
Chapter 9
Free Generalized van der Pol Oscillators:
Overview of the Properties of Oscillatory
Responses

Ivana Kovacic

Abstract This work is concerned with generalized van der Pol oscillators, the
damping-like force of which depends nonlinearly on the displacement and velocity
with the powers that can be any positive real numbers, while the restoring force is
either linear or purely nonlinear. The cases of small and large values of the damping
parameter are considered. In the former case, an overview of contributions related
to the amplitude and frequency of free limit cycle oscillations of different forms of
generalized van der Pol oscillators are given and then the most general case exam-
ined. In the latter case, the jumps, outer curves and period of relaxation oscillations
are found.

9.1 Introduction

The standard (classical) van der Pol oscillator

ẍ + x = ε
(
1 − x2

)
ẋ, (9.1)

represents one of archetypical oscillators. It is named after Balthasar van der Pol
(1889–1959), a Dutch physicist, whose achievements and life have attracted the
attention of many researchers both from the viewpoint of his scientific contributions
and biography [1–4].

Balthasar van der Pol entered the University of Utrecht, where he graduated cum
laude in Physics. He then studied under JohnAmbrose Fleming, whowas an inventor
of a diode, and John Joseph Thomson, who discovered the electron. He was a friend
and colleague with Edward Appleton, who was the Nobel Prize laureate for his
discovery of a certain layer of the ionosphere. Balthasar van der Pol was assistant to
Hendrik Antoon Lorentz, who shared the 1902 Nobel Prize in Physics in recognition
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of the research on the influence of magnetism upon radiation phenomena. Balthasar
van der Pol worked for Philips Company and also had an academic career at the
Technical University, Delft. He held a temporary professorship at the University of
California, Berkeley and the Victor Emanuel Professorship at Cornell in Ithaca, New
York.

Balthasar van der Pol pioneered the fields of radio and telecommunications [1].
However, his scientific work did not cover only radio and electrical engineering, but
also pure and appliedmathematics, which included number theory, special functions,
operational calculus and nonlinear differential equations.

He was a theoretician and an experimentalist. While conducting experiments with
oscillations in a vacuum tube triode circuit, he concluded that all initial conditions
converged to the same periodic orbit of finite amplitude. He proposed a nonlinear
differential equation (9.1) as a nondimensionalmathematicalmodel for the behaviour
observed experimentally [5]. The nonlinear ‘damping-like’ force that appears on
the right-hand side of Eq. (9.1) dissipates energy for large displacements as the
expression in the parentheses is negative; it feeds energy for small displacements
since this expression is then positive. This behaviour gives rise to self-sustaining/self-
exciting oscillations. For small values of the ‘damping coefficient’ ε (0 < ε � 1),
this behaviour is characterized by the appearance of a stable limit cycle with the
steady-state amplitude

∣∣aLC,s

∣∣ = 2 (note that the index ‘s’ stans for the ‘standard van
der Pol oscillator’ and this abbreviation will be used through the whole manuscript)
and the angular frequency approximately equal to unity (Fig. 9.1).

While investigating the case ε � 1, van der Pol discovered the importance of what
has become known as relaxation oscillations [6]—themotion consisting of very slow
asymptotic behaviour along outer curves followed by a sudden discontinuous jump.
The jump-down points xjd,s are located at xjd,s = 1, from which the amplitude jumps
to xd,s = − 2. Then the motion proceeds along the outer curve and undergoes a
jump-up from xju,s = − 1 to xu,s = 2 (Fig. 9.2). Ginoux pointed out in [7] that around
the same time when van der Pol published the paper [6] in English, he also published

Fig. 9.1 Characteristic behaviour of the van der Pol oscillator (1) for 0 < ε � 1: a oscillations;
b phase trajectory



9 Free Generalized van der Pol Oscillators … 131

Fig. 9.2 Characteristic behaviour of the van der Pol oscillator (1) for ε � 1: a oscillations; b phase
trajectory

three more contributions in Dutch and German. They were all introducing relaxation
oscillations, while ‘their conclusions differ in the choice of the devices exemplifying
the phenomenon of relaxation oscillations’. A few years later, van der Pol and van der
Mark modelled the electric activity of the heart by using relaxation oscillations [8].

