Cartan
algebra.

Example 10.4.26 The root system for sl(n+ 1,C). Let Eij be the matrix with 1 on
the i-th row and j -th column and 0 elsewhere. Let H ∈ h as in (10.4.21), then we
have [H, Eij ] = HEij − Eij H = hiEij − hjEij = (hi − hj )Eij . If i = j , then
Eij ∈ sl(n + 1,C), and this shows that Eij is a simultaneous eigenvector for each
adH with H ∈ h with eigenvalue hi −hj . Thus, the roots are the elements αij ∈ h∗,
with i = j , defined by αij (H) = hi − hj for all H ∈ h.

The importance of root systems is that they classify complex semisimple Lie
algebras [62, VI Theorem 8 and 9]:

Theorem 10.4.27 Let � be a reduced root system. Then there exists a semisimple
Lie algebra whose root system is isomorphic to �. Moreover, two semisimple Lie
algebras corresponding to isomorphic root systems are isomorphic.

Definition 10.4.28 The Weyl group of the root system � is the subgroup W of
GL(h∗) generated by the symmetries s̃α with α ∈ �.

Remark 10.4.29 By Theorem 10.4.25-2 every element of the Weyl group W fixes
�, and in fact, it is a normal subgroup of the group Aut(�) of automorphisms of
h∗ leaving � invariant. Since � spans h∗ every element of Aut(�) is completely
determined by the permutation of the elements of � determined by it; thus, Aut(�),
and therefore also W , can be identified with subgroups of the group of permutations
of �, and since � is finite, also Aut(�) and W are finite groups.
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Since by Theorem 10.4.22-(d) the Killing form K on h is non-degenerate, we
have the usual isomorphism of h with its dual, that is, for each λ ∈ h∗ there exists
a unique element hλ in h with K(hλ, y) = λ(y) for every y ∈ h. We transfer the
Killing form to h∗ in the usual way by setting K(λ, μ) := K(hλ, hμ). Let h∗0 be the
real subspace of h∗ spanned by �. The Killing form on h∗ restricted to h∗0 is a (real)
positive definite bilinear form [57, §2.6 Proposition A] which gives h∗0 the structure
of an Euclidean space. We denote this inner product on h∗0 by (·, ·) := K(·, ·)|h∗0 .

We have that � is a (reduced) real root system in h∗0, that is, it satisfies Axioms 1–
4 in Theorem 10.4.25 but replacing the complex vector space h∗ by the real vector
space h∗0 and the (complex) symmetries s̃α with vector α by real symmetries sα

with vector α of h∗0. We have that h∗ is isomorphic to the complexification h∗0 ⊗ C

of h∗0 and s̃α is the linear extension of sα . In fact, any complex root system can be
obtained as the complexification of a real root system [62, V Theorem 5]. Hence, it
is equivalent to classify complex or real root systems.

Using the Euclidean structure on h∗0 given by the Killing form, we can express
the symmetries sα as

sα(λ) = λ− 2
(λ, α)

(α, α)
α, for all λ ∈ h∗0, (10.10)

and see that they are orthogonal transformations, i.e., (sα(λ), sα(μ)) = (λ, μ) for
every λ, μ ∈ h∗0. Define

n(β, α) := 2
(β, α)

(α, α)
,

then Axiom 3 of the real root system in h∗0 can be written as n(β, α) ∈ Z.

Denote by ‖α‖ := (α, α)
1
2 the length of α ∈ h0. Recall that the cosine of the

angle φ between two vectors α, β ∈ h∗0 is given by (α, β) = ‖α‖‖β‖ cos φ, therefore

n(β, α) = 2 ‖β‖‖α‖ cos φ, and from this we get

n(α, β)n(β, α) = 4 cos2 φ.

Remark 10.4.30 Axiom 3 restricts the possible angles occurring between pairs of
roots, since n(β, α) ∈ Z and 0 ≤ cos2 φ ≤ 1 we have that 4 cos2 φ can only take the
values 0, 1, 2, 3, 4, the last case being when α and β are proportional. Table 10.4
shows the only possibilities when α = ±β and ‖β‖ > ‖α‖:

Example 10.4.31 We continue Example 10.4.26 of the root system of sl(n+ 1,C).
Let h be the Cartan subalgebra of sl(n + 1,C) given in Example 10.4.21. Let
H = diag(h1, . . . , hn+1), K = diag(k1, . . . , kn+1) ∈ h, by Example 10.4.13–2
the restriction of the Killing form to h is given by K(H, K) = 2(n+ 1)

∑n+1
i=1 hiki .

Thus, consider Cn+1 with the symmetric bilinear form given by the (n+1)×(n+1)

identity matrix and identify h with the subspace V of Cn+1 consisting of vectors
whose components sum zero. Using this bilinear form we transfer the roots from h∗
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Table 10.4 Possible angles
between pairs of roots

n(α, β) n(β, α) φ ‖β‖2/‖α‖2

0 0 π/2

1 1 π/3 1

−1 −1 2π/3 1

1 2 π/4 2

−1 −2 3π/4 2

1 3 π/6 3

−1 −3 5π/6 3

to h to get

αij = ei − ej , with i = j.

It is easy to see that for any i and j with i = j , the symmetry s̃αij given by (10.10)
acts on C

n+1 by interchanging the ith and j th entries of each vector. It follows that
the Weyl group is the symmetric group Sn+1. Now, let V0 be the real subspace of V

spanned by the roots αij . The restriction of the bilinear form to V0 is the restriction
of the standard Euclidean inner product 〈·, ·〉 in R

n+1 to V0. Each root has length√
2 and 〈αij , αkl〉 has value 0, ±1 or ±2, depending on whether {i, j } and {k, l}

have zero, one or two elements in common. Thus n(αij , αkl) ∈ {0,±1,±2}. If α

and β are roots, with α = β and β = −α then the angle between α and β is either
π/3, π/2 or 2π/3 depending on whether 〈α, β〉 is 1, 0 or −1 (see Table 10.4).
When n = 2 we have 6 roots αij , i = j with i, j ∈ {1, 2, 3}. Taking α = α1,2 and
β = α3,1 we obtain the root system A2 in Fig. 10.3b.

Figure 10.3 shows the reduced root systems of rank 2.
A subset � of the root system � of h∗0 is a base if:

(i) � is a basis for h∗0,
(ii) Each β ∈ � can be written as β = ∑α∈B mαα where the coefficients mα are

integers all with the same sign (all mα ≥ 0 or all mα ≤ 0).

In the literature, a base is also called a simple root system or a fundamental root
system and its elements are called simple roots. A base for � always exists [62,
V Theorem 1]. In Fig. 10.3 the simple roots are indicated by arrows. An important
property of a base is the following [62, V Lemma 3]:

Lemma 10.4.32 If � is a base for the root system �, then (α, β) ≤ 0 for all roots
α = β in �.

A base � of the root system � allows us to assign a matrix to �. Choose an ordering
α1, . . . , αl of the simple roots in �.

Definition 10.4.33 The Cartan matrix of � (with respect to the base �) is the
matrix (n(αi, αj ))αi ,αj∈B . Its entries are called Cartan integers.
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α−α

β

−β

(a)

α

β + αβ

−α

−β − α −β
β

(b)

α−α

β + α

−α − β

β + 2αβ

−β − 2α −β

−2β2 − 3α

(c)

α

β + 3α
β + 2α

2β + 3α

β + α
β

−α

−β − 3α
−β − 2α

−2β − 3α

−β − α
−β

(d)

Fig. 10.3 Reduced root systems of rank 2. (a) Type A1 ×A1. (b) Type A2. (c) Type B2. (d) Type
G2

By Axiom 3 n(αi, αj ) is an integer, we have n(αi, αi ) = 2 and if i = j , by
Lemma 10.4.32 n(αi, αj ) ≤ 0, so we have n(αi, αj ) = 0, −1, −2 or −3. The
Cartan matrix is independent of the choice of base, since the Weyl group acts
transitively on the set of all bases of � [62, V Theorem 2]. The importance of the
Cartan matrix is given by the following proposition [62, V Proposition 8]:

Proposition 10.4.34 A reduced root system is determined, up to isomorphism, by
its Cartan matrix.

Remark 10.4.35 Let F̃ be the group of permutations of � which leave invariant the
Cartan matrix, it can be identified with the subgroup of Aut(�) which leaves the
base � invariant. In fact, Aut(�) is the semidirect product of F̃ and the Weyl group
W and F̃ ∼= Aut(�)/W .

We can also associate a graph to the root system � from its Cartan matrix. The
Coxeter graph of � (with respect to the base �) is defined as follows: the vertices
are the elements of � and two distinct vertices α and β are joined by 0, 1, 2 or 3
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Table 10.5 Coxeter graphs
of reduced root systems of
rank 2

Type Coxeter graph

A1 × A1

A2

B2

G2

Table 10.6 Dynkin diagrams
of root systems of type B2
and G2

Type Dynkin diagram

B2

G2

vertices as n(α, β)n(β, α) is equal to 0, 1, 2 or 3 (see Remark 10.4.30). Table 10.5
shows the Coxeter graphs of root systems of rank 2.