In this work, the generalized van der Pol oscillator governed by the following
nondimensional equation of motion is considered:

ẍ + sgn(x)|x |α = ε f (x, ẋ),

f (x, ẋ) = (
1 − |x |β)|ẋ |γ sgn(ẋ), (9.2a,b)

where α > 0, β > 0, γ ≥ 0 and ε > 0. Here, the nonlinearity appears in both terms of
the ‘damping-like’ force given by Eq. (9.2b) as well as in the restoring force, which
is given by the second term on the left side of Eq. (9.2a); the sign and absolute value
functions are used in Eqs. (9.2a,b) to assure that these forces have the properties
of odd and even functions as in the standard van der Pol oscillator modelled by
Eq. (9.1). The aim is to show how the properties of oscillatory responses of this
generalized van der Pol oscillator differ with respect to the one described above for
the standard van der Pol oscillator. This work also contains a literature survey on
previous achievements related to these characteristics of different generalized van
der Pol type oscillators.

9.2 Small Values of the Damping Coefficient: Limit Cycle

Minorsky [9] examined the generalized van der Pol Eq. (9.2a,b) for α = γ =1 and
β = 2n, where n is a positive integer (n ≥ 1). He used the stroboscopic method,
obtained the steady-state amplitude, concluding that this amplitude is smaller than∣∣aLC,s

∣∣ = 2. In addition, he indicated that for 0 < n < 1, this amplitude is higher



132 I. Kovacic

than
∣∣aLC,s

∣∣ = 2. Moremedi et al. [10] used a perturbation scheme to conclude that
for α = γ = 1 and β = 2n, where n is a positive integer, one has |aLC | → 1,
when n → ∞. They also concluded that the effect of increasing n is to increase the
period of the limit cycle oscillations. Obi [11] analysed the model (9.2a,b) with γ

= 1, but only for the case when the powers α = 2n + 1 and β = 2n + 2 (n ≥ 1)
are an odd and even number, respectively. He gave an approximate value of the
amplitude of the limit cycle as |aLC | = (3n + 4)

1
2n+2 . By applying the harmonic

balance method and the averaging method, Mickens and Oyedeji [12] found that the
oscillatory response of a cubic van der Pol oscillator with α = 3, β = 2 and γ =
1 is characterised by |aLC | = 2 and the angular frequency ωLC = √

3. This work
was the motivation for the subsequent papers [13, 14], where the same oscillator
was considered, and its limit cycle described analytically in terms of Jacobi elliptic
functions. The approach of elliptic averaging gave |aLC | = 1.9098 and the period
TLC = 3.8833, with an error of less than 1‰ with respect to the corresponding
numerical result. The elliptic balancing used in [14] produced the result that depends
on ε, which gave more accurate approximate solutions. By developing an elliptic
perturbation method, improved accuracy is achieved in [15] even for higher values
of ε. Mickens [16] adjusted the averaging method to derive the expression for the
limit cycle of the generalized van der Pol oscillator with α = 1, β = 2 and γ =
1/3, showing that its steady-state amplitude is lower than that of the standard van
der Pol oscillator: |aLC | = 1.82574, while the frequency stays the same at the level
of approximation used. By applying an iterative technique, the same author [17]
showed that when α = 1/3 and β = 2, the amplitude of the limit cycle stays the same,
but the frequency decreases for about 15% with respect to the standard van der Pol
oscillator. Oyedeji [18] considered the quadratic van der Pol oscillator (α = β = 2
and γ = 1) and used the first order harmonic balance method to calculate the limit
cycle amplitude aLC,s = 2 and the frequency ωLC = √

16/(3π) ≈ 1.30294. Waluya
and van Horssen constructed asymptotic results on long time-scales t for the periods
of the generalized van der Pol Eqs. (9.2a,b) with β = 2, γ = 1 and α = (2m + 1)/(2n
+ 1), m, n ∈ N [19]. First, they showed how approximations of first integrals can
be obtained and, then, how the existence, stability, and the period of time-periodic
solutions can be determined from them. In [20], a more general class of oscillators
with α being any positive real number is dealt with. Approximate expressions for the
period is obtained for α �1, α � 1 and α → 1. Kovacic [21] applied the averaging
method for purely nonlinear systems to determine the amplitude of the limit cycle
for α > 0, β > 0, γ = 1 [21], while Kovacic and Mickens [22] generalized this case
to γ ≥ 0. Some of their results are summarised below. They also showed how to
calculate the time needed to reach the limit cycle.
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9.2.1 General Case

In order to determine the properties of the response of the oscillators governed by
Eqs. (9.2a,b) in a general case α > 0, β > 0, γ ≥ 0 and 0 < ε � 1, the averaging
method for purely nonlinear systems is used [21].When ε = 0,Eq. (9.2a) corresponds
to conservative purely nonlinear oscillators. Their energy integral can be used to
derive the exact value of their frequency:

ω(a) = c
√

|a|α−1, c =
√

π(α + 1)

2

Γ
(

α+3
2(α+1)

)

Γ
(

1
α+1

) , (9.3a,b)

where Γ is the Euler gamma function and a is the amplitude of motion.
The first approximation to motion of the perturbed systems (9.2a,b) can then be

assumed as

x = a cosψ, ẋ = −aω sinψ, (9.4a,b)

where

ψ = t∫
0
ω(a)dt + θ(t), (9.5)

while the frequency ω depends on the amplitude a and the power α was defined by
Eqs. (9.3a,b)

Differentiating Eq. (9.4a) with respect to time, one follows

ẋ = ȧ cosψ − aω sinψ − aθ̇ sinψ, (9.6)

which, owing to Eq. (9.4b), imposes the following constraint:

ȧ cosψ − aθ̇ sinψ = 0. (9.7)

Substituting the second time derivative of Eqs. (9.4b) together with Eq. (9.4a) into
Eq. (9.2a,b), one can derive:

−ȧω sinψ − a
dω

da
ȧ sinψ − aωθ̇ cosψ − aω2 cosψ + sgn(a cosψ)|a cosψ |α =

−ε
(
1 − |a cosψ |β)|−aω sinψ |γ sgn(−aω sinψ).

(9.8)

It should be noted that the last term on the left-hand side of Eq. (9.8) can be
approximated by the first term from the corresponding Fourier series expansion [23]
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sgn(a cosψ)|a cosψ |α ≈ |a|αb1α
cosψ, b1α

= 2√
π

Γ
(
1 + α

2

)

Γ
(
3+α
2

) . (9.9a,b)

Now, this term can be cancelled by the term in front of it

−aω2 cosψ + |a|αb1α
cosψ = 0, (9.10)

assuming that ω2 ≈ b1α
|a|α−1 ≈ c|a|α−1, as given by Eqs. (9.3a,b)

Next, based on Eqs. (9.3a,b), the second term on the left-hand side of Eq. (9.8)
can be expressed as:

dω

da
= α − 1

2a
ω. (9.11)

Substituting Eqs. (9.10) and (9.11) into Eqs. (9.8) and combining it with Eq. (9.7),
one can derive

ȧ

(
1 + α − 1

2
sin2 ψ

)
=

ε
(
1 − |a cosψ |β)|−aω sinψ |γ sgn(−aω sinψ) sinψ, (9.12)

aθ̇ + ȧ
α − 1

2
sinψ cosψ =

ε
(
1 − |a cosψ |β)|−aω sinψ |γ sgn(−aω sinψ) cosψ. (9.13)

Averaging Eqs. (9.12) and (9.13), the following first-order differential equations
for the amplitude a and the phase shift θ are obtained:

ȧ = − 2ε

πc(α + 3)|a| α−1
2

2π∫
0

(
1|a cosψ |β)|−aω sinψ |γ sgn(−aω sinψ) sinψdψ,

(9.14)

aθ̇ =
− ε

2πc|a| α−1
2

2π∫
0

(
1 − |a cosψ |β)|−aω sinψ |γ sgn(−aω sinψ) cosψdψ. (9.15)

Solving the integrals on the right-hand sides, yields:

ȧ = 4εcγ−1

π(α + 3)

|a|γ α+1
2 − α−1

2 Γ
(
1 + γ

2

)[√
πΓ

(
3+β+γ

2

)
− |a|βΓ

(
1+β

2

)
Γ

(
3+γ

2

)]