The information given by the Coxeter graph is not enough to determine the
Cartan matrix (and hence the root system), it gives only the angles between the pairs
of simple roots (see Table 10.4) without indicating which one is the longer of the
two. To remedy this, whenever a double or triple edge occurs in the Coxeter graph
of � we can add an arrow pointing to the shorter of the two roots. The resulting
figure is called the Dynkin diagram of �. For instance, in Table 10.6 the Dynkin
diagrams of the root systems of type B2 and G2 are presented.

The extra information allows us to recover the Cartan matrix as follows:

• If α = β then n(α, β) = 2.
• If α = β and α and β are not joined by any edge, we have n(α, β) = 0.
• If α = β and α and β are joined by one edge, then n(α, β) = n(β, α) = −1.
• If α = β and α and β are joined by i edges, with i = 2, 3, then n(α, β) = −1

and n(β, α) = −i if the arrow point to α.

Remark 10.4.36 Specifying a Dynkin diagram is equivalent to specifying a Cartan
matrix. They determine the root system up to isomorphism [62, V Proposition 13]. It
follows that the group F̃ of automorphisms of the Coxeter matrix (Remark 10.4.35)
is isomorphic to the group of automorphisms of the Dynking diagram.

A root system � is called irreducible if it cannot be partitioned into the union
of two proper subsets such that each root in one set is orthogonal to each root on
the other. Let � be a base of �, then � is irreducible if and only if � cannot be
partitioned in two proper subsets �1 and �2 such that each simple root in �1 is
orthogonal to each simple root in �2 [26, 10.4]. If a root system is not irreducible,
then we have a partition of a basis � = �1��2 where each root in �1 is orthogonal
to each root in �2, thus, their corresponding Cartan integers are zero (see Table 10.4)
and its Dynkin diagram is disconnected. In fact we have [62, V Proposition 12]:

Proposition 10.4.37 A root system � is irreducible if and only if its Dynkin
diagram is connected and non-empty.
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In general, let � = �1 �· · · ��t be the partition of the root system � into mutually
orthogonal subsets. If Vi is the span of �i we have that h∗0 = V1 ⊕ · · · ⊕ Vt and �i

is a root system of Vi . We say that � is the sum of the subsystems �i . Every root
system is a sum of irreducible systems [62, V Proposition 11], thus it is enough to
classify irreducible root systems.

Theorem 10.4.38 Each nonempty connected Dynkin diagram is isomorphic to one
of the diagrams in Table 10.1.

One can construct explicitly the root systems corresponding to the Dynkin diagrams
of Table 10.1 (see [62, V.16]). A complex Lie algebra is simple if and only if its root
system � is irreducible, hence the Dynkin diagrams in Table 10.1 correspond to the
complex simple Lie algebras. By Corollary 10.4.16, classifying the complex simple
Lie algebras we also classify the complex semisimple ones.

Remark 10.4.39 By Remark 10.4.36 the subgroup F̃ of Aut(�) can be identified
with the group of automorphisms of the Dynkin diagram. From Table 10.1 we
have:

• F̃ = {1} for types A1, Bn, Cn, G2, F4, E7 and E8.
• F̃ is a group of order 2 for An (n ≥ 2), Dn (n ≥ 5), and E6.
• F̃ is isomorphic to the symmetric group S3 for type D4.

In [52] H. Pinkham defined the root system for a Dynkin diagram in a purely
geometric way, and in [73] and [46] the authors generalized that construction for
the dual graph of the minimal resolution, of rational singularities of surfaces with
reduced fundamental divisors.

10.4.4 Folding of Simply Laced Root Systems

Let � be an irreducible reduced root system. Then there are roots of at most two
different lengths in � corresponding to short and long roots. All roots of a given
length are conjugate under the Weyl group W [26, §10.4 Lemma C]. If all roots
have the same length they are taken to be long by definition and the root system is
said to be simply laced or homogeneous. Thus, the irreducible reduced simply laced
root systems correspond to the Dynkin diagrams in Table 10.1 with no double or
triple edges, that is, of types An, Dn, E6, E7, E8. In this subsection we will describe
how to obtain the non-simply laced root systems from the simply laced ones, by a
procedure known as folding. Here we follow [70].

Let � = {αi}i∈I be a base of the irreducible reduced simply laced root system �

in the real vector space V with inner product 〈·, ·〉. Assume that the roots have been
normalize so that 〈α, α〉 = 2 for all α ∈ �. Let σ ∈ F̃ be a diagram automorphism,
it is equivalent to have a permutation of the index set I such that 〈ασ(i), ασj 〉 =
〈αi, αj 〉 for every i, j ∈ I . Since � spans V , by extending linearly the map αi %→
ασ(i), we get an isometry of V . Let si be the symmetry of V with vector αi . We have
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that σsiσ
−1 = sσ(i), thus σ acts as an automorphism w %→ wσ of the Weyl group

W = W(�).
Now suppose the following condition is satisfied: simple roots in the same σ -

orbit must be orthogonal, or equivalently, σ -orbits are edge free sets in the Dynkin
diagram. Let Iσ = {B1, . . . , Bl} denote the set of σ -orbits on I , it is a partition
of the set I into disjoint blocks of the form {σk(i) | k ∈ Z} for various i ∈ I . For
each block define βj = ∑i∈Bi

αi . Note that each βj has squared length 2bj , with
bj := |Bj |. Moreover

2
〈βi, βj 〉
〈βj , βj 〉 =

Nij

bj

, (10.11)

where Nij denotes the number of edges in the Dynkin diagram between block Bi

and block Bj with i = j . Since σ acts transitively on each block, if follows that
each of the bj nodes in Bj have the same number of neighbours in Bi . Hence, for
i = j

−2
〈βi, βj 〉
〈βj , βj 〉 = # of nodes in Bi adjacent to any fixed member of Bj .

In particular, �σ := {β1, . . . , βl} forms a set of simple roots for some root system
�σ on V but probably non-simply laced. The root system �σ is called the folding
of the simply laced root system �. The relation between the root systems � and �σ

are given by the following theorem:

Theorem 10.4.40 Let � be an irreducible reduced simply laced root system in the
real vector space V and let σ ∈ F̃ . Then

1. If β is a sum of pairwise orthogonal roots in � comprising a single σ -orbit, then
β is a root in �σ . Conversely, all roots of �σ have this form.

2. For each block Bj , let tj be the symmetry with vector βj and βj is a simple root
of �σ . Let s̄j := ∏i∈Bj

si . Then s̄j is fixed under conjugation by σ and the map
tj %→ s̄j extends to an isomorphism from the Weyl group W(φσ ) to Wσ , the
subgroup of W fixed by σ .

3. Every root system may be realized as the folding �σ of a simply laced root system
� by some diagram automorphism σ .

Table 10.7 shows the foldings of the irreducible simply laced root systems.

10.5 From ADE Lie Algebras to Kleinian Singularities

In this section we state Brieskorn’s theorem, which relates the complex simple
Lie algebras of type ADE with the corresponding Kleinian singularities. We
recommend the survey article [39] which complements what we present here.
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Table 10.7 Foldings of simply laced root systems

Simply laced root system Folding

A2n−1 Bn

σ

σ

σ

σ

,⇒

Dn+1 Cn

,⇒

D4 G2

,⇒

E6 F4

1

2

3 4 5 6

σ

σ

,⇒

In this section all the Lie algebras are complex Lie algebras and all dimensions
are complex dimensions.

10.5.1 Nilpotent Varieties of Lie Algebras

We start defining a special algebraic variety inside a complex simple Lie algebra.
Before defining the nilpotent variety of a Lie algebra, we need first to recall the
Jordan-Chevalley decomposition (see [26, §4.2]).

Definition 10.5.1 Let V be a finite dimensional complex vector space and let x ∈
End(V ). We call x semisimple if it is diagonalizable. On the other hand, we call x

nilpotent if xk = 0 for some k > 0.

Theorem 10.5.2 (Jordan-Chevalley Decomposition) Let V a finite dimensional
complex vector space and x ∈ End(V ). There exist unique xs, xn ∈ End(V ) such
that x = xs + xn, with xs semisimple, xn nilpotent and xs and xn commute.
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The elements xs, xn ∈ End(V ) are called respectively the semisimple part and the
nilpotent part of x.

It is possible to introduce an abstract Jordan-Chevalley decomposition on an
arbitrary complex semisimple Lie algebra g (see [26, §5.4]). Let x ∈ g and consider
its image adx ∈ End(g) under the adjoint representation given in (10.7). Take its
Jordan-Chevalley decomposition

adx = (adx)s + (adx)n.

If g is semisimple, g → ad g is an isomorphism of Lie algebras and therefore there
exists unique elements xs, xn ∈ g such that adxs = (adx)s and adxn = (adx)n,
hence x = xs + xn with [xs, xn] = 0. We call xs and xn respectively, the
semisimple and nilpotent parts of x. In case g is a linear complex Lie algebra, i.e.,
a matrix Lie algebra, the usual Jordan-Chevalley and the abstract Jordan-Chevalley
decompositions coincide.

Definition 10.5.3 Let g be a finite dimensional Lie algebra over C. The subset

N(g) := {x ∈ g | adx is nilpotent.}

is called the nilpotent variety of g.

For a Lie algebra g, we say that the nilpotent variety N(g) is trivial if for some
k, N(g) ∼= C

k .

Proposition 10.5.4 ([26, §3.2]) The Lie algebra g is nilpotent if and only if for
every x ∈ g the endomorphism ad x is nilpotent.