Γ
(
3+γ

2

)
Γ

(
3+β+γ

2

) ,

(9.16)



9 Free Generalized van der Pol Oscillators … 135

θ̇ = 0. (9.17)

Based on Eq. (9.17) one concludes that in all generalized van der Pol type oscil-
lators modelled by Eqs. (9.2a,b), the phase shift is constant to terms of order ε. The
amplitude of the limit cycle aLC corresponds to ȧ = 0 and is calculated to be

|aLC | =
⎡

⎣

√
πΓ

(
3+β+γ

2

)

Γ
(
1+β

2

)
Γ

(
3+γ

2

)

⎤

⎦

1/β

, (9.18)

while Eqs. (9.3a) define the corresponding frequency

ωLC = c
√

|aLC |α−1. (9.19)

The expression (9.18) is also obtained in [21] for the generalized van der Pol with
γ = 1 and indicates that the first approximation for the amplitude of the limit cycle
depends on the parameters appearing in the model of the ‘damping-like’ force.

Equation (9.18) is used to plot how the amplitude of the limit cycle changes with
the parameter β for two different values of the power γ (Fig. 9.3a, b).

In addition, numerically obtained amplitudes of the limit cycle are also presented
in this figure for three different values of the parameter α corresponding to the linear
α = 1, under-linear α = 2/3 and over-linear restoring forces α = 2. It is seen that
the analytical and numerical result agree reasonably well for the whole range of the
powers considered.

As the power of the restoring force α increases, the amplitude of the limit cycle
decreases. As the power of the geometric term in the ‘damping’ force β increases,
the amplitude of the limit cycle decreases as well.

9.2.2 Special Case: γ = 1

If the velocity term in the ‘damping’ force is linear as in the standard van der Pol
oscillator, the amplitude of the limit cycle is [21]:

|aLC | =
⎡

⎣

√
πΓ

(
4+β

2

)

Γ
(
1+β

2

)

⎤

⎦

1/β

. (9.20)

The way how this amplitude changes with the parameter β is plotted in Fig. 9.4.
Numerically obtained amplitudes of the limit cycle calculated for different values of
the parameter α are also shown.
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Fig. 9.3 Amplitude of the limit cycle obtained analytically Eq. (9.18) (solid line) and numerically
for ε = 0.1, α = 2/3 (stars), α = 1 (circles) and α = 2 (triangles): a γ = 0.8; b γ = 1.2
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Fig. 9.4 Amplitude of the limit cycle for γ = 1, ε = 0.1 obtained analytically Eq. (9.20) (solid
line) and numerically: α = 2/3 (stars), α = 1 (circles) and α = 2 (triangles)

Equation (9.20) implies thatwhenβ → 0, |aLC | → 2
√
e aswell aswhenβ → ∞,

|aLC | → 1, which agrees with the results found in [10]. When β = 2, as is in the
standard van der Pol oscillator, the amplitude is obtained |aLC | = 2, which is also
seen in Fig. 9.1.

Using Eqs. (9.19) and (9.20), the frequency of the limit cycle oscillations is plotted
in Fig. 9.5. For the under-linear case (α < 1), this frequency is lower than ωLC,s and
increases with β; for the over-linear case (α > 2), this frequency is higher than ωLC,s

and decreases with β.

9.2.3 Special Case: γ = 0

When the parameter γ is equal to zero, Eq. (9.18) yields the following amplitude for
the limit cycle

|aLC | = (1 + β)1/β . (9.21)

Thus, when β → 0, one has |aLC | → e. For the case when β = 2, one can
calculate |aLC | = √

3.
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Fig. 9.5 Frequency of limit cycle oscillations for γ = 1 and different values of α, Eqs. (9.19),
(9.20), (9.3a,b)

9.3 Large Values of the Damping Coefficient: Relaxation
Oscillations

As illustrated in Fig. 9.2, the oscillatory response of the standard van der Pol oscillator
(1) corresponding to ε � 1 has the form of relaxation oscillations. Besides the
characteristic coordinates labelled in Fig. 9.2, their period has also attracted the
interest of researchers. Based on geometrical considerations, van der Pol wrote in
[6] that ‘the period T, instead of being 2π (as was the case when ε � 1) increases
with increase of ε, and when ε � 1 becomes equal to approximately ε itself’. Later
on, he improved this conclusion to T = 1.61ε [8]. This expression was found not to
be accurate for larger values of ε, such as, for example ε = 10, as the experiments
had showed T ≈ 20. Haag [24, 25] and Dorodnitsyn [26] provided more accurate
approximations, giving the expressions whose first term coincided with Ts = 1.61ε,
while additional ones were either power or log-forms of ε. Stoker’s approximation
for the period [27] was even more accurate, with the error of 0.8% for ε = 5 and
0.1% for ε = 10. The interested reader is referred to [7] for a rich historical review
of the discovery and investigations of relaxation oscillations.

The aim of this section is to analyse relaxation oscillations of the generalized
van der Pol oscillator (9.2a,b) and to determine the analytical expressions for the
coordinates of jump points, outer curves, and the period. To that end, a perturbation
approach with slow and fist time scales will be used. First, time is scaled by setting
t1 = εϑ t , where ϑ is to be determined. Equations (9.2a,b) turns into

ε2ϑ
d2x

dt21
+ sgn(x)|x |α − ε1+γϑ

(
1 − |x |β)

∣∣∣∣
dx

dt1

∣∣∣∣

γ

sgn

(
dx

dt1

)
= 0. (9.22)
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Selecting ϑ = −1/γ , the third and the second term are of the same order, while
the first term becomes of the order (1/ε)2/γ . This term can be neglected as being
small for γ being around unity. Thus, for the remaining procedure, it will be selected
that γ = 1. As a result, one has ϑ = −1 now. The slow time scale is defined as
t1 = t/ε, and Eq. (9.22) turns into

1

ε2

d2x

dt21
+ sgn(x)|x |α − (

1 − |x |β) dx
dt1

= 0. (9.23)

The first term can be neglected as being small, which yields

dx

dt1
= sgn(x)|x |α

1 − |x |β . (9.24)

Jumps occur when dx/dt1 is infinite, i.e. when the nominator in Eq. (9.24) is zero,
giving the jump-down xjd and jump-up xju values of the coordinates: xjd = 1 and xju
= −1. These values are the same as the one in the standard van der Pol oscillator
(see Fig. 9.2) and are obtained as independent of the values of the powers α and β.

In order to define the characteristic amplitudes xd and xu labelled in Fig. 9.2 for
a generalized van der Pol oscillator, the fast time scale is introduced as t2 = εt ,
resulting in

d2x

dt22
+ 1

ε2
sgn(x)|x |α − (

1 − |x |β) dx
dt2

= 0. (9.25)

By neglecting the term of O
(
1/ε2

)
, the following first integral can be derived

dx

dt2
− x + x |x |β

β + 1
= C, (9.26)

where C is a constant. Its value can be calculated by considering jumps for which
dx/dt2 = 0.When xjd = 1, one can calculateC = −β/(β + 1), giving the following
implicit equation for the amplitude xd:

xd − xd|xd|β
β + 1

− β

β + 1
= 0. (9.27)

In a similar way, the value of C corresponding to xju = −1 can be obtained,
resulting in the following implicit equation for xu:

xu − xu|xu|β
β + 1

+ β

β + 1
= 0. (9.28)
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Fig. 9.6 Change of the coordinates xd and xu with the power β, Eqs. (9.27) and (9.28)

Equations (9.27) and (9.28) imply that xd and xu depend on the damping power
β, but do not depend on the power of the restoring force α.

The solutions of Eqs. (9.27) and (9.28) are plotted in Fig. 9.6 as a function of
the power β. As β increases infinitely, the values of xd and xu approach 1 and −1,
respectively, i.e. xjd and xju. Thismeans that outer curves will be flatter as β increases.