Corollary 10.5.5 If g is a nilpotent Lie algebra, then N(g) is trivial.

Proof By Proposition 10.5.4 for any x ∈ g, adx is nilpotent. Hence N(g) = g. ��
Proposition 10.5.6 ([48]) If g is a solvable Lie algebra, then N(g) is trivial.

Hence we only consider the non-solvable Lie algebras g for finding non-trivial
nilpotent varieties. The following characterizations of nilpotent matrices are useful
to compute nilpotent varieties.

Proposition 10.5.7 Let X ∈ gl(n,C). The following are equivalent:

(a) X is nilpotent.
(b) The characteristic polynomial of X is tn.
(c) tr(Xk) = 0 for all k > 0.

The next example shows that considering the nilpotent variety of a complex
simple Lie algebra is taking us into the right direction for our purpose.
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Example 10.5.8 Let g = sl(n + 1,C), the simple Lie algebra of type An (see
Table 10.1). By Proposition 10.5.7-(c) we have

N(g) = {X ∈ g | tr(X2) = tr(X3) = . . . = tr(Xn+1) = 0}.

When n = 1, sl(2,C) is the simple Lie algebra of type A1, we have that
dim sl(2,C) = 3 and

N(g) =
{

X =
(

x y

z −x

)
∣
∣ x2 + yz = 0

}

.

Hence the nilpotent variety of g is defined by one equation, so it is a surface with
singularity of type A1 (see Table 10.3) as we wanted.

However, for n > 1, we have that dimC sl(n+ 1,C) = (n+ 1)2 − 1 and N(g) is
given by n equations, so dimC N(g) = n(n + 1) > 2. In order to get a surface, we
need to intersect N(g) with an appropriate subvariety S of g.

10.5.2 The Adjoint Quotient

In this subsection we will see the nilpotent variety as a fibre of a map called the
adjoint quotient and we will describe the nilpotent variety as union of orbits of the
adjoint action.

Let G be a complex simple Lie group, let g be its Lie algebra. Consider the
adjoint action Ad : G → Aut(g) of G on g defined in (10.6). Given x ∈ g we denote
its orbit by Ox . The stabilizer of x is the Lie subgroup of G defined by

ZG(x) = {g ∈ G | Adg(x) = x}.

Hence we have that the orbit Ox of x is isomorphic to the homogeneous space
G/ZG(x) and therefore dimC Ox = dimC G − dimC ZG(x). The Lie algebra of
ZG(x) is precisely Zg(x), the centralizer of x defined in (10.2). Since dimC G =
dimC g and dimC ZG(x) = dimC Zg(x) we have that

dimC Ox = dimC g− dimC Zg(x). (10.12)

The following theorem by B. Kostant gives a more precise description of the
dimension of the orbits.

Theorem 10.5.9 ([37]) For all x ∈ g,

1. The dimension of the orbit Ox is even for every x ∈ g.
2. dimC Zg(x)− rk(g) ∈ 2Z ≥ 0, where rk(g) is the rank of g.
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By (10.12) the dimension of the orbit Ox of an element x ∈ g is maximal if
the dimension of its centralizer Zg(x) is minimal. By Theorem 10.5.9 the minimal
dimension of a centralizer Zg(X) is rk(g).

Corollary 10.5.10 The maximal dimension of the orbits of the adjoint action is
dimC g− rk(g).

Definition 10.5.11 An orbit of maximal dimension dimC g − rk(g) is called a
regular orbit and the elements in a regular orbit are called regular elements.

Definition 10.5.12 An element x ∈ g such that dimC Zg(x) = rk(g)+ 2 is called a
subregular element and its orbit is called a subregular orbit.

Proposition 10.5.13 ([69, §3.10 Theorem 1]) There is a unique subregular nilpo-
tent G-orbit in g.

Let h be a Cartan subalgebra of g, let r = dimC h = rk(g), and let W be the Weyl
group corresponding to h. By Definition 10.4.28 the Weyl group acts on h∗ and this
action in turn induces an action on h. Let C[g] (respectively C[h]) be the algebra
of polynomial functions on g (respectively on h). Let C[g]G (respectively C[h]W )
denote the subalgebra of G-invariant polynomial functions on g (respectively W -
invariant polynomial functions on h). It is well known that a function on g is
invariant under the action of G on g if and only if the function is constant on every
orbit.

Proposition 10.5.14 Let x ∈ g and let x = xs + xn be its (abstract) Jordan-
Chevalley decomposition. For every f ∈ C[g]G we have that f (x) = f (xs), in
other words, an invariant polynomial function on g is determined by the semisimple
elements of g.

Proof The algebra C[g]G is generated by polynomial functions of the form x →
tr(φ(x)r) where φ : g → gl(V ) is a finitely dimensional representation of g [2,
Ch. VIII, §8, Theorem 1 (ii)]. If x = xs + xn is the (abstract) Jordan-Chevalley
decomposition of x, then φ(x) = φ(xs) + φ(xn) is the (usual) Jordan-Chevalley
decomposition [26, §6.4 Corollary]. Since φ(xs) and φ(xn) commute, all terms
except φ(xs)

k in the expansion of (φ(xs) + φ(xn))k are nilpotent, hence of trace
0. ��

The following theorem compares the previous algebras of invariant polynomials,
its proof can be found in [2, Ch. VIII, §8, Theorem 1].

Theorem 10.5.15 (Grothendieck-Chevalley Theorem) Consider the restriction
homomorphism

ι : C[g] −→ C[h].

(i) The restriction ι|C[g]G is an isomorphism ι|C[g]G : C[g]G −→ C[h]W .
(ii) Let r be the rank of g. There are r algebraically independent homogeneous

polynomials γ1, . . . , γr ∈ C[g]G that generate the algebra C[g]G.
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Definition 10.5.16 By Theorem 10.5.15 the inclusion C[h]W ∼= C[g]G ↪→ C[g]
induces the morphism

γ : g −→ h/W

called the adjoint quotient map of g.

Proposition 10.5.17 ([37]) The adjoint quotient map γ : g −→ h/W has the
following properties:

1. The morphism γ is flat; all fibers of γ have dimension dimC g− r .
2. All fibres are normal and they are a union of finitely many G-orbits in g.
3. Each fibre contains a unique regular orbit and hence it is dense in the fibre.
4. The adjoint quotient map can be realized using the generators of C[g]G given in

Theorem 10.5.15, that is,

γ : g −→ h/W ∼= C
r ,

x %−→ (γ1(x), . . . , γr (x)).

5. An element x ∈ g is a regular element if and only if is a regular point of γ , i.e.,
the differential of γ at x has maximal rank.

6. If x = xs + xn is the Jordan-Chevalley decomposition of x ∈ g we have γ (x) =
γ (xs) for every x ∈ g.

Corollary 10.5.18 The fibre of γ which contains 0, i.e., γ−1(γ (0)) is the nilpotent
variety N(g).

Example 10.5.19 Consider Example 10.2.8-2. Let G = SL(n + 1,C) and let g be
its Lie algebra sl(n+1,C). By Example 10.4.21 a Cartan subalgebra h of g is given
by the zero-trace diagonal matrices, thus rk(g) = dimC h = n. By Example 10.4.31
the Weyl group is the symmetric group Sn+1 and it acts on h permuting the entries
in the diagonal. The adjoint representation is given by matrix conjugation

G× g→ g,

(g, x) %→ gxg−1.

Let X ∈ g. Consider the characteristic polynomial of X

PX(t) = det(tI −X) = tn+1 + an(X)tn + an−1(X)tn−1 + · · · + a1(X)t + a0(X).

The coefficients ai with i = 0, . . . , n are polynomial functions on g and they are
clearly invariant under the adjoint action. Since an(X) = tr(X) = 0 for every X ∈ g,
we have rk(g) = n non-zero invariant polynomials ai, i = 0, . . . , n− 1 and in fact
they are a set of generators of C[sl(n,C)]SL(n,C) as in Theorem 10.5.15. Hence the
adjoint quotient is given by
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γ : g −→ C
n,

X %−→ (a0(X), . . . , an−1(X)).
(10.13)

If X ∈ g is a nilpotent element by Proposition 10.5.7-(b) ai(X) = 0 for i =
1, . . . , n, and in this case the nilpotent variety N(g) is the fibre over zero γ−1(0).
Hence, ai(X) = 0 with i = 1, . . . , n are the n equations that define N(g) in g
(compare with Example 10.5.8).

For the case n = 2, the adjoint quotient for sl(3,C) is given by

γ : g −→ C
2, (10.14)

( a b c
d e f
g h −a−e

)
%→ (−abd+a2e−bde+ae2+ceg−bfg−cdh+af h,−a2−bd−ae−e2−cg−f h).

10.5.3 Slodowy Slices for Kleinian Singularities

As in the previous subsection, let G be a complex simple Lie group of dimension
n, let g be its Lie algebra of rank r . By Proposition 10.5.17 the nilpotent variety
N(g) of g is a fibre of the adjoint quotient (say N(g) = γ−1(0)) which contains
a unique regular nilpotent orbit Oreg and a unique subregular nilpotent orbit Osreg.
This description of N(g) will allow us to find a subvariety S of g such that N(g)∩S
is a surface with an isolated singularity.

Definition 10.5.20 Let x ∈ g and let Ox be its G-orbit. A transverse slice to Ox

at x is a smooth locally closed subvariety S ⊂ g, such that x ∈ S, dimC S =
codimOx = dimC Zg(x), and the map G × S → g defined by (g, s) %→ Adg(s) is
a smooth submersion.

A transverse slice can be obtained taking an affine subspace in g complementary to
the affine tangent space of Ox at x. We are interested in a transverse slice Sx to the
subregular nilpotent orbit Osreg at a subregular nilpotent element x ∈ Osreg since we
have the following:

• We have Sx ∩N(g) = (Sx ∩ Osreg) � (Sx ∩ Oreg).
• Sx intersects Osreg only at x.
• The slice Sx is also transverse to the regular nilpotent orbit Oreg, thus Sx ∩ Oreg

is a complex submanifold of Oreg.
• codimC Sx = n − r − 2, codimC Oreg = r , so codimC(Sx ∩ Oreg) = n − 2,

therefore dimC Sx ∩ Oreg = 2.
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Hence, Sx ∩ N(g) is a complex surface with an isolated singularity at x. Another
way to see this is to consider the restriction of the adjoint quotient to Sx

γ̃ = γ |Sx
: Sx → C

r .

Then, γ̃−1(0) = Sx ∩ N(g) is an algebraic surface since dimC Sx = r + 2. Also,
by Proposition 10.5.17-(5), the points in Sx ∩ Oreg are regular points of γ̃ and x is
a critical point of γ̃ , therefore γ̃−1(0) = Sx ∩N(g) is an algebraic surface with an
isolated singularity.

Now we can state the theorem which relates directly the simple Lie algebras
with Kleinian singularities, conjectured by A. Grothendieck. As we mentioned in
the Introduction, E. Brieskorn announced a proof of Grothendieck’s conjecture at
the International Congress of Mathematicians at Nice in 1970 and sketched a proof
in its Proceedings [7]. A proof of this theorem was given in H. Esnault’s thesis [17]
following a geometric idea by Grothendieck. Later, the details of Brieskorn’s proof
were given by P. Slodowy in [65].

Theorem 10.5.21 Let g be a simple Lie algebra of type � = Ar, Dr or Er . Let
x ∈ g be a subregular nilpotent element of g. Let Sx ⊂ g be a transverse slice at x

to the G-orbit of x (the subregular nilpotent orbit). Then

1. the intersection Sx ∩N(g) is a surface with a Kleinian singularity of type �.
2. The restriction γ |Sx

: Sx → h/W is a semi-universal deformation of the
singularity Sx ∩N(g).

There is a canonical way to construct transverse slices by P. Slodowy in [65,
§7.4]. To do this we need the following theorem:

Theorem 10.5.22 (Jacobson-Morozov Theorem) Let g be a semisimple Lie alge-
bra. Let x ∈ g be a nonzero nilpotent element in g. There exist elements y, h ∈ g
such that [h, x] = 2x, [h, y] = −2y, [x, y] = h.

The triple (x, y, h) of such elements in g is called an sl2-triple in g.
Let x ∈ g be a nonzero nilpotent element in g. Computing the differential of the

orbit map G → g given by g %→ Adg(x) shows that the tangent space to the orbit Ox

at x is given by Tx(Ox) = x + [g, x]. A transverse slice S has the form S = x + V ,
where V is any linear complement to [g, x].
Definition 10.5.23 For a fixed sl2-triple (x, y, h) in g, the affine space

Sx = x + Zg(y)

is called a Slodowy slice at x.

Though sl2-triples in g are not unique, they are all sl2-conjugate and hence they give
isomorphic Slodowy slices.



10 Finite Dimensional Lie Algebras in Singularities 575

Example 10.5.24 Let g = sl(3,C). The nilpotent variety is given by N(g) =
γ−1((0, 0)), where γ is the adjoint quotient map given in (10.14), thus

N(g) =
⎧
⎨

⎩
X =

⎛

⎝
a b c

d e f

g h −a − e

⎞

⎠

∣
∣
∣
∣
∣

abd−a2e+bde−ae2−ceg+bfg+cdh−afh=0

a2+bd+ae+e2+cg+f h=0

⎫
⎬

⎭

and it is defined by two equations.
A regular and a subregular elements are respectively

X′ =
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , X =
⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ .

Hence the regular and subregular orbits are

Oreg = SL(3,C) ·X′, and Osreg = SL(3,C) ·X.

The subregular element X lies in an sl2-triple (X, Y, H) with

H =
⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ , Y =
⎛

⎝
0 0 0
1 0 0
0 0 0

⎞

⎠ .

The corresponding transverse Slodowy slice SX is given by

SX = X + Zg(Y ),

where Zg(Y ) is the centralizer of Y in g which is given by

Zg(Y ) =
⎧
⎨

⎩

⎛

⎝
x 0 0
w x y

z 0 −2x

⎞

⎠

⎫
⎬

⎭

Hence

SX =
⎧
⎨

⎩

⎛

⎝
x 1 0
w x y

z 0 −2x

⎞

⎠

⎫
⎬

⎭

Notice that SX is isomorphic to C
4. The intersection of N(g) with the slice SX

consists of the elements in SX which satisfy the equations definingN(g), i.e., whose
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coefficients of its characteristic polynomial vanishes. So they satisfy

−2x3 + 2xw + yz = 0. (10.15)

3x2 +w = 0, (10.16)

By (10.16) we have that w = −3x2 and substituting in (10.15) we get

8x3 − yz = 0 (10.17)

which is the equation defining an A2-singularity (see Table 10.3).
Now, restricting the adjoint quotient (10.14) to the Slodowy slice we obtain the

map

γ : SX
∼= C

4 −→ C
2,

X =
⎛

⎝
x 1 0
w x y

z 0 −2x

⎞

⎠ %→ (2x3 − yz− 2wx,−w − 3x2), (10.18)

setting t = −w − 3x2 we get

w = 3x2 − t,

and substituting in (10.18) we get

γ : SX
∼= C

4 −→ C
2,

(x, y, z, t) %→ (8x3 − yz+ 2tx, t),

the semi-universal deformation of the A2-singularity (10.17) given in (10.4).

10.6 Further Extensions

Slodowy extended Theorem 10.5.21 for complex Lie algebras of type Bn, Cn, F4
and G2 which are the ones with non-simply laced root systems (with roots of
different lengths). Their corresponding Dynkin diagrams are showed in Table 10.1.

Roughly speaking, these diagrams are quotients of the dual graphs of the minimal
resolutions of Kleinian singularities by certain symmetries. Slodowy defines a
simple singularity of type Bn, Cn, F4 or G2 as a couple (S, F ) of a simple
(Kleinian) singularity S and a group F of automorphisms of S according to the
following list, in all cases F = �′/� operates naturally on C

2/� (see Table 10.8
and compare with Table 10.3).
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Table 10.8 Simple
singularities of type
Bn, Cn, F4 and G2

Type (S, F ) Type S � �′ F

Bn A2n−1 C2n Dn Z2

Cn Dn+1 Dn−1 D2(n−1) Z2

F4 E6 T O Z2

G2 D4 D2 O S3

The action of F lifts in a unique way to an action on the minimal resolution
S̃ of S. Since F fixes the singular point of S, the exceptional set E of S̃ will be
stable under the action of F and behaves as a permutation group of its components.
Note that the group F corresponds to the group F̃ given in Remark 10.4.39 for the
simply laced root systems. The diagram of (S, F ) is obtained as an “F -quotient”
of the dual graph of the minimal resolutions of S given in Table 10.3, i.e., by the
folding of ADE-Dynkin diagrams given in Table 10.7, see [65, §6.2] for details.

Slodowy also extended these results for arbitrary fields (not necessarily alge-
braically closed) under some mild conditions on the characteristic of the field (see
[64, 65]). In [60, 61] the authors obtain deformations of simple singularities of
dimensions different from two, for instance, of the simple curve singularities. In
[68], the author introduced a natural analogue of the slice Sx for regular nilpotent x.
Note that, extending these results to other nilpotent orbits may not give an isolated
singularity. But, it will be interesting to classify all singularities in this way.

10.7 Simple Elliptic Singularities

Citing Looijenga in [42] “In V. I. Arnold’s hierarchy of isolated hypersurface
singularities the simple-elliptic singularities come next to the simple singularities
and this property actually characterizes them”.

Let E be an elliptic curve and let L be a holomorphic line bundle over E

with negative Chern class c. Contracting the zero-section to a point one obtains a
surface singularity S called a simple elliptic singularity. The surface S is a complete
intersection if and only if c ≥ −4. In [56] K. Saito proved that for c = −3,−2,−1
the surface S is an hypersurface simple elliptic singularity of type Ẽ9−c with
equation:

Ẽ6 : x3 + y3 + z3 + λxyz = 0,

Ẽ7 : x4 + y4 + z2 + λxyz = 0,

Ẽ8 : x6 + y3 + z2 + λxyz = 0,
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where λ ∈ C is such that the singularity is isolated. The simple elliptic singularity
with c = −4 is an isolated complete intersection singularity in C

4 of type D̃5

D̃5 :
{

x2 + y2 + λzw = 0,

xy + z2 +w2 = 0,
(10.19)

where λ ∈ C with λ = 0, 1/4.
As we mentioned in the Introduction, instead of using a complex simple Lie

algebra, one can obtain the Kleinian singularities from the corresponding simple
complex Lie group, using the unipotent variety instead of the nilpotent variety.
In [24] Helmke and Slodowy obtained the complete intersection simple elliptic
singularities from the adjoint quotient of the infinite-dimensional loop group of
a simple complex Lie group. In contrast with the finite-dimensional group, some
elements of its loop group do not have a Jordan-Chevalley decomposition and the
exponential map is not surjective. Therefore it is not possible to work in the Lie
algebra as in the finite-dimensional case (see [25]).