Integration of Eq. (9.26) can give analytical expressions for the outer curves. Thus,
for α = 1, one can derive [21]:

ln|x | − |x |β
β

= t1 + D, (9.29)

where D is a constant.
When α > 1 and β = α − 1, one can obtain

|x |1−α

1 − α
− ln|x | = t1 + D. (9.30)

If α �= 1andβ �= α − 1, the integration gives

|x |1−α

1 − α
− |x |β−α+1

β − α + 1
= t1 + D. (9.31)
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Fig. 9.7 Relaxation
oscillations of the
generalized van der Pol
oscillators modelled by
Eqs. (9.2a,b) for γ = 1, ε =
10: numerical solution for α

= 5/3, β = 2/3 (red dotted
line); numerical solution for
α = 2, β = 1 (blue dashed
line), numerical solution for
α = 5/2, β = 3/2 (green solid
line); outer curves defined by
Eq. (9.30) are depicted by
stars; jump-up points xju and
jump-down points xjd by
circles; points xd by triangles
and points xu by squares

To validate the analytical results obtained, their comparison with the numerical
results from direct integration of the equation of motion is carried out for different
values of the powers α and β. Figure 9.7 shows this comparison for the outer curves,
and the characteristic coordinates: xu, xd, xjd and xju.

For the sake of easier visual comparison, the legend used for the characteristics
coordinates corresponds to the one used in Fig. 9.2 for the standard van der Pol
oscillator. It is seen that the analytical results obtained are in good agreement with the
numerical results. These figures illustrate the effects of the powers α and β influence
on the relaxation oscillations, including their amplitude, i.e. the coordinates xd and
xu. They also give insight into the time spent moving along the outer curves from
xu to xjd, which corresponds to the first half of the period. It is seen that this time is
affected by the powers α and β. In order to obtain the analytical expression for the
half of the period, one can utilize the previously derived analytical expression for
the outer curves and the coordinate xu, Eq. (9.27). Thus, the half-period on the slow
time scale t1 corresponding to α = 1 is

T1
2

=
[
ln|x | − |x |β

β

]xjd=1

xu

= − 1

β
− ln xu + xβ

u

β
, (9.32)

where the absolute value of xu has been omitted as 0 < xu < 1. On the original time
scale t, the period of relaxation oscillations T is

T = 2

[

− 1

β
− ln xu + xβ

u

β

]

ε. (9.33)

When α > 1, β = α − 1, this period is
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T = 2

[
1

1 − α
+ ln xu − x1−α

u

1 − α

]
ε. (9.34)

If α �= 1, β �= α − 1, this period is defined by

T = 2

[
β

(1 − α)(β − α + 1)
− x1−α

u

1 − α
+ xβ−α+1

u

β − α + 1

]

ε. (9.35)

Figure 9.8 shows how the ratio of the period of relaxation oscillations and the
‘damping’ coefficient ε changes with the power β. The cases defined by Eqs. (9.33)
and (9.35) are plotted in Fig. 9.8a and c, respectively. They illustrate that the ratio
T /ε increases as β increases. Figure 9.8b is plotted based on Eq. (9.34) and shows
different trends of T /ε with respect to the value β∗ ≈ 1.84, which corresponds to
T ∗ ≈ 0.637ε. For β < β*, the ratio considered increases with the increase of β, and
then decreases.

Fig. 9.8 Ratio of the period of relaxation oscillations T and the ‘damping’ coefficient ε versus the
damping power β: a Eq. (9.33); b Eq. (9.34); c Eq. (9.35), α = 2/3 (black dashed-dotted line), α
= 5/3 (red dotted line), α = 2 (blue dashed line), discontinuity of the curves due to the condition
β �= α − 1 is depicted by circles
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9.4 Conclusions

This work has first given a tribute to Balthasar van der Pol and his contribution related
to the standard equation named after him. Two main cases and their properties have
been pointed out: (i) the case of small values of the ‘damping’ parameter with the
amplitude and frequency of free limit cycle oscillations, (ii) the case of large values of
the ‘damping’ parameter and the resulting relaxation oscillations. Then, generalized
van der Pol oscillators, have been investigated in both cases. Their restoring force
and the ‘damping-like’ force are of power-form. The results have been compared
with those for the standard van der Pol oscillator. In the former case, the method of
averaging has been used. The expressions for the amplitude and frequency of the limit
cycle have been derived, and also simplified for certain special cases related to certain
system parameters. In the latter case, the expressions for jumps and outer curves have
been obtained by using a perturbation technique for distinguishable combinations
of the system parameters. The resulting period of relaxation oscillations has been
obtained for these three combinations and the differences between them have been
pointed out.
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