In [47, 48] the authors construct the simple elliptic singularity D̃5 from the 6-
dimensional Lie algebra sl(2,C)⊕ sl(2,C) by the same method given in Sect. 10.5
generalizing Slodowy slices. In the rest of this section, we present this construction.
Set g := sl(2,C)⊕ sl(2,C). The nilpotent variety of g is given by

N(g) =
{(

a b

c −a

)

a2 + bc = 0

}

×
{(

d e

f −d

)

d2 + ef = 0

}

We can also see the nilpotent variety of g as the inverse image of the origin by the
adjoint quotient map

γ : g −→ h/W ∼= C
2

((
a b
c −a

)
,
(

d e
f −d

))
%→ (−a2 − bc,−d2 − ef ).

where a Cartan subalgebra h of g is

h :=
{(

a 0
0 −a

)}

⊕
{(

d 0
0 −d

)}

and the Weyl group W is isomorphic to Z/2Z⊕ Z/2Z.
We need to choose a special slice as the Slodowy slices are not suitable in this

case. The reader can see [47, 48] for more details. Now we construct a generic linear
subspace of g, that we call generalized Slodowy slice: Let x ∈ g and let x = xs +xn

be its Jordan-Chevalley decomposition (Theorem 10.5.2) where xs is semisimple
and xn is nilpotent such that [xs, xn] = 0.
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Definition 10.7.1 A 2-dimensional subspace V ⊂ g is said to be a good subspace if
for a basis x, y ∈ V , we have x = (xs, xn) and y = (yn, ys), where xs, ys ∈ sl(2,C)

are non-zero semisimple elements and xn, yn ∈ sl(2,C) are non-zero nilpotent
elements in g. We denote it by V(x,y).

Definition 10.7.2 A 4-dimensional subspace S(x,y) ⊂ g is called a generalized
Slodowy slice if there exists a 2-dimensional good subspace V(x,y) in g such that

S(x,y) = V ⊥
(x,y) = {z ∈ g | K(z, v) = 0 for each v ∈ V(x,y)}

where z = (Z1, Z2), v = (V1, V2) ∈ g and K( , ) is the Killing form of g given by

K(z, v) = K
(
(Z1, Z2), (V1, V2)

) = 4(tr(Z1V1)+ tr(Z2V2)).

Hence we have:

Theorem 10.7.3 ([48]) Let S(x,y) ⊂ g be a generalized Slodowy slice in g. Then
(X(x,y), 0) = (N(g) ∩ S(x,y), 0) is a surface in C

4 with a D̃5-singularity.

The normalization of good subspaces gives simple coordinates (p, q) ∈ C
2

which parameterize them:

Lemma 10.7.4 ([48, Lemma 2.3]) Let V ⊂ g be a 2-dimensional good subspace.
Then there exists g ∈ SL(2,C)×SL(2,C) such that g−1Vg has a basis x = (xs, xn)

and y = (yn, ys) with the following properties:

1. xs = ys =
(

1 0
0 −1

)
.

2. xn =
( p 1
−p2 −p

)
for some p ∈ C or xn =

(
0 0
1 0

)
.

3. yn =
( q 1
−q2 −q

)
for some q ∈ C or yn =

(
0 0
1 0

)
.

Hence, if we take a generalized Slodowy slice S(x,y) with x = (xs, xn(p)) and
y = (yn, ys(q)) given by Lemma 10.7.4, then (X(x,y), 0) is obtained as:

X(x,y) =
{

(a, b, d, e) ∈ C
4 g1 := a2 − 2qab+ q2b2 − 2bd = 0

g2 := −2ae+ d2 − 2pde+ p2e2 = 0

}

. (10.20)

More generally, let A and B be 4 × 4 symmetric matrices and consider the
singularity defined by two quadratic equations in C

4, say

S(A,B) := {v = (x, y, z, w) ∈ C
4 | f (v) = g(v) = 0}

where

f (v) = vAvt , g(x, y, z, w) = vBvt ,

and vt is the transpose vector. We obtain that:
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Proposition 10.7.5 ([48, Lemma A.11]) With the preceding notation, let (A, B) ∈
Sym4(C)× Sym4(C) with A ∈ GL(4,C). Then (S(A,B), 0) has an isolated surface
singularity if and only if the characteristic polynomial of A−1B has no multiple
root.

Note that:

Remark 10.7.6 ([48]) (S(A,B), 0) has an isolated surface singularity if and only if it
is a type D̃5-singularity.

10.7.1 Semi-universal Deformation

Now we present the construction of a semi-universal deformation φ : (X, 0) →
(B, 0) of the D̃5-singularity (X(x,y), 0) using the Lie algebra g = sl(2,C)⊕sl(2,C).
By [72] the base B of a semi-universal deformation is of dimension 7.

Consider (X(x,y), 0) given by (10.20). By [48], when λ = 0, 1/4 in (10.19), the
Tjurina algebra T 1 is generated by the vectors (1, 0), (b, 0), (e, 0), (0, 1), (0, b),

(0, ae), (0, e). Hence we have that the base of the deformation is given by B :=
C

2 × C
3 × h/W ∼= C

7. To construct the semi-universal deformation we deform the
adjoint quotient and the generalized Slodowy slice as follows. Consider the adjoint
quotient map

γ : g = sl(2,C)⊕ sl(2,C) → g/W ∼= C
2

(X1, X2) %→ (det X1, det X2).

Set x∞ = y∞ :=
(

0 0
1 0

)

and let (α, β) ∈ C
2, we deform γ by

γ(α,β) : g = sl(2,C)⊕ sl(2,C) → g/W ∼= C
2

X = (X1, X2) %→
(

det X1 + αK
(
z, (0, x∞)

)
, det X2 + βK

(
z, (y∞, 0)

))
.

Deform the generalized Slodowy slice S(x,y) = {z ∈ g | 〈z, x〉 = 〈z, y〉 = 0} by

S(x,y)(γ, δ, ε) := {z ∈ g | 〈z, x〉 + γ 〈z, (xs, 0)〉 = 4δ, 〈z, y〉 = 4ε}

where (γ, δ, ε) ∈ C
3. Take as the total space of the deformation

X := {(Z, α, β, γ, δ, ε, λ, μ) ∈ g× S | γ(α,β)(Z) = (λ, μ), Z ∈ S(x,y)(γ, δ, ε)
}

and let φ : X→ S be the second projection.
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Theorem 10.7.7 ([48]) With previous notation, the projection φ : (X, 0) → (B, 0)

is a semi-universal deformation of (X(x,y), 0) for pq = 0, 1/4.

10.8 McKay Correspondence

Recall from Sect. 10.3.1 that given a finite subgroup � of SL(2,C), the dual graph of
the minimal resolution of the corresponding Kleinian singularity C

2/� is a Dynkin
diagram of type ADE. In [44] McKay obtained the same diagrams directly from the
irreducible representations of �, this gives a one-to-one correspondence between
(non-trivial) irreducible representations of the group and the components of the
exceptional set of the minimal resolution of the corresponding Kleinian singularity.
In this section, we briefly describe this correspondence, known as the McKay
correspondence. Even though this correspondence is not related to Lie algebras, it
completes the picture of the beautiful relation between simple Lie algebras, finite
subgroups of SL(2,C) and Kleinian singularities, via Dynkin diagrams of type
ADE. We recommend the articles by Reid [54] and Riemenschneider [55] for a
more complete account on different approaches of McKay correspondence.

Let � be a finite subgroup of GL(2,C) (see Sect. 10.3). The groups � has a finite
number of irreducible representations, in fact, its number is equal to the number
of conjugacy classes of �. Let Irr(�) = {ρ0, ρ1, . . . , ρr } be the set of complex
irreducible representations of �, where ρ0 denotes the trivial representation. Let
ρ be the natural representation on C

2 given by the inclusion � ⊂ GL(2,C).
Consider the following tensor products of representations and their corresponding
decomposition as direct sum of irreducible representations

ρ ⊗ ρi =
r⊕

j=0

aijρj , j = 0, . . . , r, (10.21)

where aij is the multiplicity of ρj in ρ ⊗ ρi . With this information we construct
the McKay quiver of �, denoted by Q(�), as follows: associate a vertex to each
irreducible representation ρi , and join the i-th vertex to the j -th vertex by aij arrows.
We take the convention that an undirected edge between to vertices, represents a pair
of arrows between those vertices pointing in opposite directions. For every finite
subgroup � of SL(2,C) one has aij = aji ∈ {0, 1}, so in this case the McKay
quiver is just a graph. In [44] McKay made the following remarkable observation
computing the McKay quivers case by case:

McKay Correspondence Let � be a finite subgroup of SL(2,C). If in the McKay
quiver Q(�) of � we remove the vertex corresponding to the trivial representation
ρ0, then one obtains the dual graph of the minimal resolution �(S) of the Kleinian
singularity S = C

2/�, which in turn corresponds to a Dynkin diagram of type
ADE (see Table 10.3).
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Slodowy [65] generalized the construction of the McKay quiver to obtain the
Dynkin diagrams of type Bn, Cn, F4 and G2 given in Table 10.1. Let (�, �′) be a pair
of finite subgroups of SL(2,C) such that � is normal in �′. If ρ is a representation of
�′ we denote by ρ↓ its restriction to the subgroup �. Let Irr(�′) = {ρ0, ρ1, . . . , ρr }
be the set of complex irreducible representations of �′, where ρ0 denotes the
trivial representation. Let ρ

↓
i , i = 0, . . . , r be the restricted representations of

the subgroup �. Let ρ be the natural representation of � on C
2 given by the

inclusion � ⊂ GL(2,C) which can be considered as the restriction of the natural
representation of �′. Consider the following tensor products of representations and
their corresponding decomposition as direct sum of the representations ρ

↓
i

ρ ⊗ ρ
↓
i =

r⊕

j=0

aij ρ
↓
j , j = 0, . . . , r, (10.22)

and construct the corresponding quiver as before. Considering the pairs (�, �′) of
finite subgroups of SL(2,C) given in Table 10.9 one obtains the Dynkin diagrams
of type Bn, Cn, F4 and G2 (compare with Table 10.8).

Notice that with respect to Table 10.8, in Table 10.9 for G2, the group O
was replaced by the smaller group T. This simplifies the description and the
generalization of Theorem 10.5.21 for the simple Lie algebra G2 remains valid when
reformulated accordingly (see [65, Appendix III]).

A conceptual geometric construction of the McKay correspondence was obtained
in the series of articles by Gonzalez-Sprinberg and Verdier [21], Knörrer [36],
Artin and Verdier [1] and Esnault and Knörrer [19]. Let π : S̃ → S be the
minimal resolution of a Kleinian singularity S = C

2/�. To an irreducible
representation ρi of � one associates an indecomposable reflexive OS-module M .
The module π∗M/Torsion is proved to be locally free and its first Chern class
c1(π

∗M/Torsion) is the Poincaré dual of a curvette hitting transversely an unique
irreducible component Ei of the exceptional set E of S̃. The component Ei is the
image of the representation ρi under McKay correspondence. The first Chern class
determines the module M along with the representation ρi . Conversely, for any
irreducible component of the exceptional set there is an irreducible representation
and a module realizing it.

Other interesting interpretations of McKay correspondence have been found, for
instance, in terms of Hilbert schemes [10, 27, 28] or equivalence of derive categories
[32].

Table 10.9 Dynkin diagrams
Bn, Cn, F2 and G2 from
pairs of subgroups � � �′

� �′ Dynkin diagram

C2n Dn Bn

Dn−1 D2(n−1) Cn

T O F4

D2 T G2
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The McKay correspondence was generalized for arbitrary rational surface
singularities in the articles by Esnault [18] and Wunram [74]. Esnault notice that
for quotient singularities by subgroups of GL(2,C) which are not contained in
SL(2,C), the first Chern class c1(π

∗M/Torsion) and the rank of the module are
not enough to determine the reflexive module M , so in this case the correspondence
given by Artin and Verdier is not a bijection. To fix this problem Wunram use
reflexive modules which satisfy certain condition which he called special reflexive
modules. He proved that the construction by Artin and Verdier of the first Chern
class c1(π

∗M/Torsion) gives a bijection between the set of special indecomposable
reflexive OS-modules and the set of irreducible components of the exceptional
set of the minimal resolution of the singularity. Moreover, the first Chern class
c1(π

∗M/Torsion) determines special reflexive OS-modules.
Khan in [31] studied the case of normal surface singularities, focusing on the

minimally elliptic singularities introduced by Laufer in [38], that is, Gorenstein
surface singularities with geometric genus pg = 1. Let S be a minimally elliptic
singularity, π : S̃ → S its minimal resolution and Z the fundamental cycle. He
gave a correspondence between isomorphism classes of reflexive OS-modules and
some locally free sheaves over OZ which satisfy certain conditions. A particular
case of minimal elliptic singularities are the simple elliptic singularities described in
Sect. 10.7, for this, Kahn gave a complete classification of indecomposable reflexive
modules.

Recently, a generalization of McKay correspondence for Gorenstein surface
singularities was given by Fernández de Bobadilla and Romano-Velázquez in
[20]. The authors generalize the notion of special reflexive module defined by
Wunram in [74], and, given a Gorenstein surface singularity (X, x), they give a
bijection between the set of special indecomposable reflexive OX-modules up to
isomorphism, and the set of irreducible divisors E over x, such that any resolution
of X where E appears, the Gorenstein form has neither zeros nor poles along E.
This bijection specializes to the classical McKay correspondence in the case when
(X, x) is a Kleinian singularity.

There have been also generalizations of McKay correspondence for the higher
dimensional case, i.e., for subgroups � of SL(n,C), see for instance [3, 29, 54].

Let us finish with the last phrase in [44] by McKay “Would not the Greeks
appreciate the result that the simple Lie algebras may be derived from the platonic
solids?”
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Bott R., 492, 500
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singularity, 392
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manifold, 8
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spaces, 535
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function, 302
sheaf, 297
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Control
conditions, 259
data, 283

Controlled vector field, 250
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Coxeter-Dynkin diagram, 459. see Dynkin

diagram
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Coxeter graph, 564, 565

A1 × A1, 565
A2, 565
B2, 565
G2, 565
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1. see Projective line

Critical locus, 426
Cross, 47

its monomial lattice, 47
its weight lattice, 47

Curling, 164
Curve

complex, 8
on a complex surface, 9
simple normal crossings, 42
singularity

abstract, 13
plane, 10

Cycle
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nearby, 314
vanishing, 315, 453
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Deformation, 391, 407, 408, 553
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Degree
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Deligne, P., 504
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Derived

category, 293, 582
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Determinantal singularity, 419
Determinant of a module, 222
Diagram
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Dynkin (see Dynkin diagram)
Enriques, 69
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Hamiltonian, 279
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complex, 8
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Krull, 12

Discriminant, 426, 470
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system, 455
triangle, 296
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exceptional, 41
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Verdier, 298

Dualizing complex, 298
Dual of a cone, 36
Dual variety, 494
Du-Val singularity. see Kleinian singularity
Dynkin diagram, 548, 552, 565, 581

An, 548, 552, 566, 570
automorphism group (F̃ ), 565, 566
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Bn, 548, 576, 582
Cn, 548, 576, 582
Dn, 548, 552, 566
E6, 548, 552, 566
E7, 548, 552, 566
E8, 548, 552, 566
F4, 548, 576, 582
G2, 548, 565, 576, 582
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lateral, of a petal, 80
of a cone, 31
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universal, 117
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Element

Coxeter, 459
Embedded
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Embedding
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is semicontinuous, 396
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Enriques

diagram, 69
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topological, 439
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right, 472
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Exotic sphere, 328. see Sphere exotic
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function, 112

Eyral C., 525

F
Face

of a cone, 31
Family of lines, 283
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of a lattice, 32
Newton, 52
Newton, relative to a cross, 55
of a set, 32
tree, 70

Fat point, 399
Fibration theorem

general, 378, 380
Milnor, 322, 451
in a tube, 329, 342

Fibre
Milnor, 425, 451
special, 391, 425

Fieseler K-H, 525
Finite subgroups of SL(2,C). see SU(2)

First isotopy theorem of Thom-Mather, 250,
381, 502, 524

First order deformation, 406
Flat morphism, 391, 553

at a point, 391
Flatness, 391

criterion
by relations, 392

Focal point, 498, 499
Foliation by lines, 231

reduction of singularities of, 232
Form

Seifert, 460
Formally

versal, 399
Frankel T., 492, 497
Frisch’s theorem, 391
Frontier condition, 245
Function

contact complexity, 115
exponent, 112
index, 112
order, 15
slope, 70

Functor
derived, 294

Fundamental cycle, 583
Fundamental group, 502



Index 593

G
Galois group, 16
Gauss map, 221
General fibre, 534
Geometric

basis, 456, 463
genus, 583
monodromy, 451

Germ
of analytic function (FM (p)), 543

deformation, 391
derivations of, 543

GL(2,C)

finite subgroup, 548, 549
small subgroup, 549

GL(n,C), 545
gl(n,C), 543, 546
Gonzalez-Sprinberg, G., 538
Good

neighbourhoods, 504, 508
representative, 425
resolution, 153
subspace, 579

Gorenstein
form, 583
singularity, 551, 583

Goresky M., 492
Graph

dual, 42
weighted dual, 22

Grassmanian
of the i-jet module, 228

Grauert, 401
Grothendieck A., 492, 508
Group

cyclic (see SO(3))
dihedral, 549 (see SO(3))
icosahedral (see SO(3))
monodromy, 456 (see monodromy)
octahedral (see SO(3))
tetrahedral (see SO(3))

H
Hamiltonian action, 279
Hamm H.A., 500
Handles, attaching, 378
Heisenberg group (N), 551
Hessian, 277
Hilbert polynomial, 197

upper semicontinuity of, 198
Hilbert-Samuel function, 197

stability under blowing up, 198
upper semicontinuity of, 198

Hilbert scheme, 582
Hironaka, Af stratifications theorem, 343
Hirzebruch-Jung

resolution, 172
singularity, 169, 176

Homogeneous root system. see Root system,
simply laced

Homotopic, 462
Homotopical depth, 509
Hopf morphism, 17
Hyperbolic

fixed point, 311
singularities, 476

minimal, 481
Hypersurface singularity, 392

I
ICIS, 350, 429

good representative, 351
Ideal

invertible, 193
locally principal, 193
logarithmic Jacobian, 226
sheaf

invertible, 194
locally principal, 193

Idealistic exponent, 212
Inclination

of an elementary Newton polygon, 117
Indeterminacy locus, 20
Induced deformation, 394
Infinitesimal

deformation, 405
first order, 406
second order, 412

Initial form, 189
Integral

closure, 12
extension, 12
length, 31
point, 31

Intersection
cohomology, 309
homology, 538
matrix, 458
number

of plane curve singularities, 11
Invariant

cycle, 497
cycle theorem, 315

Isolated
singularity, 400, 533
subgroup, 206
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Isomorphic
deformations, 393

Isotopy lemma, 282, 285

J
Jacobian criterion, 23
Jordan-Chevalley decomposition, 568, 571,

578
abstract, 569, 571
nilpotent part, 569
semisimple part, 569

K
Kaup L., 525
Killing form, 558, 562, 579

non-degenerate, 559, 560, 562
positive definite, 562

Kleinian singularity, 548, 550, 552, 553, 574,
576, 581, 582

Kodaira-Spencer map, 406
Koszul, 413

relations, 397, 413
Kuo-Verdier condition (w), 251

L
Lê

attaching theorem, 360
conjecture, 382
numbers and cycles, 376, 377

Lê D.T., 493
Lê-Greuel formula, 350
Lê-Ramanujam theorem, 384
Lattice, 30

Milnor, 451
monomial, 30
vanishing, 479
weight, 30

Laudal, 414
Leading edge, 188
Leaf space, 288
Lefschetz fixed point theorem, 313
Lefschetz number, 312, 371
Lefschetz pencil, 494
Lefschetz S., 492
Lens space, 173
Levi form, 302
Lie algebra, 543, 546, 547

abelian, 543, 560
adjoint representation (see adjoint

representation)
automorphism, 543

centralizer, 544, 560, 570, 575
of complex analytic vector fields, 544
derived series, 556
derived subalgebra, 556
direct sum, 556
dual, 560
exceptional, 548
homomorphism, 543, 547
ideal, 547
isomorphism, 543, 547
Levi decomposition, 557
of a Lie group, 545
lower central series, 556
matrix, 548
nilpotent, 556, 569
normalizer, 544
radical, 557
rank, 559, 570
representation, 557
semisimple, 557, 559, 561, 574
simple, 547, 559, 566, 581
solvable, 556, 559, 569
subalgebra, 544, 546

self-normalizing, 559
of type ADE, 542, 548, 553, 570, 574

Lie bracket, 543
anti-commutativity, 543
Jacobi identity, 543
of vector fields, 544

Lie group, 546, 547
adjoint representation (see adjoint action)
complex, 545, 547

simple, 547
simply connected, 547

homomorphism, 545, 547
isomorphism, 545
Lie subgroup, 545, 546
representation, 557
tangent space at the identity, 545

Link, 187, 460
of complex surface germ, 153
of a point, 282
of a singularity, 328, 345, 550
of a stratum, 281

Lipschitz
stratification, 255
transversal, 248

Local
coefficient system, 278, 289
conic structure theorem, 516
Lefschetz theorems, 505
retraction, 259
ring of a variety at a point, 198
uniformization, 207
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vanishing homotopy type, 529
Locally finite stratification, 245
Local uniformization

patching of, 209
patching of according to Piltant, 210

Łojasiewicz S., 509
Loop

simple, 454
Lotus, 81

abstract, 88, 92
marked, 82
Newton, 81
of a Newton fan, 81
of a set, 81
of a toroidal pseudo-resolution, 93
universal, 81

Lyashko-Looijenga mapping, 472

M
MacPherson R., 492
Manifold collection, 244
Map

projectivisation, 17
Mapping

cone, 295
cylinder, 283
Lyashko-Looijenga, 472

Massey, topology Milnor fiber, 378
Massey W., 513
Mather J., 502
Matrix

intersection, 458
Maximal

contact, 212
rectified homotopical depth, 526

McKay correspondence, 553, 581–583
McKay quiver, 581, 582
Membrane, 93
Milnor

fibration, 329, 346, 380, 451
fibre, 314, 425, 451

diffeomorphism type, 373
lattice, 451
number, 349, 354, 429
sphere, 343, 379

Milnor J., 492, 498, 505
Minimal hyperbolic singularities, 481
Minimally elliptic singularities, 583
Miniversal deformation, 400
Minkowski sum, 117
Modality, 472
Modification, 20

associated to a fan and a cross, 47

Newton, relative to a cross, 55
in the toroidal category, 46

Module number, 472
Moment map, 311
Monodromy, 333, 367, 371

classical, 452
operator, 452

geometric, 451
group, 456

Monoid algebra, 36
Monotone cycle, 478
Mori program, 186
Morphism

birational, 184
of deformations, 393, 407
finite, 13
normalization, 13
proper, 184
regular, 233
toric, 40
of toroidal varieties, 46

Morse
data, 277

coarse, 277
normal, 286
tangential, 287

function, 277, 285
existence, 287
perfect, 278, 279

group, 299
perverse sheaf, 309

index, 277, 278
theory, 277, 278, 492, 498

complex, 302
of sheaves, 299

Morse-Bott, 278, 311
Morse M., 498
Morsification, 452
Moving the wall, 282
Multigerm, 402
Multiplicity, 264

of a plane curve singularity, 10
of a polynomial at a point, 196
upper-semicontinuity of, 198

N
Nash blowing up, 221

higher, 228
higher, curve case, 229
normalized, a characterization in terms of

polar curves, 224
resolves singularities of curves in

characteristic 0, 223
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of a toric variety; coordinate charts, 227
of toric varieties, 225
universal property of, 222

Natural embedding
of Eggers-Wall trees, 124

Nearby cycles, 314
Neighbourhood

basic, 282
boundary, 425

Newton
lotus, 81
polygon, 50, 188
polyhedron, 188

Newton non-degenerate
curve singularity, relative to a cross, 59
function, 59

Newton-Puiseux
root, 112
series, 15
theorem, 15

Newton’s rotating ruler method, 188
Nilpotent

element, 568, 573 (see Jordan-Chevalley
decomposition)

variety, 569, 572, 575, 578
trivial, 569

Nobile’s theorem, 223
higher analogue of, 230

Nodal curve, 185
Non-degenerate

critical submanifold, 278
quadratic cone, 185

Non-singular
model, 186
point, 400

Normal
complex variety, 12
cone, 265

of a subvariety, 198
domain, 201
flatness, 198
germ, 12
Morse data, 286, 527
ring, 12
sheaf, 409
slice, 278, 280, 281, 527
surface singularity, 583

Normalization, 200
Nuño Ballesteros J.J., 493

O
Obstruction

map, 412–414

module, 412
One parameter subgroup, 35
Open-book, 348

binding of, 348
fibration of, 348
page of, 348

Openness of versality, 402
Operator

classical monodromy, 452 (see
monodromy)

Order
of coincidence, 112
of a series, 9

Ordered group, 203
Ordinary quadratic, 494

P
Pair of topological spaces, 277

product, 277
Parabolic singularities, 475
Pencil, 494
Perverse sheaf, 309

category of, 309
Morse groups, 309

Petal, 80
base, 81
parent, 81

Pfaffian singularity, 419
Pham-Brieskorn singularity. see Brieskorn-

Pham singularity
Pham, join, 341
Picard E., 492
Picard-Lefschetz transformation, 454
Piecewise linear chains, 291
Pinched solid torus, 164
Pinkham, 420
Pivotal vertex, 188
Platonic solids, 549
Plumbing, 156
Poincaré, H., 492
Point

first interior, 83
infinitely near, 69
labeled, of an Eggers-Wall tree, 113
last interior, 83
marked, of a fan tree, 70
marked, of a lotus, 82
marked, of an Eggers-Wall tree, 112
marked, of a trunk, 70
parent, 69
pinching, 83

Polar
curve, 224, 358
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curve, base locus of, 224
discriminant, 359
variety, 224

Polygon
elementary Newton, 117
Newton, relative to a cross, 55

Polynomial functions, 549, 571
invariant, 549, 571

Prepolar slice, 359
Presheaf, 288

sheafification, 289
Preverse sheaves, 538
Prill D., 509
Primitive vector, 30
Principal curvatures, 499
Projective line

complex, 551
cotangent bundle, 552

real, 552
Properly discontinuous group, 548
Proximity, 69
Pseudo-reflexion, 549
Puiseux exponents, 365
Puiseux series, 188
Pull-back, 394
Purity theorem, 528

Q
Quasi Coxeter element, 484
Quasi-homogeneous singularity, 420, 551
Quasi-isomorphism, 292
Quasi-projective, 501
Quasi-projective Theorem of Lefschetz type,

504
Quotient singularity, 548, 549, 583

R
Radial stratified vector field, 266
Rational double point singularity. see Kleinian

singularity
Rational singularities, 583

with reduced fundamental divisors, 566
Ray, 31
Raynaud M., 492
Rectified homological depth, 537
Rectified homotopical depth, 309, 510
Refinement

of a fan, 32
Reflection, 455
Reflexive module, 582, 583

special, 583

Regular
cone, 32
element, 571, 575
fan, 32
local ring, 13
orbit (see Adjoint action)

Regularization
of a fan, 33

Remmert R., 497
Renormalization

of Eggers-Wall trees, 120
Representation

irreducible, 581, 582
natural, 581
restriction, 582
tensor product, 581
trivial, 581

Resolution, 21, 184, 551, 583
of analytic curves, global, 191
of analytic varieties, 215
of curves, 188
of curves, purely algebraic, 191
dual graph of a, 552
embedded, 21
exceptional set of a, 184, 551, 577, 581–583
good, 187
injective, 292
minimal, 45, 551, 581–583
minimal embedded, 22
Newton’s proof for plane curves, 189
of plane curves, 188
in positive characteristic, 215
of a scheme, 233
T -acyclic, 294

Resolution of surfaces, 199
Beppo Levi’s method, 199
Jung’s method, 201
minimal, 210
Walker’s proof, 200
Zariski’s method, 202

Restriction
of a series to an edge, 50

Retraction
canonical, 283

Riemann surface, 191
Right equivalent, 472
Rigid

singularity, 416
Root, 560, 562

long, 566
short, 566
simple, 563, 567

Root system, 548
automorphism group, 561, 564
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base, 563
complex, 561
complexification, 562
Fundamental (see Root system, base)
Homogeneous (see Root system, simply

laced)
irreducible, 565
non-simply laced, 566, 567
rank, 561
real, 562
reduced, 561, 563, 564

type A1 × A1, 564
type A2, 563, 564
type B2, 564
type G2, 564

Simple (see Root system, base)
simply laced, 548, 566, 577

folding, 566, 567, 577
Weyl group of, 561, 564, 566, 572, 578

RP
1. see Projective line

Rugose vector field, 252

S
Scheme

excellent, 234
quasi-excellent, 234

Schlessinger, 411
conditions, 411

Schürmann J., 525
Seade J., 493
Sebastiani-Thom sum, 466
Second fundamental form, 499
Second order deformation, 412
Seifert form, 460
Semipetal, 102
Semi-radial stratified vector field, 266
Semisimple element, 568, 571. see Jordan-

Chevalley decomposition
Semi-stable reduction, 218
Semiuniversal

base space, 401
deformation, 400, 401

base space, 414
economy of, 402
of multigerm, 402

Set
automorphic, 464

Sheaf, 288
cohomology, 293
complex of, 292
conormal, 409
constructible, 297
of derivations, 409

Euler characteristic, 301
exact sequence of, 290
flabby, 290
of holomorphic vector fields, 409
injective, 290
injective resolution, 292
leaf space, 288
mapping cone, 295
Morse theory of, 299
normal, 409
perverse, 309
resolution, 290
sections, 288
soft, 290
stalk cohomology, 293

Simple elliptic singularity, 475, 577, 583
D̃5, 578–580
Ẽ6, 577
Ẽ7, 577
Ẽ8, 577

Simple loop, 454
Simple singularity, 472. see Kleinian

singularity
of types Bn, Cn, F4 or G2, 576, 577

sing.lib, 411
Singular

chains, 291
locus, 8, 402, 426
point, 400

Singularity, 390
ADE (see Kleininan singularity)
bimodal, 472
bimodular, 472
Brieskorn-Pham, 466
complete intersection, 393
cusp, 422
Du-Val (see Kleinian singularity)
hyperbolic, 476
hypersurface, 393
isolated, 400
minimal, 225
minimal hyperbolic, 481
minimally elliptic, 423
parabolic, 475
rational, 422

double point (see Kleinian singularity)
rigid, 416
sandwiched, 202
simple, 472 (see Kleinian singularity)
simple elliptic, 422, 475
smoothable, 417
theory, 493
unimodal, 472
unimodular, 472
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Skew group algebra, 555
SL(2,C)

finite subgroups, 549 (see SU(2))
sl(2,C), 556
˜SL(2,R), 551

sl(3,C), 575
SL(n,C), 546, 572
sl(n,C), 544, 547, 560, 561, 570, 572
sl2-triple, 574
Slice

Slodowy, 574–576
generalized, 578–581

transverse, 573
Slodowy slice. see Slice
Slope function, 70
Smooth, 400
Smoothable, 401

singularity, 417
Smoothing

component, 417
dimension of, 432

SO(3), 549
finite subgroups

cyclic group (Ck ), 549
dihedral group (Dk ), 549
icosahedral group (I ), 549
octahedral group (O), 549
tetrahedral group (T ), 549

so(4,C), 556
SO(n,C), 546
so(n,C), 546
Special fibre, 391
Specialization, 313
Spinor norm, 480
Stabilization, 466
Stalk cohomology, 293
Stein K., 497
Stein manifold, 498
Stein space, 308
Straightening the angle, 278
Stratification, 244, 280

control data, 283
good, 361
local structure, 281
Whitney, 327, 343, 379

Stratified
homeomorphism, 280
map, 343
Morse theory, 526
set, 244

Stratum, 244
adjacent strata, 245

Strict transform, 20

Strong theorem of Lefschetz type, 506
SU(2), 549, 551

finite subgroups, 549, 582
binary dihedral group (Dk), 549
binary icosahedral group (I), 549
binary octahedral group (O), 549
binary tetrahedral group (T ), 549
cyclic group (Ck ), 549

Subanalytic
set, 508
Whitney stratification, 522

Subdivision
of a fan, 32

Subregular
element, 571, 573–575
orbit (see Adjoint action)

Sum
Sebastiani-Thom, 466

Support
of a fan, 32
of a series, 49

Symmetry with vector α, 560
Symplectic

basis, 479
transvection, 455

System
distinguished, 455
weakly distinguished, 456

T
Tangent

sheaf, 409
space, 543

Tchirnhausen transformation, 212
Teissier’s Lemma, 351
Term

of a continued fraction, 88
The question of Nash, 222
The theorem of Lefschetz for hyperplane

sections, 492
Theorem

Ado’s theorem, 546
Bertini-Sard theorem, 328
of Chow, 496
Grothendieck-Chevalley theorem, 571
Jacobson-Morozov theorem, 574
Lie’s third theorem, 547
of Milnor, 493

Theory of Morse, 492
Thom

(af ) condition, 253, 343
map, 254
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Thom-Mather, Isotopy Lemma. see First
isotopy theorem of Thom-Mather

Thom R., 492, 498
Thurston’s geometric structures, 551
Tjurina

algebra, 404, 554, 580
module, 406

of complete intersection, 404
number, 404, 406

Topologically equivalent, 482
Topological stability theorem, 251
Toric

chart, 46
variety

affine, 226
Toroidal

category, 46
embedded resolution, 56

algorithm, 68
pseudo-resolution, 56

algorithm, 60
variety, 46

Torus action, 311
Total

space, 391
Transform

strict, 194
total, 20, 195

Transformation
Picard-Lefschetz, 454

Translation
left, 545
right, 545

Transvection
symplectic, 455

Transversal intersection, 248, 280
Triangulability, 509
Trivial

deformation, 416
relations, 397

Tropical
function, 55

Tropicalization
of a series, 51

Truncation
of a lotus, 103

Trunk
of a fan, 70

Tubular
function, 259
neighbourhood, 259, 283

U
Unfolding, 395, 452
Unimodal

singularity, 472
Unimodular

matrix, 30
singularity, 472

Universal covering space, 547
Unobstructed, 414

V
Valuation, 15, 203

center of, 206
divisorial, 204
rank of, 206
rational rank of, 206
ring, 205

characterizations of, 205
Vanishing

cycle, 315, 453
fibre, 529
lattice, 479

Varchenko, A.N., 502
Variety

affine toric, 38
bifurcation, 472
complex, 8
toric, 39
toroidal, 46

Vector fields, 409, 544
complex analytic, 544
elementary, 231
left invariant, 545
log-elementary, 232
non-singular, 231

Verdier duality, 298
Versal

deformation, 399
formally, 399

Vertex
basic, of a lotus, 81
basic, of a petal, 80
lateral, of a lotus, 93

W
Waldhausen graph manifold, 160
Wallace, A., 492
Weakly distinguished

basis, 456
system, 456
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Weak theorem of Lefschetz type, 506
Weak Whitney regularity, 261
Weight, 478

of a series, 50
Weighted homogeneous, 420
Weyl group. see Root system
Whitney

condition (a), 245, 280
condition (b), 245, 280
equisingular, 382
lemma, 326
stratification, 245, 519

Whitney, H., 510
Whitney stratification, 511

Y
Yasuda’s conjecture, 229

Z
Zariski-Jacobi sequence, 409
Zariski-Lefschetz Theorem, 502
Zariski O., 493, 502
Zariski-Riemann space, 208

compactness of, 209
Zariski topology on, 208

Zigzag decomposition, 88
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